WO2022051985A1 - Managing a communication link for transfer control protocol communications - Google Patents

Managing a communication link for transfer control protocol communications Download PDF

Info

Publication number
WO2022051985A1
WO2022051985A1 PCT/CN2020/114493 CN2020114493W WO2022051985A1 WO 2022051985 A1 WO2022051985 A1 WO 2022051985A1 CN 2020114493 W CN2020114493 W CN 2020114493W WO 2022051985 A1 WO2022051985 A1 WO 2022051985A1
Authority
WO
WIPO (PCT)
Prior art keywords
modem
tcp
tcp flow
offload
wireless device
Prior art date
Application number
PCT/CN2020/114493
Other languages
French (fr)
Inventor
Yusheng Yang
Zhi Chen
Huijun GAN
Zaimei XING
Lei Wang
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/114493 priority Critical patent/WO2022051985A1/en
Publication of WO2022051985A1 publication Critical patent/WO2022051985A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Wireless devices may be configured with different processors to handle application processing operations and other processing operations, such as communication processing operations.
  • the other processors e.g., a communication processor
  • the wireless device may place a modem application processor into a low power or low power mode while operating the other processor in an active mode.
  • the other processor may function as an offload device and may for example, perform simple application processing (e.g., offload processing) , or process aspects of network events, such as link layer protocol processing (e.g., maintaining a connection, monitoring link status) .
  • the application processor will transition to an active mode to perform such processing.
  • the application processor transitions to active processing mode, the application processor is unaware of communication activity or changes in communication link parameters or status that have occurred while the application processor was in the lower power mode.
  • Various aspects include systems and methods that may be performed by a processor of a wireless device for managing a communication link between a wireless device and a transfer control protocol (TCP) peer device.
  • TCP transfer control protocol
  • the various systems and methods may be applied to enable an application processor to resume management of communication links such as TCP connections when the application processor transitions from a low power mode to an active processing mode.
  • Various aspects may include establishing a TCP flow between a modem of the wireless device and the TCP peer device, managing by an offload device of the wireless device the TCP flow between the wireless device and the TCP peer device when the modem is in a low power mode of operation, and supporting operations of the modem by the offload device when the modem is in an active mode of operation.
  • supporting operations of the modem by the offload device when the modem is in an active mode of operation may include when the modem transitions from the low power mode of operation to an active mode of operation, sending from the offload device to the modem an update message including TCP flow activity that occurred related to the TCP flow while the modem was in the low power mode of operation.
  • Some aspects may include updating information in a modem stack based on the TCP flow activity included in the update message. Some aspects may include managing by the modem the TCP flow between the wireless device and the TCP peer device using the TCP flow activity included in the update message. In some aspects, sending from the offload device to the modem the update message including the TCP flow activity that occurred related to the TCP flow while the modem was in the low power mode of operation may include sending the update message from a stack of the offload device to a stack of the modem.
  • the update message may include one or more of a TCP flow state, a TCP transmit/receive sequence, and an internet protocol (IP) identification.
  • the update message may include a header portion that includes the TCP flow activity.
  • supporting operations of the modem by the offload device when the modem is in an active mode of operation may include forwarding to the modem TCP flow activity with the TCP peer device when the modem is in an active mode of operation.
  • Some aspects may include sending from the modem to the offload device an update message including TCP flow activity to synchronize TCP flow activity in the modem and in the offload device.
  • Some aspects include a wireless device that includes a modem configured to establish a TCP flow between the wireless device and a TCP peer device, and an offload device configured to establish a TCP connection between the offload device and the modem using a source internet protocol (IP) address and a TCP port associated with the TCP peer device, forward to the modem TCP flow activity with the TCP peer device when the modem is in an active mode of operation, and manage the TCP flow between the wireless device and the TCP peer device when the modem is in a low power mode of operation.
  • IP internet protocol
  • the modem may be further configured to update information in a modem stack based on the TCP flow activity forwarded from the offload device. In some aspects, the modem may be further configured to manage the TCP flow between the wireless device and the TCP peer device using the TCP flow activity forwarded from the offload device. In some aspects, the offload device may be further configured to forward the TCP flow activity to the modem in an application layer.
  • Further aspects may include a wireless device having a processor configured to perform one or more operations of any of the methods summarized above. Further aspects may include a method including performing by an application processor one or more operations described above. Further aspects may include a non-transitory processor-readable storage medium having stored thereon processor-executable instructions configured to cause a processor of a wireless device to perform operations of any of the methods summarized above. Further aspects include a wireless device having means for performing functions of any of the methods summarized above. Further aspects include a system on chip for use in a wireless device that includes a processor configured to perform one or more operations of any of the methods summarized above.
  • FIG. 1 is a system block diagram illustrating an example communication system suitable for implementing any of the various embodiments.
  • FIG. 2 is a component block diagram illustrating an example computing and wireless modem system suitable for implementing any of the various embodiments.
  • FIG. 3 is a component block diagram illustrating a software architecture including a radio protocol stack for the user and control planes in wireless communications suitable for implementing any of the various embodiments.
  • FIG. 4 is a component block diagram illustrating a system configured for managing a communication link between the wireless device and a transfer control protocol (TCP) peer device in accordance with various embodiments.
  • TCP transfer control protocol
  • FIG. 5 is a component block diagram illustrating elements of a wireless device configured for managing a communication link between the wireless device and a TCP peer device in accordance with various embodiments.
  • FIGS. 6A and 6B are process flow diagrams illustrating a method that may be performed by processors of a wireless device for managing a communication link between the wireless device and a TCP peer device according to various embodiments.
  • FIG. 7 is a process flow diagram illustrating operations that may be performed by a processor of a wireless device as part of the method for managing a communication link between the wireless device and a TCP peer device according to various embodiments.
  • FIG. 8A is a process flow diagram
  • FIG. 8B is a conceptual block diagram, illustrating a method that may be performed by a processor of a wireless device for managing a communication link between the wireless device and a TCP peer device according to various embodiments.
  • FIG. 9 is a process flow diagram illustrating operations that may be performed by a processor of a wireless device as part of the method for managing a communication link between the wireless device and a TCP peer device according to various embodiments.
  • FIG. 10 is a component block diagram of a network computing device suitable for use with various embodiments.
  • FIG. 11 is a component block diagram of a wireless device suitable for use with various embodiments.
  • Various embodiments include systems and methods for managing a communication link between a wireless device and a transfer control protocol (TCP) peer device.
  • TCP transfer control protocol
  • Various embodiments may improve the efficiency and utility of wireless devices and communication networks by reducing power consumption by a modem application processor of a wireless device and enabling the modem application processor to quickly resume processing of communications, such as TCP flows.
  • wireless device is used herein to refer to any one or all of wireless or wired router devices, server devices, and other elements of a communication network, wireless or wired appliances, cellular telephones, smartphones, portable wireless devices, personal or mobile multi-media players, laptop computers, tablet computers, smartbooks, ultrabooks, palmtop computers, wireless electronic mail receivers, multimedia Internet-enabled cellular telephones, medical devices and equipment, biometric sensors/devices, wearable devices including smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart rings, smart bracelets, etc. ) , entertainment devices (e.g., wireless gaming controllers, music and video players, satellite radios, etc.
  • wireless gaming controllers e.g., music and video players, satellite radios, etc.
  • wireless-network enabled Internet of Things (IoT) devices including smart meters/sensors, industrial manufacturing equipment, large and small machinery and appliances for home or enterprise use, wireless communication elements within autonomous and semiautonomous vehicles, wireless devices affixed to or incorporated into various mobile platforms, global positioning system devices, and similar electronic devices that include a memory, wireless communication components and a programmable processor.
  • IoT Internet of Things
  • SOC system on chip
  • a single SOC may contain circuitry for digital, analog, mixed-signal, and radio-frequency functions.
  • a single SOC may also include any number of general purpose and/or specialized processors (digital signal processors, modem application processors, video processors, etc. ) , memory blocks (e.g., ROM, RAM, Flash, etc. ) , and resources (e.g., timers, voltage regulators, oscillators, etc. ) .
  • SOCs may also include software for controlling the integrated resources and processors, as well as for controlling peripheral devices.
  • SIP system in a package
  • a SIP may include a single substrate on which multiple IC chips or semiconductor dies are stacked in a vertical configuration.
  • the SIP may include one or more multi-chip modules (MCMs) on which multiple ICs or semiconductor dies are packaged into a unifying substrate.
  • MCMs multi-chip modules
  • a SIP may also include multiple independent SOCs coupled together via high speed communication circuitry and packaged in close proximity, such as on a single motherboard or in a single wireless device. The proximity of the SOCs facilitates high speed communications and the sharing of memory and resources.
  • an offload device may processes aspects of network events, such as link layer protocol processing (e.g., maintaining a connection, monitoring link status) and simple application processing (e.g., offload processing) . If the communication processor is unable to process an event, the application processor will transition to an active mode to perform such processing. When the application processor transitions out of the low power mode to an active processing mode, the application processor is unaware of communication activity or changes in communication link parameters or status that have occurred while the application processor was in the lower power mode. In some cases, the application processor may need information from the offload device to re-synchronize information about TCP connections with a TCP peer device.
  • link layer protocol processing e.g., maintaining a connection, monitoring link status
  • simple application processing e.g., offload processing
  • the offload device may provide update information to the modem application processor in one (or more) update messages.
  • the wireless device may establish (e.g., via the modem application processor) a TCP flow between a modem of the wireless device and the TCP peer device, manage by an offload device of the wireless device the TCP flow between the wireless device and the TCP peer device when the modem is in a low power mode of operation, and support operations of the modem by the offload device when the modem is in an active mode of operation.
  • supporting operations of the modem by the offload device when the modem is in an active mode of operation may include sending from the offload device to the modem an update message including TCP flow activity that occurred related to the TCP flow while the modem was in the low power mode of operation when the modem transitions from the low power mode to an active mode of operation.
  • supporting operations of the modem by the offload device when the modem is in an active mode of operation may include forwarding to the modem TCP flow activity with the TCP peer device when the modem is in an active mode of operation.
  • Some embodiments may include updating information in a modem stack (e.g., a TCP/IP stack) based on the TCP flow activity included in the update message. Some embodiments may include managing by the modem the TCP flow between the wireless device and the TCP peer device using the TCP flow activity included in the update message. In some embodiments, sending from the offload device to the modem the update message including the TCP flow activity that occurred related to the TCP flow while the modem was in the low power mode of operation comprises sending the update message from a stack of the offload device (e.g., a TCP/IP stack) to a stack of the modem. In some embodiments, the update message may include one or more of a TCP flow state, a TCP transmit/receive sequence, and an internet protocol (IP) identification. In some embodiments, the update message may include a header portion that includes the TCP flow activity.
  • IP internet protocol
  • the offload device may support operations of the modem when the modem is in an active mode of operation by, for example, forwarding communications to the modem application processor when the application processor is operating in the active operations mode.
  • the wireless device may establish (e.g., via the modem) a TCP flow between the wireless device and a TCP peer device, may establish a TCP connection between the offload device and the modem using a source internet protocol (IP) address and a TCP port associated with the TCP peer device, may forward to the modem TCP flow activity with the TCP peer device when the modem is in an active mode of operation, and may manage (e.g., via the offload device) the TCP flow between the wireless device and the TCP peer device when the modem is in a low power mode of operation.
  • IP internet protocol
  • the modem may be configured to update information in a modem stack based on the TCP flow activity forwarded from the offload device. In some embodiments, the modem may be configured to manage the TCP flow between the wireless device and the TCP peer using the TCP flow activity forwarded from the offload device. In some embodiments, the offload device may be configured to forward the TCP flow activity to the modem in an application layer.
  • Various embodiments improve the efficiency, speed, and reliability of wireless devices by enabling the modem application processor to rapidly resume processing of communications (e.g., TCP flows) handled by the offload device when the application processor transitions out of the low power mode to the active operations mode, rather than reestablishing or reinitializing the TCP flows.
  • communications e.g., TCP flows
  • FIG. 1 is a system block diagram illustrating an example communication system 100 suitable for implementing any of the various embodiments.
  • the communications system 100 may be a 5G New Radio (NR) network, or any other suitable network such as a Long Term Evolution (LTE) network.
  • NR 5G New Radio
  • LTE Long Term Evolution
  • the communications system 100 may include a heterogeneous network architecture that includes a core network 140 and a variety of wireless devices (illustrated as wireless devices 120a-120e in FIG. 1) .
  • the wireless devices 120a-120e are examples of wireless devices.
  • the communications system 100 may also include a number of base stations (illustrated as the BS 110a, the BS 110b, the BS 110c, and the BS 110d) and other network entities.
  • a base station is an entity that communicates with wireless devices, and also may be referred to as an NodeB, a Node B, an LTE evolved nodeB (eNB) , an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio base station (NR BS) , a 5G NodeB (NB) , a Next Generation NodeB (gNB) , or the like.
  • Each base station may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a base station, a base station subsystem serving this coverage area, or a combination thereof, depending on the context in which the term is used.
  • a base station 110a-110d may provide communication coverage for a macro cell, a pico cell, a femto cell, another type of cell, or a combination thereof.
  • a macro cell may cover a relatively large geographic area (for example, several kilometers in radius) and may allow unrestricted access by wireless devices with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by wireless devices with service subscription.
  • a femto cell may cover a relatively small geographic area (for example, a home) and may allow restricted access by wireless devices having association with the femto cell (for example, wireless devices in a closed subscriber group (CSG) ) .
  • a base station for a macro cell may be referred to as a macro BS.
  • a base station for a pico cell may be referred to as a pico BS.
  • a base station for a femto cell may be referred to as a femto BS or a home BS.
  • a base station 110a may be a macro BS for a macro cell 102a
  • a base station 110b may be a pico BS for a pico cell 102b
  • a base station 110c may be a femto BS for a femto cell 102c.
  • a base station 110a-110d may support one or multiple (for example, three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not be stationary, and the geographic area of the cell may move according to the location of a mobile base station.
  • the base stations 110a-110d may be interconnected to one another as well as to one or more other base stations or network nodes (not illustrated) in the communications system 100 through various types of backhaul interfaces, such as a direct physical connection, a virtual network, or a combination thereof using any suitable transport network
  • the base station 110a-110d may communicate with the core network 140 over a wired or wireless communication link 126.
  • the wireless device 120a-120e may communicate with the base station 110a-110d over a wireless communication link 122.
  • the wired communication link 126 may use a variety of wired networks (e.g., Ethernet, TV cable, telephony, fiber optic and other forms of physical network connections) that may use one or more wired communication protocols, such as Ethernet, Point-To-Point protocol, High-Level Data Link Control (HDLC) , Advanced Data Communication Control Protocol (ADCCP) , and Transmission Control Protocol/Internet Protocol (TCP/IP) .
  • wired networks e.g., Ethernet, TV cable, telephony, fiber optic and other forms of physical network connections
  • wired communication protocols such as Ethernet, Point-To-Point protocol, High-Level Data Link Control (HDLC) , Advanced Data Communication Control Protocol (ADCCP) , and Transmission Control Protocol/Internet Protocol (TCP/IP) .
  • HDMI High-Level Data Link Control
  • ADCCP Advanced Data Communication Control Protocol
  • TCP/IP Transmission Control Protocol/Internet Protocol
  • the communications system 100 also may include relay stations (e.g., relay BS 110d) .
  • a relay station is an entity that can receive a transmission of data from an upstream station (for example, a base station or a wireless device) and transmit the data to a downstream station (for example, a wireless device or a base station) .
  • a relay station also may be a wireless device that can relay transmissions for other wireless devices.
  • a relay station 110d may communicate with macro the base station 110a and the wireless device 120d in order to facilitate communication between the base station 110a and the wireless device 120d.
  • a relay station also may be referred to as a relay base station, a relay base station, a relay, etc.
