WO2021237586A1 - Managing beamforming for device-to-device communications - Google Patents

Managing beamforming for device-to-device communications Download PDF

Info

Publication number
WO2021237586A1
WO2021237586A1 PCT/CN2020/092982 CN2020092982W WO2021237586A1 WO 2021237586 A1 WO2021237586 A1 WO 2021237586A1 CN 2020092982 W CN2020092982 W CN 2020092982W WO 2021237586 A1 WO2021237586 A1 WO 2021237586A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless device
movement information
movement
processor
device based
Prior art date
Application number
PCT/CN2020/092982
Other languages
French (fr)
Inventor
Nan Zhang
Wenkai YAO
Yongjun XU
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/092982 priority Critical patent/WO2021237586A1/en
Publication of WO2021237586A1 publication Critical patent/WO2021237586A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • H04W4/027Services making use of location information using location based information parameters using movement velocity, acceleration information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • wireless devices of many different makes and classes may be configured to perform direct device-to-device communications via a “sidelink” communication path.
  • Sidelink communications may be conducted without the support of a communication network, referred to as Mode 2 operation.
  • NR systems may use higher frequency bands, such as millimeter wave frequencies, to provide high data rate communication services.
  • the frequency bands used to provide NR services are susceptible to rapid channel variations and suffer from free-space pathloss and atmospheric absorption.
  • NR devices such as wireless device, base stations, etc.
  • Wireless devices may also use beamforming techniques for communication links between two user wireless devices.
  • beams are highly sensitive to the antenna alignment of one or both devices (i.e., of the transmitter and/or the receiver) , a change in orientation of either or both devices may cause beam failure.
  • Various aspects include systems and methods for managing beamforming for device-to-device (D2D) communications that may be performed by a processor of a wireless device.
  • Various aspects may include determining movement information of the wireless device based on data from one or more movement sensors of the wireless device, and performing beamforming operations with a second wireless device based on the movement information.
  • D2D device-to-device
  • performing beamforming operations with a second wireless device based on the movement information may include sending the movement information to a second wireless device. Such aspects may further include negotiating a beam parameter with the second wireless device based on the movement information sent to the second wireless device. In such aspects, sending the movement information to the second wireless device may include sending raw sensor data received from the one or more movement sensors of the wireless device to the second wireless device.
  • the one or more movement sensors may include a gyroscope and the movement information may include rotational movement information.
  • the one or more sensors may include an accelerometer and the movement information may include an acceleration of the wireless device.
  • Some aspects may further include determining whether the movement information exceeds a movement threshold.
  • performing beamforming operations with the second wireless device based on the movement information may include performing the beamforming operations with the second wireless device based on the movement information in response to determining that the movement information of the wireless device exceeds the movement threshold.
  • performing beamforming operations with the second wireless device based on the movement information may include changing a beam configuration of the wireless device based on the movement information in response to determining that the movement information of the wireless device exceeds the movement threshold.
  • Various aspects may further include receiving movement information from the second wireless device, and performing beamforming operations with the second wireless device based at least in part on the movement information received from the second wireless device.
  • Further aspects may include a wireless device having a processor configured to perform one or more operations of the methods summarized above. Further aspects may include a non-transitory processor-readable storage medium having stored thereon processor-executable instructions configured to cause a processor of a wireless device to perform operations of the methods summarized above. Further aspects include a wireless device having means for performing functions of the methods summarized above. Further aspects include a system on chip for use in a wireless device that includes a processor configured to perform one or more operations of the methods summarized above. Further aspects include a system in a package that includes two systems on chip for use in a wireless device that includes a processor configured to perform one or more operations of the methods summarized above.
  • FIG. 1 is a system block diagram illustrating an example communication system suitable for implementing any of the various embodiments.
  • FIG. 2 is a component block diagram illustrating an example computing and wireless modem system suitable for implementing any of the various embodiments.
  • FIG. 3 is a component block diagram illustrating a software architecture including a radio protocol stack for the user and control planes in wireless communications suitable for implementing any of the various embodiments.
  • FIG. 4 is a component block diagram illustrating a system configured for sidelink communications in accordance with various embodiments.
  • FIG. 5 is a process flow diagram illustrating a method of managing beamforming for device-to-device (D2D) communications according to various embodiments.
  • D2D device-to-device
  • FIGS. 6A, 6B, 6C, and 6D are process flow diagrams illustrating operations that may be performed by a processor of a wireless device as part of a method of managing beamforming for D2D communications according to various embodiments.
  • FIG. 7 is a component block diagram of a wireless device suitable for use with various embodiments.
  • Various embodiments include systems and methods for supporting sidelink communications between two or more wireless devices by providing capabilities for performing beamforming reconfiguration operations in response movements to of one or both of the wireless devices communications as detected by movement sensors within the wireless device.
  • Performing beamforming operations in response to detected motion of either wireless device may provide more reliable side link communication links by anticipating the need to reconfigure beams based on the detected motion and enabling a D2D communication beam to be reconfigured before device motion leads to beam failure.
  • wireless device is used herein to refer to any one or all of cellular telephones, smartphones, wireless communication elements within autonomous and semiautonomous vehicles, intelligent highway computing devices including road side units, highway sensors, portable computing devices, laptop computers, tablet computers, multimedia Internet-enabled cellular telephones, medical devices and equipment, biometric sensors/devices, wearable devices, wireless-network enabled Internet of Things (IoT) devices including smart meters/sensors, industrial manufacturing equipment, large and small machinery and appliances for home or enterprise use, wireless devices affixed to or incorporated into various mobile platforms, global positioning system devices, and similar electronic devices that include a memory, wireless communication components and a programmable processor.
  • intelligent highway computing devices including road side units, highway sensors, portable computing devices, laptop computers, tablet computers, multimedia Internet-enabled cellular telephones, medical devices and equipment, biometric sensors/devices, wearable devices, wireless-network enabled Internet of Things (IoT) devices including smart meters/sensors, industrial manufacturing equipment, large and small machinery and appliances for home or enterprise use, wireless devices a
  • SOC system on chip
  • a single SOC may contain circuitry for digital, analog, mixed-signal, and radio-frequency functions.
  • a single SOC may also include any number of general purpose and/or specialized processors (digital signal processors, modem processors, video processors, etc. ) , memory blocks (e.g., ROM, RAM, Flash, etc. ) , and resources (e.g., timers, voltage regulators, oscillators, etc. ) .
  • SOCs may also include software for controlling the integrated resources and processors, as well as for controlling peripheral devices.
  • SIP system in a package
  • a SIP may include a single substrate on which multiple IC chips or semiconductor dies are stacked in a vertical configuration.
  • the SIP may include one or more multi-chip modules (MCMs) on which multiple ICs or semiconductor dies are packaged into a unifying substrate.
  • MCMs multi-chip modules
  • a SIP may also include multiple independent SOCs coupled together via high speed communication circuitry and packaged in close proximity, such as on a single motherboard or in a single wireless device. The proximity of the SOCs facilitates high speed communications and the sharing of memory and resources.
  • Many wireless devices may be configured to perform direct device-to-device (D2D) communications via a sidelink communication path.
  • Mode 2 operation may enable D2D sidelink communications without the support of a communication network.
  • Allocation of sidelink communication resources (i.e., time slots and frequency channels) used to transmit sidelink messages is reservation-based.
  • Sidelink resources may be allocated in units of sub-channels in the frequency domain, and may be limited to one slot in the time domain.
  • a wireless device may identify candidate resources by detecting the presence and measuring the strength of a wireless signal, excluding occupied resources (i.e., subchannels in which wireless signals are detected with a strength exceeding a threshold) , and selecting candidate resource from available resources (i.e., sideline communication resources that have not been reserved by another wireless device) .
  • Wireless devices may be configured to use beamforming techniques to improve communication bandwidth for D2D communications.
  • a wireless device may be configured to perform beamforming on its own, or in coordination with a second wireless device using a handshake procedure through which two wireless devices may negotiate communication beam parameter (s) .
  • Communication links using formed beams are sensitive to movement by either or both wireless device, and changes in location, position, or orientation may degrade a beam or cause beam failure.
  • Wireless devices may be configured to perform a beam failure recovery (BFR) procedure, but the BFR procedure is triggered after a beam failure has been detected, and is a relatively slow and inaccurate process that may lead to significant disruption in communications, and even loss of a communication session, between two wireless devices.
  • BFR beam failure recovery
  • a wireless device may detect movement of the wireless device using one or more movement sensors (e.g., accelerometers, gyroscopes, etc. ) of the wireless device, and use the detected movement information in beamforming operations.
  • the wireless device may determine movement information of the wireless device based on data from one or more movement sensors of the wireless device, and perform beamforming operations with a second wireless device in response to movement information, either based on own sensor information or in response to beamforming negotiations with the second wireless device.
  • the movement information may include rotational movement information received from one or more gyroscopes of the wireless device, acceleration information received from one or more accelerometers of the wireless device, and/or any other movement information from any type of wireless device sensor (e.g., shifts in sensed magnetic fields by an electronic compass, Doppler shift information from a wireless transceiver, etc. ) .
  • any type of wireless device sensor e.g., shifts in sensed magnetic fields by an electronic compass, Doppler shift information from a wireless transceiver, etc.
  • the wireless device may send the determined movement information to a second wireless device and may negotiate one or more beam parameters with the second wireless device based on the movement information sent to the second wireless device.
  • the wireless device may send the movement information to the second wireless device via a sidelink communication message, such as a sidelink control message or a sidelink data message.
  • the wireless device may send raw sensor data received from the one or more movement sensors to the second wireless device.
  • Raw sensor data is an unprocessed signal or information produced by a sensor, such as the output of a gyroscope or the output of one or more accelerometers.
  • Raw sensor data may be a relatively small amount of information that may be input into a beamforming algorithm or other process executing in a processor of the second wireless device.
  • the raw sensor data may be transmitted in a relatively small message or other form to the second wireless device.
  • the wireless device may determine whether the movement information exceeds a movement threshold. For example, the wireless device may send the movement information to the second wireless device and/or use the movement information in the beamforming procedure in response to determining that the movement information exceeds a movement threshold. In some embodiments, the wireless device may compare each sensor output (e.g., acceleration, rotational motion, etc. ) to a respective threshold (e.g., an acceleration threshold, a rotational motion threshold, etc. ) . In some embodiments, the wireless device may perform beamforming operations with the second wireless device based on the movement information in response to determining that the movement information of the wireless device exceeds the movement threshold. In some embodiments, the wireless device may change a beam configuration of the first wireless device based on the movement information in response to determining that the movement information of the wireless device exceeds the movement threshold.
  • each sensor output e.g., acceleration, rotational motion, etc.
  • a respective threshold e.g., an acceleration threshold, a rotational motion threshold, etc.
  • the wireless device may
  • the wireless device may be configured to perform beamforming operations in response to receiving movement information from the second wireless device.
  • the wireless device may be stationary when it receives movement information from the second wireless device, in which case the wireless device processor may responded by selecting a beam configuration that is likely to have better or consistent wireless communications with the second wireless device in view of the motion of the second wireless device.
  • both wireless devices may be moving, in which case the processors of the two wireless devices may perform beamforming operations responsive to movement information detected by movement sensors in both wireless devices.
  • FIG. 1 is a system block diagram illustrating an example communication system 100 suitable for implementing any of the various embodiments.
  • the communications system 100 may be an 5G New Radio (NR) network, or any other suitable network such as Long Term Evolution (LTE) network.
  • NR 5G New Radio
  • LTE Long Term Evolution
  • the communications system 100 may include a heterogeneous network architecture that includes a core network 140 and a variety of wireless devices (illustrated as mobile devices 120a-120e) .
  • the communications system 100 may also include a number of base stations (illustrated as the BS 110a, the BS 110b, the BS 110c, and the BS 110d) and other network entities.
  • a base station is an entity that communicates with wireless devices (mobile devices) , and also may be referred to as an NodeB, a Node B, an LTE evolved nodeB (eNB) , an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio base station (NR BS) , a 5G NodeB (NB) , a Next Generation NodeB (gNB) , or the like.
  • Each base station may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a base station, a base station subsystem serving this coverage area, or a combination thereof, depending on the context in which the term is used.
  • a base station 110a-110d may provide communication coverage for a macro cell, a pico cell, a femto cell, another type of cell, or a combination thereof.
  • a macro cell may cover a relatively large geographic area (for example, several kilometers in radius) and may allow unrestricted access by wireless devices with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by wireless devices with service subscription.
  • a femto cell may cover a relatively small geographic area (for example, a home) and may allow restricted access by wireless devices having association with the femto cell (for example, wireless devices in a closed subscriber group (CSG) ) .
  • a base station for a macro cell may be referred to as a macro BS.
  • a base station for a pico cell may be referred to as a pico BS.
  • a base station for a femto cell may be referred to as a femto BS or a home BS.
  • a base station 110a may be a macro BS for a macro cell 102a
  • a base station 110b may be a pico BS for a pico cell 102b
  • a base station 110c may be a femto BS for a femto cell 102c.
  • a base station 110a-110d may support one or multiple (for example, three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not be stationary, and the geographic area of the cell may move according to the location of a mobile base station.
  • the base stations 110a-110d may be interconnected to one another as well as to one or more other base stations or network nodes (not illustrated) in the communications system 100 through various types of backhaul interfaces, such as a direct physical connection, a virtual network, or a combination thereof using any suitable transport network
  • the base station 110a-110d may communicate with the core network 140 over a wired or wireless communication link 126.
  • the wireless device 120a-120e may communicate with the base station 110a-110d over a wireless communication link 122.
  • the wired communication link 126 may use a variety of wired networks (e.g., Ethernet, TV cable, telephony, fiber optic and other forms of physical network connections) that may use one or more wired communication protocols, such as Ethernet, Point-To-Point protocol, High-Level Data Link Control (HDLC) , Advanced Data Communication Control Protocol (ADCCP) , and Transmission Control Protocol/Internet Protocol (TCP/IP) .
  • wired networks e.g., Ethernet, TV cable, telephony, fiber optic and other forms of physical network connections
  • wired communication protocols such as Ethernet, Point-To-Point protocol, High-Level Data Link Control (HDLC) , Advanced Data Communication Control Protocol (ADCCP) , and Transmission Control Protocol/Internet Protocol (TCP/IP) .
  • HDMI High-Level Data Link Control
  • ADCCP Advanced Data Communication Control Protocol
  • TCP/IP Transmission Control Protocol/Internet Protocol
  • the communications system 100 also may include relay stations (e.g., relay BS 110d) .
  • a relay station is an entity that can receive a transmission of data from an upstream station (for example, a base station or a wireless device) and transmit the data to a downstream station (for example, a wireless device or a base station) .
  • a relay station also may be a wireless device that can relay transmissions for other wireless devices.
  • a relay station 110d may communicate with macro the base station 110a and the wireless device 120d in order to facilitate communications between the base station 110a and the wireless device 120d.
  • a relay station also may be referred to as a relay base station, a relay base station, a relay, etc.
  • the communications system 100 may be a heterogeneous network that includes base stations of different types, for example, macro base stations, pico base stations, femto base stations, relay base stations, etc. These different types of base stations may have different transmit power levels, different coverage areas, and different impacts on interference in communications system 100. For example, macro base stations may have a high transmit power level (for example, 5 to 40 watts) whereas pico base stations, femto base stations, and relay base stations may have lower transmit power levels (for example, 0.1 to 2 watts) .
  • a network controller 130 may couple to a set of base stations and may provide coordination and control for these base stations.
