WO2021258392A1 - Dynamic srs configuration based on cqi in 5g network - Google Patents

Dynamic srs configuration based on cqi in 5g network Download PDF

Info

Publication number
WO2021258392A1
WO2021258392A1 PCT/CN2020/098316 CN2020098316W WO2021258392A1 WO 2021258392 A1 WO2021258392 A1 WO 2021258392A1 CN 2020098316 W CN2020098316 W CN 2020098316W WO 2021258392 A1 WO2021258392 A1 WO 2021258392A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
cqi
bandwidth configuration
value
wireless device
Prior art date
Application number
PCT/CN2020/098316
Other languages
French (fr)
Inventor
Zhuoqi XU
Yuankun ZHU
Pan JIANG
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/098316 priority Critical patent/WO2021258392A1/en
Publication of WO2021258392A1 publication Critical patent/WO2021258392A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0085Timing of allocation when channel conditions change
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/16Half-duplex systems; Simplex/duplex switching; Transmission of break signals non-automatically inverting the direction of transmission

Definitions

  • LTE Long Term Evolution
  • 5GNR Fifth Generation new radio
  • IOT Internet of Things
  • M2M Machine to Machine
  • Various aspects include systems and methods for configuring a sounding reference signal (SRS) .
  • SRS sounding reference signal
  • Various aspects may enable bandwidth configurations for an SRS to be changed based at least in part on a channel quality indicator (CQI) index value reported by a wireless device.
  • CQI channel quality indicator
  • Various aspects may be performed by a processor of network computing device, such as a base station.
  • Various aspects may include determining whether an SRS bandwidth configuration change condition occurred, wherein the SRS bandwidth configuration change condition may be based at least in part on a channel condition reported by a wireless device, changing a bandwidth configuration for an SRS to be transmitted by the wireless device in response to determining that the SRS bandwidth configuration change condition occurred, and sending an indication of the changed bandwidth configuration to the wireless device.
  • determining whether the SRS bandwidth configuration change condition occurred may include determining an average CQI index value reported by the wireless device over a time period, determining whether the average CQI index value is greater than a first CQI change value, and determining that the SRS bandwidth configuration change condition occurred in response to determining that the average CQI index value is not greater than the first CQI change value.
  • the time period may be one minute.
  • changing the bandwidth configuration for the SRS to be transmitted by the wireless device to the different bandwidth configuration in response to determining that the SRS bandwidth configuration change condition occurred may include determining whether the average CQI index value is less than or equal to the first CQI change value and greater than a second CQI change value in response to determining that the average CQI index value is not greater than the first CQI change value, changing the bandwidth configuration for the SRS to be transmitted by the wireless device to a first different bandwidth configuration in response to determining that the average CQI index value is less than or equal to the first CQI change value and greater than the second CQI change value, determining whether the average CQI index value is less than or equal to the second CQI change value and greater than a third CQI change value in response to determining that the average CQI index value is not less than or equal to the first CQI change value and greater than the second CQI change value, changing the bandwidth configuration for the SRS to be transmitted by the wireless device to a second different bandwidth configuration in response to
  • the first different bandwidth configuration may be an SRS-bandwidth (B SRS ) value of one
  • the second different bandwidth configuration may be a B SRS value of two
  • the third different bandwidth configuration may be a B SRS value of three.
  • the first CQI change value may be twelve
  • the second CQI change value may be eight
  • the third CQI change value may be four.
  • Further aspects may include a network computing device having a processor configured to perform one or more operations of any of the methods summarized above. Further aspects may include a non-transitory processor-readable storage medium having stored thereon processor-executable instructions configured to cause a processor of a network computing device to perform operations of any of the methods summarized above. Further aspects include a network computing device having means for performing functions of any of the methods summarized above. Further aspects include a system-on-chip for use in a network computing device that includes a processor configured to perform one or more operations of any of the methods summarized above. Further aspects include a system in a package that includes two systems on chip for use in a network computing device that includes a processor configured to perform one or more operations of any of the methods summarized above.
  • FIG. 1 is a system block diagram illustrating an example communication system suitable for implementing any of the various embodiments.
  • FIG. 2 is a component block diagram illustrating an example computing and wireless modem system suitable for implementing any of the various embodiments.
  • FIG. 3 is a component block diagram illustrating a software architecture including a radio protocol stack for the user and control planes in wireless communications suitable for implementing any of the various embodiments.
  • FIG. 4 is a process flow diagram illustrating a method for configuring a sounding reference signal (SRS) in a network in accordance with various embodiments.
  • SRS sounding reference signal
  • FIG. 5A is a process flow diagram illustrating a method for determining whether an SRS bandwidth configuration change condition occurred in accordance with various embodiments.
  • FIG. 5B is a process flow diagram illustrating a method for changing a bandwidth configuration for an SRS to be transmitted by a wireless device in accordance with various embodiments.
  • FIG. 6 is a component block diagram of a network computing device suitable for use with various embodiments.
  • FIG. 7 is a component block diagram of a wireless device suitable for use with various embodiments.
  • Various embodiments include systems and method for configuring a sounding reference signal (SRS) .
  • SRS sounding reference signal
  • Various embodiments may enable bandwidth configurations for an SRS to be changed based at least in part on a channel quality indicator (CQI) index value reported by a wireless device.
  • CQI channel quality indicator
  • Various embodiments may enable a network computing device, such as a base station, to dynamically reconfigure the bandwidth used for resource blocks of an SRS transmitted by a wireless device.
  • Various embodiments may enable a network computing device, such as a base station, to change a bandwidth configuration for an SRS to a narrower bandwidth in response to determining a wireless device is in a poor coverage condition as indicated by a CQI index value reported by the wireless device.
  • the change of configuration of an SRS to a narrower bandwidth from a wider bandwidth may improve channel estimation by the network as narrower bandwidth SRSs may be more reliably received by a network device, such as a base station, than wideband SRSs, especially in scenarios where the wireless device transmitting an SRS is experiencing a poor coverage condition.
  • wireless device is used herein to refer to any one or all of cellular telephones, smartphones, portable computing devices, personal or mobile multi-media players, laptop computers, tablet computers, smartbooks, ultrabooks, palmtop computers, wireless electronic mail receivers, multimedia Internet-enabled cellular telephones, wireless router devices, wireless appliances, medical devices and equipment, biometric sensors/devices, wearable devices including smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart rings, smart bracelets, etc. ) , entertainment devices (e.g., wireless gaming controllers, music and video players, satellite radios, etc.
  • wireless-network enabled Internet of Things (IoT) devices including smart meters/sensors, industrial manufacturing equipment, large and small machinery and appliances for home or enterprise use, wireless communication elements within autonomous and semiautonomous vehicles, wireless devices affixed to or incorporated into various mobile platforms, global positioning system devices, and similar electronic devices that include a memory, multiple SIMs, wireless communication components and a programmable processor.
  • IoT Internet of Things
  • SOC system-on-chip
  • a single SOC may contain circuitry for digital, analog, mixed-signal, and radio-frequency functions.
  • a single SOC may also include any number of general purpose and/or specialized processors (digital signal processors, modem processors, video processors, etc. ) , memory blocks (e.g., ROM, RAM, Flash, etc. ) , and resources (e.g., timers, voltage regulators, oscillators, etc. ) .
  • SOCs may also include software for controlling the integrated resources and processors, as well as for controlling peripheral devices.
  • SIP system in a package
  • a SIP may include a single substrate on which multiple IC chips or semiconductor dies are stacked in a vertical configuration.
  • the SIP may include one or more multi-chip modules (MCMs) on which multiple ICs or semiconductor dies are packaged into a unifying substrate.
  • MCMs multi-chip modules
  • a SIP may also include multiple independent SOCs coupled together via high speed communication circuitry and packaged in close proximity, such as on a single motherboard or in a single wireless device. The proximity of the SOCs facilitates high speed communications and the sharing of memory and resources.
  • SIM Subscriber Identity
  • SIM card SIM card
  • subscriber identity module may interchangeably refer to a memory that may be an integrated circuit or embedded into a removable card, and that stores an International Mobile Subscriber Identity (IMSI) , related key, and/or other information used to identify and/or authenticate a wireless device on a network and enable a communication service with the network.
  • IMSI International Mobile Subscriber Identity
  • Examples of SIMs include the Universal Subscriber Identity Module (USIM) provided for in the Long Term Evolution (LTE) 3GPP standard, and the Removable User Identity Module (R-UIM) provided for in the 3GPP standard.
  • USB Universal Subscriber Identity Module
  • R-UIM Removable User Identity Module
  • UICC Universal Integrated Circuit Card
  • a SIM may also refer to a virtual SIM (VSIM) , which may be implemented as a remote SIM profile loaded in an application on a wireless device, and enabling normal SIM functions on the wireless device.
  • VSIM virtual SIM
  • SIM is also be used herein as a shorthand reference to the communication service associated with and enabled by the information stored in a particular SIM as the SIM and the communication network, as well as the services and subscriptions supported by that network, correlate to one another.
  • SIM may also be used as a shorthand reference to the protocol stack and/or modem stack and communication processes used in establishing and conducting communication services with subscriptions and networks enabled by the information stored in a particular SIM.
  • multi-SIM wireless device may interchangeably describe a wireless device that is configured with more than one SIM.
  • multi-SIM wireless devices include multi-SIM multi-standby (MSMS) wireless devices, such as Dual-SIM (DS) dual-standby (DSDS) wireless devices, etc., and multi-SIM multi-active (MSMA) wireless devices, such as Dual-SIM dual-active (DSDA wireless devices, etc.
  • MSMS wireless device may be a wireless device that is configured with more than one SIM and allows idle-mode operations to be performed on two subscriptions simultaneously, as well as selective communication on one subscription while performing idle-mode operations on at least one other subscription.
  • An MSMA wireless device may be a wireless device that is configured with more than one SIM and allows idle-mode and/or active mode operations to be performed on two subscriptions simultaneously using at least two different RF resources (e.g., two different wireless transceivers) .
  • server refers to any computing device capable of functioning as a server, such as a master exchange server, web server, mail server, document server, content server, or any other type of server.
  • a server may be a dedicated computing device or a computing device including a server module (e.g., running an application that may cause the computing device to operate as a server) .
  • a server module e.g., server application
  • a server module may be a full function server module, or a light or secondary server module (e.g., light or secondary server application) that is configured to provide synchronization services among the dynamic databases on receiver devices.
  • a light server or secondary server may be a slimmed-down version of server-type functionality that can be implemented on a receiver device thereby enabling it to function as an Internet server (e.g., an enterprise e-mail server) only to the extent necessary to provide the functionality described herein.
  • an Internet server e.g., an enterprise e-mail server
  • the terms “network, ” “system, ” “wireless network, ” “cellular network, ” and “wireless communication network” may interchangeably refer to a portion or all of a wireless network of a carrier associated with a wireless device and/or subscription on a wireless device.
  • the techniques described herein may be used for various wireless communication networks, such as Code Division Multiple Access (CDMA) , time division multiple access (TDMA) , FDMA, orthogonal FDMA (OFDMA) , single carrier FDMA (SC-FDMA) and other networks.
  • CDMA Code Division Multiple Access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal FDMA
  • SC-FDMA single carrier FDMA
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support at least one radio access technology, which may operate on one or more frequency or range of frequencies.
  • a CDMA network may implement Universal Terrestrial Radio Access (UTRA) (including Wideband Code Division Multiple Access (WCDMA) standards) , CDMA2000 (including IS-2000, IS-95 and/or IS-856 standards) , etc.
  • UTRA Universal Terrestrial Radio Access
  • CDMA2000 including IS-2000, IS-95 and/or IS-856 standards
  • a TDMA network may implement GSM Enhanced Data rates for GSM Evolution (EDGE) .
  • EDGE GSM Enhanced Data rates for GSM Evolution
  • an OFDMA network may implement Evolved UTRA (E-UTRA) (including LTE standards) , IEEE 802.11 (WiFi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash- etc.
  • E-UTRA Evolved UTRA
  • E-UTRAN Evolved Universal Terrestrial Radio Access
  • eNodeB eNodeB
  • E-UTRAN Evolved Universal Terrestrial Radio Access
  • eNodeB eNodeB
  • 3G Third Generation
  • 4G Fourth Generation
  • 5G Fifth Generation
  • future generation systems e.g., sixth generation (6G) or higher systems
  • network operator ” “operator, ” “mobile network operator, ” “carrier, ” and “service provider” are used interchangeably herein to describe a provider of wireless communications services that owns or controls elements to sell and deliver communication services to an end user, and provides necessary provisioning and credentials as policies implemented in user device subscriptions.
  • RF resource refers to the components in a communication device that send, receive, and decode radio frequency signals.
  • An RF resource typically includes a number of components coupled together that transmit RF signals that are referred to as a “transmit chain, ” and a number of components coupled together that receive and process RF signals that are referred to as a “receive chain. ”
  • LTE is a mobile network standard for 4G wireless communication of high-speed data developed by the 3GPP (3rd Generation Partnership Project) and specified in its Release 8 document series.
  • the 5G system is an advanced technology from 4G LTE, and provides a new radio access technology (RAT) through the evolution of the existing mobile communication network structure.
  • RAT new radio access technology
  • Implementations for 5G systems or networks are currently being adopted that provide new radio (NR) (also referred to a 5G) support via NR base stations, such as Next Generation NodeB (gNodeBs or gNBs) ) .
  • NR new radio
  • gNodeBs or gNBs Next Generation NodeB
  • the 5G systems and NR base stations are providing flexibility in bandwidth scheduling and utilization.
  • Future generation systems e.g., sixth generation (6G) or higher systems
  • 6G sixth generation
  • an uplink (UL) physical signal may be used by the physical layer but may not carry information originating from higher layers.
  • Sounding reference signals are one type of UL physical signal used in networks, such as LTE networks, 5G NR networks, later generation networks, etc.
  • An SRS is a wireless device transmitted reference signal in the UL direction used by a network device, such as a base station (e.g., an eNodeB, a gNodeB, etc. ) , to estimate UL channel quality.
  • a base station e.g., an eNodeB, a gNodeB, etc.
  • network device is used to refer to any of a variety of network elements that may perform operations of various embodiments, non-limiting examples of which include a base station, an eNodeB, a gNodeB, etc.
  • Channel quality estimates may be used by the network device to configure UL communications, such as for UL scheduling, timing alignment, etc.
  • An SRS is a configurable signal to be transmitted by wireless devices, and a network device may indicate to a wireless device the configuration of the SRS to be transmitted by the wireless device.
  • the SRS configuration may be indicated in an SRS resource information element (IE) (e.g., SRS-Resource) sent from the network device to a wireless device.
  • IE SRS resource information element
  • the SRS configuration may include a bandwidth configuration for an SRS.
  • the bandwidth configuration for an SRS may define various parameters of the SRS to be transmitted from the wireless device, such as a cell-specific bandwidth configuration (e.g., SRS-bandwidthConfig (C SRS ) ) , a wireless device-specific bandwidth configuration (e.g., SRS-bandwidth (B SRS ) ) , a frequency hopping configuration (e.g., SRS-HoppingBandwidth (b hop ) ) , etc.
  • a cell-specific bandwidth configuration e.g., SRS-bandwidthConfig (C SRS )
  • B SRS wireless device-specific bandwidth configuration
  • a frequency hopping configuration e.g., SRS-HoppingBandwidth (b hop )
  • eight cell-specific bandwidth configurations e.g., eight C SRS values 0-7
  • sixty-four cell-specific bandwidth configurations e.g., sixty-four C SRS values 0-63
  • Each cell-specific bandwidth configuration (e.g., each C SRS ) may be associated with four wireless device-specific bandwidth configuration values (e.g., four B SRS values 0-3) .
  • Each of the four wireless device-specific bandwidth configuration values (e.g., four B SRS values 0-3) may be associated with its own number of resource blocks for use in SRS transmissions (e.g., m SRS ) and frequency position information (e.g., N) .
  • a wireless device may receive a bandwidth configuration for an SRS and configure the SRS transmitted by the wireless device according to the received bandwidth configuration.
  • the wireless device may receive a bandwidth configuration for an SRS indicating a network selected cell-specific bandwidth configuration value (e.g., a C SRS value of 61) and a network selected wireless device-specific bandwidth configuration value (e.g., a B SRS value of 0) .
  • the wireless device may perform a look-up operation in a table correlating cell-specific bandwidth configuration values with wireless device-specific bandwidth configuration values and determine the number of resource blocks for use in SRS transmissions (e.g., m SRS ) and frequency position information (e.g., N) .
  • the C SRS value of 61 and B SRS value of 0 may correspond to a 272 resource block SRS signal (e.g., m SRS value of 272)
  • the C SRS value of 61 and B SRS value of 1 may correspond to a 136 resource block SRS signal (e.g., m SRS value of 136)
  • the C SRS value of 61 and B SRS value of 2 may correspond to a 68 resource block SRS signal (e.g., m SRS value of 68)
  • the C SRS value of 61 and B SRS value of 3 may correspond to a 4 resource block SRS signal (e.g., m SRS value of 4) .
  • a wireless device receiving a bandwidth configuration indicating the network selected C SRS value of 61 and network selected B SRS value of 0 may transmit an SRS that is a wide-band SRS of a single transmission of all 272 resource blocks at once
  • a wireless device receiving a bandwidth configuration indicating the network selected C SRS value of 61 and network selected B SRS value of 1 may transmit an SRS that is a narrower-band SRS of multiple transmissions of 136 resource blocks
  • a wireless device receiving a bandwidth configuration indicating the network selected C SRS value of 61 and network selected B SRS value of 2 may transmit an SRS that is a still narrower-band SRS of multiple transmissions of 68 resource blocks
  • a wireless device receiving a bandwidth configuration indicating the network selected C SRS value of 61 and network selected B SRS value of 3 may transmit an SRS that is the narrowest-band SRS of multiple transmissions of 4 resource blocks.
  • While an SRS is a configurable signal and the network device may indicate to a wireless device the configuration of the SRS to be transmitted by the wireless device, current networks configure SRSs to always be wide-band SRS resources.
  • a current 5G network will default to a selection of a network selected C SRS value of 61 and a network selected B SRS value of 0 thereby causing a wireless device receiving such a bandwidth configuration indicating the network selected C SRS value of 61 and network selected B SRS value of 0 to always transmit an SRS that is a wide-band SRS of a single transmission of all 272 resource blocks at once.
  • current networks do not change or reconfigure the SRS after initially indicating the configuration for the SRS to a wireless device.
  • a network device may dynamically reconfigure an SRS to a narrower bandwidth from a wider bandwidth.
  • a network device may dynamically reconfigure an SRS to a narrower bandwidth from a wider bandwidth based on a wireless device reported channel condition.
  • a channel condition may be indicated in channel state information (CSI) reported by a wireless device to a network device.
  • CSI channel state information
  • a network device in response to determining that an SRS bandwidth configuration change condition occurred, such as a channel condition worsening, may change a bandwidth configuration for an SRS to be transmitted by a wireless device.
  • CSI reported by a wireless device may include a channel quality indicator (CQI) index value indicated in a channel state feedback (CSF) report sent from a wireless device to a network device.
  • CSF channel state feedback
  • CSI may be reported by a wireless device to a network device, such as a base station (e.g., an eNodeB, a gNodeB, etc. ) on the Physical Uplink Control Channel (PUCCH) or Physical Uplink Shared Channel (PUSCH) .
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • CQI index values may observed or estimated channel measurements sent by a wireless device to a network device as an index value to indicate channel quality.
  • CQI index values may reflect the real channel condition of the downlink (DL) channel experienced by the wireless device.
  • Lower CQI index values may indicate worse quality and higher CQI index values may indicate better quality.
  • the CQI index values may range from 0 to 15 with zero being the worst channel condition indication and 15 being the best channel condition indication.
  • a larger CQI index value may indicate the wireless device is in a relatively better coverage condition.
  • a smaller CQI index value may indicate the wireless device is in a relatively poorer coverage condition.
  • a network device may dynamically reconfigure an SRS to a narrower bandwidth from a wider bandwidth based on one or more CQI indexes reported by a wireless device. For example, one or more CQI indexes, averages of the CQI indexes, etc., may be compared to one or more thresholds and the network device may dynamically reconfigure an SRS to a different bandwidth based on the results of the comparison (e.g., the one or more CQI indexes, averages of the CQI indexes, etc., being at, above, or equal to one or more of the thresholds triggering reconfiguration of SRS to a different bandwidth) .
  • determining that the SRS bandwidth configuration change condition occurred may include determining an average CQI index value reported by a wireless device over a time period.
  • the time period may be a selectable value.
  • the time period may be one minute.
  • a network device may track the reported CQI index values from a wireless device during the time period to determine the average CQI index value reported by the wireless device over the time period.
  • a network device may determine whether the average CQI index value is greater than a first CQI change value.
  • a first CQI change value may be a selected index value representing at least a first threshold for changing SRS bandwidth configuration.
  • the first CQI change value may be selected and/or configured such that an average CQI index value over a time period, such as one minute, etc., being above the first CQI change value may indicate the channel condition is good and reconfiguration of an SRS to a different bandwidth (e.g., to a narrower bandwidth) is not required.
  • the first CQI change value may be selected and/or configured such that an average CQI index value over a time period, such as one minute, etc., being at or below the first CQI change value may indicate the channel condition is bad and reconfiguration of an SRS to a different bandwidth (e.g., to a narrower bandwidth) is required.