  • the communications system 100 may be a heterogeneous network that includes base stations of different types, for example, macro base stations, pico base stations, femto base stations, relay base stations, etc. These different types of base stations may have different transmit power levels, different coverage areas, and different impacts on interference in communications system 100. For example, macro base stations may have a high transmit power level (for example, 5 to 40 Watts) whereas pico base stations, femto base stations, and relay base stations may have lower transmit power levels (for example, 0.1 to 2 Watts) .
  • macro base stations may have a high transmit power level (for example, 5 to 40 Watts) whereas pico base stations, femto base stations, and relay base stations may have lower transmit power levels (for example, 0.1 to 2 Watts) .
  • a network controller 130 may couple to a set of base stations and may provide coordination and control for these base stations.
  • the network controller 130 may communicate with the base stations via a backhaul.
  • the base stations also may communicate with one another, for example, directly or indirectly via a wireless or wireline backhaul.
  • the wireless devices 120a, 120b, 120c may be dispersed throughout communications system 100, and each wireless device may be stationary or mobile.
  • a wireless device also may be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, etc.
  • a macro base station 110a may communicate with the communication network 140 over a wired or wireless communication link 126.
  • the wireless devices 120a, 120b, 120c may communicate with a base station 110a-110d over a wireless communication link 122.
  • the wireless communication links 122, 124 may include a plurality of carrier signals, frequencies, or frequency bands, each of which may include a plurality of logical channels.
  • the wireless communication links 122 and 124 may utilize one or more radio access technologies (RATs) .
  • RATs radio access technologies
  • Examples of RATs that may be used in a wireless communication link include 3GPP LTE, 3G, 4G, 5G (e.g., NR) , GSM, Code Division Multiple Access (CDMA) , Wideband Code Division Multiple Access (WCDMA) , Worldwide Interoperability for Microwave Access (WiMAX) , Time Division Multiple Access (TDMA) , and other mobile telephony communication technologies cellular RATs.
  • RATs that may be used in one or more of the various wireless communication links 122, 124 within the communication system 100 include medium range protocols such as Wi-Fi, LTE-U, LTE-Direct, LAA, MuLTEfire, and relatively short range RATs such as ZigBee, Bluetooth, and Bluetooth Low Energy (LE) .
  • medium range protocols such as Wi-Fi, LTE-U, LTE-Direct, LAA, MuLTEfire
  • relatively short range RATs such as ZigBee, Bluetooth, and Bluetooth Low Energy (LE) .
  • Certain wireless networks utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink.
  • OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc.
  • K orthogonal subcarriers
  • Each subcarrier may be modulated with data.
  • modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM.
  • the spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth.
  • the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (called a “resource block” ) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal Fast File Transfer (FFT) size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10 or 20 megahertz (MHz) , respectively.
  • the system bandwidth may also be partitioned into subbands. For example, a subband may cover 1.08 MHz (i.e., 6 resource blocks) , and there may be 1, 2, 4, 8 or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
  • NR new radio
  • 5G 5G network
  • NR may utilize OFDM with a cyclic prefix (CP) on the uplink (UL) and downlink (DL) and include support for half-duplex operation using Time Division Duplexing (TDD) .
  • CP cyclic prefix
  • DL downlink
  • TDD Time Division Duplexing
  • a single component carrier bandwidth of 100 MHz may be supported.
  • NR resource blocks may span 12 sub-carriers with a sub-carrier bandwidth of 75 kHz over a 0.1 millisecond (ms) duration.
  • Each radio frame may consist of 50 subframes with a length of 10 ms. Consequently, each subframe may have a length of 0.2 ms.
  • Each subframe may indicate a link direction (i.e., DL or UL) for data transmission and the link direction for each subframe may be dynamically switched.
  • Each subframe may include DL/UL data as well as DL/UL control data.
  • Beamforming may be supported and beam direction may be dynamically configured.
  • Multiple Input Multiple Output (MIMO) transmissions with precoding may also be supported.
  • MIMO configurations in the DL may support up to eight transmit antennas with multi-layer DL transmissions up to eight streams and up to two streams per wireless device. Multi-layer transmissions with up to 2 streams per wireless device may be supported. Aggregation of multiple cells may be supported with up to eight serving cells.
  • NR may support a different air interface, other than an OFDM-based air interface.
  • Some wireless devices may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) wireless devices.
  • MTC and eMTC wireless devices include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a base station, another device (for example, remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (for example, a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some wireless devices may be considered Internet-of-Things (IoT) devices or may be implemented as NB-IoT (narrowband internet of things) devices.
  • a wireless device 120a-120e may be included inside a housing that houses components of the wireless device, such as processor components, memory components, similar components, or a combination thereof.
  • any number of communication systems and any number of wireless networks may be deployed in a given geographic area.
  • Each communications system and wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies.
  • RAT also may be referred to as a radio technology, an air interface, etc.
  • a frequency also may be referred to as a carrier, a frequency channel, etc.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between communications systems of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more wireless devices 120a-120e may communicate directly using one or more sidelink channels 124 (for example, without using a base station 110a-110d as an intermediary to communicate with one another) .
  • the wireless devices 120a-120e may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, or similar protocol) , a mesh network, or similar networks, or combinations thereof.
  • V2X vehicle-to-everything
  • the wireless device 120a-120e may perform scheduling operations, resource selection operations, as well as other operations described elsewhere herein as being performed by the base station 110a
  • FIG. 2 is a component block diagram illustrating an example computing and wireless modem system 200 suitable for implementing any of the various embodiments.
  • Various embodiments may be implemented on a number of single processor and multiprocessor computer systems, including a system-on-chip (SOC) or system in a package (SIP) .
  • SOC system-on-chip
  • SIP system in a package
  • the illustrated example computing system 200 (which may be a SIP in some embodiments) includes a two SOCs 202, 204 coupled to a clock 206, a voltage regulator 208, and a wireless transceiver 266 configured to send and receive wireless communications via an antenna (not shown) to/from wireless devices, such as a base station 110a.
  • the first SOC 202 operate as central processing unit (CPU) of the wireless device that carries out the instructions of software application programs by performing the arithmetic, logical, control and input/output (I/O) operations specified by the instructions.
  • the second SOC 204 may operate as a specialized processing unit.
  • the second SOC 204 may operate as a specialized 5G processing unit responsible for managing high volume, high speed (e.g., 5 Gbps, etc. ) , and/or very high frequency short wave length (e.g., 28 GHz mmWave spectrum, etc. ) communications.
  • high speed e.g., 5 Gbps, etc.
  • very high frequency short wave length e.g., 28 GHz mmWave spectrum, etc.
  • the first SOC 202 may include a digital signal processor (DSP) 210, a modem application processor 212, a graphics processor 214, an application processor 216, one or more coprocessors 218 (e.g., vector co-processor) connected to one or more of the processors, memory 220, custom circuity 222, system components and resources 224, an interconnection/bus module 226, one or more temperature sensors 230, a thermal management unit 232, and a thermal power envelope (TPE) component 234.
  • DSP digital signal processor
  • modem application processor 212 e.g., a graphics processor 214
  • an application processor 216 e.g., vector co-processor
  • coprocessors 218 e.g., vector co-processor
  • the second SOC 204 may include a 5G modem application processor 252, a power management unit 254, an interconnection/bus module 264, the plurality of mmWave transceivers 256, memory 258, and various additional processors 260, such as an applications processor, packet processor, etc.
  • Each processor 210, 212, 214, 216, 218, 252, 260 may include one or more cores, and each processor/core may perform operations independent of the other processors/cores.
  • the first SOC 202 may include a processor that executes a first type of operating system (e.g., FreeBSD, LINUX, OS X, etc. ) and a processor that executes a second type of operating system (e.g., MICROSOFT WINDOWS 10) .
  • a first type of operating system e.g., FreeBSD, LINUX, OS X, etc.
  • a second type of operating system e.g., MICROSOFT WINDOWS 10.
  • processors 210, 212, 214, 216, 218, 252, 260 may be included as part of a processor cluster architecture (e.g., a synchronous processor cluster architecture, an asynchronous or heterogeneous processor cluster architecture, etc. ) .
  • a processor cluster architecture e.g., a synchronous processor cluster architecture, an asynchronous or heterogeneous processor cluster architecture, etc.
  • the first and second SOC 202, 204 may include various system components, resources and custom circuitry for managing sensor data, analog-to-digital conversions, wireless data transmissions, and for performing other specialized operations, such as decoding data packets and processing encoded audio and video signals for rendering in a web browser.
  • the system components and resources 224 of the first SOC 202 may include power amplifiers, voltage regulators, oscillators, phase-locked loops, peripheral bridges, data controllers, memory controllers, system controllers, access ports, timers, and other similar components used to support the processors and software clients running on a wireless device.
  • the system components and resources 224 and/or custom circuitry 222 may also include circuitry to interface with peripheral devices, such as cameras, electronic displays, wireless communication devices, external memory chips, etc.
  • the first and second SOC 202, 204 may communicate via interconnection/bus module 250.
  • the various processors 210, 212, 214, 216, 218, may be interconnected to one or more memory elements 220, system components and resources 224, and custom circuitry 222, and a thermal management unit 232 via an interconnection/bus module 226.
  • the processor 252 may be interconnected to the power management unit 254, the mmWave transceivers 256, memory 258, and various additional processors 260 via the interconnection/bus module 264.
  • the interconnection/bus module 226, 250, 264 may include an array of reconfigurable logic gates and/or implement a bus architecture (e.g., CoreConnect, AMBA, etc. ) . Communications may be provided by advanced interconnects, such as high-performance networks-on chip (NoCs) .
  • NoCs high-performance networks-on chip
  • the first and/or second SOCs 202, 204 may further include an input/output module (not illustrated) for communicating with resources external to the SOC, such as a clock 206 and a voltage regulator 208.
  • resources external to the SOC e.g., clock 206, voltage regulator 208 may be shared by two or more of the internal SOC processors/cores.
  • various embodiments may be implemented in a wide variety of computing systems, which may include a single processor, multiple processors, multicore processors, or any combination thereof.
  • FIG. 3 is a component block diagram illustrating a software architecture 300 including a radio protocol stack for the user and control planes in wireless communications suitable for implementing any of the various embodiments.
  • the wireless device 320 may implement the software architecture 300 to facilitate communication between a wireless device 320 (e.g., the wireless device 120a-120e, 200) and the base station 350 (e.g., the base station 110a) of a communication system (e.g., 100) .
  • layers in software architecture 300 may form logical connections with corresponding layers in software of the base station 350.
  • the software architecture 300 may be distributed among one or more processors (e.g., the processors 212, 214, 216, 218, 252, 260) .
  • the software architecture 300 may include multiple protocol stacks, each of which may be associated with a different SIM (e.g., two protocol stacks associated with two SIMs, respectively, in a dual-SIM wireless communication device) . While described below with reference to LTE communication layers, the software architecture 300 may support any of variety of standards and protocols for wireless communications, and/or may include additional protocol stacks that support any of variety of standards and protocols wireless communications.
  • the software architecture 300 may include a Non-Access Stratum (NAS) 302 and an Access Stratum (AS) 304.
  • the NAS 302 may include functions and protocols to support packet filtering, security management, mobility control, session management, and traffic and signaling between a SIM (s) of the wireless device (e.g., SIM(s) 204) and its core network 140.
  • the AS 304 may include functions and protocols that support communication between a SIM (s) (e.g., SIM (s) 204) and entities of supported access networks (e.g., a base station) .
  • the AS 304 may include at least three layers (Layer 1, Layer 2, and Layer 3) , each of which may contain various sub-layers.
  • Layer 1 (L1) of the AS 304 may be a physical layer (PHY) 306, which may oversee functions that enable transmission and/or reception over the air interface via a wireless transceiver (e.g., 256) .
  • PHY physical layer
  • Examples of such physical layer 306 functions may include cyclic redundancy check (CRC) attachment, coding blocks, scrambling and descrambling, modulation and demodulation, signal measurements, MIMO, etc.
  • the physical layer may include various logical channels, including the Physical Downlink Control Channel (PDCCH) and the Physical Downlink Shared Channel (PDSCH) .
  • PDCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • Layer 2 (L2) of the AS 304 may be responsible for the link between the wireless device 320 and the base station 350 over the physical layer 306.
  • Layer 2 may include a media access control (MAC) sublayer 308, a radio link control (RLC) sublayer 310, and a packet data convergence protocol (PDCP) 312 sublayer, each of which form logical connections terminating at the base station 350.
  • MAC media access control
  • RLC radio link control
  • PDCP packet data convergence protocol
  • Layer 3 (L3) of the AS 304 may include a radio resource control (RRC) sublayer 3.
  • RRC radio resource control
  • the software architecture 300 may include additional Layer 3 sublayers, as well as various upper layers above Layer 3.
  • the RRC sublayer 313 may provide functions INCLUDING broadcasting system information, paging, and establishing and releasing an RRC signaling connection between the wireless device 320 and the base station 350.
  • the PDCP sublayer 312 may provide uplink functions including multiplexing between different radio bearers and logical channels, sequence number addition, handover data handling, integrity protection, ciphering, and header compression.
  • the PDCP sublayer 312 may provide functions that include in-sequence delivery of data packets, duplicate data packet detection, integrity validation, deciphering, and header decompression.
  • the RLC sublayer 310 may provide segmentation and concatenation of upper layer data packets, retransmission of lost data packets, and Automatic Repeat Request (ARQ) .
  • ARQ Automatic Repeat Request
  • the RLC sublayer 310 functions may include reordering of data packets to compensate for out-of-order reception, reassembly of upper layer data packets, and ARQ.
  • MAC sublayer 308 may provide functions including multiplexing between logical and transport channels, random access procedure, logical channel priority, and hybrid-ARQ (HARQ) operations.
  • the MAC layer functions may include channel mapping within a cell, de-multiplexing, discontinuous reception (DRX) , and HARQ operations.
  • the software architecture 300 may provide functions to transmit data through physical media
  • the software architecture 300 may further include at least one host layer 314 to provide data transfer services to various applications in the wireless device 320.
  • application-specific functions provided by the at least one host layer 314 may provide an interface between the software architecture and the general purpose processor 206.
  • the software architecture 300 may include one or more higher logical layer (e.g., transport, session, presentation, application, etc. ) that provide host layer functions.
  • the software architecture 300 may include a network layer (e.g., Internet Protocol (IP) layer) in which a logical connection terminates at a packet data network (PDN) gateway (PGW) .
  • IP Internet Protocol
  • PGW packet data network gateway
  • the software architecture 300 may include an application layer in which a logical connection terminates at another device (e.g., end user device, server, etc. ) .
  • the software architecture 300 may further include in the AS 304 a hardware interface 316 between the physical layer 306 and the communication hardware (e.g., one or more radio frequency (RF) transceivers) .
  • RF radio frequency
  • FIG. 4 is a component block diagram illustrating a system 400 configured for managing a communication link between the wireless device and a transfer control protocol (TCP) peer device in accordance with various embodiments.
  • TCP transfer control protocol
  • system 400 may include wireless device 402 and TCP peer device 404 (e.g., 110a-110d, 120a-120e, 200, 320, 350) .
  • wireless device 402 and TCP peer device 404 may communicate over a wired or wireless communication link 122, 124 (aspects of which are illustrated in FIG. 1) .
  • the wireless device 402 and TCP peer device 404 may include one or more processors 428 coupled to electronic storage 426 and a wireless transceiver (e.g., 266) .
  • the wireless transceiver 266 may be configured to receive messages sent in downlink transmissions from the wireless communication network 424 and pass such message to the processor (s) 428 for processing.
  • the processor (s) 428 may be configured to send message for uplink transmission to the wireless transceiver 266 for transmission to the wireless communication network 424.
  • Machine-readable instructions 406 may include one or more instruction modules.
  • the instruction modules may include computer program modules.
  • the instruction modules may include one or more of a TCP flow establishing module 408, a TCP flow managing module 410, an update messaging module 412, a TCP flow forwarding module 414, a transmit/receive (TX/RX) module 416, or other instruction modules.
  • the TCP flow establishing module 408 may be configured to establish a TCP flow between a modem of the wireless device and the TCP peer device.
  • a modem of the wireless device may be configured to execute the TCP flow establishing module 408.
  • the TCP flow managing module 410 may be configured to managing by the wireless device the TCP flow between the wireless device and the TCP peer device when the modem is in a low power mode of operation.
  • an offload device of the wireless device may be configured to execute the TCP flow managing module 410.
  • the update messaging module 412 may be configured to send to the modem an update message including TCP flow activity that occurred related to the TCP flow while the modem was in the low power mode of operation when the modem transitions from the low power mode to an active mode of operation.
  • an offload device of the wireless device may be configured to execute the update messaging module 412.
  • the TCP flow forwarding module 414 may be configured to forward to the modem TCP flow activity with the TCP peer device.
  • an offload device of the wireless device may be configured to execute the TCP flow forwarding module 414.
  • the transmit/receive (TX/RX) module 416 may be configured to send and receive communications, e.g., via the wireless transceiver 266.