  • the network controller 130 may communicate with the base stations via a backhaul.
  • the base stations also may communicate with one another, for example, directly or indirectly via a wireless or wireline backhaul.
  • the wireless devices 120a-1203 may be dispersed throughout communications system 100, and each wireless device may be stationary or mobile.
  • a macro base station 110a may communicate with the communication network 140 over a wired or wireless communication link 126.
  • the wireless devices 120a, 120b, 120c may communicate with a base station 110a-110d over a wireless communication link 122.
  • the wireless communication links 122, 124 may include a plurality of carrier signals, frequencies, or frequency bands, each of which may include a plurality of logical channels.
  • the wireless communication links 122 and 124 may utilize one or more radio access technologies (RATs) .
  • RATs radio access technologies
  • Examples of RATs that may be used in a wireless communication link include 3GPP LTE, 3G, 4G, 5G (e.g., NR) , GSM, Code Division Multiple Access (CDMA) , Wideband Code Division Multiple Access (WCDMA) , Worldwide Interoperability for Microwave Access (WiMAX) , Time Division Multiple Access (TDMA) , and other mobile telephony communication technologies cellular RATs.
  • RATs that may be used in one or more of the various wireless communication links 122, 124 within the communication system 100 include medium range protocols such as Wi-Fi, LTE-U, LTE-Direct, LAA, MuLTEfire, and relatively short range RATs such as ZigBee, Bluetooth, and Bluetooth Low Energy (LE) .
  • medium range protocols such as Wi-Fi, LTE-U, LTE-Direct, LAA, MuLTEfire
  • relatively short range RATs such as ZigBee, Bluetooth, and Bluetooth Low Energy (LE) .
  • Certain wireless networks utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink.
  • OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc.
  • K orthogonal subcarriers
  • Each subcarrier may be modulated with data.
  • modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM.
  • the spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth.
  • the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (called a “resource block” ) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal Fast File Transfer (FFT) size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10 or 20 megahertz (MHz) , respectively.
  • the system bandwidth may also be partitioned into subbands. For example, a subband may cover 1.08 MHz (i.e., 6 resource blocks) , and there may be 1, 2, 4, 8 or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
  • NR new radio
  • 5G 5G network
  • NR may utilize OFDM with a cyclic prefix (CP) on the uplink (UL) and downlink (DL) and include support for half-duplex operation using time division duplex (TDD) .
  • CP cyclic prefix
  • TDD time division duplex
  • a single component carrier bandwidth of 100 MHz may be supported.
  • NR resource blocks may span 12 sub-carriers with a sub-carrier bandwidth of 75 kHz over a 0.1 millisecond (ms) duration.
  • Each radio frame may consist of 50 subframes with a length of 10 ms. Consequently, each subframe may have a length of 0.2 ms.
  • Each subframe may indicate a link direction (i.e., DL or UL) for data transmission and the link direction for each subframe may be dynamically switched.
  • Each subframe may include DL/UL data as well as DL/UL control data.
  • Beamforming may be supported and beam direction may be dynamically configured.
  • Multiple Input Multiple Output (MIMO) transmissions with precoding may also be supported.
  • MIMO configurations in the DL may support up to eight transmit antennas with multi-layer DL transmissions up to eight streams and up to two streams per wireless device. Multi-layer transmissions with up to two streams per wireless device may be supported. Aggregation of multiple cells may be supported with up to eight serving cells.
  • NR may support a different air interface, other than an OFDM-based air interface.
  • Some wireless devices may be considered machine-type communications (MTC) or evolved or enhanced machine-type communications (eMTC) wireless devices.
  • MTC and eMTC wireless devices include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a base station, another device (for example, remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (for example, a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some wireless devices may be considered Internet-of-Things (IoT) devices or may be implemented as NB-IoT (narrowband internet of things) devices.
  • a wireless device 120a-120e may be included inside a housing that houses components of the wireless device, such as processor components, memory components, similar components, or a combination thereof.
  • any number of communication systems and any number of wireless networks may be deployed in a given geographic area.
  • Each communications system and wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies.
  • RAT also may be referred to as a radio technology, an air interface, etc.
  • a frequency also may be referred to as a carrier, a frequency channel, etc.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between communications systems of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more wireless devices 120a-120e may communicate directly using one or more sidelink channels 124.
  • Sidelink channels 124 enable communications without using a base station 110a-110d as an intermediary to communicate with one another.
  • the wireless devices 120a-120e may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, vehicle-to-pedestrian (V2P) , or similar protocol) , a mesh network, or similar networks, or combinations thereof.
  • V2X vehicle-to-everything
  • processors in the wireless device 120a-120e may perform scheduling operations, resource selection operations, as well as other operations described elsewhere herein as being performed by the base station 110a.
  • FIG. 2 is a component block diagram illustrating an example computing system 200 suitable for implementing any of the various embodiments.
  • Various embodiments may be implemented on a number of single processor and multiprocessor computer systems, including a system-on-chip (SOC) or system in a package (SIP) .
  • SOC system-on-chip
  • SIP system in a package
  • the illustrated example SIP 200 includes a two SOCs 202, 204 coupled to a clock 206, a voltage regulator 208 and a wireless transceiver 264.
  • the two SOCs 202, 204 may also be coupled to one or more movement sensors 262, such as an accelerometer, a gyroscope, and any other sensor configured to detection a motion or movement of a wireless device.
  • the first SOC 202 operate as central processing unit (CPU) of the wireless device that carries out the instructions of software application programs by performing the arithmetic, logical, control and input/output (I/O) operations specified by the instructions.
  • the second SOC 204 may operate as a specialized processing unit.
  • the second SOC 204 may operate as a specialized 5G processing unit responsible for managing high volume, high speed (e.g., 5 Gbps, etc. ) , and/or very high frequency short wave length (e.g., 28 GHz mmWave spectrum, etc. ) communications.
  • high speed e.g., 5 Gbps, etc.
  • very high frequency short wave length e.g., 28 GHz mmWave spectrum, etc.
  • the first SOC 202 may include a digital signal processor (DSP) 210, a modem processor 212, a graphics processor 214, an application processor 216, one or more coprocessors 218 (e.g., vector co-processor) connected to one or more of the processors, memory 220, custom circuity 222, system components and resources 224, an interconnection/bus module 226, one or more temperature sensors 230, a thermal management unit 232, and a thermal power envelope (TPE) component 234.
  • DSP digital signal processor
  • modem processor 212 e.g., a graphics processor 214
  • an application processor 216 e.g., one or more coprocessors 218 (e.g., vector co-processor) connected to one or more of the processors, memory 220, custom circuity 222, system components and resources 224, an interconnection/bus module 226, one or more temperature sensors 230, a thermal management unit 232, and a thermal power envelope (TPE) component 234.
  • TPE
  • the second SOC 204 may include a 5G modem processor 252, a power management unit 254, an interconnection/bus module 264, a plurality of mmWave transceivers 256, memory 258, and various additional processors 260, such as an applications processor, packet processor, etc.
  • Each processor 210, 212, 214, 216, 218, 252, 260 may include one or more cores, and each processor/core may perform operations independent of the other processors/cores.
  • the first SOC 202 may include a processor that executes a first type of operating system (e.g., FreeBSD, LINUX, OS X, etc. ) and a processor that executes a second type of operating system (e.g., MICROSOFT WINDOWS 10) .
  • a first type of operating system e.g., FreeBSD, LINUX, OS X, etc.
  • a second type of operating system e.g., MICROSOFT WINDOWS 10.
  • processors 210, 212, 214, 216, 218, 252, 260 may be included as part of a processor cluster architecture (e.g., a synchronous processor cluster architecture, an asynchronous or heterogeneous processor cluster architecture, etc. ) .
  • a processor cluster architecture e.g., a synchronous processor cluster architecture, an asynchronous or heterogeneous processor cluster architecture, etc.
  • the first and second SOC 202, 204 may include various system components, resources and custom circuitry for managing sensor data, analog-to-digital conversions, wireless data transmissions, and for performing other specialized operations, such as decoding data packets and processing encoded audio and video signals for rendering in a web browser.
  • the system components and resources 224 of the first SOC 202 may include power amplifiers, voltage regulators, oscillators, phase-locked loops, peripheral bridges, data controllers, memory controllers, system controllers, access ports, timers, and other similar components used to support the processors and software clients running on a wireless device.
  • the system components and resources 224 and/or custom circuitry 222 may also include circuitry to interface with peripheral devices, such as cameras, electronic displays, wireless communication devices, external memory chips, etc.
  • the first and second SOC 202, 204 may communicate via interconnection/bus module 250.
  • the various processors 210, 212, 214, 216, 218, may be interconnected to one or more memory elements 220, system components and resources 224, and custom circuitry 222, and a thermal management unit 232 via an interconnection/bus module 226.
  • the processor 252 may be interconnected to the power management unit 254, the mmWave transceivers 256, memory 258, and various additional processors 260 via the interconnection/bus module 264.
  • the interconnection/bus module 226, 250, 264 may include an array of reconfigurable logic gates and/or implement a bus architecture (e.g., CoreConnect, AMBA, etc. ) . Communications may be provided by advanced interconnects, such as high-performance networks-on chip (NoCs) .
  • NoCs high-performance networks-on chip
  • the first and/or second SOCs 202, 204 may further include an input/output module (not illustrated) for communicating with resources external to the SOC, such as a clock 206 and a voltage regulator 208.
  • resources external to the SOC e.g., clock 206, voltage regulator 208 may be shared by two or more of the internal SOC processors/cores.
  • various embodiments may be implemented in a wide variety of computing systems, which may include a single processor, multiple processors, multicore processors, or any combination thereof.
  • FIG. 3 is a component block diagram illustrating a software architecture 300 including a radio protocol stack for the user and control planes in wireless communications suitable for implementing any of the various embodiments.
  • the wireless device 320 may implement the software architecture 300 to facilitate communications between the wireless device 320 (e.g., the wireless device 120a-120e, 200) and a second wireless device 350 (e.g., the wireless device 120a-120e, 200) of a communication system (e.g., 100) .
  • layers in the software architecture 300 may form logical connections with corresponding layers in software of the second wireless device 350.
  • the software architecture 300 may be distributed among one or more processors (e.g., the processors 212, 214, 216, 218, 252, 260) . While illustrated with respect to one radio protocol stack, in a multi-SIM (subscriber identity module) wireless device, the software architecture 300 may include multiple protocol stacks, each of which may be associated with a different SIM (e.g., two protocol stacks associated with two SIMs, respectively, in a dual-SIM wireless communication device) . While described below with reference to LTE communication layers, the software architecture 300 may support any of variety of standards and protocols for wireless communications, and/or may include additional protocol stacks that support any of variety of standards and protocols wireless communications.
  • processors e.g., the processors 212, 214, 216, 218, 252, 260
  • the software architecture 300 may include multiple protocol stacks, each of which may be associated with a different SIM (e.g., two protocol stacks associated with two SIMs, respectively, in a dual-SIM wireless communication device) . While described
  • the software architecture 300 may include a Non-Access Stratum (NAS) 302 and an Access Stratum (AS) 304.
  • the NAS 302 may include functions and protocols to support packet filtering, security management, mobility control, session management, and traffic and signaling between a SIM (s) of the wireless device (e.g., SIM (s) 204) and its core network 140.
  • the AS 304 may include functions and protocols that support communications between a SIM (s) (e.g., SIM (s) 204) and entities of supported access networks (e.g., a base station) .
  • the AS 304 may include at least three layers (Layer 1, Layer 2, and Layer 3) , each of which may contain various sub-layers.
  • Layer 1 (L1) of the AS 304 may be a physical layer (PHY) 306, which may oversee functions that enable transmission and/or reception over the air interface.
  • PHY physical layer
  • Examples of such physical layer 306 functions may include cyclic redundancy check (CRC) attachment, coding blocks, scrambling and descrambling, modulation and demodulation, signal measurements, MIMO, etc.
  • the physical layer may include various logical channels, including a Physical Downlink Control Channel (PDCCH) and a Physical Downlink Shared Channel (PDSCH) , or sidelink channels such as a Physical Sidelink Control Channel (PSCCH) and a Physical Sidelink Shared Channel (PSSCH) .
  • PDCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • Layer 2 (L2) of the AS 304 may be responsible for the link between the wireless device 320 and the second wireless device 350 over the physical layer 306.
  • Layer 2 may include a media access control (MAC) sublayer 308, a radio link control (RLC) sublayer 310, and a packet data convergence protocol (PDCP) 312 sublayer, each of which form logical connections terminating at the second wireless device 350.
  • MAC media access control
  • RLC radio link control
  • PDCP packet data convergence protocol
  • Layer 3 (L3) of the AS 304 may include a radio resource control (RRC) sublayer 3.
  • RRC radio resource control
  • the software architecture 300 may include additional Layer 3 sublayers, as well as various upper layers above Layer 3.
  • the RRC sublayer 313 may provide functions including broadcasting system information, paging, and establishing and releasing an RRC signaling connection between the wireless device 320 and the second wireless device 350.
  • the PDCP sublayer 312 may provide uplink functions including multiplexing between different radio bearers and logical channels, sequence number addition, handover data handling, integrity protection, ciphering, and header compression.
  • the PDCP sublayer 312 may provide functions that include in-sequence delivery of data packets, duplicate data packet detection, integrity validation, deciphering, and header decompression.
  • the RLC sublayer 310 may provide segmentation and concatenation of upper layer data packets, retransmission of lost data packets, and Automatic Repeat Request (ARQ) .
  • ARQ Automatic Repeat Request
  • the RLC sublayer 310 functions may include reordering of data packets to compensate for out-of-order reception, reassembly of upper layer data packets, and ARQ.
  • MAC sublayer 308 may provide functions including multiplexing between logical and transport channels, random access procedure, logical channel priority, and hybrid-ARQ (HARQ) operations.
  • the MAC layer functions may include channel mapping within a cell, de-multiplexing, discontinuous reception (DRX) , and HARQ operations.
  • the software architecture 300 may provide functions to transmit data through physical media
  • the software architecture 300 may further include at least one host layer 314 to provide data transfer services to various applications in the wireless device 320.
  • application-specific functions provided by the at least one host layer 314 may provide an interface between the software architecture and the general purpose processor 206.
  • the software architecture 300 may include one or more higher logical layer (e.g., transport, session, presentation, application, etc. ) that provide host layer functions.
  • the software architecture 300 may include a network layer (e.g., the Internet protocol (IP) layer) in which a logical connection terminates at a packet data network (PDN) gateway (PGW) .
  • the software architecture 300 may include an application layer in which a logical connection terminates at another device (e.g., end user device, server, etc. ) .
  • the software architecture 300 may further include in the AS 304 a hardware interface 316 between the physical layer 306 and the communication hardware (e.g., one or more radio frequency (RF) transceivers) .
  • RF radio frequency
  • FIG. 4 is a component block diagram illustrating a system 400 configured for sidelink communications in accordance with various embodiments.
  • system 400 may include a wireless device 402 and/or one or more other wireless devices 404.
  • examples of the wireless device 402 and 404 may include the wireless device 120a-120e, 200, 320) .
  • the wireless device 402 and 404 may communicate over a wireless sidelink communication link (e.g., 124) .
  • the wireless device may also communicate via a wireless network 100 as described.
  • Wireless device 402 may include a processor 420 coupled to movement sensors 262, a wireless transceiver 264, and configured by machine-readable instructions 406 that may be stored in electronic storage 418.
  • Machine-readable instructions 406 may include one or more instruction modules.
  • the instruction modules may include computer program modules.
  • the instruction modules may include one or more of a sensor information determining module 408, a threshold comparison module 410, a beamforming control module 412, a beam parameter negotiation module 414, a transmit/receive (Tx/Rx) module 416, and/or other instruction modules.
  • the sensor information determining module 408 may be configured to determine movement information of the wireless device based on data from one or more movement sensors of the wireless device.
  • the one or more movement sensors may include a gyroscope and the movement information may include rotational movement information.
  • the one or more sensors may include an accelerometer and the movement information may include an acceleration of the wireless device.
  • the threshold comparison module 410 may be configured to determine whether the movement information exceeds a movement threshold.
  • the beamforming control module 412 may be configured to perform beamforming operations with a second wireless device based on the movement information determined by the sensor information determining module 408. In some embodiments, the beamforming control module 412 may be configured to perform the beamforming operations with the second wireless device based on the movement information in response to determining that the movement information of the wireless device exceeds the movement threshold. In some embodiments, the beamforming control module 412 may be configured to change a beam configuration of the first wireless device based on the movement information in response to determining that the movement information of the wireless device exceeds the movement threshold.
  • the beam parameter negotiation module 414 may be configured to negotiate a beam parameter with the second wireless device based on the movement information sent to the second wireless device.
