WO2021243547A1 - Managing transmission control protocol communication with a communication network - Google Patents

Managing transmission control protocol communication with a communication network Download PDF

Info

Publication number
WO2021243547A1
WO2021243547A1 PCT/CN2020/093873 CN2020093873W WO2021243547A1 WO 2021243547 A1 WO2021243547 A1 WO 2021243547A1 CN 2020093873 W CN2020093873 W CN 2020093873W WO 2021243547 A1 WO2021243547 A1 WO 2021243547A1
Authority
WO
WIPO (PCT)
Prior art keywords
modem
transmission
processor
wireless device
packets
Prior art date
Application number
PCT/CN2020/093873
Other languages
French (fr)
Inventor
Mingyan Wang
Yong Hou
Alok MITRA
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/093873 priority Critical patent/WO2021243547A1/en
Publication of WO2021243547A1 publication Critical patent/WO2021243547A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/19Flow control; Congestion control at layers above the network layer
    • H04L47/193Flow control; Congestion control at layers above the network layer at the transport layer, e.g. TCP related

Definitions

  • the Transfer Control Protocol uses an end-to-end flow control protocol to prevent a data sender from sending data too rapidly for a receiver device to receive and process it.
  • the standard flow control protocol provides that the sender will stop or suspend the sending of all uplink packets in the modem, including data packets and acknowledgement (Ack) packets. This may be triggered when a buffer of the modem data path approaches empty (i.e., falls below a threshold) .
  • suspending the Ack packets is undesirable. Ack packets are much smaller than data packets, so suspending them does not substantially alleviate the detected flow control issue. Further, suspending the Ack packets negatively affects downlink TCP throughput, because suspending the uplink Ack packets may trigger the sending device to retransmit data packets that were in fact received, and may lead to a retransmission timeout (RTO) in which the sender is missing too many Acks from the receiver and temporarily stops sending data packets.
  • RTO retransmission timeout
  • Various aspects include systems and methods for managing transmission control protocol communication with a communication network performed by a processor of a wireless device.
  • Various aspects may enable a wireless device to perform a modified flow control procedure that suspends only uplink data packets and does not suspend (i.e., continues to send) uplink Ack packets.
  • sending the Ack packets may reduce or prevent a reduction in data packets sent by a TCP sender device to the wireless device.
  • Various aspects may include determining whether a flow control operation is implemented, and caching data packets scheduled for transmission in a memory coupled to the processor and providing acknowledgement (Ack) packets to a modem for transmission to the communication network in response to determining that a flow control operation is implemented.
  • providing the Ack packets to the modem for transmission to the communication network may include storing the Ack packets in a transmission buffer of the modem in a manner that enables transmission by the modem to the communication network without delay.
  • Various aspects may include providing cached data packets to the modem for transmission by the modem to the communication network after all Ack packets have been sent to the modem.
  • Various aspects may include providing cached data packets to the modem for transmission by the modem to the communication network in response to determining that the flow control operation is no longer implemented.
  • Various aspects may include resuming normal TCP operations after providing all cached data packets to the modem for transmission.
  • Various aspects may include receiving the data packets and the Ack packets from a TCP packet source.
  • receiving the data packets and the Ack packets from a TCP packet source may include receiving the data packets and the Ack packets from a TCP packet source in a tethered call session.
  • Further aspects include a wireless device having a processor configured to perform operations of any of the methods summarized above. Further aspects may include processing devices for use in a wireless device configured with processor-executable instructions to perform operations of any of the methods summarized above. Further aspects may include a non-transitory processor-readable storage medium having stored thereon processor-executable instructions configured to cause a processor of a wireless device to perform operations of any of the methods summarized above. Further aspects include a wireless device having means for performing functions of any of the methods summarized above. Further aspects include a system on chip for use in a wireless device that includes a processor configured to perform one or more operations of any of the methods summarized above. Further aspects include a system in a package that includes two systems on chip for use in a wireless device that includes a processor configured to perform one or more operations of any of the methods summarized above.
  • FIG. 1 is a system block diagram illustrating an example communications system suitable for use with various embodiments.
  • FIG. 2 is a component block diagram illustrating an example computing system suitable for use with various embodiments.
  • FIG. 3 is a component block diagram of an example software architecture including a radio protocol stack for the user and control planes in wireless communications suitable for use with various embodiments.
  • FIG. 4 is a component block diagram illustrating a system configured to manage TCP communication with a communication network in accordance with various embodiments.
  • FIG. 5 is a notional flow diagram illustrating non-flow control operations according to various embodiments.
  • FIG. 6 is a notional flow diagram illustrating flow control operations according to various embodiments.
  • FIG. 7 is a process flow diagram illustrating a method performed by a processor of a wireless device for managing TCP communication with a communication network according to various embodiments
  • FIGS. 8–11 are process flow diagrams illustrating operations that may be performed by a processor of a wireless device as part of the method for managing TCP communication with a communication network according to various embodiments.
  • FIG. 12 is a component block diagram of a wireless communication device suitable for use with various embodiments.
  • wireless device is used herein to refer to any one or all of wireless router devices, wireless appliances, cellular telephones, smartphones, portable computing devices, personal or mobile multi-media players, laptop computers, tablet computers, smartbooks, ultrabooks, palmtop computers, wireless electronic mail receivers, multimedia Internet-enabled cellular telephones, medical devices and equipment, biometric sensors/devices, wearable devices including smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (for example, smart rings and smart bracelets) , entertainment devices (for example, wireless gaming controllers, music and video players, satellite radios, etc.
  • wireless-network enabled Internet of Things (IoT) devices including smart meters/sensors, industrial manufacturing equipment, large and small machinery and appliances for home or enterprise use, wireless communication elements within autonomous and semiautonomous vehicles, wireless devices affixed to or incorporated into various mobile platforms, global positioning system devices, and similar electronic devices that include a memory, wireless communication components and a programmable processor.
  • IoT Internet of Things
  • SOC system on chip
  • a single SOC may contain circuitry for digital, analog, mixed-signal, and radio-frequency functions.
  • a single SOC also may include any number of general purpose or specialized processors (digital signal processors, modem processors, video processors, etc. ) , memory blocks (e.g., ROM, RAM, Flash, etc. ) , and resources (e.g., timers, voltage regulators, oscillators, etc. ) .
  • SOCs also may include software for controlling the integrated resources and processors, as well as for controlling peripheral devices.
  • SIP system in a package
  • a SIP may include a single substrate on which multiple IC chips or semiconductor dies are stacked in a vertical configuration.
  • the SIP may include one or more multi-chip modules (MCMs) on which multiple ICs or semiconductor dies are packaged into a unifying substrate.
  • MCMs multi-chip modules
  • a SIP also may include multiple independent SOCs coupled together via high speed communication circuitry and packaged in close proximity, such as on a single motherboard or in a single wireless device. The proximity of the SOCs facilitates high speed communications and the sharing of memory and resources.
  • TCP uses an end-to-end flow control protocol to prevent a data sender from sending data too rapidly for a receiver device to receive and process it.
  • TCP flow control may employ a sliding window flow control protocol.
  • a receiver device e.g., a wireless device
  • the sending device may send only up to that amount of data and then wait for an Ack packet before sending additional data to the receiver device.
  • the standard flow control protocol provides that the sender will stop or suspend the sending of all uplink packets in the modem, including data packets and acknowledgement (Ack) packets. This may be triggered when a buffer of the modem data path approaches empty (i.e., falls below a threshold) .
  • Ack acknowledgement
  • suspending the transmission of Ack packets is undesirable as doing so negatively affects downlink TCP throughput. This is because suspending the uplink Ack packets may trigger the sending device to retransmit data packets that were in fact received, and may lead to a retransmission timeout (RTO) in which the sender temporarily stops sending data packets in response to missing too many Acks from the receiver.
  • RTO retransmission timeout
  • Ack packets are much smaller than data packets, so suspending the transmission of Ack packets does not substantially alleviate a detected flow control issue.
  • Various embodiments enable a wireless device to perform a TCP flow control procedure that distinguishes between uplink data packets and Ack packets, enabling suspension of uplink data packet transmissions while continuing the transmission of uplink Ack packets.
  • data packets and Ack packets flow to a modem of the wireless device and are buffered for transmission in a modem buffer.
  • the TCP packet flow may be directed first to an application processor of the wireless device that is configured to distinguish data packets from Ack packets, store TCP data packets in a buffer memory (e.g., a cache memory) of the application processor buffer memory, and pass Ack packets to the modem for transmission to the communication network.
  • the application processor may pass the stored TCP data packets to the modem for transmission to the communication network until the application processor buffer is clear of TCP data packets.
  • all of the stored data packets may be sent from the application processor buffer to the modem before new data packets are sent to the modem.
  • the wireless device may thereafter return to normal flow operations.
  • the modified flow control procedure may have particular utility when a wireless device receives data from another device for transmission to the communication network (e.g., such as from a “tethered” client device) .
  • Various embodiments improve the operations of a wireless device and a communication network by enabling the wireless device to perform a TCP flow control procedure in a manner that enables continued transmission of Ack packets so that a TCP sender device is informed that the wireless device is receiving TCP data packets, thereby avoiding circumstances in which the sender device might reduce the amount or rate of data packet transmissions to the wireless device.
  • various embodiments improve the operations of a wireless device and a communication network by improving the efficiency of communication operations of the wireless device and the communication network.
  • FIG. 1 shows a system block diagram illustrating an example communications system.
  • the communications system 100 may be an 5G NR network, or any other suitable network such as an LTE network.
  • the communications system 100 may include a heterogeneous network architecture that includes a core network 140 and a variety of wireless devices (illustrated as wireless device 120a-120e in FIG. 1) .
  • the communications system 100 also may include a number of base stations (illustrated as the BS 110a, the BS 110b, the BS 110c, and the BS 110d) and other network entities.
  • a base station 110a-110d may provide communication coverage for a macro cell, a pico cell, a femto cell, another type of cell, or a combination thereof.
  • a macro cell may cover a relatively large geographic area (for example, several kilometers in radius) and may allow unrestricted access by wireless devices with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by wireless devices with service subscription.
  • a femto cell may cover a relatively small geographic area (for example, a home) and may allow restricted access by wireless devices having association with the femto cell (for example, wireless devices in a closed subscriber group (CSG) ) .
  • a base station for a macro cell may be referred to as a macro BS.
  • a base station for a pico cell may be referred to as a pico BS.
  • a base station for a femto cell may be referred to as a femto BS or a home BS.
  • a base station 110a may be a macro BS for a macro cell 102a
  • a base station 110b may be a pico BS for a pico cell 102b
  • a base station 110c may be a femto BS for a femto cell 102c.
  • a base station 110a-110d may support one or multiple (for example, three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • TRP AP
  • AP computing platform B
  • 5G NB 5G NB
  • cell cell
  • a cell may not be stationary, and the geographic area of the cell may move according to the location of a mobile base station.
  • the base stations 110a-110d may be interconnected to one another as well as to one or more other base stations or network computing platforms (not illustrated) in the communications system 100 through various types of backhaul interfaces, such as a direct physical connection, a virtual network, or a combination thereof using any suitable transport network
  • the base station 110a-110d may communicate with the core network 140 over a wired or wireless communication link 126.
  • the wireless device 120a-120e may communicate with the base station 110a-110d over a wireless communication link 122.
  • the wired communication link 126 may use a variety of wired networks (e.g., Ethernet, TV cable, telephony, fiber optic and other forms of physical network connections) that may use one or more wired communication protocols, such as Ethernet, Point-To-Point protocol, High-Level Data Link Control (HDLC) , Advanced Data Communication Control Protocol (RRCADCCP) , and Transmission Control Protocol/Internet Protocol (TCP/IP) .
  • wired networks e.g., Ethernet, TV cable, telephony, fiber optic and other forms of physical network connections
  • wired communication protocols such as Ethernet, Point-To-Point protocol, High-Level Data Link Control (HDLC) , Advanced Data Communication Control Protocol (RRCADCCP) , and Transmission Control Protocol/Internet Protocol (TCP/IP) .
  • HDMI High-Level Data Link Control
  • RRCADCCP Advanced Data Communication Control Protocol
  • TCP/IP Transmission Control Protocol/Internet Protocol
  • the communications system 100 also may include relay stations (e.g., relay BS 110d) .
  • a relay station is an entity that can receive a transmission of data from an upstream station (for example, a base station or a wireless device) and send a transmission of the data to a downstream station (for example, a wireless device or a base station) .
  • a relay station also may be a wireless device that can relay transmissions for other wireless devices.
  • a relay station 110d may communicate with macro the base station 110a and the wireless device 120d in order to facilitate communication between the base station 110a and the wireless device 120d.
  • a relay station also may be referred to as a relay base station, a relay base station, a relay, etc.
  • the communications system 100 may be a heterogeneous network that includes base stations of different types, for example, macro base stations, pico base stations, femto base stations, relay base stations, etc. These different types of base stations may have different transmit power levels, different coverage areas, and different impacts on interference in communications system 100. For example, macro base stations may have a high transmit power level (for example, 5 to 40 Watts) whereas pico base stations, femto base stations, and relay base stations may have lower transmit power levels (for example, 0.1 to 2 Watts) .
  • macro base stations may have a high transmit power level (for example, 5 to 40 Watts) whereas pico base stations, femto base stations, and relay base stations may have lower transmit power levels (for example, 0.1 to 2 Watts) .
  • a network controller 130 may couple to a set of base stations and may provide coordination and control for these base stations.
  • the network controller 130 may communicate with the base stations via a backhaul.
  • the base stations also may communicate with one another, for example, directly or indirectly via a wireless or wireline backhaul.
  • the wireless devices 120a, 120b, 120c may be dispersed throughout communications system 100, and each wireless device may be stationary or mobile.
  • a wireless device also may be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, etc.
  • the wireless communication links 122 and 124 may include a plurality of carrier signals, frequencies, or frequency bands, each of which may include a plurality of logical channels.
  • the wireless communication links 122 and 124 may utilize one or more radio access technologies (RATs) .
  • RATs radio access technologies
  • Examples of RATs that may be used in a wireless communication link include 3GPP LTE, 3G, 4G, 5G (e.g., NR) , GSM, Code Division Multiple Access (CDMA) , Wideband Code Division Multiple Access (WCDMA) , Worldwide Interoperability for Microwave Access (WiMAX) , Time Division Multiple Access (TDMA) , and other mobile telephony communication technologies cellular RATs.