  • the electronic storage 426 may include non-transitory storage media that electronically stores information.
  • the electronic storage media of electronic storage 426 may include one or both of system storage that is provided integrally (i.e., substantially non-removable) with the wireless device 402 and/or removable storage that is removably connectable to the wireless device 402 via, for example, a port (e.g., a universal serial bus (USB) port, a firewire port, etc. ) or a drive (e.g., a disk drive, etc. ) .
  • Electronic storage 426 may include one or more of optically readable storage media (e.g., optical disks, etc.
  • Electronic storage 426 may include one or more virtual storage resources (e.g., cloud storage, a virtual private network, and/or other virtual storage resources) .
  • Electronic storage 426 may store software algorithms, information determined by processor (s) 428, information received from the wireless device 402, or other information that enables the wireless device 402 to function as described herein.
  • Processor (s) 428 may be configured to provide information processing capabilities in the wireless device 402.
  • the processor (s) 428 may include one or more of a digital processor, an analog processor, a digital circuit designed to process information, an analog circuit designed to process information, a state machine, and/or other mechanisms for electronically processing information.
  • the processor (s) 428 are illustrated as single entities, this is for illustrative purposes only.
  • the processor (s) 428 may include a plurality of processing units and/or processor cores. The processing units may be physically located within the same device, or processor (s) 428 may represent processing functionality of a plurality of devices operating in coordination.
  • the processor (s) 428 may be configured to execute modules 408–414 and/or other modules by software; hardware; firmware; some combination of software, hardware, and/or firmware; and/or other mechanisms for configuring processing capabilities on processor (s) 428.
  • module may refer to any component or set of components that perform the functionality attributed to the module. This may include one or more physical processors during execution of processor readable instructions, the processor readable instructions, circuitry, hardware, storage media, or any other components.
  • modules 408–414 may provide more or less functionality than is described.
  • one or more of the modules 408–414 may be eliminated, and some or all of its functionality may be provided by other modules 408–414.
  • the processor (s) 428 may be configured to execute one or more additional modules that may perform some or all of the functionality attributed below to one of the modules 408–414.
  • FIG. 5 is a component block diagram illustrating elements of a wireless device 502 configured for managing a communication link between the wireless device and a TCP peer device in accordance with various embodiments.
  • the wireless device 502 may include a modem 510 and an offload device 520.
  • the modem 510 may include an application processor 522.
  • the application processor 522 may execute a stack 514 (e.g., a TCP/IP stack) .
  • the offload device 520 (e.g., a communications processor) may include an application processor 522.
  • the application processor 522 which may execute a stack 524 (e.g., a TCP/IP stack) .
  • the offload device 520 may also include a wireless communication subsystem 526.
  • the wireless communication subsystem 526 may communicate with the stack 524 of the offload device application processor 522.
  • the wireless communication subsystem 526 may communicate with the stack 514 of the modem application processor 522 via communication link 534 (e.g., via an interface such as a Peripheral Component Interconnect (PCI) , Universal Serial Bus (USB) , or Secure Digital Input Output (SDIO) interface) .
  • the modem application processor 512 and the offload device application processor 522 may communicate with an input/output (I/O) device 530, such as a display device.
  • the application processor 512 or the offload device application processor 522 may to control the presentation of information via the I/O device 530.
  • the modem stack 514 and the offload device stack 524 share an IP address and a Media Access Control (MAC) address.
  • MAC Media Access Control
  • the modem processes IP packets of communications with a TCP peer device 540.
  • the offload device may process communications with the TCP peer device 540, such as TCP flows and/or other IP connections.
  • the offload device application processor 522 may send to the modem an update message including TCP connection information and/or other information (e.g., via communication link 532) .
  • the offload device stack 524 may send the update message to the application processor stack 514.
  • the update message may include a TCP message (e.g., a “UDT” message) that may include information that enables the modem to synchronize or update TCP connect states and parameters, e.g., in the modem stack 514.
  • the offload device 520 may generate the update message in one or more reserved bits of a TCP header.
  • the update message may include information such as TCP state (s) , a TCP transmit-receive (TX/RX) sequence, and an IP identification of each TCP connection.
  • TCP state s
  • TX/RX TCP transmit-receive
  • IP identification IP identification of each TCP connection.
  • FIGs. 6A and 6B are process flow diagrams illustrating two methods 600 and 610 that may be performed by a processor for managing a communication link between the wireless device and a TCP peer device according to two alternative embodiments.
  • the methods 600 and 610 may be implemented by one or more processors (e.g., 210, 212, 214, 216, 218, 252, 260, 428, 512, 522) of a wireless device (e.g., the wireless devices 120a–120e, 200, 320, 402, 502) .
  • a modem application processor may establish a TCP flow between a modem of the wireless device and the TCP peer device (e.g., 120a-120e, 404, 540) .
  • Means for performing functions of the operations in block 602 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428, 512) .
  • an offload device application processor may manage the TCP flow between the wireless device and the TCP peer device when the modem is in a low power mode of operation.
  • Means for performing functions of the operations in block 604 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428, 522) .
  • the offload device application processor may support operations of the modem when the modem is in an active mode of operation.
  • the offload device may send to the modem an update message including TCP flow activity that occurred related to the TCP flow while the modem was in the low power mode of operation when the modem transitions from the low power mode to an active mode of operation.
  • the offload device application processor may send the update message from a stack of the offload device to a stack of the modem.
  • the TCP flow activity may include information such as a TCP flow state, a TCP transmit/receive sequence, an internet protocol (IP) identification, and/or other suitable information.
  • the update message may include a header portion that includes the TCP flow activity.
  • Means for performing functions of the operations in block 606 and block 608 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428, 522) .
  • the TCP update message may be used to provide update information among different elements of a device, or among different devices.
  • the modem may send to the offload device an update message including TCP flow activity to synchronize TCP flow activity in the modem and in the offload device.
  • different network entities may use a similarly-structured TCP update message to provide update information (e.g., to synchronize TCP flow information) .
  • a first network entity such as a first server device
  • the modem application processor and the offload device application processor may repeat the operations of blocks 602–606 of the method 600 and repeat the operations of blocks 602–608 from time to time.
  • FIG. 7 is a process flow diagram illustrating operations 700 that may be performed by a processor of a wireless device as part of the method 600 for managing a communication link between the wireless device and a TCP peer device according to various embodiments.
  • the operations 700 and the method 600 may be implemented by one or more processors (e.g., 210, 212, 214, 216, 218, 252, 260, 428, 512, 522) of a wireless device (e.g., the wireless devices 120a–120e, 200, 320, 402, 502) .
  • the processor may update information in the modem stack based on TCP flow activity included in the update message in block 702.
  • the modem application processor e.g., 512
  • the modem application processor may update information in a modem stack (e.g., the stack 514) using information about TCP flow activity included in the update message from the offload device application processor (e.g., from the offload device application processor 522, or from the stack 524 executed by the offload device application processor 522) .
  • Means for performing functions of the operations in block 702 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428, 512) .
  • the modem application processor may manage the TCP flow between the wireless device and the TCP peer device using the TCP flow activity included in the update message.
  • the modem application processor e.g., 512
  • the modem application processor may manage the TCP flow between the wireless device and the TCP peer device (e.g., 510) via the wireless communication subsystem (e.g., 526) .
  • Means for performing functions of the operations in block 704 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428, 512) .
  • the modem application processor may then return to the operations of block 602 of the method 600 (FIG. 6) .
  • FIG. 8A is a process flow diagram
  • FIG. 8B is a conceptual block diagram, illustrating a method 800 that may be performed by a processor of a wireless device for managing a communication link between the wireless device and a TCP peer device according to various embodiments.
  • the operations 800 may be implemented by one or more processors (e.g., 210, 212, 214, 216, 218, 252, 260, 428, 512, 522) of a wireless device (e.g., the wireless devices 120a–120e, 200, 320, 402, 502) .
  • the modem application processor (e.g., 512) may establish a TCP flow between the wireless device and a TCP peer device (e.g., 120a-120e, 404, 540) .
  • Means for performing functions of the operations in block 602 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428, 512) .
  • the offload device application processor may establish a TCP connection between the offload device and the modem using a source internet protocol (IP) address and a TCP port associated with the TCP peer device.
  • Means for performing functions of the operations in block 804 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428, 522) .
  • the offload device application processor may forward to the modem TCP flow activity with the TCP peer device when the modem is in an active mode of operation.
  • the offload device may forward TCP flow activity (e.g., TCP traffic of a TCP flow) via a communication link (e.g., 532 or 534, FIG. 5) to the modem.
  • Means for performing functions of the operations in block 806 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428, 522) .
  • the offload device application processor may support operations of the modem when the modem is in an active mode of operation, for example, by managing the TCP flow between the wireless device and the TCP peer device when the modem is in a low power mode of operation.
  • Means for performing functions of the operations in block 808 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428, 522) .
  • the modem application processor and the offload device application processor may repeat the operations of blocks 802–808 from time to time.
  • the modem and the offload device may share the same IP and MAC addresses. In some embodiments, the modem and the offload device may use the same wireless device port to receive traffic related to communications with the TCP peer device (e.g., TCP flows) . In some embodiments, when the modem enters the low power mode, the offload device may process TCP traffic and TCP requests for communication with the TCP peer device. In some embodiments, when the modem transitions to the active communication mode, the offload device may establish a TCP connection with the modem using the TCP peer device’s source IP address and port. The offload device may then forward communications from the TCP peer device to the modem, and from the modem to the TCP peer device.
  • TCP peer device e.g., TCP flows
  • forwarding communications from the TCP peer device to the modem, and from the modem to the TCP peer device is performed at the application layer.
  • the modem e.g., 510
  • may transmit communications e.g., TCP communications
  • an IP port associated with the TCP peer device e.g., 540
  • the TCP peer device may transmit communications (e.g., TCP communications) to an IP port associated with the modem, such as “port1” .
  • the offload device (e.g., 520) may receive communications from the modem using, e.g., port 2, and may forward the communications to port2 of the TCP peer device via the application layer of the offload device.
  • the offload device also may receive communications from the TCP peer device using, e.g., port 1, and may forward the communications to port1 of the modem via the application layer of the offload device.
  • FIG. 9 is a process flow diagram illustrating operations 900 that may be performed by a processor of a wireless device as part of the method 800 for managing a communication link between the wireless device and a TCP peer device according to various embodiments.
  • the operations 900 and the method 800 may be implemented by one or more processors (e.g., 210, 212, 214, 216, 218, 252, 260, 428, 512) of a wireless device (e.g., the wireless devices 120a–120e, 200, 320, 402, 502) .
  • the application processor may update information in a modem stack based on the TCP flow activity forwarded from the offload device in block 902.
  • Means for performing functions of the operations in block 902 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428, 512) .
  • the application processor may manage the TCP flow between the wireless device and the TCP peer using the TCP flow activity forwarded from the offload device.
  • Means for performing functions of the operations in block 902 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428, 512) .
  • FIG. 10 is a component block diagram of a network computing device 1000 suitable for use with various embodiments.
  • Such network computing devices may include at least the components illustrated in FIG. 10.
  • a network computing device 1000 may include a processor 1001 coupled to volatile memory 1002 (e.g., 426) and a large capacity nonvolatile memory, such as a disk drive 1003.
  • the network computing device 1000 may also include a peripheral memory access device such as a floppy disc drive, compact disc (CD) or digital video disc (DVD) drive 1006 coupled to the processor 1001.
  • the network computing device 1000 may also include network access ports 1004 (or interfaces) coupled to the processor 1001 for establishing data connections with a network, such as the Internet and/or a local area network coupled to other system computers and servers.
  • the network computing device 1000 may be connected to one or more antennas for sending and receiving electromagnetic radiation that may be connected to a wireless communication link.
  • the network computing device 1000 may include additional access ports, such as USB, Firewire, Thunderbolt, and the like for coupling to peripherals, external memory, or other devices.
  • a wireless device 1100 may include a first SOC 202 (e.g., a SOC-CPU) coupled to a second SOC 204 (e.g., a 5G capable SOC) .
  • a first SOC 202 e.g., a SOC-CPU
  • a second SOC 204 e.g., a 5G capable SOC
  • the first and second SOCs 202, 204 may be coupled to internal memory 426, 430, 1116, a display 1112, and to a speaker 1114. Additionally, the wireless device 1100 may include an antenna 1104 for sending and receiving electromagnetic radiation that may be connected to a wireless data link and/or cellular telephone transceiver 266 coupled to one or more processors in the first and/or second SOCs 202, 204. The wireless device 1100 may also include menu selection buttons or rocker switches 1120 for receiving user inputs.
  • the wireless device 1100 also may include a sound encoding/decoding (CODEC) circuit 1110, which digitizes sound received from a microphone into data packets suitable for wireless transmission and decodes received sound data packets to generate analog signals that are provided to the speaker to generate sound.
  • CODEC sound encoding/decoding
  • one or more of the processors in the first and second SOCs 202, 204, wireless transceiver 266 and CODEC 1110 may include a digital signal processor (DSP) circuit (not shown separately) .
  • DSP digital signal processor
  • the processors of the network computing device 1100 and the wireless device 1100 may be any programmable microprocessor, microcomputer or multiple processor chip or chips that can be configured by software instructions (applications) to perform a variety of functions, including the functions of the various embodiments described below.
  • multiple processors may be provided, such as one processor within an SOC 204 dedicated to wireless communication functions and one processor within an SOC 202 dedicated to running other applications.
  • Software applications may be stored in the memory 426, 1116 before they are accessed and loaded into the processor.
  • the processors may include internal memory sufficient to store the application software instructions.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a wireless device and the wireless device may be referred to as a component.
  • One or more components may reside within a process and/or thread of execution and a component may be localized on one processor or core and/or distributed between two or more processors or cores. In addition, these components may execute from various non-transitory computer readable media having various instructions and/or data structures stored thereon. Components may communicate by way of local and/or remote processes, function or procedure calls, electronic signals, data packets, memory read/writes, and other known network, computer, processor, and/or process related communication methodologies.
  • Such services and standards include, e.g., third generation partnership project (3GPP) , long term evolution (LTE) systems, third generation wireless mobile communication technology (3G) , fourth generation wireless mobile communication technology (4G) , fifth generation wireless mobile communication technology (5G) , global system for mobile communications (GSM) , universal mobile telecommunications system (UMTS) , 3GSM, general packet radio service (GPRS) , code division multiple access (CDMA) systems (e.g., cdmaOne, CDMA1020TM) , enhanced data rates for GSM evolution (EDGE) , advanced mobile phone system (AMPS) , digital AMPS (IS-136/TDMA) , evolution-data optimized (EV-DO) , digital enhanced cordless telecommunications (DECT) , Worldwide Interoperability for Microwave Access (WiMAX) , wireless local area network (WLAN)
  • 3GPP third generation partnership project
  • LTE long term evolution
  • 4G fourth generation wireless mobile communication technology
  • 5G fifth generation wireless mobile communication
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, but, in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of receiver smart objects, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. Alternatively, some operations or methods may be performed by circuitry that is specific to a given function.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions or code on a non-transitory computer-readable storage medium or non-transitory processor-readable storage medium.
  • the operations of a method or algorithm disclosed herein may be embodied in a processor-executable software module or processor-executable instructions, which may reside on a non-transitory computer-readable or processor-readable storage medium.
  • Non-transitory computer-readable or processor-readable storage media may be any storage media that may be accessed by a computer or a processor.
  • non-transitory computer-readable or processor-readable storage media may include RAM, ROM, EEPROM, FLASH memory, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage smart objects, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer.
  • Disk and disc includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of non-transitory computer-readable and processor-readable media.
  • the operations of a method or algorithm may reside as one or any combination or set of codes and/or instructions on a non-transitory processor-readable storage medium and/or computer-readable storage medium, which may be incorporated into a computer program product.