  • the Tx/Rx module 416 may be configured to perform operations related to wireless communication with a second wireless device. In some embodiments, the Tx/Rx module 416 may be configured to send the movement information to a second wireless device. In some embodiments, the Tx/Rx module 416 may be configured to send raw sensor data received from the one or more movement sensors of the wireless device to the second wireless device.
  • the wireless device 402 may include an electronic storage 418, one or more processors 420, and other components.
  • the wireless device 402 may include communication lines, or ports to enable the exchange of information with a network and/or other computing platforms.
  • the illustration of the wireless device 402 in FIG. 4 is not intended to be limiting.
  • the wireless device 402 may include a plurality of hardware, software, and/or firmware components operating together to provide the functionality attributed herein to the wireless device 402.
  • the electronic storage 418 may comprise non-transitory storage media that electronically stores information.
  • the electronic storage media of the electronic storage 418 may include one or both of system storage that is provided integrally (i.e., substantially non-removable) with wireless device 402 and/or removable storage that is removably connectable to wireless device 402 via, for example, a port (e.g., a universal serial bus (USB) port, a firewire port, etc. ) or a drive (e.g., a disk drive, etc. ) .
  • the electronic storage 418 may include one or more of optically readable storage media (e.g., optical disks, etc.
  • Electronic storage 418 may include one or more virtual storage resources (e.g., cloud storage, a virtual private network, and/or other virtual storage resources) .
  • the electronic storage 418 may store software algorithms, information determined by processor (s) 420, information received from wireless device 402, or other information that enables the wireless device 402 to function as described herein.
  • Processor (s) 420 may be configured to provide information processing capabilities in the wireless device 402.
  • processor (s) 420 may include one or more of a digital processor, an analog processor, a digital circuit designed to process information, an analog circuit designed to process information, a state machine, and/or other mechanisms for electronically processing information.
  • processor (s) 420 is shown in FIG. 4 as a single entity, this is for illustrative purposes only.
  • processor (s) 420 may include a plurality of processing units. These processing units may be physically located within the same device, or processor (s) 420 may represent processing functionality of a plurality of devices operating in coordination.
  • Processor (s) 420 may be configured to execute modules 408–416, and/or other modules.
  • Processor (s) 420 may be configured to execute modules 408–416, and/or other modules by software; hardware; firmware; some combination of software, hardware, and/or firmware; and/or other mechanisms for configuring processing capabilities on the processor (s) 420.
  • module may refer to any component or set of components that perform the functionality attributed to the module. This may include one or more physical processors during execution of processor readable instructions, the processor readable instructions, circuitry, hardware, storage media, or any other components.
  • modules 408–416 may provide more or less functionality than is described.
  • processor (s) 420 may be configured to execute one or more additional modules that may perform some or all of the functionality attributed below to one of the modules 408–416.
  • FIG. 5 is a process flow diagram illustrating a method 500 that may be performed by a processor of a wireless device for managing beamforming for device-to-device (D2D) communications according to various embodiments.
  • the operations of the method 500 may be performed by a processor (e.g., the processor 210, 212, 214, 216, 218, 252, 260, 420) coupled to a wireless transceiver (e.g., 264) of a wireless device (e.g., 120a–120e, 200, 320, 350, 402) , for example, performing sidelink communications.
  • a processor e.g., the processor 210, 212, 214, 216, 218, 252, 260, 420
  • a wireless transceiver e.g., 264 of a wireless device (e.g., 120a–120e, 200, 320, 350, 402) , for example, performing sidelink communications.
  • the processor may determine movement information of the wireless device based on data from one or more movement sensors of the wireless device.
  • the movement information may include rotational movement information received from one or more gyroscopes.
  • the movement information may include an acceleration of the wireless device received from one or more accelerometers.
  • the wireless device may include other sensors that provide other movement information.
  • means for detecting movement of the wireless device and generating movement information based on detected movement and performing functions of the operations in block 502 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 420) coupled to one or more sensors (e.g., 262) , such as gyroscopes, and accelerometers within the wireless device.
  • the processor e.g., 210, 212, 214, 216, 218, 252, 260, 420
  • sensors e.g., 262
  • the processor may perform beamforming operations with a second wireless device (e.g., 120a–120e, 200, 320, 350, 402) based on the movement information determined in block 502.
  • beamforming operations include negotiating new beam configurations or parameters with the second wireless device, determining a beam configuration that is predicted to provide better or continued communications with the second wireless device based on movement information received from the device’s movement sensors, and/or determining a beam configuration that is predicted to provide better or continued communications with the second wireless device based on movement information received from the second wireless device.
  • the wireless device may implement the negotiated or implemented beam configurations or parameters as part of the operations in block 504.
  • means for performing functions of the operations in block 504 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 420) coupled to the wireless transceiver (e.g. 264) .
  • the processor may perform the operations of the method 500 continuously, periodically, or episodically in response to movement sensor data to maintain the communication link with the second wireless device and avoid or minimize beam failure due to movement of the wireless device.
  • FIGS. 6A, 6B, 6C, and 600D are process flow diagrams illustrating operations 600a–600d that may be performed by the processor of a wireless device as part of the method 500 for managing beamforming for device-to-device (D2D) communications according to some embodiments.
  • the operations 600a–600d may be performed by a processor (e.g., the processor 210, 212, 214, 216, 218, 252, 260, 420) coupled to one or more sensors (e.g., 262) and to a wireless transceiver (e.g., 264) of a wireless device (e.g., 120a–120e, 200, 320, 350, 402) , for example, performing sidelink communications.
  • a processor e.g., the processor 210, 212, 214, 216, 218, 252, 260, 420
  • a wireless transceiver e.g., 264 of a wireless device (e.g., 120a–120e, 200, 320
  • the processor may send the movement information to a second wireless device in block 602.
  • the processor may send raw movement sensor data received from the one or more movement sensors (e.g., 262) of the wireless device to the second wireless device.
  • the processor may send raw data output from one or more gyroscopes and/or one or more accelerometers within the wireless device.
  • means for performing functions of the operations in block 602 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 420) coupled to the sensor (s) (e.g., 262) and the wireless transceiver (e.g. 264) .
  • the processor may negotiate a beam parameter or beam configuration with the second wireless device based on the movement information sent to the second wireless device.
  • means for performing functions of the operations in block 604 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 420) coupled to the wireless transceiver (e.g. 264) .
  • the processor may continue performing the method 500 by again performing the operations of block 502 as described.
  • the processor may determine whether the movement information exceeds a movement threshold in determination block 606.
  • the wireless device may compare each sensor output (e.g., acceleration, rotational motion, etc. ) to a respective threshold (e.g., an acceleration threshold, a rotational motion threshold, etc. ) .
  • means for performing functions of the operations in block 606 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 420) coupled to the sensor (s) (e.g., 262) ,
  • the processor may repeat the operations of determination block 606 as new and/or additional data is received from movement sensors.
  • the processor may perform beamforming operations with the second wireless device based on the movement information in block 608.
  • the wireless device may change a beam configuration of the first wireless device based on the movement information in response to determining that the movement information of the wireless device exceeds the movement threshold.
  • the processor may send the movement information to the second wireless device in block 602 in response to determining that the movement information of the wireless device exceeds the movement threshold, in negotiate beam parameters with the second wireless device in block 604 as described.
  • means for performing functions of the operations in block 608 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 420) coupled to the sensor (s) (e.g., 262) and the wireless transceiver (e.g. 264) .
  • the processor e.g., 210, 212, 214, 216, 218, 252, 260, 420
  • the sensor e.g., 262
  • the wireless transceiver e.g. 264
  • the processor may continue performing the method 500 by again performing the operations of block 502 as described.
  • the processor may perform the operations of determination block 606 as described.
  • the processor may change a beam configuration of the first wireless device based on the movement information in block 610.
  • the processor may change to a beam configuration that the processor determines will be best for communicating with the second wireless device without negotiating changes to the beam configuration or sharing movement information with the second wireless device.
  • means for performing functions of the operations in block 608 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 420) coupled to the wireless transceiver (e.g. 264) .
  • the processor may continue performing the method 500 by again performing the operations of block 502 as described.
  • the processor may also perform beamforming operations 600d with the second wireless device in response to receiving movement information from the wireless device.
  • the processor may be configured to perform beamforming operations with the second device in response to its own movement sensor information (i.e., when the wireless device is moving) as well as in response to movement information received from the second wireless device (i.e., when the second wireless device is moving) .
  • Responding to movement information received from the second wireless device may be performed anytime such information is received.
  • the operations 600d may be performed in conjunction with and/or using own device movement information, such as when both wireless devices are moving.
  • the operations 600d illustrated in FIG. 6D may be performed in conjunction with any of the operations in the method 500 including any of operations 600a-600c.
  • the wireless device processor may receive movement information from the second wireless device.
  • Such movement information may be communicated via the D2D wireless communication link (e.g., a sidelink communication link) established between the two devices, such as in a sidelink control message or a sidelink data message.
  • the movement information from the second wireless device may be received and 612 while the wireless device is stationary.
  • the movement information from the second wireless device may be received at the same time that the wireless device is determining movement information from the one or more movement sensors of the wireless device in block 502 and/or sending movement information (e.g., movement sensor data) to the second wireless device in block 602.
  • means for performing functions of the operations in block 612 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 420) coupled to the wireless transceiver (e.g. 264) .
  • the processor may perform beamforming operations with the second wireless device based at least in part on movement information received from the wireless device. Such operations, the processor may determine whether the motion of the second wireless device will be sufficient to require changing a beam configuration. In some embodiments, the processor may determine a second or different beam configuration (e.g., selecting one of a plurality of possible beam figuration) that is likely to exhibit better or consistent wireless communications with the second wireless device in view of the motions of the second wireless device, and then implement the second or different beam configuration in block 614.
  • a second or different beam configuration e.g., selecting one of a plurality of possible beam figuration
  • means for performing functions of the operations in block 612 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 420) coupled to the wireless transceiver (e.g. 264) , which is coupled to multiple or an array of antennas (e.g., 704a-704d in FIG. 7) .
  • the processor e.g., 210, 212, 214, 216, 218, 252, 260, 420
  • the wireless transceiver e.g. 264
  • multiple or an array of antennas e.g., 704a-704d in FIG.
  • the operations 600d may be performed continuously or episodically upon receiving further movement information from the second wireless device. Also, the processor may continue performing the method 500 by again performing the operations of block 502 as described.
  • the smartphone 700 may include a first SOC 202 (e.g., a SOC-CPU) coupled to a second SOC 204 (e.g., a 5G capable SOC) .
  • the first and second SOCs 202, 204 may be coupled to internal memory 706, 716, a display 712, and to a speaker 714.
  • the smartphone 700 may include multiple antennas 704a-704e configured to form radio frequency beams for transmitting electromagnetic radiation and/or beams (also referred to as spatial domain filters) for receiving electromagnetic radiation that may be connected to a wireless transceiver 264 coupled to one or more processors in the first and/or second SOCs 202, 204.
  • the smartphone 700 may also include menu selection buttons or rocker switches 720 for receiving user inputs.
  • the smartphone 700 may include a sound encoding/decoding (CODEC) circuit 710, which digitizes sound received from a microphone into data packets suitable for wireless transmission and decodes received sound data packets to generate analog signals that are provided to the speaker to generate sound.
  • CODEC sound encoding/decoding
  • One or more of the processors in the first and second SOCs 202, 204, wireless transceiver 264 and CODEC 710 may include a digital signal processor (DSP) circuit (not shown separately) .
  • DSP digital signal processor
  • the processors of the smartphone 700 may be any programmable microprocessor, microcomputer or multiple processor chip or chips that can be configured by software instructions (applications) to perform a variety of functions, including the functions of the various embodiments described herein.
  • multiple processors may be provided, such as one processor within an SOC 204 dedicated to wireless communication functions and one processor within an SOC 202 dedicated to running other applications.
  • software applications may be stored in the memory 706, 716 before they are accessed and loaded into the processor.
  • the processors may include internal memory sufficient to store the application software instructions.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a wireless device and the wireless device may be referred to as a component.
  • One or more components may reside within a process and/or thread of execution and a component may be localized on one processor or core and/or distributed between two or more processors or cores. In addition, these components may execute from various non-transitory computer readable media having various instructions and/or data structures stored thereon. Components may communicate by way of local and/or remote processes, function or procedure calls, electronic signals, data packets, memory read/writes, and other known network, computer, processor, and/or process related communication methodologies.
  • Such services and standards include, e.g., third generation partnership project (3GPP) , long term evolution (LTE) systems, third generation wireless mobile communication technology (3G) , fourth generation wireless mobile communication technology (4G) , fifth generation wireless mobile communication technology (5G) , global system for mobile communications (GSM) , universal mobile telecommunications system (UMTS) , 3GSM, general packet radio service (GPRS) , code division multiple access (CDMA) systems (e.g., cdmaOne, CDMA1020TM) , enhanced data rates for GSM evolution (EDGE) , advanced mobile phone system (AMPS) , digital AMPS (IS-136/TDMA) , evolution-data optimized (EV-DO) , digital enhanced cordless telecommunications (DECT) , Worldwide Interoperability for Microwave Access (WiMAX) , wireless local area network (WLAN)
  • 3GPP third generation partnership project
  • LTE long term evolution
  • 4G fourth generation wireless mobile communication technology
  • 5G fifth generation wireless mobile communication
  • a method is performed by a processor of a wireless device.
  • the method includes determining movement information of the wireless device based on data from one or more movement sensors of the wireless device.
  • the method also includes performing beamforming operations with a second wireless device based on the movement information.
  • the method in the first aspect may further include sending the movement information to a second wireless device.
  • the method of any of aspects 1 and 2 may further include negotiating a beam parameter with the second wireless device based on the movement information sent to the second wireless device.
  • the method of any of aspects 1–3 may further include sending raw sensor data received from the one or more movement sensors of the wireless device to the second wireless device.
  • the one or more movement sensors comprise a gyroscope and the movement information comprises rotational movement information.
  • the one or more sensors comprise an accelerometer and the movement information comprises an acceleration of the wireless device.
  • the method of any of aspects 1–6 may further include determining whether the movement information exceeds a movement threshold.
  • the method of any of aspects 1–7 may further include performing the beamforming operations with the second wireless device based on the movement information in response to determining that the movement information of the wireless device exceeds the movement threshold.
  • the method of any of aspects 1–8 may further include changing a beam configuration of the first wireless device based on the movement information in response to determining that the movement information of the wireless device exceeds the movement threshold.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, but, in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of receiver smart objects, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. Alternatively, some operations or methods may be performed by circuitry that is specific to a given function.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions or code on a non-transitory computer-readable storage medium or non-transitory processor-readable storage medium.
  • the operations of a method or algorithm disclosed herein may be embodied in a processor-executable software module or processor-executable instructions, which may reside on a non-transitory computer-readable or processor-readable storage medium.
  • Non-transitory computer-readable or processor-readable storage media may be any storage media that may be accessed by a computer or a processor.
  • non-transitory computer-readable or processor-readable storage media may include RAM, ROM, EEPROM, FLASH memory, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage smart objects, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer.
  • Disk and disc includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of non-transitory computer-readable and processor-readable media.
  • the operations of a method or algorithm may reside as one or any combination or set of codes and/or instructions on a non-transitory processor-readable storage medium and/or computer-readable storage medium, which may be incorporated into a computer program product.

