WO2021238216A1 - 一种圆极化定位天线和可穿戴设备 - Google Patents

一种圆极化定位天线和可穿戴设备 Download PDF

Info

Publication number
WO2021238216A1
WO2021238216A1 PCT/CN2020/142271 CN2020142271W WO2021238216A1 WO 2021238216 A1 WO2021238216 A1 WO 2021238216A1 CN 2020142271 W CN2020142271 W CN 2020142271W WO 2021238216 A1 WO2021238216 A1 WO 2021238216A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
radiating
feeding
positioning antenna
circular polarization
Prior art date
Application number
PCT/CN2020/142271
Other languages
English (en)
French (fr)
Inventor
江清华
梅波
Original Assignee
广东小天才科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010470791.XA external-priority patent/CN111490352A/zh
Priority claimed from CN202020941123.6U external-priority patent/CN211743403U/zh
Application filed by 广东小天才科技有限公司 filed Critical 广东小天才科技有限公司
Publication of WO2021238216A1 publication Critical patent/WO2021238216A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/18Vertical disposition of the antenna

Definitions

  • This application belongs to the field of antenna technology, and in particular relates to a circular polarization positioning antenna and a wearable device.
  • the purpose of this application is to provide a circular polarization positioning antenna and a wearable device, which aims to solve the problems of low positioning accuracy of the antenna of the existing wearable device and occupying more space on the motherboard.
  • the first aspect of the embodiments of the present application provides a circular polarization positioning antenna, including:
  • the feeder stub has a feeder at one end for accessing a feeder signal, a first feeder arm connected to the other end of the feeder, and a second feeder connected to the other end of the feeder Arm, an angle is formed between the first feeding arm and the second feeding arm;
  • One end of the first radiating arm is coupled with the first feeding arm, the first radiating arm is bent and arranged in a first clearance area, and the first clearance area is located on one side of the first feeding arm and along the The first feeding arm extends in the arrangement direction;
  • One end of the second radiating arm is coupled with the second feeding arm, and the second radiating arm is bent and arranged in a second clearance area, and the second clearance area is located on one side of the second feeding arm and along the The second feeding arm extends in the arrangement direction;
  • the electrical signals on the first radiating arm and the second radiating arm satisfy the same amplitude and a phase difference of 90°.
  • the first radiating arm includes:
  • a first coupling section spaced in parallel with the first feeding arm, and directly opposite to at least part of the first feeding arm for coupling;
  • a first bent radiating section the head end of the first bent radiating section is connected to an end of the first coupling section away from the feeder, and the end of the first bent radiating section is connected to the feeder
  • the distance of the part is greater than the distance between the head end of the first bent radiating section and the power feeding part.
  • the second radiating arm includes:
  • a second coupling section spaced in parallel with the second feeding arm, and directly opposite to at least part of the second feeding arm for coupling;
  • a second bending radiating section the starting point of the second bending radiating section is connected to an end of the second coupling section away from the feeding part, and the end of the second bending radiating section is connected to the feeding part The distance is greater than the distance between the head end of the second bent radiating section and the power feeding portion.
  • the other end of the first radiating arm is connected to or spaced apart from the other end of the second radiating arm.
  • the trace lengths of the first radiating arm and the second radiating arm correspond to 1/4 of the working wavelength of the circularly polarized positioning antenna, and the lengths of the two are not equal.
  • the first feeding arm and the second feeding arm are straight.
  • the first feeding arm and the second feeding arm are symmetrical to each other.
  • two of the feeding portion, the first feeding arm, and the second feeding arm are perpendicular to each other.
  • the angle ranges from 75° to 105°.
  • the second aspect of the embodiments of the present application provides a wearable device including the circular polarization positioning antenna as described above.
  • the above-mentioned wearable device adopts all the embodiments of the above-mentioned circular polarization positioning antenna, and therefore has at least all the beneficial effects of the above-mentioned embodiments, and will not be repeated here.
  • the beneficial effect of the circularly polarized positioning antenna is that the above circularly polarized positioning antenna uses one feeding stub to feed two radiating arms to form two orthogonal modes of resonance, so that At the operating frequency, the resonance amplitudes of the two modes are equal, and the phase difference is 90°, which produces circularly polarized radiation.
  • the positioning antenna can better receive navigation satellite signals, and The generated right-hand circularly polarized radiation can also filter the left-handed circularly polarized navigation satellite signals reflected by tall buildings or the ground to reduce multipath interference, thereby effectively improving the positioning accuracy of the positioning antenna of the wearable device.
  • the monopole antenna has only one feeding point, which can reduce the space occupation of the main board and improve the utilization rate of the circuit board.
  • the beneficial effect of the wearable device provided by the embodiments of the present application is that the above-mentioned wearable device adopts all the embodiments of the above-mentioned circular polarization positioning antenna, and therefore has at least all the beneficial effects of the above-mentioned embodiments, and will not be repeated here.
  • FIG. 1 is a schematic structural diagram of a circular polarization positioning antenna provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of S parameters of a circular polarization positioning antenna provided by an embodiment of the present invention
  • Figure 5 is a three-dimensional directional diagram of a circular polarization positioning antenna provided by an embodiment of the present invention.