Abstract

Embodiments include methods for managing a communication link between the wireless device and a transfer control protocol (TCP) peer device. Some methods may include establishing a TCP flow between a wireless device modem and the TCP peer device, and managing the TCP flow by an offload device of the wireless device when the modem is in a low power mode of operation. Some methods include sending from the offload device to the modem an update message including TCP flow activity that occurred related to the TCP flow while the modem was in the low power mode of operation when the modem transitions to an active operation mode. Some methods include establishing a TCP connection between the offload device and the modem using a source internet protocol address and a TCP port associated with the TCP peer device, and forwarding to the modem TCP flow activity with the TCP peer device.

Description

Managing A Communication Link For Transfer Control Protocol Communications BACKGROUND
Wireless devices may be configured with different processors to handle application processing operations and other processing operations, such as communication processing operations. The other processors (e.g., a communication processor) typically consume less power than the application processor. For example, to save power in a modem, the wireless device may place a modem application processor into a low power or low power mode while operating the other processor in an active mode. In some cases, while the application processor is in the low power mode, the other processor may function as an offload device and may for example, perform simple application processing (e.g., offload processing) , or process aspects of network events, such as link layer protocol processing (e.g., maintaining a connection, monitoring link status) . If the other processor is unable to process an event, the application processor will transition to an active mode to perform such processing. When the application processor transitions to active processing mode, the application processor is unaware of communication activity or changes in communication link parameters or status that have occurred while the application processor was in the lower power mode.
SUMMARY
Various aspects include systems and methods that may be performed by a processor of a wireless device for managing a communication link between a wireless device and a transfer control protocol (TCP) peer device. In some aspects, the various systems and methods may be applied to enable an application processor to resume management of communication links such as TCP connections when the application processor transitions from a low power mode to an active processing mode.
Various aspects may include establishing a TCP flow between a modem of the wireless device and the TCP peer device, managing by an offload device of the wireless device the TCP flow between the wireless device and the TCP peer device when the modem is in a low power mode of operation, and supporting operations of the modem by the offload device when the modem is in an active mode of operation. In some aspects, supporting operations of the modem by the offload device when the modem is in an active mode of operation may include when the modem transitions from the low power mode of operation to an active mode of operation, sending from the offload device to the modem an update message including TCP flow activity that occurred related to the TCP flow while the modem was in the low power mode of operation.
Some aspects may include updating information in a modem stack based on the TCP flow activity included in the update message. Some aspects may include managing by the modem the TCP flow between the wireless device and the TCP peer device using the TCP flow activity included in the update message. In some aspects, sending from the offload device to the modem the update message including the TCP flow activity that occurred related to the TCP flow while the modem was in the low power mode of operation may include sending the update message from a stack of the offload device to a stack of the modem.
In some aspects, the update message may include one or more of a TCP flow state, a TCP transmit/receive sequence, and an internet protocol (IP) identification. In some aspects, the update message may include a header portion that includes the TCP flow activity. In some aspects, supporting operations of the modem by the offload device when the modem is in an active mode of operation may include forwarding to the modem TCP flow activity with the TCP peer device when the modem is in an active mode of operation. Some aspects may include sending from the modem to the offload device an update message including TCP flow activity to synchronize TCP flow activity in the modem and in the offload device.
Some aspects include a wireless device that includes a modem configured to establish a TCP flow between the wireless device and a TCP peer device, and an offload device configured to establish a TCP connection between the offload device and the modem using a source internet protocol (IP) address and a TCP port associated with the TCP peer device, forward to the modem TCP flow activity with the TCP peer device when the modem is in an active mode of operation, and manage the TCP flow between the wireless device and the TCP peer device when the modem is in a low power mode of operation.
In some aspects, the modem may be further configured to update information in a modem stack based on the TCP flow activity forwarded from the offload device. In some aspects, the modem may be further configured to manage the TCP flow between the wireless device and the TCP peer device using the TCP flow activity forwarded from the offload device. In some aspects, the offload device may be further configured to forward the TCP flow activity to the modem in an application layer.
Further aspects may include a wireless device having a processor configured to perform one or more operations of any of the methods summarized above. Further aspects may include a method including performing by an application processor one or more operations described above. Further aspects may include a non-transitory processor-readable storage medium having stored thereon processor-executable instructions configured to cause a processor of a wireless device to perform operations of any of the methods summarized above. Further aspects include a wireless device having means for performing functions of any of the methods summarized above. Further aspects include a system on chip for use in a wireless device that includes a processor configured to perform one or more operations of any of the methods summarized above.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate exemplary embodiments of the claims, and together  with the general description given above and the detailed description given below, serve to explain the features of the claims.
FIG. 1 is a system block diagram illustrating an example communication system suitable for implementing any of the various embodiments.
FIG. 2 is a component block diagram illustrating an example computing and wireless modem system suitable for implementing any of the various embodiments.
FIG. 3 is a component block diagram illustrating a software architecture including a radio protocol stack for the user and control planes in wireless communications suitable for implementing any of the various embodiments.
FIG. 4 is a component block diagram illustrating a system configured for managing a communication link between the wireless device and a transfer control protocol (TCP) peer device in accordance with various embodiments.
FIG. 5 is a component block diagram illustrating elements of a wireless device configured for managing a communication link between the wireless device and a TCP peer device in accordance with various embodiments.
FIGS. 6A and 6B are process flow diagrams illustrating a method that may be performed by processors of a wireless device for managing a communication link between the wireless device and a TCP peer device according to various embodiments.
FIG. 7 is a process flow diagram illustrating operations that may be performed by a processor of a wireless device as part of the method for managing a communication link between the wireless device and a TCP peer device according to various embodiments.
FIG. 8A is a process flow diagram, and FIG. 8B is a conceptual block diagram, illustrating a method that may be performed by a processor of a wireless device for managing a communication link between the wireless device and a TCP peer device according to various embodiments.
FIG. 9 is a process flow diagram illustrating operations that may be performed by a processor of a wireless device as part of the method for managing a communication link between the wireless device and a TCP peer device according to various embodiments.
FIG. 10 is a component block diagram of a network computing device suitable for use with various embodiments.
FIG. 11 is a component block diagram of a wireless device suitable for use with various embodiments.
DETAILED DESCRIPTION
Various embodiments will be described in detail with reference to the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. References made to particular examples and embodiments are for illustrative purposes, and are not intended to limit the scope of the claims.
Various embodiments include systems and methods for managing a communication link between a wireless device and a transfer control protocol (TCP) peer device. Various embodiments may improve the efficiency and utility of wireless devices and communication networks by reducing power consumption by a modem application processor of a wireless device and enabling the modem application processor to quickly resume processing of communications, such as TCP flows.
The term “wireless device” is used herein to refer to any one or all of wireless or wired router devices, server devices, and other elements of a communication network, wireless or wired appliances, cellular telephones, smartphones, portable wireless devices, personal or mobile multi-media players, laptop computers, tablet computers, smartbooks, ultrabooks, palmtop computers, wireless electronic mail receivers, multimedia Internet-enabled cellular telephones, medical devices and equipment, biometric sensors/devices, wearable devices including smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart rings,  smart bracelets, etc. ) , entertainment devices (e.g., wireless gaming controllers, music and video players, satellite radios, etc. ) , wireless-network enabled Internet of Things (IoT) devices including smart meters/sensors, industrial manufacturing equipment, large and small machinery and appliances for home or enterprise use, wireless communication elements within autonomous and semiautonomous vehicles, wireless devices affixed to or incorporated into various mobile platforms, global positioning system devices, and similar electronic devices that include a memory, wireless communication components and a programmable processor.
The term “system on chip” (SOC) is used herein to refer to a single integrated circuit (IC) chip that contains multiple resources and/or processors integrated on a single substrate. A single SOC may contain circuitry for digital, analog, mixed-signal, and radio-frequency functions. A single SOC may also include any number of general purpose and/or specialized processors (digital signal processors, modem application processors, video processors, etc. ) , memory blocks (e.g., ROM, RAM, Flash, etc. ) , and resources (e.g., timers, voltage regulators, oscillators, etc. ) . SOCs may also include software for controlling the integrated resources and processors, as well as for controlling peripheral devices.
The term “system in a package” (SIP) may be used herein to refer to a single module or package that contains multiple resources, computational units, cores and/or processors on two or more IC chips, substrates, or SOCs. For example, a SIP may include a single substrate on which multiple IC chips or semiconductor dies are stacked in a vertical configuration. Similarly, the SIP may include one or more multi-chip modules (MCMs) on which multiple ICs or semiconductor dies are packaged into a unifying substrate. A SIP may also include multiple independent SOCs coupled together via high speed communication circuitry and packaged in close proximity, such as on a single motherboard or in a single wireless device. The proximity of the SOCs facilitates high speed communications and the sharing of memory and resources.
In some wireless devices, while a modem application processor is operating in a low power mode, an offload device (such as a communication processor) may processes aspects of network events, such as link layer protocol processing (e.g., maintaining a connection, monitoring link status) and simple application processing (e.g., offload processing) . If the communication processor is unable to process an event, the application processor will transition to an active mode to perform such processing. When the application processor transitions out of the low power mode to an active processing mode, the application processor is unaware of communication activity or changes in communication link parameters or status that have occurred while the application processor was in the lower power mode. In some cases, the application processor may need information from the offload device to re-synchronize information about TCP connections with a TCP peer device.
In various embodiments, the offload device may provide update information to the modem application processor in one (or more) update messages. In some embodiments, the wireless device may establish (e.g., via the modem application processor) a TCP flow between a modem of the wireless device and the TCP peer device, manage by an offload device of the wireless device the TCP flow between the wireless device and the TCP peer device when the modem is in a low power mode of operation, and support operations of the modem by the offload device when the modem is in an active mode of operation. In some embodiments, supporting operations of the modem by the offload device when the modem is in an active mode of operation may include sending from the offload device to the modem an update message including TCP flow activity that occurred related to the TCP flow while the modem was in the low power mode of operation when the modem transitions from the low power mode to an active mode of operation. In some embodiments, supporting operations of the modem by the offload device when the modem is in an active mode of operation may include forwarding to the modem TCP flow activity with the TCP peer device when the modem is in an active mode of operation.
Some embodiments may include updating information in a modem stack (e.g., a TCP/IP stack) based on the TCP flow activity included in the update message. Some embodiments may include managing by the modem the TCP flow between the wireless device and the TCP peer device using the TCP flow activity included in the update message. In some embodiments, sending from the offload device to the modem the update message including the TCP flow activity that occurred related to the TCP flow while the modem was in the low power mode of operation comprises sending the update message from a stack of the offload device (e.g., a TCP/IP stack) to a stack of the modem. In some embodiments, the update message may include one or more of a TCP flow state, a TCP transmit/receive sequence, and an internet protocol (IP) identification. In some embodiments, the update message may include a header portion that includes the TCP flow activity.
In various embodiments, the offload device may support operations of the modem when the modem is in an active mode of operation by, for example, forwarding communications to the modem application processor when the application processor is operating in the active operations mode. In some embodiments, the wireless device may establish (e.g., via the modem) a TCP flow between the wireless device and a TCP peer device, may establish a TCP connection between the offload device and the modem using a source internet protocol (IP) address and a TCP port associated with the TCP peer device, may forward to the modem TCP flow activity with the TCP peer device when the modem is in an active mode of operation, and may manage (e.g., via the offload device) the TCP flow between the wireless device and the TCP peer device when the modem is in a low power mode of operation.
In some embodiments, the modem may be configured to update information in a modem stack based on the TCP flow activity forwarded from the offload device. In some embodiments, the modem may be configured to manage the TCP flow between the wireless device and the TCP peer using the TCP flow activity forwarded from the offload device. In some embodiments, the offload device may be configured to forward the TCP flow activity to the modem in an application layer.
Various embodiments improve the efficiency, speed, and reliability of wireless devices by enabling the modem application processor to rapidly resume processing of communications (e.g., TCP flows) handled by the offload device when the application processor transitions out of the low power mode to the active operations mode, rather than reestablishing or reinitializing the TCP flows.
