WO2021238300A1 - 一种用于测量鞋子刷胶边缘胶线的装置及其测量方法 - Google Patents

一种用于测量鞋子刷胶边缘胶线的装置及其测量方法 Download PDF

Info

Publication number
WO2021238300A1
WO2021238300A1 PCT/CN2021/075672 CN2021075672W WO2021238300A1 WO 2021238300 A1 WO2021238300 A1 WO 2021238300A1 CN 2021075672 W CN2021075672 W CN 2021075672W WO 2021238300 A1 WO2021238300 A1 WO 2021238300A1
Authority
WO
WIPO (PCT)
Prior art keywords
shoe last
shoe
glue
socket
frame
Prior art date
Application number
PCT/CN2021/075672
Other languages
English (en)
French (fr)
Inventor
李文亮
陈海亮
吴梓鸿
洪东方
梁泽豪
张明全
苏惠阳
高福龙
蔡仙水
王平江
冯少平
张鸿翔
Original Assignee
泉州华中科技大学智能制造研究院
泉州华数机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泉州华中科技大学智能制造研究院, 泉州华数机器人有限公司 filed Critical 泉州华中科技大学智能制造研究院
Publication of WO2021238300A1 publication Critical patent/WO2021238300A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43DMACHINES, TOOLS, EQUIPMENT OR METHODS FOR MANUFACTURING OR REPAIRING FOOTWEAR
    • A43D1/00Foot or last measuring devices; Measuring devices for shoe parts
    • A43D1/08Measuring devices for shoe parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates

Definitions

  • the invention relates to the technical field of shoe machines, in particular to a device and a measuring method for measuring the glue line on the edge of shoe glue.
  • glue brushing glue on shoes is a very important link.
  • the existing commonly used glue brushing methods are all glue application methods in which glue is sprayed on the shoe surface through a glue gun. Since the glue application method is to atomize the glue by air and scatter it on the surface of the object under the blow of the air flow, the width of the glue line of the glue can be very wide, and the thickness of the glue line can be very thin.
  • the glue line glue thickness obtained by the glue application method of squeezing the glue out and falling on the surface of the object through the glue head is mostly thicker than the thickness of the glue sprayed, so the thickness of the glue line glue can be directly measured by the 3D vision sensor (ie Shape contour) to realize the measurement of the edge position of the glue line to screen out qualified glued shoes.
  • the 3D vision sensor ie Shape contour
  • the surface roughness of the shoe upper cannot be compared with the surface of the workpiece in the automobile industry or the 3C electronics industry, and it is not easy to directly measure the thickness of the glue line glue (that is, the contour) through the high-precision 3D vision sensor to realize the glue. Measurement of the position of the edge of the line.
  • the present invention proposes a device for measuring the glue line of the shoe glue line, which has a simple structure and can measure the position of the glue line edge of the shoe glue.
  • the technical solution of the present invention is to provide a device for measuring the edge glue line of shoe glue, including a rack, shoe lasts for inserting the glued shoes, industrial robots, and A 3D vision sensor for detecting shoes after glue, the shoe last is installed on the rack, the industrial robot is fixed on the rack, and the 3D vision sensor is fixed on the rotating arm of the industrial robot And the 3D vision sensor is located on the side of the shoe last, and the frame is provided with an automatic conveying device for conveying the shoe last for measurement.
  • the automatic conveying device includes a flexible chain for conveying the shoe last.
  • the flexible chain It is fixed on the frame, and a positioning block for positioning the shoe last is fixed on the frame.
  • the positioning block is provided with a positioning opening for the shoe last to pass through, and the frame is fixed with a shoe last
  • a fixing frame is fixed on the flexible chain, a sliding groove is opened on the fixing frame, a limit rod is slidably arranged in the sliding groove, and the fixing frame is provided with a second drive for driving the limit rod to slide.
  • the clamping device includes a clamping rod, which can be raised and lowered on the frame, and the shoe last is provided with a first socket for inserting the clamping rod Hole, the frame is provided with a first driving device for driving the clamping rod to slide up and down, and the frame is also provided with a second driving device for driving the clamping rod to slide on the slide rail.
  • a further improvement is that an elastic ring is sleeved in the first socket, and a chamfer is provided on the clamping rod to facilitate the clamping rod to be inserted into the first socket.
  • a further improvement is that a number of buffer blocks are fixed in the positioning block, a buffer pad with elasticity is provided on the shoe last, and a buffer opening for the buffer pad to be inserted is opened on the buffer block.
  • a further improvement is that: the buffer pad is respectively provided with second sockets, the frame is fixedly provided with a support rod that can penetrate the second socket, and the other end of the support rod is fixedly provided with a connection Block, the connecting block is provided with a third driving device for driving the support rod up and down.
  • a further improvement is that: the first driving device is a lifting cylinder, a fixed block is fixed on the extension rod of the lifting cylinder, the clamping rod is fixed on the fixed block, and the second driving device It is a rodless cylinder, and the lifting cylinder is fixedly arranged on the sliding block of the rodless cylinder.
  • a further improvement is that: the shoe last is provided with a plurality of guide holes, the positioning block is fixedly provided with a guide rod for the guide hole to penetrate, and an elastic ring is arranged in the guide hole.
  • a method for measuring the edge glue line using a device for measuring the glue line of the shoe brush glue edge :
  • the rodless cylinder operates to drive the shoe last to slide in the slide rail and move toward the positioning frame until the shoe last is clamped into the positioning opening;
  • the third cylinder works to drive the strut into the second socket, and the shoe last is stably positioned in the positioning opening of the positioning frame;
  • the one-line laser of the 3D vision sensor emits a strip of ultraviolet light and shoots it on the shoes.
  • the one-line laser is divided into three sections.
  • the middle end produces fluorescent color because the glue contains fluorescent whitening agent, showing the characteristics of fluorescent light.
  • the two segments are presented as laser light features, and the position data of the industrial robot is obtained at the same time;
  • S2 The camera of the 3D vision sensor photographs the ultraviolet light strip irradiated on the shoes, and transmits the photographed image to an external image processing module for processing;
  • the image processing module processes the extracted thinned laser bright lines and fluorescent bright lines to obtain pixel coordinates
  • the external vision scanning software After obtaining the measurement result of the 3D vision sensor and the corresponding position data of the industrial robot, the external vision scanning software converts the measurement result of the 3D vision sensor to the measurement coordinate system of the entire measurement system through matrix calculation;
  • the industrial robot rotates around the shoe with the 3D vision sensor, and repeats the steps a-f.
  • the vision scanning software converts all the measurement results of the 3D vision sensor to the measurement coordinate system of the entire measurement system, and then compares it with the preset Compare the edge value of the shoes with glue, and get the shoes that are qualified after brushing;
  • the lifting cylinder works and drives the clamping rod to rise, so that the clamping rod is inserted into the first socket hole to engage with the first socket hole.
  • the third cylinder works to make the strut away from the second socket. Socket
  • the rodless cylinder operates to drive the shoe last to slide in the slide rail and move toward the flexible chain.
  • the shoe last passes through the avoidance opening to the flexible chain. The operator will measure the Qualified and unqualified shoes are removed from the classification.
  • the robot can drive the 3D vision sensor to perform 360° rotation measurement around the shoe last with shoes, and then can perform all-round edge detection on the shoes after spraying, and obtain qualified shoe products that are glued and glued. Glue unqualified shoes after brushing.
  • the automatic conveying device can automatically convey the shoes set on the shoe last into the positioning block for detection by the 3D vision sensor, which improves the detection efficiency and greatly saves labor.
  • the cushion and the cushion block can prevent the shoe last from hitting the positioning block when it is stuck in the positioning block, damaging the shoe last and the positioning block, and reducing its service life.
  • the chamfer on the clamping rod can facilitate the clamping rod to be quickly inserted into the first socket.
  • the first elastic rubber ring in the first socket can prevent the clamping rod from damaging the first socket when inserted into the first socket. ⁇ Bearing jack.
  • the support rod can support the shoe last, so that it can be placed on the rack more stably, ensuring the accuracy of the measurement. At the same time, the shoe last can be held up when the clamping rod is inserted into the first socket, so that the clamping rod can be better inserted into the first socket.
  • the guide hole on the shoe last is engaged with the guide rod on the positioning block, so that the shoe last can be lifted vertically when the clamping rod and the support rod support the shoe last, which not only makes the clamping rod better
  • the aligning with the first socket is inserted and clamped, and also prevents the shoe last from running out of the slide rail.
  • the limit rod on the fixed frame can restrict the shoe last of the undetected shoes from passing through, make it wait on the flexible chain, so that it can quickly prepare for the next test, and distinguish the test from the shoes for the test open.
  • Fig. 1 is a schematic structural diagram of a device for measuring the glue line of shoe glue edge according to an embodiment of the present invention.
  • Fig. 2 is a schematic structural diagram of a device for measuring the glue line of the shoe glue edge according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a partial structure of a device for measuring the glue line of the shoe glue edge according to an embodiment of the present invention.
  • Fig. 4 is a schematic diagram of establishing a Cartesian rectangular coordinate system according to an embodiment of the present invention.
  • a device for measuring the glue line of the edge of the shoe glue including a frame 1, a shoe last for the shoe covered with fluorescent whitening glue 4, an industrial robot 2, a The 3D vision sensor 3 for detecting shoes after the glue is applied, the flexible chain 5 for conveying the shoe last 4, the shoe last 4 is set on the frame 1, and the industrial robot 2 is fixed on the machine On the frame 1, the 3D vision sensor 3 is fixed on the rotating arm of the industrial robot 2 and the 3D vision sensor 3 is located on the peripheral side of the shoe last 4, and the flexible chain 5 is fixed on the frame 1 ,
  • the frame 1 is fixedly provided with a positioning frame 6 for positioning the shoe last 4, the positioning frame 6 is provided with a positioning opening 61 for the shoe last 4 to pass through, and the frame 1 is fixed with a shoe last 4 Sliding slide rail 12, one end of the slide rail 12 is located in the positioning frame 6, the other end of the slide rail 12 is connected to the flexible chain 5, and the flexible chain 5 is connected to the slide rail 12 with an escape opening 51 , So
  • the fixing block 72 not only enables the clamping rod 7 to better engage with the first socket 62 of the shoe last 4, but also enables it to be more securely engaged. Stably drag the shoe last 4 to slide, the frame 1 is also provided with a rodless cylinder 13 for driving the clamping rod 7 to slide on the slide rail 12, and the lifting cylinder 71 is fixed on the rodless cylinder 13 on the slider.
  • the first socket 62 is sheathed with a first elastic ring, and the clamping The rod 7 is provided with a chamfer for inserting the clamping rod 7 into the first socket 62.
  • the chamfer on the clamping rod 7 can facilitate the clamping rod 7 to be quickly inserted into the first socket 62, and the first elastic rubber ring in the first socket 62 can prevent the clamping rod 7 from being inserted into the first socket 62.
  • the first socket 62 is damaged at the time.
  • two buffer blocks 9 are fixed in the positioning frame 6, and the shoe last 4 is provided with an elastic buffer pad 8.
  • a buffer port 91 for the buffer pad 8 to be inserted into is opened.