  • Fig. 6 is a two-dimensional pattern of a circular polarization positioning antenna provided by an embodiment of the present invention.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present application, "a plurality of” means two or more than two, unless otherwise specifically defined.
  • the circular polarization positioning antenna (hereinafter referred to as positioning antenna) that can be used for wearable devices provided by the embodiment of the present application has a dielectric substrate 100, such as a PCB board.
  • the dielectric substrate 100 may be a grounding plate, and the dielectric substrate A feed end 101 connected to a GPS (Global Positioning System) module is provided on 100.
  • the circular polarization positioning antenna includes a feed stub 11, a first radiating arm 12, and a second radiating arm 13.
  • the feeding stub 11 has one end of a feeding part 111 for accessing the feeding signal output by the GPS module, a first feeding arm 112 connected to the other end of the feeding part 111, and a first feeding arm 112 connected to the other end of the feeding part 111.
  • the second feeding arm 113 has an angle between the first feeding arm 112 and the second feeding arm 113.
  • One end of the first radiating arm 12 is coupled with the first feeding arm 112.
  • the first radiating arm 12 is bent and arranged in the first clearance area 10.
  • the first clearance area 10 is located on the side of the first feeding arm 112 and along the first feeding arm 112.
  • the arm 112 extends in the arrangement direction (first direction) x; one end of the second radiating arm 13 is coupled with the second feeding arm 113, the second radiating arm 13 is bent and arranged in the second clearance area 20, and the second clearance area 20 is located in the second One side of the feeding arm 113 and extending along the arrangement direction (the second direction) y of the second feeding arm 113; wherein, when the first radiating arm 12 and the second radiating arm 13 resonate near the operating frequency point, such as the GPS L1 frequency band At 1.575 GHz, or 1.760 GHz in the L5 frequency band, the electrical signals (electric field or current signals) on the first radiating arm 12 and the second radiating arm 13 are equal in amplitude and 90° out of phase to form two orthogonal modes of resonance. Produce circularly polarized radiation. In addition, there is only one feed end of the positioning antenna, which can reduce the space occupation of the main board and improve the utilization rate of the circuit board.
  • the first radiating arm 12 when viewed from the front side of the dielectric substrate 100, the first radiating arm 12 needs to be located in the clockwise direction (that is, the right side) of the second radiating arm 13 to ensure that the first radiating arm When 12 and the second radiating arm 13 resonate near the operating frequency point, the current amplitudes of the first radiating arm 12 and the second radiating arm 13 are equal, and the current phase of the second radiating arm 13 is earlier than the current phase of the first radiating arm 12 90°, so that right-hand circularly polarized radiation can be realized.
  • the clearance area of the antenna is the area where the antenna ground is not distributed, that is, the first radiating arm 12 and the second radiating arm 13 are arranged outside the ground plate to reduce the capacitance to the ground. Reduce the impact on antenna matching to improve antenna gain.
  • the coupling gap between the first feeding arm 112 and the first radiating arm 12 can be adjusted by adjusting the lengths of the feeding portion 111, the first feeding arm 112, and the second feeding arm 113. Adjusting the coupling gap between the second feeding arm 113 and the second radiating arm 13 can also adjust the matching of the entire positioning antenna.
  • the two radiating arms 12 and 13 are arranged in a curved manner in the clearance area, which can reduce the volume of the entire antenna, which is beneficial to the miniaturization of the antenna and the miniaturization of the device for installing the antenna.
  • first radiating arm 12 and the other end of the second radiating arm 13 may be connected, or may be open circuits arranged at intervals, and the circular polarization effect can also be achieved.
  • the trace length of the first radiating arm 12 and the second radiating arm 13 corresponds to 1/4 of the working wavelength of the circular polarization positioning antenna, and the lengths of the two are not equal. That is, the trace length of the first radiating arm 12 and the second radiating arm 13 is basically equal to the 1/4 wavelength of the working wavelength of the positioning antenna to ensure that the antenna resonates at the required frequency point; and the first radiating arm 12 and the second radiating arm are set The two radiating arms 13 have different lengths to ensure that the radiation of the two radiating arms can achieve degenerate mode separation. In other embodiments, the trace length of the first radiating arm 12 and the second radiating arm 13 is substantially equal to the operating wavelength of the positioning antenna.
  • Rotary circular polarization can achieve better satellite signal reception; at the same time, because the positioning antenna is a right-handed circularly polarized antenna, it can filter the left-handed circularly polarized satellite signals reflected by tall buildings or the ground to reduce multipath interference; at the same time, Using a circularly polarized receiving antenna, the gain is about 3dB higher than that of a linearly polarized antenna, so as to achieve a better positioning effect.
  • the first feeding arm 112 and the second feeding arm 113 are generally straight lines. In other embodiments, it can be understood that due to the limitation of the equipment space, the first feeding arm 112 and/or the second feeding arm 113 may be bent in a certain arc in the actual arrangement, but it does not affect them. Are arranged along one direction. In addition, the first feeding arm 112 and/or the second feeding arm 113 may also be extended with other branches outside of its main body to help increase the antenna's gain, axial ratio, etc., for example, the orientation is perpendicular to the dielectric substrate. The branches in the 100 direction are arranged parallel to the dielectric substrate 100.
  • an angle a is formed between the first feeding arm 112 and the second feeding arm 113, that is, between the first direction x and the second direction y, and the range of the angle a is 70° ⁇ 110°.
