WO2021238119A1 - 平面电机位移装置 - Google Patents

平面电机位移装置 Download PDF

Info

Publication number
WO2021238119A1
WO2021238119A1 PCT/CN2020/131730 CN2020131730W WO2021238119A1 WO 2021238119 A1 WO2021238119 A1 WO 2021238119A1 CN 2020131730 W CN2020131730 W CN 2020131730W WO 2021238119 A1 WO2021238119 A1 WO 2021238119A1
Authority
WO
WIPO (PCT)
Prior art keywords
planar
scale
displacement device
reading head
motor displacement
Prior art date
Application number
PCT/CN2020/131730
Other languages
English (en)
French (fr)
Inventor
丁晨阳
Original Assignee
复旦大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 复旦大学 filed Critical 复旦大学
Publication of WO2021238119A1 publication Critical patent/WO2021238119A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type

Definitions

  • the invention relates to the field of precision motion, in particular to a planar motor displacement device.
  • the maglev planar motor motion stage is mainly used in semiconductor equipment, such as scanning projection lithography machine, wafer cutting machine, flip chip bonding machine, etc. Its function is to carry the wafer to perform micro-nano precision precise motion to achieve the wafer Precise processing.
  • the maglev planar motor motion platform generally includes a planar motor, a six-degree-of-freedom displacement measurement system, a power amplifier, and a motion controller.
  • the documents of patent numbers US6496093 and EP3320400B1 innovate the topological structure of the planar motor, and the six-degree-of-freedom displacement measurement system still uses the traditional solution.
  • the traditional six-degree-of-freedom displacement measurement system integrates a set of three-axis laser interferometer and a set of eddy current displacement sensors.
  • the three-axis laser interferometer is used to measure the X-direction translation, Y-direction translation and Z-direction rotation of the moving table in real time; at least three eddy current displacement sensors are used to measure the X-direction rotation, Y-direction rotation and rotation of the moving table in real time. Translation in the Z direction.
  • laser interferometers are costly and their accuracy is very sensitive to the measurement environment: temperature changes, humidity changes, and air flow will all cause disturbances and reduce their accuracy. The cost of the eddy current displacement sensor is also very high.
  • Another solution is to use a flat scale system to replace the laser interferometer, but the cost of the flat scale is an order of magnitude with that of the laser interferometer. Both of these solutions are very susceptible to environmental disturbances, such as airflow, particle pollution, and stains, which can reduce the accuracy of the sensor or even completely fail, and cause the motion table to malfunction.
  • the purpose of the present invention is to provide a displacement device to solve the problem of excessively high cost and susceptibility to environmental interference of the maglev planar motor motion table in the prior art.
  • the present invention provides a planar motor displacement device, including a mover and a stator, wherein
  • the stator is provided with an array of magnets extending on a plane, the array of magnets forms a working area, and at least one flat scale in the first direction and at least one flat scale in the second direction are laid on the stator, so The traces of the at least one first-direction planar scale are parallel to each other and are arranged at intervals along the first direction, the traces of the at least one second-direction planar scale are parallel to each other and are arranged at intervals along the second direction, the first direction Intersect with the second direction;
  • the mover is provided with a first-direction three-phase coil array and a second-direction three-phase coil array, and is arranged to be able to move above the working area, and is provided with at least one first-direction reading head and at least one second-direction reading head A direction reading head, the at least one first direction reading head and the at least one second direction reading head follow the movement of the mover in the at least one first direction plane scale and the at least one second direction plane, respectively Move within the tiled range of the scale.
  • the traces of the at least one first-direction planar scale and/or the at least one second-direction planar scale are made of conductive material.
  • the first direction and the second direction are orthogonal to each other, and the magnet array is a two-dimensional Halbach array.
  • the at least one first-direction readhead is at least two first-direction readheads, or the at least one second-direction readhead is at least two second-direction readheads.
  • the at least one first-direction readhead is two first-direction readheads located at a pair of diagonal corners of the worktable, and the at least one second-direction readhead is located at the Two second-direction reading heads at the other diagonal corners of the worktable.
  • the at least one first-direction planar grid is two first-direction planar grids covering a pair of corresponding diagonal regions of the working area, and/or the at least one second-direction planar grid
  • the rulers are two second-direction planar scales covering the working area corresponding to another pair of diagonal areas, the traces of the at least one first-direction planar scale and the traces of the at least one second-direction planar scale
  • the lines are arranged at equal intervals.
  • the at least one first-direction readhead is two first-direction readheads located at spaced apart positions on an edge of the worktable, and the at least one second-direction readhead is located at the workbench. A second-direction reading head on the opposite edge of the table and the one edge.
  • the at least one first-direction planar scale is at least one first-direction planar scale that covers an area near a corresponding edge of the working area, and the at least one second-direction planar scale is a covered area.
  • the working area corresponds to a second-direction plane scale near an edge.
  • At least three Hall sensor arrays that are not on the same straight line are provided on the workbench.
  • the Hall sensor array includes three Hall sensors that are not on the same straight line.
  • the three Hall sensors are located at the vertices of an isosceles right triangle.
  • hypotenuse of the isosceles right triangle extends along the first direction or the second direction.
  • the center distance between adjacent N magnets and S magnets in the magnet array is ⁇
  • the displacement device includes four Hall sensor arrays, and the four Hall sensor arrays are evenly spaced on the outer circumference of the mover.
  • the displacement device proposed by the present invention integrates a planar motor and a unidirectional planar scale, and uses a unidirectional planar scale and a unidirectional reading head to replace the laser interferometer and the planar scale, which reduces the cost of the displacement sensor by two orders of magnitude and greatly reduces
  • the overall cost of the planar motor motion table enhances its market competitiveness and at the same time improves its measurement accuracy.
  • the precision of the unidirectional planar scale based on the eddy current effect can reach ten nanometers, and it is not easily affected by the environment; the precision of the optical unidirectional planar scale can reach the nanometer or sub-nanometer level, and its accuracy is higher.
  • the whole device can realize the six-degree-of-freedom magnetic levitation movement, that is, the long-stroke movement in the X direction and the Y direction, and the fine adjustment of the other four degrees of freedom.
  • Fig. 1 is a schematic diagram of a displacement device according to an embodiment of the present invention