  • medium range protocols such as Wi-Fi, LTE-U, LTE-Direct, LAA, MuLTEfire
  • relatively short range RATs such as ZigBee, Bluetooth, and Bluetooth Low Energy (LE) .
  • Certain wireless networks utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink.
  • OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc.
  • K orthogonal subcarriers
  • Each subcarrier may be modulated with data.
  • modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM.
  • the spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth.
  • the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (called a “resource block” ) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal Fast File Transfer (FFT) size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10 or 20 megahertz (MHz) , respectively.
  • the system bandwidth also may be partitioned into subbands. For example, a subband may cover 1.08 MHz (i.e., 6 resource blocks) , and there may be 1, 2, 4, 8 or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
  • NR new radio
  • 5G 5G network
  • NR may utilize OFDM with a cyclic prefix (CP) on the uplink (UL) and downlink (DL) and include support for half-duplex operation using time division duplex (TDD) .
  • CP cyclic prefix
  • TDD time division duplex
  • a single component carrier bandwidth of 100 MHz may be supported.
  • NR resource blocks may span 12 sub-carriers with a sub-carrier bandwidth of 75 kHz over a 0.1 millisecond (ms) duration.
  • Each radio frame may consist of 50 subframes with a length of 10 ms. Consequently, each subframe may have a length of 0.2 ms.
  • Each subframe may indicate a link direction (i.e., DL or UL) for data transmission and the link direction for each subframe may be dynamically switched.
  • Each subframe may include DL/UL data as well as DL/UL control data.
  • Multiple Input Multiple Output (MIMO) transmissions with precoding also may be supported.
  • MIMO configurations in the DL may support up to eight transmit antennas with multi-layer DL transmissions up to eight streams and up to two streams per wireless device. Multi-layer transmissions with up to 2 streams per wireless device may be supported.
  • NR may support a different air interface, other than an OFDM-based air interface.
  • Some wireless devices may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) wireless devices.
  • MTC and eMTC wireless devices include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a base station, another device (for example, remote device) , or some other entity.
  • a wireless computing platform may provide, for example, connectivity for or to a network (for example, a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some wireless devices may be considered Internet-of-Things (IoT) devices or may be implemented as NB-IoT (narrowband internet of things) devices.
  • the wireless device 120a-120e may be included inside a housing that houses components of the wireless device 120a-120e, such as processor components, memory components, similar components, or a combination thereof.
  • any number of communications systems and any number of wireless networks may be deployed in a given geographic area.
  • Each communications system and wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies.
  • RAT also may be referred to as a radio technology, an air interface, etc.
  • a frequency also may be referred to as a carrier, a frequency channel, etc.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between communications systems of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more wireless devices may communicate directly using one or more sidelink channels (for example, without using a base station 110a-d as an intermediary to communicate with one another) .
  • the wireless devices 120a-e may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, or similar protocol) , a mesh network, or similar networks, or combinations thereof.
  • V2X vehicle-to-everything
  • the wireless device 120a-120e may perform scheduling operations, resource selection operations, as well as other operations described elsewhere herein as being performed by the base station 110a-110d.
  • FIG. 2 shows a component block diagram illustrating an example computing system in the form of a SIP 200 architecture that may be used in wireless devices implementing various embodiments.
  • the illustrated example SIP 200 includes a two SOCs 202, 204, coupled to a clock 206, a voltage regulator 208, and a wireless transceiver 266 configured to send and receive wireless communications via an antenna (not shown) to/from wireless devices, such as a base station 110a.
  • the first SOC 202 may operate as central processing unit (CPU) of the wireless device that carries out the instructions of software application programs by performing the arithmetic, logical, control and input/output (I/O) operations specified by the instructions.
  • CPU central processing unit
  • the second SOC 204 may operate as a specialized processing unit.
  • the second SOC 204 may operate as a specialized 5G processing unit responsible for managing high volume, high speed (e.g., 5 Gbps, etc. ) , or very high frequency short wave length (e.g., 28 GHz mmWave spectrum, etc. ) communications.
  • high speed e.g., 5 Gbps, etc.
  • very high frequency short wave length e.g., 28 GHz mmWave spectrum, etc.
  • the first SOC 202 may include a digital signal processor (DSP) 210, a modem processor 212, a graphics processor 214, an application processor 216, one or more coprocessors 218 (e.g., vector co-processor) connected to one or more of the processors, memory 220, custom circuity 222, system components and resources 224, an interconnection/bus module 226, one or more temperature sensors 230, a thermal management unit 232, and a thermal power envelope (TPE) component 234.
  • DSP digital signal processor
  • modem processor 212 e.g., a graphics processor 214
  • an application processor 216 e.g., one or more coprocessors 218 (e.g., vector co-processor) connected to one or more of the processors, memory 220, custom circuity 222, system components and resources 224, an interconnection/bus module 226, one or more temperature sensors 230, a thermal management unit 232, and a thermal power envelope (TPE) component 234.
  • TPE
  • the second SOC 204 may include a 5G modem processor 252, a power management unit 254, an interconnection/bus module 264, a plurality of mmWave transceivers 256, memory 258, and various additional processors 260, such as an applications processor, packet processor, etc.
  • Each processor 210, 212, 214, 216, 218, 252, 260 may include one or more cores, and each processor/core may perform operations independent of the other processors/cores.
  • the first SOC 202 may include a processor that executes a first type of operating system (e.g., FreeBSD, LINUX, OS X, etc. ) and a processor that executes a second type of operating system (e.g., MICROSOFT WINDOWS 10) .
  • a first type of operating system e.g., FreeBSD, LINUX, OS X, etc.
  • a second type of operating system e.g., MICROSOFT WINDOWS 10.
  • processors 210, 212, 214, 216, 218, 252, 260 may be included as part of a processor cluster architecture (e.g., a synchronous processor cluster architecture, an asynchronous or heterogeneous processor cluster architecture, etc. ) .
  • a processor cluster architecture e.g., a synchronous processor cluster architecture, an asynchronous or heterogeneous processor cluster architecture, etc.
  • the first and second SOC 202, 204 may include various system components, resources and custom circuitry for managing sensor data, analog-to-digital conversions, wireless data transmissions, and for performing other specialized operations, such as decoding data packets and processing encoded audio and video signals for rendering in a web browser.
  • the system components and resources 224 of the first SOC 202 may include power amplifiers, voltage regulators, oscillators, phase-locked loops, peripheral bridges, data controllers, memory controllers, system controllers, access ports, timers, and other similar components used to support the processors and software clients running on a wireless device.
  • the system components and resources 224 or custom circuitry 222 also may include circuitry to interface with peripheral devices, such as cameras, electronic displays, wireless communication devices, external memory chips, etc.
  • the first and second SOC 202, 204 may communicate via interconnection/bus module 250.
  • the various processors 210, 212, 214, 216, 218, may be interconnected to one or more memory elements 220, system components and resources 224, and custom circuitry 222, and a thermal management unit 232 via an interconnection/bus module 226.
  • the processor 252 may be interconnected to the power management unit 254, the mmWave transceivers 256, memory 258, and various additional processors 260 via the interconnection/bus module 264.
  • the interconnection/bus module 226, 250, 264 may include an array of reconfigurable logic gates or implement a bus architecture (e.g., CoreConnect, AMBA, etc. ) . Communications may be provided by advanced interconnects, such as high-performance networks-on chip (NoCs) .
  • NoCs high-performance networks-on chip
  • the first or second SOCs 202, 204 may further include an input/output module (not illustrated) for communicating with resources external to the SOC, such as a clock 206 and a voltage regulator 208.
  • resources external to the SOC e.g., clock 206, voltage regulator 208 may be shared by two or more of the internal SOC processors/cores.
  • implementations may be implemented in a wide variety of computing systems, which may include a single processor, multiple processors, multicore processors, or any combination thereof.
  • FIG. 3 shows a component block diagram of an example of a software architecture 300 including a radio protocol stack for the user and control planes in wireless communications.
  • the software architecture 300 including a radio protocol stack for the user and control planes in wireless communications between a base station 350 (e.g., the base station 110a) and a wireless device 320 (e.g., the wireless device 120a-120e, 200) .
  • the wireless device 320 may implement the software architecture 300 to communicate with the base station 350 of a communication system (e.g., 100) .
  • layers in software architecture 300 may form logical connections with corresponding layers in software of the base station 350.
  • the software architecture 300 may be distributed among one or more processors (e.g., the processors 212, 214, 216, 218, 252, 260) . While illustrated with respect to one radio protocol stack, in a multi-SIM (subscriber identity module) wireless device, the software architecture 300 may include multiple protocol stacks, each of which may be associated with a different SIM (e.g., two protocol stacks associated with two SIMs, respectively, in a dual-SIM wireless communication device) . While described below with reference to LTE communication layers, the software architecture 300 may support any of variety of standards and protocols for wireless communications, or may include additional protocol stacks that support any of variety of standards and protocols wireless communications.
  • processors e.g., the processors 212, 214, 216, 218, 252, 260
  • the software architecture 300 may include multiple protocol stacks, each of which may be associated with a different SIM (e.g., two protocol stacks associated with two SIMs, respectively, in a dual-SIM wireless communication device) . While described below with
  • the software architecture 300 may include a Non-Access Stratum (NAS) 302 and an Access Stratum (AS) 304.
  • the NAS 302 may include functions and protocols to support packet filtering, security management, mobility control, session management, and traffic and signaling between a SIM (s) of the wireless device (e.g., SIM(s) 204) and its core network 140.
  • the AS 304 may include functions and protocols that support communication between a SIM (s) (e.g., SIM (s) 204) and entities of supported access networks (e.g., a base station) .
  • the AS 304 may include at least three layers (Layer 1, Layer 2, and Layer 3) , each of which may contain various sub-layers.
  • Layer 1 (L1) of the AS 304 may be a physical layer (PHY) 306, which may oversee functions that enable transmission or reception over the air interface via a wireless transceiver (for example, 266) .
  • PHY physical layer
  • Examples of such physical layer 306 functions may include cyclic redundancy check (CRC) attachment, coding blocks, scrambling and descrambling, modulation and demodulation, signal measurements, MIMO, etc.
  • the physical layer may include various logical channels, including the Physical Downlink Control Channel (PDCCH) and the Physical
  • PDSCH Downlink Shared Channel
  • Layer 2 (L2) of the AS 304 may be responsible for the link between the wireless device 320 and the base station 350 over the physical layer 306.
  • Layer 2 may include a media access control (MAC) sublayer 308, a radio link control (RLC) sublayer 310, and a packet data convergence protocol (PDCP) 312 sublayer, each of which form logical connections terminating at the base station 350.
  • MAC media access control
  • RLC radio link control
  • PDCP packet data convergence protocol
  • Layer 3 (L3) of the AS 304 may include a radio resource control (RRC) sublayer 3.
  • RRC radio resource control
  • the software architecture 300 may include additional Layer 3 sublayers, as well as various upper layers above Layer 3.
  • the RRC sublayer 313 may provide functions INCLUDING broadcasting system information, paging, and establishing and releasing an RRC signaling connection between the wireless device 320 and the base station 350.
  • the PDCP sublayer 312 may provide uplink functions including multiplexing between different radio bearers and logical channels, sequence number addition, handover data handling, integrity protection, ciphering, and header compression.
  • the PDCP sublayer 312 may provide functions that include in-sequence delivery of data packets, duplicate data packet detection, integrity validation, deciphering, and header decompression.
  • the RLC sublayer 310 may provide segmentation and concatenation of upper layer data packets, retransmission of lost data packets, and Automatic Repeat Request (ARQ) .
  • ARQ Automatic Repeat Request
  • the RLC sublayer 310 functions may include reordering of data packets to compensate for out-of-order reception, reassembly of upper layer data packets, and ARQ.
  • MAC sublayer 308 may provide functions including multiplexing between logical and transport channels, random access procedure, logical channel priority, and hybrid-ARQ (HARQ) operations.
  • the MAC layer functions may include channel mapping within a cell, de-multiplexing, discontinuous reception (DRX) , and HARQ operations.
  • the software architecture 300 may provide functions to transmit data through physical media
  • the software architecture 300 may further include at least one host layer 314 to provide data transfer services to various applications in the wireless device 320.
  • application-specific functions provided by the at least one host layer 314 may provide an interface between the software architecture and the general purpose processor 206.
  • the software architecture 300 may include one or more higher logical layer (e.g., transport, session, presentation, application, etc. ) that provide host layer functions.
  • the software architecture 300 may include a network layer (e.g., Internet Protocol (IP) layer) in which a logical connection terminates at a packet data network (PDN) gateway (PGW) .
  • IP Internet Protocol
  • PGW packet data network gateway
  • the software architecture 300 may include an application layer in which a logical connection terminates at another device (e.g., end user device, server, etc. ) .
  • the software architecture 300 may further include in the AS 304 a hardware interface 316 between the physical layer 306 and the communication hardware (e.g., one or more radio frequency (RF) transceivers) .
  • RF radio frequency
  • FIG. 4 is a component block diagram illustrating a system 400 configured to manage network communication performed by a processor of a wireless device in accordance with various embodiments.
  • system 400 may include a wireless device 402 (for example, wireless device 120a-120e, 200, 320) configured to communicate with a wireless communication network 424.
  • the wireless communication network 424 may include base stations 110a-110d, 350 and other network devices and systems as illustrated in FIG. 1.
  • the wireless device 402 may include one or more processors 428 coupled to electronic storage 426, a modem (e.g., 252) , and a wireless transceiver (e.g., 266) .
  • the modem 252 and the wireless transceiver 266 may be configured to receive messages to be sent in uplink transmissions from the one or more processors 428, and to transmit such messages via an antenna (not shown) to a wireless communication network 424.
  • the modem 252 and the wireless transceiver 266 may be configured to receive messages from the wireless communication network 424 and pass the messages (e.g., via a modem that demodulates the messages) to the one or more processors 428.
  • Machine-readable instructions 406 may include one or more instruction modules.
  • the instruction modules may include computer program modules.
  • the instruction modules may include one or more of a flow control operation module 408, a data packet handling module 410, an Ack packet handling module 412, or other instruction modules.
  • the flow control operation module 408 may be configured to determine whether a flow control operation is implemented.
  • the flow control operation module 408 may be configured to resume normal TCP operations after providing all cached data packets to the modem for transmission.
  • the data packet handling module 410 may be configured to cache data packets scheduled for transmission in a memory coupled to the processor.
  • the data packet handling module 410 may be configured to provide cached data packets to the modem for transmission by the modem to the communication network after all Ack packets have been sent to the modem.
  • the data packet handling module 410 may be configured to provide cached data packets to the modem for transmission by the modem to the communication network in response to determining that the flow control operation is no longer implemented.