  • the cushion 8 and the buffer block 9 can prevent the shoe last 4 from hitting the positioning frame 6 when it is inserted into the positioning frame 6, damaging the shoe last 4 and the positioning frame 6, and reducing its service life.
  • the cushion 8 is provided with a second socket (not shown in the figure), and the frame 1 is fixedly provided with a penetrating hole.
  • the frame 1 is fixedly provided with a penetrating hole.
  • the other end of the strut 14 is fixedly provided with a connecting block 141, and the connecting block 141 is provided with a third air cylinder 142 for driving the strut 14 to move up and down.
  • the support rod 14 can support the shoe last 4 so that it can be placed on the frame 1 more stably, ensuring the accuracy of the measurement.
  • the shoe last 4 can be held up when the clamping rod 7 is inserted into the first socket 62, so that the clamping rod 7 can be better inserted into the first socket 62.
  • a fixing frame 11 is fixed on the flexible chain 5, and a sliding groove is provided on the fixing frame 11, and a limit is slidable in the sliding groove.
  • the fixing frame 11 is provided with a fourth air cylinder 112 that drives the limiting rod 111 to slide.
  • the limit rod 111 can restrict the passage of the shoe last 4 of the undetected shoe, and make it wait on the flexible chain 5, so that it can quickly prepare for the next detection, and distinguish the detected shoe from the detected shoe.
  • a number of guide holes 63, 64 are opened on the shoe last 4, and the positioning frame 6 is fixed with a supply
  • the guide rod 10 penetrates the guide hole, and an elastic ring is arranged in the guide hole.
  • the guide holes on the shoe last 4 are engaged with the guide rods on the positioning frame 6, so that the shoe last 4 can be lifted vertically when the clamping rod 7 and the support rod 14 hold up the shoe last, which not only makes the clamping
  • the rod 7 is better aligned with the first socket 62 for insertion and clamping, and also prevents the shoe last 4 from running out of the sliding rail 12.
  • the rack 1 is also provided with a rack 15 for holding shoes.
  • the shoe last 4 moves to the avoidance opening 51 of the slide rail 12 and the flexible chain 5, and the lifting cylinder 71 drives the clamping rod 7 to rise to make the clamping rod 7 Insert the first socket 62, and after the clamping rod 7 is inserted into the socket and engaged with the shoe last 4, the rodless cylinder 13 moves, which in turn drives the clamping rod 7 to clamp the shoe last 4 to move toward the positioning frame 6, and move
  • the shoe last 4 is clamped and placed in the positioning opening 61, and then the 3D vision sensor 3 starts to work to detect the adhesion of the shoe, and under the action of the industrial robot 2, it rotates 360° around the side of the shoe last 4 to make the shoe Last 4 can be fully detected.
  • the lifting cylinder 71 drives the clamping rod 7 to be inserted into the first socket 62 to engage with the shoe last 4, and then the rodless cylinder 13 drives the clamping rod 7 to clamp the shoe last 4 to move in the direction of the flexible chain 5.
  • the flexible chain 5 transport away, and then enter the next inspection process.
  • the shoe last 4 of the present invention includes: a cross-shaped bottom plate 41, a supporting portion 42, and a shoe last body 43.
  • the bottom part is the rear, and the two sides are left and right.)
  • the bottom surface of the cross-shaped bottom plate 41 is fixed on the bottom surface of the left and right ends. Connect with the cross-shaped bottom plate 41.
  • the cushion 8 is provided with a symmetrical arc surface 81 and a cross section 82.
  • the shoe last body 43 When the shoe last 4 moves on the flexible chain 5, the shoe last body 43 is arranged horizontally, that is, the cushion 8 fixed to the left and right ends of the cross-shaped bottom plate 41 is arranged on the flexible chain 5 front and back, and its arc surface 81 is connected to the flexible chain 5.
  • the cut surface 82 is in contact with the inner surface of the sliding rail, and the shoe last body 43 is arranged longitudinally.
  • the shoe last body 43 is detachably connected to the supporting portion 42, and the shoe last body 42 of different specifications can be replaced as required.
  • a measuring method for a device for measuring the glue line of the edge of the shoe glue :
  • the third air cylinder 142 works and drives the strut into the second socket hole to stably position the shoe last 4 in the positioning opening 61 of the positioning frame;
  • the one-line laser of the 3D vision sensor emits a strip of ultraviolet light and shoots it on the shoes.
  • the one-line laser is divided into three sections.
  • the middle end produces fluorescent color because the glue contains fluorescent whitening agent, showing the characteristics of fluorescent light.
  • the two segments are characterized by laser light, and at the same time, the external PC obtains the time position data of the industrial robot through the secondary development interface of the industrial robot;
  • S2 The camera of the 3D vision sensor photographs the ultraviolet light strip irradiated on the shoes, and transmits the photographed image to an external image processing module for processing;
  • the image processing module refines the extracted laser light lines and fluorescent light lines to obtain pixel coordinates
  • the coordinate value of the point on the laser line in the camera measurement coordinate system is calculated.
  • the principle is the active structured light vision measurement method based on the optical triangulation measurement principle, that is, the laser projector projects structured light on For the measured object, the structured light intersects the surface of the object to generate a light bar.
  • the CCD camera captures the image, extracts the pixel coordinates of the light point, and determines the spatial position equation of the structured light in the world coordinate system through calibration and the conversion between the world coordinate system and the camera coordinate system Relationship, you can calculate the coordinates of the light point in the world coordinate system;
  • the external vision scanning software uses matrix calculations to convert the measurement results of the 3D vision sensor to the measurement coordinate system of the entire measurement system.
  • the matrix calculation is shown in the figure 4 shows:
  • the 3D vision sensor is mounted on the end of the robot.
  • ⁇ C ⁇ represents the measurement coordinate system of the 3D vision sensor
  • ⁇ T ⁇ represents the tool coordinate system of the robot
  • ⁇ B ⁇ represents the robot’s coordinate system
  • Base coordinate system ⁇ M ⁇ represents the measurement coordinate system of the entire measurement system.
  • the 3D vision sensor measures the position of point P in the sensor measurement coordinate system as C P, which is described as a 4 ⁇ 1 column vector in the form of homogeneous coordinates; the 3D vision sensor is fixedly installed At the end of the robot, the relative positional relationship between the 3D vision sensor measurement coordinate system ⁇ C ⁇ and the robot tool coordinate system ⁇ T ⁇ is fixed during the robot movement.
  • the 3D vision sensor measurement coordinate system ⁇ C ⁇ is in the robot tool coordinate system
  • the pose (position and posture) in ⁇ T ⁇ is described as a matrix It is described as a 4 ⁇ 4 rotation and translation matrix in homogeneous coordinate form);
  • the pose description of the robot tool coordinate system ⁇ T ⁇ in the robot base coordinate system ⁇ B ⁇ is known in the robot motion control system, denoted as It is described as a 4 ⁇ 4 rotation and translation matrix in the form of homogeneous coordinates;
  • the measurement coordinate system ⁇ M ⁇ of the measurement system is also fixed relative to the robot base coordinate system ⁇ B ⁇ , the robot base coordinate system ⁇ B ⁇
  • the pose in the measurement coordinate system ⁇ M ⁇ is described as Available:
  • M P on the left side of the equation is the description of the spatial position of point P in space in the measurement coordinate system ⁇ M ⁇ of the measurement system, that is, a matrix is also required And matrix Then the 3D measurement of the measurement system can be realized; the matrix It describes the relative position between the measurement system measurement coordinate system ⁇ M ⁇ and the robot base coordinate system ⁇ B ⁇ , which is calibrated by the robot's workpiece coordinate system calibration method, and the matrix It describes the relative position between the measurement coordinate system of the 3D vision sensor and the robot tool coordinate system, also known as the hand-eye matrix, which is calibrated by hand-eye calibration;
  • the industrial robot rotates around the shoe with the 3D vision sensor, and repeats the steps a-f.
  • the vision scanning software converts all the measurement results of the 3D vision sensor to the measurement coordinate system of the entire measurement system, and the vision scanning software repeats this
  • the calculation operation can then obtain the 3D point cloud of the visual scanning part of the shoe.
  • the 3D point cloud with the fluorescence feature can be extracted from the 3D point cloud of the visual scanning part of the shoe, and finally realized Measure the position of the lower edge of the glue line of the glue containing the fluorescent whitening agent sprayed on the shoes, and then compare it with the pre-set rubber edge value of the shoes to obtain the qualified shoes after brushing;
  • the lifting cylinder 71 works, driving the clamping rod 7 up, so that the clamping rod 7 is inserted into the first socket 62 to engage with the first socket 62, and at the same time, the third cylinder 142 works, Keep the strut away from the second socket;
  • the camera in the 3D vision sensor 3 is replaced with a color camera, and the laser in the 3D vision sensor 3 is replaced with a violet laser containing ultraviolet rays.
  • the fluorescence produced by the glue containing fluorescent whitening agent under ultraviolet irradiation is different from the color of the laser.
  • the laser bright line is segmented by color, and then the contour information of the fluorescent area can be segmented. That is, the original 3D vision sensor 3 measures the characteristics of the laser bright line on the surface of the object.
  • the color processing function is added to realize the segmentation of the fluorescent bright lines from the laser bright lines, thereby realizing the measurement of the features containing the fluorescence effect on the surface of the object, that is, it is possible to realize that the thickness of the glue line glue sprayed on the shoe upper is not measured. Measure the position of the edge of the glue line.
  • the present invention is a device and method for measuring the glue line on the edge of shoe glue.
  • a robot installed on a frame drives a 3D vision sensor to perform a 360° rotation measurement around a shoe last with shoes.
  • the shoes carry out omni-directional edge detection to obtain qualified shoe products that are glued and glued.
  • the automatic conveying device can automatically convey the shoes set on the shoe last into the positioning block for positioning, for the 3D vision sensor to detect and improve In order to improve the detection efficiency, the structure is simple, the application range is wide, and it has good industrial practicability.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种用于测量鞋子刷胶边缘胶线的装置,包括机架(1)、鞋楦(4)、工业机器人(2)、3D视觉传感器(3),鞋楦(4)设于机架(1)上,工业机器人(2)固定设于机架(1)上,3D视觉传感器(3)固定设于工业机器人(2)的转动手臂上且3D视觉传感器(3)位于鞋楦(4)周侧,机架(1)上设有自动输送装置,自动输送装置包括柔性链(5),柔性链(5)固定设于机架(1)上,机架(1)上固定设有定位架(6),定位架(6)上开设有穿入定位口(61),机架(1)上固定设有滑轨(12),滑轨(12)一端位于定位架(6)内,滑轨(12)另一端与柔性链(5)相连通,机架(1)上还设有夹持装置,柔性链(5)上固定设有固定架(11),固定架(11)上开设有滑槽,滑槽内可滑动设有限位杆(111),固定架(11)上设有驱动限位杆(111)滑动的第四驱动装置。本装置结构简单、能够对刷胶后鞋子胶线边缘位置进行测量。