  • Figure 2 is a schematic diagram of a displacement device according to yet another embodiment of the present invention.
  • Fig. 3 is a schematic diagram of a magnet array according to another embodiment of the present invention.
  • Fig. 4 is a schematic diagram of a magnet array according to another embodiment of the present invention.
  • Fig. 5 is a schematic diagram of a magnet array according to still another embodiment of the present invention.
  • 500-displacement device 100-stator; 200-mover; 10-magnet array; 10X-first magnet group; 10Y-second magnet group; 101-first magnet block; 102-second magnet block; 103-th Three-magnet block; 104-fourth magnet block; 20-coil array; 201-first X-direction three-phase coil group; 202-first Y-direction three-phase coil group; 203-second X-direction three-phase coil group; 204 -The second Y-direction three-phase coil group; 30X-X-direction planar scale; 30Y-Y-direction planar scale; 301-first X-direction planar scale; 302-first Y-direction planar scale; 303-second X-direction planar scale; 304-second Y-direction planar scale; 40X-X-direction reading head; 30Y-Y-direction reading head; 401-first X-direction reading head; 402-first Y-direction reading head; 403-
  • the planar motor displacement device 500 includes a stator 100 and a mover 200.
  • the drawing surface of the figure is the XY plane, in which the horizontal direction in the drawing surface is the X direction, the upward direction in the drawing surface is the Y direction, and the direction perpendicular to the drawing surface is the Z direction.
  • the X, Y, and Z directions are orthogonal to each other.
  • the X-direction, Y-direction, and Z-direction are not necessarily orthogonal to each other, as long as they intersect each other.
  • the following embodiments of the present invention will be described by taking the case where the X direction, the Y direction and the Z direction are orthogonal to each other as an example.
  • the stator 100 is provided with a magnet array 10 extending substantially on a plane, and the magnet array 10 forms a working area.
  • the magnet array 10 extends on an XY plane.
  • the mover 200 is provided with a coil array 20, so that the mover 200 can float above the working area through interaction with the magnet array 10.
  • the mover 200 is a substantially square plate, but it should be understood that the mover 200 can also be provided in other shapes, such as a rectangular plate, a circular plate, etc., as required.
  • the coil array 20 is provided on the upper surface of the mover 200. However, it should be understood that the coil array 20 may also be arranged on the lower surface of the mover 200.
  • the coil array 20 includes a first X-direction three-phase coil group 201, a first Y-direction three-phase coil group 202, a second X-direction three-phase coil group 203, and a second Y-direction three-phase coil group 204 .
  • the first X-direction three-phase coil group 201 and the second X-direction three-phase coil group 203 are arranged in a pair of diagonal areas of the three-phase coil array 20, and the first Y-direction three-phase coil group 202 and the second Y-direction three-phase coil group
  • the phase coil group 204 is arranged in another pair of diagonal regions of the coil array 20.
  • the three-phase coil groups are preferably arranged on the same plane.
  • the first and second X-direction three-phase coil groups 201 and 203 can interact with the magnet array 10 to generate thrust in the X and Z directions.
  • the two Y-direction three-phase coil sets 202 and 204 can interact with the magnet array 10 to generate Y-direction and Z-direction thrust, which can drive the mover 200 to move in six degrees of freedom within the working area, namely X, Y , Z-direction translation and rotation around X, Y, and Z directions.
  • the three-phase coil groups can also be arranged on the mover 200 in other ways.
  • the mover 200 is equipped with an X-direction three-phase coil group and a Y-direction three-phase coil group to realize the translation of the mover 200 along the X, Y, and Z directions and the rotation of the X and Y directions, and then increase One X-direction or Y-direction three-phase coil group can realize the Z-direction rotation of the mover 200. Therefore, in order to realize the movement of six degrees of freedom, it is necessary to provide at least three three-phase coil groups, including at least one X-direction coil group and at least one Y-direction coil group.
  • a first X-direction reading head 401 As shown in Figure 1, there are four reading heads on the mover 200: a first X-direction reading head 401, a first Y-direction reading head 402, a second X-direction reading head 403, and a second Y-direction reading head 404 , Are respectively arranged near the four vertices of the mover 200.
  • the positions of the above four reading heads are not limited to this, as long as they can form a quadrilateral.
  • four plane scales are laid on the mover 200: a first X-direction flat scale 301, a first Y-direction flat scale 302, a second X-direction flat scale 303, and a second Y-direction flat scale 304 .
  • Each planar scale can be a grating, a magnetic grid, a capacitive scale, or a scale based on the principle of eddy current.
  • the traces of the scale may be made of light-conducting materials (ie, transparent materials), magnetic-conducting materials, or conductive materials.
  • the trace is made of conductive material.
  • the planar scales do not overlap in the working area, so as to prevent the coordinate values read by the scanning head through the grating traces from being confused.
  • the first X-direction planar scale 301 and the second X-direction planar scale 303 are respectively located in a pair of diagonal areas of the working area, which are the lower left corner area and the upper right corner area in the figure shown;
  • the first Y-direction planar scale 302 and the second Y-direction planar scale 304 are located in another diagonal area of the working area, which is the upper left corner area and the lower right corner area in the figure shown.
  • the above-mentioned four reading heads respectively operate on the first X-direction flat scale 301, the first Y-direction flat scale 302, the second X-direction flat scale 303, and the second Y-direction flat scale.
  • the ruler 304 moves within the tiled range, so that the X coordinates of the first and second X-direction scanning heads and the Y-coordinates of the first and second Y-direction scanning heads are read through the traces of the planar scale.
  • the displacement signals are read through the four reading heads, and the displacement signals are fed back to the controller, and the controller provides control signals to control the translational movement of the mover 200 in the X and Y directions and the rotation around the Z direction.
  • the number of X-direction reading heads and Y-direction reading heads is not limited to this, and at least one X-direction reading head can be provided And at least one Y-direction reading head and corresponding at least one X-direction planar scale and at least one Y-direction planar scale.
  • the X and Y-direction translation of the mover 200 can be calculated and controlled according to the coordinate values read from the two scanning heads.
  • the displacement signals can be read from the three reading heads and the displacement signals are fed back to the controller.
  • the controller provides control signals to control the movement.
  • the flat scales overlap.
  • the setting of the reading head on the mover 200 and the flat scale in the working area is not limited to the above embodiment, as long as the reading heads are appropriately spaced, and the laying range of the flat scale corresponding to each reading head is not less than the movable scale.
  • the range of motion of each reading head on the sub-200 is sufficient.