  • the first radiating arm 12 and the second radiating arm 13 are respectively arranged in the clearance areas of the two directions x and y at the included angle a, so that when the first radiating arm 12 and the second radiating arm 13 resonate at the operating frequency point When it is nearby, two orthogonal mode resonances are formed, producing good circularly polarized radiation. Relatively, the circularly polarized radiation is better when the angle a is in the range of 75° ⁇ 105°.
  • the first feeding arm 112 and the second feeding arm 113 are perpendicular to each other, that is, the included angle a is 90°.
  • the angle formed by the arrangement directions of the first radiating arm 12 and the second radiating arm 13 It is also 90°, so that the two radiating arms can achieve equal amplitude orthogonal resonance when feeding, and achieve good circularly polarized radiation.
  • the feeding part 111 may be perpendicular or not perpendicular to the first feeding arm 112 and the second feeding arm 113, but with the first feeding arm 112 and the second feeding arm 113.
  • the plane where 113 is located is at a certain angle, which does not affect the power feeding of the two feeding arms; in addition, the dielectric substrate 100 can also be parallel to the plane, and the power feeding portion 111 can also be perpendicular or non-perpendicular to the dielectric substrate 100.
  • the first feeding arm 112 and the second feeding arm 113 may be symmetrical to each other, or may have different lengths.
  • the first radiating arm 12 includes a first coupling section 121 and a first bending radiating section 122; the second radiating arm 13 includes a second coupling section 131 and a second bending radiating section 132.
  • the end of the first coupling section 121 close to the feeding portion 111 is an end of the first radiating arm 12, the first coupling section 121 is spaced in parallel with the first feeding arm 112, and is directly opposite to at least part of the first feeding arm 112
  • the end of the second coupling section 131 close to the feeding portion 111 is the end of the second radiating arm 13
  • the second coupling section 131 is spaced in parallel with the second feeding arm 113, and is at least The parts are directly opposed to each other for coupling.
  • the head end of the first bent radiating section 122 is connected to the end of the first coupling section 121 away from the feeding part 111, and the end of the first bent radiating section 122 is the other end of the first radiating arm 12, which is connected to the feeding part.
  • the distance 111 is greater than the distance between the head end of the first bent radiating section 122 and the feeding part 111; the starting point of the second bent radiating section 132 and the second coupling section 131 away from the feeding part 111 One end is connected, and the end of the second bending radiating section 132 is the other end of the second radiating arm 13, and the distance from the feeding portion 111 is greater than the distance between the head end of the second bending radiating section 132 and the feeding portion 111.
  • the first bending radiating section 122 and the second radiating section 122 are basically symmetrical, and only when the wiring length is about 1/4 of the working wavelength, but with a certain length difference.
  • the first bending radiating section 122 and the second bending radiating section 132 are bending traces that connect one or more planes in a curved manner.
  • the first bending radiating section 122 encloses a rectangular space 10a on the first clearance area 10 along the first direction x
  • the second bending radiating section 132 is located in the second clearance area along the second direction y.
  • a rectangular space 20a is enclosed on 20.
  • the first bending radiating section 122 and the second bending radiating section 132 enclose the space 10a, and the space 20a may be cylindrical, elliptical, or multi-sided cylindrical.
  • the first bending radiating section 122 and the second bending radiating section 132 are bent in a serpentine manner along a plane.
  • the first radiating arm 12 and/or the second radiating arm 13 are loaded with an inductance device (not shown), where the inductance device is a lumped inductance or a distributed inductance.
  • Inductance devices are lumped inductance or distributed inductance.
  • the inductance device is mainly used to increase the equivalent length of the first antenna, so as to reduce the size of the positioning antenna and effectively miniaturize the antenna; optionally, the inductance device can usually be a lumped inductor, that is, an inductor, or a snake Curved wiring.
  • the above-mentioned circularly polarized positioning antenna resonates at 1.575 GHz, and the impedance bandwidth (S11 ⁇ -6 dB) can completely cover the entire GPS-L1 frequency band (1575 ⁇ 2 MHz), indicating that the above-mentioned positioning antenna affects the navigation satellite The signal reception is good.
  • the axial ratio is less than 1 dB. , It shows that the axial ratio of the positioning antenna is very good, and it meets the performance requirements of the positioning antenna.
  • the second aspect of the embodiments of the present application provides a wearable device including the above circular polarization positioning antenna.
  • the above-mentioned wearable device adopts all the embodiments of the above-mentioned circular polarization positioning antenna, and therefore has at least all the beneficial effects of the above-mentioned embodiments, and will not be repeated here.
  • the aforementioned wearable device positioning antenna can better receive navigation satellite signals, and the generated right-hand circularly polarized radiation can also filter left-handed circularly polarized navigation satellite signals reflected by tall buildings or the ground to reduce multipath interference. Thereby, the positioning accuracy of the positioning antenna of the wearable device is effectively improved.
  • the motherboard space is relatively limited.
  • Traditional circularly polarized antennas such as four-arm spirals need to add multiple contact points on the motherboard for power feeding or grounding, which takes up a lot of space on the motherboard. The form realizes the positioning antenna, which can reduce the space occupied by the antenna on the motherboard.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请公开一种圆极化定位天线和可穿戴设备,圆极化定位天线包括馈电枝节(11),具有馈电部(111)以及呈一角度的第一馈电臂(112)和第二馈电臂(113);第一辐射臂(12)与所述第一馈电臂(112)耦合,第一辐射臂(12)弯曲设置在沿第一馈电臂(112)布置方向延伸的第一净空区域(10),第一净空区域(10)位于所述第一馈电臂(112)一侧;第二辐射臂(13)与第二馈电臂(113)耦合,第二辐射臂(13)弯曲设置在沿第二馈电臂(113)布置方向延伸的第二净空区域(20);第一辐射臂(12)和第二辐射臂(13)上的电信号满足振幅相等,相位相差90°,实现圆极化辐射,以减少多径干扰,从而有效提高可穿戴设备的定位天线的定位精度;弯曲地设置在净空区域内,可以缩小整个天线的体积,有利于小型化,更容易在可穿戴产品上进行实现。