  • the Ack packet handling module 412 may be configured to provide Ack packets to a modem for transmission to the communication network in response to determining that a flow control operation is implemented.
  • the Ack packet handling module 412 may be configured to store the Ack packets in a transmission buffer of the modem in a manner that enables transmission by the modem to the communication network without delay, such as during a next uplink transmission availability.
  • the wireless device 402 may include an electronic storage 426, one or more processors 428, and other components.
  • the wireless device 402 may include communication lines, or ports to enable the exchange of information with a network and/or other computing platforms.
  • the illustration of the wireless device 402 in FIG. 4 is not intended to be limiting.
  • the wireless device 402 may include a plurality of hardware, software, and/or firmware components operating together to provide the functionality attributed herein to the wireless device 402.
  • the electronic storage 426 may comprise non-transitory storage media that electronically stores information.
  • the electronic storage media of the electronic storage 426 may include one or both of system storage that is provided integrally (i.e., substantially non-removable) with wireless device 402 and/or removable storage that is removably connectable to wireless device 402 via, for example, a port (e.g., a universal serial bus (USB) port, a firewire port, etc. ) or a drive (e.g., a disk drive, etc. ) .
  • the electronic storage 426 may include one or more of optically readable storage media (e.g., optical disks, etc.
  • Electronic storage 426 may include one or more virtual storage resources (e.g., cloud storage, a virtual private network, and/or other virtual storage resources) .
  • the electronic storage 426 may store software algorithms, information determined by processor (s) 428, information received from wireless device 402, or other information that enables the wireless device 402 to function as described herein.
  • Processor (s) 428 may be configured to provide information processing capabilities in the wireless device 402.
  • processor (s) 428 may include one or more of a digital processor, an analog processor, a digital circuit designed to process information, an analog circuit designed to process information, a state machine, and/or other mechanisms for electronically processing information.
  • processor (s) 428 is shown in FIG. 4 as a single entity, this is for illustrative purposes only.
  • processor (s) 428 may include a plurality of processing units. These processing units may be physically located within the same device, or processor (s) 428 may represent processing functionality of a plurality of devices operating in coordination.
  • Processor (s) 428 may be configured to execute modules 408–418, and/or other modules.
  • Processor (s) 434 may be configured to execute modules 408–418, and/or other modules by software; hardware; firmware; some combination of software, hardware, and/or firmware; and/or other mechanisms for configuring processing capabilities on the processor (s) 428.
  • module may refer to any component or set of components that perform the functionality attributed to the module. This may include one or more physical processors during execution of processor readable instructions, the processor readable instructions, circuitry, hardware, storage media, or any other components.
  • modules 408–418 may provide more or less functionality than is described.
  • processor (s) 428 may be configured to execute one or more additional modules that may perform some or all of the functionality attributed below to one of the modules 408–412
  • FIG. 5 is a notional flow diagram illustrating non-flow control operations 500 according to various embodiments.
  • normal flow operations i.e., non-TCP flow control operations
  • data packets and Ack packets are sent from a TCP packet source 502 in a flow 508 to a modem 506 of a wireless device (e.g., 120a-120e, 200, 320, 402) and are buffered for transmission in a modem buffer 506a.
  • the modem 506 transmits a flow 510 that includes data packets and Ack packets to the communication network.
  • the application processor 504 and the modem 506 may be components of a tethered host device 520, and the TCP packet source 502 may include a tethered device (a “tethered client device” ) that is tethered to the tethered host device 520 and that sends the flow 508 to the tethered host 520.
  • a tethered client device a tethered client device
  • the term “tethered” means that the tethered host device 520 and the tethered client device (which includes the TCP packet source 502) communicate over a wired or wireless communication link that conveys, among other things, the flow 508.
  • the TCP packet source 502 may be a device or an application executing in or on the wireless device.
  • the TCP packet source 502, the application processor 504, and the modem 506 may each be components of one device.
  • the flow 508 may be conveyed by a wired or wireless communication link, such as a USB communication link between two devices, a data bus within one wireless device, a wireless local area network (WLAN) communication (e.g., Wi-Fi) between two devices, or another suitable communication link.
  • a wired or wireless communication link such as a USB communication link between two devices, a data bus within one wireless device, a wireless local area network (WLAN) communication (e.g., Wi-Fi) between two devices, or another suitable communication link.
  • WLAN wireless local area network
  • FIG. 6 is a notional flow diagram illustrating flow control operations 600 according to various embodiments.
  • various embodiments enable a wireless device to perform a TCP flow control procedure that distinguishes between uplink data packets and Ack packets in the flow 502.
  • the TCP packet flow 502 is directed from the TCP packet source 502 first to a buffer memory 504a (e.g., a cache memory) of an application processor 504 of the wireless device.
  • a buffer memory 504a e.g., a cache memory
  • TCP data packets are stored in the buffer memory 504a of the application processor 504.
  • the application processor 504 passes Ack packets in a flow 604 to the modem 506 for transmission to the communication network.
  • Ack packets received by the modem 506 may be temporarily stored in the buffer 506a for transmission to the communication network before being transmitted in flow 606 during an uplink availability window.
  • the buffer 504a of the application processor may be substantially larger than the modem buffer 506a sufficient to store all of the data packets from the flow 502 while the wireless device performs flow control operations.
  • the TCP data packets stored in the application processor buffer 504a may be sent to the modem 506 to clear or empty the application processor buffer 504a. In some embodiments, all of the data packets stored in the application processor buffer 504a may be sent to the modem 506 before new data packets are sent to the modem. The wireless device may thereafter return to normal flow operations and the flow 502 may be directed as illustrated in FIG. 5.
  • FIG. 7 is a process flow diagram illustrating a method 700 performed by a processor of a wireless device for managing TCP communication with a communication network according to various embodiments.
  • the operations of the method 700 may be performed by a processor of a wireless device (e.g., the wireless device 120a-120e, 200, 320, 402) , such as an application processor (e.g., 216) , a modem processor (e.g., 212) , another processor (e.g., 218) or custom circuitry (e.g., 222) , or a combination of such processors each executing a portion of the operations.
  • an application processor e.g., 216
  • a modem processor e.g., 212
  • another processor e.g., 218
  • custom circuitry e.g., 222
  • the term “processor” is used to refer generally to any processor or combination of processors within the wireless device configured to perform operations of the method 700.
  • the method 700 may be implemented during a tethered call session in which a tethered host device (e.g., 520) receives packets from a TCP packet source (e.g., 502) in another device that communicate with the tethered host device, e.g., by a wired or wireless communication link.
  • the processor may determine whether a flow control operation is implemented. In some embodiments, the processor may determine whether the flow control operation is implemented in a tethered call session. In some embodiments, the modem processor may determine whether the flow control operation is implemented. In some embodiments initiating the flow control operation also initiates the determination of whether the flow control operation is implemented. For example, the processor may determine that an amount of data in a modem buffer (e.g., 506a) of the wireless device falls below a threshold and initiate flow control operations. Means for performing functions of the operations in block 702 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428) coupled to a modem (e.g., 252, 506) .
  • a modem buffer e.g., 506a
  • the processor may cache data packets scheduled for transmission in a memory coupled to the processor and provide Ack packets to the modem for transmission to the communication network in response to determining that a flow control operation is implemented.
  • Means for performing functions of the operations in block 704 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428) coupled to a modem (e.g., 252, 506) and a wireless transceiver (e.g., 266) .
  • the processor may repeat the operations of blocks 702 and 704 whenever flow control operations are implemented.
  • FIGS. 8–11 are process flow diagrams illustrating operations 800, 900, 1000, 1100 that may be performed by a processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428) of a wireless device (e.g., the wireless device 120a-120e, 200, 320, 402) as part of the method 700 for managing TCP communication with a communication network according to various embodiments.
  • a processor e.g., 210, 212, 214, 216, 218, 252, 260, 428
  • a wireless device e.g., the wireless device 120a-120e, 200, 320, 402
  • the operations 800, 900, 1000, and/or 1100 may be implemented during a tethered call session in which a tethered host device (e.g., 520) receives packets from a TCP packet source (e.g., 502) in another device that communicate with the tethered host device, e.g., by a wired or wireless communication link.
  • a tethered host device e.g., 520
  • receives packets from a TCP packet source e.g., 502
  • a TCP packet source e.g., 502
  • the processor may store the Ack packets in a transmission buffer of the modem in a manner that enables transmission by the modem to the communication network without delay in block 802, such as in response to a next uplink transmission opportunity.
  • the processor may store the Ack packets in the modem buffer 506a, from which the modem 506 may rapidly transmit the Ack packets to the communication network during the next uplink transmission opportunity.
  • Means for performing functions of the operations in block 802 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428) coupled to a modem (e.g., 252, 506) and a wireless transceiver (e.g., 266) .
  • the processor e.g., 210, 212, 214, 216, 218, 252, 260, 428, coupled to a modem (e.g., 252, 506) and a wireless transceiver (e.g., 266) .
  • the processor may then perform the operations of block 702 of the method 700 as described.
  • the processor may provide cached data packets to the modem for transmission by the modem to the communication network after all Ack packets have been sent to the modem in block 902.
  • Means for performing functions of the operations in block 902 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428) coupled to a modem (e.g., 252, 506) .
  • the processor may then perform the operations of block 702 of the method 700 as described.
  • the processor may provide cached data packets to the modem for transmission by the modem to the communication network in response to determining that the flow control operation is no longer implemented in block 1002.
  • Means for performing functions of the operations in block 902 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428) coupled to a modem (e.g., 252, 506) .
  • the processor may resume normal TCP operations after providing all cached data packets to the modem for transmission in block 1102.
  • Means for performing functions of the operations in block 902 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428) coupled to a modem (e.g., 252, 506) .
  • the wireless device 1200 may include a first SOC 202 (for example, a SOC-CPU) coupled to a second SOC 204 (for example, a 5G capable SOC) .
  • the first and second SOCs 202, 204 may be coupled to internal memory 1206, 1216, a display 1212, and to a speaker 1214.
  • the wireless device 1200 may include an antenna 1204 for sending and receiving electromagnetic radiation that may be connected to a wireless data link or cellular telephone transceiver 266 coupled to one or more processors in the first or second SOCs 202, 204.
  • the wireless device 1200 may include menu selection buttons or rocker switches 1220 for receiving user inputs.
  • the wireless device 1200 may include a sound encoding/decoding (CODEC) circuit 1210, which digitizes sound received from a microphone into data packets suitable for wireless transmission and decodes received sound data packets to generate analog signals that are provided to the speaker to generate sound.
  • CODEC sound encoding/decoding
  • one or more of the processors in the first and second SOCs 202, 204, wireless transceiver 266 and CODEC 1210 may include a digital signal processor (DSP) circuit (not shown separately) .
  • DSP digital signal processor
  • the processors of the wireless device 1200 may be any programmable microprocessor, microcomputer or multiple processor chip or chips that can be configured by software instructions (applications) to perform a variety of functions, including the functions of some implementations described below.
  • multiple processors may be provided, such as one processor within an SOC 204 dedicated to wireless communication functions and one processor within an SOC 202 dedicated to running other applications.
  • software applications may be stored in the memory 1206 before they are accessed and loaded into a processor 202, 204.
  • the processors may include internal memory sufficient to store the application software instructions.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, or a computer.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, or a computer.
  • an application running on a wireless device and the wireless device may be referred to as a component.
  • One or more components may reside within a process or thread of execution and a component may be localized on one processor or core or distributed between two or more processors or cores. In addition, these components may execute from various non-transitory computer readable media having various instructions or data structures stored thereon. Components may communicate by way of local or remote processes, function or procedure calls, electronic signals, data packets, memory read/writes, and other known network, computer, processor, or process related communication methodologies.
  • Such services and standards include, e.g., third generation partnership project (3GPP) , long term evolution (LTE) systems, third generation wireless mobile communication technology (3G) , fourth generation wireless mobile communication technology (4G) , fifth generation wireless mobile communication technology (5G) , global system for mobile communications (GSM) , universal mobile telecommunications system (UMTS) , 3GSM, general packet radio service (GPRS) , code division multiple access (CDMA) systems (e.g., cdmaOne, CDMA1020TM) , enhanced data rates for GSM evolution (EDGE) , advanced mobile phone system (AMPS) , digital AMPS (IS-136/TDMA) , evolution-data optimized (EV-DO) , digital enhanced cordless telecommunications (DECT) , Worldwide Interoperability for Microwave Access (WiMAX) , WLAN, Wi-Fi Protected Access
  • 3GPP third generation partnership project
  • LTE long term evolution
  • 4G fourth generation wireless mobile communication technology
  • 5G fifth generation wireless mobile
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, but, in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of receiver smart objects, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. Alternatively, some operations or methods may be performed by circuitry that is specific to a given function.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions or code on a non-transitory computer-readable storage medium or non-transitory processor-readable storage medium.
  • the operations of a method or algorithm disclosed herein may be embodied in a processor-executable software module or processor-executable instructions, which may reside on a non-transitory computer-readable or processor-readable storage medium.
  • Non-transitory computer-readable or processor-readable storage media may be any storage media that may be accessed by a computer or a processor.
  • non-transitory computer-readable or processor-readable storage media may include RAM, ROM, EEPROM, FLASH memory, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage smart objects, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer.
  • Disk and disc includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of non-transitory computer-readable and processor-readable media.
  • the operations of a method or algorithm may reside as one or any combination or set of codes and/or instructions on a non-transitory processor-readable storage medium and/or computer-readable storage medium, which may be incorporated into a computer program product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments include methods for managing transmission control protocol (TCP) communication with a communication network that may be performed by a processor of a wireless device. The processor may determine whether a flow control operation is implemented. In response to determining that a flow control operation is implemented, the processor may cache data packets scheduled for transmission in a memory coupled to the processor and provide acknowledgement (Ack) packets to a modem for transmission to the communication network.