  • Figure 2 shows an embodiment in which three reading heads and two flat scales 30X and 30Y are arranged on the mover 200, in which an X-direction reading head 40X and a first Y-direction reading head 302 and a second Y-direction reading head are provided 304.
  • the first Y-direction reading head 302 and the second Y-direction reading head 304 are arranged at two adjacent corner positions of the mover 200, which are the upper left corner and the upper right corner in the figure, and the X-direction reading head 40X is arranged at At the midpoint of the opposite edge of the two Y-direction reading heads.
  • the X-direction flat scale 30X is arranged below the working area
  • the Y-direction flat scale 30Y is arranged above the working area.
  • the positions of the three reading heads are not limited to this. As long as the reading heads are properly spaced, so that the corresponding flat scales do not overlap, and the tiling range of the corresponding flat scales is not less than the movement range of the reading heads on the mover 200.
  • the two Y-direction reading heads correspond to one Y-direction flat scale, but it should be understood that two Y-direction flat scales spaced apart from each other can also be provided.
  • three reading heads can be used to measure and control the movement of the mover 200 with three degrees of freedom, namely X-direction displacement, Y-direction displacement, and Z-direction rotation.
  • the magnet array 10 shown in FIG. 1 is a two-dimensional Halbach array, in which a plurality of N magnets, S magnets, and H magnets are periodically arranged in a two-dimensional Halbach manner along an XY plane. That is, an H magnet is provided between adjacent N magnets and S magnets, and the magnetization direction of the H magnet points to the N magnet.
  • the center distance between adjacent N magnets and S magnets is ⁇
  • FIG. 3 shows a top view of another embodiment of the magnet array 10.
  • the magnet array shown in FIG. 2 is removed from the magnet array shown in FIG.
  • N magnets and S magnets are periodically arranged in rows and rows along an XY plane, the N magnets and adjacent S magnets are spaced apart, and the center distance between adjacent N magnets and S magnets is ⁇ , the rows of magnets SNSN
  • the magnet array 10 includes a first magnet group 10X and a second magnet group 10Y.
  • the first magnet group 10X and the second magnet group 10Y are arranged alternately in rows along the X direction and the Y direction.
  • the first magnet group 10X includes four magnets arranged in a one-dimensional Halbach array in the Y direction: S magnets, H magnets, N magnets, and H magnets in a SHNH arrangement, where the magnetization direction of the H magnet points to the N magnet, adjacent The distance between the centers of the N magnet and the S magnet is ⁇ .
  • the second magnet group 10Y includes four magnets arranged in a one-dimensional Halbach array in the X direction: S magnets, H magnets, N magnets, and H magnets in a SHNH arrangement, where the magnetization direction of the H magnet points to the N magnet, adjacent The distance between the centers of the N magnet and the S magnet is ⁇ . That is, the second magnet group 10Y is formed by rotating the first magnet group 10X counterclockwise along the XY plane by 90° in a plan view.
  • the magnet array 10 includes a plurality of square sub-arrays periodically arranged in rows and columns along the X-direction and the Y-direction.
  • the sub-array is composed of a first magnet block 101, a second magnet block 102, a third magnet block 103, and a fourth magnet block 104. composition.
  • the first magnet block 101 is arranged in the upper left area of the sub-array
  • the second magnet block 102 is arranged in the lower left area of the sub-array
  • the third magnet block 103 is arranged in the lower right area of the sub-array
  • the fourth magnet The block 104 is arranged in the upper right area of the sub-array.
  • the first magnet block 101 includes an S magnet and an H magnet arranged in sequence along the Y direction, wherein the magnetization direction of the H magnet is away from the S magnet.
  • the second magnet block 102 includes an S magnet and an H magnet arranged in sequence along the X direction, wherein the magnetization direction of the H magnet is away from the S magnet.
  • the third magnet block 103 includes an N magnet and an H magnet arranged in sequence along the Y direction, and the magnetization direction of the H magnet points to the N magnet.
  • the fourth magnet block 104 includes an N magnet and an H magnet sequentially arranged along the X direction, and the magnetization direction of the H magnet points to the N magnet.
  • the second magnet block 102 is formed by rotating the first magnet block 101 counterclockwise by 90° along the XY plane in a top view.
  • the fourth magnet block 104 is formed by rotating the third magnet block 103 counterclockwise by 90° along the XY plane in a top view.
  • the Y-direction center distance between the S magnet in the first magnet block 101 and the N magnet in the third magnet block 103 is ⁇
  • the X-direction center between the S magnet in the second magnet block 102 and the N magnet in the fourth magnet block 104 The spacing is ⁇ .
  • the magnet array 10 of the present invention can adopt any existing or to-be-developed magnet array of a planar motor stator.
  • a Hall sensor array 50 is also provided on the mover 200.
  • Each Hall sensor array 50 can obtain its displacement in the Z direction by measuring the magnetic field intensity generated by the magnet array 10.
  • the Hall sensor can be configured to measure the magnetic field intensity in the X direction, Y direction or Z direction, and is preferably configured to measure Z Direction of magnetic field strength.
  • the displacement of the mover 200 with three degrees of freedom can be calculated. , That is, the translation of the mover 200 along the Z direction, the rotation of the X direction and the rotation of the Y direction.
  • the Hall sensor arrays 50 are preferably arranged on the same plane, and more preferably, the plane where the Hall sensors are located is farther away from the magnet array than the plane where the three-phase coil group is located.
  • the mover 200 includes four Hall sensor arrays 50, and the four Hall sensor arrays 50 are arranged on the outer circumference of the mover 200 and are evenly spaced apart from each other.
  • Each Hall sensor array 50 includes 3 Hall sensors distributed in a triangle.
  • the 3 Hall sensors are located at the vertices of an isosceles right-angled triangle.
  • the hypotenuse of the isosceles right-angled triangle extends along the X-direction or the Y-direction.
  • the center distance between adjacent N magnets and S magnets in the magnet array 10 is ⁇
  • the right-angle side of the isosceles right-angled triangle is a
  • n is an integer not less than zero.
  • the Hall sensor array 50 arranged in the above-mentioned isosceles right triangle can also be used.
  • Hall sensor array 50 Although only one embodiment of the Hall sensor array 50 is described above, it should be understood that the number and arrangement of the sensors in the Hall sensor array 50 can also be changed as needed without departing from the scope of the present invention.
  • the controller calculates the control signal according to the preset control algorithm, and controls the coil current through the driver, thereby generating a displacement of 6 degrees of freedom of the motion table.
  • planar motor displacement device of the present invention by using a Hall sensor array to replace the eddy current displacement sensor and using a planar scale and a reading head to replace the laser interferometer, the cost of the planar motor displacement device is significantly reduced and the motion control is improved. Accuracy.