Description

一种圆极化定位天线和可穿戴设备
本申请要求于2020年05月28日在中国专利局提交的、申请号为202010470791.X、发明名称为“一种圆极化定位天线和可穿戴设备”的中国专利申请,以及于2020年05月28日在中国专利局提交的、申请号为202020941123.6、发明名称为“一种圆极化定位天线和可穿戴设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于天线技术领域,尤其涉及一种圆极化定位天线和可穿戴设备。
背景技术
在智能手表或手环领域,定位精度一直是人们所关注的痛点。传统的智能手表或手环定位天线多为线极化天线,但是导航卫星发出的信号通过电离层后是右旋圆极化信号,因此智能手表或手环的定位天线无法全部接收导航卫星的信号,而导航卫星的信号又被地面、高楼、树木等奇数次反射后,会变成左旋圆极化信号,将会产生的多径干扰严重影响整机的定位效果。
并且,传统的圆极化天线,如四臂螺旋等需在主板上增加多个接触点用来馈电或者接地,对主板空间占用较多。
技术问题
本申请的目的在于提供一种圆极化定位天线和可穿戴设备,旨在解决现有的可穿戴设备的天线定位精度较低、对主板空间占用较多的问题。
技术解决方案
为解决上述技术问题,本申请实施例采用的技术方案是:
本申请实施例的第一方面提了一种圆极化定位天线,包括:
馈电枝节,具有一端用于接入馈电信号的馈电部、与所述馈电部的另一端连接的第一馈电臂以及与所述馈电部的另一端连接的第二馈电臂,所述第一馈电臂和第二馈电臂之间呈一角度;
第一辐射臂,一端与所述第一馈电臂耦合,所述第一辐射臂弯曲设置在第一净空区域,所述第一净空区域位于所述第一馈电臂一侧且沿所述第一馈电臂布置方向延伸;
第二辐射臂,一端与所述第二馈电臂耦合,所述第二辐射臂弯曲设置在第二净空区域,所述第二净空区域位于所述第二馈电臂一侧且沿所述第二馈电臂布置方向延伸;
其中,当所述第一辐射臂和所述第二辐射臂谐振在工作频点附近时,所述第一辐射臂和所述第二辐射臂上的电信号满足振幅相等,相位相差90°。
在其中一个实施例中,所述第一辐射臂包括:
第一耦合段,与所述第一馈电臂平行间隔,且与所述第一馈电臂的至少部分正相对以耦合;
第一弯折辐射段,所述第一弯折辐射段的首端与所述第一耦合段远离所述馈电部的一端连接,所述第一弯折辐射段的末端与所述馈电部的距离大于所述第一弯折辐射段的首端与所述馈电部的距离。
在其中一个实施例中,所述第二辐射臂包括:
第二耦合段,与所述第二馈电臂平行间隔,且与所述第二馈电臂的至少部分正相对以耦合;
第二弯折辐射段,所述第二弯折辐射段的起点与所述第二耦合段远离所述馈电部的一端连接,所述第二弯折辐射段的末端与所述馈电部的距离大于所述第二弯折辐射段的首端与所述馈电部的距离。
在其中一个实施例中,所述第一辐射臂的另一端与所述第二辐射臂的另一端相连接或间隔设置。
在其中一个实施例中,所述第一辐射臂、所述第二辐射臂的走线长度与所述圆极化定位天线的1/4工作波长对应,且两者不等长。
在其中一个实施例中,所述第一馈电臂和所述第二馈电臂为直条型。
在其中一个实施例中,所述第一馈电臂和所述第二馈电臂相互对称。
在其中一个实施例中,所述馈电部、所述第一馈电臂及所述第二馈电臂中两两相互垂直。
在其中一个实施例中,所述角度的范围为75°~105°。
本申请实施例的第二方面提了一种可穿戴设备,包括如上所述的圆极化定位天线。
上述可穿戴设备采用了上述圆极化定位天线的所有实施例,因而至少具有上述实施例的所有有益效果,在此不再一一赘述。
有益效果
本申请实施例提供的一种圆极化定位天线的有益效果在于:上述的圆极化定位天线通过使用一个馈电枝节给两个辐射臂进行馈电,形成两个正交模式的谐振,使得在工作频点上,两个模式的谐振幅度相等,相位相差90°,产生圆极化辐射,极化方式为右旋圆极化时,从而使得定位天线能够更好地接收导航卫星信号,并且所产生的右旋圆极化辐射也可对经高楼或者地面反射的左旋圆极化导航卫星信号进行过滤,以减少多径干扰,从而有效提高可穿戴设备的定位天线的定位精度。另外,单极子天线的馈电点只有一个,能减少了对主板空间的占用,提高了电路板的利用率。
本申请实施例提供的可穿戴设备的有益效果在于:上述可穿戴设备采用了上述圆极化定位天线的所有实施例,因而至少具有上述实施例的所有有益效果,在此不再一一赘述。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例提供的圆极化定位天线的结构示意图;
图2为本发明实施例提供的圆极化定位天线的S参数示意图;
图3为本发明实施例提供的圆极化定位天线的二维轴比图在phi=65°、theta=64°轴比随频率变化曲线;