Description

Managing Transmission Control Protocol Communication With A Communication Network BACKGROUND
The Transfer Control Protocol (TCP) uses an end-to-end flow control protocol to prevent a data sender from sending data too rapidly for a receiver device to receive and process it. The standard flow control protocol provides that the sender will stop or suspend the sending of all uplink packets in the modem, including data packets and acknowledgement (Ack) packets. This may be triggered when a buffer of the modem data path approaches empty (i.e., falls below a threshold) .
However, suspending the Ack packets is undesirable. Ack packets are much smaller than data packets, so suspending them does not substantially alleviate the detected flow control issue. Further, suspending the Ack packets negatively affects downlink TCP throughput, because suspending the uplink Ack packets may trigger the sending device to retransmit data packets that were in fact received, and may lead to a retransmission timeout (RTO) in which the sender is missing too many Acks from the receiver and temporarily stops sending data packets.
SUMMARY
Various aspects include systems and methods for managing transmission control protocol communication with a communication network performed by a processor of a wireless device. Various aspects may enable a wireless device to perform a modified flow control procedure that suspends only uplink data packets and does not suspend (i.e., continues to send) uplink Ack packets. In various aspects, sending the Ack packets may reduce or prevent a reduction in data packets sent by a TCP sender device to the wireless device.
Various aspects may include determining whether a flow control operation is implemented, and caching data packets scheduled for transmission in a memory  coupled to the processor and providing acknowledgement (Ack) packets to a modem for transmission to the communication network in response to determining that a flow control operation is implemented. In various aspects, providing the Ack packets to the modem for transmission to the communication network may include storing the Ack packets in a transmission buffer of the modem in a manner that enables transmission by the modem to the communication network without delay.
Various aspects may include providing cached data packets to the modem for transmission by the modem to the communication network after all Ack packets have been sent to the modem. Various aspects may include providing cached data packets to the modem for transmission by the modem to the communication network in response to determining that the flow control operation is no longer implemented. Various aspects may include resuming normal TCP operations after providing all cached data packets to the modem for transmission. Various aspects may include receiving the data packets and the Ack packets from a TCP packet source. In various aspects, receiving the data packets and the Ack packets from a TCP packet source may include receiving the data packets and the Ack packets from a TCP packet source in a tethered call session.
Further aspects include a wireless device having a processor configured to perform operations of any of the methods summarized above. Further aspects may include processing devices for use in a wireless device configured with processor-executable instructions to perform operations of any of the methods summarized above. Further aspects may include a non-transitory processor-readable storage medium having stored thereon processor-executable instructions configured to cause a processor of a wireless device to perform operations of any of the methods summarized above. Further aspects include a wireless device having means for performing functions of any of the methods summarized above. Further aspects include a system on chip for use in a wireless device that includes a processor configured to perform one or more operations of any of the methods summarized above. Further aspects include a system in a package that includes two systems on  chip for use in a wireless device that includes a processor configured to perform one or more operations of any of the methods summarized above.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a system block diagram illustrating an example communications system suitable for use with various embodiments.
FIG. 2 is a component block diagram illustrating an example computing system suitable for use with various embodiments.
FIG. 3 is a component block diagram of an example software architecture including a radio protocol stack for the user and control planes in wireless communications suitable for use with various embodiments.
FIG. 4 is a component block diagram illustrating a system configured to manage TCP communication with a communication network in accordance with various embodiments.
FIG. 5 is a notional flow diagram illustrating non-flow control operations according to various embodiments.
FIG. 6 is a notional flow diagram illustrating flow control operations according to various embodiments.
FIG. 7 is a process flow diagram illustrating a method performed by a processor of a wireless device for managing TCP communication with a communication network according to various embodiments
FIGS. 8–11 are process flow diagrams illustrating operations that may be performed by a processor of a wireless device as part of the method for managing TCP communication with a communication network according to various embodiments.
FIG. 12 is a component block diagram of a wireless communication device suitable for use with various embodiments.
DETAILED DESCRIPTION
Various embodiments will be described in detail with reference to the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. References made to particular examples and implementations are for illustrative purposes, and are not intended to limit the scope of the claims.
The term “wireless device” is used herein to refer to any one or all of wireless router devices, wireless appliances, cellular telephones, smartphones, portable computing devices, personal or mobile multi-media players, laptop computers, tablet computers, smartbooks, ultrabooks, palmtop computers, wireless electronic mail receivers, multimedia Internet-enabled cellular telephones, medical devices and equipment, biometric sensors/devices, wearable devices including smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (for example, smart rings and smart bracelets) , entertainment devices (for example, wireless gaming controllers, music and video players, satellite radios, etc. ) , wireless-network enabled Internet of Things (IoT) devices including smart meters/sensors, industrial manufacturing equipment, large and small machinery and appliances for home or enterprise use, wireless communication elements within autonomous and semiautonomous vehicles, wireless devices affixed to or incorporated into various mobile platforms, global positioning system devices, and similar electronic devices that include a memory, wireless communication components and a programmable processor.
The term “system on chip” (SOC) is used herein to refer to a single integrated circuit (IC) chip that contains multiple resources or processors integrated on a single substrate. A single SOC may contain circuitry for digital, analog, mixed-signal, and radio-frequency functions. A single SOC also may include any number of general purpose or specialized processors (digital signal processors, modem processors, video processors, etc. ) , memory blocks (e.g., ROM, RAM, Flash, etc. ) , and resources (e.g., timers, voltage regulators, oscillators, etc. ) . SOCs also may include software for  controlling the integrated resources and processors, as well as for controlling peripheral devices.
The term “system in a package” (SIP) may be used herein to refer to a single module or package that contains multiple resources, computational units, cores or processors on two or more IC chips, substrates, or SOCs. For example, a SIP may include a single substrate on which multiple IC chips or semiconductor dies are stacked in a vertical configuration. Similarly, the SIP may include one or more multi-chip modules (MCMs) on which multiple ICs or semiconductor dies are packaged into a unifying substrate. A SIP also may include multiple independent SOCs coupled together via high speed communication circuitry and packaged in close proximity, such as on a single motherboard or in a single wireless device. The proximity of the SOCs facilitates high speed communications and the sharing of memory and resources.
The Transfer Control Protocol (TCP) uses an end-to-end flow control protocol to prevent a data sender from sending data too rapidly for a receiver device to receive and process it. TCP flow control may employ a sliding window flow control protocol. In each TCP segment, a receiver device (e.g., a wireless device) may specify to the receiver device (e.g., in a receive window field) an amount of data that the receiver device is able to receive and store in a buffer or other memory. The sending device may send only up to that amount of data and then wait for an Ack packet before sending additional data to the receiver device.
The standard flow control protocol provides that the sender will stop or suspend the sending of all uplink packets in the modem, including data packets and acknowledgement (Ack) packets. This may be triggered when a buffer of the modem data path approaches empty (i.e., falls below a threshold) . However, suspending the transmission of Ack packets is undesirable as doing so negatively affects downlink TCP throughput. This is because suspending the uplink Ack packets may trigger the sending device to retransmit data packets that were in fact received, and may lead to a retransmission timeout (RTO) in which the sender temporarily stops sending data  packets in response to missing too many Acks from the receiver. Further, Ack packets are much smaller than data packets, so suspending the transmission of Ack packets does not substantially alleviate a detected flow control issue.
Various embodiments enable a wireless device to perform a TCP flow control procedure that distinguishes between uplink data packets and Ack packets, enabling suspension of uplink data packet transmissions while continuing the transmission of uplink Ack packets. In some embodiments, when performing normal flow operations (i.e., non-TCP flow control operations) , data packets and Ack packets flow to a modem of the wireless device and are buffered for transmission in a modem buffer.
In various embodiments, when the modem of the wireless device is performing TCP flow control operations, the TCP packet flow may be directed first to an application processor of the wireless device that is configured to distinguish data packets from Ack packets, store TCP data packets in a buffer memory (e.g., a cache memory) of the application processor buffer memory, and pass Ack packets to the modem for transmission to the communication network. When TCP flow control operations end, the application processor may pass the stored TCP data packets to the modem for transmission to the communication network until the application processor buffer is clear of TCP data packets. In some embodiments, all of the stored data packets may be sent from the application processor buffer to the modem before new data packets are sent to the modem. The wireless device may thereafter return to normal flow operations. In various embodiments, the modified flow control procedure may have particular utility when a wireless device receives data from another device for transmission to the communication network (e.g., such as from a “tethered” client device) .
Various embodiments improve the operations of a wireless device and a communication network by enabling the wireless device to perform a TCP flow control procedure in a manner that enables continued transmission of Ack packets so that a TCP sender device is informed that the wireless device is receiving TCP data packets, thereby avoiding circumstances in which the sender device might reduce the  amount or rate of data packet transmissions to the wireless device. Thus, various embodiments improve the operations of a wireless device and a communication network by improving the efficiency of communication operations of the wireless device and the communication network.
FIG. 1 shows a system block diagram illustrating an example communications system. The communications system 100 may be an 5G NR network, or any other suitable network such as an LTE network.
The communications system 100 may include a heterogeneous network architecture that includes a core network 140 and a variety of wireless devices (illustrated as wireless device 120a-120e in FIG. 1) . The communications system 100 also may include a number of base stations (illustrated as the BS 110a, the BS 110b, the BS 110c, and the BS 110d) and other network entities. A base station is an entity that communicates with wireless devices, and also may be referred to as a Computing platformB, a Computing platform B, an LTE evolved computing platformB (eNB) , an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio base station (NR BS) , a 5G Computing platformB (NB) , a Next Generation Computing platformB (gNB) , or the like. Each base station may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a base station, a base station subsystem serving this coverage area, or a combination thereof, depending on the context in which the term is used.
base station 110a-110d may provide communication coverage for a macro cell, a pico cell, a femto cell, another type of cell, or a combination thereof. A macro cell may cover a relatively large geographic area (for example, several kilometers in radius) and may allow unrestricted access by wireless devices with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by wireless devices with service subscription. A femto cell may cover a relatively small geographic area (for example, a home) and may allow restricted access by wireless devices having association with the femto cell (for example, wireless devices in a closed subscriber group (CSG) ) . A base station for a  macro cell may be referred to as a macro BS. A base station for a pico cell may be referred to as a pico BS. A base station for a femto cell may be referred to as a femto BS or a home BS. In the example illustrated in FIG. 1, a base station 110a may be a macro BS for a macro cell 102a, a base station 110b may be a pico BS for a pico cell 102b, and a base station 110c may be a femto BS for a femto cell 102c. A base station 110a-110d may support one or multiple (for example, three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “computing platform B” , “5G NB” , and “cell” may be used interchangeably herein.
