WO2021237524A1 - 指纹识别装置和电子设备 - Google Patents

指纹识别装置和电子设备 Download PDF

Info

Publication number
WO2021237524A1
WO2021237524A1 PCT/CN2020/092667 CN2020092667W WO2021237524A1 WO 2021237524 A1 WO2021237524 A1 WO 2021237524A1 CN 2020092667 W CN2020092667 W CN 2020092667W WO 2021237524 A1 WO2021237524 A1 WO 2021237524A1
Authority
WO
WIPO (PCT)
Prior art keywords
identification device
fingerprint identification
layer
fingerprint
type
Prior art date
Application number
PCT/CN2020/092667
Other languages
English (en)
French (fr)
Inventor
袁晓龙
纪登鑫
姚国峰
沈健
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2020/092667 priority Critical patent/WO2021237524A1/zh
Publication of WO2021237524A1 publication Critical patent/WO2021237524A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition

Definitions

  • the embodiments of the present application relate to the field of fingerprint identification, and more specifically, to a fingerprint identification device and electronic equipment.
  • optical fingerprint identification devices brings users a safe and convenient user experience, but fingerprint molds and printed fingerprint images made of artificial materials (such as silica gel, white glue, etc.) are forged fingerprints in fingerprint applications. Hidden dangers. Therefore, how to identify the authenticity of the fingerprints collected by the optical fingerprint identification device to improve the security of fingerprint identification is an urgent problem to be solved.
  • artificial materials such as silica gel, white glue, etc.
  • the embodiments of the present application provide a fingerprint identification device and electronic equipment, which can improve the security of fingerprint identification.
  • a fingerprint identification device which is suitable for electronic equipment with a display screen, and is characterized in that it includes: an optical sensor including a pixel array, wherein the pixel array includes a plurality of first Pixel points of the first type and a plurality of pixels of the second type, the plurality of pixels of the first type and the plurality of pixels of the second type are used to receive light signals from a target above the display screen; plasmons
  • the filter layer is configured to be disposed above the plurality of second-type pixel points, the plasmon filter layer includes a plurality of filters, and each of the plurality of filters is The number is greater than or equal to 1, and a second type of pixel is correspondingly provided with a filter, each filter includes a metal layer with a preset pattern, and each filter is used to couple through The optical signal of a specific wavelength band in the optical signal of the target; wherein the intensity of the optical signal received by the plurality of second-type pixel points and the intensity of the optical signal received by at least
  • the reflection performance of human skin tissue to specific wavelengths of light is significantly different from artificial materials such as silica gel, paper, and tape.
  • the skin color of different races is mainly determined by the difference in melanin content, the light absorption cross-section of melanin for different wavelengths is different, and different races of skin color can be distinguished by the emission intensity of specific wavelength light. Therefore, this application can be received by the second type of pixels.
  • Some bands of optical signals can be used to identify true and false fingerprints.
  • different preset patterns are provided on the metal layer to form a plasmon filter layer.
  • Different preset patterns can transmit light signals of different wavelength bands, and different preset patterns can be drawn on a photomask, and then The effect of forming optical signals of different wavelength bands can be achieved by using a single photolithography process, which can reduce the number of photolithography processes and reduce process processing costs.
  • the present application forms a plasmon filter layer by etching a predetermined pattern on a metal layer, and the thickness of the metal layer can reach the nanometer scale, which can effectively reduce the thickness of the optical fingerprint identification device.
  • the plasmon filter layer formed by etching a predetermined pattern on the metal layer has better stability.
  • This application uses a designable plasmon filter layer, sets multiple filters to pass optical signals of multiple wavelengths, and uses a single-level filter layer to achieve the intensity collection of multiple optical signals, and multiple optical signals
  • the collection of fingerprints enhances the accuracy of fingerprint anti-counterfeiting.
  • other light signals in the absorption peak band of hemoglobin can be added to identify true and false fingerprints.
  • the collection of multiple light signals can increase the range of anti-counterfeiting and improve the accuracy of judgment.
  • one or more filters can be flexibly used according to different application scenarios, but the traditional filter layer cannot achieve low-cost and high-quality implementation of multiple filters.
  • the plasmon filter layer Since the plasmon filter layer is used, multiple optical signals can be transmitted through a single photolithography, and the multiple optical signals can be used for true and false fingerprint identification, and the method of true and false fingerprint identification through multiple optical signals It is conducive to improving the accuracy of anti-counterfeiting judgments, improving the accuracy of fingerprint recognition, and will not have a great impact on the process and cost.
  • the preset pattern is a small hole array or grating.
  • the shape of the small holes in the small hole array is a circle, a quadrilateral, a triangle, an ellipse, or a hexagon.
  • the spatial distribution of the small holes in the small hole array is a square, an equilateral triangle, or an equilateral hexagon.
  • the equilateral triangle or equilateral hexagon structure has a greater density of adjacent holes, which can improve the color purity and transmittance, and the equilateral triangle or equilateral hexagon structure can also reduce the influence of the filtering effect with polarization.
  • the metal layer includes a first metal layer and a second metal layer disposed under the first metal layer, and presets on the first metal layer and the second metal layer The pattern remains consistent.
  • the optical filter further includes a first dielectric layer, the first dielectric layer is disposed between the first metal layer and the second metal layer, and the preset pattern is The structure penetrates the first metal layer, the first dielectric layer and the second metal layer.
  • the filter effect of the filter formed by the metal layer-dielectric layer-metal layer designed with a specific geometric pattern and size will not change with the angle of the incident light signal.
  • the refractive index of the first dielectric layer is the same as the refractive index of the second dielectric layer disposed under the second metal layer.
  • the material forming the metal layer includes at least one of the following: aluminum, gold, silver, platinum, copper, nickel, zinc, iron, chromium, molybdenum, some non-metallic conductive materials are also It can be used in this application, such as doped semiconductors, carbon nanotubes, fullerenes, conductive plastics and conductive composite materials.
  • the second dielectric layer is further included, and the metal layer is deposited on the upper surface of the second dielectric layer by at least one of sputtering, chemical vapor deposition, and physical vapor deposition.
  • the material forming the second dielectric layer includes at least one of the following: glass, fused silica, silicon oxide, silicon nitride, silicon oxynitride, lithium fluoride, aluminum oxide , Zinc selenide, zinc oxide, titanium oxide.
  • the preset pattern is filled with a first material, and the refractive index of the first material is the same as the refractive index of the second medium layer.
  • it further includes a third dielectric layer, the third dielectric layer is disposed on the upper surface of the plasmon filter layer, the refractive index of the third dielectric layer, the first The refractive index of the material and the refractive index of the second dielectric layer are the same.
  • the refractive index of the three By setting the refractive index of the three to be the same, the color purity of the optical signal can be improved.
  • the first material, the material forming the second dielectric layer, and the material forming the third dielectric layer are all the same.
  • a waveguide layer is further included, and the waveguide layer is disposed under the second dielectric layer.
  • the full width at half maximum of the transmission spectrum can be effectively reduced.
  • the narrower the full width at half maximum of the spectrum the better the monochromaticity of the spectrum. Therefore, the provision of the waveguide layer is beneficial to improve the monochromaticity of the spectrum.
  • the waveguide layer and the plasmon filter layer are integrated in the fingerprint sensor.
  • the plasmon filter layer is integrated in the fingerprint sensor.
  • the fingerprint sensor includes a metal wiring layer, the metal wiring layer is disposed above the pixel array, the metal wiring layer is provided with an array of openings, and the The openings have a one-to-one correspondence with the pixel points in the pixel array, the opening array is used to guide the optical signal from the target to the pixel array, and the plasmon filter layer is arranged at Between the metal wiring layer and the pixel array.
  • the optical signal coupled through the plasmon filter layer includes at least one of the following: a red optical signal, a green optical signal, a blue optical signal, an optical signal in the 420nm band, and a 580nm band Light signal.
  • This application can add more characteristic spectral detection points, such as the hemoglobin absorption peaks of 420nm and 580nm. Since more spectral detection points with biological characteristics are added, the anti-counterfeiting ability of optical fingerprint recognition can be improved. Especially flesh-colored artificial materials simulate fingerprint recognition.
  • the plasmon filter layer is disposed in an area corresponding to the middle area of the fingerprint sensor.
  • an infrared filter layer is further included, which is disposed above the pixel array, and is used to filter the infrared light signal from the light signal from the target.
  • the infrared filter layer is a multilayer film medium infrared filter layer.
  • the infrared filter layer is a plasmon infrared filter layer.
  • the infrared filter layer is disposed above the fingerprint sensor through packaging and bonding technology.
  • a light guide structure is further included, and the light guide structure is used to guide the light signal from the target to the pixel array of the fingerprint sensor.
  • the light guide structure includes a collimator array, or the light guide structure includes a microlens array and at least one light blocking layer disposed under the microlens array.
  • the light guide structure is disposed above the plasmon filter layer.
  • the plurality of second-type pixel points include a pixel point a and a pixel point b, the pixel point a and the pixel point b are adjacent, and the pixel point a and the pixel point b are adjacent to each other.
  • the light signal received at point b is different.
  • the area between adjacent filters is air or is provided with light-transmitting materials, and the plurality of first-type pixel points are used to receive the return from the target and pass through the adjacent filter.
  • the optical signal of the area between the optical devices is air or is provided with light-transmitting materials, and the plurality of first-type pixel points are used to receive the return from the target and pass through the adjacent filter.
  • the light signals received by the plurality of pixels of the first type are used to generate fingerprint information of the target.
  • a processor is further included, which is configured to, according to the intensity of the light signal received by each second-type pixel point, and at least one first-type pixel point adjacent to each second-type pixel point The intensity of the received light signal determines whether the target is a real finger.
  • the electronic device further includes a processor, the processor is configured to, according to the intensity of the light signal received by each second-type pixel point, and the light signal adjacent to each second-type pixel point The intensity of the light signal received by at least one pixel of the first type determines whether the target is a real finger.
  • the light signals received by the second-type pixel point and the adjacent at least one first-type pixel point all come from fingerprint ridges or both come from fingerprint valleys.
  • the processor is configured to: determine according to the intensity of the optical signal received by each second-type pixel and the intensity of the optical signal received by the at least one adjacent first-type pixel The relative light intensity of each second-type pixel point; according to the relative light intensity and relative light-intensity range of each second-type pixel point, it is determined whether the target is a real finger.
  • the processor is configured to: compare the intensity of the light signal received by each second-type pixel point and the intensity of the light signal received by the at least one adjacent first-type pixel point at least A ratio is determined as the relative light intensity of each pixel of the second type.
  • the processor is further configured to: determine the number of pixels of the second type whose relative light intensity is within the relative light intensity range; and determine whether the target is a real finger according to the number .
  • the processor is further configured to: if the number is greater than or equal to a certain number threshold, or the ratio of the number to the total number of pixels of the second type is greater than or equal to a certain ratio threshold , Determine that the target is a real finger; or if the number is less than the specific number threshold, or if the ratio of the number to the total number of pixels of the second type is less than the specific ratio threshold, determine that the target is Fake finger.
  • the processor is further configured to: determine the specific ratio threshold or the specific number threshold according to the security level of the operation that triggers fingerprint recognition and the first corresponding relationship, wherein the first The corresponding relationship is the corresponding relationship between the security level and the ratio threshold or the quantity threshold.
  • the first security level corresponds to a first proportional threshold or a first number threshold
  • the second security level corresponds to a second proportional threshold or a second number threshold
  • the first security level is higher than the second security level
  • the first ratio threshold is greater than the second ratio threshold
  • the first number threshold is greater than the second number threshold
  • the processor is further configured to: determine the relative light intensity range according to the security level of the fingerprint recognition operation triggering and the second correspondence, where the second correspondence is the security level Correspondence with relative light intensity range.
  • the first security level corresponds to the first light intensity range
  • the second security level corresponds to the second light intensity range, wherein the first security level is higher than all the light intensity ranges.
  • the difference between the upper and lower limits of the first light intensity range is smaller than the difference between the upper and lower limits of the second light intensity range.
  • the processor is further configured to: determine the relative light intensity range according to the position of the finger from which the light signal received by the second-type pixel point comes from, wherein the fingerprint ridge and the fingerprint valley respectively correspond to Different relative light intensity ranges.
  • the processor is further configured to: determine according to the intensity of the light signal from the real finger collected multiple times by the plurality of pixels of the first type and the plurality of pixels of the second type The relative light intensity range.
  • the processor is further configured to: in the case where the fingerprint information of the target matches the fingerprint information of the prestored target, and the target is a real finger, determine that the fingerprint authentication is successful .
  • an electronic device including a display screen, and a fingerprint identification device as in any possible implementation of the first aspect.
  • the fingerprint identification device is arranged below the display screen.
  • FIG. 1 is a schematic diagram of a structure of an electronic device to which an embodiment of the present application is applied.
  • FIG. 2 is a schematic diagram of another structure of an electronic device to which an embodiment of the present application is applicable.
  • Fig. 3 is a schematic diagram of a fingerprint identification device provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a distribution mode of preset patterns provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of a grating provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of another grating provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of different optical signals formed by changing the period of the small holes according to an embodiment of the present application.
  • FIGS. 8 and 9 are schematic structural diagrams of a filter structure provided by an embodiment of the present application.
  • FIGS. 10-14 are schematic structural diagrams of a fingerprint identification device provided by an embodiment of the present application.
  • FIG. 15 and FIG. 16 are schematic diagrams of the distribution mode of the second type of pixel points provided by the embodiment of the present application.
  • FIG. 17 is a schematic block diagram of an electronic device provided by an embodiment of the present application.
  • the photosensitive devices in electronic products such as fingerprint recognition and front camera will also be placed under the screen.
  • the most widely used under-screen fingerprint recognition technology is the under-screen optical fingerprint recognition technology. Due to the particularity of the under-screen optical fingerprint device, it is required that the light with fingerprint signal can be transmitted through the screen to the fingerprint sensor below to obtain the fingerprint signal.
  • embodiments of the present application can be applied to optical fingerprint systems, including but not limited to optical fingerprint identification systems and medical diagnostic products based on optical fingerprint imaging.
  • the embodiments of the application constitute any limitation, and the embodiments of the application are also applicable to other systems using optical imaging technology.
  • the optical fingerprint system provided by the embodiments of this application can be applied to portable or mobile computing devices such as smart phones, tablet computers, and gaming devices, as well as electronic databases, automobiles, and automated teller machines (ATMs) in banks. ) And other electronic equipment, but the embodiments of this application are not limited to this.
  • the embodiments of this application can be applied to other mobile terminals with display screens or other electronic equipment; more specifically, in the above electronic equipment, the fingerprint identification device can be Specifically, it is an optical fingerprint device, which can be arranged in a partial area or all of the area below the display screen to form an under-display optical fingerprint system. Alternatively, the fingerprint identification device can also be partially or fully integrated into the display screen of the electronic device, thereby forming an in-display optical fingerprint system.
  • FIG. 1 and FIG. 2 show two schematic diagrams of the structure of an electronic device to which the embodiments of this application can be applied, wherein FIG. 1 is a top view, and FIG. 2 is a side view.
  • the electronic device 10 includes a display screen 120 and an optical fingerprint device 130, wherein the optical fingerprint device 130 is disposed in a partial area under the display screen 120.
  • the optical fingerprint device 130 includes an optical fingerprint sensor, and the optical fingerprint sensor includes a sensing array 133 having a plurality of optical sensing units 131, and the area where the sensing array is located or its sensing area is the fingerprint detection area 103 corresponding to the optical fingerprint device 130. As shown in FIG. 1, the fingerprint detection area 103 is located in the display area of the display screen 120.
  • the optical fingerprint device 130 can also be arranged in other positions, such as the side of the display screen 120 or the non-transmissive area on the edge of the electronic device 10, and the optical fingerprint device 130 can be designed to prevent the display screen 120 from being transparent. At least part of the optical signal of the display area is guided to the optical fingerprint device 130, so that the fingerprint detection area 103 is actually located in the display area of the display screen 120.
  • the area of the fingerprint detection area 103 may be different from the area of the sensing array of the optical fingerprint device 130.
  • the reflective folding optical path design, or other optical path design such as light convergence or reflection, it can make
  • the area of the fingerprint detection area 103 corresponding to the optical fingerprint device 130 is larger than the area of the sensing array of the optical fingerprint device 130.
  • the fingerprint detection area 103 corresponding to the optical fingerprint device 130 may also be designed to be substantially the same as the area of the sensing array of the optical fingerprint device 130.
  • the electronic device 10 adopting the above structure does not need to reserve space on its front to set fingerprint buttons (such as the Home button), so that a full-screen solution can be adopted, that is, the display area of the display screen 120 can be It basically extends to the front of the entire electronic device 10.
  • the optical fingerprint device 130 includes a light detecting portion 134 and an optical component 132.