Description

一种用于测量鞋子刷胶边缘胶线的装置及其测量方法 技术领域
本发明涉及鞋机技术领域,特别涉及一种用于测量鞋子刷胶边缘胶线的装置及其测量方法。
背景技术
在制鞋行业,尤其是制鞋成型自动化生产线上,鞋子上刷胶是一个非常重要的环节。现有的常用刷胶方式都是通过胶枪把胶水喷在鞋面上的上胶方式。由于喷胶的上胶方式是通过气体把胶水雾化开后并在气流的吹动下散落在物体表面上,故喷胶的胶线宽度可以很宽,胶线胶水的厚度可以很薄,而通过点胶头把胶水挤出来并落在物体表面上的涂胶方式得到的胶线胶水厚度大都比喷胶的胶水厚度厚,故可以直接通过3D视觉传感器测量涂胶胶线胶水的厚度(即外形轮廓)来实现对胶线边缘位置的测量,以筛选出合格的涂胶鞋子。但鞋子鞋面的表面粗糙度无法与汽车行业或3C电子行业里的工件的表面相比,不易于直接通过高精度的3D视觉传感器测量喷胶胶线胶水的厚度(即外形轮廓)来实现胶线边缘位置的测量。
发明内容
因此,针对上述的问题,本发明提出一种结构简单、能够对刷胶后鞋子胶线边缘位置测量的一种用于测量鞋子刷胶边缘胶线的装置。
为实现上述目的,本发明的技术方案是提供了一种用于测量鞋子刷胶边缘胶线的装置,包括机架、供刷胶后的鞋子套入的鞋楦、工业 机器人、用于给刷胶后鞋子检测的3D视觉传感器,所述鞋楦设于所述机架上,所述工业机器人固定设于所述机架上,所述3D视觉传感器固定设于所述工业机器人的转动手臂上且3D视觉传感器位于所述鞋楦周侧,所述机架上设有用于将鞋楦输送进行测量的自动输送装置,所述自动输送装置包括用于输送鞋楦的柔性链,所述柔性链固定设于所述机架上,所述机架上固定设有定位鞋楦的定位块,所述定位块上开设有供鞋楦穿入定位口,所述机架上固定设有供鞋楦滑入定位口的滑轨,所述滑轨一端位于定位块内,所述滑轨另一端与所述柔性链相连通,所述机架上还设有夹持鞋楦滑移的夹持装置,所述柔性链上固定设有固定架,所述固定架上开设有滑槽,所述滑槽内可滑动设有限位杆,所述固定架上设有驱动所述限位杆滑动的第四驱动装置。
进一步改进的是:所述夹持装置包括夹持杆,所述夹持杆可上下升降设于所述机架上,所述鞋楦上开设有供所述夹持杆插入的第一承插孔,所述机架上设有驱动所述夹持杆上下滑动的第一驱动装置,所述机架上还设有用于驱动所述夹持杆在滑轨上滑动的第二驱动装置。
进一步改进的是:所述第一承插孔内套设有弹性圈,所述夹持杆上开设有便于夹持杆插入第一承插孔内的倒角。
进一步改进的是:所述定位块内固定设有若干缓冲块,所述鞋楦上设有带有弹性的缓冲垫,所述缓冲块上开设有供缓冲垫卡入的缓冲口。
进一步改进的是:所述缓冲垫上分别开设有第二承插孔,所述机架上固定设有可穿入所述第二承插孔的撑杆,所述撑杆另一端固定设 有连接块,所述连接块上设有用于驱动所述撑杆上下升降的第三驱动装置。
进一步改进的是:所述第一驱动装置为升降气缸,所述升降气缸的伸出杆上固定设有固定块,所述夹持杆固定设于所述固定块上,所述第二驱动装置为无杆气缸,所述升降气缸固定设于所述无杆气缸的滑块上。
进一步改进的是:所述鞋楦上开设有若干个导向孔,所述定位块上固定设有供所述导向孔穿入的导向杆,所述导向孔内设有弹性圈。
利用一种用于测量鞋子刷胶边缘胶线的装置测量边缘胶线的方法:
1):将通过刷有荧光增白剂胶水粘合的鞋子套入鞋楦,并且放到柔性链上;
2):柔性链将鞋楦传送到滑轨与柔性链的避让口处,此时升降气缸工作,驱动夹持杆上升,使夹持杆插入第一承插孔内与第一承插孔卡合;
3):夹持杆与鞋楦卡合后,无杆气缸作业,带动鞋楦在滑轨内滑移,往定位架方向移动,直至将鞋楦夹持进入定位口内;
4):第三气缸工作,带动撑杆插入第二承插孔,将鞋楦稳定定位在定位架的定位口内;
5):标定好3D视觉传感器的位置,3D视觉传感器开始工作对鞋子的刷胶路径进行测量,测量步骤如下:
S1:3D视觉传感器的一字线激光器发出紫外线光条,射在鞋子 上,一字线激光被分成三段,中间端因为胶水带有荧光增白剂而产生荧光色,呈现荧光光亮特征,上下两段呈现为激光光亮特征,同时获取工业机器人的位置数据;
S2:3D视觉传感器的摄像机拍照照射在鞋子上的紫外线光条,将拍照的图像传送到外部的图像处理模块进行处理;
S3:外部图像处理模块处理图像时,先将基于RGB颜色空间的彩色图片转成能更直观地表达颜色的色调、鲜艳程度和明暗程度,方便进行颜色的对比的HSV颜色空间,然后图像处理模块提取激光光亮特征和荧光光亮特征,再把激光光亮线条和荧光光亮线条细化处理,最后把有荧光光亮线条的分离出来;
S4:图像处理模块把提取到的细化后的激光光亮线条和荧光光亮线条处理得到像素坐标;
S5:根据线视觉测量原理计算得到激光线上的点在相机测量坐标系中的坐标值;
S6:得到3D视觉传感器的测量结果及相对应的工业机器人位置数据后,外部视觉扫描软件通过矩阵运算,把3D视觉传感器的测量结果转换到整个测量系统的测量坐标系下;
S7:工业机器人带着3D视觉传感器围绕鞋子转动,并且不断重复a-f的步骤,视觉扫描软件把3D视觉传感器的所有测量结果转换到整个测量系统的测量坐标系下,然后与预设定的鞋子的刷胶边缘值进行对比,得出刷胶后合格的鞋子;
6):检测结束后,升降气缸工作,驱动夹持杆上升,使夹持杆插 入第一承插孔内与第一承插孔卡合,同时,第三气缸工作,使撑杆离开第二承插孔;
7):夹持杆与鞋楦卡合后,无杆气缸作业,带动鞋楦在滑轨内滑移,往柔性链方向移动,鞋楦通过避让口到柔性链上,操作人员将测量后的合格和不合格的鞋子取下分类。
本发明的优点和有益效果在于:
1、机器人能够带动3D视觉传感器在带有鞋子的鞋楦周围进行360°旋转测量,进而能够对喷胶后的鞋子进行全方位的边缘检测,得到合格的刷胶后粘合的鞋子产品,剔除刷胶后粘合不合格的鞋子。
2、自动输送装置能够将套设在鞋楦上的鞋子自动输送进入定位块内定位,供3D视觉传感器检测,提高了检测效率,大大节约了人工。
3、缓冲垫和缓冲块能够防止鞋楦在卡入定位块内撞击定位块,损坏鞋楦和定位块,减少其使用寿命。
4、夹持杆上的倒角能够方便夹持杆快速插入第一承插孔,第一承插孔内的第一弹性橡胶圈能够防止夹持杆插入第一承插孔的时候损坏第一承插孔。
5、撑杆能够撑住鞋楦,使其更稳定的放置在机架上,保证了测量的准确性。同时还能够在夹持杆插入第一承插孔的时候托起鞋楦,使夹持杆更好的插入第一承插孔。