Abstract

Embodiments include systems and methods for managing beamforming for device-to-device communications. A processor of a wireless device may determine movement information of the wireless device based on data from one or more movement sensors, and perform beamforming operations with a second wireless device based on the movement information. The wireless device may send the movement information to the second wireless device, and negotiate a beam parameter with the second wireless device based on the movement information. In some embodiments, the wireless device may perform the beamforming operations with the second wireless device in response to determining that the movement information of the wireless device exceeds the movement threshold. The wireless device may also receive movement information from the second wireless device, and perform beamforming operations with the second wireless device based at least in part on the movement information received from the second wireless device.

Description

Managing Beamforming For Device-To-Device Communications BACKGROUND
In modern wireless communication technologies, such as Fifth Generation (5G) protocols, wireless devices of many different makes and classes may be configured to perform direct device-to-device communications via a “sidelink” communication path. Sidelink communications may be conducted without the support of a communication network, referred to as Mode 2 operation.
5G New Radio (NR) systems may use higher frequency bands, such as millimeter wave frequencies, to provide high data rate communication services. The frequency bands used to provide NR services are susceptible to rapid channel variations and suffer from free-space pathloss and atmospheric absorption. To address these challenges, NR devices (such as wireless device, base stations, etc. ) may use highly directional antennas and beamforming to achieve sufficient link budget in wide area networks. Wireless devices may also use beamforming techniques for communication links between two user wireless devices. However, such beams are highly sensitive to the antenna alignment of one or both devices (i.e., of the transmitter and/or the receiver) , a change in orientation of either or both devices may cause beam failure.
SUMMARY
Various aspects include systems and methods for managing beamforming for device-to-device (D2D) communications that may be performed by a processor of a wireless device. Various aspects may include determining movement information of the wireless device based on data from one or more movement sensors of the wireless device, and performing beamforming operations with a second wireless device based on the movement information.
In some aspects, performing beamforming operations with a second wireless device based on the movement information may include sending the movement information to a second wireless device. Such aspects may further include negotiating a beam parameter with the second wireless device based on the movement information sent to the second wireless device. In such aspects, sending the movement information to the second wireless device may include sending raw sensor data received from the one or more movement sensors of the wireless device to the second wireless device.
In some aspects, the one or more movement sensors may include a gyroscope and the movement information may include rotational movement information. In some aspects, the one or more sensors may include an accelerometer and the movement information may include an acceleration of the wireless device.
Some aspects may further include determining whether the movement information exceeds a movement threshold. In some aspects, performing beamforming operations with the second wireless device based on the movement information may include performing the beamforming operations with the second wireless device based on the movement information in response to determining that the movement information of the wireless device exceeds the movement threshold. In some aspects, performing beamforming operations with the second wireless device based on the movement information may include changing a beam configuration of the wireless device based on the movement information in response to determining that the movement information of the wireless device exceeds the movement threshold.
Various aspects may further include receiving movement information from the second wireless device, and performing beamforming operations with the second wireless device based at least in part on the movement information received from the second wireless device.
Further aspects may include a wireless device having a processor configured to perform one or more operations of the methods summarized above. Further aspects may include a non-transitory processor-readable storage medium having stored thereon processor-executable instructions configured to cause a processor of a wireless device to perform operations of the methods summarized above. Further aspects include a wireless device having means for performing functions of the methods summarized above. Further aspects include a system on chip for use in a wireless device that includes a processor configured to perform one or more operations of the methods summarized above. Further aspects include a system in a package that includes two systems on chip for use in a wireless device that includes a processor configured to perform one or more operations of the methods summarized above.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate exemplary embodiments of the claims, and together with the general description given above and the detailed description given below, serve to explain the features of the claims.
FIG. 1 is a system block diagram illustrating an example communication system suitable for implementing any of the various embodiments.
FIG. 2 is a component block diagram illustrating an example computing and wireless modem system suitable for implementing any of the various embodiments.
FIG. 3 is a component block diagram illustrating a software architecture including a radio protocol stack for the user and control planes in wireless communications suitable for implementing any of the various embodiments.
FIG. 4 is a component block diagram illustrating a system configured for sidelink communications in accordance with various embodiments.
FIG. 5 is a process flow diagram illustrating a method of managing beamforming for device-to-device (D2D) communications according to various embodiments.
FIGS. 6A, 6B, 6C, and 6D are process flow diagrams illustrating operations that may be performed by a processor of a wireless device as part of a method of managing beamforming for D2D communications according to various embodiments.
FIG. 7 is a component block diagram of a wireless device suitable for use with various embodiments.
DETAILED DESCRIPTION
Various embodiments will be described in detail with reference to the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. References made to particular examples and implementations are for illustrative purposes, and are not intended to limit the scope of the claims.
Various embodiments include systems and methods for supporting sidelink communications between two or more wireless devices by providing capabilities for performing beamforming reconfiguration operations in response movements to of one or both of the wireless devices communications as detected by movement sensors within the wireless device. Performing beamforming operations in response to detected motion of either wireless device may provide more reliable side link communication links by anticipating the need to reconfigure beams based on the detected motion and enabling a D2D communication beam to be reconfigured before device motion leads to beam failure.
The term “wireless device” is used herein to refer to any one or all of cellular telephones, smartphones, wireless communication elements within autonomous and semiautonomous vehicles, intelligent highway computing devices including road side units, highway sensors, portable computing devices, laptop computers, tablet computers, multimedia Internet-enabled cellular telephones, medical devices and  equipment, biometric sensors/devices, wearable devices, wireless-network enabled Internet of Things (IoT) devices including smart meters/sensors, industrial manufacturing equipment, large and small machinery and appliances for home or enterprise use, wireless devices affixed to or incorporated into various mobile platforms, global positioning system devices, and similar electronic devices that include a memory, wireless communication components and a programmable processor.
The term “system on chip” (SOC) is used herein to refer to a single integrated circuit (IC) chip that contains multiple resources and/or processors integrated on a single substrate. A single SOC may contain circuitry for digital, analog, mixed-signal, and radio-frequency functions. A single SOC may also include any number of general purpose and/or specialized processors (digital signal processors, modem processors, video processors, etc. ) , memory blocks (e.g., ROM, RAM, Flash, etc. ) , and resources (e.g., timers, voltage regulators, oscillators, etc. ) . SOCs may also include software for controlling the integrated resources and processors, as well as for controlling peripheral devices.
The term “system in a package” (SIP) may be used herein to refer to a single module or package that contains multiple resources, computational units, cores and/or processors on two or more IC chips, substrates, or SOCs. For example, a SIP may include a single substrate on which multiple IC chips or semiconductor dies are stacked in a vertical configuration. Similarly, the SIP may include one or more multi-chip modules (MCMs) on which multiple ICs or semiconductor dies are packaged into a unifying substrate. A SIP may also include multiple independent SOCs coupled together via high speed communication circuitry and packaged in close proximity, such as on a single motherboard or in a single wireless device. The proximity of the SOCs facilitates high speed communications and the sharing of memory and resources.
Many wireless devices may be configured to perform direct device-to-device (D2D) communications via a sidelink communication path. Mode 2 operation may  enable D2D sidelink communications without the support of a communication network. Allocation of sidelink communication resources (i.e., time slots and frequency channels) used to transmit sidelink messages is reservation-based. Sidelink resources may be allocated in units of sub-channels in the frequency domain, and may be limited to one slot in the time domain. In Mode 2 operations, a wireless device may identify candidate resources by detecting the presence and measuring the strength of a wireless signal, excluding occupied resources (i.e., subchannels in which wireless signals are detected with a strength exceeding a threshold) , and selecting candidate resource from available resources (i.e., sideline communication resources that have not been reserved by another wireless device) .
Wireless devices may be configured to use beamforming techniques to improve communication bandwidth for D2D communications. A wireless device may be configured to perform beamforming on its own, or in coordination with a second wireless device using a handshake procedure through which two wireless devices may negotiate communication beam parameter (s) . Communication links using formed beams are sensitive to movement by either or both wireless device, and changes in location, position, or orientation may degrade a beam or cause beam failure. Wireless devices may be configured to perform a beam failure recovery (BFR) procedure, but the BFR procedure is triggered after a beam failure has been detected, and is a relatively slow and inaccurate process that may lead to significant disruption in communications, and even loss of a communication session, between two wireless devices.
Various embodiments enable a wireless device to proactively address the effect of changes in location, position, or orientation by a wireless device by improving beamforming techniques employed by the wireless device. In various embodiments, a wireless device may detect movement of the wireless device using one or more movement sensors (e.g., accelerometers, gyroscopes, etc. ) of the wireless device, and use the detected movement information in beamforming operations. In various embodiments, the wireless device may determine movement information of  the wireless device based on data from one or more movement sensors of the wireless device, and perform beamforming operations with a second wireless device in response to movement information, either based on own sensor information or in response to beamforming negotiations with the second wireless device. In some embodiments, the movement information may include rotational movement information received from one or more gyroscopes of the wireless device, acceleration information received from one or more accelerometers of the wireless device, and/or any other movement information from any type of wireless device sensor (e.g., shifts in sensed magnetic fields by an electronic compass, Doppler shift information from a wireless transceiver, etc. ) .
In some embodiments, the wireless device may send the determined movement information to a second wireless device and may negotiate one or more beam parameters with the second wireless device based on the movement information sent to the second wireless device. In some embodiments, the wireless device may send the movement information to the second wireless device via a sidelink communication message, such as a sidelink control message or a sidelink data message. In some embodiments, the wireless device may send raw sensor data received from the one or more movement sensors to the second wireless device. Raw sensor data is an unprocessed signal or information produced by a sensor, such as the output of a gyroscope or the output of one or more accelerometers. Raw sensor data may be a relatively small amount of information that may be input into a beamforming algorithm or other process executing in a processor of the second wireless device. In some embodiments, the raw sensor data may be transmitted in a relatively small message or other form to the second wireless device.
In some embodiments, the wireless device may determine whether the movement information exceeds a movement threshold. For example, the wireless device may send the movement information to the second wireless device and/or use the movement information in the beamforming procedure in response to determining that the movement information exceeds a movement threshold. In some  embodiments, the wireless device may compare each sensor output (e.g., acceleration, rotational motion, etc. ) to a respective threshold (e.g., an acceleration threshold, a rotational motion threshold, etc. ) . In some embodiments, the wireless device may perform beamforming operations with the second wireless device based on the movement information in response to determining that the movement information of the wireless device exceeds the movement threshold. In some embodiments, the wireless device may change a beam configuration of the first wireless device based on the movement information in response to determining that the movement information of the wireless device exceeds the movement threshold.
Similarly, the wireless device may be configured to perform beamforming operations in response to receiving movement information from the second wireless device. In some situations, the wireless device may be stationary when it receives movement information from the second wireless device, in which case the wireless device processor may responded by selecting a beam configuration that is likely to have better or consistent wireless communications with the second wireless device in view of the motion of the second wireless device. In some situations, both wireless devices may be moving, in which case the processors of the two wireless devices may perform beamforming operations responsive to movement information detected by movement sensors in both wireless devices.
FIG. 1 is a system block diagram illustrating an example communication system 100 suitable for implementing any of the various embodiments. The communications system 100 may be an 5G New Radio (NR) network, or any other suitable network such as Long Term Evolution (LTE) network.