  • the light detecting portion 134 includes a sensing array and a reading circuit electrically connected to the sensing array.
  • auxiliary circuits which can be fabricated on a chip (Die) by semiconductor technology, such as an optical imaging chip or an optical fingerprint sensor.
  • the sensing array is specifically a photodetector array, which includes a plurality of arrays distributed
  • the optical detector can be used as the above-mentioned optical sensing unit; the optical component 132 can be arranged above the sensing array of the light detecting part 134, and it can specifically include a filter layer, a light guide layer or Optical path guiding structure and other optical elements, the filter layer can be used to filter out the ambient light penetrating the finger, and the light guiding layer or optical path guiding structure is mainly used to guide the light returned from the finger to the sensing array Optical inspection.
  • the optical assembly 132 and the light detecting part 134 may be packaged in the same optical fingerprint component.
  • the optical component 132 and the optical detection part 134 can be packaged in the same optical fingerprint chip, or the optical component 132 can be arranged outside the chip where the optical detection part 134 is located, for example, the optical component 132 can be attached to the Above the chip, or part of the components of the optical assembly 132 are integrated into the above-mentioned chip.
  • the light guide layer or light path guiding structure of the optical component 132 has multiple implementation schemes.
  • the light guide layer of the optical component 132 may specifically be a collimator layer made on a semiconductor silicon wafer. It has a plurality of collimating units or micro-hole arrays.
  • the collimating unit can be specifically a small hole.
  • the reflected light reflected from the finger the light that is perpendicularly incident on the collimating unit can pass through and be sensed by the optics below it.
  • the unit receives, and the light whose incident angle is too large is attenuated by multiple reflections inside the collimating unit. Therefore, each optical sensor unit can basically only receive the reflected light reflected by the fingerprint pattern directly above it.
  • the array can detect the fingerprint image of the finger.
  • the light guide layer or the light path guide structure may also be an optical lens (Lens) layer, which has one or more lens units, such as a lens group composed of one or more aspheric lenses.
  • the component 132 may include a lens for converging the reflected light reflected from the finger to the sensing array of the light detecting portion 134 below it, so that the sensing array can perform imaging based on the reflected light, thereby obtaining the fingerprint of the finger image.
  • the optical lens layer may further have a pinhole formed in the optical path of the lens unit, and the pinhole may cooperate with the optical lens layer to expand the field of view of the optical fingerprint device, so as to improve the fingerprint imaging of the optical fingerprint device 130 Effect.
  • the light guide layer or the light path guide structure may also specifically adopt a micro-lens (Micro-Lens) layer.
  • the micro-lens layer has a micro-lens array formed by a plurality of micro-lens, which can be obtained through a semiconductor growth process or Other processes are formed above the sensing array of the light detecting part 134, and each microlens may correspond to one of the sensing units of the sensing array.
  • other optical film layers may be formed between the microlens layer and the sensing unit, such as a dielectric layer or a passivation layer. More specifically, a barrier with microholes may also be formed between the microlens layer and the sensing unit.
  • the light blocking layer can block the optical interference between the adjacent microlens and the sensing unit, and allow the light corresponding to the sensing unit to pass through the
  • the micro lens is converged into the micro hole and is transmitted to the sensing unit through the micro hole to perform optical fingerprint imaging.
  • the optical fingerprint device 130 may only include one optical fingerprint sensor.
  • the fingerprint detection area 103 of the optical fingerprint device 130 has a small area and a fixed position. Therefore, when the user performs fingerprint input It is necessary to press the finger to a specific position of the fingerprint detection area 103, otherwise the optical fingerprint device 130 may not be able to collect fingerprint images, resulting in poor user experience.
  • the optical fingerprint device 130 may specifically include a plurality of optical fingerprint sensors; the plurality of optical fingerprint sensors may be arranged side by side under the display screen 120 in a splicing manner, and the sensing of the plurality of optical fingerprint sensors The areas collectively constitute the fingerprint detection area 103 corresponding to the optical fingerprint device 130.
  • the fingerprint detection area 103 corresponding to the optical fingerprint device 130 may include multiple sub-areas, and each sub-area corresponds to the sensing area of one of the optical fingerprint sensors, so that the fingerprint detection area 103 of the optical fingerprint module 130 It can be extended to the main area of the lower half of the display screen, that is, to the area where the finger is habitually pressed, so as to realize the blind fingerprint input operation.
  • the fingerprint detection area 103 can also be extended to half of the display area or even the entire display area, thereby realizing half-screen or full-screen fingerprint detection.
  • the electronic device 10 further includes a transparent cover 110, or referred to as a transparent protective cover 110.
  • the cover 110 may be a glass cover or a sapphire cover, which is located on the display screen 120. Above and cover the front of the electronic device 10. Because, in the embodiment of the present application, the so-called finger pressing on the display screen 120 actually refers to pressing the cover plate 110 above the display screen 120 or covering the surface of the protective layer of the cover plate 110.
  • the display screen 120 in the embodiment of the present application may adopt a display screen with a self-luminous display unit, such as an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display screen or a micro-LED (Micro-LED) display screen .
  • a self-luminous display unit such as an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display screen or a micro-LED (Micro-LED) display screen .
  • OLED Organic Light-Emitting Diode
  • the optical fingerprint device 130 can use the display unit (ie, an OLED light source) of the OLED display screen 120 located in the fingerprint detection area 103 as an excitation light source for optical fingerprint detection.
  • the display screen 120 emits a beam of light 111 to the target finger 140 above the fingerprint detection area 103.
  • the light 111 is reflected on the surface of the finger 140 to form reflected light or passes through the finger 140. Scattered internally to form scattered light
  • the display screen 120 may also be a non-self-luminous display screen, such as a backlit liquid crystal display screen; in this case, the optical detection device 130 cannot use the display screen 120.
  • the display unit is used as an excitation light source, so it is necessary to integrate an excitation light source inside the optical detection device 130 or set an excitation light source outside it to achieve optical fingerprint detection.
  • the detection principle is consistent with the content described above.
  • the above-mentioned reflected light and scattered light are collectively referred to as reflected light. Since the ridge and valley of the fingerprint have different light reflection capabilities, the reflected light 151 from the fingerprint ridge 141 and the generated 152 from the fingerprint valley 142 have different light intensities, and the reflected light passes through the optical component 132. Then, it is received by the sensor array 134 in the optical fingerprint device 130 and converted into a corresponding electrical signal, that is, a fingerprint detection signal; based on the fingerprint detection signal, fingerprint image data can be obtained, and fingerprint matching verification can be further performed, so that The electronic device 10 implements an optical fingerprint recognition function.
  • the technical solution of the embodiment of the present application can also perform other biometric recognition, for example, palmprint recognition or vein recognition, which is not limited in the embodiment of the present application.
  • optical fingerprint device in the embodiments of the present application may also be referred to as an optical fingerprint recognition module, a fingerprint recognition device, a fingerprint recognition module, a fingerprint module, a fingerprint acquisition device, etc., and the above terms can be replaced with each other.
  • the embodiment of the present application provides an optical fingerprint identification solution with anti-counterfeiting function.
  • the pixel array of the fingerprint identification device includes ordinary pixels and a certain number of characteristic pixels. Among them, the number of characteristic pixels should not match the ordinary ones. Pixels have a greater impact on fingerprint imaging of fingers.
  • the characteristic pixel point may be composed of a light guide layer, a light filter layer, a sensing unit, and other optical elements, and the ordinary pixel point may be composed of a light guide layer, a sensing unit, and other optical elements. Therefore, for the same optical signal, the intensity of the optical signal detected by the characteristic pixel is lower than the intensity of the optical signal detected by the adjacent ordinary pixel.
  • the intensity difference is different for different materials, it can be based on the characteristic pixel and the ordinary pixel.
  • the intensity difference of the detected light signal determines the authenticity of the fingerprint, that is, whether the fingerprint comes from a living finger, that is, the fingerprint identification solution of the embodiment of the present application can be used for living detection.
  • the optical component 132 and the light detecting part 134 may be packaged in the same optical fingerprint module.
  • the optical component 132 may include a light guide layer, and the light guide layer may specifically be a collimator layer fabricated on a semiconductor silicon wafer, and the collimator layer may include a plurality of collimator units, so The collimating unit may specifically be a small hole with a certain aspect ratio; or the light guide layer may be a micro-lens layer, and the micro-lens layer may include a micro-lens array.
  • the color filter is manufactured by doping organic dyes in light-transmitting materials.
  • Multi-time photolithography such as arranging a red filter layer, a green filter layer, and a blue filter layer on different pixels of the photosensitive unit array, requires three photolithography, which has a higher manufacturing cost.
  • the thickness of the traditional organic pigment filter layer is on the order of micrometers, which brings certain difficulties to the realization of ultra-thin optical fingerprint identification devices.
  • the traditional organic dye filter layer also has the problems of chemical and temperature instability.
  • the embodiment of the present application provides a fingerprint identification device.
  • the filter layer in the fingerprint identification device is beneficial to reduce the thickness of the fingerprint identification device.
  • the filter layer has better stability.
  • the fingerprint identification device in the embodiment of this application can be applied to the under-screen fingerprint identification technology, that is, the fingerprint identification device can be installed under the display screen.
  • the embodiment of the application is not limited to this, and the fingerprint identification device can also be provided Inside the display.
  • the fingerprint identification device includes an optical sensor and a plasmon filter layer 310.
  • the optical sensor includes a pixel array 320, wherein the pixel array includes a plurality of pixels of the first type and a plurality of pixels of the second type, and a plurality of pixels of the first type and a plurality of pixels of the second type are used for receiving The light signal of the upper target.
  • the plasmon filter layer is used to be disposed above the plurality of second-type pixel points, the plasmon filter layer may include a variety of filters, and each of the multiple filters filters.
  • the number of optical devices is greater than or equal to 1, and a filter is correspondingly arranged above a second-type pixel point.
  • Each type of optical filter includes a metal layer with a preset pattern, and each type of optical filter is used to couple through a specific wavelength band of the optical signal from the target.
  • the types of filters in the embodiments of the present application may be classified according to different preset patterns, and filters with the same preset pattern belong to a kind of filters.
  • the plasmon filter layer in the embodiment of the present application may include multiple filters, and the multiple filters and the multiple second-type pixels may have a one-to-one correspondence, and one second-type pixel corresponds to One filter and one second type pixel are used to receive the light signal returned from the target and passed through the corresponding filter.
  • the optical filter in the embodiment of the present application may also be referred to as a plasmon filter.
  • the preset patterns on different second-type pixel points may be the same or different.
  • the intensity of the light signal received by the plurality of second-type pixel points and the intensity of the light signal received by at least one adjacent first-type pixel point are used to determine whether the target is a real finger.
  • the first type of pixels can be used to receive light signals from the target, and the light signals received by the first type of pixels can be used to generate fingerprint information of a finger.
  • the embodiment of the present application can perform fingerprint image matching according to the light signal received by the first type of pixel points.
  • the embodiment of the present application can utilize the coupling resonance effect of the optical signal and the plasmon on the surface of the metal layer to transmit the optical signal of a special wavelength band.
  • the fingerprint recognition light signal may be coupled with plasmons to transmit the light signal of a specific wavelength band in the light signal from the target.
  • the optical signal of a specific wavelength band can be an optical signal of a certain wavelength range or an optical signal of a certain wavelength.
  • the pixels in the embodiments of the present application may be referred to as photosensitive cells, which may be implemented based on complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS) technology or charge coupled device (Charge Coupled Device, CCD) technology.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge Coupled Device
  • the preset pattern in this application may be a pattern with a sub-wavelength periodic distribution on the metal layer, or the preset pattern may be a pattern with a sub-wavelength scale.
  • Different preset patterns can be coupled to light signals of different wavebands, and different preset patterns can be drawn on a photomask, and then a photolithography process can be used to achieve the effect of forming light signals of different wavebands. This method can Reduce the number of photoetching processes and reduce the cost of process processing.
  • a plasmon filter layer is formed by etching a predetermined pattern on a metal layer, and the thickness of the metal layer can reach the nanometer scale, which can effectively reduce the thickness of the optical fingerprint identification device.
  • the plasmon filter layer formed by etching a predetermined pattern on the metal layer has better stability.
  • This application uses a designable plasmon filter layer, sets multiple filters to pass optical signals of multiple wavelengths, and uses a single-level filter layer to achieve the intensity collection of multiple optical signals, and multiple optical signals
  • the collection of fingerprints enhances the accuracy of fingerprint anti-counterfeiting.
  • other light signals in the absorption peak band of hemoglobin can be added to identify true and false fingerprints.
  • the collection of multiple light signals can increase the range of anti-counterfeiting and improve the accuracy of judgment.
  • one or more filters can be flexibly used according to different application scenarios, but the traditional filter layer cannot achieve low-cost and high-quality implementation of multiple filters.
  • the plasmon filter layer Since the plasmon filter layer is used, multiple optical signals can be transmitted through a single photolithography, and the multiple optical signals can be used for true and false fingerprint identification, and the method of true and false fingerprint identification through multiple optical signals It is beneficial to improve the accuracy of anti-counterfeiting judgment and fingerprint recognition accuracy, and will not affect the thickness, processing technology and cost of the fingerprint device.
  • the plasmon filter layer may be provided only on the second type of pixels, and the first type of pixels may be air or filled with a transparent medium.
  • the plasmon filter layer includes a plurality of filters, and the area between adjacent filters is air or filled with a transparent medium.
  • the first type of pixels can be used to receive light signals from the target and passing through the area between adjacent filters.
  • FIGs in Figure 4 (a), (b), (c), and (d) can be understood as a plasmon filter.
  • a plasmon filter is provided with a preset pattern, and the area between adjacent plasmon filters is air or filled with a transparent medium.
  • the embodiments of the present application do not specifically limit the material of the so-called metal layer. Generally, it is a metal material, but in some embodiments, it is sufficient as long as the material is a conductive material.
  • the material of this layer can be other conductive non-metallic materials.
  • the material of the layer may be at least one of the following metal materials: aluminum (Al), gold (Au), silver (Ag), platinum (Pt), copper (Cu), nickel (Ni), zinc ( Zn), iron (Fe), chromium (Cr), molybdenum (Mo), or may be at least one of the following non-metallic materials: doped semiconductors, carbon nanotubes, fullerenes, conductive plastics, and conductive composite materials.
  • the embodiment of the present application does not specifically limit the shape of the preset pattern, as long as the optical signal passing through the preset pattern can achieve a certain optical filtering effect.
  • the preset pattern may be a small hole array or grating.
  • the shape of the small holes in the small hole array can be various, which is not specifically limited in the embodiment of the present application.
  • the shape of the small hole may be a circle, a quadrilateral, a triangle, an ellipse, or a hexagon.
  • the shape of the small hole can also be other shapes, for example, an octagonal shape.
  • the shape of the small hole may be a circle, an equilateral triangle, a square, or an equilateral hexagon.
  • the circular hole array in Figure 4 (a) represents a preset pattern
  • the triangular hole array in (b) represents a preset pattern
  • the hexagonal hole array in (c) represents one
  • the quadrilateral small hole array in the figure (d) represents a preset pattern.
  • a preset pattern can be set above a second-type pixel point.
  • the shape of the small holes in each preset pattern remains the same, but the shape of the small holes in different preset patterns may be different.
  • the at least one preset pattern includes a first preset pattern and a second preset pattern, the first preset pattern is an array of circular small holes, and the second preset pattern is an array of triangular small holes.
  • the small hole array and grating in the embodiment of the present application can be used in combination.
  • the at least one preset pattern includes a first preset pattern and a second preset pattern, the first preset pattern is an array of small holes, and the second preset pattern is a grating.
  • the spatial distribution of the small holes in the small hole array can be in many ways, and the embodiment of the present application does not specifically limit this.
  • the spatial distribution of the small holes can be quadrilateral, triangle, hexagon, circle, ellipse, etc.
  • the small holes can be distributed in a quadrangular (such as a square) dot matrix. As shown by the dotted line in Figure 4 (a), the small holes can be distributed in an m ⁇ n matrix. As another example, two rows of small holes can be distributed in a staggered arrangement. As shown in (b)(c)(d) in Figure 4, the small holes can be distributed in an equilateral triangle (or called an equilateral hexagon), as shown in Figure (b)(c)(d) Shown by the dotted line in.
  • the intensity of the transmitted light and the color purity are proportional to the number of the nearest adjacent holes or the density of adjacent holes. Therefore, in order to improve the color purity and transmittance, the adjacent hole density must be increased. As shown in FIG. 4, the equilateral triangle lattice has a greater density of adjacent holes than the quadrilateral lattice. Therefore, the embodiment of the present application preferably adopts an equilateral triangle lattice for distribution.
  • the use of equilateral triangle dot matrix distribution can also reduce the influence of the filtering effect with polarization, and the filtering effect can include transmission spectrum and transmittance.