Various embodiments may be useful in communicating image data over communication networks, including wireless communication networks by compressing data blocks prior to transmission. FIG. 1 is a system block diagram illustrating an example communication system 100 suitable for implementing any of the various embodiments. The communications system 100 may be a 5G New Radio (NR) network, or any other suitable network such as a Long Term Evolution (LTE) network.
The communications system 100 may include a heterogeneous network architecture that includes a core network 140 and a variety of wireless devices (illustrated as wireless devices 120a-120e in FIG. 1) . The wireless devices 120a-120e are examples of wireless devices. The communications system 100 may also include a number of base stations (illustrated as the BS 110a, the BS 110b, the BS 110c, and the BS 110d) and other network entities. A base station is an entity that communicates with wireless devices, and also may be referred to as an NodeB, a Node B, an LTE evolved nodeB (eNB) , an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio base station (NR BS) , a 5G NodeB (NB) , a Next Generation NodeB (gNB) , or the like. Each base station may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a base station, a base station subsystem serving this coverage area, or a combination thereof, depending on the context in which the term is used.
base station 110a-110d may provide communication coverage for a macro cell, a pico cell, a femto cell, another type of cell, or a combination thereof. A macro cell may cover a relatively large geographic area (for example, several kilometers in radius) and may allow unrestricted access by wireless devices with service  subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by wireless devices with service subscription. A femto cell may cover a relatively small geographic area (for example, a home) and may allow restricted access by wireless devices having association with the femto cell (for example, wireless devices in a closed subscriber group (CSG) ) . A base station for a macro cell may be referred to as a macro BS. A base station for a pico cell may be referred to as a pico BS. A base station for a femto cell may be referred to as a femto BS or a home BS. In the example illustrated in FIG. 1, a base station 110a may be a macro BS for a macro cell 102a, a base station 110b may be a pico BS for a pico cell 102b, and a base station 110c may be a femto BS for a femto cell 102c. A base station 110a-110d may support one or multiple (for example, three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some examples, a cell may not be stationary, and the geographic area of the cell may move according to the location of a mobile base station. In some examples, the base stations 110a-110d may be interconnected to one another as well as to one or more other base stations or network nodes (not illustrated) in the communications system 100 through various types of backhaul interfaces, such as a direct physical connection, a virtual network, or a combination thereof using any suitable transport network
The base station 110a-110d may communicate with the core network 140 over a wired or wireless communication link 126. The wireless device 120a-120e may communicate with the base station 110a-110d over a wireless communication link 122.
The wired communication link 126 may use a variety of wired networks (e.g., Ethernet, TV cable, telephony, fiber optic and other forms of physical network connections) that may use one or more wired communication protocols, such as Ethernet, Point-To-Point protocol, High-Level Data Link Control (HDLC) , Advanced  Data Communication Control Protocol (ADCCP) , and Transmission Control Protocol/Internet Protocol (TCP/IP) .
The communications system 100 also may include relay stations (e.g., relay BS 110d) . A relay station is an entity that can receive a transmission of data from an upstream station (for example, a base station or a wireless device) and transmit the data to a downstream station (for example, a wireless device or a base station) . A relay station also may be a wireless device that can relay transmissions for other wireless devices. In the example illustrated in FIG. 1, a relay station 110d may communicate with macro the base station 110a and the wireless device 120d in order to facilitate communication between the base station 110a and the wireless device 120d. A relay station also may be referred to as a relay base station, a relay base station, a relay, etc.
The communications system 100 may be a heterogeneous network that includes base stations of different types, for example, macro base stations, pico base stations, femto base stations, relay base stations, etc. These different types of base stations may have different transmit power levels, different coverage areas, and different impacts on interference in communications system 100. For example, macro base stations may have a high transmit power level (for example, 5 to 40 Watts) whereas pico base stations, femto base stations, and relay base stations may have lower transmit power levels (for example, 0.1 to 2 Watts) .
network controller 130 may couple to a set of base stations and may provide coordination and control for these base stations. The network controller 130 may communicate with the base stations via a backhaul. The base stations also may communicate with one another, for example, directly or indirectly via a wireless or wireline backhaul.
The  wireless devices  120a, 120b, 120c may be dispersed throughout communications system 100, and each wireless device may be stationary or mobile.  A wireless device also may be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, etc.
macro base station 110a may communicate with the communication network 140 over a wired or wireless communication link 126. The  wireless devices  120a, 120b, 120c may communicate with a base station 110a-110d over a wireless communication link 122.
The  wireless communication links  122, 124 may include a plurality of carrier signals, frequencies, or frequency bands, each of which may include a plurality of logical channels. The  wireless communication links  122 and 124 may utilize one or more radio access technologies (RATs) . Examples of RATs that may be used in a wireless communication link include 3GPP LTE, 3G, 4G, 5G (e.g., NR) , GSM, Code Division Multiple Access (CDMA) , Wideband Code Division Multiple Access (WCDMA) , Worldwide Interoperability for Microwave Access (WiMAX) , Time Division Multiple Access (TDMA) , and other mobile telephony communication technologies cellular RATs. Further examples of RATs that may be used in one or more of the various  wireless communication links  122, 124 within the communication system 100 include medium range protocols such as Wi-Fi, LTE-U, LTE-Direct, LAA, MuLTEfire, and relatively short range RATs such as ZigBee, Bluetooth, and Bluetooth Low Energy (LE) .
Certain wireless networks (e.g., LTE) utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink. OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc. Each subcarrier may be modulated with data. In general, modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM. The spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth. For example, the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (called a “resource block” ) may be 12 subcarriers (or 180 kHz) .  Consequently, the nominal Fast File Transfer (FFT) size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10 or 20 megahertz (MHz) , respectively. The system bandwidth may also be partitioned into subbands. For example, a subband may cover 1.08 MHz (i.e., 6 resource blocks) , and there may be 1, 2, 4, 8 or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
While descriptions of some embodiments may use terminology and examples associated with LTE technologies, various embodiments may be applicable to other wireless communications systems, such as a new radio (NR) or 5G network. NR may utilize OFDM with a cyclic prefix (CP) on the uplink (UL) and downlink (DL) and include support for half-duplex operation using Time Division Duplexing (TDD) . A single component carrier bandwidth of 100 MHz may be supported. NR resource blocks may span 12 sub-carriers with a sub-carrier bandwidth of 75 kHz over a 0.1 millisecond (ms) duration. Each radio frame may consist of 50 subframes with a length of 10 ms. Consequently, each subframe may have a length of 0.2 ms. Each subframe may indicate a link direction (i.e., DL or UL) for data transmission and the link direction for each subframe may be dynamically switched. Each subframe may include DL/UL data as well as DL/UL control data. Beamforming may be supported and beam direction may be dynamically configured. Multiple Input Multiple Output (MIMO) transmissions with precoding may also be supported. MIMO configurations in the DL may support up to eight transmit antennas with multi-layer DL transmissions up to eight streams and up to two streams per wireless device. Multi-layer transmissions with up to 2 streams per wireless device may be supported. Aggregation of multiple cells may be supported with up to eight serving cells. Alternatively, NR may support a different air interface, other than an OFDM-based air interface.
Some wireless devices may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) wireless devices. MTC and eMTC wireless devices include, for example, robots, drones,  remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a base station, another device (for example, remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (for example, a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some wireless devices may be considered Internet-of-Things (IoT) devices or may be implemented as NB-IoT (narrowband internet of things) devices. A wireless device 120a-120e may be included inside a housing that houses components of the wireless device, such as processor components, memory components, similar components, or a combination thereof.
In general, any number of communication systems and any number of wireless networks may be deployed in a given geographic area. Each communications system and wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies. A RAT also may be referred to as a radio technology, an air interface, etc. A frequency also may be referred to as a carrier, a frequency channel, etc. Each frequency may support a single RAT in a given geographic area in order to avoid interference between communications systems of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some embodiments, two or more wireless devices 120a-120e (for example, illustrated as the wireless device 120a and the wireless device 120e) may communicate directly using one or more sidelink channels 124 (for example, without using a base station 110a-110d as an intermediary to communicate with one another) . For example, the wireless devices 120a-120e may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, or similar protocol) , a mesh network, or similar networks, or combinations thereof. In this case, the wireless device 120a-120e may perform scheduling operations, resource selection operations, as well as other operations described elsewhere herein as being performed by the base station 110a
FIG. 2 is a component block diagram illustrating an example computing and wireless modem system 200 suitable for implementing any of the various embodiments. Various embodiments may be implemented on a number of single processor and multiprocessor computer systems, including a system-on-chip (SOC) or system in a package (SIP) .
With reference to FIGS. 1 and 2, the illustrated example computing system 200 (which may be a SIP in some embodiments) includes a two  SOCs  202, 204 coupled to a clock 206, a voltage regulator 208, and a wireless transceiver 266 configured to send and receive wireless communications via an antenna (not shown) to/from wireless devices, such as a base station 110a. In some embodiments, the first SOC 202 operate as central processing unit (CPU) of the wireless device that carries out the instructions of software application programs by performing the arithmetic, logical, control and input/output (I/O) operations specified by the instructions. In some embodiments, the second SOC 204 may operate as a specialized processing unit. For example, the second SOC 204 may operate as a specialized 5G processing unit responsible for managing high volume, high speed (e.g., 5 Gbps, etc. ) , and/or very high frequency short wave length (e.g., 28 GHz mmWave spectrum, etc. ) communications.
The first SOC 202 may include a digital signal processor (DSP) 210, a modem application processor 212, a graphics processor 214, an application processor 216, one or more coprocessors 218 (e.g., vector co-processor) connected to one or more of the processors, memory 220, custom circuity 222, system components and resources 224, an interconnection/bus module 226, one or more temperature sensors 230, a thermal management unit 232, and a thermal power envelope (TPE) component 234. The second SOC 204 may include a 5G modem application processor 252, a power management unit 254, an interconnection/bus module 264, the plurality of mmWave transceivers 256, memory 258, and various additional processors 260, such as an applications processor, packet processor, etc.
Each  processor  210, 212, 214, 216, 218, 252, 260 may include one or more cores, and each processor/core may perform operations independent of the other processors/cores. For example, the first SOC 202 may include a processor that executes a first type of operating system (e.g., FreeBSD, LINUX, OS X, etc. ) and a processor that executes a second type of operating system (e.g., MICROSOFT WINDOWS 10) . In addition, any or all of the  processors  210, 212, 214, 216, 218, 252, 260 may be included as part of a processor cluster architecture (e.g., a synchronous processor cluster architecture, an asynchronous or heterogeneous processor cluster architecture, etc. ) .
The first and  second SOC  202, 204 may include various system components, resources and custom circuitry for managing sensor data, analog-to-digital conversions, wireless data transmissions, and for performing other specialized operations, such as decoding data packets and processing encoded audio and video signals for rendering in a web browser. For example, the system components and resources 224 of the first SOC 202 may include power amplifiers, voltage regulators, oscillators, phase-locked loops, peripheral bridges, data controllers, memory controllers, system controllers, access ports, timers, and other similar components used to support the processors and software clients running on a wireless device. The system components and resources 224 and/or custom circuitry 222 may also include circuitry to interface with peripheral devices, such as cameras, electronic displays, wireless communication devices, external memory chips, etc.
The first and  second SOC  202, 204 may communicate via interconnection/bus module 250. The  various processors  210, 212, 214, 216, 218, may be interconnected to one or more memory elements 220, system components and resources 224, and custom circuitry 222, and a thermal management unit 232 via an interconnection/bus module 226. Similarly, the processor 252 may be interconnected to the power management unit 254, the mmWave transceivers 256, memory 258, and various additional processors 260 via the interconnection/bus module 264. The interconnection/ bus module  226, 250, 264 may include an array of reconfigurable  logic gates and/or implement a bus architecture (e.g., CoreConnect, AMBA, etc. ) . Communications may be provided by advanced interconnects, such as high-performance networks-on chip (NoCs) .
The first and/or  second SOCs  202, 204 may further include an input/output module (not illustrated) for communicating with resources external to the SOC, such as a clock 206 and a voltage regulator 208. Resources external to the SOC (e.g., clock 206, voltage regulator 208) may be shared by two or more of the internal SOC processors/cores.
In addition to the example SIP 200 discussed above, various embodiments may be implemented in a wide variety of computing systems, which may include a single processor, multiple processors, multicore processors, or any combination thereof.
FIG. 3 is a component block diagram illustrating a software architecture 300 including a radio protocol stack for the user and control planes in wireless communications suitable for implementing any of the various embodiments. With reference to FIGS. 1–3, the wireless device 320 may implement the software architecture 300 to facilitate communication between a wireless device 320 (e.g., the wireless device 120a-120e, 200) and the base station 350 (e.g., the base station 110a) of a communication system (e.g., 100) . In various embodiments, layers in software architecture 300 may form logical connections with corresponding layers in software of the base station 350. The software architecture 300 may be distributed among one or more processors (e.g., the  processors  212, 214, 216, 218, 252, 260) . While illustrated with respect to one radio protocol stack, in a multi-SIM (subscriber identity module) wireless device, the software architecture 300 may include multiple protocol stacks, each of which may be associated with a different SIM (e.g., two protocol stacks associated with two SIMs, respectively, in a dual-SIM wireless communication device) . While described below with reference to LTE communication layers, the software architecture 300 may support any of variety of standards and protocols for  wireless communications, and/or may include additional protocol stacks that support any of variety of standards and protocols wireless communications.