Abstract

一种平面电机位移装置(500),包括动子(200)和定子(100),其中定子(100)上设有磁体阵列(10),形成工作区域,工作区域内平铺有彼此不交叠的至少一个第一方向平面栅尺(301)和至少一个第二方向平面栅尺(302),至少一个第一方向平面栅尺(301)的迹线彼此平行且沿第一方向间隔排列,至少一个第二方向平面栅尺(302)的迹线彼此平行且沿第二方向间隔排列,第一方向和第二方向彼此相交;动子(200)上设有第一方向三相线圈阵列(201)和第二方向三相线圈阵列(202),并设置成能够在工作区域上方运动,且设有至少一个第一方向读数头(401)和至少一个第二方向读数头(402),至少一个第一方向读数头(401)和至少一个第二方向读数头(402)随着动子(200)的运动分别在至少一个第一方向平面栅尺(301)和至少一个第二方向平面栅尺(302)的平铺范围内移动。

Description

平面电机位移装置
相关申请交叉引用
本专利申请要求于2020年05月28日提交的、申请号为202010468071.X、发明名称为“平面电机位移装置”的中国专利申请的优先权,上述申请的全文以引用的方式并入本文中。
技术领域
本发明涉及精密运动领域,具体涉及一种平面电机位移装置。
背景技术
磁浮平面电机运动台主要用于半导体装备中,例如扫描投影光刻机、晶圆切割机、倒装键合机等,其功能是承载晶圆做微纳米精度的精密运动,以实现对晶圆的精确加工。磁浮平面电机运动台一般包括一套平面电机、一套六自由度位移测量系统、一套功率放大器、一套运动控制器。例如专利号US6496093和EP3320400B1的文献对平面电机的拓扑结构做出创新,六自由度位移测量系统还是沿用传统的解决方案。
传统的六自由度位移测量系统集成了一套三轴激光干涉仪和一套电涡流位移传感器。其中,三轴激光干涉仪用于实时测量运动台的X方向平动、Y方向平动和Z方向转动;至少三个电涡流位移传感器用来实时测量运动台的X方向转动、Y方向转动和Z方向平动。然而,激光干涉仪成本高昂,其精度对测量环境非常敏感:温度变化、湿度变化、空气流动都会造成扰动,降低其精度。电涡流位移传感器的成本也非常高昂。另一套方案是使用平面栅尺系统来代替激光干涉仪,但是平面栅尺的成本跟激光干涉仪在一个数量级。这两种方案都非常容易受到环境干扰,比如气流、颗粒污染、污渍等,导致传感器精度降低甚至完全失效,造成运动台故障。
发明内容
本发明的目的在于提供一种位移装置,以解决现有技术中存在的磁浮平面电 机运动台的成本过高、易受环境干扰的问题。
为此,本发明提供一种平面电机位移装置,包括动子和定子,其中
所述定子上设有在一个平面上延伸的磁体阵列,所述磁体阵列形成工作区域,所述定子上还平铺有至少一个第一方向平面栅尺和至少一个第二方向平面栅尺,所述至少一个第一方向平面栅尺的迹线彼此平行且沿第一方向间隔排列,所述至少一个第二方向平面栅尺的迹线彼此平行且沿第二方向间隔排列,所述第一方向和所述第二方向彼此相交;
所述动子上设有第一方向三相线圈阵列和第二方向三相线圈阵列,并设置成能够在所述工作区域上方运动,且设有至少一个第一方向读数头和至少一个第二方向读数头,所述至少一个第一方向读数头和至少一个第二方向读数头随着所述动子的运动分别在所述至少一个第一方向平面栅尺和所述至少一个第二方向平面栅尺的平铺范围内移动。
在一实施例中,所述至少一个第一方向平面栅尺和/或所述至少一个第二方向平面栅尺的迹线由导电材料制成。
在一实施例中,所述第一方向和所述第二方向彼此正交,所述磁体阵列为二维Halbach阵列。
在一实施例中,所述至少一个第一方向读数头为至少两个第一方向读数头,或所述至少一个第二方向读数头为至少两个第二方向读数头。
在一实施例中,所述至少一个第一方向读数头为位于所述工作台一对对角角部位置的两个第一方向读数头,所述至少一个第二方向读数头为位于所述工作台另一对对角角部位置的两个第二方向读数头。
在一实施例中,所述至少一个第一方向平面栅尺为覆盖所述工作区域相应一对对角区域的两个第一方向平面栅尺,和/或所述至少一个第二方向平面栅尺为覆盖所述工作区域相应另一对对角区域的两个第二方向平面栅尺,所述至少一个第一方向平面栅尺的迹线和所述至少一个第二方向平面栅尺的迹线等间距间隔排列。
在一实施例中,所述至少一个第一方向读数头为位于所述工作台一条边缘上间隔开位置的两个第一方向读数头,所述至少一个第二方向读数头为位于所述工作台上与所述一条边缘相对边缘上的一个第二方向读数头。
在一实施例中,所述至少一个第一方向平面栅尺为覆盖所述工作区域相应一条边缘附近区域的至少一个第一方向平面栅尺,所述至少一个第二方向平面栅尺为覆 盖所述工作区域相应一条边缘附近区域的一个第二方向平面栅尺。
在一实施例中,所述工作台上设有至少三个不在同一直线上的霍尔传感器阵列。
在一实施例中,所述霍尔传感器阵列包括不在同一直线上的三个霍尔传感器。
在一实施例中,所述三个霍尔传感器位于等腰直角三角形的顶点。
在一实施例中,所述等腰直角三角形的斜边沿所述第一方向或所述第二方向延伸。
在一实施例中,所述磁体阵列中相邻的N磁体与S磁体的中心间距为τ,所述等腰直角三角形的直角边长为a,则a=τ/2+nτ,n为不小于零的整数。
在一实施例中,所述位移装置包括4个所述霍尔传感器阵列,4个所述霍尔传感器阵列均匀间隔地配置在所述动子的外周。
本发明提出的位移装置集成了平面电机和单向平面栅尺,使用单向平面栅尺和单向读数头代替激光干涉仪和平面栅尺,将位移传感器的成本降低两个数量级,大幅降低了平面电机运动台的整体成本,增强其市场竞争力,同时提高其测量精度。其中,基于电涡流效应的单向平面栅尺的精度可达到十纳米级,而且其不易受环境影响;光学单向平面栅尺的精度可达到纳米或亚纳米级,其精度更高。再集成霍尔传感器阵列,整个装置可实现六自由度磁悬浮运动,即X方向和Y方向的长行程运动,以及其它四个自由度的微调。
附图说明
图1是根据本发明一实施例的位移装置的示意图;
图2是根据本发明再一实施例的位移装置的示意图
图3是根据本发明另一实施例的磁体阵列的示意图;
图4是根据本发明又一实施例的磁体阵列的示意图;
图5是根据本发明再一实施例的磁体阵列的示意图。
附图标记列表:
500-位移装置;100-定子;200-动子;10-磁体阵列;10X-第一磁体组;10Y-第二磁体组;101-第一磁体块;102-第二磁体块;103-第三磁体块;104-第四磁体块;20-线圈阵列;201-第一X向三相线圈组;202-第一Y向三相线圈组;203- 第二X向三相线圈组;204-第二Y向三相线圈组;30X-X向平面栅尺;30Y-Y向平面栅尺;301-第一X向平面栅尺;302-第一Y向平面栅尺;303-第二X向平面栅尺;304-第二Y向平面栅尺;40X-X向读数头;30Y-Y向读数头;401-第一X向读数头;402-第一Y向读数头;403-第二X向读数头;404-第二Y向读数头;50-霍尔传感器阵列。
具体实施方式
以下将结合附图对本发明的较佳实施例进行详细说明,以便更清楚理解本发明的目的、特点和优点。应理解的是,附图所示的实施例并不是对本发明范围的限制,而只是为了说明本发明技术方案的实质精神。
在下文的描述中,出于说明各种公开的实施例的目的阐述了某些具体细节以提供对各种公开实施例的透彻理解。但是,相关领域技术人员将认识到可在无这些具体细节中的一个或多个细节的情况来实践实施例。在其它情形下,与本申请相关联的熟知的装置、结构和技术可能并未详细地示出或描述从而避免不必要地混淆实施例的描述。
除非语境有其它需要,在整个说明书和权利要求中,词语“包括”和其变型,诸如“包含”和“具有”应被理解为开放的、包含的含义,即应解释为“包括,但不限于”。
在以下描述中,为了清楚展示本发明的结构及工作方式,将借助诸多方向性词语进行描述,但是应当将“左”、“右”、“外”、“内”、“上”、“下”等词语理解为方便描述相对位置关系的用语,而不应当理解为限定性词语。
参见图1,其中示出了根据本发明一实施例的平面电机位移装置500的俯视图。该平面电机位移装置500包括定子100和动子200。如图所示,该图的图面为XY平面,其中图面中水平向右为X向,图面中向上为Y向,垂直于图面方向为Z向。该实施例中,X向、Y向及Z向相互正交。但应理解,X向、Y向及Z向不一定彼此正交,只要彼此相交即可。本发明的下述实施例以X向、Y向及Z向相互正交的情况为例进行描述。
定子100上设有大致在一个平面上延伸的磁体阵列10,该磁体阵列10形成工作区域。较佳地,磁体阵列10在一XY平面上延伸。动子200上设有线圈阵 列20,从而通过与磁体阵列10的相互作用动子200可悬浮在工作区域上方。在所示实施例中,动子200呈大致方形板,但应理解,根据需要,动子200也可设置成其他形状,例如矩形板、圆形板等。所示实施例中,线圈阵列20设置在动子200的上表面。但应理解,线圈阵列20也可设置在动子200的下表面。所示实施例中,线圈阵列20包括第一X向三相线圈组201、第一Y向三相线圈组202、第二X向三相线圈组203、以及第二Y向三相线圈组204。其中第一X向三相线圈组201和第二X向三相线圈组203布置在三相线圈阵列20的一对对角区域,而第一Y向三相线圈组202和第二Y向三相线圈组204布置在线圈阵列20的另一对对角区域。其中各三相线圈组较佳地布置在同一平面上,第一和第二X向三相线圈组201和203能够与磁体阵列10相互作用产生X向和Z向的推力,而第一和第二Y向三相线圈组202和204能够与磁体阵列10相互作用产生Y向和Z向的推力,由此可带动动子200在工作区域范围内进行六个自由度的运动,即X、Y、Z方向的平动以及绕X、Y、Z方向的转动。还应理解,各三相线圈组也可呈其他方式排布在动子200上。动子200上设置一个X向三相线圈组和一个Y向三相线圈组即可实现动子200沿X向、Y向、Z向的平动以及X向和Y向的转动,而再增加一个X向或Y向三相线圈组即可实现动子200的Z向转动。因此,为了实现六个自由度的运动,需要设置至少三个三相线圈组,其中包括至少一个X向线圈组和至少一个Y向线圈组。
如图1所示,在动子200上设有四个读数头:第一X向读数头401、第一Y向读数头402、第二X向读数头403、以及第二Y向读数头404,分别设置在动子200的四个顶点附近。但应理解,上述四个读头的位置并不限于此,只要能形成一个四边形即可。在动子200上相应地铺设有四个平面栅尺:第一X向平面栅尺301、第一Y向平面栅尺302、第二X向平面栅尺303以及第二Y向平面栅尺304。各平面栅尺可以是光栅,也可以是磁栅、电容性栅尺或者电涡流原理的栅尺。相应地,栅尺的迹线可由导光材料(即透明材料)、导磁材料或者导电材料制成。优选地,迹线由导电材料制成。较佳地,各平面栅尺在工作区域内不交叠,从而防止读数头通过光栅迹线读取的坐标值发生混淆。在所示实施例中,第一X向平面栅尺301和第二X向平面栅尺303分别位于工作区域的 一对对角区域,在所示附图中为左下角区域和右上角区域;而第一Y向平面栅尺302和第二Y向平面栅尺304位于工作区域的另一对对角区域,在所示附图中为左上角区域和右下角区域。相应地,在动子200运动期间,上述四个读数头分别在第一X向平面栅尺301、第一Y向平面栅尺302、第二X向平面栅尺303以及第二Y向平面栅尺304的平铺范围内移动,从而通过平面栅尺的迹线读取第一和第二X向读数头的X坐标以及第一和第二Y向读数头的Y坐标。通过四个读数头读取位移信号,并将位移信号反馈到控制器,由控制器提供控制信号,以控制动子200的X、Y方向的平动以及绕Z方向的转动。
尽管在所示实施例中,一共设有四个平面栅尺和四个读数头,但应理解,X向读数头和Y向读数头的数量并不限于此,可设置至少一个X向读数头和至少一个Y向读数头以及相应的至少一个X向平面栅尺和至少一个Y向平面栅尺。当仅设置一个X向读数头和一个Y向读数头时,根据从该两个读数头读取的坐标值,能够计算并控制动子200的X、Y方向的平动。而当再设置另一个X向读数头或另一个Y向读数头时,即可通过从三个读数头读取位移信号并将位移信号反馈到控制器,由控制器提供控制信号,以控制动子200的X、Y方向的平动以及绕Z方向的转动。还应理解,为了扩大动子200在工作区域内沿X向和Y向的运动行程,X向读数头和Y向读数头应间隔尽可能远,从而最大程度避免X向平面栅尺与Y向平面栅尺产生交叠。还应理解,动子200上读数头以及工作区域内平面栅尺的设置并不限于上述实施例,只要各读数头适当间隔开,且与各读数头对应的平面栅尺的铺设范围不小于动子200上各读数头的运动范围即可。