  • the filter can be formed by etching on a metal layer, as shown in Figure 5; the filter can also be formed by etching on a multi-layer metal layer, as shown in Figure 6, the implementation of this application
  • the metal layer may include a first metal layer and a second metal layer.
  • the preset patterns etched on the first metal layer and the second metal layer are consistent, and the preset patterns may be a pinhole array or a grating.
  • the optical filter is formed by etching a metal pattern on the metal layer 410, and the metal pattern may be a grating.
  • FIG. 5(a) is a cross-sectional view of the plasmon filter
  • FIG. 5(b) is a top view of the plasmon filter.
  • the plasmon filter layer in the embodiment of the present application may include a plurality of plasmon filters shown in FIG. 5 or FIG. 6.
  • the W, H, P and other parameters in different plasmon filters can be different to couple optical signals passing through different wavelength bands, and the specific optical signal for passing through which wavelength band can be selected according to actual requirements.
  • the metal layer includes a first metal layer 510 and a second metal layer 520, and the opening regions or groove regions on the first metal layer 510 and the second metal layer 520 are aligned.
  • a first dielectric layer 530 may also be disposed between the first metal layer 510 and the second metal layer 520, and the preset pattern is a structure that penetrates the first metal layer 510, the first dielectric layer 530, and the second metal layer 520.
  • the preset pattern is a small hole array
  • the small holes in the small hole array are the through hole structure on the first metal layer 510, the first dielectric layer 530, and the second metal layer 520, as shown in (a ) As shown in the figure.
  • the small holes in the small hole array are only patterns provided on the first metal layer 510 and the second metal layer 520, and do not penetrate the first dielectric layer 530, as shown in FIG. 6(b).
  • the above structure can also be referred to as a metal layer-dielectric layer-metal layer structure.
  • the refractive index of the first dielectric layer 530 is the same as the refractive index of the second dielectric layer 540 disposed under the bottommost metal layer.
  • the metal layer includes a first metal layer 510 and a second metal layer 520.
  • the first metal layer 510 is disposed above the first dielectric layer 530
  • the first dielectric layer 530 is disposed above the second metal layer 520. That is, the second metal layer 520 is the bottom metal layer.
  • the second metal layer 520 is disposed above the second medium layer 540, and the refractive index of the second medium layer 540 can be the same as the refractive index of the first medium layer 530, so that the monochromaticity of the optical signal can be improved.
  • the above-mentioned metal layer-dielectric layer-metal layer structure can be designed for specific geometric dimensions of the wavelength of the incident light to suppress the surface plasmon mode of the coupled light, and in turn excite the plasmon mode. Therefore, the filter effect of the filter layer formed by this structure will not change with the angle of the incident light signal. In other words, the wavelength band of the optical signal filtered by the filter layer does not change with the angle of the incident optical signal.
  • the optical signal coupled through the preset pattern may be associated with at least one of the following, that is, the optical signal coupled through the preset pattern is determined according to at least one of the following : The depth of the small hole, the diameter of the small hole, the period of the small hole, the type of the material forming the metal layer, the type of the dielectric layer adjacent to the metal layer, the material filled at the opening, the two layers of metal in the metal layer The distance between the layers.
  • d represents the diameter of the small hole
  • P represents the period of the small hole.
  • the aperture period can be understood as the minimum repeat distance between adjacent apertures.
  • the dielectric layer adjacent to the metal layer means the dielectric layer adjacent to the metal layer.
  • the optical signal coupled through the preset pattern is associated with at least one of the following, that is, the optical signal coupled through the preset pattern is determined according to at least one of the following: Groove depth, groove width, groove period, type of material forming the metal layer, type of dielectric layer adjacent to the metal layer, material filled at the groove, distance between two metal layers in the metal layer .
  • H represents the groove depth
  • W groove width W groove width
  • P groove period P groove period
  • L represents the distance between the two metal layers.
  • the wavelength of the optical signal coupled through the preset pattern can be determined according to the following formula:
  • P represents the period of the small holes
  • ⁇ m represents the dielectric constant of the metal layer
  • ⁇ d represents the dielectric constant of the dielectric adjacent to the metal layer
  • i and j represent the diffraction orders of the preset pattern.
  • the material of the metal layer is aluminum
  • the thickness of the metal layer is about 100nm
  • the dielectric material of the adjacent metal layer is silicon dioxide
  • the preset pattern is an array of circular holes
  • the holes are arranged in regular hexagonal spaces, with a period between the holes 250nm, the diameter of the small hole is 150nm, and the central wavelength of the transmission spectrum of the plasmon filter layer is about 450nm.
  • FIG. 7 shows a series of plasmon filter layers of optical signals of different wavelengths obtained by changing the period of the small holes, and the range can cover ultraviolet to near infrared.
  • the plasmon filter layer may also be called a color filter layer or a color filter layer.
  • the optical signal coupled through the plasmon filter layer may be an optical signal of multiple wavebands, and the optical signal may be an optical signal of any waveband in the fingerprint identification optical signal.
  • the optical signal coupled through the plasmon filter layer may include at least one of the following: a red optical signal, a green optical signal, a blue optical signal, an optical signal in the 420 nm band, and an optical signal in the 580 nm band.
  • the optical signal coupled through the plasmon filter layer is not limited to the above-mentioned optical signal, and the specific wavelength can be designed and selected according to actual needs.
  • the embodiments of the present application can also provide a filter layer with any central wavelength in the visible light band, such as the hemoglobin absorption peaks of 420 nm and 580 nm, which can improve fingerprint anti-counterfeiting performance. As more spectral detection points with biological characteristics are added, the anti-counterfeiting ability of optical fingerprint recognition can be improved, especially the recognition of artificial fingerprints with flesh-colored artificial materials.
  • the embodiments of the present application can also be used. After integrating a variety of filters in the fingerprint identification device, the accuracy of anti-counterfeiting can be improved.
  • the embodiments of the present application can also flexibly select the types of filters according to different application scenarios. For example, in a payment scenario, in order to ensure the security of the user’s property, a variety of filters can be used to identify true and false fingerprints. However, in the unlocking scene, fewer filter types, such as one or two types, can be used for unlocking, which can increase the speed of unlocking.
  • the type of filter can be flexibly selected according to the user's biological characteristics, such as the color of the skin, so as to improve the accuracy of fingerprint identification.
  • the plasmon filter layer can only allow light signals in a specific wavelength range to pass through, and the geometric structure of the filter layer can be changed, taking a small hole array as an example, By changing the hole period, hole diameter, hole depth, and metal layer and dielectric types, the second type of pixels can detect light signals in a specific wavelength band.
  • a plasmon filter layer is provided above the second type of pixels as an example for introduction, but the material and geometric composition of the embodiments of the present application should not be limited in any way. As long as the plasmon filter layer can allow light signals of a specific wavelength band to pass through, and block light signals of non-specific wavelength bands at the same time, this is not limited in the embodiment of the present application.
  • the light source used for fingerprint detection may be a self-luminous source from the display screen, or may also be an excitation light source integrated in the fingerprint identification device or other external excitation light sources.
  • the implementation of this application The example does not limit this.
  • the fingerprint identification device in the embodiment of the present application may further include a second dielectric layer, the second dielectric layer is a transparent insulating material, and the metal layer may be deposited on the place by at least one of sputtering, chemical vapor deposition, and physical vapor deposition. The upper surface of the second dielectric layer.
  • the metal layer 410 is deposited on the upper surface of the second dielectric layer 420 by at least one of sputtering, chemical vapor deposition, and physical vapor deposition.
  • the second metal layer 520 is deposited on the upper surface of the second dielectric layer 540 by at least one of sputtering, chemical vapor deposition, and physical vapor deposition.
  • the material forming the second dielectric layer may include at least one of the following: glass, fused silica (Fused Silica), silicon oxide (SiO2), silicon nitride (Si3N4), silicon oxynitride (SiON), Lithium fluoride (LiF), aluminum oxide (Al2O3), zinc selenide (ZnSe), zinc oxide (ZnO) and titanium oxide (TiO2).
  • the fingerprint identification device in the embodiment of the present application further includes a third dielectric layer disposed on the upper surface of the plasmon filter layer, wherein the refractive index and the preset pattern of the third dielectric layer
  • the refractive index of the filled first material and the refractive index of the second dielectric layer are the same. Setting the refractive index of the three to be the same can suppress the appearance of double peaks in the transmission spectrum, which is beneficial to improve the monochromaticity of the transmission spectrum.
  • the second medium layer and the third medium layer may be referred to as a refractive index matching layer.
  • the first material, the material forming the second dielectric layer, and the material forming the third dielectric layer are all the same, so that the refractive indices of the three can be matched to the maximum.
  • the metal layer 610 is disposed above the second dielectric layer 620.
  • the metal layer 610 can be etched with a corresponding preset pattern as needed, and then a third dielectric layer 640 can be deposited on the surface of the metal layer 610.
  • the position of the preset pattern 630 is also filled with the same material as the third dielectric layer 640.
  • the fingerprint identification device of the embodiment of the present application may further include a waveguide layer 650, and the waveguide layer 650 is disposed under the second dielectric layer 620.
  • the waveguide layer 650 may be formed of a transparent dielectric film.
  • the metal layer 610 can also be directly disposed above the waveguide layer 650 , And the second dielectric layer 620 is omitted, so that the thickness of the fingerprint identification device can be reduced.
  • the second dielectric layer 620 may also be disposed under the waveguide layer 650, which is not specifically limited in the embodiment of the present application.
  • the grating opening can be filled with a material having the same refractive index as the second dielectric layer 620.
  • a layer of dielectric ie, the second dielectric layer
  • a layer of metal can be deposited, and a specific preset pattern can be formed by photolithography and etching techniques.
  • a grating structure and finally filled with the second medium.
  • the layer of materials with the same refractive index is planarized using a chemical mechanical polishing (CMP) process.
  • CMP chemical mechanical polishing
  • the materials with the same refractive index in the embodiments of the present application may be the same materials.
  • Fig. 9 is based on the structure shown in Fig. 8 by introducing a dielectric layer to form an optical waveguide layer 650.
  • the optical waveguide layer 650 can narrow the full width at half maximum of the transmission spectrum, which is conducive to observing the detection points of certain characteristic spectra.
  • the relative value of light intensity, such as hemoglobin absorption peak, enhances the ability to discriminate in vivo.
  • the embodiment of the present application does not specifically limit the location of the plasmon filter layer.
  • the plasmon filter layer can be provided on the upper surface of any layer in the fingerprint sensor structure, that is, the plasmon filter layer can be integrated in the fingerprint sensor through a semiconductor manufacturing process. .
  • Any layer in the fingerprint sensor structure represents any layer inside the fingerprint sensor, that is, the surface of the structure formed at a certain stage in the manufacturing process of the fingerprint sensor.
  • the metal wiring layer is arranged above the pixel array, and the plasmon filter layer may be arranged between the metal wiring layer and the pixel array or above the metal wiring layer.
  • the second dielectric layer 620 may be any layer in the fingerprint sensor. If it is difficult to obtain a material with the same refractive index as a certain layer of the fingerprint sensor, a second medium layer can be added to the upper surface of the layer, that is, the structure shown in FIG. 8 can be arranged on the surface of any layer of the fingerprint sensor. If the fingerprint identification device includes a waveguide layer, the structure shown in FIG. 9 can be arranged on the surface of any layer of the fingerprint sensor.
  • Integrating the plasmon filter layer in the fingerprint sensor can achieve better spatial alignment between the plasmon filter layer and the pixel points on the pixel array, that is, each pinhole array and its corresponding
  • the spatial alignment between the pixels, or the spatial alignment between each grating and its corresponding pixel can be achieved.
  • the plasmon filter layer can be arranged above the fingerprint sensor by packaging and bonding technology.
  • FIG. 8 the structure shown in FIG. 8 can be arranged on the upper surface of the fingerprint sensor through packaging and bonding technology.
  • the fingerprint identification device includes a waveguide layer
  • the structure shown in FIG. 9 can be arranged on the upper surface of the fingerprint sensor by packaging and bonding technology.
  • the fingerprint identification device in the embodiment of the present application may further include an infrared filter layer, which is arranged above the pixel array and is used to filter the infrared light signal in the fingerprint identification light signal.
  • the infrared filter layer can be arranged above all the pixels of the first type and the pixels of the second type.
  • the infrared filter layer can be arranged above the first type of pixels and the second type of pixels, so that neither the first type of pixels nor the second type of pixels will receive infrared interference signals in the environment.
  • the infrared filter layer can be a multilayer film medium infrared filter layer.
  • the advantage of this structure is that it can obtain a higher visible light transmittance under the condition of effectively filtering the infrared filter layer.
  • the infrared filter layer can also be a plasmon infrared filter layer, and the plasmon infrared filter layer can be formed by the method described above, that is, by changing the geometric parameters of the preset pattern and the dielectric layer
  • the infrared filter layer is formed by using the plasmon infrared filter layer, the thickness of the fingerprint identification device can be further reduced.
  • the fingerprint identification device may include a fingerprint sensor 83, a light guide structure, a plasmon filter layer 820, and an infrared filter layer 810.
  • the fingerprint sensor 83 may include a pixel array 830 and a metal wiring layer 85.
  • the pixel array 830 may include a first type of pixel 831 and a second type of pixel 832, the second type of pixel 832 may be located in the middle of the pixel array 830, the light signal received by the first type of pixel 831 and the second type of pixel
  • the light signal received by the 832 can be used to determine whether the target is a real finger.
  • the second type of pixel 832 is not limited to the above-mentioned position.
  • the second type of pixel 832 may be located at any position of the pixel array 830.
  • the second type of pixel 832 may be located at an edge position of the pixel array 830.
  • the metal wiring layer 85 is provided with an array of openings 851, the openings in the opening array 851 have a one-to-one correspondence with the pixel points in the pixel array 830, and the opening array 851 is used to transfer data from the
  • the light signal of the target is guided to the pixel array 830, that is, an opening can be used to guide the light signal from the target to the corresponding pixel.
  • the infrared filter layer 810 and the plasmon filter layer 820 can be arranged above the fingerprint sensor 83, that is, the infrared filter layer 810 can be packaged with the plasmon filter layer 820.
  • the bonding technology is provided on the upper surface of the fingerprint sensor 83.
  • the infrared filter layer 810 shown in FIG. 10 is disposed above the plasmon filter layer 820, and the infrared filter layer 810 shown in FIG. 11 is disposed below the plasmon filter layer 820.
  • the infrared filter layer 810 and the plasmon filter layer 820 may be integrated with the fingerprint sensor 83 on one chip.
  • the fingerprint sensor 83 includes a metal wiring layer 85 and a pixel array 830, and the infrared filter layer 810 and the plasmon filter layer 820 may be disposed between the metal wiring layer 85 and the pixel array 830.
  • the infrared filter layer 810 shown in FIG. 12 is disposed above the plasmon filter layer 820, and the infrared filter layer 810 shown in FIG. 13 is disposed below the plasmon filter layer 820.
  • the plasmon filter layer 820 may be integrated in the fingerprint sensor 83, and the infrared filter layer 810 may be disposed above the fingerprint sensor.
  • the plasmon filter layer 820 may be disposed between the top metal wiring layer 85 and the pixel array 830; the infrared filter layer 810 is disposed above the metal wiring layer 85, for example, the infrared filter layer may be disposed on the light guide. Between the layer and the fingerprint sensor, it can also be arranged above the light guide layer.
  • the light guide structure can be used to guide the light signal returned by the target to the pixel array of the fingerprint sensor, and the light guide structure can be used to guide the vertical light signal, and can also be used to guide the oblique light signal.
  • the light guide structure may include a micro lens array 84 and at least one light blocking layer (not shown in the figure) disposed under the micro lens array 84, each of the at least one light blocking layer includes a plurality of small A small hole array of holes, the microlens array 84 includes a plurality of microlenses, the plurality of microlenses can be arranged above the fingerprint sensor 83, and the microlens array 84 can be used to converge the light signal returned from the target to the pixel array 830.
  • the at least one light blocking layer may be disposed between the pixel array 830 and the fingerprint sensor.
  • the at least one light blocking layer may be arranged above the infrared filter layer 810 and the plasmon filter layer 820, or may be arranged below the infrared filter layer 810 and the plasmon filter layer 820, and It can be arranged between the infrared filter layer 810 and the plasmon filter layer 820, or part of the light blocking layer is arranged above the infrared filter layer 810 and the plasmon filter layer 820, and another part of the light blocking layer is arranged Below the infrared filter layer 810 and the plasmon filter layer 820, etc.
  • the micro lens array 84 may be disposed above the plasmon filter layer 820. In FIGS. 12 and 13, the micro lens array 84 may be disposed above the metal wiring layer 85. In FIG. 14, the micro lens array 84 may be disposed above the infrared filter layer 810.