  • a network device may change the bandwidth configuration for the SRS to be transmitted by the wireless device to a different bandwidth configuration (e.g., a narrower bandwidth) in response to determining that the average CQI index value is not greater than the first CQI change value (e.g., equal to or less than the first CQI change value) .
  • a network device may compare the average CQI index value to multiple different CQI change values, such as a first CQI change value, a second CQI change value, and a third CQI change value.
  • Each CQI change value may be a threshold for changing SRS bandwidth configuration associated with its own respective different bandwidth configuration for the SRS.
  • the first CQI change value may be twelve
  • the second CQI change value may be eight
  • the third CQI change value may be four.
  • a network device may change the bandwidth configuration for the SRS to be transmitted by the wireless device to a first different bandwidth configuration (e.g., a narrower bandwidth such as a narrower bandwidth associated with a B SRS value of one) in response to determining that the average CQI index value is less than or equal to the first CQI change value and greater than the second CQI change value (e.g., the average CQI index value is less than or equal to twelve and greater than eight) .
  • a first different bandwidth configuration e.g., a narrower bandwidth such as a narrower bandwidth associated with a B SRS value of one
  • the network device may change the bandwidth configuration for the SRS to be transmitted by the wireless device to a second different bandwidth configuration (e.g., a narrower bandwidth such as a narrower bandwidth associated with a B SRS value of two) in response to determining that the average CQI index value is less than or equal to the second CQI change value and greater than the third CQI change value (e.g., the average CQI index value is less than or equal to eight and greater than four) .
  • a second different bandwidth configuration e.g., a narrower bandwidth such as a narrower bandwidth associated with a B SRS value of two
  • the third CQI change value e.g., the average CQI index value is less than or equal to eight and greater than four
  • the network device may change the bandwidth configuration for the SRS to be transmitted by the wireless device to a third different bandwidth configuration (e.g., a narrower bandwidth such as a narrower bandwidth associated with a B SRS value of three) in response to determining that the average CQI index value is less than or equal to the third CQI change value (e.g., the average CQI index value is less than or equal to four) .
  • a third different bandwidth configuration e.g., a narrower bandwidth such as a narrower bandwidth associated with a B SRS value of three
  • the third CQI change value e.g., the average CQI index value is less than or equal to four
  • the change of configuration of an SRS to a narrower bandwidth from a wider bandwidth may improve channel estimation by the network as narrower bandwidth SRSs (e.g., SRSs with narrower bandwidths associated with a B SRS value of one, two, or three) may be more reliably received by the network device than wideband SRSs (e.g., SRSs with a wider bandwidth associated with a B SRS value of zero) , especially in scenarios where the wireless device transmitting an SRS is experiencing a poor coverage condition as indicated by lower average CQI index values.
  • narrower bandwidth SRSs e.g., SRSs with narrower bandwidths associated with a B SRS value of one, two, or three
  • wideband SRSs e.g., SRSs with a wider bandwidth associated with a B SRS value of zero
  • FIG. 1 is a system block diagram illustrating an example communication system 100 suitable for implementing any of the various embodiments.
  • the communications system 100 may be a 5G New Radio (NR) network, or any other suitable network such as an LTE network, 5G network, etc. While FIG. 1 illustrates a 5G network, later generation networks may include the same or similar elements. Therefore, the reference to a 5G network and 5G network elements in the following descriptions is for illustrative purposes and is not intended to be limiting.
  • NR 5G New Radio
  • the communications system 100 may include a heterogeneous network architecture that includes a core network 140 and a variety of mobile devices (illustrated as wireless device 120a-120e in FIG. 1) .
  • the communications system 100 may also include a number of base stations (illustrated as the BS 110a, the BS 110b, the BS 110c, and the BS 110d) and other network entities.
  • a base station is an entity that communicates with wireless devices, and also may be referred to as a Node B, an LTE Evolved nodeB (eNodeB or eNB) , an access point (AP) , a Radio head, a transmit receive point (TRP) , a New Radio base station (NR BS) , a 5G NodeB (NB) , a Next Generation NodeB (gNodeB or gNB) , or the like.
  • Each base station may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a base station, a base station Subsystem serving this coverage area, or a combination thereof, depending on the context in which the term is used.
  • the core network 140 may be any type core network, such as an LTE core network (e.g., an EPC network) , 5G core network, etc.
  • a base station 110a-110d may provide communication coverage for a macro cell, a pico cell, a femto cell, another type of cell, or a combination thereof.
  • a macro cell may cover a relatively large geographic area (for example, several kilometers in radius) and may allow unrestricted access by mobile devices with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by mobile devices with service subscription.
  • a femto cell may cover a relatively small geographic area (for example, a home) and may allow restricted access by mobile devices having association with the femto cell (for example, mobile devices in a closed subscriber group (CSG) ) .
  • a base station for a macro cell may be referred to as a macro BS.
  • a base station for a pico cell may be referred to as a pico BS.
  • a base station for a femto cell may be referred to as a femto BS or a home BS.
  • a base station 110a may be a macro BS for a macro cell 102a
  • a base station 110b may be a pico BS for a pico cell 102b
  • a base station 110c may be a femto BS for a femto cell 102c.
  • a base station 110a-110d may support one or multiple (for example, three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not be stationary, and the geographic area of the cell may move according to the location of a mobile base station.
  • the base stations 110a-110d may be interconnected to one another as well as to one or more other base stations or network nodes (not illustrated) in the communications system 100 through various types of backhaul interfaces, such as a direct physical connection, a virtual network, or a combination thereof using any suitable transport network
  • the base station 110a-110d may communicate with the core network 140 over a wired or wireless communication link 126.
  • the wireless device 120a-120e may communicate with the base station 110a-110d over a wireless communication link 122.
  • the wired communication link 126 may use a variety of wired networks (e.g., Ethernet, TV cable, telephony, fiber optic and other forms of physical network connections) that may use one or more wired communication protocols, such as Ethernet, Point-To-Point protocol, High-Level Data Link Control (HDLC) , Advanced Data Communication Control Protocol (ADCCP) , and Transmission Control Protocol/Internet Protocol (TCP/IP) .
  • wired networks e.g., Ethernet, TV cable, telephony, fiber optic and other forms of physical network connections
  • wired communication protocols such as Ethernet, Point-To-Point protocol, High-Level Data Link Control (HDLC) , Advanced Data Communication Control Protocol (ADCCP) , and Transmission Control Protocol/Internet Protocol (TCP/IP) .
  • HDMI High-Level Data Link Control
  • ADCCP Advanced Data Communication Control Protocol
  • TCP/IP Transmission Control Protocol/Internet Protocol
  • the communications system 100 also may include relay stations (e.g., relay BS 110d) .
  • a relay station is an entity that can receive a transmission of data from an upstream station (for example, a base station or a mobile device) and transmit the data to a downstream station (for example, a wireless device or a base station) .
  • a relay station also may be a mobile device that can relay transmissions for other wireless devices.
  • a relay station 110d may communicate with macro the base station 110a and the wireless device 120d in order to facilitate communication between the base station 110a and the wireless device 120d.
  • a relay station also may be referred to as a relay base station, a relay base station, a relay, etc.
  • the communications system 100 may be a heterogeneous network that includes base stations of different types, for example, macro base stations, pico base stations, femto base stations, relay base stations, etc. These different types of base stations may have different transmit power levels, different coverage areas, and different impacts on interference in communications system 100. For example, macro base stations may have a high transmit power level (for example, 5 to 40 Watts) whereas pico base stations, femto base stations, and relay base stations may have lower transmit power levels (for example, 0.1 to 2 Watts) .
  • macro base stations may have a high transmit power level (for example, 5 to 40 Watts) whereas pico base stations, femto base stations, and relay base stations may have lower transmit power levels (for example, 0.1 to 2 Watts) .
  • a network controller 130 may couple to a set of base stations and may provide coordination and control for these base stations.
  • the network controller 130 may communicate with the base stations via a backhaul.
  • the base stations also may communicate with one another, for example, directly or indirectly via a wireless or wireline backhaul.
  • the wireless devices 120a, 120b, 120c may be dispersed throughout communications system 100, and each wireless device may be stationary or mobile.
  • a wireless device also may be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, user equipment (UE) , etc.
  • a macro base station 110a may communicate with the communication network 140 over a wired or wireless communication link 126.
  • the wireless device 120a, 120b, 120c may communicate with a base station 110a-110d over a wireless communication link 122.
  • the wireless communication links 122, 124 may include a plurality of carrier signals, frequencies, or frequency bands, each of which may include a plurality of logical channels.
  • the wireless communication links 122 and 124 may utilize one or more Radio access technologies (RATs) .
  • RATs Radio access technologies
  • Examples of RATs that may be used in a wireless communication link include 3GPP LTE, 3G, 4G, 5G (e.g., NR) , GSM, CDMA, WCDMA, Worldwide Interoperability for Microwave Access (WiMAX) , Time Division Multiple Access (TDMA) , and other mobile telephony communication technologies cellular RATs.
  • RATs that may be used in one or more of the various wireless communication links 122, 124 within the communication system 100 include medium range protocols such as Wi-Fi, LTE-U, LTE-Direct, LAA, MuLTEfire, and relatively short range RATs such as ZigBee, Bluetooth, and Bluetooth Low Energy (LE) .
  • medium range protocols such as Wi-Fi, LTE-U, LTE-Direct, LAA, MuLTEfire
  • relatively short range RATs such as ZigBee, Bluetooth, and Bluetooth Low Energy (LE) .
  • Certain wireless networks utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink.
  • OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc.
  • K orthogonal subcarriers
  • Each subcarrier may be modulated with data.
  • modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM.
  • the spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth.
  • the spacing of the subcarriers may be 15 kHz and the minimum Resource allocation (called a “resource block” ) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal Fast File Transfer (FFT) size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10 or 20 megahertz (MHz) , respectively.
  • the system bandwidth may also be partitioned into subbands. For example, a subband may cover 1.08 MHz (i.e., 6 Resource blocks) , and there may be 1, 2, 4, 8 or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
  • NR may utilize OFDM with a cyclic prefix (CP) on the uplink (UL) and downlink (DL) and include support for half-duplex operation using time division duplex (TDD) .
  • CP cyclic prefix
  • TDD time division duplex
  • a single component carrier bandwidth of 100 MHz may be supported.
  • NR Resource blocks may span 12 sub-carriers with a sub-carrier bandwidth of 75 kHz over a 0.1 millisecond (ms) duration.
  • Each Radio frame may consist of 50 subframes with a length of 10 ms. Consequently, each subframe may have a length of 0.2 ms.
  • Each subframe may indicate a link direction (i.e., DL or UL) for data transmission and the link direction for each subframe may be dynamically switched.
  • Each subframe may include DL/UL data as well as DL/UL control data.
  • Beamforming may be supported and beam direction may be dynamically configured.
  • Multiple Input Multiple Output (MIMO) transmissions with precoding may also be supported.
  • MIMO configurations in the DL may support up to eight transmit antennas with multi-layer DL transmissions up to eight streams and up to two streams per wireless device. Multi-layer transmissions with up to 2 streams per wireless device may be supported. Aggregation of multiple cells may be supported with up to eight serving cells.
  • NR may support a different air interface, other than an OFDM-based air interface.
  • MTC and eMTC mobile devices include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a base station, another device (for example, remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (for example, a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some mobile devices may be considered Internet-of-Things (IoT) devices or may be implemented as NB-IoT (narrowband internet of things) devices.
  • a wireless device 120a-e may be included inside a housing that houses components of the wireless device, such as processor components, memory components, similar components, or a combination thereof.
  • any number of communication systems and any number of wireless networks may be deployed in a given geographic area.
  • Each communications system and wireless network may support a particular Radio access technology (RAT) and may operate on one or more frequencies.
  • RAT also may be referred to as a Radio technology, an air interface, etc.
  • a frequency also may be referred to as a carrier, a frequency channel, etc.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between communications systems of different RATs.
  • 4G/LTE and/or 5G/NR RAT networks may be deployed.
  • a 5G non-standalone (NSA) network may utilize both 4G/LTE RAT in the 4G/LTE RAN side of the 5G NSA network and 5G/NR RAT in the 5G/NR RAN side of the 5G NSA network.
  • the 4G/LTE RAN and the 5G/NR RAN may both connect to one another and a 4G/LTE core network (e.g., an evolved packet core (EPC) network) in a 5G NSA network.
  • EPC evolved packet core
  • Other example network configurations may include a 5G standalone (SA) network in which a 5G/NR RAN connects to a 5G core network.
  • SA 5G standalone
  • two or more wireless devices 120a-e may communicate directly using one or more sidelink channels 124 (for example, without using a base station 110a-110d as an intermediary to communicate with one another) .
  • wireless device 120a-e may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, or similar protocol) , a mesh network, or similar networks, or combinations thereof.
  • V2X vehicle-to-everything
  • the wireless device 120a-e may perform scheduling operations, resource selection operations, as well as other operations described elsewhere herein as being performed by the base station 110a.
  • the base station 110a-110d may configure an SRS to be transmitted by a wireless device 120a-e.
  • An SRS may be a reference signal transmitted from the wireless device 120a-e to the base station 110a-110d in the UL direction.
  • the SRS may be used by the base station 110a-110d to estimate UL channel quality.
  • Channel quality estimates may be used by the base station 110a-110d to configure UL communications, such as for UL scheduling, timing alignment, etc.
  • An SRS may be a configurable signal and the base station 110a-110d may indicate to a wireless device 120a-e the configuration of the SRS to be transmitted by the wireless device 120a-e.
  • the SRS configuration may be indicated in an SRS resource IE (e.g., SRS-Resource) sent from the base station 110a-110d to the wireless device 120a-e.
  • the SRS configuration may include a bandwidth configuration for an SRS.
  • the bandwidth configuration for an SRS may define various parameters of the SRS to be transmitted from the wireless device 120a-e, such as a cell-specific bandwidth configuration (e.g., C SRS ) , a wireless device-specific bandwidth configuration (e.g., B SRS ) , a frequency hopping configuration (e.g., b hop ) , etc.
  • the wireless device 120a-e may be configured to monitor channel conditions and report the channel conditions to the base station 110a-110d.
  • a channel condition may be indicated in channel state information (CSI) reported by the wireless device to a network device 120a-e to the base station 110a-110d.
  • CSI reported by the wireless device 120a-e may include a CQI index value indicated in a CSF report sent from the wireless device 120a-e to the base station 110a-110d.
  • CSI may be reported by the wireless device 120a-e to the base station 110a-110d PUCCH or PUSCH.
  • CQI index values may observed or estimated channel measurements sent by the wireless device 120a-e to the base station 110a-110d as an index value to indicate channel quality.
  • CQI index values may be integer values, such as values 0-15, that indicate the quality of the DL channel as observed or estimated by the wireless device 120a-e.
  • FIG. 2 is a component block diagram illustrating an example computing and wireless modem system 200 suitable for implementing any of the various embodiments.
  • Various embodiments may be implemented on a number of single processor and multiprocessor computer systems, including a system-on-chip (SOC) or system in a package (SIP) .
  • SOC system-on-chip
  • SIP system in a package
  • the illustrated example wireless device 200 (which may be a SIP in some embodiments) includes a two SOCs 202, 204 coupled to a clock 206, a voltage regulator 208, at least one SIM 268 and/or a SIM interface and a wireless transceiver 266 configured to send and receive wireless communications via an antenna (not shown) to/from network wireless devices, such as a base station 110a.
  • the first SOC 202 operate as central processing unit (CPU) of the wireless device that carries out the instructions of software application programs by performing the arithmetic, logical, control and input/output (I/O) operations specified by the instructions.
  • the second SOC 204 may operate as a specialized processing unit.
  • the second SOC 204 may operate as a specialized 5G processing unit responsible for managing high volume, high speed (e.g., 5 Gbps, etc. ) , and/or very high frequency short wave length (e.g., 28 GHz mmWave spectrum, etc. ) communications.
  • high speed e.g., 5 Gbps, etc.
  • very high frequency short wave length e.g., 28 GHz mmWave spectrum, etc.
  • the first SOC 202 may include a digital signal processor (DSP) 210, a modem processor 212, a graphics processor 214, an application processor (AP) 216, one or more coprocessors 218 (e.g., vector co-processor) connected to one or more of the processors, memory 220, custom circuity 222, system components and resources 224, an interconnection/bus module 226, one or more temperature sensors 230, a thermal management unit 232, and a thermal power envelope (TPE) component 234.
  • DSP digital signal processor
  • AP application processor
  • coprocessors 218 e.g., vector co-processor
  • the second SOC 204 may include a 5G modem processor 252, a power management unit 254, an interconnection/bus module 264, the plurality of mmWave transceivers 256, memory 258, and various additional processors 260, such as an applications processor, packet processor, etc.
  • Each processor 210, 212, 214, 216, 218, 252, 260 may include one or more cores, and each processor/core may perform operations independent of the other processors/cores.
  • the first SOC 202 may include a processor that executes a first type of operating system (e.g., FreeBSD, LINUX, OS X, etc. ) and a processor that executes a second type of operating system (e.g., MICROSOFT WINDOWS 10) .
  • a first type of operating system e.g., FreeBSD, LINUX, OS X, etc.
  • a second type of operating system e.g., MICROSOFT WINDOWS 10.
  • processors 210, 212, 214, 216, 218, 252, 260 may be included as part of a processor cluster architecture (e.g., a synchronous processor cluster architecture, an asynchronous or heterogeneous processor cluster architecture, etc. ) .
  • a processor cluster architecture e.g., a synchronous processor cluster architecture, an asynchronous or heterogeneous processor cluster architecture, etc.
  • the first and second SOC 202, 204 may include various system components, resources and custom circuitry for managing sensor data, analog-to-digital conversions, wireless data transmissions, and for performing other specialized operations, such as decoding data packets and processing encoded audio and video signals for rendering in a web browser.
  • the system components and resources 224 of the first SOC 202 may include power amplifiers, voltage regulators, oscillators, phase-locked loops, peripheral bridges, data controllers, memory controllers, system controllers, access ports, timers, and other similar components used to support the processors and software clients running on a wireless device.
  • the system components and resources 224 and/or custom circuitry 222 may also include circuitry to interface with peripheral devices, such as cameras, electronic displays, wireless communication devices, external memory chips, etc.
  • the first and second SOC 202, 204 may communicate via interconnection/bus module 250.
  • the various processors 210, 212, 214, 216, 218, may be interconnected to one or more memory elements 220, system components and resources 224, and custom circuitry 222, and a thermal management unit 232 via an interconnection/bus module 226.
  • the processor 252 may be interconnected to the power management unit 254, the mmWave transceivers 256, memory 258, and various additional processors 260 via the interconnection/bus module 264.
  • the interconnection/bus module 226, 250, 264 may include an array of reconfigurable logic gates and/or implement a bus architecture (e.g., CoreConnect, AMBA, etc. ) . Communications may be provided by advanced interconnects, such as high-performance networks-on chip (NoCs) .
  • NoCs high-performance networks-on chip
  • the first and/or second SOCs 202, 204 may further include an input/output module (not illustrated) for communicating with resources external to the SOC, such as a clock 206, a voltage regulator 208, one or more wireless transceivers 266, and at least one SIM 268 and/or SIM interface (i.e., an interface for receiving one or more SIM cards) .
  • Resources external to the SOC e.g., clock 206, voltage regulator 208
  • the at least one SIM 268 (or one or more SIM cards coupled to one or more SIM interfaces) may store information supporting multiple subscriptions, including a first 5GNR subscription and a second 5GNR subscription, etc.
  • various embodiments may be implemented in a wide variety of computing systems, which may include a single processor, multiple processors, multicore processors, or any combination thereof.
  • FIG. 3 is a component block diagram illustrating a software architecture 300 including a radio protocol stack for the user and control planes in wireless communications suitable for implementing any of the various embodiments.
  • the wireless device 320 may implement the software architecture 300 to facilitate communication between a wireless device 320 (e.g., the wireless device 120a-120e, 200) and the base station 350 (e.g., the base station 110a-d) of a communication system (e.g., 100) .
  • layers in software architecture 300 may form logical connections with corresponding layers in software of the base station 350.
  • the software architecture 300 may be distributed among one or more processors (e.g., the processors 212, 214, 216, 218, 252, 260) .
  • the software architecture 300 may include multiple protocol stacks, each of which may be associated with a different SIM (e.g., two protocol stacks associated with two SIMs, respectively, in a dual-SIM wireless communication device) . While described below with reference to LTE communication layers, the software architecture 300 may support any of variety of standards and protocols for wireless communications, and/or may include additional protocol stacks that support any of variety of standards and protocols wireless communications.
  • the software architecture 300 may include a Non-Access Stratum (NAS) 302 and an Access Stratum (AS) 304.
  • the NAS 302 may include functions and protocols to support Packet filtering, security management, mobility control, session management, and traffic and signaling between a SIM (s) of the wireless device and its core network 140.
  • the AS 304 may include functions and protocols that support communication between a SIM (s) and entities of supported access networks (e.g., a base station) .
  • the AS 304 may include at least three layers (Layer 1, Layer 2, and Layer 3) , each of which may contain various sub-layers.
  • Layer 1 (L1) of the AS 304 may be a physical layer (PHY) 306, which may oversee functions that enable transmission and/or reception over the air interface. Examples of such physical layer 306 functions may include cyclic redundancy check (CRC) attachment, coding blocks, scrambling and descrambling, modulation and demodulation, signal measurements, MIMO, etc.
  • the PHY layer 306 may include various logical channels, including the Physical Downlink Control Channel (PDCCH) and the Physical Downlink Shared Channel (PDSCH) .