图4为本发明实施例提供的圆极化定位天线的二维轴比图在phi=40°、65°、90°切面的轴比随角度变化曲线;
图5为本发明实施例提供的圆极化定位天线的三维方向图;
图6为本发明实施例提供的圆极化定位天线的二维方向图。
本发明的实施方式
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
请参阅图1,本申请实施例提供的可用于可穿戴设备的圆极化定位天线(下称定位天线),具有一介质基板100,比如PCB板,介质基板100可以为接地板,且介质基板100上设置有连接GPS(Global Positioning System,全球定位系统)模块的馈电端101,圆极化定位天线包括馈电枝节11、第一辐射臂12及第二辐射臂13。
馈电枝节11具有一端用于接入GPS模块输出的馈电信号的馈电部111、与馈电部111的另一端连接的第一馈电臂112以及与馈电部111的另一端连接的第二馈电臂113,所述第一馈电臂112和第二馈电臂113之间呈一角度。第一辐射臂12的一端与第一馈电臂112耦合,第一辐射臂12弯曲设置在第一净空区域10,第一净空区域10位于第一馈电臂112一侧且沿第一馈电臂112布置方向(第一方向)x延伸;第二辐射臂13的一端与第二馈电臂113耦合,第二辐射臂13弯曲设置在第二净空区域20,第二净空区域20位于第二馈电臂113一侧且沿第二馈电臂113布置方向(第二方向)y延伸;其中,当第一辐射臂12和第二辐射臂13谐振在工作频点附近时,比如GPS L1频段1.575GHz,或L5频段1.760GHz处,第一辐射臂12和第二辐射臂13上的电信号(电场或电流信号)满足振幅相等,相位相差90°,以形成两个正交模式的谐振,产生圆极化辐射。另外,定位天线的馈电端只有一个,能减少了对主板空间的占用,提高了电路板的利用率。
且更具体地,在如图1所示,在俯视介质基板100正面角度看,第一辐射臂12需位于第二辐射臂13的顺时针方向(即右侧),以保证当第一辐射臂12和第二辐射臂13谐振在工作频点附近时,第一辐射臂12和第二辐射臂13的电流幅度相等,第二辐射臂13的电流相位早于第一辐射臂12上的电流相位90°,从而可以实现右旋圆极化辐射。
需要说明的是,天线的净空区域就是说不布天线地的区域,也即是说,第一辐射臂12及第二辐射臂13是设置在接地板之外的范围,以减少对地电容,减少对天线匹配的影响,以提高天线的增益。而在定位天线的设置的过程中,可以通过调节馈电部111、第一馈电臂112及第二馈电臂113长度,调节第一馈电臂112和第一辐射臂12的耦合间隙,调节第二馈电臂113和第二辐射臂13的耦合间隙,也能够调整整个定位天线的匹配。进一步地,两个辐射臂12、13弯曲地设置在净空区域内,可以缩小整个天线的体积,有利于天线的小型化和设置该天线的装置的小型化。
另外,第一辐射臂12的另一端与第二辐射臂13的另一端可以相连接,或可以为间隔设置的开路,同样可以达到圆极化效果。
在一些实施例中,第一辐射臂12、第二辐射臂13的走线长度与圆极化定位天线的1/4工作波长对应,且两者不等长。即第一辐射臂12、第二辐射臂13的走线长度与定位天线的工作波长的1/4波长基本相等,以保证天线谐振在所需要的频点;而设置第一辐射臂12、第二辐射臂13不等长,是为了保证两个辐射臂的辐射实现简并模分离。在其他实施例中,第一辐射臂12、第二辐射臂13的走线长度与定位天线的工作波长基本相等。
如上所述,在布置天线时,通过控制第一辐射臂12、第二辐射臂13的长短,控制第一辐射臂12、第二辐射臂13上的电信号的相位超前或滞后,能够实现右旋圆极化,可实现卫星信号更好的接收;同时因为定位天线为右旋圆极化天线,可对经高楼或者地面反射的左旋圆极化卫星信号进行过滤,减少多径干扰;同时,采用圆极化接收天线,相比线极化天线增益高3dB左右,从而达到更好的定位效果。
在其中一个实施例中,第一馈电臂112和第二馈电臂113总体为直条型走线。在其他实施例中,可以理解的是,受到设备空间的限制,第一馈电臂112和/或第二馈电臂113在实际布置中可能会呈一定的弧度的弯曲,但并不影响其是沿着一个方向布置的。并且,第一馈电臂112和/或第二馈电臂113还可以在其主体之外延伸设置其他枝节以有助于增加天线的增益、轴比等性能,例如,设置向垂直于介质基板100方向的枝节,设置平行于介质基板100的枝节。
可选地,第一馈电臂112和第二馈电臂113之间,即第一方向x和第二方向y之间呈一角度a,该角度a的范围为70°~110°,通过将第一辐射臂12和第二辐射臂13分别设置在成夹角a的这两个方向x、y的净空区域,可以使得当第一辐射臂12和第二辐射臂13谐振在工作频点附近时,形成两个正交模式的谐振,产生良好的圆极化辐射,相对地,夹角a在75°~105°范围内圆极化辐射更优。