  • the light guide structure in the embodiment of the present application may also include a collimator, and the collimator may include a plurality of collimating units.
  • the embodiment of the present application limits the light signal received by the fingerprint sensor to a certain angle through the light guide structure, which can solve the problem that the filtering effect of the plasmon filter layer (indices such as transmission spectrum and transmittance) varies with the incident angle of light.
  • the light guide structure in the embodiments of the present application can be arranged above the plasmon filter layer, which can ensure that the optical signal received by the plasmon filter layer is fixed, thereby ensuring the spectrum passing through the plasmon filter layer fixed.
  • the embodiments of the present application do not specifically limit the angles of the light signals received by different pixels.
  • the angles at which different pixels receive the light signals may all be the same, or the angles at which different pixels receive the light signals may be different.
  • the transmission spectra of certain types of plasmon filter layers are angularly sensitive, it is only necessary to ensure that the incident angle of the light signal collected by each pixel point is the same each time.
  • the transmission spectrum of the plasmon filter layer can be artificially designed according to the specific incident angle.
  • each collimator unit or microlens may correspond to one of the pixel points of the pixel array; alternatively, the collimator unit or microlens and the pixel point of the pixel array
  • Non-one-to-one correspondence can also be used to reduce the occurrence of moiré interference.
  • one pixel can correspond to multiple collimating units or microlenses, or one collimating unit or microlens can correspond to multiple pixels, or
  • the collimating unit or microlens can also be arranged in an irregular manner; the irregularly arranged collimating unit or microlens can be used to correct the reflected light detected by each pixel through a later software algorithm.
  • the first type of pixels in the embodiments of the present application can be referred to as ordinary pixels, and the arrangement of the pixels can be the same as the arrangement of pixels in the existing pixel array, and the second type of pixels can be referred to as features. Pixels are used to determine the authenticity of fingerprints.
  • the setting of the second type of pixels is different from the existing setting of pixels.
  • a plasmon filter layer is set above it to reduce the entry into the characteristic pixel.
  • the material or structure of the light signal intensity It should be noted that the positions, numbers, and distributions of the first-type pixel points 911 and the second-type pixel points 912 in FIGS. 15 and 16 are only examples, and should not constitute any limitation to the embodiments of the present application. The present application also Can be adjusted according to actual needs.
  • the second type of pixel points 912 can be arranged in a cross shape, a rectangle or a rice shape at the center of the pixel array 910.
  • FIG. 15 and FIG. 16 as an example, the position distribution of the pixel points of the first type and the pixel points of the second type will be described.
  • a light-transmitting material 921 may be provided above the first-type pixel points 911, and the phase matching layer material of a plasmon filter layer is generally used, or the light-transmitting material may not be provided. That is, there can be air between the first type of pixel and the optical component above it, which is not limited in the embodiment of the present application.
  • the area between the plurality of preset patterns in the metal layer is air or is provided with a light-transmitting material, and the plurality of first-type pixel points are used to receive the return of the target and pass through a plurality of preset patterns. Let the light signal of the area between the patterns.
  • the light signal reflected from the target surface passes through the infrared filter layer to filter out the infrared light signal in the environment, and then passes through the light-transmitting material 922 and reaches the first-type pixel point 911 or passes through the visible light plasmon filter layer 921 and reaches the first type pixel point 911.
  • the light-transmitting material 922 or air can penetrate the entire visible light band, so that the intensity of the reflected light detected by the second-type pixel 912 and the adjacent first-type pixel 911 has a certain difference. For different materials (for example, skin tissue In terms of artificial materials), the intensity difference is obviously different. Therefore, based on the intensity difference, it can be determined whether the fingerprint image collected by the fingerprint identification device is from a real finger.
  • the transmission spectrum of the element set above it is different, that is, the second type of pixel is provided with a plasma capable of coupling through color light signals.
  • the volume excimer filter layer, and the first type of pixel is provided with light-transmitting material or no material, and the other aspects are basically the same.
  • the light signals received by the second-type pixel and the adjacent first-type pixel are all from the fingerprint ridge or from the fingerprint valley, that is, the type of the fingerprint position they receive is the same, so it can be considered
  • the environment of the two types of pixels that are adjacent to each other is the same or similar.
  • the impact of environmental factors on the collected light signals is the same or similar.
  • calculating the ratio of the intensity of the light signal received by the second-type pixel to the intensity of the light signal received by the adjacent first-type pixel can eliminate the influence of environmental factors to a certain extent, thus eliminating the ratio of the influence of environmental factors
  • the optical characteristics of the material of the target object can be significantly reflected, and further, whether the target object is a real finger is determined according to the ratio, which can improve the accuracy of living body detection.
  • the adjacent first-type pixels in the embodiments of the present application refer to the first-type pixels adjacent to the second-type pixels and/or the second-type pixels whose distance from the second-type pixels is less than the preset value.
  • the preset value may be the size of n pixels, and n is a positive integer less than 10.
  • the light signals received by the first type of pixels can be used to generate fingerprint information of a finger, and the fingerprint information can be used to match fingerprint images. It should be noted that the embodiment of the present application may use the light signals received by the first type of pixels and the second type of pixels to generate fingerprint information of the finger, or only use the light signals received by the first type of pixels to generate the fingerprint information of the finger. Fingerprint information.
  • the sampling value of the second type of pixel may not be directly used as the fingerprint imaging information.
  • the sampling value of the position of the second type of pixel can be determined by The sampling value of the pixel is determined, for example, the sampling value of the adjacent first-type pixel is interpolated or fitted to obtain the sampling value of the second-type pixel.
  • the second type of pixel points may be arranged in the middle position of the pixel array, that is, the plasmon filter layer may be arranged in the region of the metal layer corresponding to the middle region of the fingerprint sensor.
  • the sampling value of the second type of pixel point may also be used to determine the fingerprint information of the target object. Due to the principle of optical imaging, the pixel at the center of the fingerprint detection area usually enters the saturation zone early. By setting the second type of pixel at the center of the pixel array, the filter layer above the second type of pixel can filter light. It will reduce the intensity of the light signal collected by the second type of pixels, which can help prevent the sampling value of the center position from entering the saturation zone prematurely, thereby improving the sampling value of the pixel point in the center area.
  • the embodiment of the application does not specifically limit the distribution of the second type of pixels.
  • the second type of pixels can be discretely distributed in the pixel array, as shown in FIG. 15, or multiple second types of pixels can be distributed adjacently. , As shown in Figure 16.
  • the plurality of second-type pixel points include a pixel point a and a pixel point b, the pixel point a and the pixel point b are adjacent, and the light received by the pixel point a and the pixel point b is The signal is different.
  • the pixel point a for receiving red light signal and the pixel point for receiving blue light signal in the second type of pixel points b can be adjacent, as shown in FIG. 16, so that the types of fingerprint positions from which the light signals received by pixel a and pixel b come from are the same, so it can be considered that the two types of pixels that are adjacent to each other are in the same or similar environment. In this way, when the true and false fingerprints are determined according to the pixel point a and the pixel point b, the accuracy of living body detection can be improved.
  • the first-type pixel 911 adjacent to the second-type pixel 912 may include the first-type pixel located above, below, left, or right of the second-type pixel 912 At least one of the points 911; or it is also possible to draw a circle with a specific radius with the second-type pixel point 912 as the center, and determine the first-type pixel point 911 in the circle to be adjacent to the second-type pixel point 512 Pixels of the first type, or adjacent pixels of the first type may also be determined in other ways, which is not limited in the embodiment of the present application.
  • the fingerprint identification device in the embodiment of the present application may further include a processor 920, which is configured to perform according to the intensity of the light signal received by each second-type pixel and at least one adjacent to each second-type pixel.
  • the intensity of the light signal received by the pixels of the first type determines whether the target is a real finger.
  • the embodiment of the present application does not specifically limit the manner in which the processor 920 determines whether the target is a real finger.
  • the processor 920 may determine each second-type pixel according to the intensity of the light signal received by each second-type pixel and the intensity of the light signal received by the at least one adjacent first-type pixel. The intensity difference between the point and the light signal received by the at least one adjacent pixel point of the first type; then, according to the intensity difference, it is determined whether the target is a real finger.
  • the processor 920 may determine each second type pixel according to the intensity of the light signal received by each second type pixel and the intensity of the light signal received by the at least one adjacent first type pixel. The relative light intensity of the pixel points; and then according to the relative light intensity and the relative light intensity range of each second-type pixel point, it is determined whether the target is a real finger.
  • the relative light intensity of the second-type pixel may be the ratio of the intensity of the light signal received by the second-type pixel and an adjacent first-type pixel, or the second-type pixel may also be determined.
  • the relative light intensity of the pixel of the second type is determined based on the multiple ratios of the pixel to the multiple adjacent pixels of the first type. For example, the maximum, minimum or average of the multiple ratios can be determined. The value is determined as the relative intensity of the second pixel.
  • the second type of pixel is P2
  • the intensity of the detected light signal is S2
  • the first type of pixel adjacent to the second type of pixel includes P11, P12, and P13
  • the detected light signal intensity is S11, S12, and S13
  • the relative intensity of P2 can be any one of S2/S11, S2/S12 and S2/S13; or the relative intensity of P2 can also be the maximum of S2/S11, S2/S12 and S2/S13 , Minimum or average value.
  • the maximum, minimum, or average value of the intensity of the light signal received by a plurality of pixels of the first type adjacent to the pixel of the second type may be determined first, and then the pixel of the second type may be received
  • the ratio of the intensity of the light signal to the maximum, minimum or average value of the intensity of the light signals received by the plurality of pixels of the first type is determined as the relative light intensity of the pixels of the second type.
  • the relative intensity RS of the second type pixel P2 can be S2/max(S11+S12+S13), S2/min(S11+S12+S13) or S2/avg(S11+S12+S13) , Where max, min and avg indicate the maximum value, the minimum value and the average value respectively.
  • the processor may also determine the relative light intensity of the second type of pixel according to other formulas, as long as it can reflect the second type of pixel
  • the difference between the intensity of the light signal collected by the neighboring and same type of the first type of pixel points is sufficient, which is not specifically limited in the embodiment of the present application.
  • the relative light intensity of the second type of pixel can be used to characterize the degree of reduction (or attenuation) of the light intensity of the light signal received by the second type of pixel relative to the adjacent first type of pixel.
  • the degree of reduction has obvious differences, that is, the real finger corresponds to a specific relative light intensity range.
  • the relative light intensity of the second type of pixel points is not in this relative light intensity range. Therefore, according to whether the relative light intensity of the second type of pixel points is within the relative light intensity range, it can be determined whether the target is a real finger.
  • the processor may determine the number (or matching number) of the second type of pixel points whose relative light intensity is within the relative light intensity range, and further, determine whether the target is based on the number For real fingers. For example, the processor may determine that the target is a real finger when the number is greater than a threshold of a certain number; otherwise, determine that the target is a fake finger; or, the processor may also determine that the target is a fake finger when the number accounts for the total number of pixels of the second type. When the ratio of the quantity (or matching ratio) is greater than or equal to a certain ratio threshold, the target is determined to be a real finger; otherwise, the target is determined to be a fake finger.
  • the security level that triggers the fingerprint recognition operation can be set.
  • the unlocking operation of the terminal device can be set to a low security level
  • the payment type operation can be set to a high security level.
  • it can be Different security levels set different specific number thresholds or specific ratio thresholds to determine the first correspondence between the security level and the specific number threshold or specific ratio threshold.
  • the processor can determine the security level of the operation that triggers fingerprint recognition, Combining the first correspondence relationship, determine the specific number threshold or the specific ratio threshold.
  • a high security level corresponds to a first number threshold or a first proportion threshold
  • a low security level corresponds to a second number threshold or a second proportion threshold
  • the first number threshold can be set to be greater than the second number threshold, the first proportion threshold Greater than the second ratio threshold.
  • different security levels can also be set to correspond to different relative light intensity ranges, that is, the second correspondence relationship between the security level and the relative light intensity range can be determined.
  • the relative light intensity range corresponding to the low security level can be set.
  • the light intensity range is wider than the relative light intensity range corresponding to the high security level.
  • the upper limit of the first light intensity range can be set to be smaller than the upper limit of the second light intensity range, and/or the The lower limit of the first light intensity range is greater than the lower limit of the second light intensity range.
  • Setting a high security level corresponds to a narrow relative light intensity range, which helps to improve the security of fingerprint recognition
  • setting a low security level corresponds to a wider relative light intensity range, which helps reduce FRR and improve fingerprint recognition speed.
  • the corresponding relative light intensity range can be configured respectively, so that the processor can be based on the The light signal received by the second type of pixel points is from the fingerprint ridge or the fingerprint valley, and it is determined according to which relative light intensity range, the authenticity of the fingerprint is determined.
  • the relative light intensity range in the embodiment of the present application may be obtained by collecting a large number of fingerprint samples of real fingers for training.
  • the processor may determine that the fingerprint authentication is successful when the fingerprint information of the target collected by the fingerprint identification device matches the registered fingerprint template of the target, and the target is a real finger
  • operations that trigger the fingerprint recognition can be performed, for example, operations such as terminal unlocking or payment.
  • the processor in the embodiment of the present application may be set in the fingerprint identification device, or may also be set in the electronic device.
  • the fingerprint identification device may further include a driving module and a signal reading module.
  • the driving module and the signal reading module may be connected to the pixel array through internal wiring.
  • the signal reading module can be used to process the signal detected by the pixel array 910, such as amplification and analog-to-digital conversion (Analog-to-Digital Converter, ADC).
  • ADC Analog-to-Digital Converter
  • the processed signal is sent to the processor 920.
  • the signal reading module and the processor 920 may be connected through a flexible printed circuit (FPC).
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the fingerprint recognition in the embodiments of the present application may further include a memory
  • the memory may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM, DDR SDRAM
  • the aforementioned fingerprint sensor, processor, and memory can be integrated into a single chip, or packaged into a single chip using advanced packaging technology, which can effectively improve the signal processing speed of the overall device, but this application does not specifically limit this.
  • FIG. 17 is a schematic block diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device 1000 includes a display screen 1010 and a fingerprint identification device 1020.
  • the fingerprint identification device 1020 can be arranged below the display screen 1010 to perform fingerprint identification on the fingers above the display screen 1010.
  • the display screen 1010 may be any display screen described above, and the display screen 1010 may be, for example, a self-luminous display screen, such as an OLED screen.
  • the fingerprint identification device 1020 may be any of the fingerprint identification devices described above, and to simplify the description, it will not be repeated here.
  • the sensor chip in the embodiment of the present application may also be referred to as a fingerprint sensor.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art or the part of the technical solutions can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.
  • the division of units or modules or components in the device embodiments described above is only a logical function division, and there may be other divisions in actual implementation.
  • multiple units or modules or components can be combined or integrated.
  • To another system, or some units or modules or components can be ignored or not executed.