  • the PHY layer 306 may support SRS transmission and reception and CSI measurements and reporting (e.g., CQI measurements and reporting) .
  • Layer 2 (L2) of the AS 304 may be responsible for the link between the wireless device 320 and the base station 350 over the physical layer 306.
  • Layer 2 may include a Media Access Control (MAC) sublayer 308, a Radio link Control (RLC) sublayer 310, and a Packet data convergence protocol (PDCP) 312 sublayer, each of which form logical connections terminating at the base station 350.
  • MAC Media Access Control
  • RLC Radio link Control
  • PDCP Packet data convergence protocol
  • Layer 3 (L3) of the AS 304 may include a Radio Resource Control (RRC) sublayer 3.
  • RRC Radio Resource Control
  • the software architecture 300 may include additional Layer 3 sublayers, as well as various upper layers above Layer 3.
  • the RRC sublayer 313 may provide functions including broadcasting system information, paging, and establishing and releasing an RRC signaling connection between the wireless device 320 and the base station 350.
  • the PDCP sublayer 312 may provide uplink functions including multiplexing between different Radio bearers and logical channels, sequence number addition, handover data handling, integrity protection, ciphering, and header compression.
  • the PDCP sublayer 312 may provide functions that include in-sequence delivery of data packets, duplicate data Packet detection, integrity validation, deciphering, and header decompression.
  • the RLC sublayer 310 may provide segmentation and concatenation of upper layer data packets, retransmission of lost data packets, and Automatic Repeat Request (ARQ) .
  • ARQ Automatic Repeat Request
  • the RLC sublayer 310 functions may include reordering of data packets to compensate for out-of-order reception, reassembly of upper layer data packets, and ARQ.
  • MAC sublayer 308 may provide functions including multiplexing between logical and transport channels, random access procedure, logical channel priority, and hybrid-ARQ (HARQ) operations.
  • the MAC layer functions may include channel mapping within a cell, de-multiplexing, discontinuous reception (DRX) , and HARQ operations.
  • the software architecture 300 may provide functions to transmit data through physical media
  • the software architecture 300 may further include at least one host layer 314 to provide data transfer services to various applications in the wireless device 320.
  • application-specific functions provided by the at least one host layer 314 may provide an interface between the software architecture and the general purpose processor.
  • the software architecture 300 may include one or more higher logical layer (e.g., transport, session, presentation, application, etc. ) that provide host layer functions.
  • the software architecture 300 may include an application layer in which a logical connection terminates at another device (e.g., end user device, server, etc. ) .
  • the software architecture 300 may further include in the AS 304 a hardware interface 316 between the physical layer 306 and the communication hardware (e.g., one or more radio frequency (RF) transceivers) .
  • RF radio frequency
  • FIG. 4 is a process flow diagram illustrating a method 400 that may be performed by a processor of a network computing device for configuring an SRS in a network in accordance with various embodiments.
  • the method 400 may be implemented by a processor (e.g., 212, 216, 252 or 260) of a wireless device (e.g., the wireless device 120a-120e, 200, 320) or a network computing device (e.g., the base station 110a-d, 350) .
  • a processor e.g., 212, 216, 252 or 260
  • a wireless device e.g., the wireless device 120a-120e, 200, 320
  • a network computing device e.g., the base station 110a-d, 350
  • the processor may select a default bandwidth configuration for an SRS to be transmitted by a wireless device.
  • the default bandwidth configuration for an SRS may be a widest bandwidth SRS configuration available for a network selected C SRS value, such as a B SRS value of zero for a network selected C SRS value and a b hop value of zero.
  • the processor may send an indication of the default bandwidth configuration to the wireless device.
  • the SRS configuration that is the default bandwidth configuration may be indicated in an SRS resource IE (e.g., SRS-Resource) sent to the wireless device.
  • SRS resource IE e.g., SRS-Resource
  • the processor may monitor channel condition reporting by the wireless device.
  • monitoring channel condition reporting by the wireless device may include receiving and tracking CSI reported by a wireless device (e.g., wireless device 120a-e) to the network computing device (e.g., base station 110a-d) .
  • CSI reported by a wireless device may include one or more CQI index values indicated in one or more CSF reports received from a wireless device (e.g., wireless device 120a-e) by the network computing device (e.g., base station 110a-d) via the PUCCH or PUSCH.
  • the processor may determine whether the SRS bandwidth configuration change condition occurred.
  • determining whether the SRS bandwidth configuration change condition occurred may include comparing one or more CQI index values, averages of the CQI index values, etc., reported by a wireless device to one or more thresholds. The comparison results may indicate whether the change condition occurred. For example, one or more CQI index values, averages of the CQI index values, etc., being at, above, or equal to one or more of the thresholds may indicate the change condition occurred. As a specific example, a CQI index value being at or below a threshold CQI index value (e.g., CQI index value of twelve) may indicate the change condition occurred.
  • a threshold CQI index value e.g., CQI index value of twelve
  • a CQI index value being above a threshold CQI index value may indicate the change condition did not occur.
  • an average CQI index value over a time period e.g., one minute
  • a threshold average CQI index value e.g., average CQI index value of twelve
  • an average CQI index value over a time period e.g., one minute
  • a threshold average CQI index value e.g., average CQI index value of twelve
  • the processor may monitor channel condition reporting by the wireless device in block 406.
  • the processor may change a bandwidth configuration for the SRS to be transmitted by the wireless device in block 410.
  • the processor may change the bandwidth configuration for the SRS to be transmitted by the wireless device to a different bandwidth configuration (e.g., a narrower bandwidth) .
  • the processor may send an indication of the changed bandwidth configuration to the wireless device.
  • the SRS configuration that is changed the bandwidth configuration e.g., the narrower bandwidth configuration
  • the SRS resource IE e.g., SRS-Resource
  • SRS resource update sent to the wireless device.
  • the wireless device may receive the indication of the changed bandwidth configuration and use the changed bandwidth configuration for the next SRS to be transmitted by the wireless device.
  • FIG. 5A is a process flow diagram illustrating a method 500 for determining whether an SRS bandwidth configuration change condition occurred in accordance with various embodiments.
  • the method 500 may be implemented by a processor (e.g., 212, 216, 252 or 260) of a wireless device (e.g., the wireless device 120a-120e, 200, 320) or a network computing device (e.g., the base station 110a-d, 350) .
  • the operations of method 500 may be performed in conjunction with the operations of method 400 (FIG. 4) .
  • the operations of method 500 may be performed to determine whether the SRS bandwidth configuration change condition occurred as part of the operations of determination block 408 of method 400 (FIG. 4) .
  • the processor may determine an average CQI index value reported by the wireless device over a time period in block 502.
  • the time period may be one minute.
  • the time period may be a selectable value.
  • the time period may be a variable “T_cqi” that is configurable and/or selectable by the processor.
  • determining the average CQI index value reported by the wireless device over the time period may include tracking the CQI index values reported by the wireless device in CSF reports sent during the time period and dividing the sum of the reported CQI index values reported in the time period by the number of reported CQI index values reported in the time period.
  • determining the average CQI index value reported by the wireless device over the time period may include performing other statistical operations to represent the CQI index values reported over the time period such as operations to determine a geometric mean, harmonic mean, a mode, a median, a cubic mean, etc.
  • the processor may determine whether the average CQI index value is greater than a first CQI change value.
  • a first CQI change value may be a selected index value representing at least a first threshold for changing SRS bandwidth configuration.
  • the first CQI change value may be a variable “CQI_0” expressed as a CQI index value.
  • the first CQI change value may be selected and/or configured such that an average CQI index value over a time period, such as one minute, etc., being above the first CQI change value may indicate the channel condition is good and reconfiguration of an SRS to a different bandwidth (e.g., to a narrower bandwidth) is not required.
  • the first CQI change value may be selected and/or configured such that an average CQI index value over a time period, such as one minute, etc., being at or below the first CQI change value may indicate the channel condition is bad and reconfiguration of an SRS to a different bandwidth (e.g., to a narrower bandwidth) is required.
  • the first CQI change value may be an average CQI index value of twelve.
  • other values of an average CQI index value such as values greater than twelve or less than twelve may be selected as the first CQI change value.
  • the processor may determine whether the average CQI index value is greater than the first CQI change value in any manner, such as by comparing the average CQI index value to the first CQI change value, subtracting the average CQI index value from the first CQI change value and determining whether a negative result occurs indicating the average CQI index value is greater, etc.
  • the processor may perform operations of block 406 (FIG. 4) to monitor channel condition reporting by the wireless device.
  • the processor may determine that the SRS bandwidth configuration change condition occurred in block 507. In response to determining the SRS bandwidth configuration change condition occurred, the processor may perform operations of block 410 (FIG. 4) to change a bandwidth configuration for the SRS to be transmitted by the wireless device.
  • FIG. 5B is a process flow diagram illustrating a method 550 for changing a bandwidth configuration for an SRS to be transmitted by a wireless device in accordance with various embodiments.
  • the method 500 may be implemented by a processor (e.g., 212, 216, 252 or 260) of a wireless device (e.g., the wireless device 120a-120e, 200, 320) or a network computing device (e.g., the base station 110a-d, 350) .
  • the operations of method 550 may be performed in conjunction with the operations of method 400 (FIG. 4) and/or method 500 (FIG. 5A) .
  • the operations of method 550 may be performed to change the bandwidth configuration for the SRS to be transmitted by the wireless device as part of the operations of block 410 of method 400 (FIG. 4) .
  • the operations of method 550 may be performed in response to determining that the SRS bandwidth configuration change condition occurred in block 507 of method 500 (FIG. 5A) .
  • the processor may determine whether the average CQI index value is less than or equal to the first CQI change value and greater than a second CQI change value in determination block 552.
  • different CQI change values such as the first CQI change value, a second CQI change value, and a third CQI change value, may be associated with respective different bandwidth configurations for the SRS.
  • a second CQI change value may be a selected index value representing at least a second threshold for changing SRS bandwidth configuration.
  • the second CQI change value may be a variable “CQI_1” expressed as a CQI index value.
  • the second CQI change value may be selected and/or configured such that an average CQI index value over a time period, such as one minute, etc., being at or below the first CQI change value and above the second CQI change value may indicate the bandwidth configuration for the SRS should be changed to a first different bandwidth configuration.
  • the first CQI change value may be an average CQI index value of twelve and the second CQI change value may be an average CQI index value of eight.
  • an average CQI index value such as values greater than eight or less than eight
  • other values of an average CQI index value such as values greater than twelve or less than twelve
  • the processor may determine whether the average CQI index value is greater than the second CQI change value in any manner, such as by comparing the average CQI index value to the second CQI change value, subtracting the average CQI index value from the second CQI change value and determining whether a negative result occurs indicating the average CQI index value is greater, etc.
  • the processor may determine whether the average CQI index value is less than or equal to the first CQI change value in any manner, such as by comparing the average CQI index value to the first CQI change value, subtracting the average CQI index value from the first CQI change value and determining whether a zero or positive result occurs indicating the average CQI index value is less than or equal, etc.
  • the processor may change the bandwidth configuration for the SRS to be transmitted by the wireless device to a first different bandwidth configuration in block 554.
  • the processor may change the bandwidth configuration for the SRS to be transmitted by the wireless device to the first different bandwidth configuration (e.g., a narrower bandwidth than a default bandwidth indicated in block 404 (FIG. 4) ) .
  • the processor may change the bandwidth configuration for the SRS to be transmitted by the wireless device to the first different bandwidth configuration by changing the B SRS value of the SRS configuration.
  • the processor may perform operations of block 412 (FIG. 4) to send an indication of the changed bandwidth configuration to the wireless device.
  • the processor may determine whether the average CQI index value is less than or equal to the second CQI change value and greater than a third CQI change value in determination block 556.
  • a third CQI change value may be a selected index value representing at least a third threshold for changing SRS bandwidth configuration.
  • the third CQI change value may be a variable “CQI_2” expressed as a CQI index value.
  • the third CQI change value may be selected and/or configured such that an average CQI index value over a time period, such as one minute, etc., being at or below the second CQI change value and above the third CQI change value may indicate the bandwidth configuration for the SRS should be changed to a second different bandwidth configuration.
  • the third CQI change value may be selected and/or configured such that an average CQI index value over a time period, such as one minute, etc., being at or below the third CQI change value may indicate the bandwidth configuration for the SRS should be changed to a third different bandwidth configuration.
  • the second CQI change value may be an average CQI index value of eight and the third CQI change value may be an average CQI index value of four.
  • the processor may determine whether the average CQI index value is greater than the third CQI change value in any manner, such as by comparing the average CQI index value to the third CQI change value, subtracting the average CQI index value from the third CQI change value and determining whether a negative result occurs indicating the average CQI index value is greater, etc.
  • the processor may determine whether the average CQI index value is less than or equal to the second CQI change value in any manner, such as by comparing the average CQI index value to the second CQI change value, subtracting the average CQI index value from the second CQI change value and determining whether a zero or positive result occurs indicating the average CQI index value is less than or equal, etc.
  • the processor may change the bandwidth configuration for the SRS to be transmitted by the wireless device to a second different bandwidth configuration in block 558.
  • the processor may change the bandwidth configuration for the SRS to be transmitted by the wireless device to the second different bandwidth configuration (e.g., a narrower bandwidth than both a default bandwidth configuration indicated in block 404 (FIG. 4) and the first different bandwidth configuration) .
  • the processor may change the bandwidth configuration for the SRS to be transmitted by the wireless device to the second different bandwidth configuration by changing the B SRS value of the SRS configuration.
  • the processor may perform operations of block 412 (FIG. 4) to send an indication of the changed bandwidth configuration to the wireless device.
  • the processor may change the bandwidth configuration for the SRS to be transmitted by the wireless device to a third different bandwidth configuration in block 560.
  • the processor may change the bandwidth configuration for the SRS to be transmitted by the wireless device to the third different bandwidth configuration (e.g., a narrower bandwidth than any of the default bandwidth configuration indicated in block 404 (FIG. 4) , the first different bandwidth configuration, and the second different bandwidth configuration) .
  • the processor may change the bandwidth configuration for the SRS to be transmitted by the wireless device to the third different bandwidth configuration by changing the B SRS value of the SRS configuration.
  • the processor may perform operations of block 412 (FIG. 4) to send an indication of the changed bandwidth configuration to the wireless device.
  • FIG. 6 is a component block diagram of a network computing device 600, such as a base station, an eNodeB, a gNodeB, etc., suitable for use with various embodiments.
  • a network computing device 600 may include at least the components illustrated in FIG. 6.
  • the network computing device 600 may include a processor 601 coupled to volatile memory 602 and a large capacity nonvolatile memory, such as a disk drive 603.
  • the network computing device 600 may also include a peripheral memory access device such as a floppy disc drive, compact disc (CD) or digital video disc (DVD) drive 606 coupled to the processor 601.
  • a peripheral memory access device such as a floppy disc drive, compact disc (CD) or digital video disc (DVD) drive 606 coupled to the processor 601.
  • the network computing device 600 may also include network access ports 604 (or interfaces) coupled to the processor 601 for establishing data connections with a network, such as the Internet and/or a local area network coupled to other system computers and servers.
  • the network computing device 600 may include one or more antennas 607 for sending and receiving electromagnetic radiation that may be connected to a wireless communication link.
  • the network computing device 600 may include additional access ports, such as USB, Firewire, Thunderbolt, and the like for coupling to peripherals, external memory, or other devices.
  • FIG. 7 is a component block diagram of a wireless device 700 suitable for use with various embodiments.
  • various embodiments may be implemented on a variety of wireless devices 700 (e.g., the wireless device 120a-120e, 200, 320, 120a-120e) , an example of which is illustrated in FIG. 7 in the form of a smartphone.
  • the wireless device 700 may include a first SOC 202 (e.g., a SOC-CPU) coupled to a second SOC 204 (e.g., a 5G capable SOC) .
  • the first and second SOCs 202, 204 may be coupled to internal memory 716, a display 712, and to a speaker 714.
  • the first and second SOCs 202, 204 may also be coupled to at least one SIM 268 and/or a SIM interface that may store information supporting a first 5GNR subscription and a second 5GNR subscription, which support service on a 5G non-standalone (NSA) network.
  • the wireless device 700 may include an antenna 704 for sending and receiving electromagnetic radiation that may be connected to a wireless transceiver 266 coupled to one or more processors in the first and/or second SOCs 202, 204.
  • the wireless device 700 may also include menu selection buttons or rocker switches 720 for receiving user inputs.
  • the wireless device 700 also includes a sound encoding/decoding (CODEC) circuit 710, which digitizes sound received from a microphone into data packets suitable for wireless transmission and decodes received sound data packets to generate analog signals that are provided to the speaker to generate sound.
  • CODEC sound encoding/decoding
  • one or more of the processors in the first and second SOCs 202, 204, wireless transceiver 266 and CODEC 710 may include a digital signal processor (DSP) circuit (not shown separately) .
  • DSP digital signal processor
  • the processors of the wireless network computing device 600 and the wireless device 700 may be any programmable microprocessor, microcomputer or multiple processor chip or chips that can be configured by software instructions (applications) to perform a variety of functions, including the functions of the various embodiments described below.
  • multiple processors may be provided, such as one processor within an SOC 204 dedicated to wireless communication functions and one processor within an SOC 202 dedicated to running other applications.
  • Software applications may be stored in the memory 220, 716 before they are accessed and loaded into the processor.
  • the processors may include internal memory sufficient to store the application software instructions.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a wireless device and the wireless device may be referred to as a component.
  • One or more components may reside within a process and/or thread of execution and a component may be localized on one processor or core and/or distributed between two or more processors or cores. In addition, these components may execute from various non-transitory computer readable media having various instructions and/or data structures stored thereon. Components may communicate by way of local and/or remote processes, function or procedure calls, electronic signals, data packets, memory read/writes, and other known network, computer, processor, and/or process related communication methodologies.
  • Such services and standards include, e.g., third generation partnership project (3GPP) , LTE systems, third generation wireless mobile communication technology (3G) , fourth generation wireless mobile communication technology (4G) , fifth generation wireless mobile communication technology (5G) as well as later generation 3GPP technology, global system for mobile communications (GSM) , universal mobile telecommunications system (UMTS) , 3GSM, general Packet Radio service (GPRS) , code division multiple access (CDMA) systems (e.g., cdmaOne, CDMA1020TM) , enhanced data rates for GSM evolution (EDGE) , advanced mobile phone system (AMPS) , digital AMPS (IS-136/TDMA) , evolution-data optimized (EV-DO) , digital enhanced cordless telecommunications (DECT) , Worldwide Interoperability for Microwave Access (WiMAX) , wireless local area network
  • 3GPP third generation partnership project
  • 3G third generation wireless mobile communication technology
  • 4G fourth generation wireless mobile communication technology
  • 5G fifth
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, but, in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of receiver smart objects, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. Alternatively, some operations or methods may be performed by circuitry that is specific to a given function.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions or code on a non-transitory computer-readable storage medium or non-transitory processor-readable storage medium.
  • the operations of a method or algorithm disclosed herein may be embodied in a processor-executable software module or processor-executable instructions, which may reside on a non-transitory computer-readable or processor-readable storage medium.
  • Non-transitory computer-readable or processor-readable storage media may be any storage media that may be accessed by a computer or a processor.
  • non-transitory computer-readable or processor-readable storage media may include RAM, ROM, EEPROM, FLASH memory, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage smart objects, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer.
  • Disk and disc includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of non-transitory computer-readable and processor-readable media.
  • the operations of a method or algorithm may reside as one or any combination or set of codes and/or instructions on a non-transitory processor-readable storage medium and/or computer-readable storage medium, which may be incorporated into a computer program product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments include systems and methods for configuring a sounding reference signal (SRS). Various embodiments may enable bandwidth configurations for an SRS to be changed based at least in part on a channel quality indicator (CQI) index value reported by a wireless device. Various embodiments may be performed by a processor of a network computing device, such as a base station. Various embodiments may include changing a bandwidth configuration for an SRS to be transmitted by a wireless device in response to determining that an SRS bandwidth configuration change condition occurred, in which the SRS bandwidth configuration change condition may be based at least in part on a channel condition reported by the wireless device, such as a CQI index value, and sending an indication of the changed bandwidth configuration to the wireless device.