图2示出了动子200上设置三个读数头和两个平面栅尺30X和30Y的实施例,其中设有X向读数头40X以及第一Y向读数头302和第二Y向读数头304。其中第一Y向读数头302和第二Y向读数头304设置在动子200相邻的两个角部位置,在附图中为左上角和右上角,而X向读数头40X设置在与两个Y向读数头所在边缘相对的边缘中点处。相应地,X向平面栅尺30X设置在工作区域的下方,Y向平面栅尺30Y设置在工作区域的上方。但应理解,三个读数头的位置并不限于此。只要各读数头适当间隔开,以使对应的平面栅尺不交叠,且 对应的平面栅尺的平铺范围不小于动子200上各读数头的运动范围即可。该实施例中两个Y向读数头对应于一个Y向平面栅尺,但应理解,也可设置彼此间隔开的两个Y向平面栅尺。依此配置,3个读数头可以用于测量并控制动子200的三个自由度的运动,即X方向位移、Y方向位移、以及Z方向转动。
图1中所示磁体阵列10为二维Halbach阵列,其中多个N磁体、S磁体以及H磁体沿一XY平面以二维Halbach方式成排成周期排列。即,在相邻的N磁体与S磁体之间设有H磁体,H磁体的磁化方向指向N磁体。其中,相邻N磁体与S磁体的中心间距为τ,磁体N-H-S-H-N-H-S-H的排布方向与X方向的角度为α=π/4。
图3中示出了磁体阵列10的另一实施例的俯视图,与图1所示磁体阵列10的实施例相比,区别仅在于图2中的磁体阵列移除了图1中所示磁体阵列实施例中的H磁体。同样地,N磁体和S磁体沿一XY平面成排成列周期排列,N磁体和相邻S磁体之间间隔开,且相邻的N磁体与S磁体的中心间距为τ,磁体S-N-S-N的排布方向与X方向的角度为α=π/4。
图4中示出了磁体阵列10的又一实施例的俯视图。其中磁体阵列10包括第一磁体组10X和第二磁体组10Y,第一磁体组10X和第二磁体组10Y沿X向和Y向成排成列交替排列配置。第一磁体组10X包括沿Y方向以一维Halbach阵列依次排列的四个磁体:S磁体、H磁体、N磁体和H磁体,成S-H-N-H的排列,其中H磁体的磁化方向指向N磁体,相邻的N磁体与S磁体的中心间距为τ。第二磁体组10Y包括沿X方向以一维Halbach阵列依次排列的四个磁体:S磁体、H磁体、N磁体和H磁体,成S-H-N-H的排列,其中H磁体的磁化方向指向N磁体,相邻的N磁体与S磁体的中心间距为τ。即,第二磁体组10Y由第一磁体组10X在俯视图中沿XY平面逆时针转动90°而成。
图5中示出了磁体阵列10的再一实施例的俯视图。其中磁体阵列10包括沿X向和Y向成行成列周期排列的多个方形子阵列,该子阵列由第一磁体块101、第二磁体块102、第三磁体块103和第四磁体块104组成。在所示实施例中,第一磁体块101布置在子阵列的左上区域,第二磁体块102布置在子阵列的左下区域,第三磁体块103布置在子阵列的右下区域,第四磁体块104布置 在子阵列的右上区域。其中,第一磁体块101包括沿Y向依次排列的S磁体和H磁体,其中H磁体的磁化方向背离S磁体。第二磁体块102包括沿X向依次排列的S磁体和H磁体,其中H磁体的磁化方向背离S磁体。第三磁体块103包括沿Y向依次排列的N磁体和H磁体,H磁体的磁化方向指向N磁体。第四磁体块104包括沿X向依次排列的N磁体和H磁体,H磁体的磁化方向指向N磁体。其中第二磁体块102为第一磁体块101在俯视图中沿XY平面逆时针旋转90°而成。第四磁体块104为第三磁体块103在俯视图中沿XY平面逆时针旋转90°而成。第一磁体块101中的S磁体与第三磁体块103中的N磁体的Y向中心间距为τ,第二磁体块102中的S磁体与第四磁体块104中的N磁体的X向中心间距为τ。
尽管本说明书仅描述了磁体阵列10的上述四个实施例,但应理解,本发明的磁体阵列10可采用任何平面电机定子的、现有的或待开发的磁体阵列。
为了实现六个自由度的运动,在动子200上还设置有霍尔传感器阵列50。每个霍尔传感器阵列50可以通过测量磁体阵列10产生的磁场强度获得其在Z方向的位移,霍尔传感器可以按照测量X方向、Y方向或Z方向的磁场强度来配置,优选配置为测量Z方向磁场强度。通过设置不在同一条直线上的至少三个霍尔传感器阵列50来测量动子三个位置的Z方向位移,综合三个霍尔传感器阵列的输出信号,可以结算出动子200三个自由度的位移,即动子200沿Z向的平动、X向的转动以及Y向的转动。各霍尔传感器阵列50较佳地布置在同一平面上,且更佳地,与所述三相线圈组所在平面相比,霍尔传感器所在平面更加远离磁体阵列。
在图1所示实施例中,动子200包括4个霍尔传感器阵列50,4个霍尔传感器阵列50设置在动子200的外周且彼此均匀地间隔开。每个霍尔传感器阵列50均包括呈三角形分布的3个霍尔传感器,在所示实施例中,3个霍尔传感器位于一等腰直角三角形的顶点。等腰直角三角形的斜边沿X向或Y向延伸,该实施例中磁体阵列10中相邻N磁体与S磁体的中心间距为τ,则等腰直角三角形的直角边长为a,则
a=τ/2+nτ,n为不小于零的整数。
该布置的霍尔传感器阵列50可应用于磁体阵列10中的各磁体沿与X向的角度α=π/4成行成列排列的情况。例如,当采用图2所示磁体阵列10的实施例时,也可应用呈上述等腰直角三角形排布的霍尔传感器阵列50。
尽管上文仅描述了一种霍尔传感器阵列50的实施例,但应理解,霍尔传感器阵列50中的传感器数量和排布也可根据需要变化而不脱离本发明的范围。
多个霍尔传感器阵列信号和读数头信号反馈到控制器,控制器根据预设的控制算法计算出控制信号,并通过驱动器来控制线圈电流,从而产生运动台的6个自由度的位移。
根据本发明的平面电机位移装置,通过采用霍尔传感器阵列来代替电涡流位移传感器并采用平面栅尺和读数头来代替激光干涉仪,显著降低了平面电机位移装置的成本,并提高了运动控制精度。
以上已详细描述了本发明的较佳实施例,但应理解到,若需要,能修改实施例的方面来采用各种专利、申请和出版物的方面、特征和构思来提供另外的实施例。
考虑到上文的详细描述,能对实施例做出这些和其它变化。一般而言,在权利要求中,所用的术语不应被认为限制在说明书和权利要求中公开的具体实施例,而是应被理解为包括所有可能的实施例连同这些权利要求所享有的全部等同范围。