The communications system 100 may include a heterogeneous network architecture that includes a core network 140 and a variety of wireless devices (illustrated as mobile devices 120a-120e) . The communications system 100 may also include a number of base stations (illustrated as the BS 110a, the BS 110b, the BS 110c, and the BS 110d) and other network entities. A base station is an entity that communicates with wireless devices (mobile devices) , and also may be referred to as  an NodeB, a Node B, an LTE evolved nodeB (eNB) , an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio base station (NR BS) , a 5G NodeB (NB) , a Next Generation NodeB (gNB) , or the like. Each base station may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a base station, a base station subsystem serving this coverage area, or a combination thereof, depending on the context in which the term is used.
base station 110a-110d may provide communication coverage for a macro cell, a pico cell, a femto cell, another type of cell, or a combination thereof. A macro cell may cover a relatively large geographic area (for example, several kilometers in radius) and may allow unrestricted access by wireless devices with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by wireless devices with service subscription. A femto cell may cover a relatively small geographic area (for example, a home) and may allow restricted access by wireless devices having association with the femto cell (for example, wireless devices in a closed subscriber group (CSG) ) . A base station for a macro cell may be referred to as a macro BS. A base station for a pico cell may be referred to as a pico BS. A base station for a femto cell may be referred to as a femto BS or a home BS. In the example illustrated in FIG. 1, a base station 110a may be a macro BS for a macro cell 102a, a base station 110b may be a pico BS for a pico cell 102b, and a base station 110c may be a femto BS for a femto cell 102c. A base station 110a-110d may support one or multiple (for example, three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some examples, a cell may not be stationary, and the geographic area of the cell may move according to the location of a mobile base station. In some examples, the base stations 110a-110d may be interconnected to one another as well as to one or more other base stations or network nodes (not illustrated) in the communications system 100 through various types of backhaul interfaces, such as a direct physical  connection, a virtual network, or a combination thereof using any suitable transport network
The base station 110a-110d may communicate with the core network 140 over a wired or wireless communication link 126. The wireless device 120a-120e may communicate with the base station 110a-110d over a wireless communication link 122.
The wired communication link 126 may use a variety of wired networks (e.g., Ethernet, TV cable, telephony, fiber optic and other forms of physical network connections) that may use one or more wired communication protocols, such as Ethernet, Point-To-Point protocol, High-Level Data Link Control (HDLC) , Advanced Data Communication Control Protocol (ADCCP) , and Transmission Control Protocol/Internet Protocol (TCP/IP) .
The communications system 100 also may include relay stations (e.g., relay BS 110d) . A relay station is an entity that can receive a transmission of data from an upstream station (for example, a base station or a wireless device) and transmit the data to a downstream station (for example, a wireless device or a base station) . A relay station also may be a wireless device that can relay transmissions for other wireless devices. In the example illustrated in FIG. 1, a relay station 110d may communicate with macro the base station 110a and the wireless device 120d in order to facilitate communications between the base station 110a and the wireless device 120d. A relay station also may be referred to as a relay base station, a relay base station, a relay, etc.
The communications system 100 may be a heterogeneous network that includes base stations of different types, for example, macro base stations, pico base stations, femto base stations, relay base stations, etc. These different types of base stations may have different transmit power levels, different coverage areas, and different impacts on interference in communications system 100. For example, macro base stations may have a high transmit power level (for example, 5 to 40 watts)  whereas pico base stations, femto base stations, and relay base stations may have lower transmit power levels (for example, 0.1 to 2 watts) .
network controller 130 may couple to a set of base stations and may provide coordination and control for these base stations. The network controller 130 may communicate with the base stations via a backhaul. The base stations also may communicate with one another, for example, directly or indirectly via a wireless or wireline backhaul.
The wireless devices 120a-1203 may be dispersed throughout communications system 100, and each wireless device may be stationary or mobile.
macro base station 110a may communicate with the communication network 140 over a wired or wireless communication link 126. The  wireless devices  120a, 120b, 120c may communicate with a base station 110a-110d over a wireless communication link 122.
The  wireless communication links  122, 124 may include a plurality of carrier signals, frequencies, or frequency bands, each of which may include a plurality of logical channels. The  wireless communication links  122 and 124 may utilize one or more radio access technologies (RATs) . Examples of RATs that may be used in a wireless communication link include 3GPP LTE, 3G, 4G, 5G (e.g., NR) , GSM, Code Division Multiple Access (CDMA) , Wideband Code Division Multiple Access (WCDMA) , Worldwide Interoperability for Microwave Access (WiMAX) , Time Division Multiple Access (TDMA) , and other mobile telephony communication technologies cellular RATs. Further examples of RATs that may be used in one or more of the various  wireless communication links  122, 124 within the communication system 100 include medium range protocols such as Wi-Fi, LTE-U, LTE-Direct, LAA, MuLTEfire, and relatively short range RATs such as ZigBee, Bluetooth, and Bluetooth Low Energy (LE) .
Certain wireless networks (e.g., LTE) utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division  multiplexing (SC-FDM) on the uplink. OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc. Each subcarrier may be modulated with data. In general, modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM. The spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth. For example, the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (called a “resource block” ) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal Fast File Transfer (FFT) size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10 or 20 megahertz (MHz) , respectively. The system bandwidth may also be partitioned into subbands. For example, a subband may cover 1.08 MHz (i.e., 6 resource blocks) , and there may be 1, 2, 4, 8 or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
While descriptions of some embodiments may use terminology and examples associated with LTE technologies, various embodiments may be applicable to other wireless communications systems, such as a new radio (NR) or 5G network. NR may utilize OFDM with a cyclic prefix (CP) on the uplink (UL) and downlink (DL) and include support for half-duplex operation using time division duplex (TDD) . A single component carrier bandwidth of 100 MHz may be supported. NR resource blocks may span 12 sub-carriers with a sub-carrier bandwidth of 75 kHz over a 0.1 millisecond (ms) duration. Each radio frame may consist of 50 subframes with a length of 10 ms. Consequently, each subframe may have a length of 0.2 ms. Each subframe may indicate a link direction (i.e., DL or UL) for data transmission and the link direction for each subframe may be dynamically switched. Each subframe may include DL/UL data as well as DL/UL control data. Beamforming may be supported and beam direction may be dynamically configured. Multiple Input Multiple Output (MIMO) transmissions with precoding may also be supported. MIMO configurations in the DL may support up to eight transmit antennas with multi-layer DL  transmissions up to eight streams and up to two streams per wireless device. Multi-layer transmissions with up to two streams per wireless device may be supported. Aggregation of multiple cells may be supported with up to eight serving cells. Alternatively, NR may support a different air interface, other than an OFDM-based air interface.
Some wireless devices may be considered machine-type communications (MTC) or evolved or enhanced machine-type communications (eMTC) wireless devices. MTC and eMTC wireless devices include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a base station, another device (for example, remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (for example, a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some wireless devices may be considered Internet-of-Things (IoT) devices or may be implemented as NB-IoT (narrowband internet of things) devices. A wireless device 120a-120e may be included inside a housing that houses components of the wireless device, such as processor components, memory components, similar components, or a combination thereof.
In general, any number of communication systems and any number of wireless networks may be deployed in a given geographic area. Each communications system and wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies. A RAT also may be referred to as a radio technology, an air interface, etc. A frequency also may be referred to as a carrier, a frequency channel, etc. Each frequency may support a single RAT in a given geographic area in order to avoid interference between communications systems of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some implementations, two or more wireless devices 120a-120e (for example, the  wireless device  120a and 120e) may communicate directly using one or more sidelink channels 124. Sidelink channels 124 enable communications without using a base station 110a-110d as an intermediary to communicate with one another.  For example, the wireless devices 120a-120e may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, vehicle-to-pedestrian (V2P) , or similar protocol) , a mesh network, or similar networks, or combinations thereof. In this case, processors in the wireless device 120a-120e may perform scheduling operations, resource selection operations, as well as other operations described elsewhere herein as being performed by the base station 110a.
FIG. 2 is a component block diagram illustrating an example computing system 200 suitable for implementing any of the various embodiments. Various embodiments may be implemented on a number of single processor and multiprocessor computer systems, including a system-on-chip (SOC) or system in a package (SIP) .
With reference to FIGS. 1 and 2, the illustrated example SIP 200 includes a two  SOCs  202, 204 coupled to a clock 206, a voltage regulator 208 and a wireless transceiver 264. The two  SOCs  202, 204 may also be coupled to one or more movement sensors 262, such as an accelerometer, a gyroscope, and any other sensor configured to detection a motion or movement of a wireless device. In some embodiments, the first SOC 202 operate as central processing unit (CPU) of the wireless device that carries out the instructions of software application programs by performing the arithmetic, logical, control and input/output (I/O) operations specified by the instructions. In some embodiments, the second SOC 204 may operate as a specialized processing unit. For example, the second SOC 204 may operate as a specialized 5G processing unit responsible for managing high volume, high speed (e.g., 5 Gbps, etc. ) , and/or very high frequency short wave length (e.g., 28 GHz mmWave spectrum, etc. ) communications.
The first SOC 202 may include a digital signal processor (DSP) 210, a modem processor 212, a graphics processor 214, an application processor 216, one or more coprocessors 218 (e.g., vector co-processor) connected to one or more of the  processors, memory 220, custom circuity 222, system components and resources 224, an interconnection/bus module 226, one or more temperature sensors 230, a thermal management unit 232, and a thermal power envelope (TPE) component 234. The second SOC 204 may include a 5G modem processor 252, a power management unit 254, an interconnection/bus module 264, a plurality of mmWave transceivers 256, memory 258, and various additional processors 260, such as an applications processor, packet processor, etc.
Each  processor  210, 212, 214, 216, 218, 252, 260 may include one or more cores, and each processor/core may perform operations independent of the other processors/cores. For example, the first SOC 202 may include a processor that executes a first type of operating system (e.g., FreeBSD, LINUX, OS X, etc. ) and a processor that executes a second type of operating system (e.g., MICROSOFT WINDOWS 10) . In addition, any or all of the  processors  210, 212, 214, 216, 218, 252, 260 may be included as part of a processor cluster architecture (e.g., a synchronous processor cluster architecture, an asynchronous or heterogeneous processor cluster architecture, etc. ) .
The first and  second SOC  202, 204 may include various system components, resources and custom circuitry for managing sensor data, analog-to-digital conversions, wireless data transmissions, and for performing other specialized operations, such as decoding data packets and processing encoded audio and video signals for rendering in a web browser. For example, the system components and resources 224 of the first SOC 202 may include power amplifiers, voltage regulators, oscillators, phase-locked loops, peripheral bridges, data controllers, memory controllers, system controllers, access ports, timers, and other similar components used to support the processors and software clients running on a wireless device. The system components and resources 224 and/or custom circuitry 222 may also include circuitry to interface with peripheral devices, such as cameras, electronic displays, wireless communication devices, external memory chips, etc.
The first and  second SOC  202, 204 may communicate via interconnection/bus module 250. The  various processors  210, 212, 214, 216, 218, may be interconnected to one or more memory elements 220, system components and resources 224, and custom circuitry 222, and a thermal management unit 232 via an interconnection/bus module 226. Similarly, the processor 252 may be interconnected to the power management unit 254, the mmWave transceivers 256, memory 258, and various additional processors 260 via the interconnection/bus module 264. The interconnection/ bus module  226, 250, 264 may include an array of reconfigurable logic gates and/or implement a bus architecture (e.g., CoreConnect, AMBA, etc. ) . Communications may be provided by advanced interconnects, such as high-performance networks-on chip (NoCs) .
The first and/or  second SOCs  202, 204 may further include an input/output module (not illustrated) for communicating with resources external to the SOC, such as a clock 206 and a voltage regulator 208. Resources external to the SOC (e.g., clock 206, voltage regulator 208) may be shared by two or more of the internal SOC processors/cores.
In addition to the example SIP 200 discussed above, various embodiments may be implemented in a wide variety of computing systems, which may include a single processor, multiple processors, multicore processors, or any combination thereof.
FIG. 3 is a component block diagram illustrating a software architecture 300 including a radio protocol stack for the user and control planes in wireless communications suitable for implementing any of the various embodiments. With reference to FIGS. 1–3, the wireless device 320 may implement the software architecture 300 to facilitate communications between the wireless device 320 (e.g., the wireless device 120a-120e, 200) and a second wireless device 350 (e.g., the wireless device 120a-120e, 200) of a communication system (e.g., 100) . In various embodiments, layers in the software architecture 300 may form logical connections with corresponding layers in software of the second wireless device 350. The  software architecture 300 may be distributed among one or more processors (e.g., the  processors  212, 214, 216, 218, 252, 260) . While illustrated with respect to one radio protocol stack, in a multi-SIM (subscriber identity module) wireless device, the software architecture 300 may include multiple protocol stacks, each of which may be associated with a different SIM (e.g., two protocol stacks associated with two SIMs, respectively, in a dual-SIM wireless communication device) . While described below with reference to LTE communication layers, the software architecture 300 may support any of variety of standards and protocols for wireless communications, and/or may include additional protocol stacks that support any of variety of standards and protocols wireless communications.