  • the aforementioned units/modules/components described as separate/display components may or may not be physically separated, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units/modules/components can be selected according to actual needs to achieve the objectives of the embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种指纹识别装置和电子设备,能够提升指纹识别的安全性。该指纹识别装置适用于具有显示屏(120)的电子设备,包括:光学传感器,包括像素阵列(320),其中,像素阵列(320)包括多个第一类像素点和多个第二类像素点,多个第一类像素点和多个第二类像素点用于接收来自显示屏(120)上方的目标的光信号;等离子体激元滤光层(310),用于设置在多个第二类像素点的上方,等离子体激元滤光层(310)包括多种滤光器,多种滤光器中的每一种滤光器的个数大于或等于1,一个第二类像素点上方对应设置有一个滤光器,每一种滤光器包括具有一种预设图案的金属层,每一种滤光器用于耦合通过来自目标的光信号中的特定波段的光信号。

Description

指纹识别装置和电子设备 技术领域
本申请实施例涉及指纹识别领域,并且更具体地,涉及一种指纹识别装置和电子设备。
背景技术
光学指纹识别装置的应用给用户带来了安全和便捷的用户体验,但是通过人工材料(例如,硅胶、白胶等)制造的指纹模具、打印的指纹图像等伪造的指纹是指纹应用中一个安全隐患。因此,如何识别光学指纹识别装置采集的指纹的真假,以提升指纹识别的安全性是一项亟需解决的问题。
发明内容
本申请实施例提供了一种指纹识别装置和电子设备,能够提升指纹识别的安全性。
第一方面,提供了一种指纹识别装置,所述指纹识别装置适用于具有显示屏的电子设备,其特征在于,包括:光学传感器,包括像素阵列,其中,所述像素阵列包括多个第一类像素点和多个第二类像素点,所述多个第一类像素点和所述多个第二类像素点用于接收来自所述显示屏上方的目标的光信号;等离子体激元滤光层,用于设置在所述多个第二类像素点的上方,所述等离子体激元滤光层包括多种滤光器,多种滤光器中的每一种滤光器的个数大于或等于1,一个第二类像素点上方对应设置有一个滤光器,每一种滤光器包括具有一种预设图案的金属层,每一种滤光器用于耦合通过来自所述目标的光信号中的特定波段的光信号;其中,所述多个第二类像素点接收的光信号的强度和与其相邻的至少一个第一类像素点接收的光信号的强度用于确定所述目标是否为真实手指。
受人体皮肤组织的皮层厚度、血红蛋白浓度、黑色素含量等因素的影响,人体皮肤组织对特定波长光线的反射性能与硅胶、纸张和胶带等人工材料具有显著差别。同时,由于不同人种肤色主要由黑色素含量的不同决定,黑色素对不同波长的光吸收截面不同,通过特定波长光的发射强度分辨不同肤色人种,因此,本申请可通过第二类像素点接收部分波段的光信号,以进行真 假指纹识别。
本申请通过在金属层上设置不同的预设图案以形成等离子体激元滤光层,不同的预设图案可以透射不同波段的光信号,不同预设图案可绘制于一张光罩上,进而可以使用一次光刻工艺即可实现形成不同波段的光信号的效果,能够减少光刻工艺次数,降低工艺加工成本。其次,本申请是通过在金属层上刻蚀预设图案形成等离子体激元滤光层的,而该金属层的厚度可以达到纳米尺度,能够有效降低光学指纹识别装置的厚度。
另外,通过在金属层上刻蚀预设图案形成的等离子体激元滤光层具有较好的稳定性。
本申请利用可设计的等离子体激元滤光层,通过设置多种滤光器,以通过多种波段的光信号,利用单一层次滤光层实现多种光信号的强度采集,多种光信号的采集加强了指纹防伪的精度。例如,除RGB之外,还可以增加其他血红蛋白吸收峰波段的光信号来进行真假指纹识别,多种光信号的采集能够增加防伪范围和提高判断精度。设置多种滤光器后,可以根据应用场景的不同灵活地使用一种或多种滤光器,而传统的滤光层无法做到低成本高质量地实现多种滤光器。
由于使用的是等离子体激元滤光层,可以通过一次光刻实现透过多种光信号,该多种光信号均可用于真假指纹识别,通过多种光信号进行真假指纹识别的方式有利于提高防伪判断的准确性,提升指纹识别精度,并且不会对工艺和成本等造成很大影响。
在一些可能的实现方式中,所述预设图案为小孔阵列或光栅。
在一些可能的实现方式中,所述小孔阵列中小孔的形状为圆形、四边形、三角形、椭圆形或六边形。
在一些可能的实现方式中,所述小孔阵列中小孔的空间分布呈正方形、等边三角形或等边六边形。
等边三角形或等边六边形结构具有更大的临近孔密度,能够提高色纯度和透射率,且等边三角形或等边六边形结构还可减少滤光效果随偏振的影响。
在一些可能的实现方式中,所述金属层包括第一金属层和设置在所述第一金属层下方的第二金属层,所述第一金属层和所述第二金属层上的预设图案保持一致。
在一些可能的实现方式中,所述滤光器还包括第一介质层,所述第一介质层设置在所述第一金属层和所述第二金属层之间,所述预设图案为穿透所述第一金属层、所述第一介质层和所述第二金属层的结构。
通过特定几何图案及尺寸设计的金属层-介质层-金属层形成的滤光器的滤光效果不会随着入射光信号的角度不同而发生变化。
在一些可能的实现方式中,所述第一介质层的折射率与设置在所述第二金属层下方的第二介质层的折射率相同。
在一些可能的实现方式中,形成所述金属层的材料包括以下中的至少一种:铝、金、银、铂、铜、镍、锌、铁、铬、钼,某些非金属导电材料也可用于本申请,例如掺杂半导体、碳纳米管、富勒烯、导电塑料以及导电复合材料。
在一些可能的实现方式中,还包括所述第二介质层,所述金属层通过溅镀、化学气相沉积、物理气相沉积中的至少一种方式沉积在所述第二介质层的上表面。
在一些可能的实现方式中,形成所述第二介质层的材料包括以下中的至少一种:玻璃、熔融石英、硅氧化物、硅氮化物、硅氮氧化物、氟化锂、铝氧化物、锌硒化物、锌氧化物、钛氧化物。
在一些可能的实现方式中,所述预设图案处填充有第一材料,所述第一材料的折射率与所述第二介质层的折射率相同。
在一些可能的实现方式中,还包括第三介质层,所述第三介质层设置在所述等离子体激元滤光层的上表面,所述第三介质层的折射率、所述第一材料的折射率以及所述第二介质层的折射率均相同。
通过将三者的折射率设置为相同,能够提高光信号的色纯度。
在一些可能的实现方式中,所述第一材料、形成所述第二介质层的材料、以及形成所述第三介质层的材料均相同。
在一些可能的实现方式中,还包括波导层,所述波导层设置在所述第二介质层的下方。
通过设置波导层可以有效减小透射光谱的半高全宽,光谱的半高全宽越窄,光谱的单色性越好,因此,设置波导层有利于提升光谱的单色性。
在一些可能的实现方式中,所述波导层、所述等离子体激元滤光层集成在所述指纹传感器中。
通过将等离子体激元滤光层集成在指纹传感器中,可以形成较好的等离子体激元滤光层与像素点的空间对准。
在一些可能的实现方式中,所述等离子体激元滤光层集成在所述指纹传感器中。
在一些可能的实现方式中,所述指纹传感器包括金属布线层,所述金属布线层设置在所述像素阵列的上方,所述金属布线层上设置有开孔阵列,所述开孔阵列中的开孔与所述像素阵列中的像素点具有一一对应关系,所述开孔阵列用于将来自所述目标的光信号引导至所述像素阵列,所述等离子体激元滤光层设置在所述金属布线层和所述像素阵列之间。
在一些可能的实现方式中,耦合通过所述等离子体激元滤光层的光信号包括以下中的至少一种:红色光信号、绿色光信号、蓝色光信号、420nm波段的光信号、580nm波段的光信号。
本申请可以添加更多的特征光谱侦测点,如420nm、580nm这几个血红蛋白吸收峰,由于增加了更多的且具有生物活体特征的光谱侦测点,可以提升光学指纹识别的防伪能力,特别是肉色人工材质仿真指纹的识别。
在一些可能的实现方式中,所述等离子体激元滤光层设置在与所述指纹传感器的中间区域对应的区域。
在一些可能的实现方式中,还包括红外滤光层,设置在所述像素阵列的上方,用于滤除来自所述目标的光信号中的红外光信号。
在一些可能的实现方式中,所述红外滤光层为多层膜介质红外滤光层。
在一些可能的实现方式中,所述红外滤光层为等离子体激元红外滤光层。
在一些可能的实现方式中,所述红外滤光层通过封装贴合技术设置在所述指纹传感器的上方。
在一些可能的实现方式中,还包括导光结构,所述导光结构用于将来自所述目标的光信号引导至所述指纹传感器的像素阵列。
在一些可能的实现方式中,所述导光结构包括准直器阵列,或所述导光结构包括微透镜阵列和设置在所述微透镜阵列下方的至少一个挡光层。
在一些可能的实现方式中,所述导光结构设置在所述等离子体激元滤光层的上方。
在一些可能的实现方式中,所述多个第二类像素点包括像素点a和像素 点b,所述像素点a和所述像素点b相邻,且所述像素点a和所述像素点b接收的光信号不同。
在一些可能的实现方式中,相邻滤光器之间的区域为空气或设置有透光材料,所述多个第一类像素点用于接收所述目标返回的并经过所述相邻滤光器之间的区域的光信号。
在一些可能的实现方式中,所述多个第一类像素点接收的光信号用于生成所述目标的指纹信息。
在一些可能的实现方式中,还包括处理器,用于根据每个第二类像素点接收的光信号的强度,以及与所述每个第二类像素点邻近的至少一个第一类像素点接收的光信号的强度,确定所述目标是否为真实手指。
在一些可能的实现方式中,所述电子设备还包括处理器,所述处理器用于根据每个第二类像素点接收的光信号的强度,以及与所述每个第二类像素点邻近的至少一个第一类像素点接收的光信号的强度,确定所述目标是否为真实手指。
在一些可能的实现方式中,所述第二类像素点和邻近的所述至少一个第一类像素点接收的光信号都来自指纹脊或都来自指纹谷。
在一些可能的实现方式中,所述处理器用于:根据所述每个第二类像素点接收的光信号的强度与邻近的所述至少一个第一类像素点接收的光信号的强度,确定所述每个第二类像素点的相对光强;根据所述每个第二类像素点的相对光强和相对光强范围,确定所述目标是否为真实手指。
在一些可能的实现方式中,所述处理器用于:将所述每个第二类像素点接收的光信号的强度和邻近的所述至少一个第一类像素点接收的光信号的强度的至少一个比值,确定为所述每个第二类像素点的相对光强。
在一些可能的实现方式中,所述处理器还用于:确定相对光强在所述相对光强范围内的第二类像素点的数量;根据所述数量,确定所述目标是否为真实手指。
在一些可能的实现方式中,所述处理器还用于:若所述数量大于或等于特定数量阈值,或所述数量占所述第二类像素点的总数量的比例大于或等于特定比例阈值,确定所述目标为真实手指;或若所述数量小于所述特定数量阈值,或所述数量占所述第二类像素点的总数量的比例小于所述特定比例阈值,确定所述目标为假手指。
在一些可能的实现方式中,所述处理器还用于:根据触发指纹识别的操作的安全等级以及第一对应关系,确定所述特定比例阈值或所述特定数量阈值,其中,所述第一对应关系为安全等级和比例阈值或数量阈值的对应关系。
在一些可能的实现方式中,在所述第一对应关系中,第一安全等级对应第一比例阈值或第一数量阈值,第二安全等级对应第二比例阈值或第二数量阈值,其中,所述第一安全等级高于所述第二安全等级,所述第一比例阈值大于所述第二比例阈值,所述第一数量阈值大于所述第二数量阈值。
在一些可能的实现方式中,所述处理器还用于:根据触发指纹识别的操作的安全等级以及第二对应关系,确定所述相对光强范围,其中,所述第二对应关系为安全等级和相对光强范围的对应关系。
在一些可能的实现方式中,在所述第二对应关系中,第一安全等级对应第一光强范围,第二安全等级对应第二光强范围,其中,所述第一安全等级高于所述第二安全等级,所述第一光强范围的上下限的差值小于所述第二光强范围的上下限的差值。
在一些可能的实现方式中,所述处理器还用于:根据所述第二类像素点接收的光信号来自的手指位置,确定所述相对光强范围,其中,指纹脊和指纹谷分别对应不同的相对光强范围。
在一些可能的实现方式中,所述处理器还用于:根据所述多个第一类像素点和所述多个第二类像素点多次采集的来自真实手指的光信号的强度,确定所述相对光强范围。
在一些可能的实现方式中,所述处理器还用于:在所述目标的指纹信息与预存的所述目标的指纹信息匹配,并且,所述目标为真实手指的情况下,确定指纹认证成功。
第二方面,提供了一种电子设备,包括显示屏,以及如第一方面中任一种可能的实现方式中的指纹识别装置。
在一些可能的实现方式中,所述指纹识别装置设置在所述显示屏的下方。
附图说明
图1是本申请实施例所适用的电子设备的一种结构示意图。
图2是本申请实施例所适用的电子设备的另一种结构示意图。
图3是本申请实施例提供的一种指纹识别装置的示意图。
图4是本申请实施例提供的一种预设图案的分布方式的示意图。
图5是本申请实施例提供的一种光栅的示意图。
图6是本申请实施例提供的另一种光栅的示意图。
图7是本申请实施例提供的通过改变小孔周期而形成的不同光信号的示意图。
图8和图9是本申请实施例提供的一种滤光结构的结构示意图。
图10-图14是本申请实施例提供的一种指纹识别装置的结构示意图。
图15和图16是本申请实施例提供的第二类像素点的分布方式的示意图。
图17是本申请实施例提供的一种电子设备的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
伴随时代的发展和科技的进步,电子产品屏幕的屏占比越来越高,全面屏已经成为众多电子产品的发展趋势。为适应这种全面屏的发展趋势,电子产品中的感光器件例如指纹识别、前置摄像头等也将被放置在屏幕之下。屏下指纹识别技术应用最多的是屏下光学指纹识别技术,由于屏下光学指纹器件的特殊性,要求带有指纹信号的光能够透过屏幕传递到下方的指纹传感器,进而得到指纹信号。
以屏下光学指纹识别为例,对指纹识别过程进行详细描述。
应理解,本申请实施例可以应用于光学指纹系统,包括但不限于光学指纹识别系统和基于光学指纹成像的医疗诊断产品,本申请实施例仅以光学指纹系统为例进行说明,但不应对本申请实施例构成任何限定,本申请实施例同样适用于其他采用光学成像技术的系统等。
作为一种常见的应用场景,本申请实施例提供的光学指纹系统可以应用在智能手机、平板电脑、游戏设备等便携式或移动计算设备,以及电子数据库、汽车、银行自动柜员机(automated teller machine,ATM)等其他电子设备,但本申请实施例对此并不限定,本申请实施例可以应用在其他具有显示屏的移动终端或者其他电子设备;更具体地,在上述电子设备中,指纹识别装置可以具体为光学指纹装置,其可以设置在显示屏下方的局部区域或者全 部区域,从而形成屏下(under-display)光学指纹系统。或者,所述指纹识别装置也可以部分或者全部集成至所述电子设备的显示屏内部,从而形成屏内(in-display)光学指纹系统。
如图1和图2所示为本申请实施例可以适用的电子设备的两个结构示意图,其中,图1为俯视图,图2为侧视图。该电子设备10包括显示屏120和光学指纹装置130,其中,该光学指纹装置130设置在该显示屏120下方的局部区域。该光学指纹装置130包括光学指纹传感器,该光学指纹传感器包括具有多个光学感应单元131的感应阵列133,该感应阵列所在区域或者其感应区域为该光学指纹装置130对应的指纹检测区域103。如图1所示,该指纹检测区域103位于该显示屏120的显示区域之中。在一种替代实施例中,该光学指纹装置130还可以设置在其他位置,比如该显示屏120的侧面或者该电子设备10的边缘非透光区域,并通过光路设计来将该显示屏120的至少部分显示区域的光信号导引到该光学指纹装置130,从而使得该指纹检测区域103实际上位于该显示屏120的显示区域。
应当理解,该指纹检测区域103的面积可以与该光学指纹装置130的感应阵列的面积不同,例如通过例如透镜成像的光路设计、反射式折叠光路设计或者其他光线汇聚或者反射等光路设计,可以使得该光学指纹装置130对应的指纹检测区域103的面积大于该光学指纹装置130感应阵列的面积。在其他替代实现方式中,如果采用例如光线准直方式进行光路引导,该光学指纹装置130对应的指纹检测区域103也可以设计成与该光学指纹装置130的感应阵列的面积基本一致。
因此,使用者在需要对该电子设备进行解锁或者其他指纹验证的时候,只需要将手指按压在位于该显示屏120的指纹检测区域103,便可以实现指纹输入。由于指纹检测可以在屏内实现,因此采用上述结构的电子设备10无需其正面专门预留空间来设置指纹按键(比如Home键),从而可以采用全面屏方案,即该显示屏120的显示区域可以基本扩展到整个电子设备10的正面。