Description

Dynamic SRS Configuration Based On CQI In 5G Network BACKGROUND
Long Term Evolution (LTE) , Fifth Generation (5G) new radio (NR) (5GNR) , and other recently developed communication technologies allow wireless devices to communicate information at data rates (e.g., in terms of Gigabits per second, etc. ) that are orders of magnitude greater than what was available just a few years ago. Today’s communication networks are also more secure, resilient to multipath fading, allow for lower network traffic latencies, and provide better communication efficiencies (e.g., in terms of bits per second per unit of bandwidth used, etc. ) . These and other recent improvements have facilitated the emergence of the Internet of Things (IOT) , large scale Machine to Machine (M2M) communication systems, autonomous vehicles, and other technologies that rely on consistent and secure communications.
SUMMARY
Various aspects include systems and methods for configuring a sounding reference signal (SRS) . Various aspects may enable bandwidth configurations for an SRS to be changed based at least in part on a channel quality indicator (CQI) index value reported by a wireless device. Various aspects may be performed by a processor of network computing device, such as a base station. Various aspects may include determining whether an SRS bandwidth configuration change condition occurred, wherein the SRS bandwidth configuration change condition may be based at least in part on a channel condition reported by a wireless device, changing a bandwidth configuration for an SRS to be transmitted by the wireless device in response to determining that the SRS bandwidth configuration change condition occurred, and sending an indication of the changed bandwidth configuration to the wireless device.
In some aspects, determining whether the SRS bandwidth configuration change condition occurred may include determining an average CQI index value reported by the wireless device over a time period, determining whether the average CQI index value is greater than a first CQI change value, and determining that the SRS bandwidth configuration change condition occurred in response to determining that the average CQI index value is not greater than the first CQI change value. In some aspects, the time period may be one minute.
In some aspects, changing the bandwidth configuration for the SRS to be transmitted by the wireless device to the different bandwidth configuration in response to determining that the SRS bandwidth configuration change condition occurred may include determining whether the average CQI index value is less than or equal to the first CQI change value and greater than a second CQI change value in response to determining that the average CQI index value is not greater than the first CQI change value, changing the bandwidth configuration for the SRS to be transmitted by the wireless device to a first different bandwidth configuration in response to determining that the average CQI index value is less than or equal to the first CQI change value and greater than the second CQI change value, determining whether the average CQI index value is less than or equal to the second CQI change value and greater than a third CQI change value in response to determining that the average CQI index value is not less than or equal to the first CQI change value and greater than the second CQI change value, changing the bandwidth configuration for the SRS to be transmitted by the wireless device to a second different bandwidth configuration in response to determining that the average CQI index value is less than or equal to the second CQI change value and greater than the third CQI change value, and changing the bandwidth configuration for the SRS to be transmitted by the wireless device to a third different bandwidth configuration in response to determining that the average CQI index value is not less than or equal to the second CQI change value and greater than the third CQI change value. In some aspects, the first different bandwidth configuration may be an SRS-bandwidth (B SRS) value of one, the second different  bandwidth configuration may be a B SRS value of two, and the third different bandwidth configuration may be a B SRS value of three. In some aspects, the first CQI change value may be twelve, the second CQI change value may be eight, and the third CQI change value may be four.
Further aspects may include a network computing device having a processor configured to perform one or more operations of any of the methods summarized above. Further aspects may include a non-transitory processor-readable storage medium having stored thereon processor-executable instructions configured to cause a processor of a network computing device to perform operations of any of the methods summarized above. Further aspects include a network computing device having means for performing functions of any of the methods summarized above. Further aspects include a system-on-chip for use in a network computing device that includes a processor configured to perform one or more operations of any of the methods summarized above. Further aspects include a system in a package that includes two systems on chip for use in a network computing device that includes a processor configured to perform one or more operations of any of the methods summarized above.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate exemplary embodiments of the claims, and together with the general description given above and the detailed description given below, serve to explain the features of the claims.
FIG. 1 is a system block diagram illustrating an example communication system suitable for implementing any of the various embodiments.
FIG. 2 is a component block diagram illustrating an example computing and wireless modem system suitable for implementing any of the various embodiments.
FIG. 3 is a component block diagram illustrating a software architecture including a radio protocol stack for the user and control planes in wireless communications suitable for implementing any of the various embodiments.
FIG. 4 is a process flow diagram illustrating a method for configuring a sounding reference signal (SRS) in a network in accordance with various embodiments.
FIG. 5A is a process flow diagram illustrating a method for determining whether an SRS bandwidth configuration change condition occurred in accordance with various embodiments.
FIG. 5B is a process flow diagram illustrating a method for changing a bandwidth configuration for an SRS to be transmitted by a wireless device in accordance with various embodiments.
FIG. 6 is a component block diagram of a network computing device suitable for use with various embodiments.
FIG. 7 is a component block diagram of a wireless device suitable for use with various embodiments.
DETAILED DESCRIPTION
Various embodiments will be described in detail with reference to the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. References made to particular examples and embodiments are for illustrative purposes, and are not intended to limit the scope of the claims.
Various embodiments include systems and method for configuring a sounding reference signal (SRS) . Various embodiments may enable bandwidth configurations for an SRS to be changed based at least in part on a channel quality indicator (CQI) index value reported by a wireless device. Various embodiments may enable a network computing device, such as a base station, to dynamically reconfigure  the bandwidth used for resource blocks of an SRS transmitted by a wireless device. Various embodiments may enable a network computing device, such as a base station, to change a bandwidth configuration for an SRS to a narrower bandwidth in response to determining a wireless device is in a poor coverage condition as indicated by a CQI index value reported by the wireless device. The change of configuration of an SRS to a narrower bandwidth from a wider bandwidth may improve channel estimation by the network as narrower bandwidth SRSs may be more reliably received by a network device, such as a base station, than wideband SRSs, especially in scenarios where the wireless device transmitting an SRS is experiencing a poor coverage condition.
The term “wireless device” is used herein to refer to any one or all of cellular telephones, smartphones, portable computing devices, personal or mobile multi-media players, laptop computers, tablet computers, smartbooks, ultrabooks, palmtop computers, wireless electronic mail receivers, multimedia Internet-enabled cellular telephones, wireless router devices, wireless appliances, medical devices and equipment, biometric sensors/devices, wearable devices including smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart rings, smart bracelets, etc. ) , entertainment devices (e.g., wireless gaming controllers, music and video players, satellite radios, etc. ) , wireless-network enabled Internet of Things (IoT) devices including smart meters/sensors, industrial manufacturing equipment, large and small machinery and appliances for home or enterprise use, wireless communication elements within autonomous and semiautonomous vehicles, wireless devices affixed to or incorporated into various mobile platforms, global positioning system devices, and similar electronic devices that include a memory, multiple SIMs, wireless communication components and a programmable processor.
The term “system-on-chip” (SOC) is used herein to refer to a single integrated circuit (IC) chip that contains multiple resources and/or processors integrated on a single substrate. A single SOC may contain circuitry for digital, analog, mixed-signal, and radio-frequency functions. A single SOC may also include any number of general purpose and/or specialized processors (digital signal  processors, modem processors, video processors, etc. ) , memory blocks (e.g., ROM, RAM, Flash, etc. ) , and resources (e.g., timers, voltage regulators, oscillators, etc. ) . SOCs may also include software for controlling the integrated resources and processors, as well as for controlling peripheral devices.
The term “system in a package” (SIP) may be used herein to refer to a single module or package that contains multiple resources, computational units, cores and/or processors on two or more IC chips, substrates, or SOCs. For example, a SIP may include a single substrate on which multiple IC chips or semiconductor dies are stacked in a vertical configuration. Similarly, the SIP may include one or more multi-chip modules (MCMs) on which multiple ICs or semiconductor dies are packaged into a unifying substrate. A SIP may also include multiple independent SOCs coupled together via high speed communication circuitry and packaged in close proximity, such as on a single motherboard or in a single wireless device. The proximity of the SOCs facilitates high speed communications and the sharing of memory and resources.
As used herein, the terms “SIM, ” “SIM card, ” and “subscriber identity module” may interchangeably refer to a memory that may be an integrated circuit or embedded into a removable card, and that stores an International Mobile Subscriber Identity (IMSI) , related key, and/or other information used to identify and/or authenticate a wireless device on a network and enable a communication service with the network. Examples of SIMs include the Universal Subscriber Identity Module (USIM) provided for in the Long Term Evolution (LTE) 3GPP standard, and the Removable User Identity Module (R-UIM) provided for in the 3GPP standard. Universal Integrated Circuit Card (UICC) is another term for SIM. Moreover, a SIM may also refer to a virtual SIM (VSIM) , which may be implemented as a remote SIM profile loaded in an application on a wireless device, and enabling normal SIM functions on the wireless device.
Because the information stored in a SIM enables the wireless device to establish a communication link for a particular communication service or services  with a particular network, the term “SIM” is also be used herein as a shorthand reference to the communication service associated with and enabled by the information stored in a particular SIM as the SIM and the communication network, as well as the services and subscriptions supported by that network, correlate to one another. Similarly, the term SIM may also be used as a shorthand reference to the protocol stack and/or modem stack and communication processes used in establishing and conducting communication services with subscriptions and networks enabled by the information stored in a particular SIM.
As used herein, the terms “multi-SIM wireless device” , “MS wireless device” , “dual-SIM wireless device” , and “DS wireless device” may interchangeably describe a wireless device that is configured with more than one SIM. Examples of multi-SIM wireless devices include multi-SIM multi-standby (MSMS) wireless devices, such as Dual-SIM (DS) dual-standby (DSDS) wireless devices, etc., and multi-SIM multi-active (MSMA) wireless devices, such as Dual-SIM dual-active (DSDA wireless devices, etc. An MSMS wireless device may be a wireless device that is configured with more than one SIM and allows idle-mode operations to be performed on two subscriptions simultaneously, as well as selective communication on one subscription while performing idle-mode operations on at least one other subscription. An MSMA wireless device may be a wireless device that is configured with more than one SIM and allows idle-mode and/or active mode operations to be performed on two subscriptions simultaneously using at least two different RF resources (e.g., two different wireless transceivers) .
The various embodiments are described herein using the term “server” to refer to any computing device capable of functioning as a server, such as a master exchange server, web server, mail server, document server, content server, or any other type of server. A server may be a dedicated computing device or a computing device including a server module (e.g., running an application that may cause the computing device to operate as a server) . A server module (e.g., server application) may be a full function server module, or a light or secondary server module (e.g., light  or secondary server application) that is configured to provide synchronization services among the dynamic databases on receiver devices. A light server or secondary server may be a slimmed-down version of server-type functionality that can be implemented on a receiver device thereby enabling it to function as an Internet server (e.g., an enterprise e-mail server) only to the extent necessary to provide the functionality described herein.
As used herein, the terms “network, ” “system, ” “wireless network, ” “cellular network, ” and “wireless communication network” may interchangeably refer to a portion or all of a wireless network of a carrier associated with a wireless device and/or subscription on a wireless device. The techniques described herein may be used for various wireless communication networks, such as Code Division Multiple Access (CDMA) , time division multiple access (TDMA) , FDMA, orthogonal FDMA (OFDMA) , single carrier FDMA (SC-FDMA) and other networks. In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support at least one radio access technology, which may operate on one or more frequency or range of frequencies. For example, a CDMA network may implement Universal Terrestrial Radio Access (UTRA) (including Wideband Code Division Multiple Access (WCDMA) standards) , CDMA2000 (including IS-2000, IS-95 and/or IS-856 standards) , etc. In another example, a TDMA network may implement GSM Enhanced Data rates for GSM Evolution (EDGE) . In another example, an OFDMA network may implement Evolved UTRA (E-UTRA) (including LTE standards) , IEEE 802.11 (WiFi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-
Figure PCTCN2020098316-appb-000001
etc. Reference may be made to wireless networks that use LTE standards, and therefore the terms “Evolved Universal Terrestrial Radio Access, ” “E-UTRAN” and “eNodeB” may also be used interchangeably herein to refer to a wireless network. However, such references are provided merely as examples, and are not intended to exclude wireless networks that use other communication standards. For example, while various Third Generation (3G) systems, Fourth Generation (4G) systems, and Fifth Generation (5G) systems are discussed herein, those systems are referenced  merely as examples and future generation systems (e.g., sixth generation (6G) or higher systems) may be substituted in the various examples.
The terms “network operator, ” “operator, ” “mobile network operator, ” “carrier, ” and “service provider” are used interchangeably herein to describe a provider of wireless communications services that owns or controls elements to sell and deliver communication services to an end user, and provides necessary provisioning and credentials as policies implemented in user device subscriptions.
As used herein, the term “RF resource” refers to the components in a communication device that send, receive, and decode radio frequency signals. An RF resource typically includes a number of components coupled together that transmit RF signals that are referred to as a “transmit chain, ” and a number of components coupled together that receive and process RF signals that are referred to as a “receive chain. ” 
LTE is a mobile network standard for 4G wireless communication of high-speed data developed by the 3GPP (3rd Generation Partnership Project) and specified in its Release 8 document series. The 5G system is an advanced technology from 4G LTE, and provides a new radio access technology (RAT) through the evolution of the existing mobile communication network structure. Implementations for 5G systems or networks are currently being adopted that provide new radio (NR) (also referred to a 5G) support via NR base stations, such as Next Generation NodeB (gNodeBs or gNBs) ) . The 5G systems and NR base stations are providing flexibility in bandwidth scheduling and utilization. Future generation systems (e.g., sixth generation (6G) or higher systems) may provide the same or similar flexibility in bandwidth scheduling and utilization.
In LTE and/or 5G (or later generation) systems an uplink (UL) physical signal may be used by the physical layer but may not carry information originating from higher layers. Sounding reference signals (SRSs) are one type of UL physical signal used in networks, such as LTE networks, 5G NR networks, later generation networks, etc. An SRS is a wireless device transmitted reference signal in the UL  direction used by a network device, such as a base station (e.g., an eNodeB, a gNodeB, etc. ) , to estimate UL channel quality. For ease of reference, the term “network device” is used to refer to any of a variety of network elements that may perform operations of various embodiments, non-limiting examples of which include a base station, an eNodeB, a gNodeB, etc. Channel quality estimates may be used by the network device to configure UL communications, such as for UL scheduling, timing alignment, etc.
An SRS is a configurable signal to be transmitted by wireless devices, and a network device may indicate to a wireless device the configuration of the SRS to be transmitted by the wireless device. For example, the SRS configuration may be indicated in an SRS resource information element (IE) (e.g., SRS-Resource) sent from the network device to a wireless device. The SRS configuration may include a bandwidth configuration for an SRS. The bandwidth configuration for an SRS may define various parameters of the SRS to be transmitted from the wireless device, such as a cell-specific bandwidth configuration (e.g., SRS-bandwidthConfig (C SRS) ) , a wireless device-specific bandwidth configuration (e.g., SRS-bandwidth (B SRS) ) , a frequency hopping configuration (e.g., SRS-HoppingBandwidth (b hop) ) , etc. For example, eight cell-specific bandwidth configurations (e.g., eight C SRS values 0-7) may be supported for LTE networks and sixty-four cell-specific bandwidth configurations (e.g., sixty-four C SRS values 0-63) may be supported for 5G networks. Each cell-specific bandwidth configuration (e.g., each C SRS) may be associated with four wireless device-specific bandwidth configuration values (e.g., four B SRS values 0-3) . Each of the four wireless device-specific bandwidth configuration values (e.g., four B SRS values 0-3) may be associated with its own number of resource blocks for use in SRS transmissions (e.g., m SRS) and frequency position information (e.g., N) . A wireless device may receive a bandwidth configuration for an SRS and configure the SRS transmitted by the wireless device according to the received bandwidth configuration.