In some examples, a cell may not be stationary, and the geographic area of the cell may move according to the location of a mobile base station. In some examples, the base stations 110a-110d may be interconnected to one another as well as to one or more other base stations or network computing platforms (not illustrated) in the communications system 100 through various types of backhaul interfaces, such as a direct physical connection, a virtual network, or a combination thereof using any suitable transport network
The base station 110a-110d may communicate with the core network 140 over a wired or wireless communication link 126. The wireless device 120a-120e may communicate with the base station 110a-110d over a wireless communication link 122.
The wired communication link 126 may use a variety of wired networks (e.g., Ethernet, TV cable, telephony, fiber optic and other forms of physical network connections) that may use one or more wired communication protocols, such as Ethernet, Point-To-Point protocol, High-Level Data Link Control (HDLC) , Advanced Data Communication Control Protocol (RRCADCCP) , and Transmission Control Protocol/Internet Protocol (TCP/IP) .
The communications system 100 also may include relay stations (e.g., relay BS 110d) . A relay station is an entity that can receive a transmission of data from an upstream station (for example, a base station or a wireless device) and send a  transmission of the data to a downstream station (for example, a wireless device or a base station) . A relay station also may be a wireless device that can relay transmissions for other wireless devices. In the example illustrated in FIG. 1, a relay station 110d may communicate with macro the base station 110a and the wireless device 120d in order to facilitate communication between the base station 110a and the wireless device 120d. A relay station also may be referred to as a relay base station, a relay base station, a relay, etc.
The communications system 100 may be a heterogeneous network that includes base stations of different types, for example, macro base stations, pico base stations, femto base stations, relay base stations, etc. These different types of base stations may have different transmit power levels, different coverage areas, and different impacts on interference in communications system 100. For example, macro base stations may have a high transmit power level (for example, 5 to 40 Watts) whereas pico base stations, femto base stations, and relay base stations may have lower transmit power levels (for example, 0.1 to 2 Watts) .
network controller 130 may couple to a set of base stations and may provide coordination and control for these base stations. The network controller 130 may communicate with the base stations via a backhaul. The base stations also may communicate with one another, for example, directly or indirectly via a wireless or wireline backhaul.
The  wireless devices  120a, 120b, 120c may be dispersed throughout communications system 100, and each wireless device may be stationary or mobile. A wireless device also may be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, etc.
macro base station 110a may communicate with the communication network 140 over a wired or wireless communication link 126. The  wireless devices  120a, 120b, 120c may communicate with a base station 110a-110d over a wireless communication link 122.
The  wireless communication links  122 and 124 may include a plurality of carrier signals, frequencies, or frequency bands, each of which may include a plurality of logical channels. The  wireless communication links  122 and 124 may utilize one or more radio access technologies (RATs) . Examples of RATs that may be used in a wireless communication link include 3GPP LTE, 3G, 4G, 5G (e.g., NR) , GSM, Code Division Multiple Access (CDMA) , Wideband Code Division Multiple Access (WCDMA) , Worldwide Interoperability for Microwave Access (WiMAX) , Time Division Multiple Access (TDMA) , and other mobile telephony communication technologies cellular RATs. Further examples of RATs that may be used in one or more of the various wireless communication links within the communication system 100 include medium range protocols such as Wi-Fi, LTE-U, LTE-Direct, LAA, MuLTEfire, and relatively short range RATs such as ZigBee, Bluetooth, and Bluetooth Low Energy (LE) .
Certain wireless networks (e.g., LTE) utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink. OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc. Each subcarrier may be modulated with data. In general, modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM. The spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth. For example, the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (called a “resource block” ) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal Fast File Transfer (FFT) size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10 or 20 megahertz (MHz) , respectively. The system bandwidth also may be partitioned into subbands. For example, a subband may cover 1.08 MHz (i.e., 6 resource blocks) , and there may be 1, 2, 4, 8 or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
While descriptions of some implementations may use terminology and examples associated with LTE technologies, some implementations may be applicable to other wireless communications systems, such as a new radio (NR) or 5G network. NR may utilize OFDM with a cyclic prefix (CP) on the uplink (UL) and downlink (DL) and include support for half-duplex operation using time division duplex (TDD) . A single component carrier bandwidth of 100 MHz may be supported. NR resource blocks may span 12 sub-carriers with a sub-carrier bandwidth of 75 kHz over a 0.1 millisecond (ms) duration. Each radio frame may consist of 50 subframes with a length of 10 ms. Consequently, each subframe may have a length of 0.2 ms. Each subframe may indicate a link direction (i.e., DL or UL) for data transmission and the link direction for each subframe may be dynamically switched. Each subframe may include DL/UL data as well as DL/UL control data. Multiple Input Multiple Output (MIMO) transmissions with precoding also may be supported. MIMO configurations in the DL may support up to eight transmit antennas with multi-layer DL transmissions up to eight streams and up to two streams per wireless device. Multi-layer transmissions with up to 2 streams per wireless device may be supported.
Aggregation of multiple cells may be supported with up to eight serving cells. Alternatively, NR may support a different air interface, other than an OFDM-based air interface.
Some wireless devices may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) wireless devices. MTC and eMTC wireless devices include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a base station, another device (for example, remote device) , or some other entity. A wireless computing platform may provide, for example, connectivity for or to a network (for example, a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some wireless devices may be considered Internet-of-Things (IoT) devices or may be implemented as NB-IoT (narrowband internet of things) devices. The wireless device 120a-120e may be included inside a  housing that houses components of the wireless device 120a-120e, such as processor components, memory components, similar components, or a combination thereof.
In general, any number of communications systems and any number of wireless networks may be deployed in a given geographic area. Each communications system and wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies. A RAT also may be referred to as a radio technology, an air interface, etc. A frequency also may be referred to as a carrier, a frequency channel, etc. Each frequency may support a single RAT in a given geographic area in order to avoid interference between communications systems of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some implementations, two or more wireless devices (for example, illustrated as the wireless device 120a and the wireless device 120e) may communicate directly using one or more sidelink channels (for example, without using a base station 110a-d as an intermediary to communicate with one another) . For example, the wireless devices 120a-e may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, or similar protocol) , a mesh network, or similar networks, or combinations thereof. In this case, the wireless device 120a-120e may perform scheduling operations, resource selection operations, as well as other operations described elsewhere herein as being performed by the base station 110a-110d.
FIG. 2 shows a component block diagram illustrating an example computing system in the form of a SIP 200 architecture that may be used in wireless devices implementing various embodiments. With reference to FIGS. 1 and 2, the illustrated example SIP 200 includes a two  SOCs  202, 204, coupled to a clock 206, a voltage regulator 208, and a wireless transceiver 266 configured to send and receive wireless communications via an antenna (not shown) to/from wireless devices, such as a base station 110a. In some implementations, the first SOC 202 may operate as central  processing unit (CPU) of the wireless device that carries out the instructions of software application programs by performing the arithmetic, logical, control and input/output (I/O) operations specified by the instructions. In some implementations, the second SOC 204 may operate as a specialized processing unit. For example, the second SOC 204 may operate as a specialized 5G processing unit responsible for managing high volume, high speed (e.g., 5 Gbps, etc. ) , or very high frequency short wave length (e.g., 28 GHz mmWave spectrum, etc. ) communications.
The first SOC 202 may include a digital signal processor (DSP) 210, a modem processor 212, a graphics processor 214, an application processor 216, one or more coprocessors 218 (e.g., vector co-processor) connected to one or more of the processors, memory 220, custom circuity 222, system components and resources 224, an interconnection/bus module 226, one or more temperature sensors 230, a thermal management unit 232, and a thermal power envelope (TPE) component 234. The second SOC 204 may include a 5G modem processor 252, a power management unit 254, an interconnection/bus module 264, a plurality of mmWave transceivers 256, memory 258, and various additional processors 260, such as an applications processor, packet processor, etc.
Each  processor  210, 212, 214, 216, 218, 252, 260 may include one or more cores, and each processor/core may perform operations independent of the other processors/cores. For example, the first SOC 202 may include a processor that executes a first type of operating system (e.g., FreeBSD, LINUX, OS X, etc. ) and a processor that executes a second type of operating system (e.g., MICROSOFT WINDOWS 10) . In addition, any or all of the  processors  210, 212, 214, 216, 218, 252, 260 may be included as part of a processor cluster architecture (e.g., a synchronous processor cluster architecture, an asynchronous or heterogeneous processor cluster architecture, etc. ) .
The first and  second SOC  202, 204 may include various system components, resources and custom circuitry for managing sensor data, analog-to-digital conversions, wireless data transmissions, and for performing other specialized  operations, such as decoding data packets and processing encoded audio and video signals for rendering in a web browser. For example, the system components and resources 224 of the first SOC 202 may include power amplifiers, voltage regulators, oscillators, phase-locked loops, peripheral bridges, data controllers, memory controllers, system controllers, access ports, timers, and other similar components used to support the processors and software clients running on a wireless device. The system components and resources 224 or custom circuitry 222 also may include circuitry to interface with peripheral devices, such as cameras, electronic displays, wireless communication devices, external memory chips, etc.
The first and  second SOC  202, 204 may communicate via interconnection/bus module 250. The  various processors  210, 212, 214, 216, 218, may be interconnected to one or more memory elements 220, system components and resources 224, and custom circuitry 222, and a thermal management unit 232 via an interconnection/bus module 226. Similarly, the processor 252 may be interconnected to the power management unit 254, the mmWave transceivers 256, memory 258, and various additional processors 260 via the interconnection/bus module 264. The interconnection/ bus module  226, 250, 264 may include an array of reconfigurable logic gates or implement a bus architecture (e.g., CoreConnect, AMBA, etc. ) . Communications may be provided by advanced interconnects, such as high-performance networks-on chip (NoCs) .
The first or  second SOCs  202, 204 may further include an input/output module (not illustrated) for communicating with resources external to the SOC, such as a clock 206 and a voltage regulator 208. Resources external to the SOC (e.g., clock 206, voltage regulator 208) may be shared by two or more of the internal SOC processors/cores.
In addition to the example SIP 200 discussed above, some implementations may be implemented in a wide variety of computing systems, which may include a single processor, multiple processors, multicore processors, or any combination thereof.
FIG. 3 shows a component block diagram of an example of a software architecture 300 including a radio protocol stack for the user and control planes in wireless communications. The software architecture 300 including a radio protocol stack for the user and control planes in wireless communications between a base station 350 (e.g., the base station 110a) and a wireless device 320 (e.g., the wireless device 120a-120e, 200) . With reference to FIGS. 1–3, the wireless device 320 may implement the software architecture 300 to communicate with the base station 350 of a communication system (e.g., 100) . In some implementations, layers in software architecture 300 may form logical connections with corresponding layers in software of the base station 350. The software architecture 300 may be distributed among one or more processors (e.g., the  processors  212, 214, 216, 218, 252, 260) . While illustrated with respect to one radio protocol stack, in a multi-SIM (subscriber identity module) wireless device, the software architecture 300 may include multiple protocol stacks, each of which may be associated with a different SIM (e.g., two protocol stacks associated with two SIMs, respectively, in a dual-SIM wireless communication device) . While described below with reference to LTE communication layers, the software architecture 300 may support any of variety of standards and protocols for wireless communications, or may include additional protocol stacks that support any of variety of standards and protocols wireless communications.