在一个实施例中,第一馈电臂112和第二馈电臂113相互垂直,即夹角a为90°,如此,第一辐射臂12和第二辐射臂13的布置方向所成的角度也为90°,使得两个辐射臂在馈电时实现等幅正交谐振,实现良好的圆极化辐射。可以理解的是,受到设备空间的限制,馈电部111可以垂直或不垂直于第一馈电臂112和第二馈电臂113,而是与第一馈电臂112和第二馈电臂113所在的平面呈一定夹角,其并不影响两个馈电臂的馈电;另外,介质基板100也可以与该平面相互平行,馈电部111也可以垂直或不垂直于介质基板100。另外,第一馈电臂112和第二馈电臂113可以相互对称,也可以不同长度。
在一个实施例中,第一辐射臂12包括第一耦合段121和第一弯折辐射段122;第二辐射臂13包括第二耦合段131和第二弯折辐射段132。
第一耦合段121靠近馈电部111的一端即为第一辐射臂12的一端,第一耦合段121与第一馈电臂112平行间隔,且与第一馈电臂112的至少部分正相对以耦合;第二耦合段131靠近馈电部111的一端即为第二辐射臂13的一端,第二耦合段131与第二馈电臂113平行间隔,且与第二馈电臂113的至少部分正相对以耦合,通过调节耦合段和馈电臂两者之间的耦合间隙,正对正相对的长度可以调整天线的匹配。
第一弯折辐射段122的首端与第一耦合段121远离馈电部111的一端连接,第一弯折辐射段122的末端即为第一辐射臂12的另一端,其与馈电部111的距离大于第一弯折辐射段122的首端与馈电部111的距离;第二弯折辐射段132第二弯折辐射段132的起点与第二耦合段131远离馈电部111的一端连接,第二弯折辐射段132的末端即为第二辐射臂13的另一端,其与馈电部111的距离大于第二弯折辐射段132的首端与馈电部111的距离。可以理解的是,为了使得第一辐射臂12和第二辐射臂13上的电信号满足振幅相等,相位相差90°,以形成两个正交模式的谐振,第一弯折辐射段122和第二弯折辐射段132是基本对称的,仅在走线长度分别为1/4工作波长左右,但具有一定长度差。
总体而言,第一弯折辐射段122、第二弯折辐射段132是以弯曲方式连接一个或多个平面的弯折走线。本实施例中,第一弯折辐射段122沿第一方向x在第一净空区域10上围设出一个矩形的空间10a,第二弯折辐射段132沿第二方向y在第二净空区域20上围设出一个矩形的空间20a。在其他实施方式中,第一弯折辐射段122、第二弯折辐射段132围设空间10a、空间20a可以是圆柱形、椭圆柱形或多面柱形。或者,在一些实施方式中,第一弯折辐射段122、第二弯折辐射段132的弯曲方式为沿一个平面的蛇形弯折走线。
在其中一个实施例中,第一辐射臂12和/或第二辐射臂13上加载有电感器件(未图示),其中,电感器件为集总电感或分布电感。电感器件为集总电感或分布电感。设置该电感器件主要用于增加第一天线的等效长度,以缩小定位天线尺寸,使天线有效实现小型化;可选地,电感器件通常可以是集总电感,即电感器,还可以是蛇形弯曲走线。
从图2可见,上述圆极化定位天线在1.575 GHz处产生谐振,并且阻抗带宽(S11<-6 dB)能够完全覆盖整个GPS-L1频段(1575±2 MHz),说明上述定位天线对导航卫星信号接收良好。
从图3可见,上述定位天线在空间特定角度(theta=64°,phi=65°)能够实现最好的圆极化性能(即轴比最小),在GPS L1频段内,轴比<1 dB,说明上述定位天线的轴比特性很好,达到定位天线的性能要求。
从图4可见,上述定位天线工作在GPS-L1频段1.575GHz且切面为phi=40°、65°、90°时,在θ=5°~75°范围内,定位天线的轴比小于10dB,说明上述定位天线的轴比特性较好,达到定位天线的性能要求。
从图5和图6可见,上述定位天线工作在GPS-L1频段1.575 GHz时,定位天线在某一位置(phi=90°,theta=30°)实现最大的右旋圆极化方向性系数是1.59 dB,在方向性系数相同的情况下,该圆极化天线接收到的卫星信号要比线极化天线接收到的高出3 dB,同时对干扰信号具有抑制功能,所以上述定位天线的定位效果优于传统线极化天线。
本申请实施例的第二方面提了一种可穿戴设备,包括如上的圆极化定位天线。