As a specific example, in a 5G network the wireless device may receive a bandwidth configuration for an SRS indicating a network selected cell-specific bandwidth configuration value (e.g., a C SRS value of 61) and a network selected wireless device-specific bandwidth configuration value (e.g., a B SRS value of 0) . The wireless device may perform a look-up operation in a table correlating cell-specific bandwidth configuration values with wireless device-specific bandwidth configuration values and determine the number of resource blocks for use in SRS transmissions (e.g., m SRS) and frequency position information (e.g., N) . In the table correlating cell-specific bandwidth configuration values with wireless device-specific bandwidth configuration values, the C SRS value of 61 and B SRS value of 0 may correspond to a 272 resource block SRS signal (e.g., m SRS value of 272) , the C SRS value of 61 and B SRS value of 1 may correspond to a 136 resource block SRS signal (e.g., m SRS value of 136) , the C SRS value of 61 and B SRS value of 2 may correspond to a 68 resource block SRS signal (e.g., m SRS value of 68) , and the C SRS value of 61 and B SRS value of 3 may correspond to a 4 resource block SRS signal (e.g., m SRS value of 4) . Continuing with such a specific example, a wireless device receiving a bandwidth configuration indicating the network selected C SRS value of 61 and network selected B SRS value of 0 may transmit an SRS that is a wide-band SRS of a single transmission of all 272 resource blocks at once, a wireless device receiving a bandwidth configuration indicating the network selected C SRS value of 61 and network selected B SRS value of 1 may transmit an SRS that is a narrower-band SRS of multiple transmissions of 136 resource blocks, a wireless device receiving a bandwidth configuration indicating the network selected C SRS value of 61 and network selected B SRS value of 2 may transmit an SRS that is a still narrower-band SRS of multiple transmissions of 68 resource blocks, and a wireless device receiving a bandwidth configuration indicating the network selected C SRS value of 61 and network selected B SRS value of 3 may transmit an SRS that is the narrowest-band SRS of multiple transmissions of 4 resource blocks.
While an SRS is a configurable signal and the network device may indicate to a wireless device the configuration of the SRS to be transmitted by the wireless  device, current networks configure SRSs to always be wide-band SRS resources. As a specific example, a current 5G network will default to a selection of a network selected C SRS value of 61 and a network selected B SRS value of 0 thereby causing a wireless device receiving such a bandwidth configuration indicating the network selected C SRS value of 61 and network selected B SRS value of 0 to always transmit an SRS that is a wide-band SRS of a single transmission of all 272 resource blocks at once. Additionally, current networks do not change or reconfigure the SRS after initially indicating the configuration for the SRS to a wireless device.
Various embodiments may enable a network device to dynamically reconfigure an SRS to a narrower bandwidth from a wider bandwidth. In various embodiments, a network device may dynamically reconfigure an SRS to a narrower bandwidth from a wider bandwidth based on a wireless device reported channel condition. For example, a channel condition may be indicated in channel state information (CSI) reported by a wireless device to a network device. In various embodiments, in response to determining that an SRS bandwidth configuration change condition occurred, such as a channel condition worsening, a network device, may change a bandwidth configuration for an SRS to be transmitted by a wireless device.
CSI reported by a wireless device may include a channel quality indicator (CQI) index value indicated in a channel state feedback (CSF) report sent from a wireless device to a network device. CSI may be reported by a wireless device to a network device, such as a base station (e.g., an eNodeB, a gNodeB, etc. ) on the Physical Uplink Control Channel (PUCCH) or Physical Uplink Shared Channel (PUSCH) . CQI index values may observed or estimated channel measurements sent by a wireless device to a network device as an index value to indicate channel quality. CQI index values may reflect the real channel condition of the downlink (DL) channel experienced by the wireless device. Lower CQI index values may indicate worse quality and higher CQI index values may indicate better quality. For example, the CQI index values may range from 0 to 15 with zero being the worst channel condition indication and 15 being the best channel condition indication. A larger CQI index  value may indicate the wireless device is in a relatively better coverage condition. A smaller CQI index value may indicate the wireless device is in a relatively poorer coverage condition.
In various embodiments, a network device may dynamically reconfigure an SRS to a narrower bandwidth from a wider bandwidth based on one or more CQI indexes reported by a wireless device. For example, one or more CQI indexes, averages of the CQI indexes, etc., may be compared to one or more thresholds and the network device may dynamically reconfigure an SRS to a different bandwidth based on the results of the comparison (e.g., the one or more CQI indexes, averages of the CQI indexes, etc., being at, above, or equal to one or more of the thresholds triggering reconfiguration of SRS to a different bandwidth) . In various embodiments, dynamically reconfiguring an SRS to a different bandwidth may include changing the network selected B SRS value for the SRS (e.g., from B SRS = 0 to B SRS = 1, 2, or 3) .
In various embodiments, determining that the SRS bandwidth configuration change condition occurred may include determining an average CQI index value reported by a wireless device over a time period. In various embodiments, the time period may be a selectable value. In various embodiments, the time period may be one minute. A network device may track the reported CQI index values from a wireless device during the time period to determine the average CQI index value reported by the wireless device over the time period.
In various embodiments, a network device may determine whether the average CQI index value is greater than a first CQI change value. A first CQI change value may be a selected index value representing at least a first threshold for changing SRS bandwidth configuration. The first CQI change value may be selected and/or configured such that an average CQI index value over a time period, such as one minute, etc., being above the first CQI change value may indicate the channel condition is good and reconfiguration of an SRS to a different bandwidth (e.g., to a narrower bandwidth) is not required. Similarly, the first CQI change value may be selected and/or configured such that an average CQI index value over a time period,  such as one minute, etc., being at or below the first CQI change value may indicate the channel condition is bad and reconfiguration of an SRS to a different bandwidth (e.g., to a narrower bandwidth) is required. In various embodiments, a network device may change the bandwidth configuration for the SRS to be transmitted by the wireless device to a different bandwidth configuration (e.g., a narrower bandwidth) in response to determining that the average CQI index value is not greater than the first CQI change value (e.g., equal to or less than the first CQI change value) . In various embodiments, changing the bandwidth configuration for the SRS to be transmitted by the wireless device to a different bandwidth configuration (e.g., a narrower bandwidth) may include changing the network selected B SRS value for the SRS (e.g., from B SRS = 0 to B SRS = 1, 2, or 3, from B SRS = 1 to B SRS = 2 or 3, or from B SRS = 2 to B SRS = 3) .
In various embodiments, a network device may compare the average CQI index value to multiple different CQI change values, such as a first CQI change value, a second CQI change value, and a third CQI change value. Each CQI change value may be a threshold for changing SRS bandwidth configuration associated with its own respective different bandwidth configuration for the SRS. For example, a first CQI change value may be selected and/or configured such that the CQI change value is associated with changing the network selected B SRS value for the SRS to a first value (e.g., B SRS = 1) , a second CQI change value may be selected and/or configured such that the second CQI change value is associated with changing the network selected B SRS value for the SRS to a second value (e.g., B SRS = 2) , and a third CQI change value may be selected and/or configured such that the third CQI change value is associated with changing the network selected B SRS value for the SRS to a third value (e.g., B SRS = 3) . As specific examples, the first CQI change value may be twelve, the second CQI change value may be eight, and the third CQI change value may be four.
In various embodiments, a network device may change the bandwidth configuration for the SRS to be transmitted by the wireless device to a first different bandwidth configuration (e.g., a narrower bandwidth such as a narrower bandwidth  associated with a B SRS value of one) in response to determining that the average CQI index value is less than or equal to the first CQI change value and greater than the second CQI change value (e.g., the average CQI index value is less than or equal to twelve and greater than eight) . The network device may change the bandwidth configuration for the SRS to be transmitted by the wireless device to a second different bandwidth configuration (e.g., a narrower bandwidth such as a narrower bandwidth associated with a B SRS value of two) in response to determining that the average CQI index value is less than or equal to the second CQI change value and greater than the third CQI change value (e.g., the average CQI index value is less than or equal to eight and greater than four) . The network device may change the bandwidth configuration for the SRS to be transmitted by the wireless device to a third different bandwidth configuration (e.g., a narrower bandwidth such as a narrower bandwidth associated with a B SRS value of three) in response to determining that the average CQI index value is less than or equal to the third CQI change value (e.g., the average CQI index value is less than or equal to four) . The change of configuration of an SRS to a narrower bandwidth from a wider bandwidth (e.g., from a wider bandwidth associated with a B SRS value of zero to a narrower bandwidth associated with a B SRS value of one, two, or three) may improve channel estimation by the network as narrower bandwidth SRSs (e.g., SRSs with narrower bandwidths associated with a B SRS value of one, two, or three) may be more reliably received by the network device than wideband SRSs (e.g., SRSs with a wider bandwidth associated with a B SRS value of zero) , especially in scenarios where the wireless device transmitting an SRS is experiencing a poor coverage condition as indicated by lower average CQI index values.
FIG. 1 is a system block diagram illustrating an example communication system 100 suitable for implementing any of the various embodiments. The communications system 100 may be a 5G New Radio (NR) network, or any other suitable network such as an LTE network, 5G network, etc. While FIG. 1 illustrates a 5G network, later generation networks may include the same or similar elements.  Therefore, the reference to a 5G network and 5G network elements in the following descriptions is for illustrative purposes and is not intended to be limiting.
The communications system 100 may include a heterogeneous network architecture that includes a core network 140 and a variety of mobile devices (illustrated as wireless device 120a-120e in FIG. 1) . The communications system 100 may also include a number of base stations (illustrated as the BS 110a, the BS 110b, the BS 110c, and the BS 110d) and other network entities. A base station is an entity that communicates with wireless devices, and also may be referred to as a Node B, an LTE Evolved nodeB (eNodeB or eNB) , an access point (AP) , a Radio head, a transmit receive point (TRP) , a New Radio base station (NR BS) , a 5G NodeB (NB) , a Next Generation NodeB (gNodeB or gNB) , or the like. Each base station may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a base station, a base station Subsystem serving this coverage area, or a combination thereof, depending on the context in which the term is used. The core network 140 may be any type core network, such as an LTE core network (e.g., an EPC network) , 5G core network, etc.
base station 110a-110d may provide communication coverage for a macro cell, a pico cell, a femto cell, another type of cell, or a combination thereof. A macro cell may cover a relatively large geographic area (for example, several kilometers in radius) and may allow unrestricted access by mobile devices with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by mobile devices with service subscription. A femto cell may cover a relatively small geographic area (for example, a home) and may allow restricted access by mobile devices having association with the femto cell (for example, mobile devices in a closed subscriber group (CSG) ) . A base station for a macro cell may be referred to as a macro BS. A base station for a pico cell may be referred to as a pico BS. A base station for a femto cell may be referred to as a femto BS or a home BS. In the example illustrated in FIG. 1, a base station 110a may be a macro BS for a macro cell 102a, a base station 110b may be a pico BS for a pico cell  102b, and a base station 110c may be a femto BS for a femto cell 102c. A base station 110a-110d may support one or multiple (for example, three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some examples, a cell may not be stationary, and the geographic area of the cell may move according to the location of a mobile base station. In some examples, the base stations 110a-110d may be interconnected to one another as well as to one or more other base stations or network nodes (not illustrated) in the communications system 100 through various types of backhaul interfaces, such as a direct physical connection, a virtual network, or a combination thereof using any suitable transport network
The base station 110a-110d may communicate with the core network 140 over a wired or wireless communication link 126. The wireless device 120a-120e may communicate with the base station 110a-110d over a wireless communication link 122.
The wired communication link 126 may use a variety of wired networks (e.g., Ethernet, TV cable, telephony, fiber optic and other forms of physical network connections) that may use one or more wired communication protocols, such as Ethernet, Point-To-Point protocol, High-Level Data Link Control (HDLC) , Advanced Data Communication Control Protocol (ADCCP) , and Transmission Control Protocol/Internet Protocol (TCP/IP) .
The communications system 100 also may include relay stations (e.g., relay BS 110d) . A relay station is an entity that can receive a transmission of data from an upstream station (for example, a base station or a mobile device) and transmit the data to a downstream station (for example, a wireless device or a base station) . A relay station also may be a mobile device that can relay transmissions for other wireless devices. In the example illustrated in FIG. 1, a relay station 110d may communicate with macro the base station 110a and the wireless device 120d in order to facilitate  communication between the base station 110a and the wireless device 120d. A relay station also may be referred to as a relay base station, a relay base station, a relay, etc.
The communications system 100 may be a heterogeneous network that includes base stations of different types, for example, macro base stations, pico base stations, femto base stations, relay base stations, etc. These different types of base stations may have different transmit power levels, different coverage areas, and different impacts on interference in communications system 100. For example, macro base stations may have a high transmit power level (for example, 5 to 40 Watts) whereas pico base stations, femto base stations, and relay base stations may have lower transmit power levels (for example, 0.1 to 2 Watts) .
network controller 130 may couple to a set of base stations and may provide coordination and control for these base stations. The network controller 130 may communicate with the base stations via a backhaul. The base stations also may communicate with one another, for example, directly or indirectly via a wireless or wireline backhaul.
The  wireless devices  120a, 120b, 120c may be dispersed throughout communications system 100, and each wireless device may be stationary or mobile. A wireless device also may be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, user equipment (UE) , etc.
macro base station 110a may communicate with the communication network 140 over a wired or wireless communication link 126. The  wireless device  120a, 120b, 120c may communicate with a base station 110a-110d over a wireless communication link 122.
The  wireless communication links  122, 124 may include a plurality of carrier signals, frequencies, or frequency bands, each of which may include a plurality of logical channels. The  wireless communication links  122 and 124 may utilize one or more Radio access technologies (RATs) . Examples of RATs that may be used in a wireless communication link include 3GPP LTE, 3G, 4G, 5G (e.g., NR) , GSM,  CDMA, WCDMA, Worldwide Interoperability for Microwave Access (WiMAX) , Time Division Multiple Access (TDMA) , and other mobile telephony communication technologies cellular RATs. Further examples of RATs that may be used in one or more of the various  wireless communication links  122, 124 within the communication system 100 include medium range protocols such as Wi-Fi, LTE-U, LTE-Direct, LAA, MuLTEfire, and relatively short range RATs such as ZigBee, Bluetooth, and Bluetooth Low Energy (LE) .
Certain wireless networks (e.g., LTE) utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink. OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc. Each subcarrier may be modulated with data. In general, modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM. The spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth. For example, the spacing of the subcarriers may be 15 kHz and the minimum Resource allocation (called a “resource block” ) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal Fast File Transfer (FFT) size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10 or 20 megahertz (MHz) , respectively. The system bandwidth may also be partitioned into subbands. For example, a subband may cover 1.08 MHz (i.e., 6 Resource blocks) , and there may be 1, 2, 4, 8 or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
While descriptions of some embodiments may use terminology and examples associated with LTE technologies, various embodiments may be applicable to other wireless communications systems, such as a new Radio (NR) or 5G network. NR may utilize OFDM with a cyclic prefix (CP) on the uplink (UL) and downlink (DL) and include support for half-duplex operation using time division duplex (TDD) . A single component carrier bandwidth of 100 MHz may be supported. NR Resource  blocks may span 12 sub-carriers with a sub-carrier bandwidth of 75 kHz over a 0.1 millisecond (ms) duration. Each Radio frame may consist of 50 subframes with a length of 10 ms. Consequently, each subframe may have a length of 0.2 ms. Each subframe may indicate a link direction (i.e., DL or UL) for data transmission and the link direction for each subframe may be dynamically switched. Each subframe may include DL/UL data as well as DL/UL control data. Beamforming may be supported and beam direction may be dynamically configured. Multiple Input Multiple Output (MIMO) transmissions with precoding may also be supported. MIMO configurations in the DL may support up to eight transmit antennas with multi-layer DL transmissions up to eight streams and up to two streams per wireless device. Multi-layer transmissions with up to 2 streams per wireless device may be supported. Aggregation of multiple cells may be supported with up to eight serving cells. Alternatively, NR may support a different air interface, other than an OFDM-based air interface.
Some mobile devices may be considered machine-type communication (MTC) or Evolved or enhanced machine-type communication (eMTC) mobile devices. MTC and eMTC mobile devices include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a base station, another device (for example, remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (for example, a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some mobile devices may be considered Internet-of-Things (IoT) devices or may be implemented as NB-IoT (narrowband internet of things) devices. A wireless device 120a-e may be included inside a housing that houses components of the wireless device, such as processor components, memory components, similar components, or a combination thereof.
In general, any number of communication systems and any number of wireless networks may be deployed in a given geographic area. Each communications system and wireless network may support a particular Radio access technology (RAT)  and may operate on one or more frequencies. A RAT also may be referred to as a Radio technology, an air interface, etc. A frequency also may be referred to as a carrier, a frequency channel, etc. Each frequency may support a single RAT in a given geographic area in order to avoid interference between communications systems of different RATs. In some cases, 4G/LTE and/or 5G/NR RAT networks may be deployed. For example, a 5G non-standalone (NSA) network may utilize both 4G/LTE RAT in the 4G/LTE RAN side of the 5G NSA network and 5G/NR RAT in the 5G/NR RAN side of the 5G NSA network. The 4G/LTE RAN and the 5G/NR RAN may both connect to one another and a 4G/LTE core network (e.g., an evolved packet core (EPC) network) in a 5G NSA network. Other example network configurations may include a 5G standalone (SA) network in which a 5G/NR RAN connects to a 5G core network.