The software architecture 300 may include a Non-Access Stratum (NAS) 302 and an Access Stratum (AS) 304. The NAS 302 may include functions and protocols to support packet filtering, security management, mobility control, session management, and traffic and signaling between a SIM (s) of the wireless device (e.g., SIM(s) 204) and its core network 140. The AS 304 may include functions and protocols that support communication between a SIM (s) (e.g., SIM (s) 204) and entities of supported access networks (e.g., a base station) . In particular, the AS 304 may include at least three layers (Layer 1, Layer 2, and Layer 3) , each of which may contain various sub-layers.
In the user and control planes, Layer 1 (L1) of the AS 304 may be a physical layer (PHY) 306, which may oversee functions that enable transmission or reception over the air interface via a wireless transceiver (for example, 266) . Examples of such physical layer 306 functions may include cyclic redundancy check (CRC) attachment, coding blocks, scrambling and descrambling, modulation and demodulation, signal measurements, MIMO, etc. The physical layer may include various logical channels, including the Physical Downlink Control Channel (PDCCH) and the Physical 
Downlink Shared Channel (PDSCH) .
In the user and control planes, Layer 2 (L2) of the AS 304 may be responsible for the link between the wireless device 320 and the base station 350 over the physical layer 306. In some implementations, Layer 2 may include a media access control (MAC) sublayer 308, a radio link control (RLC) sublayer 310, and a packet data convergence protocol (PDCP) 312 sublayer, each of which form logical connections terminating at the base station 350.
In the control plane, Layer 3 (L3) of the AS 304 may include a radio resource control (RRC) sublayer 3. While not shown, the software architecture 300 may include additional Layer 3 sublayers, as well as various upper layers above Layer 3. In some implementations, the RRC sublayer 313 may provide functions INCLUDING broadcasting system information, paging, and establishing and releasing an RRC signaling connection between the wireless device 320 and the base station 350.
In some implementations, the PDCP sublayer 312 may provide uplink functions including multiplexing between different radio bearers and logical channels, sequence number addition, handover data handling, integrity protection, ciphering, and header compression. In the downlink, the PDCP sublayer 312 may provide functions that include in-sequence delivery of data packets, duplicate data packet detection, integrity validation, deciphering, and header decompression.
In the uplink, the RLC sublayer 310 may provide segmentation and concatenation of upper layer data packets, retransmission of lost data packets, and  Automatic Repeat Request (ARQ) . In the downlink, while the RLC sublayer 310 functions may include reordering of data packets to compensate for out-of-order reception, reassembly of upper layer data packets, and ARQ.
In the uplink, MAC sublayer 308 may provide functions including multiplexing between logical and transport channels, random access procedure, logical channel priority, and hybrid-ARQ (HARQ) operations. In the downlink, the MAC layer functions may include channel mapping within a cell, de-multiplexing, discontinuous reception (DRX) , and HARQ operations.
While the software architecture 300 may provide functions to transmit data through physical media, the software architecture 300 may further include at least one host layer 314 to provide data transfer services to various applications in the wireless device 320. In some implementations, application-specific functions provided by the at least one host layer 314 may provide an interface between the software architecture and the general purpose processor 206.
In other implementations, the software architecture 300 may include one or more higher logical layer (e.g., transport, session, presentation, application, etc. ) that provide host layer functions. For example, in some implementations, the software architecture 300 may include a network layer (e.g., Internet Protocol (IP) layer) in which a logical connection terminates at a packet data network (PDN) gateway (PGW) . In some implementations, the software architecture 300 may include an application layer in which a logical connection terminates at another device (e.g., end user device, server, etc. ) . In some implementations, the software architecture 300 may further include in the AS 304 a hardware interface 316 between the physical layer 306 and the communication hardware (e.g., one or more radio frequency (RF) transceivers) .
FIG. 4 is a component block diagram illustrating a system 400 configured to manage network communication performed by a processor of a wireless device in accordance with various embodiments. With reference to FIGS. 1–4, system 400 may  include a wireless device 402 (for example, wireless device 120a-120e, 200, 320) configured to communicate with a wireless communication network 424. The wireless communication network 424 may include base stations 110a-110d, 350 and other network devices and systems as illustrated in FIG. 1.
The wireless device 402 may include one or more processors 428 coupled to electronic storage 426, a modem (e.g., 252) , and a wireless transceiver (e.g., 266) . The modem 252 and the wireless transceiver 266 may be configured to receive messages to be sent in uplink transmissions from the one or more processors 428, and to transmit such messages via an antenna (not shown) to a wireless communication network 424. Similarly, the modem 252 and the wireless transceiver 266 may be configured to receive messages from the wireless communication network 424 and pass the messages (e.g., via a modem that demodulates the messages) to the one or more processors 428.
The one or more processors 428 be configured by machine-readable instructions 406. Machine-readable instructions 406 may include one or more instruction modules. The instruction modules may include computer program modules. The instruction modules may include one or more of a flow control operation module 408, a data packet handling module 410, an Ack packet handling module 412, or other instruction modules.
The flow control operation module 408 may be configured to determine whether a flow control operation is implemented. The flow control operation module 408 may be configured to resume normal TCP operations after providing all cached data packets to the modem for transmission.
The data packet handling module 410 may be configured to cache data packets scheduled for transmission in a memory coupled to the processor. The data packet handling module 410 may be configured to provide cached data packets to the modem for transmission by the modem to the communication network after all Ack packets have been sent to the modem. The data packet handling module 410 may be  configured to provide cached data packets to the modem for transmission by the modem to the communication network in response to determining that the flow control operation is no longer implemented.
The Ack packet handling module 412 may be configured to provide Ack packets to a modem for transmission to the communication network in response to determining that a flow control operation is implemented. The Ack packet handling module 412 may be configured to store the Ack packets in a transmission buffer of the modem in a manner that enables transmission by the modem to the communication network without delay, such as during a next uplink transmission availability.
The wireless device 402 may include an electronic storage 426, one or more processors 428, and other components. The wireless device 402 may include communication lines, or ports to enable the exchange of information with a network and/or other computing platforms. The illustration of the wireless device 402 in FIG. 4 is not intended to be limiting. The wireless device 402 may include a plurality of hardware, software, and/or firmware components operating together to provide the functionality attributed herein to the wireless device 402.
The electronic storage 426 may comprise non-transitory storage media that electronically stores information. The electronic storage media of the electronic storage 426 may include one or both of system storage that is provided integrally (i.e., substantially non-removable) with wireless device 402 and/or removable storage that is removably connectable to wireless device 402 via, for example, a port (e.g., a universal serial bus (USB) port, a firewire port, etc. ) or a drive (e.g., a disk drive, etc. ) . The electronic storage 426 may include one or more of optically readable storage media (e.g., optical disks, etc. ) , magnetically readable storage media (e.g., magnetic tape, magnetic hard drive, floppy drive, etc. ) , electrical charge-based storage media (e.g., EEPROM, RAM, etc. ) , solid-state storage media (e.g., flash drive, etc. ) , and/or other electronically readable storage media. Electronic storage 426 may include one or more virtual storage resources (e.g., cloud storage, a virtual private network, and/or other virtual storage resources) . The electronic storage 426 may store software  algorithms, information determined by processor (s) 428, information received from wireless device 402, or other information that enables the wireless device 402 to function as described herein.
Processor (s) 428 may be configured to provide information processing capabilities in the wireless device 402. As such, processor (s) 428 may include one or more of a digital processor, an analog processor, a digital circuit designed to process information, an analog circuit designed to process information, a state machine, and/or other mechanisms for electronically processing information. Although processor (s) 428 is shown in FIG. 4 as a single entity, this is for illustrative purposes only. In some implementations, processor (s) 428 may include a plurality of processing units. These processing units may be physically located within the same device, or processor (s) 428 may represent processing functionality of a plurality of devices operating in coordination. Processor (s) 428 may be configured to execute modules 408–418, and/or other modules. Processor (s) 434 may be configured to execute modules 408–418, and/or other modules by software; hardware; firmware; some combination of software, hardware, and/or firmware; and/or other mechanisms for configuring processing capabilities on the processor (s) 428. As used herein, the term “module” may refer to any component or set of components that perform the functionality attributed to the module. This may include one or more physical processors during execution of processor readable instructions, the processor readable instructions, circuitry, hardware, storage media, or any other components.
The description of the functionality provided by the different modules 408–418 described below is for illustrative purposes, and is not intended to be limiting, as any of the modules 408–412 may provide more or less functionality than is described. For example, one or more of modules 408–412 may be eliminated, and some or all of its functionality may be provided by other ones of the modules 408–412. As another example, processor (s) 428 may be configured to execute one or more additional modules that may perform some or all of the functionality attributed below to one of the modules 408–412
FIG. 5 is a notional flow diagram illustrating non-flow control operations 500 according to various embodiments. With reference to FIGS. 1–5, in some embodiments, when performing normal flow operations (i.e., non-TCP flow control operations) , data packets and Ack packets are sent from a TCP packet source 502 in a flow 508 to a modem 506 of a wireless device (e.g., 120a-120e, 200, 320, 402) and are buffered for transmission in a modem buffer 506a. The modem 506 transmits a flow 510 that includes data packets and Ack packets to the communication network.
In some embodiments, the application processor 504 and the modem 506 may be components of a tethered host device 520, and the TCP packet source 502 may include a tethered device (a “tethered client device” ) that is tethered to the tethered host device 520 and that sends the flow 508 to the tethered host 520. As used herein, the term “tethered” means that the tethered host device 520 and the tethered client device (which includes the TCP packet source 502) communicate over a wired or wireless communication link that conveys, among other things, the flow 508.
In some embodiments, the TCP packet source 502 may be a device or an application executing in or on the wireless device. In such embodiments, the TCP packet source 502, the application processor 504, and the modem 506 may each be components of one device.
In various embodiments, the flow 508 may be conveyed by a wired or wireless communication link, such as a USB communication link between two devices, a data bus within one wireless device, a wireless local area network (WLAN) communication (e.g., Wi-Fi) between two devices, or another suitable communication link.
FIG. 6 is a notional flow diagram illustrating flow control operations 600 according to various embodiments. With reference to FIGS. 1–6, various embodiments enable a wireless device to perform a TCP flow control procedure that distinguishes between uplink data packets and Ack packets in the flow 502. When the modem is performing TCP flow control operations, the TCP packet flow 502 is  directed from the TCP packet source 502 first to a buffer memory 504a (e.g., a cache memory) of an application processor 504 of the wireless device.
In this configuration while the modem is performing TCP flow control operations, TCP data packets are stored in the buffer memory 504a of the application processor 504. However, the application processor 504 passes Ack packets in a flow 604 to the modem 506 for transmission to the communication network. In some embodiments, Ack packets received by the modem 506 may be temporarily stored in the buffer 506a for transmission to the communication network before being transmitted in flow 606 during an uplink availability window. In some embodiments, the buffer 504a of the application processor may be substantially larger than the modem buffer 506a sufficient to store all of the data packets from the flow 502 while the wireless device performs flow control operations.