The software architecture 300 may include a Non-Access Stratum (NAS) 302 and an Access Stratum (AS) 304. The NAS 302 may include functions and protocols to support packet filtering, security management, mobility control, session management, and traffic and signaling between a SIM (s) of the wireless device (e.g., SIM (s) 204) and its core network 140. The AS 304 may include functions and protocols that support communications between a SIM (s) (e.g., SIM (s) 204) and entities of supported access networks (e.g., a base station) . In particular, the AS 304 may include at least three layers (Layer 1, Layer 2, and Layer 3) , each of which may contain various sub-layers.
In the user and control planes, Layer 1 (L1) of the AS 304 may be a physical layer (PHY) 306, which may oversee functions that enable transmission and/or reception over the air interface. Examples of such physical layer 306 functions may include cyclic redundancy check (CRC) attachment, coding blocks, scrambling and descrambling, modulation and demodulation, signal measurements, MIMO, etc. The physical layer may include various logical channels, including a Physical Downlink Control Channel (PDCCH) and a Physical Downlink Shared Channel (PDSCH) , or sidelink channels such as a Physical Sidelink Control Channel (PSCCH) and a Physical Sidelink Shared Channel (PSSCH) .
In the user and control planes, Layer 2 (L2) of the AS 304 may be responsible for the link between the wireless device 320 and the second wireless device 350 over the physical layer 306. In the various embodiments, Layer 2 may include a media access control (MAC) sublayer 308, a radio link control (RLC) sublayer 310, and a packet data convergence protocol (PDCP) 312 sublayer, each of which form logical connections terminating at the second wireless device 350.
In the control plane, Layer 3 (L3) of the AS 304 may include a radio resource control (RRC) sublayer 3. While not shown, the software architecture 300 may include additional Layer 3 sublayers, as well as various upper layers above Layer 3. In various embodiments, the RRC sublayer 313 may provide functions including broadcasting system information, paging, and establishing and releasing an RRC signaling connection between the wireless device 320 and the second wireless device 350.
In various embodiments, the PDCP sublayer 312 may provide uplink functions including multiplexing between different radio bearers and logical channels, sequence number addition, handover data handling, integrity protection, ciphering, and header compression. In the downlink, the PDCP sublayer 312 may provide functions that include in-sequence delivery of data packets, duplicate data packet detection, integrity validation, deciphering, and header decompression.
In the uplink, the RLC sublayer 310 may provide segmentation and concatenation of upper layer data packets, retransmission of lost data packets, and Automatic Repeat Request (ARQ) . In the downlink, while the RLC sublayer 310 functions may include reordering of data packets to compensate for out-of-order reception, reassembly of upper layer data packets, and ARQ.
In the uplink, MAC sublayer 308 may provide functions including multiplexing between logical and transport channels, random access procedure, logical channel priority, and hybrid-ARQ (HARQ) operations. In the downlink, the  MAC layer functions may include channel mapping within a cell, de-multiplexing, discontinuous reception (DRX) , and HARQ operations.
While the software architecture 300 may provide functions to transmit data through physical media, the software architecture 300 may further include at least one host layer 314 to provide data transfer services to various applications in the wireless device 320. In some embodiments, application-specific functions provided by the at least one host layer 314 may provide an interface between the software architecture and the general purpose processor 206.
In other embodiments, the software architecture 300 may include one or more higher logical layer (e.g., transport, session, presentation, application, etc. ) that provide host layer functions. For example, in some embodiments, the software architecture 300 may include a network layer (e.g., the Internet protocol (IP) layer) in which a logical connection terminates at a packet data network (PDN) gateway (PGW) . In some embodiments, the software architecture 300 may include an application layer in which a logical connection terminates at another device (e.g., end user device, server, etc. ) . In some embodiments, the software architecture 300 may further include in the AS 304 a hardware interface 316 between the physical layer 306 and the communication hardware (e.g., one or more radio frequency (RF) transceivers) .
FIG. 4 is a component block diagram illustrating a system 400 configured for sidelink communications in accordance with various embodiments. In some embodiments, system 400 may include a wireless device 402 and/or one or more other wireless devices 404. With reference to FIGS. 1–4, examples of the  wireless device  402 and 404 may include the wireless device 120a-120e, 200, 320) . In some embodiments, the  wireless device  402 and 404 may communicate over a wireless sidelink communication link (e.g., 124) . The wireless device may also communicate via a wireless network 100 as described.
Wireless device 402 may include a processor 420 coupled to movement sensors 262, a wireless transceiver 264, and configured by machine-readable instructions 406 that may be stored in electronic storage 418. Machine-readable instructions 406 may include one or more instruction modules. The instruction modules may include computer program modules. The instruction modules may include one or more of a sensor information determining module 408, a threshold comparison module 410, a beamforming control module 412, a beam parameter negotiation module 414, a transmit/receive (Tx/Rx) module 416, and/or other instruction modules.
The sensor information determining module 408 may be configured to determine movement information of the wireless device based on data from one or more movement sensors of the wireless device. In some embodiments, the one or more movement sensors may include a gyroscope and the movement information may include rotational movement information. In some embodiments, the one or more sensors may include an accelerometer and the movement information may include an acceleration of the wireless device.
The threshold comparison module 410 may be configured to determine whether the movement information exceeds a movement threshold.
The beamforming control module 412 may be configured to perform beamforming operations with a second wireless device based on the movement information determined by the sensor information determining module 408. In some embodiments, the beamforming control module 412 may be configured to perform the beamforming operations with the second wireless device based on the movement information in response to determining that the movement information of the wireless device exceeds the movement threshold. In some embodiments, the beamforming control module 412 may be configured to change a beam configuration of the first wireless device based on the movement information in response to determining that the movement information of the wireless device exceeds the movement threshold.
The beam parameter negotiation module 414 may be configured to negotiate a beam parameter with the second wireless device based on the movement information sent to the second wireless device.
The Tx/Rx module 416 may be configured to perform operations related to wireless communication with a second wireless device. In some embodiments, the Tx/Rx module 416 may be configured to send the movement information to a second wireless device. In some embodiments, the Tx/Rx module 416 may be configured to send raw sensor data received from the one or more movement sensors of the wireless device to the second wireless device.
The wireless device 402 may include an electronic storage 418, one or more processors 420, and other components. The wireless device 402 may include communication lines, or ports to enable the exchange of information with a network and/or other computing platforms. The illustration of the wireless device 402 in FIG. 4 is not intended to be limiting. The wireless device 402 may include a plurality of hardware, software, and/or firmware components operating together to provide the functionality attributed herein to the wireless device 402.
The electronic storage 418 may comprise non-transitory storage media that electronically stores information. The electronic storage media of the electronic storage 418 may include one or both of system storage that is provided integrally (i.e., substantially non-removable) with wireless device 402 and/or removable storage that is removably connectable to wireless device 402 via, for example, a port (e.g., a universal serial bus (USB) port, a firewire port, etc. ) or a drive (e.g., a disk drive, etc. ) . The electronic storage 418 may include one or more of optically readable storage media (e.g., optical disks, etc. ) , magnetically readable storage media (e.g., magnetic tape, magnetic hard drive, floppy drive, etc. ) , electrical charge-based storage media (e.g., EEPROM, RAM, etc. ) , solid-state storage media (e.g., flash drive, etc. ) , and/or other electronically readable storage media. Electronic storage 418 may include one or more virtual storage resources (e.g., cloud storage, a virtual private network, and/or other virtual storage resources) . The electronic storage 418 may store software  algorithms, information determined by processor (s) 420, information received from wireless device 402, or other information that enables the wireless device 402 to function as described herein.
Processor (s) 420 may be configured to provide information processing capabilities in the wireless device 402. As such, processor (s) 420 may include one or more of a digital processor, an analog processor, a digital circuit designed to process information, an analog circuit designed to process information, a state machine, and/or other mechanisms for electronically processing information. Although processor (s) 420 is shown in FIG. 4 as a single entity, this is for illustrative purposes only. In some implementations, processor (s) 420 may include a plurality of processing units. These processing units may be physically located within the same device, or processor (s) 420 may represent processing functionality of a plurality of devices operating in coordination. Processor (s) 420 may be configured to execute modules 408–416, and/or other modules. Processor (s) 420 may be configured to execute modules 408–416, and/or other modules by software; hardware; firmware; some combination of software, hardware, and/or firmware; and/or other mechanisms for configuring processing capabilities on the processor (s) 420. As used herein, the term “module” may refer to any component or set of components that perform the functionality attributed to the module. This may include one or more physical processors during execution of processor readable instructions, the processor readable instructions, circuitry, hardware, storage media, or any other components.
The description of the functionality provided by the different modules 408–416 described below is for illustrative purposes, and is not intended to be limiting, as any of the modules 408–416 may provide more or less functionality than is described. For example, one or more of modules 408–416 may be eliminated, and some or all of its functionality may be provided by other ones of the modules 408–416. As another example, processor (s) 420 may be configured to execute one or more additional modules that may perform some or all of the functionality attributed below to one of the modules 408–416.
FIG. 5 is a process flow diagram illustrating a method 500 that may be performed by a processor of a wireless device for managing beamforming for device-to-device (D2D) communications according to various embodiments. With reference to FIGS. 1–5, the operations of the method 500 may be performed by a processor (e.g., the  processor  210, 212, 214, 216, 218, 252, 260, 420) coupled to a wireless transceiver (e.g., 264) of a wireless device (e.g., 120a–120e, 200, 320, 350, 402) , for example, performing sidelink communications.
In block 502, the processor may determine movement information of the wireless device based on data from one or more movement sensors of the wireless device. In some embodiments, the movement information may include rotational movement information received from one or more gyroscopes. In some embodiments, the movement information may include an acceleration of the wireless device received from one or more accelerometers. In some embodiments, the wireless device may include other sensors that provide other movement information. In some embodiments, means for detecting movement of the wireless device and generating movement information based on detected movement and performing functions of the operations in block 502 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 420) coupled to one or more sensors (e.g., 262) , such as gyroscopes, and accelerometers within the wireless device.
In block 504, the processor may perform beamforming operations with a second wireless device (e.g., 120a–120e, 200, 320, 350, 402) based on the movement information determined in block 502. Examples of beamforming operations include negotiating new beam configurations or parameters with the second wireless device, determining a beam configuration that is predicted to provide better or continued communications with the second wireless device based on movement information received from the device’s movement sensors, and/or determining a beam configuration that is predicted to provide better or continued communications with the second wireless device based on movement information received from the second wireless device. The wireless device may implement the negotiated or implemented  beam configurations or parameters as part of the operations in block 504. In some embodiments, means for performing functions of the operations in block 504 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 420) coupled to the wireless transceiver (e.g. 264) .
The processor may perform the operations of the method 500 continuously, periodically, or episodically in response to movement sensor data to maintain the communication link with the second wireless device and avoid or minimize beam failure due to movement of the wireless device.
FIGS. 6A, 6B, 6C, and 600D are process flow diagrams illustrating operations 600a–600d that may be performed by the processor of a wireless device as part of the method 500 for managing beamforming for device-to-device (D2D) communications according to some embodiments. With reference to FIGS. 1–6D, the operations 600a–600d may be performed by a processor (e.g., the  processor  210, 212, 214, 216, 218, 252, 260, 420) coupled to one or more sensors (e.g., 262) and to a wireless transceiver (e.g., 264) of a wireless device (e.g., 120a–120e, 200, 320, 350, 402) , for example, performing sidelink communications.
With reference to FIG. 6A, following the operations of block 502 (FIG. 5) , the processor may send the movement information to a second wireless device in block 602. In some embodiments, the processor may send raw movement sensor data received from the one or more movement sensors (e.g., 262) of the wireless device to the second wireless device. For example, the processor may send raw data output from one or more gyroscopes and/or one or more accelerometers within the wireless device. In some embodiments, means for performing functions of the operations in block 602 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 420) coupled to the sensor (s) (e.g., 262) and the wireless transceiver (e.g. 264) .
In block 604 the processor may negotiate a beam parameter or beam configuration with the second wireless device based on the movement information sent to the second wireless device. In some embodiments, means for performing  functions of the operations in block 604 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 420) coupled to the wireless transceiver (e.g. 264) .
The processor may continue performing the method 500 by again performing the operations of block 502 as described.