6、鞋楦上的导向孔和定位块上的导向杆相卡合,能够在夹持杆和撑杆将鞋楦托起的时候,使其能够垂直向上托起,不仅使夹持杆更 好的对准第一承插孔插入夹持,还防止鞋楦跑偏出滑轨。
7、固定架上的限位杆能够限制未检测的鞋子的鞋楦通过,使其在柔性链上进行等待,使其能够迅速的为下一次检测做准备,并且将检测和为检测的鞋子区分开。
附图说明
图1为本发明实施例一种用于测量鞋子刷胶边缘胶线的装置结构示意图。
图2为本发明实施例一种用于测量鞋子刷胶边缘胶线的装置结构示意图。
图3为本发明实施例一种用于测量鞋子刷胶边缘胶线的装置局部结构示意图。
图4为本发明实施例建立笛卡尔直角坐标系的示意图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
如图1-图4所示,一种用于测量鞋子刷胶边缘胶线的装置,包括机架1、供刷有荧光增白剂胶水的鞋子套入的鞋楦4、工业机器人2、用于给刷胶后鞋子检测的3D视觉传感器3、用于输送鞋楦4的柔性链5,,所述鞋楦4设于所述机架1上,所述工业机器人2固定设于所述机架1上,所述3D视觉传感器3固定设于所述工业机器人2的转动手臂上且3D视觉传感器3位于所述鞋楦4周侧,所述柔性链 5固定设于所述机架1上,所述机架1上固定设有定位鞋楦4的定位架6,所述定位架6上开设有供鞋楦4穿入定位口61,所述机架1上固定设有供鞋楦4滑移的滑轨12,所述滑轨12一端位于定位架6内,所述滑轨12另一端与所述柔性链5相连通,柔性链5与开设有避让口51与滑轨12相连通,使得鞋楦4能够在滑轨12与柔性链5之间运动,所述机架1上设有可上下升降的夹持杆7,所述鞋楦4上开设有供所述夹持杆7插入的第一承插孔62,所述机架1上设有驱动所述夹持杆7上下滑动的升降气缸71,所述升降气缸71的伸出杆上固定设有固定块72,所述夹持杆7固定设于所述固定块72上,固定块72不仅能够使夹持杆7与鞋楦4的第一承插孔62更好的卡合,而且能够使其卡合后更加的稳定拖动鞋楦4滑移,所述机架1上还设有用于驱动夹持杆7在滑轨12上滑移的无杆气缸13,所述升降气缸71固定设于所述无杆气缸13的滑块上。
为了能够使夹持杆7快速插入第一承插孔62且不损坏鞋楦4的第一承插孔62,所述第一承插孔62内套设有第一弹性圈,所述夹持杆7上开设有便于夹持杆7插入第一承插孔62内的倒角。夹持杆7上的倒角能够方便夹持杆7快速插入第一承插孔62,第一承插孔62内的第一弹性橡胶圈能够防止夹持杆7插入第一承插孔62的时候损坏第一承插孔62。
为了提高鞋楦4和定位架6的使用寿命,所述定位架6内固定设有两个缓冲块9,所述鞋楦4上设有带有弹性的缓冲垫8,所述缓冲块9上开设有供缓冲垫8卡入的缓冲口91。缓冲垫8和缓冲块9能 够防止鞋楦4在卡入定位架6内撞击定位架6,损坏鞋楦4和定位架6,减少其使用寿命。
为了能够方便夹持杆7稳定插入第一承插孔62,所述缓冲垫8上分别开设有第二承插孔(图中未示意出),所述机架1上固定设有可穿入所述第二承插孔的撑杆14,所述撑杆14另一端固定设有连接块141,所述连接块141上设有用于驱动所述撑杆14上下升降的第三气缸142。撑杆14能够撑住鞋楦4,使其更稳定的放置在机架1上,保证了测量的准确性。同时还能够在夹持杆7插入第一承插孔62的时候托起鞋楦4,使夹持杆7更好的插入第一承插孔62。
为了能够提高工作效率,将检测与未检测的鞋子区分开,所述柔性链5上固定设有固定架11,所述固定架11上开设有滑槽,所述滑槽内可滑动设有限位杆111,所述固定架11上设有驱动所述限位杆111滑动的第四气缸112。限位杆111能够限制未检测的鞋子的鞋楦4通过,使其在柔性链5上进行等待,使其能够迅速的为下一次检测做准备,并且将检测和为检测的鞋子区分开。
为了进一步方便夹持杆7穿入第一承插孔62和提高鞋楦4的稳定性,所述鞋楦4上开设有若干个导向孔63、64,所述定位架6上固定设有供所述导向孔穿入的导向杆10,所述导向孔内设有弹性圈。鞋楦4上的导向孔和定位架6上的导向杆相卡合,能够在夹持杆7和撑杆14将鞋楦4托起的时候,使其能够垂直向上托起,不仅使夹持杆7更好的对准第一承插孔62插入夹持,还防止鞋楦4跑偏出滑轨12。
为了能够方便鞋子的放置,所述机架1上还设有用于盛放鞋子的盛物架15。
工作原理:
当刷有荧光增白剂胶水的鞋子套入鞋楦4时候,鞋楦4移动到滑轨12与柔性链5的避让口51处,升降气缸71驱动夹持杆7上升,使夹持杆7插入第一承插孔62,夹持杆7插入承插孔与鞋楦4卡合后,无杆气缸13运动,进而带动夹持杆7夹持鞋楦4往定位架6方向移动,并且将鞋楦4夹持进入定位口61内放置,然后3D视觉传感器3开始工作,对鞋子粘合处开始检测,并且在工业机器人2的作用下,绕着鞋楦4周侧360°旋转,使鞋楦4能够全面检测到。检测结束后,升降气缸71带动夹持杆7插入第一承插孔62与鞋楦4卡合,然后无杆气缸13带动夹持杆7夹持鞋楦4往柔性链5方向移动,夹持到柔性链5上,输送走,然后进入下一个检测工序。
如图1-4所示,本发明所述的鞋楦4包括:十字形底板41、支撑部42及鞋楦体43,(为便于描述相对鞋楦体43长度方向,脚尖部为前,脚跟部为后,两侧为左右)十字形底板41左右两端下表面均固接有缓冲垫8,十字形底板41的后端开有第一承插孔62;鞋楦体43通过支撑部42与十字形底板41联接。
所述缓冲垫8设有对称的圆弧面81和横切面82。
所述鞋楦4在柔性链5上移动时,鞋楦体43横向设置,即十字形底板41左右端固接的缓冲垫8前后设置在柔性链5上,其圆弧面81与柔性链5内侧面接触;所述鞋楦4移动至动到滑轨12与柔性链5的避让口51处,十字形底板41左右端固接的缓冲垫8分别进入两相邻的滑轨12,其横切面82与滑轨内侧面接触,鞋楦体43纵向设置。所述鞋楦体43与支撑部42可拆卸联接,根据需要可更换不同规格的鞋楦体42。
一种用于测量鞋子刷胶边缘胶线的装置的测量方法:
1):将通过刷有荧光增白剂胶水粘合的鞋子套入鞋楦4,并且放到柔性链5上;
2):柔性链5将鞋楦4传送到滑轨12与柔性链5的避让口51处,此时升降气缸71工作,驱动夹持杆7上升,使夹持杆7插入第一承插孔62内与第一承插孔62卡合;