In various embodiments, when TCP flow control operations end, the TCP data packets stored in the application processor buffer 504a may be sent to the modem 506 to clear or empty the application processor buffer 504a. In some embodiments, all of the data packets stored in the application processor buffer 504a may be sent to the modem 506 before new data packets are sent to the modem. The wireless device may thereafter return to normal flow operations and the flow 502 may be directed as illustrated in FIG. 5.
FIG. 7 is a process flow diagram illustrating a method 700 performed by a processor of a wireless device for managing TCP communication with a communication network according to various embodiments. With reference to FIGS. 1–7, the operations of the method 700 may be performed by a processor of a wireless device (e.g., the wireless device 120a-120e, 200, 320, 402) , such as an application processor (e.g., 216) , a modem processor (e.g., 212) , another processor (e.g., 218) or custom circuitry (e.g., 222) , or a combination of such processors each executing a portion of the operations. For ease of reference, the term “processor” is used to refer generally to any processor or combination of processors within the wireless device configured to perform operations of the method 700. In some embodiments, the  method 700 may be implemented during a tethered call session in which a tethered host device (e.g., 520) receives packets from a TCP packet source (e.g., 502) in another device that communicate with the tethered host device, e.g., by a wired or wireless communication link.
In block 702, the processor may determine whether a flow control operation is implemented. In some embodiments, the processor may determine whether the flow control operation is implemented in a tethered call session. In some embodiments, the modem processor may determine whether the flow control operation is implemented. In some embodiments initiating the flow control operation also initiates the determination of whether the flow control operation is implemented. For example, the processor may determine that an amount of data in a modem buffer (e.g., 506a) of the wireless device falls below a threshold and initiate flow control operations. Means for performing functions of the operations in block 702 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428) coupled to a modem (e.g., 252, 506) .
In block 704, the processor may cache data packets scheduled for transmission in a memory coupled to the processor and provide Ack packets to the modem for transmission to the communication network in response to determining that a flow control operation is implemented. Means for performing functions of the operations in block 704 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428) coupled to a modem (e.g., 252, 506) and a wireless transceiver (e.g., 266) .
The processor may repeat the operations of  blocks  702 and 704 whenever flow control operations are implemented.
FIGS. 8–11 are process flow  diagrams illustrating operations  800, 900, 1000, 1100 that may be performed by a processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428) of a wireless device (e.g., the wireless device 120a-120e, 200, 320, 402) as part of the method 700 for managing TCP communication with a communication network according to various embodiments. In some embodiments, the  operations  800, 900, 1000, and/or 1100 may be implemented during a tethered call session in which a  tethered host device (e.g., 520) receives packets from a TCP packet source (e.g., 502) in another device that communicate with the tethered host device, e.g., by a wired or wireless communication link.
Referring to the operations 800 illustrated in FIG. 8, and with reference to FIGs. 1-8, following the performance of the operations of block 702 of the method 700, the processor may store the Ack packets in a transmission buffer of the modem in a manner that enables transmission by the modem to the communication network without delay in block 802, such as in response to a next uplink transmission opportunity. For example, the processor may store the Ack packets in the modem buffer 506a, from which the modem 506 may rapidly transmit the Ack packets to the communication network during the next uplink transmission opportunity. Means for performing functions of the operations in block 802 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428) coupled to a modem (e.g., 252, 506) and a wireless transceiver (e.g., 266) .
The processor may then perform the operations of block 702 of the method 700 as described.
Referring to the operations 900 illustrated in FIG. 9, and with reference to FIGs. 1-9, following the performance of the operations of block 704 of the method 700 (FIG. 7) , the processor may provide cached data packets to the modem for transmission by the modem to the communication network after all Ack packets have been sent to the modem in block 902. Means for performing functions of the operations in block 902 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428) coupled to a modem (e.g., 252, 506) .
The processor may then perform the operations of block 702 of the method 700 as described.
Referring to the operations 1000 illustrated in FIG. 10, and with reference to FIGs. 1–10, following the performance of the operations of block 702 of the method 700, the processor may provide cached data packets to the modem for transmission by  the modem to the communication network in response to determining that the flow control operation is no longer implemented in block 1002. Means for performing functions of the operations in block 902 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428) coupled to a modem (e.g., 252, 506) .
Referring to the operations 1100 illustrated in FIG. 11, and with reference to FIGs. 1-11, following the performance of the operations of block 1002 (FIG. 10) , the processor may resume normal TCP operations after providing all cached data packets to the modem for transmission in block 1102. Means for performing functions of the operations in block 902 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428) coupled to a modem (e.g., 252, 506) .
Some implementations may be implemented on a variety of wireless devices (for example, the wireless device 120a-120e, 200, 320, 402) , an example of which is illustrated in FIG. 12 in the form of a wireless device 1200. With reference to FIGS. 1–12, the wireless device 1200 may include a first SOC 202 (for example, a SOC-CPU) coupled to a second SOC 204 (for example, a 5G capable SOC) . The first and  second SOCs  202, 204 may be coupled to  internal memory  1206, 1216, a display 1212, and to a speaker 1214. Additionally, the wireless device 1200 may include an antenna 1204 for sending and receiving electromagnetic radiation that may be connected to a wireless data link or cellular telephone transceiver 266 coupled to one or more processors in the first or  second SOCs  202, 204. The wireless device 1200 may include menu selection buttons or rocker switches 1220 for receiving user inputs.
The wireless device 1200 may include a sound encoding/decoding (CODEC) circuit 1210, which digitizes sound received from a microphone into data packets suitable for wireless transmission and decodes received sound data packets to generate analog signals that are provided to the speaker to generate sound. Also, one or more of the processors in the first and  second SOCs  202, 204, wireless transceiver 266 and CODEC 1210 may include a digital signal processor (DSP) circuit (not shown separately) .
The processors of the wireless device 1200 may be any programmable microprocessor, microcomputer or multiple processor chip or chips that can be configured by software instructions (applications) to perform a variety of functions, including the functions of some implementations described below. In some wireless devices, multiple processors may be provided, such as one processor within an SOC 204 dedicated to wireless communication functions and one processor within an SOC 202 dedicated to running other applications. Typically, software applications may be stored in the memory 1206 before they are accessed and loaded into a  processor  202, 204. The processors may include internal memory sufficient to store the application software instructions.
As used in this application, the terms “component, ” “module, ” “system, ” and the like are intended to include a computer-related entity, such as, but not limited to, hardware, firmware, a combination of hardware and software, software, or software in execution, which are configured to perform particular operations or functions. For example, a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, or a computer. By way of illustration, both an application running on a wireless device and the wireless device may be referred to as a component. One or more components may reside within a process or thread of execution and a component may be localized on one processor or core or distributed between two or more processors or cores. In addition, these components may execute from various non-transitory computer readable media having various instructions or data structures stored thereon. Components may communicate by way of local or remote processes, function or procedure calls, electronic signals, data packets, memory read/writes, and other known network, computer, processor, or process related communication methodologies.
A number of different cellular and mobile communication services and standards are available or contemplated in the future, all of which may implement and benefit from the various embodiments. Such services and standards include, e.g., third generation partnership project (3GPP) , long term evolution (LTE) systems, third  generation wireless mobile communication technology (3G) , fourth generation wireless mobile communication technology (4G) , fifth generation wireless mobile communication technology (5G) , global system for mobile communications (GSM) , universal mobile telecommunications system (UMTS) , 3GSM, general packet radio service (GPRS) , code division multiple access (CDMA) systems (e.g., cdmaOne, CDMA1020TM) , enhanced data rates for GSM evolution (EDGE) , advanced mobile phone system (AMPS) , digital AMPS (IS-136/TDMA) , evolution-data optimized (EV-DO) , digital enhanced cordless telecommunications (DECT) , Worldwide Interoperability for Microwave Access (WiMAX) , WLAN, Wi-Fi Protected Access I &II (WPA, WPA2) , and integrated digital enhanced network (iDEN) . Each of these technologies involves, for example, the transmission and reception of voice, data, signaling, and/or content messages. It should be understood that any references to terminology and/or technical details related to an individual telecommunication standard or technology are for illustrative purposes only, and are not intended to limit the scope of the claims to a particular communication system or technology unless specifically recited in the claim language.
Various embodiments illustrated and described are provided merely as examples to illustrate various features of the claims. However, features shown and described with respect to any given embodiment are not necessarily limited to the associated embodiment and may be used or combined with other embodiments that are shown and described. Further, the claims are not intended to be limited by any one example embodiment. For example, one or more of the operations of the methods 700–1100 may be substituted for or combined with one or more operations of the methods 700–1100.
The foregoing method descriptions and the process flow diagrams are provided merely as illustrative examples and are not intended to require or imply that the operations of various embodiments must be performed in the order presented. As will be appreciated by one of skill in the art the order of operations in the foregoing embodiments may be performed in any order. Words such as “thereafter, ” “then, ”  “next, ” etc. are not intended to limit the order of the operations; these words are used to guide the reader through the description of the methods. Further, any reference to claim elements in the singular, for example, using the articles “a, ” “an, ” or “the” is not to be construed as limiting the element to the singular.
Various illustrative logical blocks, modules, components, circuits, and algorithm operations described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and operations have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such embodiment decisions should not be interpreted as causing a departure from the scope of the claims.
The hardware used to implement various illustrative logics, logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but, in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of receiver smart objects, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. Alternatively, some operations or methods may be performed by circuitry that is specific to a given function.
In one or more embodiments, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions or code on a non-transitory computer-readable storage medium or non-transitory processor-readable storage medium. The operations of a method or algorithm disclosed herein may be embodied in a processor-executable software module or processor-executable instructions, which may reside on a non-transitory computer-readable or processor-readable storage medium. Non-transitory computer-readable or processor-readable storage media may be any storage media that may be accessed by a computer or a processor. By way of example but not limitation, such non-transitory computer-readable or processor-readable storage media may include RAM, ROM, EEPROM, FLASH memory, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage smart objects, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer. Disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of non-transitory computer-readable and processor-readable media. Additionally, the operations of a method or algorithm may reside as one or any combination or set of codes and/or instructions on a non-transitory processor-readable storage medium and/or computer-readable storage medium, which may be incorporated into a computer program product.
The preceding description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the claims. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the scope of the claims. Thus, the present disclosure is not intended to be limited  to the embodiments shown herein but is to be accorded the widest scope consistent with the following claims and the principles and novel features disclosed herein.