作为一种可选的实现方式,如图2所示,该光学指纹装置130包括光检测部分134和光学组件132,该光检测部分134包括感应阵列以及与该感应阵列电性连接的读取电路及其他辅助电路,其可以在通过半导体工艺制作在一个芯片(Die),比如光学成像芯片或者光学指纹传感器,该感应阵列具体 为光探测器(Photo detector)阵列,其包括多个呈阵列式分布的光探测器,该光探测器可以作为上述的光学感应单元;该光学组件132可以设置在该光检测部分134的感应阵列的上方,其可以具体包括滤光层(Filter)、导光层或光路引导结构以及其他光学元件,该滤光层可以用于滤除穿透手指的环境光,而该导光层或光路引导结构主要用于将从手指处返回的光导引至该感应阵列进行光学检测。
在具体实现上,该光学组件132可以与该光检测部分134封装在同一个光学指纹部件。比如,该光学组件132可以与该光学检测部分134封装在同一个光学指纹芯片,也可以将该光学组件132设置在该光检测部分134所在的芯片外部,比如将该光学组件132贴合在该芯片上方,或者将该光学组件132的部分元件集成在上述芯片之中。
其中,该光学组件132的导光层或者光路引导结构有多种实现方案,比如,该光学组件132的该导光层可以具体为在半导体硅片制作而成的准直器(Collimator)层,其具有多个准直单元或者微孔阵列,该准直单元可以具体为小孔,从手指反射回来的反射光中,垂直入射到该准直单元的光线可以穿过并被其下方的光学感应单元接收,而入射角度过大的光线在该准直单元内部经过多次反射被衰减掉,因此每一个光学感应单元基本只能接收到其正上方的指纹纹路反射回来的反射光,从而该感应阵列便可以检测出手指的指纹图像。
在另一种实施例中,该导光层或者光路引导结构也可以为光学透镜(Lens)层,其具有一个或多个透镜单元,比如一个或多个非球面透镜组成的透镜组,该光学组件132可以包括一个透镜,其用于将从手指反射回来的反射光汇聚到其下方的光检测部分134的感应阵列,以使得该感应阵列可以基于该反射光进行成像,从而得到该手指的指纹图像。可选地,该光学透镜层在该透镜单元的光路中还可以形成有针孔,该针孔可以配合该光学透镜层扩大该光学指纹装置的视场,以提高该光学指纹装置130的指纹成像效果。
在其他实施例中,该导光层或者光路引导结构也可以具体采用微透镜(Micro-Lens)层,该微透镜层具有由多个微透镜形成的微透镜阵列,其可以通过半导体生长工艺或者其他工艺形成在该光检测部分134的感应阵列上方,并且每一个微透镜可以分别对应于该感应阵列的其中一个感应单元。并且,该微透镜层和该感应单元之间还可以形成其他光学膜层,比如介质层或 者钝化层,更具体地,该微透镜层和该感应单元之间还可以包括具有微孔的挡光层,其中该微孔形成在其对应的微透镜和感应单元之间,该挡光层可以阻挡相邻微透镜和感应单元之间的光学干扰,并使得该感应单元所对应的光线通过该微透镜汇聚到该微孔内部并经由该微孔传输到该感应单元以进行光学指纹成像。
可选的,在某些实施例中,该光学指纹装置130可以仅包括一个光学指纹传感器,此时光学指纹装置130的指纹检测区域103的面积较小且位置固定,因此用户在进行指纹输入时需要将手指按压到该指纹检测区域103的特定位置,否则光学指纹装置130可能无法采集到指纹图像而造成用户体验不佳。
在其他替代实施例中,该光学指纹装置130可以具体包括多个光学指纹传感器;该多个光学指纹传感器可以通过拼接方式并排设置在该显示屏120的下方,且该多个光学指纹传感器的感应区域共同构成该光学指纹装置130对应的指纹检测区域103。也即是说,该光学指纹装置130对应的指纹检测区域103可以包括多个子区域,每个子区域分别对应于其中一个光学指纹传感器的感应区域,从而将该光学指纹模组130的指纹检测区域103可以扩展到该显示屏的下半部分的主要区域,即扩展到手指惯常按压区域,从而实现盲按式指纹输入操作。可替代地,当该光学指纹传感器数量足够时,该指纹检测区域103还可以扩展到半个显示区域甚至整个显示区域,从而实现半屏或者全屏指纹检测。
应当理解的是,在具体实现上,该电子设备10还包括透明盖板110,或者称为透明保护盖板110,该盖板110可以为玻璃盖板或者蓝宝石盖板,其位于该显示屏120的上方并覆盖该电子设备10的正面。因为,本申请实施例中,所谓的手指按压在该显示屏120实际上是指按压在该显示屏120上方的盖板110或者覆盖该盖板110的保护层表面。
应理解,本申请实施例中的该显示屏120可以采用具有自发光显示单元的显示屏,比如有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏或者微型发光二极管(Micro-LED)显示屏。以采用OLED显示屏为例,该光学指纹装置130可以利用该OLED显示屏120位于该指纹检测区域103的显示单元(即OLED光源)来作为光学指纹检测的激励光源。当手指140按压在该指纹检测区域103时,显示屏120向该指纹检测区域103上方的目 标手指140发出一束光111,该光111在手指140的表面发生反射形成反射光或者经过该手指140内部散射而形成散射光。
在其他替代实现方式中,所述显示屏120也可以采用非自发光的显示屏,比如采用背光的液晶显示屏;在这种情况下,所述光学检测装置130便无法采用所述显示屏120的显示单元作为激励光源,因此需要在所述光学检测装置130内部集成激励光源或者在其外部设置激励光源来实现光学指纹检测,其检测原理与上面描述内容是一致的。
应理解,为便于描述,上述反射光和散射光统称为反射光。由于指纹的脊(ridge)与谷(valley)对于光的反射能力不同,因此,来自指纹脊141的反射光151和来自指纹谷142的发生过152具有不同的光强,反射光经过光学组件132后,被光学指纹装置130中的感应阵列134所接收并转换为相应的电信号,即指纹检测信号;基于该指纹检测信号便可以获得指纹图像数据,并且可以进一步进行指纹匹配验证,从而在该电子设备10实现光学指纹识别功能。
还应理解,本申请实施例的技术方案除了可以进行指纹识别外,还可以进行其他生物特征识别,例如,掌纹识别或静脉识别等,本申请实施例对此也不限定。
需要说明的是,本申请实施例中的光学指纹装置也可以称为光学指纹识别模组、指纹识别装置、指纹识别模组、指纹模组、指纹采集装置等,上述术语可相互替换。
应理解,受人体皮肤组织的皮层厚度、血红蛋白浓度、黑色素含量等因素的影响,人体皮肤组织对特定波长光线的反射性能与硅胶、纸张和胶带等人工材料具有显著差别。同时,由于不同人种肤色主要由黑色素含量的不同决定,黑色素对不同波长的光吸收截面不同,通过特定波长光的发射强度分辨不同肤色人种。
基于此,本申请实施例提供了一种具有防伪功能的光学指纹识别方案,在指纹识别装置的像素阵列中包括普通像素点和一定数量的特征像素点,其中,特征像素点的数量应不对普通像素点对手指指纹成像形成较大影响。所述特征像素点具体可由导光层、滤光层、感应单元以及其它光学元件组成,而所述普通像素点可由导光层、感应单元以及其它光学元件组成。所以对于同一光信号,特征像素点检测的光信号的强度低于邻近的普通像素点检测的 光信号的强度,由于对于不同的材料,该强度差异不同,因此可以根据特征像素点和普通像素点检测的光信号的强度差异,确定指纹的真假,即该指纹是否来自活体手指,也就是说,本申请实施例的指纹识别方案可以用于活体检测。
在具体实现上,所述光学组件132可以与所述光检测部分134封装在同一个光学指纹模组。其中,该光学组件132可以包括导光层,所述导光层可以具体为在半导体硅片制作而成的准直器(collimator)层,该准直器层可以包括多个准直单元,所述准直单元具体可以为具有一定深宽比的小孔;或者该导光层可以为微透镜(micro-lens)层,该微透镜层可以包括微透镜阵列。
传统具有防伪功能的光学指纹识别装置中,滤光层(color filter)使用透光材料中掺杂有机染料的方式制造,为实现在感光单元阵列不同像素点上设置不同颜色滤光层,需要进行多次光刻,例如在感光单元阵列不同像素点上设置红色滤光层、绿色滤光层和蓝色滤光层,需要进行三次光刻,这种方式具有较高的制造成本。传统有机颜料滤光层的厚度在微米量级,对实现超薄的光学指纹识别装置带来一定难度。除以上问题之外,传统有机染料滤光层还具有化学和温度的不稳定性的问题。
基于此,本申请实施例提供了一种指纹识别装置,该指纹识别装置中的滤光层有利于减小指纹识别装置的厚度,此外,该滤光层还具有较好的稳定性。
本申请实施例中的指纹识别装置可应用于屏下指纹识别技术中,即该指纹识别装置可设置在显示屏的下方,当然,本申请实施例并不限于此,该指纹识别装置还可以设置在显示屏内部。
如图3所示,该指纹识别装置包括光学传感器以及等离子体激元滤光层310。该光学传感器包括像素阵列320,其中,该像素阵列包括多个第一类像素点和多第二类像素点,多个第一类像素点和多个第二类像素点用于接收来自显示屏上方的目标的光信号。该等离子体激元滤光层用于设置在该多个第二类像素点的上方,等离子体激元滤光层可以包括多种滤光器,该多种滤光器中的每一种滤光器的个数大于或等于1,一个第二类像素点上方对应设置有一个滤光器。每一种滤光器包括具有一种预设图案的金属层,每一种滤光器用于耦合通过来自所述目标的光信号中的特定波段的光信号。
本申请实施例中的滤光器的种类可以是根据预设图案的不同进行分类, 预设图案相同的滤光器属于一种滤光器。
本申请实施例中的等离子体激元滤光层可以包括多个滤光器,该多个滤光器和多个第二类像素点可以具有一一对应的关系,一个第二类像素点对应一个滤光器,一个第二类型像素点用于接收目标返回的并经过与其对应的滤光器的光信号。
本申请实施例中的滤光器也可以称为等离子体激元滤光器。
不同的第二类像素点上方的预设图案可以相同,也可以不同。
该多个第二类像素点接收的光信号的强度和与其相邻的至少一个第一类像素点接收的光信号的强度用于确定该目标是否为真实手指。
第一类像素点可用于接收来自目标的光信号,第一类像素点接收的光信号可用于生成手指的指纹信息。本申请实施例可以根据第一类像素点接收的光信号进行指纹图像的匹配。
本申请实施例可以利用光信号与金属层表面的等离子体激元的耦合共振作用,透射特殊波段的光信号。例如,当指纹识别光信号到达金属层上的预设图案处时,指纹识别光信号可以与等离子体激元相互耦合,透射来自目标的光信号中的特定波段的光信号。
特定波段的光信号可以为某一波长范围的光信号,或某一特定波长的光信号。
本申请实施例中的像素点可以称为感光单元,其可基于互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)技术或电荷耦合器件(Charge Coupled Device,CCD)技术实现。
本申请中的预设图案可以为金属层上呈亚波长周期分布的图案,或者说该预设图案为亚波长尺度的图案。
不同的预设图案可以耦合通过不同波段的光信号,不同预设图案可绘制于一张光罩上,进而可以使用一次光刻工艺即可实现形成不同波段的光信号的效果,这种方式能够减少光刻工艺次数,降低工艺加工成本。
其次,本申请实施例是通过在金属层上刻蚀预设图案形成等离子体激元滤光层的,而该金属层的厚度可以达到纳米尺度,能够有效降低光学指纹识别装置的厚度。
另外,通过在金属层上刻蚀预设图案形成的等离子体激元滤光层具有较好的稳定性。
本申请利用可设计的等离子体激元滤光层,通过设置多种滤光器,以通过多种波段的光信号,利用单一层次滤光层实现多种光信号的强度采集,多种光信号的采集加强了指纹防伪的精度。例如,除RGB之外,还可以增加其他血红蛋白吸收峰波段的光信号来进行真假指纹识别,多种光信号的采集能够增加防伪范围和提高判断精度。设置多种滤光器后,可以根据应用场景的不同灵活地使用一种或多种滤光器,而传统的滤光层无法做到低成本高质量地实现多种滤光器。
由于使用的是等离子体激元滤光层,可以通过一次光刻实现透过多种光信号,该多种光信号均可用于真假指纹识别,通过多种光信号进行真假指纹识别的方式有利于提高防伪判断的准确性,提升指纹识别精度,并且不会对指纹装置的厚度、加工工艺和成本等造成影响。
本申请实施例可以仅在第二类像素点的上方设置等离子体激元滤光层,而第一类像素点上方为空气或填充有透明介质。
例如,等离子体激元滤光层包括多个滤光器,相邻滤光器之间的区域为空气或填充有透明介质。第一类像素点可用于接收来自目标的并经过相邻滤光器之间的区域的光信号。
如图4中(a)(b)(c)(d)中的每个图均可以理解为一个等离子体激元滤光器。一个等离子体激元滤光器上设置有一个预设图案,相邻等离子体激元滤光器之间的区域为空气或填充有透明介质。
本申请实施例对所谓金属层的材料不做具体限定,一般情况为金属材料,但有些实施例中只要该材料为导电材料即可。例如,该层的材料可以为其他可导电的非金属材料。举例说明,该层的材料可以为以下金属材料中的至少一种:铝(Al)、金(Au)、银(Ag)、铂(Pt)、铜(Cu)、镍(Ni)、锌(Zn)、铁(Fe)、铬(Cr)、钼(Mo),或者可以为以下非金属材料中的至少一种:掺杂半导体,碳纳米管、富勒烯、导电塑料以及导电复合材料。
本申请实施例对预设图案的形状不做具体限定,只要经过该预设图案的光信号能够达到一定的光学过滤作用即可。例如,该预设图案可以为小孔阵列或光栅。
小孔阵列中小孔的形状可以有多种,本申请实施例对此不做具体限定。
作为一个示例,小孔的形状可以为圆形、四边形、三角形、椭圆形或六边形。当然,小孔的形状还可以是其他形状,例如,八边形。
优选地,小孔的形状可以为圆形、等边三角形、正方形或等边六边形。
图4的(a)图中的圆形小孔阵列表示一个预设图案,(b)图中的三角形小孔阵列表示一个预设图案,(c)图中的六边形小孔阵列表示一个预设图案,(d)图中的四边形小孔阵列表示一个预设图案。其中,一个预设图案可以设置在一个第二类像素点的上方。
本申请实施例中,每个预设图案中小孔的形状保持一致,但是不同预设图案中小孔的形状可以不同。例如,至少一个预设图案包括第一预设图案和第二预设图案,第一预设图案为圆形小孔阵列,第二预设图案为三角形小孔阵列。
当然,本申请实施例中的小孔阵列和光栅可以相结合使用。例如,至少一个预设图案包括第一预设图案和第二预设图案,第一预设图案为小孔阵列,第二预设图案为光栅。
小孔阵列中小孔的空间分布可以有多种方式,本申请实施例对此不做具体限定,如小孔的空间分布可以呈四边形、三角形、六边形、圆形、椭圆形等。
作为一个示例,小孔可以四边形(如正方形)点阵的方式进行分布,如图4中的(a)图的虚线所示,小孔可以m×n矩阵的方式进行分布。作为又一示例,两排小孔可以交错排列的方式进行分布。如图4中的(b)(c)(d)图所示,小孔可以等边三角形(或称为等边六边形)的方式进行分布,如(b)(c)(d)图中的虚线所示。
透射光强度和色纯度与最相邻的孔的数量或者临近孔密度成比例,因此为了提高色纯度和透射率,必须增大临近孔密度。如图4所示,等边三角形点阵比四边形点阵具有更大的临近孔密度,因此,本申请实施例优选地采用等边三角形点阵的方式进行分布。
另外,采用等边三角形的点阵分布还可减少滤光效果随偏振的影响,滤光效果可以包括透射光谱和透射率等。
滤光器可以是在一层金属层上进行刻蚀形成的,如图5所示;滤光器也可以是在多层金属层上进行刻蚀形成的,如图6所示,本申请实施例对此不做具体限定。例如,金属层可以包括第一金属层和第二金属层,第一金属层和第二金属层上刻蚀的预设图案保持一致,该预设图案可以为小孔阵列,也可以为光栅。
如图5所示,滤光器是通过在金属层410上刻蚀金属图案形成的,该金属图案可以是光栅。
图5的(a)图为等离子体激元滤光器的截面图,图5的(b)图为等离子体激元滤光器的俯视图。
本申请实施例中的等离子体激元滤光层可以包括多个图5或图6所示的等离子体激元滤光器。
不同的等离子体激元滤光器中的W、H、P等参数可以不同,以耦合通过不同波段的光信号,具体用于通过哪个波段的光信号可以根据实际需求来选择。
如图6所示,金属层包括第一金属层510和第二金属层520,第一金属层510和第二金属层520上的开孔区域或刻槽区域对准。
第一金属层510和第二金属层520之间还可以设置第一介质层530,预设图案为穿透第一金属层510、第一介质层530和第二金属层520的结构。例如,如果预设图案为小孔阵列,则小孔阵列中的小孔为第一金属层510、第一介质层530和第二金属层520上的通孔结构,如图6中的(a)图所示。当然,小孔阵列中的小孔仅为设置在第一金属层510和第二金属层520上的图案,而不穿透第一介质层530,如图6中的(b)图所示。
上述结构也可以称为金属层-介质层-金属层结构。
第一介质层530的折射率与设置在最底层金属层下方的第二介质层540的折射率相同。如图6所示,金属层包括第一金属层510和第二金属层520,第一金属层510设置第一介质层530的上方,第一介质层530设置在第二金属层520的上方,即第二金属层520是最底层金属层。第二金属层520设置在第二介质层540的上方,则第二介质层540的折射率可以与第一介质层530的折射率相同,这样可以提高光信号的单色性。