3):夹持杆7与鞋楦4卡合后,无杆气缸13作业,带动鞋楦4在滑轨12内滑移,往定位架方向移动,直至将鞋楦4夹持进入定位口61内;
4):第三气缸142工作,带动撑杆插入第二承插孔,将鞋楦4稳定定位在定位架的定位口61内;
5):标定好3D视觉传感器3的位置,3D视觉传感器开始工作对鞋子的刷胶路径进行测量,测量步骤如下:
S1:3D视觉传感器的一字线激光器发出紫外线光条,射在鞋子上,一字线激光被分成三段,中间端因为胶水带有荧光增白剂而产生 荧光色,呈现荧光光亮特征,上下两段呈现为激光光亮特征,同时,外部PC通过工业机器人的二次开发接口来获取工业机器人的时时位置数据;
S2:3D视觉传感器的摄像机拍照照射在鞋子上的紫外线光条,将拍照的图像传送到外部的图像处理模块进行处理;
S3:外部图像处理模块处理图像时,先将基于RGB颜色空间的彩色图片转成能更直观地表达颜色的色调、鲜艳程度和明暗程度,方便进行颜色的对比的HSV颜色空间,然后图像处理模块提取激光光亮特征和荧光光亮特征再把激光光亮线条和荧光光亮线条细化处理,最后把有荧光光亮线条的分离出来;
S4:图像处理模块把提取到的激光光亮线条和荧光光亮线条细化处理得到像素坐标;
S5:根据线视觉测量原理计算得到激光线上的点在相机测量坐标系中的坐标值,其原理是基于光学三角法测量原理的主动式结构光视觉测量法,即激光投射器投射结构光于被测物体,结构光与物体表面相交产生光条,CCD相机拍摄图像,提取光点的像素坐标,通过标定确定结构光在世界坐标系下的空间位置方程以及世界坐标系与摄像机坐标系的转换关系,便可以计算出光点在世界坐标系下的坐标;
S6:得到3D视觉传感器的测量结果及相对应的工业机器人位置数据后,外部视觉扫描软件通过矩阵运算,把3D视觉传感器的测量结果转换到整个测量系统的测量坐标系下,其中矩阵运算如图4所示:
3D视觉传感器挂载在机器人末端上,图中有4个笛卡尔直角坐 标系,其中{C}表示3D视觉传感器的测量坐标系,{T}表示机器人的工具坐标系,{B}表示机器人的基坐标系,{M}表示整个测量系统的测量坐标系。
机器人运动到某一位置时,3D视觉传感器测得空间中P点在传感器测量坐标系中的位置记为 CP,用齐次坐标形式描述为4×1列向量;3D视觉传感器是固定安装在机器人末端的,所以机器人运动过程中3D视觉传感器测量坐标系{C}与机器人工具坐标系{T}的相对位置关系是固定不变的,3D视觉传感器测量坐标系{C}在机器人工具坐标系{T}中的位姿(位置和姿态)描述为矩阵
Figure PCTCN2021075672-appb-000001
用齐次坐标形式描述为4×4旋转平移矩阵);机器人工具坐标系{T}在机器人的基坐标系{B}中的位姿描述在机器人运动控制系统中已知的,记为
Figure PCTCN2021075672-appb-000002
用齐次坐标形式描述为4×4旋转平移矩阵;机器人安装、固定后,测量系统测量坐标系{M}相对于机器人的基坐标系{B}也是固定的,机器人的基坐标系{B}在测量系统测量坐标系{M}中的位姿描述为
Figure PCTCN2021075672-appb-000003
可得:
Figure PCTCN2021075672-appb-000004
等式左边 MP即是空间中P点在测量系统测量坐标系{M}中的空间位置描述,即还需要矩阵
Figure PCTCN2021075672-appb-000005
和矩阵
Figure PCTCN2021075672-appb-000006
即可实现测量系统的3D测量;其中矩阵
Figure PCTCN2021075672-appb-000007
是描述测量系统测量坐标系{M}与机器人的基坐标系{B}之间的相对位置的,通过机器人的工件坐标系标定法来标定出来,而矩阵
Figure PCTCN2021075672-appb-000008
是描述3D视觉传感器的测量坐标系与机器人工具坐标系之间的相对位置的,又称手眼矩阵,通过手眼标定来标定出来;
S7:工业机器人带着3D视觉传感器器围绕鞋子转动,并且不断重复a-f的步骤,视觉扫描软件把3D视觉传感器的所有测量结果转换到整个测量系统的测量坐标系下,视觉扫描软件重复此计算操作, 进而可得到鞋子视觉扫描部分的3D点云,再结合能提取荧光特征的图像处理模块,可实现从鞋子视觉扫描部分的3D点云中提取出有荧光特征的3D点云,最终实现对鞋子上喷得的含荧光增白剂的胶水胶线下边缘位置的测量,然后与预设定的鞋子的刷胶边缘值进行对比,得出刷胶后合格的鞋子;
6):检测结束后,升降气缸71工作,驱动夹持杆7上升,使夹持杆7插入第一承插孔62内与第一承插孔62卡合,同时,第三气缸142工作,使撑杆离开第二承插孔;
7):夹持杆7与鞋楦4卡合后,无杆气缸13作业,带动鞋楦4在滑轨12内滑移,往柔性链5方向移动,鞋楦4通过避让口51到柔性链5上,操作人员将测量后的合格和不合格的鞋子取下分类。
测量原理:
通过3D视觉传感器3里的相机换成彩色相机,3D视觉传感器3里的激光换成含紫外线的紫色激光,利用含荧光增白剂的胶水在紫外线照射下产生的荧光与激光在色彩上的不同,结合图像色彩处理技术,对激光光亮线条按颜色进行分割,进而可分割出有荧光区域的轮廓信息,即原本的3D视觉传感器3是对物体表面上的激光光亮线条处的特征进行测量,现增加颜色处理功能,实现了从激光光亮线条上分割出荧光光亮线条,进而实现了对物体表面上含荧光效应的特征的测量,即实现不通过测量鞋面上喷得的胶线胶水的厚度来测量胶线边缘的位置。
以上显示和描述了本发明的基本原理和主要特征及其优点,本行 业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内,本发明要求保护范围由所附的权利要求书及其等效物界定。
工业实用性
本发明一种用于测量鞋子刷胶边缘胶线的装置及方法,通过安装在机架上的机器人带动3D视觉传感器在带有鞋子的鞋楦周围进行360°旋转测量,进而能够对喷胶后的鞋子进行全方位的边缘检测,得到合格的刷胶后粘合的鞋子产品,其自动输送装置能够将套设在鞋楦上的鞋子自动输送进入定位块内定位,供3D视觉传感器检测,提高了检测效率,结构简单、适用范围广,具有良好的工业实用性。