Claims (28)

  1. A method performed by a processor of a wireless device for managing transmission control protocol (TCP) communication with a communication network, comprising:
    determining whether a flow control operation is implemented; and
    caching data packets scheduled for transmission in a memory coupled to the processor and providing acknowledgement (Ack) packets to a modem for transmission to the communication network in response to determining that a flow control operation is implemented.
  2. The method of claim 1, wherein providing Ack packets to the modem for transmission to the communication network comprises storing the Ack packets in a transmission buffer of the modem in a manner that enables transmission by the modem to the communication network without delay.
  3. The method of claim 1, further comprising:
    providing cached data packets to the modem for transmission by the modem to the communication network after all Ack packets have been sent to the modem.
  4. The method of claim 1, further comprising:
    providing cached data packets to the modem for transmission by the modem to the communication network in response to determining that the flow control operation is no longer implemented.
  5. The method of claim 4, further comprising:
    resuming normal TCP operations after providing all cached data packets to the modem for transmission.
  6. The method of claim 1, further comprising receiving the data packets and the Ack packets from a TCP packet source.
  7. The method of claim 6, wherein receiving the data packets and the Ack packets from a TCP packet source comprises receiving the data packets and the Ack packets from a TCP packet source in a tethered call session.
  8. A wireless device, comprising:
    an interface configured to receive data packets and acknowledgement (Ack) packets;
    a memory; and
    a processing system coupled to the interface and the memory and configured to:
    determine whether a flow control operation is implemented; and
    cache data packets scheduled for transmission in the memory and provide Ack packets to a modem for transmission to a communication network in response to determining that a flow control operation is implemented.
  9. The wireless device of claim 8, wherein the processing system is further configured to store the Ack packets in a transmission buffer of the modem in a manner that enables transmission by the modem to the communication network without delay.
  10. The wireless device of claim 8, wherein the processing system is further configured to provide cached data packets to the modem for transmission by the modem to the communication network after all Ack packets have been sent to the modem.
  11. The wireless device of claim 8, wherein the processing system is further configured to provide cached data packets to the modem for transmission by the  modem to the communication network in response to determining that the flow control operation is no longer implemented.
  12. The wireless device of claim 11, wherein the processing system is further configured to resume normal TCP operations after providing all cached data packets to the modem for transmission.
  13. The wireless device of claim 8, wherein the processing system is further configured to receive the data packets and the Ack packets from a TCP packet source.
  14. The wireless device of claim 13, wherein the processing system is further configured to receive the data packets and the Ack packets from a TCP packet source in a tethered call session.
  15. A non-transitory processor-readable medium having stored thereon processor-executable instructions configured to cause a wireless device processor to perform operations comprising:
    determining whether a flow control operation is implemented; and
    caching data packets scheduled for transmission in a memory coupled to the processor and providing acknowledgement (Ack) packets to a modem for transmission to a communication network in response to determining that a flow control operation is implemented.
  16. The non-transitory processor-readable medium of claim 15, wherein the stored processor-executable instructions are configured to cause the wireless device processor to perform operations such that providing Ack packets to the modem for transmission to the communication network comprises storing the Ack packets in a transmission buffer of the modem in a manner that enables transmission by the modem to the communication network without delay.
  17. The non-transitory processor-readable medium of claim 15, wherein the stored processor-executable instructions are configured to cause the wireless device processor to perform operations further comprising:
    providing cached data packets to the modem for transmission by the modem to the communication network after all Ack packets have been sent to the modem.
  18. The non-transitory processor-readable medium of claim 15, wherein the stored processor-executable instructions are configured to cause the wireless device processor to perform operations further comprising:
    providing cached data packets to the modem for transmission by the modem to the communication network in response to determining that the flow control operation is no longer implemented.
  19. The non-transitory processor-readable medium of claim 18, wherein the stored processor-executable instructions are configured to cause the wireless device processor to perform operations further comprising:
    resuming normal TCP operations after providing all cached data packets to the modem for transmission.
  20. The non-transitory processor-readable medium of claim 15, wherein the stored processor-executable instructions are configured to cause the wireless device processor to perform operations further comprising receiving the data packets and the Ack packets from a TCP packet source.
  21. The non-transitory processor-readable medium of claim 20, wherein the stored processor-executable instructions are configured to cause the wireless device processor to perform operations such that receiving the data packets and the Ack packets from a TCP packet source comprises receiving the data packets and the Ack packets from a TCP packet source in a tethered call session.
  22. A wireless device, comprising:
    means for determining whether a flow control operation is implemented;
    means for caching data packets scheduled for transmission in a memory; and
    means for providing acknowledgement (Ack) packets to a modem for transmission to a communication network in response to determining that a flow control operation is implemented.
  23. The wireless device of claim 22, wherein means for providing Ack packets to the modem for transmission to the communication network comprises means for storing the Ack packets in a transmission buffer of the modem in a manner that enables transmission by the modem to the communication network without delay.
  24. The wireless device of claim 22, further comprising:
    means for providing cached data packets to the modem for transmission by the modem to the communication network after all Ack packets have been sent to the modem.
  25. The wireless device of claim 22, further comprising:
    means for providing cached data packets to the modem for transmission by the modem to the communication network in response to determining that the flow control operation is no longer implemented.
  26. The wireless device of claim 25, further comprising:
    means for resuming normal TCP operations after providing all cached data packets to the modem for transmission.
  27. The wireless device of claim 22, further comprising means for receiving the data packets and the Ack packets from a TCP packet source.
  28. The wireless device of claim 27, wherein means for receiving the data packets and the Ack packets from a TCP packet source comprises means for receiving the data packets and the Ack packets from a TCP packet source in a tethered call session.
PCT/CN2020/093873 2020-06-02 2020-06-02 Managing transmission control protocol communication with a communication network WO2021243547A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/093873 WO2021243547A1 (en) 2020-06-02 2020-06-02 Managing transmission control protocol communication with a communication network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/093873 WO2021243547A1 (en) 2020-06-02 2020-06-02 Managing transmission control protocol communication with a communication network

Publications (1)

Publication Number Publication Date
WO2021243547A1 true WO2021243547A1 (en) 2021-12-09

Family

ID=78830026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093873 WO2021243547A1 (en) 2020-06-02 2020-06-02 Managing transmission control protocol communication with a communication network

Country Status (1)

Country Link
WO (1) WO2021243547A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030117974A1 (en) * 2001-12-26 2003-06-26 Lg Electronics Inc. TCP processing apparatus of base transceiver subsystem in wired/wireless integrated network and method thereof
US20140071802A1 (en) * 2012-09-12 2014-03-13 Telefonaktiebolaget L M Ericsson (Publ) Node and method for managing a maximum transfer unit related path failure
WO2016064417A1 (en) * 2014-10-24 2016-04-28 Hewlett Packard Enterprise Development Lp End-to-end negative acknowledgment
CN106788911A (en) * 2015-11-25 2017-05-31 华为技术有限公司 A kind of method and apparatus of message retransmission
US20190394056A1 (en) * 2017-03-06 2019-12-26 Huawei Technologies Co., Ltd. Multicast service processing method and access device
US20200100138A1 (en) * 2017-05-27 2020-03-26 Huawei Technologies Co., Ltd. Packet sending method, apparatus, and device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030117974A1 (en) * 2001-12-26 2003-06-26 Lg Electronics Inc. TCP processing apparatus of base transceiver subsystem in wired/wireless integrated network and method thereof
US20140071802A1 (en) * 2012-09-12 2014-03-13 Telefonaktiebolaget L M Ericsson (Publ) Node and method for managing a maximum transfer unit related path failure
WO2016064417A1 (en) * 2014-10-24 2016-04-28 Hewlett Packard Enterprise Development Lp End-to-end negative acknowledgment
CN106788911A (en) * 2015-11-25 2017-05-31 华为技术有限公司 A kind of method and apparatus of message retransmission
US20190394056A1 (en) * 2017-03-06 2019-12-26 Huawei Technologies Co., Ltd. Multicast service processing method and access device
US20200100138A1 (en) * 2017-05-27 2020-03-26 Huawei Technologies Co., Ltd. Packet sending method, apparatus, and device

Similar Documents

Publication Publication Date Title
US11690081B2 (en) Bandwidth part (BWP) for unicast/multicast and resource allocation for multicast
US11706323B2 (en) Managing a reordering timer
US11770772B2 (en) Discontinuous reception for sidelink control signaling
US11523301B2 (en) Physical uplink control channel with buffer status report
US11382044B2 (en) Determining a transmit power of uplink transmissions
US11758513B2 (en) Physical uplink control channel with uplink message short data field
US11930494B2 (en) Managing transmit timing of data transmissions
US11751195B2 (en) Control signaling for multicast communications
US11265263B2 (en) Processing data using remote network computing resources
WO2021243547A1 (en) Managing transmission control protocol communication with a communication network
WO2022051985A1 (en) Managing a communication link for transfer control protocol communications
US11895036B2 (en) Managing acknowledgement packets in an uplink data packet stream
WO2021174435A1 (en) Managing a downlink bit rate
WO2022165826A1 (en) Frames-per-second thermal management
US11523404B2 (en) Radio link prioritization
WO2021253369A1 (en) Methods for managing network communication
US20230403732A1 (en) Managing Downlink Traffic Reception And Cross-Link Interference
US20210352514A1 (en) Power Efficient Processing of Down Link Traffic Using Multiple Parallel Flows
EP4038854A1 (en) User plane integrity protection (up ip) capability signaling in 5g/4g systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938706

Country of ref document: EP

Kind code of ref document: A1