Claims (14)

  1. 一种平面电机位移装置,其特征在于,
    包括动子和定子,其中
    所述定子上设有在一个平面上延伸的磁体阵列,所述磁体阵列形成工作区域,所述定子上还平铺有至少一个第一方向平面栅尺和至少一个第二方向平面栅尺,所述至少一个第一方向平面栅尺的迹线彼此平行且沿第一方向间隔排列,所述至少一个第二方向平面栅尺的迹线彼此平行且沿第二方向间隔排列,所述第一方向和所述第二方向彼此相交;
    所述动子上设有第一方向三相线圈阵列和第二方向三相线圈阵列,并设置成能够在所述工作区域上方运动,且设有至少一个第一方向读数头和至少一个第二方向读数头,所述至少一个第一方向读数头和至少一个第二方向读数头随着所述动子的运动分别在所述至少一个第一方向平面栅尺和所述至少一个第二方向平面栅尺的平铺范围内移动。
  2. 根据权利要求1所述的平面电机位移装置,其特征在于,所述至少一个第一方向平面栅尺和/或所述至少一个第二方向平面栅尺的迹线由导电材料制成。
  3. 根据权利要求1所述的平面电机位移装置,其特征在于,所述第一方向和所述第二方向彼此正交,所述磁体阵列为二维Halbach阵列。
  4. 根据权利要求1所述的平面电机位移装置,其特征在于,所述至少一个第一方向读数头为至少两个第一方向读数头,或所述至少一个第二方向读数头为至少两个第二方向读数头。
  5. 根据权利要求1和4任一项所述的平面电机位移装置,其特征在于,所述至少一个第一方向读数头为位于所述工作台一对对角角部位置的两个第一方向读数头,所述至少一个第二方向读数头为位于所述工作台另一对对角角部位置的两个第二方向读数头。
  6. 根据权利要求1所述的平面电机位移装置,其特征在于,所述至少一个第一方向平面栅尺为覆盖所述工作区域相应一对对角区域的两个第一方向平面栅尺,和/或所述至少一个第二方向平面栅尺为覆盖所述工作区域相应另一对对角区域的两个第二方向平面栅尺,所述至少一个第一方向平面栅尺的迹线和所述至少一个第二方向平面栅尺的迹线等间距间隔排列。
  7. 根据权利要求1和4任一项所述的平面电机位移装置,其特征在于,所述至少一个第一方向读数头为位于所述工作台一条边缘上间隔开位置的两个第一方向读数头,所述至少一个第二方向读数头为位于所述工作台上与所述一条边缘相对边缘上的一个第二方向读数头。
  8. 根据权利要求7所述的平面电机位移装置,其特征在于,所述至少一个第一方向平面栅尺为覆盖所述工作区域相应一条边缘附近区域的至少一个第一方向平面栅尺,所述至少一个第二方向平面栅尺为覆盖所述工作区域相应一条边缘附近区域的一个第二方向平面栅尺。
  9. 根据权利要求1所述的平面电机位移装置,其特征在于,所述工作台上设有至少三个不在同一直线上的霍尔传感器阵列。
  10. 根据权利要求9所述的平面电机位移装置,其特征在于,所述霍尔传感器阵列包括不在同一直线上的三个霍尔传感器。
  11. 根据权利要求10所述的平面电机位移装置,其特征在于,所述三个霍尔传感器位于等腰直角三角形的顶点。
  12. 根据权利要求11所述的平面电机位移装置,其特征在于,所述等腰直角三角形的斜边沿所述第一方向或所述第二方向延伸。
  13. 根据权利要求11所述的平面电机位移装置,其特征在于,所述磁体阵列中相邻的N磁体与S磁体的中心间距为τ,所述等腰直角三角形的直角边长为a,则a=τ/2+nτ,n为不小于零的整数。
  14. 根据权利要求9所述的平面电机位移装置,其特征在于,所述位移装置包括4个所述霍尔传感器阵列,4个所述霍尔传感器阵列均匀间隔地配置在所述动子的外周。
PCT/CN2020/131730 2020-05-28 2020-11-26 平面电机位移装置 WO2021238119A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010468071.XA CN111564953A (zh) 2020-05-28 2020-05-28 平面电机位移装置
CN202010468071.X 2020-05-28