The software architecture 300 may include a Non-Access Stratum (NAS) 302 and an Access Stratum (AS) 304. The NAS 302 may include functions and protocols to support packet filtering, security management, mobility control, session management, and traffic and signaling between a SIM (s) of the wireless device (e.g., SIM(s) 204) and its core network 140. The AS 304 may include functions and protocols that support communication between a SIM (s) (e.g., SIM (s) 204) and entities of supported access networks (e.g., a base station) . In particular, the AS 304 may include at least three layers (Layer 1, Layer 2, and Layer 3) , each of which may contain various sub-layers.
In the user and control planes, Layer 1 (L1) of the AS 304 may be a physical layer (PHY) 306, which may oversee functions that enable transmission and/or reception over the air interface via a wireless transceiver (e.g., 256) . Examples of such physical layer 306 functions may include cyclic redundancy check (CRC) attachment, coding blocks, scrambling and descrambling, modulation and demodulation, signal measurements, MIMO, etc. The physical layer may include various logical channels, including the Physical Downlink Control Channel (PDCCH) and the Physical Downlink Shared Channel (PDSCH) .
In the user and control planes, Layer 2 (L2) of the AS 304 may be responsible for the link between the wireless device 320 and the base station 350 over the physical layer 306. In the various embodiments, Layer 2 may include a media access control (MAC) sublayer 308, a radio link control (RLC) sublayer 310, and a packet data convergence protocol (PDCP) 312 sublayer, each of which form logical connections terminating at the base station 350.
In the control plane, Layer 3 (L3) of the AS 304 may include a radio resource control (RRC) sublayer 3. While not shown, the software architecture 300 may include additional Layer 3 sublayers, as well as various upper layers above Layer 3.  In various embodiments, the RRC sublayer 313 may provide functions INCLUDING broadcasting system information, paging, and establishing and releasing an RRC signaling connection between the wireless device 320 and the base station 350.
In various embodiments, the PDCP sublayer 312 may provide uplink functions including multiplexing between different radio bearers and logical channels, sequence number addition, handover data handling, integrity protection, ciphering, and header compression. In the downlink, the PDCP sublayer 312 may provide functions that include in-sequence delivery of data packets, duplicate data packet detection, integrity validation, deciphering, and header decompression.
In the uplink, the RLC sublayer 310 may provide segmentation and concatenation of upper layer data packets, retransmission of lost data packets, and Automatic Repeat Request (ARQ) . In the downlink, while the RLC sublayer 310 functions may include reordering of data packets to compensate for out-of-order reception, reassembly of upper layer data packets, and ARQ.
In the uplink, MAC sublayer 308 may provide functions including multiplexing between logical and transport channels, random access procedure, logical channel priority, and hybrid-ARQ (HARQ) operations. In the downlink, the MAC layer functions may include channel mapping within a cell, de-multiplexing, discontinuous reception (DRX) , and HARQ operations.
While the software architecture 300 may provide functions to transmit data through physical media, the software architecture 300 may further include at least one host layer 314 to provide data transfer services to various applications in the wireless device 320. In some embodiments, application-specific functions provided by the at least one host layer 314 may provide an interface between the software architecture and the general purpose processor 206.
In other embodiments, the software architecture 300 may include one or more higher logical layer (e.g., transport, session, presentation, application, etc. ) that provide host layer functions. For example, in some embodiments, the software  architecture 300 may include a network layer (e.g., Internet Protocol (IP) layer) in which a logical connection terminates at a packet data network (PDN) gateway (PGW) . In some embodiments, the software architecture 300 may include an application layer in which a logical connection terminates at another device (e.g., end user device, server, etc. ) . In some embodiments, the software architecture 300 may further include in the AS 304 a hardware interface 316 between the physical layer 306 and the communication hardware (e.g., one or more radio frequency (RF) transceivers) .
FIG. 4 is a component block diagram illustrating a system 400 configured for managing a communication link between the wireless device and a transfer control protocol (TCP) peer device in accordance with various embodiments.
With reference to FIGS. 1–4, system 400 may include wireless device 402 and TCP peer device 404 (e.g., 110a-110d, 120a-120e, 200, 320, 350) . In some embodiments, wireless device 402 and TCP peer device 404 may communicate over a wired or wireless communication link 122, 124 (aspects of which are illustrated in FIG. 1) .
The wireless device 402 and TCP peer device 404 may include one or more processors 428 coupled to electronic storage 426 and a wireless transceiver (e.g., 266) . The wireless transceiver 266 may be configured to receive messages sent in downlink transmissions from the wireless communication network 424 and pass such message to the processor (s) 428 for processing. Similarly, the processor (s) 428 may be configured to send message for uplink transmission to the wireless transceiver 266 for transmission to the wireless communication network 424.
Referring to the wireless device 402, the processor (s) 428 may be configured by machine-readable instructions 406. Machine-readable instructions 406 may include one or more instruction modules. The instruction modules may include computer program modules. The instruction modules may include one or more of a TCP flow establishing module 408, a TCP flow managing module 410, an update  messaging module 412, a TCP flow forwarding module 414, a transmit/receive (TX/RX) module 416, or other instruction modules.
The TCP flow establishing module 408 may be configured to establish a TCP flow between a modem of the wireless device and the TCP peer device. In some embodiments, a modem of the wireless device may be configured to execute the TCP flow establishing module 408.
The TCP flow managing module 410 may be configured to managing by the wireless device the TCP flow between the wireless device and the TCP peer device when the modem is in a low power mode of operation. In some embodiments, an offload device of the wireless device may be configured to execute the TCP flow managing module 410.
The update messaging module 412 may be configured to send to the modem an update message including TCP flow activity that occurred related to the TCP flow while the modem was in the low power mode of operation when the modem transitions from the low power mode to an active mode of operation. In some embodiments, an offload device of the wireless device may be configured to execute the update messaging module 412.
The TCP flow forwarding module 414 may be configured to forward to the modem TCP flow activity with the TCP peer device. In some embodiments, an offload device of the wireless device may be configured to execute the TCP flow forwarding module 414.
The transmit/receive (TX/RX) module 416 may be configured to send and receive communications, e.g., via the wireless transceiver 266.
The electronic storage 426 may include non-transitory storage media that electronically stores information. The electronic storage media of electronic storage 426 may include one or both of system storage that is provided integrally (i.e., substantially non-removable) with the wireless device 402 and/or removable storage that is removably connectable to the wireless device 402 via, for example, a port (e.g.,  a universal serial bus (USB) port, a firewire port, etc. ) or a drive (e.g., a disk drive, etc. ) . Electronic storage 426 may include one or more of optically readable storage media (e.g., optical disks, etc. ) , magnetically readable storage media (e.g., magnetic tape, magnetic hard drive, floppy drive, etc. ) , electrical charge-based storage media (e.g., EEPROM, RAM, etc. ) , solid-state storage media (e.g., flash drive, etc. ) , and/or other electronically readable storage media. Electronic storage 426 may include one or more virtual storage resources (e.g., cloud storage, a virtual private network, and/or other virtual storage resources) . Electronic storage 426 may store software algorithms, information determined by processor (s) 428, information received from the wireless device 402, or other information that enables the wireless device 402 to function as described herein.
Processor (s) 428 may be configured to provide information processing capabilities in the wireless device 402. As such, the processor (s) 428 may include one or more of a digital processor, an analog processor, a digital circuit designed to process information, an analog circuit designed to process information, a state machine, and/or other mechanisms for electronically processing information. Although the processor (s) 428 are illustrated as single entities, this is for illustrative purposes only. In some embodiments, the processor (s) 428 may include a plurality of processing units and/or processor cores. The processing units may be physically located within the same device, or processor (s) 428 may represent processing functionality of a plurality of devices operating in coordination. The processor (s) 428 may be configured to execute modules 408–414 and/or other modules by software; hardware; firmware; some combination of software, hardware, and/or firmware; and/or other mechanisms for configuring processing capabilities on processor (s) 428. As used herein, the term “module” may refer to any component or set of components that perform the functionality attributed to the module. This may include one or more physical processors during execution of processor readable instructions, the processor readable instructions, circuitry, hardware, storage media, or any other components.
The description of the functionality provided by the different modules 408–414 described below is for illustrative purposes, and is not intended to be limiting, as any of modules 408–414 may provide more or less functionality than is described. For example, one or more of the modules 408–414 may be eliminated, and some or all of its functionality may be provided by other modules 408–414. As another example, the processor (s) 428 may be configured to execute one or more additional modules that may perform some or all of the functionality attributed below to one of the modules 408–414.
FIG. 5 is a component block diagram illustrating elements of a wireless device 502 configured for managing a communication link between the wireless device and a TCP peer device in accordance with various embodiments. The wireless device 502 may include a modem 510 and an offload device 520. The modem 510 may include an application processor 522. The application processor 522 may execute a stack 514 (e.g., a TCP/IP stack) . The offload device 520 (e.g., a communications processor) may include an application processor 522. The application processor 522 which may execute a stack 524 (e.g., a TCP/IP stack) . The offload device 520 may also include a wireless communication subsystem 526. The wireless communication subsystem 526 may communicate with the stack 524 of the offload device application processor 522. The wireless communication subsystem 526 may communicate with the stack 514 of the modem application processor 522 via communication link 534 (e.g., via an interface such as a Peripheral Component Interconnect (PCI) , Universal Serial Bus (USB) , or Secure Digital Input Output (SDIO) interface) . The modem application processor 512 and the offload device application processor 522 may communicate with an input/output (I/O) device 530, such as a display device. In some embodiments, the application processor 512 or the offload device application processor 522 may to control the presentation of information via the I/O device 530.
In some embodiments, the modem stack 514 and the offload device stack 524 share an IP address and a Media Access Control (MAC) address. When the modem operates in an active mode, the modem processes IP packets of communications with  a TCP peer device 540. When the modem transitions to the low power mode, the offload device may process communications with the TCP peer device 540, such as TCP flows and/or other IP connections.
When the modem 510 transitions from the low power mode to the active operations mode, the offload device application processor 522 may send to the modem an update message including TCP connection information and/or other information (e.g., via communication link 532) . In some embodiments, the offload device stack 524 may send the update message to the application processor stack 514. In some embodiments, the update message may include a TCP message (e.g., a “UDT” message) that may include information that enables the modem to synchronize or update TCP connect states and parameters, e.g., in the modem stack 514. In some embodiments, the offload device 520 may generate the update message in one or more reserved bits of a TCP header. The update message may include information such as TCP state (s) , a TCP transmit-receive (TX/RX) sequence, and an IP identification of each TCP connection. Using a TCP header to convey the update message obviates additional configuration of the stack 514 or the stack 524 to handle the TCP message.
FIGs. 6A and 6B are process flow diagrams illustrating two  methods  600 and 610 that may be performed by a processor for managing a communication link between the wireless device and a TCP peer device according to two alternative embodiments. With reference to FIGS. 1–6B, the  methods  600 and 610 may be implemented by one or more processors (e.g., 210, 212, 214, 216, 218, 252, 260, 428, 512, 522) of a wireless device (e.g., the wireless devices 120a–120e, 200, 320, 402, 502) .
Referring to both FIGs 6a and 6B, in block 602 of both  methods  600 and 610, a modem application processor may establish a TCP flow between a modem of the wireless device and the TCP peer device (e.g., 120a-120e, 404, 540) . Means for performing functions of the operations in block 602 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428, 512) .
In block 604 of both  methods  600 and 610, an offload device application processor may manage the TCP flow between the wireless device and the TCP peer device when the modem is in a low power mode of operation. Means for performing functions of the operations in block 604 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428, 522) .
In block 606 of the method 600, the offload device application processor may support operations of the modem when the modem is in an active mode of operation. Referring to FIG. 6B, in block 608 of the method 610, the offload device may send to the modem an update message including TCP flow activity that occurred related to the TCP flow while the modem was in the low power mode of operation when the modem transitions from the low power mode to an active mode of operation.
In some embodiments, the offload device application processor may send the update message from a stack of the offload device to a stack of the modem. In some embodiments, the TCP flow activity may include information such as a TCP flow state, a TCP transmit/receive sequence, an internet protocol (IP) identification, and/or other suitable information. In some embodiments, the update message may include a header portion that includes the TCP flow activity. Means for performing functions of the operations in block 606 and block 608 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428, 522) .
In some embodiments, the TCP update message may be used to provide update information among different elements of a device, or among different devices. In some embodiments, the modem may send to the offload device an update message including TCP flow activity to synchronize TCP flow activity in the modem and in the offload device. In some embodiments, different network entities may use a similarly-structured TCP update message to provide update information (e.g., to synchronize TCP flow information) . For example, a first network entity (such as a first server device) may send a TCP update message to a second network entity (such as a second server device) to synchronize information about TCP flow activity in the first and second network entities.