Claims (10)

  1. 一种用于测量鞋子刷胶边缘胶线的装置,包括机架,其特征在于:还包括供刷胶后的鞋子套入的鞋楦、工业机器人、用于给刷胶后鞋子检测的3D视觉传感器,所述鞋楦设于所述机架上,所述工业机器人固定设于所述机架上,所述3D视觉传感器固定设于所述工业机器人的转动手臂上且3D视觉传感器位于所述鞋楦周侧,所述机架上设有用于将鞋楦输送进行测量的自动输送装置,所述自动输送装置包括用于输送鞋楦的柔性链,所述柔性链固定设于所述机架上,所述机架上固定设有定位鞋楦的定位块,所述定位块上开设有供鞋楦穿入定位口,所述机架上固定设有供鞋楦滑入定位口的滑轨,所述滑轨一端位于定位块内,所述滑轨另一端与所述柔性链相连通,所述机架上还设有夹持鞋楦滑移的夹持装置,所述柔性链上固定设有固定架,所述固定架上开设有滑槽,所述滑槽内可滑动设有限位杆,所述固定架上设有驱动所述限位杆滑动的第四驱动装置。
  2. 根据权利要求1所述的一种用于测量鞋子刷胶边缘胶线的装置,其特征在于:所述夹持装置包括夹持杆,所述夹持杆可上下升降设于所述机架上,所述鞋楦上开设有供所述夹持杆插入的第一承插孔,所述机架上设有驱动所述夹持杆上下滑动的第一驱动装置,所述机架上还设有用于驱动所述夹持杆在滑轨上滑动的第二驱动装置。
  3. 根据权利要求2所述的一种用于测量鞋子刷胶边缘胶线的装 置,其特征在于:所述第一承插孔内套设有弹性圈,所述夹持杆上开设有便于夹持杆插入第一承插孔内的倒角。
  4. 根据权利要求1所述的一种用于测量鞋子刷胶边缘胶线的装置,其特征在于:所述定位块内固定设有若干缓冲块,所述鞋楦上设有带有弹性的缓冲垫,所述缓冲块上开设有供缓冲垫卡入的缓冲口。
  5. 根据权利要求4所述的一种用于测量鞋子刷胶边缘胶线的装置,其特征在于:所述缓冲垫上分别开设有第二承插孔,所述机架上固定设有可穿入所述第二承插孔的撑杆,所述撑杆另一端固定设有连接块,所述连接块上设有用于驱动所述撑杆上下升降的第三驱动装置。
  6. 根据权利要求2所述的一种用于测量鞋子刷胶边缘胶线的装置,其特征在于:所述第一驱动装置为升降气缸,所述升降气缸的伸出杆上固定设有固定块,所述夹持杆固定设于所述固定块上,所述第二驱动装置为无杆气缸,所述升降气缸固定设于所述无杆气缸的滑块上。
  7. 根据权利要求2所述的一种用于测量鞋子刷胶边缘胶线的装置,其特征在于:所述鞋楦上开设有若干个导向孔,所述定位块上固定设有供所述导向孔穿入的导向杆,所述导向孔内设有弹性圈。
  8. 根据权利要求1或4所述的一种用于测量鞋子刷胶边缘胶线的装置,其特征在于:所述鞋楦包括:十字形底板、支撑部及鞋楦体,十字形底板左右两端下表面均固接有缓冲垫,十字形底板的后端开有第一承插孔;鞋楦体通过支撑部与十字形底板联接;所述缓冲垫8设有对称的圆弧面和横切面。
  9. 根据权利要求8所述的一种用于测量鞋子刷胶边缘胶线的装置, 其特征在于:所述鞋楦位于柔性链时,鞋楦体横向设置,即十字形底板左右端固接的缓冲垫前后设置在柔性链上,其圆弧面与柔性链内侧面接触;所述鞋楦位于滑轨12上时,十字形底板左右端固接的缓冲垫分别进入两相邻的滑轨,其横切面与滑轨内侧面接触,鞋楦体纵向设置。
  10. 根据权利要求1-9任一所述的一种用于测量鞋子刷胶边缘胶线的装置测量边缘胶线的方法:
    1):将通过刷有荧光增白剂胶水粘合的鞋子套入鞋楦,并且放到柔性链上;
    2):柔性链将鞋楦传送到滑轨与柔性链的避让口处,此时升降气缸工作,驱动夹持杆上升,使夹持杆插入第一承插孔内与第一承插孔卡合;
    3):夹持杆与鞋楦卡合后,无杆气缸作业,带动鞋楦在滑轨内滑移,往定位架方向移动,直至将鞋楦夹持进入定位口内;
    4):第三气缸工作,带动撑杆插入第二承插孔,将鞋楦稳定定位在定位架的定位口内;
    5):标定好3D视觉传感器的位置,3D视觉传感器开始工作对鞋子的刷胶路径进行测量,测量步骤如下:
    S1:3D视觉传感器的一字线激光器发出紫外线光条,射在鞋子上,一字线激光被分成三段,中间端因为胶水带有荧光增白剂而产生荧光色,呈现荧光光亮特征,上下两段呈现为激光光亮特征,同时获取工业机器人的位置数据;
    S2:3D视觉传感器的摄像机拍照照射在鞋子上的紫外线光条,将拍照的图像传送到外部的图像处理模块进行处理;
    S3:外部图像处理模块处理图像时,先将基于RGB颜色空间的彩色图片转成能更直观地表达颜色的色调、鲜艳程度和明暗程度,方便进行颜色的对比的HSV颜色空间,然后图像处理模块提取激光光亮特征和荧光光亮特征,再把激光光亮线条和荧光光亮线条细化处理,最后把有荧光光亮线条的分离出来;
    S4:图像处理模块把提取到的细化后的激光光亮线条和荧光光亮线条处理得到像素坐标;
    S5:根据线视觉测量原理计算得到激光线上的点在相机测量坐标系中的坐标值;
    S6:得到3D视觉传感器的测量结果及相对应的工业机器人位置数据后,外部视觉扫描软件通过矩阵运算,把3D视觉传感器的测量结果转换到整个测量系统的测量坐标系下;
    S7:工业机器人带着3D视觉传感器器围绕鞋子转动,并且不断重复a-f的步骤,视觉扫描软件把3D视觉传感器的所有测量结果转换到整个测量系统的测量坐标系下,视觉扫描软件重复此计算操作,进而可得到鞋子视觉扫描部分的3D点云,再结合能提取荧光特征的图像处理模块,可实现从鞋子视觉扫描部分的3D点云中提取出有荧光特征的3D点云,最终实现对鞋子上喷得的含荧光增白剂的胶水胶线下边缘位置的测量,然后与预设定的鞋子的刷胶边缘值进行对比,得出刷胶后合格的鞋子;
    6):测量结束后,升降气缸工作,驱动夹持杆上升,使夹持杆插入第一承插孔内与第一承插孔卡合,同时,第三气缸工作,使撑杆离开第二承插孔;
    7):夹持杆与鞋楦卡合后,无杆气缸作业,带动鞋楦在滑轨内滑移,往柔性链方向移动,鞋楦通过避让口到柔性链上,操作人员将测量后的合格和不合格的鞋子取下分类。
PCT/CN2021/075672 2020-05-25 2021-02-06 一种用于测量鞋子刷胶边缘胶线的装置及其测量方法 WO2021238300A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010449603.5A CN111567989B (zh) 2020-05-25 2020-05-25 一种用于测量鞋子刷胶边缘胶线的装置及其测量方法
CN202010449603.5 2020-05-25

Publications (1)

Publication Number Publication Date
WO2021238300A1 true WO2021238300A1 (zh) 2021-12-02

Family

ID=72116183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075672 WO2021238300A1 (zh) 2020-05-25 2021-02-06 一种用于测量鞋子刷胶边缘胶线的装置及其测量方法

Country Status (2)