Publications (1)

Publication Number Publication Date
WO2021238119A1 true WO2021238119A1 (zh) 2021-12-02

Family

ID=72073919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131730 WO2021238119A1 (zh) 2020-05-28 2020-11-26 平面电机位移装置

Country Status (2)

Country Link
CN (1) CN111564953A (zh)
WO (1) WO2021238119A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111564953A (zh) * 2020-05-28 2020-08-21 复旦大学 平面电机位移装置
CN112054649A (zh) * 2020-09-18 2020-12-08 复旦大学 一种磁悬浮运动台

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101807010A (zh) * 2010-03-19 2010-08-18 清华大学 纳米精度六自由度磁浮微动台及应用
CN106430088A (zh) * 2016-08-30 2017-02-22 上海交通大学 一种大行程六自由度磁浮磁驱纳米定位平台
CN109951047A (zh) * 2019-04-09 2019-06-28 广东极迅精密仪器有限公司 一种基于机械导轨和平面电机的位移装置
CN209767305U (zh) * 2019-01-29 2019-12-10 广东极迅精密仪器有限公司 一种基于混合位移传感器和平面电机的位移装置
CN111564953A (zh) * 2020-05-28 2020-08-21 复旦大学 平面电机位移装置
CN211880280U (zh) * 2020-05-28 2020-11-06 复旦大学 平面电机位移装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101807010A (zh) * 2010-03-19 2010-08-18 清华大学 纳米精度六自由度磁浮微动台及应用
CN106430088A (zh) * 2016-08-30 2017-02-22 上海交通大学 一种大行程六自由度磁浮磁驱纳米定位平台
CN209767305U (zh) * 2019-01-29 2019-12-10 广东极迅精密仪器有限公司 一种基于混合位移传感器和平面电机的位移装置
CN109951047A (zh) * 2019-04-09 2019-06-28 广东极迅精密仪器有限公司 一种基于机械导轨和平面电机的位移装置
CN111564953A (zh) * 2020-05-28 2020-08-21 复旦大学 平面电机位移装置
CN211880280U (zh) * 2020-05-28 2020-11-06 复旦大学 平面电机位移装置

Also Published As

Publication number Publication date
CN111564953A (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
WO2021238119A1 (zh) 平面电机位移装置
US5334892A (en) Positioning device for planar positioning
CN103208867B (zh) 磁铁单元、磁铁阵列、磁浮平面电机及应用该磁浮平面电机的光刻装置
CN101828149B (zh) 具有精密位置测量的移位装置
Li et al. A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage
WO2005090902A1 (ja) ステージ装置
CN102097982B (zh) 一种永磁同步磁悬浮平面电机
WO2016000496A1 (zh) 一种基于平面光栅的硅片台大行程运动测量系统
US6949845B2 (en) Planar motor
CN106393070B (zh) 一种反对称并联直驱运动解耦高精度伺服平台
CN102661723A (zh) 六轴数控激光快捷三维测量仪
JP2007185086A (ja) 磁気浮上方式の広域ステージ装置
CN102375343A (zh) 一种工作台位置测量系统
JP4050459B2 (ja) 2つの対象物の位置を検出するための装置
CN103543613A (zh) 一种动铁式无线缆的六自由度磁浮运动平台
KR20040080359A (ko) 이동식 갠트리 위치 측정 장치
CN211880280U (zh) 平面电机位移装置
CN103512493B (zh) 位置测量装置
CN109328323A (zh) 半导体装置定位系统和用于半导体装置定位的方法
CN117055298A (zh) 一种量测机台
JP2003022959A (ja) ステージ装置
US20080011117A1 (en) Xy planar system with a vertically decoupled x axis and y axis
Gloess et al. Magnetic levitation stages for planar and linear scan application with nanometer resolution
CN101067726A (zh) 精密加工设备的提高重复精度的工件台结构及方法
CN103197510A (zh) 一种掩膜台垂直运动分量的测量装置与方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938454

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20938454

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20938454

Country of ref document: EP

Kind code of ref document: A1