The modem application processor and the offload device application processor may repeat the operations of blocks 602–606 of the method 600 and repeat the operations of blocks 602–608 from time to time.
FIG. 7 is a process flow diagram illustrating operations 700 that may be performed by a processor of a wireless device as part of the method 600 for managing a communication link between the wireless device and a TCP peer device according to various embodiments. With reference to FIGS. 1–7, the operations 700 and the method 600 may be implemented by one or more processors (e.g., 210, 212, 214, 216, 218, 252, 260, 428, 512, 522) of a wireless device (e.g., the wireless devices 120a–120e, 200, 320, 402, 502) .
Following the performance of the operations of block 606 of the method 600 (FIG. 6A) , the processor may update information in the modem stack based on TCP flow activity included in the update message in block 702. For example, the modem application processor (e.g., 512) may update information in a modem stack (e.g., the stack 514) using information about TCP flow activity included in the update message from the offload device application processor (e.g., from the offload device application processor 522, or from the stack 524 executed by the offload device application processor 522) . Means for performing functions of the operations in block 702 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428, 512) .
In block 704, the modem application processor may manage the TCP flow between the wireless device and the TCP peer device using the TCP flow activity included in the update message. In some embodiments, the modem application processor (e.g., 512) may manage the TCP flow between the wireless device and the TCP peer device (e.g., 510) via the wireless communication subsystem (e.g., 526) . Means for performing functions of the operations in block 704 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428, 512) .
The modem application processor may then return to the operations of block 602 of the method 600 (FIG. 6) .
FIG. 8A is a process flow diagram, and FIG. 8B is a conceptual block diagram, illustrating a method 800 that may be performed by a processor of a wireless device for managing a communication link between the wireless device and a TCP peer device according to various embodiments. With reference to FIGS. 1–8B, the operations 800 may be implemented by one or more processors (e.g., 210, 212, 214, 216, 218, 252, 260, 428, 512, 522) of a wireless device (e.g., the wireless devices 120a–120e, 200, 320, 402, 502) .
In block 802, the modem application processor (e.g., 512) may establish a TCP flow between the wireless device and a TCP peer device (e.g., 120a-120e, 404, 540) . Means for performing functions of the operations in block 602 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428, 512) .
In block 804, the offload device application processor (e.g., 522) may establish a TCP connection between the offload device and the modem using a source internet protocol (IP) address and a TCP port associated with the TCP peer device. Means for performing functions of the operations in block 804 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428, 522) .
In block 806, the offload device application processor may forward to the modem TCP flow activity with the TCP peer device when the modem is in an active mode of operation. For example, the offload device may forward TCP flow activity (e.g., TCP traffic of a TCP flow) via a communication link (e.g., 532 or 534, FIG. 5) to the modem. Means for performing functions of the operations in block 806 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428, 522) .
In block 808, the offload device application processor may support operations of the modem when the modem is in an active mode of operation, for example, by managing the TCP flow between the wireless device and the TCP peer device when the modem is in a low power mode of operation. Means for performing functions of the operations in block 808 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428, 522) .
The modem application processor and the offload device application processor may repeat the operations of blocks 802–808 from time to time.
In some embodiments, the modem and the offload device may share the same IP and MAC addresses. In some embodiments, the modem and the offload device may use the same wireless device port to receive traffic related to communications with the TCP peer device (e.g., TCP flows) . In some embodiments, when the modem enters the low power mode, the offload device may process TCP traffic and TCP requests for communication with the TCP peer device. In some embodiments, when the modem transitions to the active communication mode, the offload device may establish a TCP connection with the modem using the TCP peer device’s source IP address and port. The offload device may then forward communications from the TCP peer device to the modem, and from the modem to the TCP peer device.
In some embodiments, forwarding communications from the TCP peer device to the modem, and from the modem to the TCP peer device is performed at the application layer. For example, referring to FIG. 8B, the modem (e.g., 510) may transmit communications (e.g., TCP communications) to an IP port associated with the TCP peer device (e.g., 540) , such as “port2” . Similarly, the TCP peer device may transmit communications (e.g., TCP communications) to an IP port associated with the modem, such as “port1” . The offload device (e.g., 520) may receive communications from the modem using, e.g., port 2, and may forward the communications to port2 of the TCP peer device via the application layer of the offload device. The offload device also may receive communications from the TCP peer device using, e.g., port 1, and may forward the communications to port1 of the modem via the application layer of the offload device.
FIG. 9 is a process flow diagram illustrating operations 900 that may be performed by a processor of a wireless device as part of the method 800 for managing a communication link between the wireless device and a TCP peer device according to various embodiments. With reference to FIGS. 1–9, the operations 900 and the method 800 may be implemented by one or more processors (e.g., 210, 212, 214, 216,  218, 252, 260, 428, 512) of a wireless device (e.g., the wireless devices 120a–120e, 200, 320, 402, 502) .
Following the performance of the operations of block 808 of the method 800 (FIG. 8A) , the application processor may update information in a modem stack based on the TCP flow activity forwarded from the offload device in block 902. Means for performing functions of the operations in block 902 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428, 512) .
In block 904, the application processor may manage the TCP flow between the wireless device and the TCP peer using the TCP flow activity forwarded from the offload device. Means for performing functions of the operations in block 902 may include the processor (e.g., 210, 212, 214, 216, 218, 252, 260, 428, 512) .
Various embodiments, including the methods and  operations  600, 700, 800, and 900, may be performed in a variety of network computing device, an example of which is illustrated in FIG. 10 that is a component block diagram of a network computing device 1000 suitable for use with various embodiments. Such network computing devices may include at least the components illustrated in FIG. 10. With reference to FIGS. 1–10, a network computing device 1000 may include a processor 1001 coupled to volatile memory 1002 (e.g., 426) and a large capacity nonvolatile memory, such as a disk drive 1003. The network computing device 1000 may also include a peripheral memory access device such as a floppy disc drive, compact disc (CD) or digital video disc (DVD) drive 1006 coupled to the processor 1001. The network computing device 1000 may also include network access ports 1004 (or interfaces) coupled to the processor 1001 for establishing data connections with a network, such as the Internet and/or a local area network coupled to other system computers and servers. The network computing device 1000 may be connected to one or more antennas for sending and receiving electromagnetic radiation that may be connected to a wireless communication link. The network computing device 1000 may include additional access ports, such as USB, Firewire, Thunderbolt, and the like for coupling to peripherals, external memory, or other devices.
Various embodiments, including the methods and  operations  600, 700, 800, and 900, may be performed in a variety of wireless devices (e.g., the wireless device 120a-120e, 200, 320, 402, 502) , an example of which is illustrated in FIG. 11 that is a component block diagram of a wireless device 1100 suitable for use with various embodiments. With reference to FIGS. 1–11, a wireless device 1100 may include a first SOC 202 (e.g., a SOC-CPU) coupled to a second SOC 204 (e.g., a 5G capable SOC) . The first and  second SOCs  202, 204 may be coupled to  internal memory  426, 430, 1116, a display 1112, and to a speaker 1114. Additionally, the wireless device 1100 may include an antenna 1104 for sending and receiving electromagnetic radiation that may be connected to a wireless data link and/or cellular telephone transceiver 266 coupled to one or more processors in the first and/or  second SOCs  202, 204. The wireless device 1100 may also include menu selection buttons or rocker switches 1120 for receiving user inputs.
The wireless device 1100 also may include a sound encoding/decoding (CODEC) circuit 1110, which digitizes sound received from a microphone into data packets suitable for wireless transmission and decodes received sound data packets to generate analog signals that are provided to the speaker to generate sound. Also, one or more of the processors in the first and  second SOCs  202, 204, wireless transceiver 266 and CODEC 1110 may include a digital signal processor (DSP) circuit (not shown separately) .
The processors of the network computing device 1100 and the wireless device 1100 may be any programmable microprocessor, microcomputer or multiple processor chip or chips that can be configured by software instructions (applications) to perform a variety of functions, including the functions of the various embodiments described below. In some wireless devices, multiple processors may be provided, such as one processor within an SOC 204 dedicated to wireless communication functions and one processor within an SOC 202 dedicated to running other applications. Software applications may be stored in the  memory  426, 1116 before they are accessed and  loaded into the processor. The processors may include internal memory sufficient to store the application software instructions.
As used in this application, the terms “component, ” “module, ” “system, ” and the like are intended to include a computer-related entity, such as, but not limited to, hardware, firmware, a combination of hardware and software, software, or software in execution, which are configured to perform particular operations or functions. For example, a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on a wireless device and the wireless device may be referred to as a component. One or more components may reside within a process and/or thread of execution and a component may be localized on one processor or core and/or distributed between two or more processors or cores. In addition, these components may execute from various non-transitory computer readable media having various instructions and/or data structures stored thereon. Components may communicate by way of local and/or remote processes, function or procedure calls, electronic signals, data packets, memory read/writes, and other known network, computer, processor, and/or process related communication methodologies.
A number of different cellular and mobile communication services and standards are available or contemplated in the future, all of which may implement and benefit from the various embodiments. Such services and standards include, e.g., third generation partnership project (3GPP) , long term evolution (LTE) systems, third generation wireless mobile communication technology (3G) , fourth generation wireless mobile communication technology (4G) , fifth generation wireless mobile communication technology (5G) , global system for mobile communications (GSM) , universal mobile telecommunications system (UMTS) , 3GSM, general packet radio service (GPRS) , code division multiple access (CDMA) systems (e.g., cdmaOne, CDMA1020TM) , enhanced data rates for GSM evolution (EDGE) , advanced mobile phone system (AMPS) , digital AMPS (IS-136/TDMA) , evolution-data optimized (EV-DO) , digital enhanced cordless telecommunications (DECT) , Worldwide  Interoperability for Microwave Access (WiMAX) , wireless local area network (WLAN) , Wi-Fi Protected Access I &II (WPA, WPA2) , and integrated digital enhanced network (iDEN) . Each of these technologies involves, for example, the transmission and reception of voice, data, signaling, and/or content messages. It should be understood that any references to terminology and/or technical details related to an individual telecommunication standard or technology are for illustrative purposes only, and are not intended to limit the scope of the claims to a particular communication system or technology unless specifically recited in the claim language.
Various embodiments illustrated and described are provided merely as examples to illustrate various features of the claims. However, features shown and described with respect to any given embodiment are not necessarily limited to the associated embodiment and may be used or combined with other embodiments that are shown and described. Further, the claims are not intended to be limited by any one example embodiment. For example, one or more of the operations of the  methods  600, 700, 800, and 900 may be substituted for or combined with one or more operations of the  methods  600, 700, 800, and 900.
The foregoing method descriptions and the process flow diagrams are provided merely as illustrative examples and are not intended to require or imply that the operations of various embodiments must be performed in the order presented. As will be appreciated by one of skill in the art the order of operations in the foregoing embodiments may be performed in any order. Words such as “thereafter, ” “then, ” “next, ” etc. are not intended to limit the order of the operations; these words are used to guide the reader through the description of the methods. Further, any reference to claim elements in the singular, for example, using the articles “a, ” “an, ” or “the” is not to be construed as limiting the element to the singular.
Various illustrative logical blocks, modules, components, circuits, and algorithm operations described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various  illustrative components, blocks, modules, circuits, and operations have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such embodiment decisions should not be interpreted as causing a departure from the scope of the claims.
The hardware used to implement various illustrative logics, logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but, in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of receiver smart objects, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. Alternatively, some operations or methods may be performed by circuitry that is specific to a given function.
In one or more embodiments, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions or code on a non-transitory computer-readable storage medium or non-transitory processor-readable storage medium. The operations of a method or algorithm disclosed herein may be embodied in a processor-executable software module or processor-executable instructions, which may reside on a non-transitory computer-readable or processor-readable storage medium. Non-transitory computer-readable or processor-readable  storage media may be any storage media that may be accessed by a computer or a processor. By way of example but not limitation, such non-transitory computer-readable or processor-readable storage media may include RAM, ROM, EEPROM, FLASH memory, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage smart objects, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer. Disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of non-transitory computer-readable and processor-readable media. Additionally, the operations of a method or algorithm may reside as one or any combination or set of codes and/or instructions on a non-transitory processor-readable storage medium and/or computer-readable storage medium, which may be incorporated into a computer program product.
The preceding description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the claims. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the scope of the claims. Thus, the present disclosure is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the following claims and the principles and novel features disclosed herein.