In some embodiments, two or more wireless devices 120a-e (for example, illustrated as the wireless device 120a and the wireless device 120e) may communicate directly using one or more sidelink channels 124 (for example, without using a base station 110a-110d as an intermediary to communicate with one another) . For example, wireless device 120a-e may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, or similar protocol) , a mesh network, or similar networks, or combinations thereof. In this case, the wireless device 120a-e may perform scheduling operations, resource selection operations, as well as other operations described elsewhere herein as being performed by the base station 110a.
The base station 110a-110d may configure an SRS to be transmitted by a wireless device 120a-e. An SRS may be a reference signal transmitted from the wireless device 120a-e to the base station 110a-110d in the UL direction. The SRS may be used by the base station 110a-110d to estimate UL channel quality. Channel quality estimates may be used by the base station 110a-110d to configure UL communications, such as for UL scheduling, timing alignment, etc. An SRS may be a  configurable signal and the base station 110a-110d may indicate to a wireless device 120a-e the configuration of the SRS to be transmitted by the wireless device 120a-e. For example, the SRS configuration may be indicated in an SRS resource IE (e.g., SRS-Resource) sent from the base station 110a-110d to the wireless device 120a-e. The SRS configuration may include a bandwidth configuration for an SRS. The bandwidth configuration for an SRS may define various parameters of the SRS to be transmitted from the wireless device 120a-e, such as a cell-specific bandwidth configuration (e.g., C SRS) , a wireless device-specific bandwidth configuration (e.g., B SRS) , a frequency hopping configuration (e.g., b hop) , etc.
The wireless device 120a-e may be configured to monitor channel conditions and report the channel conditions to the base station 110a-110d. For example, a channel condition may be indicated in channel state information (CSI) reported by the wireless device to a network device 120a-e to the base station 110a-110d. CSI reported by the wireless device 120a-e may include a CQI index value indicated in a CSF report sent from the wireless device 120a-e to the base station 110a-110d. CSI may be reported by the wireless device 120a-e to the base station 110a-110d PUCCH or PUSCH. CQI index values may observed or estimated channel measurements sent by the wireless device 120a-e to the base station 110a-110d as an index value to indicate channel quality. CQI index values may be integer values, such as values 0-15, that indicate the quality of the DL channel as observed or estimated by the wireless device 120a-e.
FIG. 2 is a component block diagram illustrating an example computing and wireless modem system 200 suitable for implementing any of the various embodiments. Various embodiments may be implemented on a number of single processor and multiprocessor computer systems, including a system-on-chip (SOC) or system in a package (SIP) .
With reference to FIGS. 1 and 2, the illustrated example wireless device 200 (which may be a SIP in some embodiments) includes a two  SOCs  202, 204 coupled to a clock 206, a voltage regulator 208, at least one SIM 268 and/or a SIM interface and  a wireless transceiver 266 configured to send and receive wireless communications via an antenna (not shown) to/from network wireless devices, such as a base station 110a. In some embodiments, the first SOC 202 operate as central processing unit (CPU) of the wireless device that carries out the instructions of software application programs by performing the arithmetic, logical, control and input/output (I/O) operations specified by the instructions. In some embodiments, the second SOC 204 may operate as a specialized processing unit. For example, the second SOC 204 may operate as a specialized 5G processing unit responsible for managing high volume, high speed (e.g., 5 Gbps, etc. ) , and/or very high frequency short wave length (e.g., 28 GHz mmWave spectrum, etc. ) communications.
The first SOC 202 may include a digital signal processor (DSP) 210, a modem processor 212, a graphics processor 214, an application processor (AP) 216, one or more coprocessors 218 (e.g., vector co-processor) connected to one or more of the processors, memory 220, custom circuity 222, system components and resources 224, an interconnection/bus module 226, one or more temperature sensors 230, a thermal management unit 232, and a thermal power envelope (TPE) component 234. The second SOC 204 may include a 5G modem processor 252, a power management unit 254, an interconnection/bus module 264, the plurality of mmWave transceivers 256, memory 258, and various additional processors 260, such as an applications processor, packet processor, etc.
Each  processor  210, 212, 214, 216, 218, 252, 260 may include one or more cores, and each processor/core may perform operations independent of the other processors/cores. For example, the first SOC 202 may include a processor that executes a first type of operating system (e.g., FreeBSD, LINUX, OS X, etc. ) and a processor that executes a second type of operating system (e.g., MICROSOFT WINDOWS 10) . In addition, any or all of the  processors  210, 212, 214, 216, 218, 252, 260 may be included as part of a processor cluster architecture (e.g., a synchronous processor cluster architecture, an asynchronous or heterogeneous processor cluster architecture, etc. ) .
The first and  second SOC  202, 204 may include various system components, resources and custom circuitry for managing sensor data, analog-to-digital conversions, wireless data transmissions, and for performing other specialized operations, such as decoding data packets and processing encoded audio and video signals for rendering in a web browser. For example, the system components and resources 224 of the first SOC 202 may include power amplifiers, voltage regulators, oscillators, phase-locked loops, peripheral bridges, data controllers, memory controllers, system controllers, access ports, timers, and other similar components used to support the processors and software clients running on a wireless device. The system components and resources 224 and/or custom circuitry 222 may also include circuitry to interface with peripheral devices, such as cameras, electronic displays, wireless communication devices, external memory chips, etc.
The first and  second SOC  202, 204 may communicate via interconnection/bus module 250. The  various processors  210, 212, 214, 216, 218, may be interconnected to one or more memory elements 220, system components and resources 224, and custom circuitry 222, and a thermal management unit 232 via an interconnection/bus module 226. Similarly, the processor 252 may be interconnected to the power management unit 254, the mmWave transceivers 256, memory 258, and various additional processors 260 via the interconnection/bus module 264. The interconnection/ bus module  226, 250, 264 may include an array of reconfigurable logic gates and/or implement a bus architecture (e.g., CoreConnect, AMBA, etc. ) . Communications may be provided by advanced interconnects, such as high-performance networks-on chip (NoCs) .
The first and/or  second SOCs  202, 204 may further include an input/output module (not illustrated) for communicating with resources external to the SOC, such as a clock 206, a voltage regulator 208, one or more wireless transceivers 266, and at least one SIM 268 and/or SIM interface (i.e., an interface for receiving one or more SIM cards) . Resources external to the SOC (e.g., clock 206, voltage regulator 208) may be shared by two or more of the internal SOC processors/cores. The at least one  SIM 268 (or one or more SIM cards coupled to one or more SIM interfaces) may store information supporting multiple subscriptions, including a first 5GNR subscription and a second 5GNR subscription, etc.
In addition to the example SIP 200 discussed above, various embodiments may be implemented in a wide variety of computing systems, which may include a single processor, multiple processors, multicore processors, or any combination thereof.
FIG. 3 is a component block diagram illustrating a software architecture 300 including a radio protocol stack for the user and control planes in wireless communications suitable for implementing any of the various embodiments. With reference to FIGS. 1–3, the wireless device 320 may implement the software architecture 300 to facilitate communication between a wireless device 320 (e.g., the wireless device 120a-120e, 200) and the base station 350 (e.g., the base station 110a-d) of a communication system (e.g., 100) . In various embodiments, layers in software architecture 300 may form logical connections with corresponding layers in software of the base station 350. The software architecture 300 may be distributed among one or more processors (e.g., the  processors  212, 214, 216, 218, 252, 260) . While illustrated with respect to one radio protocol stack, in a multi-SIM (subscriber identity module) wireless device, the software architecture 300 may include multiple protocol stacks, each of which may be associated with a different SIM (e.g., two protocol stacks associated with two SIMs, respectively, in a dual-SIM wireless communication device) . While described below with reference to LTE communication layers, the software architecture 300 may support any of variety of standards and protocols for wireless communications, and/or may include additional protocol stacks that support any of variety of standards and protocols wireless communications.
The software architecture 300 may include a Non-Access Stratum (NAS) 302 and an Access Stratum (AS) 304. The NAS 302 may include functions and protocols to support Packet filtering, security management, mobility control, session management, and traffic and signaling between a SIM (s) of the wireless device and its  core network 140. The AS 304 may include functions and protocols that support communication between a SIM (s) and entities of supported access networks (e.g., a base station) . In particular, the AS 304 may include at least three layers (Layer 1, Layer 2, and Layer 3) , each of which may contain various sub-layers.
In the user and control planes, Layer 1 (L1) of the AS 304 may be a physical layer (PHY) 306, which may oversee functions that enable transmission and/or reception over the air interface. Examples of such physical layer 306 functions may include cyclic redundancy check (CRC) attachment, coding blocks, scrambling and descrambling, modulation and demodulation, signal measurements, MIMO, etc. The PHY layer 306 may include various logical channels, including the Physical Downlink Control Channel (PDCCH) and the Physical Downlink Shared Channel (PDSCH) . As an example, the PHY layer 306 may support SRS transmission and reception and CSI measurements and reporting (e.g., CQI measurements and reporting) .
In the user and control planes, Layer 2 (L2) of the AS 304 may be responsible for the link between the wireless device 320 and the base station 350 over the physical layer 306. In the various embodiments, Layer 2 may include a Media Access Control (MAC) sublayer 308, a Radio link Control (RLC) sublayer 310, and a Packet data convergence protocol (PDCP) 312 sublayer, each of which form logical connections terminating at the base station 350.
In the control plane, Layer 3 (L3) of the AS 304 may include a Radio Resource Control (RRC) sublayer 3. While not shown, the software architecture 300 may include additional Layer 3 sublayers, as well as various upper layers above Layer 3. In various embodiments, the RRC sublayer 313 may provide functions including broadcasting system information, paging, and establishing and releasing an RRC signaling connection between the wireless device 320 and the base station 350.
In various embodiments, the PDCP sublayer 312 may provide uplink functions including multiplexing between different Radio bearers and logical  channels, sequence number addition, handover data handling, integrity protection, ciphering, and header compression. In the downlink, the PDCP sublayer 312 may provide functions that include in-sequence delivery of data packets, duplicate data Packet detection, integrity validation, deciphering, and header decompression.
In the uplink, the RLC sublayer 310 may provide segmentation and concatenation of upper layer data packets, retransmission of lost data packets, and Automatic Repeat Request (ARQ) . In the downlink, while the RLC sublayer 310 functions may include reordering of data packets to compensate for out-of-order reception, reassembly of upper layer data packets, and ARQ.
In the uplink, MAC sublayer 308 may provide functions including multiplexing between logical and transport channels, random access procedure, logical channel priority, and hybrid-ARQ (HARQ) operations. In the downlink, the MAC layer functions may include channel mapping within a cell, de-multiplexing, discontinuous reception (DRX) , and HARQ operations.
While the software architecture 300 may provide functions to transmit data through physical media, the software architecture 300 may further include at least one host layer 314 to provide data transfer services to various applications in the wireless device 320. In some embodiments, application-specific functions provided by the at least one host layer 314 may provide an interface between the software architecture and the general purpose processor.
In other embodiments, the software architecture 300 may include one or more higher logical layer (e.g., transport, session, presentation, application, etc. ) that provide host layer functions. In some embodiments, the software architecture 300 may include an application layer in which a logical connection terminates at another device (e.g., end user device, server, etc. ) . In some embodiments, the software architecture 300 may further include in the AS 304 a hardware interface 316 between the physical layer 306 and the communication hardware (e.g., one or more radio frequency (RF) transceivers) .
FIG. 4 is a process flow diagram illustrating a method 400 that may be performed by a processor of a network computing device for configuring an SRS in a network in accordance with various embodiments. With reference to FIGS. 1-4, the method 400 may be implemented by a processor (e.g., 212, 216, 252 or 260) of a wireless device (e.g., the wireless device 120a-120e, 200, 320) or a network computing device (e.g., the base station 110a-d, 350) .
In block 402, the processor may select a default bandwidth configuration for an SRS to be transmitted by a wireless device. In various embodiments, the default bandwidth configuration for an SRS may be a widest bandwidth SRS configuration available for a network selected C SRS value, such as a B SRS value of zero for a network selected C SRS value and a b hop value of zero. As a specific example, the default bandwidth configuration for an SRS to be transmitted by a wireless device may be C SRS=61, B SRS =0, and b hop=0.
In block 404, the processor may send an indication of the default bandwidth configuration to the wireless device. For example, the SRS configuration that is the default bandwidth configuration may be indicated in an SRS resource IE (e.g., SRS-Resource) sent to the wireless device.
In block 406, the processor may monitor channel condition reporting by the wireless device. In various embodiments, monitoring channel condition reporting by the wireless device may include receiving and tracking CSI reported by a wireless device (e.g., wireless device 120a-e) to the network computing device (e.g., base station 110a-d) . CSI reported by a wireless device may include one or more CQI index values indicated in one or more CSF reports received from a wireless device (e.g., wireless device 120a-e) by the network computing device (e.g., base station 110a-d) via the PUCCH or PUSCH.
In determination block 408, the processor may determine whether the SRS bandwidth configuration change condition occurred. In various embodiments, determining whether the SRS bandwidth configuration change condition occurred  may include comparing one or more CQI index values, averages of the CQI index values, etc., reported by a wireless device to one or more thresholds. The comparison results may indicate whether the change condition occurred. For example, one or more CQI index values, averages of the CQI index values, etc., being at, above, or equal to one or more of the thresholds may indicate the change condition occurred. As a specific example, a CQI index value being at or below a threshold CQI index value (e.g., CQI index value of twelve) may indicate the change condition occurred. Similarly, a CQI index value being above a threshold CQI index value (e.g., CQI index value of twelve) may indicate the change condition did not occur. As another specific example, an average CQI index value over a time period (e.g., one minute) being at or below a threshold average CQI index value (e.g., average CQI index value of twelve) may indicate the change condition occurred. Similarly, an average CQI index value over a time period (e.g., one minute) being above a threshold average CQI index value (e.g., average CQI index value of twelve) may indicate the change condition did not occur.
In response to determining the SRS bandwidth configuration change condition did not occur (i.e., determination block 408 = “No” ) , the processor may monitor channel condition reporting by the wireless device in block 406.
In response to determining the SRS bandwidth configuration change condition occurred (i.e., determination block 408 = “Yes” ) , the processor may change a bandwidth configuration for the SRS to be transmitted by the wireless device in block 410. In various embodiments, the processor may change the bandwidth configuration for the SRS to be transmitted by the wireless device to a different bandwidth configuration (e.g., a narrower bandwidth) . In various embodiments, changing the bandwidth configuration for the SRS to be transmitted by the wireless device to a different bandwidth configuration (e.g., a narrower bandwidth) may include changing the network selected B SRS value for the SRS (e.g., from B SRS = 0 to B SRS = 1, 2, or 3, from B SRS = 1 to B SRS = 2 or 3, or from B SRS = 2 to B SRS = 3) . As specific examples, the changed bandwidth configuration of the SRS to be transmitted  by the wireless device may be C SRS=61, B SRS =1, and b hop=0, C SRS=61, B SRS =2, and b hop=0, or C SRS=61, B SRS =3, and b hop=0.
In block 412, the processor may send an indication of the changed bandwidth configuration to the wireless device. For example, the SRS configuration that is changed the bandwidth configuration (e.g., the narrower bandwidth configuration) may be indicated in an SRS resource IE (e.g., SRS-Resource) or SRS resource update sent to the wireless device. The wireless device may receive the indication of the changed bandwidth configuration and use the changed bandwidth configuration for the next SRS to be transmitted by the wireless device.
FIG. 5A is a process flow diagram illustrating a method 500 for determining whether an SRS bandwidth configuration change condition occurred in accordance with various embodiments. With reference to FIGS. 1-5A, the method 500 may be implemented by a processor (e.g., 212, 216, 252 or 260) of a wireless device (e.g., the wireless device 120a-120e, 200, 320) or a network computing device (e.g., the base station 110a-d, 350) . In various embodiments, the operations of method 500 may be performed in conjunction with the operations of method 400 (FIG. 4) . As a specific example, the operations of method 500 may be performed to determine whether the SRS bandwidth configuration change condition occurred as part of the operations of determination block 408 of method 400 (FIG. 4) .
In response to monitoring channel condition reporting by the wireless device in block 406 (FIG. 4) , the processor may determine an average CQI index value reported by the wireless device over a time period in block 502. For example, the time period may be one minute. In various embodiments, the time period may be a selectable value. For example, the time period may be a variable “T_cqi” that is configurable and/or selectable by the processor. As one example, determining the average CQI index value reported by the wireless device over the time period may include tracking the CQI index values reported by the wireless device in CSF reports sent during the time period and dividing the sum of the reported CQI index values reported in the time period by the number of reported CQI index values reported in the  time period. As other examples, determining the average CQI index value reported by the wireless device over the time period may include performing other statistical operations to represent the CQI index values reported over the time period such as operations to determine a geometric mean, harmonic mean, a mode, a median, a cubic mean, etc.