另外,上述金属层-介质层-金属层的结构通过针对入射光波长的特定几何尺寸设计,可以压制耦合光的表面等离子体激元模式,转而激发等离子体激元模式。因此,由该结构形成的滤光层的滤光效果不会随着入射光信号的角度不同而发生变化。也就是说,由该滤光层过滤后的光信号的波段不会随着入射光信号的角度的不同而发生变化。
假设预设图案为小孔阵列,则耦合通过所述预设图案的光信号可以与以下中的至少一种关联,即耦合通过所述预设图案的光信号是根据以下中的至 少一种确定的:小孔深度、小孔直径、小孔周期、形成所述金属层的材料的种类、临近所述金属层的介质层的种类、开孔处填充的材料、所述金属层中两层金属层之间的距离。
如图4所示,d表示小孔直径、P表示小孔周期。小孔周期可以理解为相邻小孔之间的最小重复距离。临近金属层的介质层表示与金属层相邻的介质层。
假设预设图案为光栅,则耦合通过所述预设图案的光信号与以下中的至少一种关联,即耦合通过所述预设图案的光信号是根据以下中的至少一种确定的:刻槽深度、刻槽宽度、刻槽周期、形成所述金属层的材料的种类、临近金属层的介质层的种类、刻槽处填充的材料、所述金属层中两层金属层之间的距离。
如图5和图6所示,H表示刻槽深度、W刻槽宽度、P刻槽周期、L表示两层金属层之间的距离。
以下以预设图案为小孔阵列为例,具体以小孔为六边形分布为例,耦合通过预设图案的光信号的波长可以是根据以下公式确定的:
Figure PCTCN2020092667-appb-000001
其中,P表示小孔的周期,ε m表示金属层的介电常数,ε d表示临近金属层的电介质的介电常数,i和j表示预设图案的衍射级数。
举例说明,金属层材料为铝,金属层厚度大约100nm,邻近金属层电介质材料为二氧化硅,预设图案为圆形小孔阵列,并且小孔为正六边形空间排布,小孔间周期250nm,小孔直径150nm,该等离子激元滤光层透射光谱中心波长大约450nm。
图7示出了一种通过改变小孔周期而得到的一系列不同波长的光信号的等离子体激元滤光层,其范围可以覆盖紫外到近红外。有时候该等离子体激元滤光层也可以称为颜色滤光层或彩色滤光层。
耦合通过等离子体激元滤光层的光信号可以是多种波段的光信号,该光信号可以是指纹识别光信号中任意波段的光信号。例如,耦合通过所述等离子体激元滤光层的光信号可以包括以下中的至少一种:红色光信号、绿色光信号、蓝色光信号、420nm波段的光信号、580nm波段的光信号。
当然,耦合通过所述等离子体激元滤光层的光信号也不局限于上述光信号,具体的波长可以根据实际需要进行设计和选择。
本申请实施例除了常见的RGB三原色之外,还可提供可见光波段范围内任意中心波长的滤光层,例如420nm、580nm这几个血红蛋白吸收峰,可提升指纹防伪性能。由于增加了更多的且具有生物活体特征的光谱侦测点,可以提升光学指纹识别的防伪能力,特别是肉色人工材质仿真指纹的识别。
如果有其他的能够识别真假指纹的波段的光信号,本申请实施例也可以使用。在指纹识别装置中集成多种滤光器后,可以提高防伪精度。另外,本申请实施例还可以根据应用场景的不同,灵活选用滤光器的种类。例如,在支付场景下,为了保证用户财产的安全性,可以使用多种滤光器进行真假指纹识别。但是在解锁场景下,可以使用较少的滤光器种类,例如一种或两种,来进行解锁,这样可以提高解锁的速度。
此外,还可以根据用户的生物特征,例如皮肤的颜色,来灵活选用滤光器的种类,以提高真假指纹识别的准确性。
在本申请实施例中,该等离子体激元滤光层可以起到只允许特定波长范围内的光信号通过的作用,并且可以通过改变该滤光层的几何结构,以小孔阵列为例,可通过改变孔周期、孔的直径、孔深度、以及金属层与电介质的种类,使得第二类像素点探测特定波段的光信号。
以下,以在该第二类像素点的上方设置等离子体激元滤光层为例进行介绍,但不应对本申请实施例的材料以及几何构成作任何限定。只要该等离子体激元滤光层能够允许特定波段的光信号通过,同时阻挡其非特定波段的光信号即可,本申请实施例对此不做限定。
可选地,在本申请实施例中,用于指纹检测的光源可以是来自显示屏的自发光源,或者也可以是集成于该指纹识别装置内部的激励光源或其他外置激励光源,本申请实施例对此不做限定。
本申请实施例中的指纹识别装置还可以包括第二介质层,该第二介质层为透明绝缘材料,金属层可以通过溅镀、化学气相沉积、物理气相沉积中的至少一种方式沉积在所述第二介质层的上表面。
如图5所示,金属层410通过溅镀、化学气相沉积、物理气相沉积中的至少一种方式沉积在第二介质层420的上表面。或者,如图6所示,第二金属层520通过溅镀、化学气相沉积、物理气相沉积中的至少一种方式沉积在 第二介质层540的上表面。
形成第二介质层的材料可以包括以下中的至少一种:玻璃(glass)、熔融石英(Fused Silica)、硅氧化物(SiO2)、硅氮化物(Si3N4)、硅氮氧化物(SiON)、氟化锂(LiF)、铝氧化物(Al2O3)、锌硒化物(ZnSe)、锌氧化物(ZnO)和钛氧化物(TiO2)。
本申请实施例中的指纹识别装置还包括第三介质层,该第三介质层设置在等离子体激元滤光层的上表面,其中,所述第三介质层的折射率、预设图案处填充的第一材料的折射率以及所述第二介质层的折射率均相同。将三者的折射率设置为相同能够压制透射光谱双峰的出现,有利于提升透射光谱的单色性。
其中,第二介质层、第三介质层可以称为折射率匹配层。
作为一种示例,第一材料、形成第二介质层的材料、以及形成第三介质层的材料均相同,这样能最大化地匹配三者的折射率。
以图8为例,金属层610设置在第二介质层620的上方,金属层610可以根据需要刻蚀相应的预设图案,然后可以在金属层610的表面沉积第三介质层640,在沉积第三介质层640的过程中,预设图案630的位置处也填充了与第三介质层640相同的材料。
如图9所示,本申请实施例的指纹识别装置还可以包括波导层650,该波导层650设置在第二介质层620的下方。该波导层650可以是透明电介质膜形成的。通过设置波导层可以有效减小透射光谱的半高全宽,光谱的半高全宽越窄,光谱的单色性越好,因此,设置波导层有利于提升光谱的单色性。
当波导层650的折射率与预设图案630内的填充材料的折射率相同时,即与第三介质层640的折射率相同时,则也可以将金属层610直接设置在波导层650的上方,而省去第二介质层620,这样可以减小指纹识别装置的厚度。当然,也可以将第二介质层620设置在波导层650的下方,本申请实施例对此不做具体限定。
本申请引入折射率匹配概念,可以在光栅开口处填充与第二介质层620折射率一致的材料。例如,可以先在基板上沉积一层电介质(即第二介质层),再沉积一层金属,通过光刻以及刻蚀技术形成特定预设图案,此处为光栅结构,最后填充与第二介质层折射率一致的材料并使用化学机械研磨(chemical mechanical polishing,CMP)工艺平坦化。
可选地,本申请实施例中的折射率一致的材料可以是材料相同的材料。
图9在图8所示结构的基础上,引入一层电介质层,形成光波导层650,该光波导层650能够将透射光谱半高全宽进行窄化,有利于观测某些特征光谱侦测点的光强相对值,如血红蛋白吸收峰,提升活体判别能力。
本申请实施例对等离子体激元滤光层的设置位置不做具体限定。
作为一个示例,该等离子体激元滤光层可以设置在指纹传感器结构中的任意一层的上表面,也就是说,等离子体激元滤光层可以通过半导体制造后道工艺集成在指纹传感器中。
指纹传感器结构中的任意一层表示指纹传感器内部的任意一层,即指纹传感器在制造加工过程中某一阶段形成的结构的表面。
以指纹传感器包括金属布线层为例,金属布线层设置在像素阵列的上方,等离子体激元滤光层可以设置在金属布线层与像素阵列之间或者设置在金属布线层的上方。
以图8为例,第二介质层620可以为指纹传感器中的任意一层。如果与指纹传感器的某一层折射率相同的材料获取困难,则可以在该层的上表面增加第二介质层,即可以将图8所示的结构设置在指纹传感器的任意一层的表面。如果指纹识别装置包括波导层,则可以将图9所示的结构设置在指纹传感器的任意一层的表面。
将等离子体激元滤光层集成在指纹传感器中,可以实现等离子体激元滤光层与像素阵列上的像素点之间较好的空间对准,即可以实现每个小孔阵列与其对应的像素点之间的空间对准,或可以实现每个光栅与其对应的像素点之间的空间对准。
作为另一个示例,该等离子体激元滤光层可以通过封装贴合技术设置在指纹传感器的上方。以图8为例,可以将图8所示的结构通过封装贴合技术设置在指纹传感器的上表面。如果指纹识别装置包括波导层,则可以将图9所示的结构通过封装贴合技术设置在指纹传感器的上表面。
本申请实施例中的指纹识别装置还可以包括红外滤光层,该红外滤光层设置在像素阵列的上方,用于滤除指纹识别光信号中的红外光信号。该红外滤光层可以设置在所有第一类像素点和第二类像素点的上方。
该红外滤光层可以设置在第一类像素点和第二像素点的上方,使得第一类像素点和第二类像素点均不会接收到环境中的红外干扰信号。
该红外滤光层可以为多层膜介质红外滤光层,这种结构的好处是在有效过滤红外滤光层的情况下能够获得较高的可见光透过率。当然,该红外滤光层也可以为等离子体激元红外滤光层,该等离子体激元红外滤光层可以采用上文描述的方法形成,即通过改变预设图案的几何参数、介质层的材料、和/或金属层的材料来形成,红外滤光层采用等离子体激元红外滤光层时,能够进一步减小指纹识别装置的厚度。
下面结合图10-图14,对本申请实施例的指纹识别装置的结构进行描述。
该指纹识别装置可以包括指纹传感器83、导光结构、等离子体激元滤光层820和红外滤光层810。
指纹传感器83可以包括像素阵列830和金属布线层85。像素阵列830可以包括第一类像素点831和第二类像素点832,第二类像素点832可以位于像素阵列830的中间位置,第一类像素点831接收的光信号和第二类像素点832接收的光信号可用于确定目标是否为真实手指。
第二类像素点832并不限于上述位置,第二类像素点832可以位于像素阵列830的任意位置,例如第二类像素点832可以位于像素阵列830的边缘位置。
金属布线层85上设置有开孔阵列851,所述开孔阵列851中的开孔与所述像素阵列830中的像素点具有一一对应关系,所述开孔阵列851用于将来自所述目标的光信号引导至所述像素阵列830,也就是说,一个开孔可用于将来自所述目标的光信号引导至与其对应的像素上。
以图10和图11为例,红外滤光层810可以和等离子体激元滤光层820设置在指纹传感器83的上方,即红外滤光层810可以和等离子体激元滤光层820通过封装贴合技术设置在指纹传感器83的上表面。
图10所示的红外滤光层810设置在等离子体激元滤光层820的上方,图11所示的红外滤光层810设置在等离子体激元滤光层820的下方。
以图12和图13为例,红外滤光层810可以和等离子体激元滤光层820可以与指纹传感器83集成在一个芯片上。指纹传感器83包括金属布线层85和像素阵列830,红外滤光层810和等离子体激元滤光层820可以设置在金属布线层85和像素阵列830之间。
图12所示的红外滤光层810设置在等离子体激元滤光层820的上方,图13所示的红外滤光层810设置在等离子体激元滤光层820的下方。
以图14为例,等离子体激元滤光层820可以集成在指纹传感器83中,红外滤光层810可以设置在指纹传感器的上方。具体地,等离子体激元滤光层820可以设置在顶部金属布线层85和像素阵列830之间;红外滤光层810设置在金属布线层85的上方,例如红外滤光层可以设置在导光层与指纹传感器之间,也可以设置在导光层的上方。
导光结构可用于将所述目标返回的光信号引导至指纹传感器的像素阵列,该导光结构可用于引导垂直光信号,也可以用于引导倾斜光信号。
导光结构可以包括微透镜阵列84和设置在微透镜阵列84下方的至少一个挡光层(图中未示出),该至少一个挡光层中的每个挡光层均包括具有多个小孔的小孔阵列,微透镜阵列84包括多个微透镜,该多个微透镜可以设置在指纹传感器83的上方,微透镜阵列84可用于将目标返回的光信号会聚至像素阵列830。
该至少一个挡光层可以设置在像素阵列830和指纹传感器之间。
本申请实施例对至少一个挡光层的设置位置不做具体限定。例如,该至少一个挡光层可以设置在红外滤光层810和等离子体激元滤光层820的上方,也可以设置在红外滤光层810和等离子体激元滤光层820的下方,也可以设置在红外滤光层810和等离子体激元滤光层820之间,或者部分挡光层设置在红外滤光层810和等离子体激元滤光层820的上方,另一部分挡光层设置在红外滤光层810和等离子体激元滤光层820的下方等。
在图11中,微透镜阵列84可以设置在等离子体激元滤光层820的上方。在图12和图13中,微透镜阵列84可以设置在金属布线层85的上方。在图14中,微透镜阵列84可以设置在红外滤光层810的上方。
本申请实施例中的导光结构也可以包括准直器,该准直器可以包括多个准直单元。
本申请实施例通过导光结构将指纹传感器接收到的光信号限定于一定角度可解决等离子体激元滤光层的滤光效果(透射光谱和透射率等指标)随光入射角度变化的问题。
本申请实施例中的导光结构可以设置在等离子体激元滤光层的上方,能够保证等离子体激元滤光层接收到的光信号固定,从而保证通过等离子体激元滤光层的光谱固定。
本申请实施例对不同像素点接收到的光信号的角度不做具体限定,不同 像素点接收光信号的角度可以均相同,或者不同像素点接收光信号的角度不同。虽然某些类型的等离子体激元滤光层的透射光谱具有角度敏感性,但是只要确保每个像素点每次收集的光信号入射角度相同即可。等离子体激元滤光层的透射光谱可以人为根据具体入射角度进行设计。
在光学指纹装置中,每一个准直单元或者微透镜可以分别对应所述像素阵列的其中一个像素点;可替代地,所述准直器单元或者微透镜与所述像素阵列的像素点之间也可以采用非一一对应的关系来降低产生莫尔条纹干扰,比如一个像素点可以对应于多个准直单元或者微透镜,或者,一个准直单元或微透镜可以对应多个像素点,或者,所述准直单元或者微透镜也可以采用不规则排列的方式;采用不规则排列的准直单元或者微透镜可以通过后期软件算法来对每一个像素点检测到的反射光线进行校正。
应理解,本申请实施例中的第一类像素点可以称为普通像素点,其设置方式可以与现有的像素阵列中的像素点的设置方式相同,该第二类像素点可以称为特征像素点,用于确定指纹的真假,该第二类像素点的设置方式与现有的像素点的设置方式不同,其上方设置有等离子体激元滤光层等能够降低进入该特征像素点的光信号强度的材料或结构。需要说明的是,图15和图16中的第一类像素点911和第二类像素点912的位置、数量和分布情况仅为示例,而不应对本申请实施例构成任何限定,本申请也可根据实际需求进行调整。在一些可选的设置方式中,该第二类像素点912可以呈十字型、矩形或米字形设置于该像素阵列910的中心位置。
以图15和图16为例,对第一类像素点和第二类像素点的位置分布进行描述。
可选地,在一些实施例中,可以在该第一类像素点911的上方设置透光材料921,一般采用等离子体激元滤光层的相位匹配层材料,或者也可以不设置透光材料,即该第一类像素点和其上方的光学组件之间可以为空气,本申请实施例对此不做限定。换句话说,所述金属层中的多个预设图案之间的区域为空气或设置有透光材料,所述多个第一类像素点用于接收所述目标返回的并经过多个预设图案之间的区域的光信号。
从目标表面反射的光信号经红外滤光层滤除环境中的红外光信号,进而通过透光材料922后到达该第一类像素点911或通过可见光等离子体激元滤光层921后到达第二类像素点912。由于该彩色等离子体激元滤光层921只 能透射可见光波段中设定的某些波段,例如红R、绿G、蓝B等,本申请实施例对此不做限定。而透光材料922或空气可以透过整个可见光波段,使得第二类像素点912和邻近的第一类像素点911检测的反射光的强度具有一定的差异,对于不同的材料(例如,皮肤组织和人工材料)而言,该强度差异明显不同,因此,基于该强度差异,可以确定该指纹识别装置采集的指纹图像是否来自真实手指。
综上,该第二类像素点和邻近的第一类像素点的主要区别在于其上方所设置的元件透射光谱不同,即第二类像素点的上方设置的是能够耦合通过彩色光信号的等离子体激元滤光层,而第一类像素点的上方设置的是透光材料或不设置任何材料,而其它方面的特性基本相同。需要说明的是,该第二类像素点和邻近的第一类像素点接收的光信号都来自指纹脊或都来自指纹谷,即其接收的光信号来自的指纹位置的类型相同,故可以认为位置临近的两类像素点所处的环境相同或相似,换句话说,环境因素对采集的光信号的影响相同或相似。那么,计算该第二类像素点接收的光信号强度与邻近的第一类像素点接收的光信号强度的比值,在一定程度上可以消除环境因素的影响,这样,消除环境因素影响的该比值可以显著反映目标物体的材料的光学特性,进一步地,根据该比值确定该目标物体是否为真实手指,能够提升活体检测的准确度。
本申请实施例中的临近的第一类像素点是指与第二类像素点相邻的第一类像素点和/或与第二类像素点之间的距离小于预设值的第二类像素点。例如,该预设值可以是n个像素点的尺寸,n为小于10的正整数。