Referring to FIG. 6B, following the operations of block 502 (FIG. 5) , the processor may determine whether the movement information exceeds a movement threshold in determination block 606. In some embodiments, the wireless device may compare each sensor output (e.g., acceleration, rotational motion, etc. ) to a respective threshold (e.g., an acceleration threshold, a rotational motion threshold, etc. ) . In some embodiments, means for performing functions of the operations in block 606 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 420) coupled to the sensor (s) (e.g., 262) ,
In response to determining that the movement information does not exceed the movement threshold (i.e., determination block 606 = “No” ) , the processor may repeat the operations of determination block 606 as new and/or additional data is received from movement sensors.
In response to determining that the movement information exceeds a movement threshold (i.e., determination block 606 = “Yes” ) , the processor may perform beamforming operations with the second wireless device based on the movement information in block 608. In some embodiments, the wireless device may change a beam configuration of the first wireless device based on the movement information in response to determining that the movement information of the wireless device exceeds the movement threshold. In some embodiments, the processor may send the movement information to the second wireless device in block 602 in response to determining that the movement information of the wireless device exceeds the movement threshold, in negotiate beam parameters with the second wireless device in block 604 as described. In some embodiments, means for performing functions of the  operations in block 608 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 420) coupled to the sensor (s) (e.g., 262) and the wireless transceiver (e.g. 264) .
The processor may continue performing the method 500 by again performing the operations of block 502 as described.
Referring to FIG. 6C, following the operations of block 502 (FIG. 5) , the processor may perform the operations of determination block 606 as described.
In response to determining that the movement information exceeds the movement threshold (i.e., determination block 606 = “Yes” ) , the processor may change a beam configuration of the first wireless device based on the movement information in block 610. Thus, in some embodiments the processor may change to a beam configuration that the processor determines will be best for communicating with the second wireless device without negotiating changes to the beam configuration or sharing movement information with the second wireless device. In some embodiments, means for performing functions of the operations in block 608 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 420) coupled to the wireless transceiver (e.g. 264) .
The processor may continue performing the method 500 by again performing the operations of block 502 as described.
Referring to FIG. 6D, in addition to performing beamforming operations with the second wireless device in response to the detected movement information within the wireless device, the processor may also perform beamforming operations 600d with the second wireless device in response to receiving movement information from the wireless device. Thus, the processor may be configured to perform beamforming operations with the second device in response to its own movement sensor information (i.e., when the wireless device is moving) as well as in response to movement information received from the second wireless device (i.e., when the second wireless device is moving) . Responding to movement information received from the second wireless device may be performed anytime such information is  received. In some situations, the operations 600d may be performed in conjunction with and/or using own device movement information, such as when both wireless devices are moving. Thus, the operations 600d illustrated in FIG. 6D may be performed in conjunction with any of the operations in the method 500 including any of operations 600a-600c.
In block 612, the wireless device processor may receive movement information from the second wireless device. Such movement information may be communicated via the D2D wireless communication link (e.g., a sidelink communication link) established between the two devices, such as in a sidelink control message or a sidelink data message. In some situations, the movement information from the second wireless device may be received and 612 while the wireless device is stationary. In some situations, the movement information from the second wireless device may be received at the same time that the wireless device is determining movement information from the one or more movement sensors of the wireless device in block 502 and/or sending movement information (e.g., movement sensor data) to the second wireless device in block 602. In some embodiments, means for performing functions of the operations in block 612 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 420) coupled to the wireless transceiver (e.g. 264) .
In block 614, the processor may perform beamforming operations with the second wireless device based at least in part on movement information received from the wireless device. Such operations, the processor may determine whether the motion of the second wireless device will be sufficient to require changing a beam configuration. In some embodiments, the processor may determine a second or different beam configuration (e.g., selecting one of a plurality of possible beam figuration) that is likely to exhibit better or consistent wireless communications with the second wireless device in view of the motions of the second wireless device, and then implement the second or different beam configuration in block 614. In some embodiments, means for performing functions of the operations in block 612 may  include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 420) coupled to the wireless transceiver (e.g. 264) , which is coupled to multiple or an array of antennas (e.g., 704a-704d in FIG. 7) .
The operations 600d may be performed continuously or episodically upon receiving further movement information from the second wireless device. Also, the processor may continue performing the method 500 by again performing the operations of block 502 as described.
Various embodiments may be implemented on a variety of wireless devices (e.g., the wireless device 120a-120e, 200, 320, 402) , an example of which is illustrated in FIG. 7 in the form of a smartphone 700. The smartphone 700 may include a first SOC 202 (e.g., a SOC-CPU) coupled to a second SOC 204 (e.g., a 5G capable SOC) . The first and  second SOCs  202, 204 may be coupled to  internal memory  706, 716, a display 712, and to a speaker 714. Additionally, the smartphone 700 may include multiple antennas 704a-704e configured to form radio frequency beams for transmitting electromagnetic radiation and/or beams (also referred to as spatial domain filters) for receiving electromagnetic radiation that may be connected to a wireless transceiver 264 coupled to one or more processors in the first and/or  second SOCs  202, 204. The smartphone 700 may also include menu selection buttons or rocker switches 720 for receiving user inputs.
The smartphone 700 may include a sound encoding/decoding (CODEC) circuit 710, which digitizes sound received from a microphone into data packets suitable for wireless transmission and decodes received sound data packets to generate analog signals that are provided to the speaker to generate sound. One or more of the processors in the first and  second SOCs  202, 204, wireless transceiver 264 and CODEC 710 may include a digital signal processor (DSP) circuit (not shown separately) .
The processors of the smartphone 700 may be any programmable microprocessor, microcomputer or multiple processor chip or chips that can be  configured by software instructions (applications) to perform a variety of functions, including the functions of the various embodiments described herein. In some wireless devices, multiple processors may be provided, such as one processor within an SOC 204 dedicated to wireless communication functions and one processor within an SOC 202 dedicated to running other applications. Typically, software applications may be stored in the  memory  706, 716 before they are accessed and loaded into the processor. The processors may include internal memory sufficient to store the application software instructions.
As used in this application, the terms “component, ” “module, ” “system, ” and the like are intended to include a computer-related entity, such as, but not limited to, hardware, firmware, a combination of hardware and software, software, or software in execution, which are configured to perform particular operations or functions. For example, a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on a wireless device and the wireless device may be referred to as a component. One or more components may reside within a process and/or thread of execution and a component may be localized on one processor or core and/or distributed between two or more processors or cores. In addition, these components may execute from various non-transitory computer readable media having various instructions and/or data structures stored thereon. Components may communicate by way of local and/or remote processes, function or procedure calls, electronic signals, data packets, memory read/writes, and other known network, computer, processor, and/or process related communication methodologies.
A number of different cellular and mobile communication services and standards are available or contemplated in the future, all of which may implement and benefit from the various embodiments. Such services and standards include, e.g., third generation partnership project (3GPP) , long term evolution (LTE) systems, third generation wireless mobile communication technology (3G) , fourth generation  wireless mobile communication technology (4G) , fifth generation wireless mobile communication technology (5G) , global system for mobile communications (GSM) , universal mobile telecommunications system (UMTS) , 3GSM, general packet radio service (GPRS) , code division multiple access (CDMA) systems (e.g., cdmaOne, CDMA1020TM) , enhanced data rates for GSM evolution (EDGE) , advanced mobile phone system (AMPS) , digital AMPS (IS-136/TDMA) , evolution-data optimized (EV-DO) , digital enhanced cordless telecommunications (DECT) , Worldwide Interoperability for Microwave Access (WiMAX) , wireless local area network (WLAN) , Wi-Fi Protected Access I & II (WPA, WPA2) , and integrated digital enhanced network (iDEN) . Each of these technologies involves, for example, the transmission and reception of voice, data, signaling, and/or content messages. It should be understood that any references to terminology and/or technical details related to an individual telecommunication standard or technology are for illustrative purposes only, and are not intended to limit the scope of the claims to a particular communication system or technology unless specifically recited in the claim language.
Various embodiments illustrated and described are provided merely as examples to illustrate various features of the claims. However, features shown and described with respect to any given embodiment are not necessarily limited to the associated embodiment and may be used or combined with other embodiments that are shown and described. Further, the claims are not intended to be limited by any one example embodiment. For example, one or more of the operations of the  methods  500 and 600a-600c may be substituted for or combined with one or more operations of the  methods  500 and 600a-600c.
The following aspects and examples are illustrative only. These examples and their aspects may be combined with aspects of other embodiments or teachings described herein, without limitation.
In a first aspect, a method is performed by a processor of a wireless device. The method includes determining movement information of the wireless device based on data from one or more movement sensors of the wireless device. The method also  includes performing beamforming operations with a second wireless device based on the movement information.
In a second aspects, the method in the first aspect may further include sending the movement information to a second wireless device.
In a third aspect, the method of any of  aspects  1 and 2 may further include negotiating a beam parameter with the second wireless device based on the movement information sent to the second wireless device.
In a fourth aspect, the method of any of aspects 1–3 may further include sending raw sensor data received from the one or more movement sensors of the wireless device to the second wireless device.
In a fifth aspect, in the method of any of aspects 1–4, the one or more movement sensors comprise a gyroscope and the movement information comprises rotational movement information.
In a sixth aspect, in the method of any of aspects 1–5, the one or more sensors comprise an accelerometer and the movement information comprises an acceleration of the wireless device.
In a seventh aspect, the method of any of aspects 1–6 may further include determining whether the movement information exceeds a movement threshold.
In an eighth aspect, the method of any of aspects 1–7 may further include performing the beamforming operations with the second wireless device based on the movement information in response to determining that the movement information of the wireless device exceeds the movement threshold.
In a ninth aspect, the method of any of aspects 1–8 may further include changing a beam configuration of the first wireless device based on the movement information in response to determining that the movement information of the wireless device exceeds the movement threshold.
The foregoing method descriptions and the process flow diagrams are provided merely as illustrative examples and are not intended to require or imply that the operations of various embodiments must be performed in the order presented. As will be appreciated by one of skill in the art the order of operations in the foregoing embodiments may be performed in any order. Words such as “thereafter, ” “then, ” “next, ” etc. are not intended to limit the order of the operations; these words are used to guide the reader through the description of the methods. Further, any reference to claim elements in the singular, for example, using the articles “a, ” “an, ” or “the” is not to be construed as limiting the element to the singular.
Various illustrative logical blocks, modules, components, circuits, and algorithm operations described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and operations have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such embodiment decisions should not be interpreted as causing a departure from the scope of the claims.
The hardware used to implement various illustrative logics, logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but, in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be  implemented as a combination of receiver smart objects, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. Alternatively, some operations or methods may be performed by circuitry that is specific to a given function.
In one or more embodiments, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions or code on a non-transitory computer-readable storage medium or non-transitory processor-readable storage medium. The operations of a method or algorithm disclosed herein may be embodied in a processor-executable software module or processor-executable instructions, which may reside on a non-transitory computer-readable or processor-readable storage medium. Non-transitory computer-readable or processor-readable storage media may be any storage media that may be accessed by a computer or a processor. By way of example but not limitation, such non-transitory computer-readable or processor-readable storage media may include RAM, ROM, EEPROM, FLASH memory, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage smart objects, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer. Disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of non-transitory computer-readable and processor-readable media. Additionally, the operations of a method or algorithm may reside as one or any combination or set of codes and/or instructions on a non-transitory processor-readable storage medium and/or computer-readable storage medium, which may be incorporated into a computer program product.
The preceding description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the claims. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the scope of the claims. Thus, the present disclosure is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the following claims and the principles and novel features disclosed herein.