In determination block 504, the processor may determine whether the average CQI index value is greater than a first CQI change value. A first CQI change value may be a selected index value representing at least a first threshold for changing SRS bandwidth configuration. For example, the first CQI change value may be a variable “CQI_0” expressed as a CQI index value. The first CQI change value may be selected and/or configured such that an average CQI index value over a time period, such as one minute, etc., being above the first CQI change value may indicate the channel condition is good and reconfiguration of an SRS to a different bandwidth (e.g., to a narrower bandwidth) is not required. Similarly, the first CQI change value may be selected and/or configured such that an average CQI index value over a time period, such as one minute, etc., being at or below the first CQI change value may indicate the channel condition is bad and reconfiguration of an SRS to a different bandwidth (e.g., to a narrower bandwidth) is required. As a specific example, the first CQI change value may be an average CQI index value of twelve. As other examples, other values of an average CQI index value, such as values greater than twelve or less than twelve may be selected as the first CQI change value. The processor may determine whether the average CQI index value is greater than the first CQI change value in any manner, such as by comparing the average CQI index value to the first CQI change value, subtracting the average CQI index value from the first CQI change value and determining whether a negative result occurs indicating the average CQI index value is greater, etc.
In response to determining that the average CQI index value is greater than the first CQI change value (i.e., determination block 504 = “Yes” ) , the processor may  perform operations of block 406 (FIG. 4) to monitor channel condition reporting by the wireless device.
In response to determining that the average CQI index value is not greater than the first CQI change value (i.e., determination block 504 = “No” ) , the processor may determine that the SRS bandwidth configuration change condition occurred in block 507. In response to determining the SRS bandwidth configuration change condition occurred, the processor may perform operations of block 410 (FIG. 4) to change a bandwidth configuration for the SRS to be transmitted by the wireless device.
FIG. 5B is a process flow diagram illustrating a method 550 for changing a bandwidth configuration for an SRS to be transmitted by a wireless device in accordance with various embodiments. With reference to FIGS. 1-5B, the method 500 may be implemented by a processor (e.g., 212, 216, 252 or 260) of a wireless device (e.g., the wireless device 120a-120e, 200, 320) or a network computing device (e.g., the base station 110a-d, 350) . In various embodiments, the operations of method 550 may be performed in conjunction with the operations of method 400 (FIG. 4) and/or method 500 (FIG. 5A) . As a specific example, the operations of method 550 may be performed to change the bandwidth configuration for the SRS to be transmitted by the wireless device as part of the operations of block 410 of method 400 (FIG. 4) . As another specific example, the operations of method 550 may be performed in response to determining that the SRS bandwidth configuration change condition occurred in block 507 of method 500 (FIG. 5A) .
In response to determining that the SRS bandwidth configuration change condition occurred in block 406 (FIG. 4) or block 507 (FIG. 5A) , the processor may determine whether the average CQI index value is less than or equal to the first CQI change value and greater than a second CQI change value in determination block 552. In various embodiments, different CQI change values, such as the first CQI change value, a second CQI change value, and a third CQI change value, may be associated with respective different bandwidth configurations for the SRS. A second CQI  change value may be a selected index value representing at least a second threshold for changing SRS bandwidth configuration. For example, the second CQI change value may be a variable “CQI_1” expressed as a CQI index value. The second CQI change value may be selected and/or configured such that an average CQI index value over a time period, such as one minute, etc., being at or below the first CQI change value and above the second CQI change value may indicate the bandwidth configuration for the SRS should be changed to a first different bandwidth configuration. As a specific example, the first CQI change value may be an average CQI index value of twelve and the second CQI change value may be an average CQI index value of eight. As other examples, other values of an average CQI index value, such as values greater than eight or less than eight, may be selected as the second CQI change value and other values of an average CQI index value, such as values greater than twelve or less than twelve, may be selected as the first CQI change value. The processor may determine whether the average CQI index value is greater than the second CQI change value in any manner, such as by comparing the average CQI index value to the second CQI change value, subtracting the average CQI index value from the second CQI change value and determining whether a negative result occurs indicating the average CQI index value is greater, etc. The processor may determine whether the average CQI index value is less than or equal to the first CQI change value in any manner, such as by comparing the average CQI index value to the first CQI change value, subtracting the average CQI index value from the first CQI change value and determining whether a zero or positive result occurs indicating the average CQI index value is less than or equal, etc.
In response to determining that that the average CQI index value is less than or equal to the first CQI change value and greater than the second CQI change value (i.e., determination block 552 = “Yes” ) , the processor may change the bandwidth configuration for the SRS to be transmitted by the wireless device to a first different bandwidth configuration in block 554. In various embodiments, the processor may change the bandwidth configuration for the SRS to be transmitted by the wireless  device to the first different bandwidth configuration (e.g., a narrower bandwidth than a default bandwidth indicated in block 404 (FIG. 4) ) . In various embodiments, the processor may change the bandwidth configuration for the SRS to be transmitted by the wireless device to the first different bandwidth configuration by changing the B SRS value of the SRS configuration. As a specific example, the first different bandwidth configuration may be a B SRS value of one and the changed bandwidth configuration of the SRS to be transmitted by the wireless device may be C SRS=61, B SRS =1, and b hop=0. In response to changing the bandwidth configuration for the SRS to be transmitted by the wireless device to the first different bandwidth configuration, the processor may perform operations of block 412 (FIG. 4) to send an indication of the changed bandwidth configuration to the wireless device.
In response to determining that that the average CQI index value is not less than or equal to the first CQI change value and greater than the second CQI change value (i.e., determination block 552 = “No” ) , the processor may determine whether the average CQI index value is less than or equal to the second CQI change value and greater than a third CQI change value in determination block 556. A third CQI change value may be a selected index value representing at least a third threshold for changing SRS bandwidth configuration. For example, the third CQI change value may be a variable “CQI_2” expressed as a CQI index value. The third CQI change value may be selected and/or configured such that an average CQI index value over a time period, such as one minute, etc., being at or below the second CQI change value and above the third CQI change value may indicate the bandwidth configuration for the SRS should be changed to a second different bandwidth configuration. The third CQI change value may be selected and/or configured such that an average CQI index value over a time period, such as one minute, etc., being at or below the third CQI change value may indicate the bandwidth configuration for the SRS should be changed to a third different bandwidth configuration. As a specific example, the second CQI change value may be an average CQI index value of eight and the third CQI change value may be an average CQI index value of four. As other examples,  other values of an average CQI index value, such as values greater than eight or less than eight, may be selected as the second CQI change value and other values of an average CQI index value, such as values greater than four or less than four, may be selected as the third CQI change value. The processor may determine whether the average CQI index value is greater than the third CQI change value in any manner, such as by comparing the average CQI index value to the third CQI change value, subtracting the average CQI index value from the third CQI change value and determining whether a negative result occurs indicating the average CQI index value is greater, etc. The processor may determine whether the average CQI index value is less than or equal to the second CQI change value in any manner, such as by comparing the average CQI index value to the second CQI change value, subtracting the average CQI index value from the second CQI change value and determining whether a zero or positive result occurs indicating the average CQI index value is less than or equal, etc.
In response to determining that the average CQI index value is less than or equal to the second CQI change value and greater than the third CQI change value (i.e., determination block 556 = “Yes” ) , the processor may change the bandwidth configuration for the SRS to be transmitted by the wireless device to a second different bandwidth configuration in block 558. In various embodiments, the processor may change the bandwidth configuration for the SRS to be transmitted by the wireless device to the second different bandwidth configuration (e.g., a narrower bandwidth than both a default bandwidth configuration indicated in block 404 (FIG. 4) and the first different bandwidth configuration) . In various embodiments, the processor may change the bandwidth configuration for the SRS to be transmitted by the wireless device to the second different bandwidth configuration by changing the B SRS value of the SRS configuration. As a specific example, the second different bandwidth configuration may be a B SRS value of two and the changed bandwidth configuration of the SRS to be transmitted by the wireless device may be C SRS=61, B SRS =2, and b hop=0. In response to changing the bandwidth configuration for the SRS  to be transmitted by the wireless device to the second different bandwidth configuration, the processor may perform operations of block 412 (FIG. 4) to send an indication of the changed bandwidth configuration to the wireless device.
In response to determining that the average CQI index value is not less than or equal to the second CQI change value and greater than the third CQI change value (i.e., determination block 556 = “No” ) , the processor may change the bandwidth configuration for the SRS to be transmitted by the wireless device to a third different bandwidth configuration in block 560. In various embodiments, the processor may change the bandwidth configuration for the SRS to be transmitted by the wireless device to the third different bandwidth configuration (e.g., a narrower bandwidth than any of the default bandwidth configuration indicated in block 404 (FIG. 4) , the first different bandwidth configuration, and the second different bandwidth configuration) . In various embodiments, the processor may change the bandwidth configuration for the SRS to be transmitted by the wireless device to the third different bandwidth configuration by changing the B SRS value of the SRS configuration. As a specific example, the third different bandwidth configuration may be a B SRS value of three and the changed bandwidth configuration of the SRS to be transmitted by the wireless device may be C SRS=61, B SRS =3, and b hop=0. In response to changing the bandwidth configuration for the SRS to be transmitted by the wireless device to the third different bandwidth configuration, the processor may perform operations of block 412 (FIG. 4) to send an indication of the changed bandwidth configuration to the wireless device.
FIG. 6 is a component block diagram of a network computing device 600, such as a base station, an eNodeB, a gNodeB, etc., suitable for use with various embodiments. Such network computing devices may include at least the components illustrated in FIG. 6. With reference to FIGS. 1–6, the network computing device 600 may include a processor 601 coupled to volatile memory 602 and a large capacity nonvolatile memory, such as a disk drive 603. The network computing device 600 may also include a peripheral memory access device such as a floppy disc drive, compact disc (CD) or digital video disc (DVD) drive 606 coupled to the processor  601. The network computing device 600 may also include network access ports 604 (or interfaces) coupled to the processor 601 for establishing data connections with a network, such as the Internet and/or a local area network coupled to other system computers and servers. The network computing device 600 may include one or more antennas 607 for sending and receiving electromagnetic radiation that may be connected to a wireless communication link. The network computing device 600 may include additional access ports, such as USB, Firewire, Thunderbolt, and the like for coupling to peripherals, external memory, or other devices.
FIG. 7 is a component block diagram of a wireless device 700 suitable for use with various embodiments. With reference to FIGS. 1–7, various embodiments may be implemented on a variety of wireless devices 700 (e.g., the wireless device 120a-120e, 200, 320, 120a-120e) , an example of which is illustrated in FIG. 7 in the form of a smartphone. The wireless device 700 may include a first SOC 202 (e.g., a SOC-CPU) coupled to a second SOC 204 (e.g., a 5G capable SOC) . The first and  second SOCs  202, 204 may be coupled to internal memory 716, a display 712, and to a speaker 714. The first and  second SOCs  202, 204 may also be coupled to at least one SIM 268 and/or a SIM interface that may store information supporting a first 5GNR subscription and a second 5GNR subscription, which support service on a 5G non-standalone (NSA) network. Additionally, the wireless device 700 may include an antenna 704 for sending and receiving electromagnetic radiation that may be connected to a wireless transceiver 266 coupled to one or more processors in the first and/or  second SOCs  202, 204. The wireless device 700 may also include menu selection buttons or rocker switches 720 for receiving user inputs.
The wireless device 700 also includes a sound encoding/decoding (CODEC) circuit 710, which digitizes sound received from a microphone into data packets suitable for wireless transmission and decodes received sound data packets to generate analog signals that are provided to the speaker to generate sound. Also, one or more of the processors in the first and  second SOCs  202, 204, wireless transceiver  266 and CODEC 710 may include a digital signal processor (DSP) circuit (not shown separately) .
The processors of the wireless network computing device 600 and the wireless device 700 may be any programmable microprocessor, microcomputer or multiple processor chip or chips that can be configured by software instructions (applications) to perform a variety of functions, including the functions of the various embodiments described below. In some mobile devices, multiple processors may be provided, such as one processor within an SOC 204 dedicated to wireless communication functions and one processor within an SOC 202 dedicated to running other applications. Software applications may be stored in the  memory  220, 716 before they are accessed and loaded into the processor. The processors may include internal memory sufficient to store the application software instructions.
As used in this application, the terms “component, ” “module, ” “system, ” and the like are intended to include a computer-related entity, such as, but not limited to, hardware, firmware, a combination of hardware and software, software, or software in execution, which are configured to perform particular operations or functions. For example, a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on a wireless device and the wireless device may be referred to as a component. One or more components may reside within a process and/or thread of execution and a component may be localized on one processor or core and/or distributed between two or more processors or cores. In addition, these components may execute from various non-transitory computer readable media having various instructions and/or data structures stored thereon. Components may communicate by way of local and/or remote processes, function or procedure calls, electronic signals, data packets, memory read/writes, and other known network, computer, processor, and/or process related communication methodologies.
A number of different cellular and mobile communication services and standards are available or contemplated in the future, all of which may implement and benefit from the various embodiments. Such services and standards include, e.g., third generation partnership project (3GPP) , LTE systems, third generation wireless mobile communication technology (3G) , fourth generation wireless mobile communication technology (4G) , fifth generation wireless mobile communication technology (5G) as well as later generation 3GPP technology, global system for mobile communications (GSM) , universal mobile telecommunications system (UMTS) , 3GSM, general Packet Radio service (GPRS) , code division multiple access (CDMA) systems (e.g., cdmaOne, CDMA1020TM) , enhanced data rates for GSM evolution (EDGE) , advanced mobile phone system (AMPS) , digital AMPS (IS-136/TDMA) , evolution-data optimized (EV-DO) , digital enhanced cordless telecommunications (DECT) , Worldwide Interoperability for Microwave Access (WiMAX) , wireless local area network (WLAN) , Wi-Fi Protected Access I &II (WPA, WPA2) , and integrated digital enhanced network (iDEN) . Each of these technologies involves, for example, the transmission and reception of voice, data, signaling, and/or content messages. It should be understood that any references to terminology and/or technical details related to an individual telecommunication standard or technology are for illustrative purposes only, and are not intended to limit the scope of the claims to a particular communication system or technology unless specifically recited in the claim language.
Various embodiments illustrated and described are provided merely as examples to illustrate various features of the claims. However, features shown and described with respect to any given embodiment are not necessarily limited to the associated embodiment and may be used or combined with other embodiments that are shown and described. Further, the claims are not intended to be limited by any one example embodiment.
The foregoing method descriptions and the process flow diagrams are provided merely as illustrative examples and are not intended to require or imply that the operations of various embodiments must be performed in the order presented. As  will be appreciated by one of skill in the art the order of operations in the foregoing embodiments may be performed in any order. Words such as “thereafter, ” “then, ” “next, ” etc. are not intended to limit the order of the operations; these words are used to guide the reader through the description of the methods. Further, any reference to claim elements in the singular, for example, using the articles “a, ” “an, ” or “the” is not to be construed as limiting the element to the singular.
Various illustrative logical blocks, modules, components, circuits, and algorithm operations described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and operations have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such embodiment decisions should not be interpreted as causing a departure from the scope of the claims.
The hardware used to implement various illustrative logics, logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but, in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of receiver smart objects, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. Alternatively, some  operations or methods may be performed by circuitry that is specific to a given function.
In one or more embodiments, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions or code on a non-transitory computer-readable storage medium or non-transitory processor-readable storage medium. The operations of a method or algorithm disclosed herein may be embodied in a processor-executable software module or processor-executable instructions, which may reside on a non-transitory computer-readable or processor-readable storage medium. Non-transitory computer-readable or processor-readable storage media may be any storage media that may be accessed by a computer or a processor. By way of example but not limitation, such non-transitory computer-readable or processor-readable storage media may include RAM, ROM, EEPROM, FLASH memory, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage smart objects, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer. Disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of non-transitory computer-readable and processor-readable media. Additionally, the operations of a method or algorithm may reside as one or any combination or set of codes and/or instructions on a non-transitory processor-readable storage medium and/or computer-readable storage medium, which may be incorporated into a computer program product.
The preceding description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the claims. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing  from the scope of the claims. Thus, the present disclosure is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the following claims and the principles and novel features disclosed herein.