Claims (27)

  1. A method performed on a wireless device for managing a communication link between the wireless device and a transfer control protocol (TCP) peer device, comprising:
    establishing a TCP flow between a modem of the wireless device and the TCP peer device;
    managing by an offload device of the wireless device the TCP flow between the wireless device and the TCP peer device when the modem is in a low power mode of operation; and
    supporting operations of the modem by the offload device when the modem is in an active mode of operation.
  2. The method of claim 1, wherein supporting operations of the modem by the offload device when the modem is in an active mode of operation comprises when the modem transitions from the low power mode of operation to an active mode of operation, sending from the offload device to the modem an update message including TCP flow activity that occurred related to the TCP flow while the modem was in the low power mode of operation.
  3. The method of claim 2, further comprising updating information in a modem stack based on the TCP flow activity included in the update message.
  4. The method of claim 2, further comprising managing by the modem the TCP flow between the wireless device and the TCP peer device using the TCP flow activity included in the update message.
  5. The method of claim 2, wherein sending from the offload device to the modem the update message including the TCP flow activity that occurred related to the TCP flow  while the modem was in the low power mode of operation comprises sending the update message from a stack of the offload device to a stack of the modem.
  6. The method of claim 2, wherein the update message includes one or more of a TCP flow state, a TCP transmit/receive sequence, and an internet protocol (IP) identification.
  7. The method of claim 2, wherein the update message comprises a header portion that includes the TCP flow activity.
  8. The method of claim 1, wherein supporting operations of the modem by the offload device when the modem is in an active mode of operation comprises forwarding to the modem TCP flow activity with the TCP peer device when the modem is in an active mode of operation.
  9. The method of claim 1, further comprising sending from the modem to the offload device an update message including TCP flow activity to synchronize TCP flow activity in the modem and in the offload device.
  10. A wireless device, comprising:
    a modem, configured to establish a transfer control protocol (TCP) flow between the wireless device and a TCP peer device; and
    an offload device, configured to:
    manage the TCP flow between the wireless device and the TCP peer device when the modem is in a low power mode of operation; and
    send to the modem an update message including TCP flow activity that occurred related to the TCP flow while the modem was in the low power mode of operation when the modem transitions from the low power mode of operation to an active mode of operation.
  11. The wireless device of claim 10, wherein the modem is further configured to update information in a modem stack based on the TCP flow activity included in the update message.
  12. The wireless device of claim 10, wherein the modem is further configured to manage the TCP flow between the wireless device and the TCP peer device using the TCP flow activity included in the update message.
  13. The wireless device of claim 10, wherein the offload device is further configured to send the update message from a stack of the offload device to a stack of the modem.
  14. The wireless device of claim 10, wherein the offload device is further configured such that the update message includes one or more of a TCP flow state, a TCP transmit/receive sequence, and an internet protocol (IP) identification.
  15. The wireless device of claim 10, wherein the offload device is further configured such that the update message comprises a header portion that includes the TCP flow activity.
  16. The wireless device of claim 10, wherein the modem is further configured to send to the offload device an update message including TCP flow activity to synchronize TCP flow activity in the modem and in the offload device.
  17. A modem system on chip (SOC) , comprising:
    a modem device, configured to establish a transfer control protocol (TCP) flow between the modem SOC and a TCP peer device; and
    an offload device, configured to:
    manage the TCP flow between the modem SOC and the TCP peer device when the modem device is in a low power mode of operation; and
    send to the modem device an update message including TCP flow activity that occurred related to the TCP flow while the modem device was in the low power mode of operation when the modem device transitions from the low power mode of operation to an active mode of operation.
  18. The modem SOC of claim 17, wherein the modem device is further configured to update information in a modem stack based on the TCP flow activity included in the update message.
  19. The modem SOC of claim 17, wherein the modem device is further configured to manage the TCP flow between the modem SOC and the TCP peer device using the TCP flow activity included in the update message.
  20. The modem SOC of claim 17, wherein the offload device is further configured to send the update message from a stack of the offload device to a stack of the modem device.
  21. The modem SOC of claim 17, wherein the offload device is further configured such that the update message includes one or more of a TCP flow state, a TCP transmit/receive sequence, and an internet protocol (IP) identification.
  22. The modem SOC of claim 17, wherein the offload device is further configured such that the update message comprises a header portion that includes the TCP flow activity.
  23. The modem SOC of claim 17, wherein the modem device is further configured to send to the offload device an update message including TCP flow activity to synchronize TCP flow activity in the modem device and in the offload device.
  24. A wireless device, comprising:
    a modem, configured to establish a transfer control protocol (TCP) flow between the wireless device and a TCP peer device; and
    an offload device, configured to:
    establish a TCP connection between the offload device and the modem using a source internet protocol (IP) address and a TCP port associated with the TCP peer device;
    forward to the modem TCP flow activity with the TCP peer device when the modem is in an active mode of operation; and
    manage the TCP flow between the wireless device and the TCP peer device when the modem is in a low power mode of operation.
  25. The wireless device of claim 24, wherein the modem is further configured to update information in a modem stack based on the TCP flow activity forwarded from the offload device.
  26. The wireless device of claim 24, wherein the modem is further configured to manage the TCP flow between the wireless device and the TCP peer device using the TCP flow activity forwarded from the offload device.
  27. The wireless device of claim 24, wherein the offload device is further configured to forward the TCP flow activity to the modem in an application layer.
PCT/CN2020/114493 2020-09-10 2020-09-10 Managing a communication link for transfer control protocol communications WO2022051985A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/114493 WO2022051985A1 (en) 2020-09-10 2020-09-10 Managing a communication link for transfer control protocol communications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/114493 WO2022051985A1 (en) 2020-09-10 2020-09-10 Managing a communication link for transfer control protocol communications

Publications (1)

Publication Number Publication Date
WO2022051985A1 true WO2022051985A1 (en) 2022-03-17

Family

ID=80630208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114493 WO2022051985A1 (en) 2020-09-10 2020-09-10 Managing a communication link for transfer control protocol communications

Country Status (1)

Country Link
WO (1) WO2022051985A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030204631A1 (en) * 2002-04-30 2003-10-30 Microsoft Corporation Method to synchronize and upload an offloaded network stack connection with a network stack
WO2011026084A1 (en) * 2009-08-31 2011-03-03 Qualcomm Incorporated Methods and systems for operating a computer via a low power adjunct processor
US20130332599A1 (en) * 2012-06-10 2013-12-12 Apple Inc. Neighbor discovery offload in mobile devices
WO2014043224A1 (en) * 2012-09-12 2014-03-20 Intel Corporation Apparatus and method for optimizing semi-active workloads

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030204631A1 (en) * 2002-04-30 2003-10-30 Microsoft Corporation Method to synchronize and upload an offloaded network stack connection with a network stack
WO2011026084A1 (en) * 2009-08-31 2011-03-03 Qualcomm Incorporated Methods and systems for operating a computer via a low power adjunct processor
US20130332599A1 (en) * 2012-06-10 2013-12-12 Apple Inc. Neighbor discovery offload in mobile devices
WO2014043224A1 (en) * 2012-09-12 2014-03-20 Intel Corporation Apparatus and method for optimizing semi-active workloads

Similar Documents

Publication Publication Date Title
US11690081B2 (en) Bandwidth part (BWP) for unicast/multicast and resource allocation for multicast
WO2021258259A1 (en) Determining a channel state for wireless communication
US11805493B2 (en) Compressed DC location reporting scheme for UL CA
US11770772B2 (en) Discontinuous reception for sidelink control signaling
US11523301B2 (en) Physical uplink control channel with buffer status report
US11758513B2 (en) Physical uplink control channel with uplink message short data field
US20220279399A1 (en) User equipment (ue) mobility history information management
US11751195B2 (en) Control signaling for multicast communications
WO2021184229A1 (en) Method to support entv broadcast and unicast modes in ue
WO2022051985A1 (en) Managing a communication link for transfer control protocol communications
WO2021253369A1 (en) Methods for managing network communication
WO2021174435A1 (en) Managing a downlink bit rate
WO2021243547A1 (en) Managing transmission control protocol communication with a communication network
US11523404B2 (en) Radio link prioritization
US11265263B2 (en) Processing data using remote network computing resources
WO2021258392A1 (en) Dynamic srs configuration based on cqi in 5g network
WO2022165826A1 (en) Frames-per-second thermal management
US20220346025A1 (en) Early Uplink Transmit Power Control
WO2022067469A1 (en) New cell selection scheduling method for mmtc high space density ue and network to reduce rach congestion
US20210105612A1 (en) User plane integrity protection (up ip) capability signaling in 5g/4g systems
US20230403732A1 (en) Managing Downlink Traffic Reception And Cross-Link Interference

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952773

Country of ref document: EP

Kind code of ref document: A1