Country Link
CN (1) CN111567989B (zh)
WO (1) WO2021238300A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114653532A (zh) * 2022-02-15 2022-06-24 集美大学 一种基于视觉点胶机器人的点胶机构
CN114680427A (zh) * 2022-04-12 2022-07-01 华侨大学 一种鞋槽自动画线装置和方法
CN115578376A (zh) * 2022-11-11 2023-01-06 泉州华中科技大学智能制造研究院 基于3d视觉的机器人鞋面喷胶轨迹提取方法及装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111567989B (zh) * 2020-05-25 2022-03-04 泉州华中科技大学智能制造研究院 一种用于测量鞋子刷胶边缘胶线的装置及其测量方法
CN113252625B (zh) * 2021-04-27 2022-08-16 歌尔光学科技有限公司 一种具有荧光效应的胶水的胶路检测方法
CN113446961A (zh) * 2021-07-03 2021-09-28 詹镇远 一种视觉扫描三维粘合面确定加工轨迹的方法和设备
CN114788603A (zh) * 2022-05-07 2022-07-26 东华大学 一种鞋底补胶方法、系统和机器人
CN115131344B (zh) * 2022-08-25 2022-11-08 泉州华中科技大学智能制造研究院 一种通过光强数据实现制鞋成型胶线提取的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015112732A1 (en) * 2014-01-22 2015-07-30 Nike Innovate C.V. Method, system and computer-readable media for determination of a shoe bite line by divergence detection
CN106510099A (zh) * 2016-12-30 2017-03-22 哈尔滨福特威尔科技有限公司 全自动完整鞋楦三维数据测量装置及方法
CN107307510A (zh) * 2016-04-26 2017-11-03 宝成工业股份有限公司 轮廓量测装置及其控制方法
KR20180055400A (ko) * 2016-11-17 2018-05-25 김원효 신발의 갑피 검사 장치 및 그 방법
CN207613290U (zh) * 2017-11-06 2018-07-17 泉州华中科技大学智能制造研究院 一种鞋边轨迹扫描装置
CN109288205A (zh) * 2018-11-14 2019-02-01 陕西尔东自动化设备有限公司 一种操作面可调的检测刷胶情况的鞋楦设备
US20190163045A1 (en) * 2017-11-28 2019-05-30 Pou Chen Corporation System for capturing panoramic image of shoe sole
CN111567989A (zh) * 2020-05-25 2020-08-25 泉州华中科技大学智能制造研究院 一种用于测量鞋子刷胶边缘胶线的装置及其测量方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5375722A (en) * 1992-03-11 1994-12-27 W. H. Leary Co., Inc. Carton monitoring system
ES2552752T3 (es) * 2012-12-18 2015-12-02 Furnirex Sp. Z O.O. Procedimiento de protección de bordes de paneles de muebles y panel de mueble con bordes protegidos
CN104997242B (zh) * 2015-08-03 2017-03-29 黑金刚(福建)自动化科技股份公司 一种在线喷胶、检测及筛选的自动化制鞋喷胶系统
CN204969782U (zh) * 2015-09-22 2016-01-20 河南科技大学 全自动布鞋鞋帮收口装置
CN107270833A (zh) * 2017-08-09 2017-10-20 武汉智诺维科技有限公司 一种复杂曲面零件三维测量系统及方法
CN108013543B (zh) * 2017-12-27 2023-11-28 泉州华中科技大学智能制造研究院 一种制鞋流水线
CN209238474U (zh) * 2018-12-18 2019-08-13 东莞市赛博斯智能装备有限公司 一种自动胶路检测机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015112732A1 (en) * 2014-01-22 2015-07-30 Nike Innovate C.V. Method, system and computer-readable media for determination of a shoe bite line by divergence detection
CN107307510A (zh) * 2016-04-26 2017-11-03 宝成工业股份有限公司 轮廓量测装置及其控制方法
KR20180055400A (ko) * 2016-11-17 2018-05-25 김원효 신발의 갑피 검사 장치 및 그 방법
CN106510099A (zh) * 2016-12-30 2017-03-22 哈尔滨福特威尔科技有限公司 全自动完整鞋楦三维数据测量装置及方法
CN207613290U (zh) * 2017-11-06 2018-07-17 泉州华中科技大学智能制造研究院 一种鞋边轨迹扫描装置
US20190163045A1 (en) * 2017-11-28 2019-05-30 Pou Chen Corporation System for capturing panoramic image of shoe sole
CN109288205A (zh) * 2018-11-14 2019-02-01 陕西尔东自动化设备有限公司 一种操作面可调的检测刷胶情况的鞋楦设备
CN111567989A (zh) * 2020-05-25 2020-08-25 泉州华中科技大学智能制造研究院 一种用于测量鞋子刷胶边缘胶线的装置及其测量方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114653532A (zh) * 2022-02-15 2022-06-24 集美大学 一种基于视觉点胶机器人的点胶机构
CN114680427A (zh) * 2022-04-12 2022-07-01 华侨大学 一种鞋槽自动画线装置和方法
CN115578376A (zh) * 2022-11-11 2023-01-06 泉州华中科技大学智能制造研究院 基于3d视觉的机器人鞋面喷胶轨迹提取方法及装置

Also Published As

Publication number Publication date
CN111567989A (zh) 2020-08-25
CN111567989B (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
WO2021238300A1 (zh) 一种用于测量鞋子刷胶边缘胶线的装置及其测量方法
TWI428589B (zh) 視覺檢測設備與方法
TWI589246B (zh) 在鞋子製造程序間按自動方式定位鞋子部件的方法與系統
JP6408654B1 (ja) 検査装置
US11858011B2 (en) Device, cleaning system, and method of determining whether or not to clean work area of machine tool
WO2017157045A1 (zh) 一种补光可调且可自动上下料的视觉成像测量系统
JPH0828402B2 (ja) 半導体チップと導体リード・フレームの検査及び位置合せのためのシステム及び方法
TW200821156A (en) Screen printing equipment, and method for image recognition and alignment
US20210138660A1 (en) Cleaning system and method for cleaning work area of machine tool
JP2012076216A (ja) ロボット制御システムのカメラ座標系とロボット座標系の結合方法、画像処理装置、プログラム、及び記憶媒体
CN113251926B (zh) 一种不规则物体的尺寸测量方法及测量装置
CN111145272A (zh) 一种机械手与相机手眼标定装置和方法
CN114705685A (zh) 基于深度学习的ai视觉检测方法、系统及可读存储介质
CN115980012A (zh) 医疗检测电路板涂胶多角度检测系统及其检测方法
JP2013024852A (ja) 成形品画像処理検査装置
CN213154395U (zh) 一种用于测量鞋子刷胶边缘胶线的装置
CN214794502U (zh) 一种裸芯片表面缺陷智能检测系统
CN208042989U (zh) 一种大尺寸薄板金属工件几何质量自动检测装置
CN112129809B (zh) 一种基于视觉引导的铜片热阻率检测装置及其检测方法
CN206177368U (zh) 手机尺寸综合测试仪
JP2022098312A (ja) ダイボンディング装置および半導体装置の製造方法
CN114392940B (zh) 一种异型元器件的针脚检测方法及装置
WO2021134996A1 (zh) Led支架缺陷判定方法及系统
KR20160066086A (ko) 스폿 용접건의 용접팁 검사장치
CN117169118A (zh) 一种非接触式孔内表面外观检测装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21813036

Country of ref document: EP

Kind code of ref document: A1