Claims (28)

  1. A method for configuring a sounding reference signal (SRS) in a network performed by a processor of a network computing device, comprising:
    determining whether an SRS bandwidth configuration change condition occurred, wherein the SRS bandwidth configuration change condition is based at least in part on a channel condition reported by a wireless device;
    changing a bandwidth configuration for an SRS to be transmitted by the wireless device in response to determining that the SRS bandwidth configuration change condition occurred; and
    sending an indication of the changed bandwidth configuration to the wireless device.
  2. The method of claim 1, wherein:
    determining whether the SRS bandwidth configuration change condition occurred comprises:
    determining an average channel quality indicator (CQI) index value reported by the wireless device over a time period;
    determining whether the average CQI index value is greater than a first CQI change value; and
    determining that the SRS bandwidth configuration change condition occurred in response to determining that the average CQI index value is not greater than the first CQI change value.
  3. The method of claim 2, wherein changing the bandwidth configuration for the SRS to be transmitted by the wireless device in response to determining that the SRS bandwidth configuration change condition occurred comprises:
    determining whether the average CQI index value is less than or equal to the first CQI change value and greater than a second CQI change value in response to  determining that the average CQI index value is not greater than the first CQI change value;
    changing the bandwidth configuration for the SRS to be transmitted by the wireless device to a first different bandwidth configuration in response to determining that the average CQI index value is less than or equal to the first CQI change value and greater than the second CQI change value;
    determining whether the average CQI index value is less than or equal to the second CQI change value and greater than a third CQI change value in response to determining that the average CQI index value is not less than or equal to the first CQI change value and greater than the second CQI change value;
    changing the bandwidth configuration for the SRS to be transmitted by the wireless device to a second different bandwidth configuration in response to determining that the average CQI index value is less than or equal to the second CQI change value and greater than the third CQI change value; and
    changing the bandwidth configuration for the SRS to be transmitted by the wireless device to a third different bandwidth configuration in response to determining that the average CQI index value is not less than or equal to the second CQI change value and greater than the third CQI change value.
  4. The method of claim 3, wherein:
    the first different bandwidth configuration comprises an SRS-bandwidth (B SRS) value of one;
    the second different bandwidth configuration comprises a B SRS value of two; and
    the third different bandwidth configuration comprises a B SRS value of three.
  5. The method of claim 3, wherein:
    the first CQI change value is twelve;
    the second CQI change value is eight; and
    the third CQI change value is four.
  6. The method of claim 2, wherein the time period is one minute.
  7. The method of claim 2, wherein the network computing device is a base station.
  8. A network computing device, comprising:
    a processor configured with processor-executable instructions to:
    determine whether a sounding reference signal (SRS) bandwidth configuration change condition occurred, wherein the SRS bandwidth configuration change condition is based at least in part on a channel condition reported by a wireless device;
    change a bandwidth configuration for an SRS to be transmitted by the wireless device in response to determining that the SRS bandwidth configuration change condition occurred; and
    send an indication of the changed bandwidth configuration to the wireless device.
  9. The network computing device of claim 8, wherein the processor is further configured with processor-executable instructions to determine whether the SRS bandwidth configuration change condition occurred by:
    determining an average channel quality indicator (CQI) index value reported by the wireless device over a time period;
    determining whether the average CQI index value is greater than a first CQI change value; and
    determining that the SRS bandwidth configuration change condition occurred in response to determining that the average CQI index value is not greater than the first CQI change value.
  10. The network computing device of claim 9, wherein the processor is further configured with processor-executable instructions to change the bandwidth configuration for the SRS to be transmitted by the wireless device in response to determining that the SRS bandwidth configuration change condition occurred by:
    determining whether the average CQI index value is less than or equal to the first CQI change value and greater than a second CQI change value in response to determining that the average CQI index value is not greater than the first CQI change value;
    changing the bandwidth configuration for the SRS to be transmitted by the wireless device to a first different bandwidth configuration in response to determining that the average CQI index value is less than or equal to the first CQI change value and greater than the second CQI change value;
    determining whether the average CQI index value is less than or equal to the second CQI change value and greater than a third CQI change value in response to determining that the average CQI index value is not less than or equal to the first CQI change value and greater than the second CQI change value;
    changing the bandwidth configuration for the SRS to be transmitted by the wireless device to a second different bandwidth configuration in response to determining that the average CQI index value is less than or equal to the second CQI change value and greater than the third CQI change value; and
    changing the bandwidth configuration for the SRS to be transmitted by the wireless device to a third different bandwidth configuration in response to determining that the average CQI index value is not less than or equal to the second CQI change value and greater than the third CQI change value.
  11. The network computing device of claim 10, wherein the processor is further configured with processor-executable instructions such that:
    the first different bandwidth configuration comprises an SRS-bandwidth (B SRS) value of one;
    the second different bandwidth configuration comprises a B SRS value of two; and
    the third different bandwidth configuration comprises a B SRS value of three.
  12. The network computing device of claim 10, wherein the processor is further configured with processor-executable instructions such that:
    the first CQI change value is twelve;
    the second CQI change value is eight; and
    the third CQI change value is four.
  13. The network computing device of claim 9, wherein the processor is further configured with processor-executable instructions such that the time period is one minute.
  14. The network computing device of claim 9, wherein the network computing device is a base station.
  15. A non-transitory processor readable medium having stored thereon processor-executable instructions configured to cause a processor of a network computing device to perform operations comprising:
    determining whether a sounding reference signal (SRS) bandwidth configuration change condition occurred, wherein the SRS bandwidth configuration change condition is based at least in part on a channel condition reported by a wireless device;
    changing a bandwidth configuration for an SRS to be transmitted by the wireless device in response to determining that the SRS bandwidth configuration change condition occurred; and
    sending an indication of the changed bandwidth configuration to the wireless device.
  16. The non-transitory processor readable medium of claim 15, wherein the stored processor-executable instructions are further configured to cause a processor of a network computing device to perform operations such that determining whether the SRS bandwidth configuration change condition occurred comprises:
    determining an average channel quality indicator (CQI) index value reported by the wireless device over a time period;
    determining whether the average CQI index value is greater than a first CQI change value; and
    determining that the SRS bandwidth configuration change condition occurred in response to determining that the average CQI index value is not greater than the first CQI change value.
  17. The non-transitory processor readable medium of claim 16, wherein the stored processor-executable instructions are further configured to cause a processor of a network computing device to perform operations such that changing the bandwidth configuration for the SRS to be transmitted by the wireless device in response to determining that the SRS bandwidth configuration change condition occurred comprises:
    determining whether the average CQI index value is less than or equal to the first CQI change value and greater than a second CQI change value in response to determining that the average CQI index value is not greater than the first CQI change value;
    changing the bandwidth configuration for the SRS to be transmitted by the wireless device to a first different bandwidth configuration in response to determining  that the average CQI index value is less than or equal to the first CQI change value and greater than the second CQI change value;
    determining whether the average CQI index value is less than or equal to the second CQI change value and greater than a third CQI change value in response to determining that the average CQI index value is not less than or equal to the first CQI change value and greater than the second CQI change value;
    changing the bandwidth configuration for the SRS to be transmitted by the wireless device to a second different bandwidth configuration in response to determining that the average CQI index value is less than or equal to the second CQI change value and greater than the third CQI change value; and
    changing the bandwidth configuration for the SRS to be transmitted by the wireless device to a third different bandwidth configuration in response to determining that the average CQI index value is not less than or equal to the second CQI change value and greater than the third CQI change value.
  18. The non-transitory processor readable medium of claim 17, wherein the stored processor-executable instructions are further configured to cause a processor of a network computing device to perform operations such that:
    the first different bandwidth configuration comprises an SRS-bandwidth (B SRS) value of one;
    the second different bandwidth configuration comprises a B SRS value of two; and
    the third different bandwidth configuration comprises a B SRS value of three.
  19. The non-transitory processor readable medium of claim 17, wherein the stored processor-executable instructions are further configured to cause a processor of a network computing device to perform operations such that:
    the first CQI change value is twelve;
    the second CQI change value is eight; and
    the third CQI change value is four.
  20. The non-transitory processor readable medium of claim 16, wherein the stored processor-executable instructions are further configured to cause a processor of a network computing device to perform operations such that the time period is one minute.
  21. The non-transitory processor readable medium of claim 16, wherein the stored processor-executable instructions are configured for a processor of a base station.
  22. A network computing device, comprising:
    means for determining whether a sounding reference signal (SRS) bandwidth configuration change condition occurred, wherein the SRS bandwidth configuration change condition is based at least in part on a channel condition reported by a wireless device;
    means for changing a bandwidth configuration for an SRS to be transmitted by the wireless device in response to determining that the SRS bandwidth configuration change condition occurred; and
    means for sending an indication of the changed bandwidth configuration to the wireless device.
  23. The network computing device of claim 22, wherein means for determining whether the SRS bandwidth configuration change condition occurred comprise:
    means for determining an average channel quality indicator (CQI) index value reported by the wireless device over a time period;
    means for determining whether the average CQI index value is greater than a first CQI change value; and
    means for determining that the SRS bandwidth configuration change condition occurred in response to determining that the average CQI index value is not greater than the first CQI change value.
  24. The network computing device of claim 23, wherein means for changing the bandwidth configuration for the SRS to be transmitted by the wireless device in response to determining that the SRS bandwidth configuration change condition occurred comprise:
    means for determining whether the average CQI index value is less than or equal to the first CQI change value and greater than a second CQI change value in response to determining that the average CQI index value is not greater than the first CQI change value;
    means for changing the bandwidth configuration for the SRS to be transmitted by the wireless device to a first different bandwidth configuration in response to determining that the average CQI index value is less than or equal to the first CQI change value and greater than the second CQI change value;
    means for determining whether the average CQI index value is less than or equal to the second CQI change value and greater than a third CQI change value in response to determining that the average CQI index value is not less than or equal to the first CQI change value and greater than the second CQI change value;
    means for changing the bandwidth configuration for the SRS to be transmitted by the wireless device to a second different bandwidth configuration in response to determining that the average CQI index value is less than or equal to the second CQI change value and greater than the third CQI change value; and
    means for changing the bandwidth configuration for the SRS to be transmitted by the wireless device to a third different bandwidth configuration in response to determining that the average CQI index value is not less than or equal to the second CQI change value and greater than the third CQI change value.
  25. The network computing device of claim 24, wherein:
    the first different bandwidth configuration comprises an SRS-bandwidth (B SRS) value of one;
    the second different bandwidth configuration comprises a B SRS value of two; and
    the third different bandwidth configuration comprises a B SRS value of three.
  26. The network computing device of claim 24, wherein:
    the first CQI change value is twelve;
    the second CQI change value is eight; and
    the third CQI change value is four.
  27. The network computing device of claim 23, wherein the time period is one minute.
  28. The network computing device of claim 23, wherein the network computing device is a base station.
PCT/CN2020/098316 2020-06-26 2020-06-26 Dynamic srs configuration based on cqi in 5g network WO2021258392A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/098316 WO2021258392A1 (en) 2020-06-26 2020-06-26 Dynamic srs configuration based on cqi in 5g network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/098316 WO2021258392A1 (en) 2020-06-26 2020-06-26 Dynamic srs configuration based on cqi in 5g network

Publications (1)

Publication Number Publication Date
WO2021258392A1 true WO2021258392A1 (en) 2021-12-30

Family

ID=79282729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098316 WO2021258392A1 (en) 2020-06-26 2020-06-26 Dynamic srs configuration based on cqi in 5g network

Country Status (1)

Country Link
WO (1) WO2021258392A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019140639A1 (en) * 2018-01-19 2019-07-25 Lenovo (Beijing) Limited Method and apparatus for beam management
US20190281588A1 (en) * 2018-06-11 2019-09-12 Intel Corporation Enhanced uplink beam management
WO2020101780A2 (en) * 2019-08-16 2020-05-22 Futurewei Technologies, Inc. Methods and apparatus for signaling control information

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019140639A1 (en) * 2018-01-19 2019-07-25 Lenovo (Beijing) Limited Method and apparatus for beam management
US20190281588A1 (en) * 2018-06-11 2019-09-12 Intel Corporation Enhanced uplink beam management
WO2020101780A2 (en) * 2019-08-16 2020-05-22 Futurewei Technologies, Inc. Methods and apparatus for signaling control information

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical layer procedures for data (Release 15)", 3GPP DRAFT; R1-1720114, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 13 December 2017 (2017-12-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051370829 *

Similar Documents

Publication Publication Date Title
US11690081B2 (en) Bandwidth part (BWP) for unicast/multicast and resource allocation for multicast
US11671849B2 (en) Autonomous beam switching
WO2021258259A1 (en) Determining a channel state for wireless communication
US11805493B2 (en) Compressed DC location reporting scheme for UL CA
US11641642B2 (en) UE beam reselection procedure with CSI reporting and beam switch indication
WO2021055169A1 (en) Selective jamming detection based on comparing two or more signal measurement quantities
US11758513B2 (en) Physical uplink control channel with uplink message short data field
US11930494B2 (en) Managing transmit timing of data transmissions
US11751195B2 (en) Control signaling for multicast communications
WO2021184229A1 (en) Method to support entv broadcast and unicast modes in ue
WO2021258392A1 (en) Dynamic srs configuration based on cqi in 5g network
US11523404B2 (en) Radio link prioritization
US11743880B2 (en) UE beam switching synchronization
WO2021174435A1 (en) Managing a downlink bit rate
WO2022051985A1 (en) Managing a communication link for transfer control protocol communications
US11778545B2 (en) Coverage enhancement for initial access with feedback via PRACH sequence
US20230403732A1 (en) Managing Downlink Traffic Reception And Cross-Link Interference
WO2021253369A1 (en) Methods for managing network communication
WO2022165826A1 (en) Frames-per-second thermal management

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942426

Country of ref document: EP

Kind code of ref document: A1