Claims (40)

  1. A method performed by a processor of a wireless device for managing beamforming for device-to-device communications, comprising:
    determining movement information of the wireless device based on data from one or more movement sensors of the wireless device; and
    performing beamforming operations with a second wireless device based on the movement information.
  2. The method of claim 1, wherein performing beamforming operations with a second wireless device based on the movement information comprises sending the movement information to the second wireless device.
  3. The method of claim 2, further comprising negotiating a beam parameter with the second wireless device based on the movement information sent to the second wireless device.
  4. The method of claim 2, wherein sending the movement information to the second wireless device comprises sending raw sensor data received from the one or more movement sensors of the wireless device to the second wireless device.
  5. The method of claim 1, wherein:
    the one or more movement sensors comprise a gyroscope; and
    the movement information comprises rotational movement information.
  6. The method of claim 1, wherein:
    the one or more sensors comprise an accelerometer; and
    the movement information comprises an acceleration of the wireless device.
  7. The method of claim 1, further comprising determining whether the movement information exceeds a movement threshold.
  8. The method of claim 7, wherein performing beamforming operations with the second wireless device based on the movement information comprises performing the beamforming operations with the second wireless device based on the movement information in response to determining that the movement information of the wireless device exceeds the movement threshold.
  9. The method of claim 7, wherein performing beamforming operations with the second wireless device based on the movement information comprises changing a beam configuration of the wireless device based on the movement information in response to determining that the movement information of the wireless device exceeds the movement threshold.
  10. The method of claim 1, further comprising:
    receiving movement information from the second wireless device; and
    performing beamforming operations with the second wireless device based at least in part on the movement information received from the second wireless device.
  11. A wireless device, comprising:
    a wireless transceiver coupled to a plurality of antennas;
    one or more movement sensors; and
    a processor coupled to the wireless transceiver and one or more movement sensor, and configured with processor-executable instructions to:
    determine movement information of the wireless device based on data from the one or more movement sensors while engaged in device-to-device communications with a second wireless device; and
    perform beamforming operations with the second wireless device based on the movement information.
  12. The wireless device of claim 11, wherein the processor is further configured with processor-executable instructions to perform beamforming operations with a second wireless device based on the movement information by sending the movement information to a second wireless device.
  13. The wireless device of claim 12, wherein the processor is further configured with processor-executable instructions to perform beamforming operations with a second wireless device based on the movement information by negotiating a beam parameter with the second wireless device based on the movement information sent to the second wireless device.
  14. The wireless device of claim 12, wherein the processor is further configured with processor-executable instructions to send raw sensor data received from the one or more movement sensors of the wireless device to the second wireless device.
  15. The wireless device of claim 11, wherein:
    the one or more movement sensors comprise a gyroscope; and
    the movement information comprises rotational motion information.
  16. The wireless device of claim 11, wherein;
    the one or more sensors comprise an accelerometer; and
    the movement information comprises an acceleration of the wireless device.
  17. The wireless device of claim 11, wherein the processor is further configured with processor-executable instructions to determine whether the movement information exceeds a movement threshold.
  18. The wireless device of claim 17, wherein the processor is further configured with processor-executable instructions to perform beamforming operations with a second wireless device based on the movement information by performing the beamforming operations with the second wireless device based on the movement information in response to determining that the movement information of the wireless device exceeds the movement threshold.
  19. The wireless device of claim 17, wherein the processor is further configured with processor-executable instructions to perform beamforming operations with a second wireless device based on the movement information by changing a beam configuration of the wireless device based on the movement information in response to determining that the movement information of the wireless device exceeds the movement threshold.
  20. The wireless device of claim 11, wherein the processor is further configured with processor-executable instructions to:
    receive movement information from the second wireless device; and
    perform beamforming operations with the second wireless device based at least in part on the movement information received from the second wireless device.
  21. A wireless device, comprising:
    means for detecting movement of the wireless device and generating movement information based on detected movement; and
    means for performing beamforming operations with a second wireless device based on the movement information.
  22. The wireless device of claim 21, wherein means for performing beamforming operations with a second wireless device based on the movement information comprises means for sending the movement information to a second wireless device.
  23. The wireless device of claim 22, further comprising means for negotiating a beam parameter with the second wireless device based on the movement information sent to the second wireless device.
  24. The wireless device of claim 22, wherein means for sending the movement information to the second wireless device comprises means for sending raw sensor data to the second wireless device.
  25. The wireless device of claim 21, wherein:
    means for detecting movement of the wireless device and generating movement information based on detected movement comprises a gyroscope; and
    the movement information comprises rotational movement information.
  26. The wireless device of claim 21, wherein:
    means for detecting movement of the wireless device and generating movement information based on detected movement comprises an accelerometer; and
    the movement information comprises an acceleration of the wireless device.
  27. The wireless device of claim 21, further comprising means for determining whether the movement information exceeds a movement threshold.
  28. The wireless device of claim 27, wherein means for performing beamforming operations with the second wireless device based on the movement information comprises means for performing the beamforming operations with the second wireless device based on the movement information in response to determining that the movement information of the wireless device exceeds the movement threshold.
  29. The wireless device of claim 27, wherein means for performing beamforming operations with the second wireless device based on the movement information  comprises means for changing a beam configuration of the wireless device based on the movement information in response to determining that the movement information of the wireless device exceeds the movement threshold.
  30. The wireless device of claim 21, further comprising:
    means for receiving movement information from the second wireless device; and
    means for performing beamforming operations with the second wireless device based at least in part on the movement information received from the second wireless device.
  31. A non-transitory processor-readable medium having stored thereon processor-executable instructions configured to cause a processor of a wireless device to perform operations comprising:
    determining movement information of the wireless device based on data from one or more movement sensors of the wireless device; and
    performing beamforming operations with a second wireless device based on the movement information.
  32. The non-transitory processor readable medium of claim 31, wherein the stored processor-executable instructions are configured to cause a processor of a wireless device to perform operations such that performing beamforming operations with a second wireless device based on the movement information comprises sending the movement information to a second wireless device.
  33. The non-transitory processor readable medium of claim 32, wherein the stored processor-executable instructions are configured to cause a processor of a wireless device to perform operations further comprising negotiating a beam parameter with  the second wireless device based on the movement information sent to the second wireless device.
  34. The non-transitory processor readable medium of claim 32, wherein the stored processor-executable instructions are configured to cause a processor of a wireless device to perform operations such that sending the movement information to the second wireless device comprises sending raw sensor data received from the one or more movement sensors of the wireless device to the second wireless device.
  35. The non-transitory processor readable medium of claim 31, wherein:
    the one or more movement sensors comprise a gyroscope; and
    the movement information comprises rotational movement information.
  36. The non-transitory processor readable medium of claim 31, wherein:
    the one or more sensors comprise an accelerometer; and
    the movement information comprises an acceleration of the wireless device.
  37. The non-transitory processor readable medium of claim 31, wherein the stored processor-executable instructions are configured to cause a processor of a wireless device to perform operations further comprising determining whether the movement information exceeds a movement threshold.
  38. The non-transitory processor readable medium of claim 37, wherein the stored processor-executable instructions are configured to cause a processor of a wireless device to perform operations such that performing beamforming operations with the second wireless device based on the movement information comprises performing the beamforming operations with the second wireless device based on the movement information in response to determining that the movement information of the wireless device exceeds the movement threshold.
  39. The non-transitory processor readable medium of claim 37, wherein the stored processor-executable instructions are configured to cause a processor of a wireless device to perform operations such that performing beamforming operations with the second wireless device based on the movement information comprises changing a beam configuration of the wireless device based on the movement information in response to determining that the movement information of the wireless device exceeds the movement threshold.
  40. The non-transitory processor readable medium of claim 31, wherein the stored processor-executable instructions are configured to cause a processor of a wireless device to perform operations further comprising:
    receiving movement information from the second wireless device; and
    performing beamforming operations with the second wireless device based at least in part on the movement information received from the second wireless device.
PCT/CN2020/092982 2020-05-28 2020-05-28 Managing beamforming for device-to-device communications WO2021237586A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/092982 WO2021237586A1 (en) 2020-05-28 2020-05-28 Managing beamforming for device-to-device communications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/092982 WO2021237586A1 (en) 2020-05-28 2020-05-28 Managing beamforming for device-to-device communications

Publications (1)

Publication Number Publication Date
WO2021237586A1 true WO2021237586A1 (en) 2021-12-02

Family

ID=78745421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092982 WO2021237586A1 (en) 2020-05-28 2020-05-28 Managing beamforming for device-to-device communications

Country Status (1)

Country Link
WO (1) WO2021237586A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015096024A1 (en) * 2013-12-24 2015-07-02 Nec Corporation Method and apparatus for improving performance of cellular and d2d communications
CN105989748A (en) * 2015-03-20 2016-10-05 现代自动车株式会社 Accident information management appratus, vehicle including the same, and accident information management method
US20170155439A1 (en) * 2011-07-15 2017-06-01 Samsung Electronics Co., Ltd Apparatus and method for beam locking in a wireless communication system
US20170195834A1 (en) * 2016-01-05 2017-07-06 Samsung Electronics Co., Ltd. Method and apparatus for estimating location in a terminal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170155439A1 (en) * 2011-07-15 2017-06-01 Samsung Electronics Co., Ltd Apparatus and method for beam locking in a wireless communication system
WO2015096024A1 (en) * 2013-12-24 2015-07-02 Nec Corporation Method and apparatus for improving performance of cellular and d2d communications
CN105989748A (en) * 2015-03-20 2016-10-05 现代自动车株式会社 Accident information management appratus, vehicle including the same, and accident information management method
US20170195834A1 (en) * 2016-01-05 2017-07-06 Samsung Electronics Co., Ltd. Method and apparatus for estimating location in a terminal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Enhancements to multi-beam operation", 3GPP DRAFT; R1-1903231 ENHANCEMENTS TO MULTI-BEAM OPERATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20190225 - 20190301, 20 February 2019 (2019-02-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051600927 *

Similar Documents

Publication Publication Date Title
US11690081B2 (en) Bandwidth part (BWP) for unicast/multicast and resource allocation for multicast
US11671849B2 (en) Autonomous beam switching
US20210266923A1 (en) Generating Resource Allocation Coordination Information for Sidelink Communications
WO2021258259A1 (en) Determining a channel state for wireless communication
US20210266919A1 (en) Generating Coordination Information for Sidelink Communications
US11589394B2 (en) Managing beam failure recovery random access
US11523301B2 (en) Physical uplink control channel with buffer status report
US11758513B2 (en) Physical uplink control channel with uplink message short data field
US11751195B2 (en) Control signaling for multicast communications
WO2021237586A1 (en) Managing beamforming for device-to-device communications
EP4014526A1 (en) Providing secure communications between computing devices
WO2021174435A1 (en) Managing a downlink bit rate
US11791885B2 (en) Managing beam selection for a multi-subscription wireless device
US11778545B2 (en) Coverage enhancement for initial access with feedback via PRACH sequence
WO2021243547A1 (en) Managing transmission control protocol communication with a communication network
WO2021258392A1 (en) Dynamic srs configuration based on cqi in 5g network
WO2022205051A1 (en) Managing downlink traffic reception and cross-link interference
WO2022051985A1 (en) Managing a communication link for transfer control protocol communications
US20230020898A1 (en) Managing Uplink Timing Advance Configuration
WO2021253369A1 (en) Methods for managing network communication
US20210367904A1 (en) Processing data using remote network computing resources
WO2022165826A1 (en) Frames-per-second thermal management

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938468

Country of ref document: EP

Kind code of ref document: A1