上述可穿戴设备采用了上述圆极化定位天线的所有实施例,因而至少具有上述实施例的所有有益效果,在此不再一一赘述。上述可穿戴设备定位天线能够更好地接收导航卫星信号,并且所产生的右旋圆极化辐射也可对经高楼或者地面反射的左旋圆极化导航卫星信号进行过滤,以减少多径干扰,从而有效提高可穿戴设备的定位天线的定位精度。在可穿戴设备中,主板的空间较为有限,传统的圆极化天线如四臂螺旋等需在主板上增加多个接触点用来馈电或者接地,对主板空间占用较多,通过单极子形式实现定位天线,可以减少天线对主板空间的占用。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种圆极化定位天线,其特征在于,包括:
    馈电枝节,具有一端用于接入馈电信号的馈电部、与所述馈电部的另一端连接的第一馈电臂以及与所述馈电部的另一端连接的第二馈电臂,所述第一馈电臂和第二馈电臂之间呈一角度;
    第一辐射臂,一端与所述第一馈电臂耦合,所述第一辐射臂弯曲设置在第一净空区域,所述第一净空区域位于所述第一馈电臂一侧且沿所述第一馈电臂布置方向延伸;
    第二辐射臂,一端与所述第二馈电臂耦合,所述第二辐射臂弯曲设置在第二净空区域,所述第二净空区域位于所述第二馈电臂一侧且沿所述第二馈电臂布置方向延伸;
    其中,当所述第一辐射臂和所述第二辐射臂谐振在工作频点附近时,所述第一辐射臂和所述第二辐射臂上的电信号满足振幅相等,相位相差90°。
  2. 如权利要求1所述的圆极化定位天线,其特征在于,所述第一辐射臂包括:
    第一耦合段,与所述第一馈电臂平行间隔,且与所述第一馈电臂的至少部分正相对以耦合;
    第一弯折辐射段,所述第一弯折辐射段的首端与所述第一耦合段远离所述馈电部的一端连接,所述第一弯折辐射段的末端与所述馈电部的距离大于所述第一弯折辐射段的首端与所述馈电部的距离。
  3. 如权利要求2所述的圆极化定位天线,其特征在于,所述第一弯折辐射段沿所述第一馈电臂布置方向在第一净空区域上围设出一个矩形、圆柱形、椭圆柱形或多面柱形的空间。
  4. 如权利要求1所述的圆极化定位天线,其特征在于,所述第二辐射臂包括:
    第二耦合段,与所述第二馈电臂平行间隔,且与所述第二馈电臂的至少部分正相对以耦合;
    第二弯折辐射段,所述第二弯折辐射段的起点与所述第二耦合段远离所述馈电部的一端连接,所述第二弯折辐射段的末端与所述馈电部的距离大于所述第二弯折辐射段的首端与所述馈电部的距离。
  5. 如权利要求4所述的圆极化定位天线,其特征在于,所述第二弯折辐射段沿所述第二馈电臂布置方向在第二净空区域上围设出一个矩形、圆柱形、椭圆柱形或多面柱形的空间。
  6. 如权利要求1至5任一项所述的圆极化定位天线,其特征在于,所述第一辐射臂的另一端与所述第二辐射臂的另一端相连接或间隔设置。
  7. 如权利要求1至5任一项所述的圆极化定位天线,其特征在于,所述第一辐射臂、所述第二辐射臂的走线长度与所述圆极化定位天线的1/4工作波长对应,且两者不等长。
  8. 如权利要求1至5任一项所述的圆极化定位天线,其特征在于,所述第一馈电臂和所述第二馈电臂为直条型。
  9. 如权利要求1至5任一项所述的圆极化定位天线,其特征在于,所述第一馈电臂和所述第二馈电臂相互对称。
  10. 如权利要求1至5任一项所述的圆极化定位天线,其特征在于,所述馈电部、所述第一馈电臂及所述第二馈电臂中两两相互垂直。
  11. 如权利要求1至5任一项所述的圆极化定位天线,其特征在于,所述角度的范围为75°~105°。
  12. 如权利要求1至5任一项所述的圆极化定位天线,其特征在于,所述角度为90°。
  13. 如权利要求1至5任一项所述的圆极化定位天线,其特征在于,还包括一介质基板,所述介质基板上设置有馈电端,所述馈电端与所述馈电枝节耦接,所述第一辐射臂及第二辐射臂设置在介质基板之外的范围。
  14. 如权利要求1至5任一项所述的圆极化定位天线,其特征在于,所述第一辐射臂的另一端与所述第二辐射臂的另一端可以相连接,或为间隔设置。
  15. 一种可穿戴设备,其特征在于:包括如权利要求1至14任一项所述的圆极化定位天线。
PCT/CN2020/142271 2020-05-28 2020-12-31 一种圆极化定位天线和可穿戴设备 WO2021238216A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010470791.XA CN111490352A (zh) 2020-05-28 2020-05-28 一种圆极化定位天线和可穿戴设备
CN202010470791.X 2020-05-28
CN202020941123.6 2020-05-28
CN202020941123.6U CN211743403U (zh) 2020-05-28 2020-05-28 一种圆极化定位天线和可穿戴设备

Publications (1)

Publication Number Publication Date
WO2021238216A1 true WO2021238216A1 (zh) 2021-12-02

Family

ID=78745609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142271 WO2021238216A1 (zh) 2020-05-28 2020-12-31 一种圆极化定位天线和可穿戴设备

Country Status (1)

Country Link
WO (1) WO2021238216A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117254851A (zh) * 2023-11-17 2023-12-19 荣耀终端有限公司 一种卫星通信方法及可折叠设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6486848B1 (en) * 2001-08-24 2002-11-26 Gregory Poilasne Circular polarization antennas and methods
CN104659471A (zh) * 2013-11-21 2015-05-27 深圳富泰宏精密工业有限公司 倒f形天线结构及具有该天线结构的便携式电子装置
CN106329099A (zh) * 2016-08-29 2017-01-11 重庆邮电大学 应用于北斗终端的宽带圆极化滤波天线
CN108172984A (zh) * 2017-12-01 2018-06-15 北京北方联星科技有限公司 一种由多个pifa天线组成的圆极化天线
CN109802226A (zh) * 2019-01-30 2019-05-24 成都信息工程大学 一种宽频带圆极化微带天线
CN111129762A (zh) * 2020-02-20 2020-05-08 常州仁千电气科技股份有限公司 一种平面结构的圆极化天线
US20200162947A1 (en) * 2018-11-20 2020-05-21 Iwave Technologies Co., Ltd. Antenna structure, antenna device and wireless localization method
CN111490352A (zh) * 2020-05-28 2020-08-04 广东小天才科技有限公司 一种圆极化定位天线和可穿戴设备
CN211743403U (zh) * 2020-05-28 2020-10-23 广东小天才科技有限公司 一种圆极化定位天线和可穿戴设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6486848B1 (en) * 2001-08-24 2002-11-26 Gregory Poilasne Circular polarization antennas and methods
CN104659471A (zh) * 2013-11-21 2015-05-27 深圳富泰宏精密工业有限公司 倒f形天线结构及具有该天线结构的便携式电子装置
CN106329099A (zh) * 2016-08-29 2017-01-11 重庆邮电大学 应用于北斗终端的宽带圆极化滤波天线
CN108172984A (zh) * 2017-12-01 2018-06-15 北京北方联星科技有限公司 一种由多个pifa天线组成的圆极化天线
US20200162947A1 (en) * 2018-11-20 2020-05-21 Iwave Technologies Co., Ltd. Antenna structure, antenna device and wireless localization method
CN109802226A (zh) * 2019-01-30 2019-05-24 成都信息工程大学 一种宽频带圆极化微带天线
CN111129762A (zh) * 2020-02-20 2020-05-08 常州仁千电气科技股份有限公司 一种平面结构的圆极化天线
CN111490352A (zh) * 2020-05-28 2020-08-04 广东小天才科技有限公司 一种圆极化定位天线和可穿戴设备
CN211743403U (zh) * 2020-05-28 2020-10-23 广东小天才科技有限公司 一种圆极化定位天线和可穿戴设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117254851A (zh) * 2023-11-17 2023-12-19 荣耀终端有限公司 一种卫星通信方法及可折叠设备
CN117254851B (zh) * 2023-11-17 2024-04-05 荣耀终端有限公司 一种卫星通信方法及可折叠设备

Similar Documents

Publication Publication Date Title
US6414642B2 (en) Orthogonal slot antenna assembly
WO2022179324A1 (zh) 天线装置、壳体及电子设备
US6486836B1 (en) Handheld wireless communication device having antenna with parasitic element exhibiting multiple polarization
CN111478055A (zh) 单频圆极化定位天线和可穿戴设备
CN111490345A (zh) 可穿戴设备及其定位天线
CN114976665B (zh) 一种加载频率选择表面辐射稳定的宽带双极化偶极子天线
CN211743403U (zh) 一种圆极化定位天线和可穿戴设备
CN109672021B (zh) 一种背腔缝隙耦合贴片天线
CN113506989B (zh) 一种5g毫米波介质谐振器天线及其阵列
CN211743422U (zh) 单频圆极化定位天线和可穿戴设备
CN111490352A (zh) 一种圆极化定位天线和可穿戴设备
WO2021238216A1 (zh) 一种圆极化定位天线和可穿戴设备
WO2024104087A1 (zh) 天线辐射单元和天线
CN112736439A (zh) 天线、天线组件及电子设备
JP4125118B2 (ja) 広帯域内蔵型アンテナ
CN115377681A (zh) 基于磁电偶极子和印刷振子的混合结构双极化天线装置
CN209948047U (zh) 一种超宽带圆极化全向天线
WO2021083218A1 (zh) 天线单元及电子设备
CN114069253A (zh) 一种双极化超宽频八木天线
CN111490343A (zh) 单极子圆极化定位天线和可穿戴设备
WO2021238217A1 (zh) 单频圆极化定位天线和可穿戴设备
CN108400436B (zh) 天线模块
CN212011255U (zh) 单极子圆极化定位天线和可穿戴设备
CN111490357A (zh) 一种圆极化定位天线装置和可穿戴设备
CN112134005A (zh) 一种偶极子天线及无线设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20937626

Country of ref document: EP

Kind code of ref document: A1