在本申请实施例中,第一类像素点接收的光信号可用于生成手指的指纹信息,该指纹信息可用于进行指纹图像的匹配。需要说明的是,本申请实施例可使用第一类像素点和第二类像素点接收的光信号来生成手指的指纹信息,也可以仅使用第一类像素点接收的光信号来生成手指的指纹信息。
应理解,在本申请实施例中,可以不直接使用该第二类像素点的采样值作为指纹成像信息,此情况下,该第二类像素点位置的采样值可以通过根据邻近的第一类像素点的采样值确定,例如,将邻近的第一类像素点的采样值进行插值或拟合处理得到该第二类像素点的采样值。
可选地,第二类像素点可以设置在像素阵列的中间位置,也就是说,等离子体激元滤光层可以设置在金属层的与指纹传感器的中间区域对应的区 域。
可选地,在本申请实施例中,该第二类像素点的采样值也可以用于确定目标物体的指纹信息。由于光学成像原理,指纹检测区域的中心位置的像素点通常提早进入饱和区,通过将第二类像素点设置在像素阵列的中心位置,由于第二类像素点上方设置的滤光层的滤光作用,会降低第二类像素采集光信号强度,可以有利于避免中心位置的采样值过早进入饱和区,从而能够提升中心区域像素点的采样值。
本申请实施例对第二类像素点的分布方式不做具体限定,第二类像素点可以在像素阵列中离散分布,如图15所示,也可以多个第二类像素点相邻进行分布,如图16所示。
优选地,所述多个第二类像素点包括像素点a和像素点b,所述像素点a和所述像素点b相邻,且所述像素点a和所述像素点b接收的光信号不同。
例如,如果通过等离子体激元滤光层过滤后的光信号包括红光信号和蓝光信号,则第二类像素点中用于接收红光信号的像素点a和用于接收蓝光信号的像素点b可以相邻,如图16所示,这样像素点a和像素点b接收的光信号来自的指纹位置的类型相同,故可认为位置临近的两类像素点所处的环境相同或相似。这样在根据该像素点a和像素点b确定真假指纹时,能够提升活体检测的准确性。
应理解,在本申请实施例中,与第二类像素点912邻近的第一类像素点911可以包括位于该第二类像素点912的上方、下方、左方或右方的第一类像素点911中的至少一个;或者也可以以该第二类像素点912为圆心,以特定半径画圆,将处于该圆内的第一类像素点911确定为与该第二类像素点512邻近的第一类像素点,或者也可以按照其他方式确定邻近的第一类像素点,本申请实施例对此不作限定。
需要指出的是,如果在等离子体滤光层引入远大于三种滤光结构,举例除引入RGB三原色外,同时引入420nm、580nm血红蛋白吸收峰,优选的进行图16所示排列,形成类似光谱仪的线性紧凑排列,以保证多个第二类像素点的环境相似。
本申请实施例中的指纹识别装置还可以包括处理器920,该处理器用于根据每个第二类像素点接收的光信号的强度,以及与所述每个第二类像素点邻近的至少一个第一类像素点接收的光信号的强度,确定所述目标是否为真 实手指。
本申请实施例对处理器920确定目标是否为真实手指的方式不做具体限定。
作为一个示例,处理器920可以根据每个第二类像素点接收的光信号的强度与邻近的所述至少一个第一类像素点接收的光信号的强度,确定所述每个第二类像素点与邻近的所述至少一个第一类像素点接收的光信号的强度差;然后根据该强度差,确定目标是否为真实手指。
作为又一示例,处理器920可以根据每个第二类像素点接收的光信号的强度与邻近的所述至少一个第一类像素点接收的光信号的强度,确定所述每个第二类像素点的相对光强;然后根据所述每个第二类像素点的相对光强和相对光强范围,确定所述目标是否为真实手指。
作为一个实施例,该第二类像素点的相对光强可以为第二类像素点和邻近的一个第一类像素点接收的光信号的强度的比值,或者,也可以确定该第二类像素点与邻近的多个第一类像素点的多个比值,根据该多个比值确定该第二类像素点的相对光强,例如,可以将该多个比值中的最大值、最小值或平均值确定为该第二像素点的相对强度。
第二类像素点为P2,检测的光信号的强度为S2,与该第二类像素点邻近的第一类像素点包括P11,P12和P13,检测的光信号的强度分别为S11,S12和S13,则该P2的相对强度可以为S2/S11,S2/S12和S2/S13中的任意一个;或者该P2的相对强度也可以为S2/S11,S2/S12和S2/S13中的最大值、最小值或平均值。
作为另一实施例,可以首先确定与该第二类像素点邻近的多个第一类像素点接收的光信号的强度的最大值、最小值或平均值,然后将该第二类像素点接收的光信号的强度与邻近的该多个第一类像素点接收的光信号的强度的最大值、最小值或平均值的比值确定为该第二类像素点的相对光强。
接着上个例子,该第二类像素点P2的相对强度RS可以为S2/max(S11+S12+S13),S2/min(S11+S12+S13)或S2/avg(S11+S12+S13),其中,max,min和avg分别表示取最大值、取最小值和取平均值。
应理解,以上该第二类像素点的相对光强的确定方式仅为示例,该处理器也可以根据其他公式确定该第二类像素点的相对光强,只要能够反映该第二类像素点与邻近的同型的第一类像素点采集的光信号的强度差异即可,本 申请实施例不作具体限定。
因此,该第二类像素点的相对光强可以用于表征该第二类像素点相对于邻近的第一类像素点接收的光信号的光强的降低程度(或者说,削弱程度)。对于不同的材料而言,该降低程度具有明显的差异,也就是说,真实手指对应特定的相对光强范围,对于人工材料而言,第二类像素点的相对光强不在该相对光强范围内,因此,根据第二类像素点的相对光强是否在该相对光强范围内,可以确定该目标是否为真实手指。
在一种可选的实现方式中,该处理器可以确定相对光强在该相对光强范围内的第二类像素点的数量(或称匹配数量),进一步地,根据该数量确定该目标是否为真实手指。例如,该处理器可以在该数量大于特定数量阈值时,确定该目标为真实手指,否则,确定该目标为假手指;或者,该处理器也可以在该数量占该第二类像素点的总数量的比例(或称匹配比例)大于或等于特定比例阈值时,确定该目标为真实手指,否则,确定该目标为假手指。
可选地,在一些实施例中,可以设置触发指纹识别的操作的安全等级,例如,可以设置对终端设备的解锁操作为低安全等级,设置支付类操作为高安全等级,进一步地,可以为不同的安全等级设置不同的特定数量阈值或特定比例阈值,即可以确定安全等级和特定数量阈值或特定比例阈值的第一对应关系,从而,该处理器可以根据触发指纹识别的操作的安全等级,结合该第一对应关系,确定该特定数量阈值或该特定比例阈值。
例如,高安全等级对应第一数量阈值或第一比例阈值,低安全等级对应第二数量阈值或第二比例阈值,则可以设置该第一数量阈值大于该第二数量阈值,该第一比例阈值大于第二比例阈值。通过设置高安全等级对应较高的匹配数量或匹配比例,有利于提升指纹识别的安全性,通过设置低安全等级对应较低的匹配数量或匹配比例,有利于降低拒识率(False Rejection Rate,FRR),提升指纹识别速度。
可选地,在一些实施例中,也可以设置不同的安全等级对应不同的相对光强范围,即确定安全等级和相对光强范围的第二对应关系,例如,可以设置低安全等级对应的相对光强范围比高安全等级对应的相对光强范围宽。例如,若高安全等级对应第一光强范围,低安全等级对应第二光强范围,则可以设置所述第一光强范围的上限小于所述第二光强范围的上限,和/或该第一光强范围的下限大于所述第二光强范围的下限。通过设置高安全等级对应较 窄的相对光强范围,有利于提升指纹识别的安全性,通过设置低安全等级对应较宽的相对光强范围,有利于降低FRR,提升指纹识别速度。
可选地,在一些实施例中,由于指纹脊和指纹谷的反射能力不同,因此,对于光信号来自指纹脊还是指纹谷,可以分别配置对应的相对光强范围,从而该处理器可以根据该第二类像素点接收的光信号来自指纹脊还是指纹谷,确定根据哪个相对光强范围,确定指纹的真假。
可选地,本申请实施例中的相对光强范围可以是通过采集大量的真实手指的指纹样本进行训练得到的。
可选地,在本申请实施例中,该处理器可以在该指纹识别装置采集的目标的指纹信息与注册的该目标的指纹模板匹配,并且该目标为真实手指的情况下,确定指纹认证成功,进一步地,可以执行触发该指纹识别的操作,例如,进行终端解锁或支付等操作。
本申请实施例中的处理器可以是设置在指纹识别装置中,或者也可以设置在电子设备中。
可选地,在本申请实施例中,该指纹识别装置还可以包括驱动模块和信号读取模块,该驱动模块和信号读取模块可以通过内部走线与像素阵列连接,其中,该驱动模块用于控制该像素阵列910的逐行扫描,该信号读取模块可以用于将该像素阵列910检测的信号进行处理,例如进行放大和模数转换(Analog-to-Digital Converter,ADC),进一步将处理后的信号发送给处理器920,可选地,该信号读取模块与该处理器920可以通过柔性电路板(Flexible Printed Circuit,FPC)连接。
应理解,本申请实施例的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的方法。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存 储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例的指纹识别还可以包括存储器,存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)等。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
优选地,可以将上述指纹传感器、处理器、存储器集成为一颗芯片,或利用先进封装技术封装为一颗芯片,可有效提升整体装置的信号处理速度,但本申请对此不做具体限定。
图17是本申请实施例提供的一种电子设备的示意性框图。该电子设备1000包括显示屏1010以及指纹识别装置1020。
可选地,该指纹识别装置1020可以设置在显示屏1010的下方,以对显示屏1010上方的手指进行指纹识别。
该显示屏1010可以是上文描述的任一种显示屏,该显示屏1010例如可以为自发光显示屏,如OLED屏。
该指纹识别装置1020可以为上文描述的任一种指纹识别装置,为简化描述,此处不再赘述。
需要说明的是,本申请实施例中的传感器芯片也可以称为指纹传感器。
需要说明的是,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。
例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其 他含义。
所属领域的技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的设备、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请提供的几个实施例中,应该理解到,所揭露的电子设备、装置和方法,可以通过其它的方式实现。
例如,以上所描述的装置实施例中单元或模块或组件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或模块或组件可以结合或者可以集成到另一个系统,或一些单元或模块或组件可以忽略,或不执行。
又例如,上述作为分离/显示部件说明的单元/模块/组件可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元/模块/组件来实现本申请实施例的目的。
最后,需要说明的是,上文中显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上内容,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围 并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。
因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (44)

  1. 一种指纹识别装置,所述指纹识别装置适用于具有显示屏的电子设备,其特征在于,包括:
    光学传感器,包括像素阵列,其中,所述像素阵列包括多个第一类像素点和多个第二类像素点,所述多个第一类像素点和所述多个第二类像素点用于接收来自所述显示屏上方的目标的光信号;
    等离子体激元滤光层,用于设置在所述多个第二类像素点的上方,所述等离子体激元滤光层包括多种滤光器,多种滤光器中的每一种滤光器的个数大于或等于1,一个第二类像素点上方对应设置有一个滤光器,每一种滤光器包括具有一种预设图案的金属层,每一种滤光器用于耦合通过来自所述目标的光信号中的特定波段的光信号;
    其中,所述多个第二类像素点接收的光信号的强度和与其相邻的至少一个第一类像素点接收的光信号的强度用于确定所述目标是否为真实手指。
  2. 根据权利要求1所述的指纹识别装置,其特征在于,所述预设图案为小孔阵列或光栅。
  3. 根据权利要求2所述的指纹识别装置,其特征在于,所述小孔阵列中小孔的形状为圆形、四边形、三角形、椭圆形或六边形。
  4. 根据权利要求2所述的指纹识别装置,其特征在于,所述小孔阵列中小孔的空间分布呈正方形、等边三角形或等边六边形。
  5. 根据权利要求1-4中任一项所述的指纹识别装置,其特征在于,所述金属层包括第一金属层和设置在所述第一金属层下方的第二金属层,所述第一金属层和所述第二金属层上的预设图案保持一致。
  6. 根据权利要求5所述的指纹识别装置,其特征在于,所述滤光器还包括第一介质层,所述第一介质层设置在所述第一金属层和所述第二金属层之间,所述预设图案为穿透所述第一金属层、所述第一介质层和所述第二金属层的结构。
  7. 根据权利要求6所述的指纹识别装置,其特征在于,所述第一介质层的折射率与设置在所述第二金属层下方的第二介质层的折射率相同。
  8. 根据权利要求1-7中任一项所述的指纹识别装置,其特征在于,形成所述金属层的材料包括以下中的至少一种:铝、金、银、铂、铜、镍、锌、 铁、铬、钼。
  9. 根据权利要求7所述的指纹识别装置,其特征在于,还包括所述第二介质层,所述金属层通过溅镀、化学气相沉积、物理气相沉积中的至少一种方式沉积在所述第二介质层的上表面。
  10. 根据权利要求9所述的指纹识别装置,其特征在于,形成所述第二介质层的材料包括以下中的至少一种:玻璃、熔融石英、硅氧化物、硅氮化物、硅氮氧化物、氟化锂、铝氧化物、锌硒化物、锌氧化物、钛氧化物。
  11. 根据权利要求9或10所述的指纹识别装置,其特征在于,所述预设图案处填充有第一材料,所述第一材料的折射率与所述第二介质层的折射率相同。
  12. 根据权利要求11所述的指纹识别装置,其特征在于,还包括第三介质层,所述第三介质层设置在所述等离子体激元滤光层的上表面,所述第三介质层的折射率、所述第一材料的折射率以及所述第二介质层的折射率均相同。
  13. 根据权利要求12所述的指纹识别装置,其特征在于,所述第一材料、形成所述第二介质层的材料、以及形成所述第三介质层的材料均相同。
  14. 根据权利要求9-13中任一项所述的指纹识别装置,其特征在于,还包括波导层,所述波导层设置在所述第二介质层的下方。
  15. 根据权利要求14所述的指纹识别装置,其特征在于,所述波导层、所述等离子体激元滤光层集成在所述指纹传感器中。
  16. 根据权利要求7所述的指纹识别装置,其特征在于,所述等离子体激元滤光层集成在所述指纹传感器中。
  17. 根据权利要求1-16中任一项所述的指纹识别装置,其特征在于,所述指纹传感器包括金属布线层,所述金属布线层设置在所述像素阵列的上方,所述金属布线层上设置有开孔阵列,所述开孔阵列中的开孔与所述像素阵列中的像素点具有一一对应关系,所述开孔阵列用于将来自所述目标的光信号引导至所述像素阵列,所述等离子体激元滤光层设置在所述金属布线层和所述像素阵列之间。
  18. 根据权利要求1-17中任一项所述的指纹识别装置,其特征在于,耦合通过所述等离子体激元滤光层的光信号包括以下中的至少一种:红色光信号、绿色光信号、蓝色光信号、420nm波段的光信号、580nm波段的光信 号。
  19. 根据权利要求1-18中任一项所述的指纹识别装置,其特征在于,所述等离子体激元滤光层设置在与所述指纹传感器的中间区域对应的区域。
  20. 根据权利要求1-19中任一项所述的指纹识别装置,其特征在于,还包括红外滤光层,设置在所述像素阵列的上方,用于滤除来自所述目标的光信号中的红外光信号。
  21. 根据权利要求20所述的指纹识别装置,其特征在于,所述红外滤光层为多层膜介质红外滤光层。
  22. 根据权利要求20所述的指纹识别装置,其特征在于,所述红外滤光层为等离子体激元红外滤光层。
  23. 根据权利要求20-22中任一项所述的指纹识别装置,其特征在于,所述红外滤光层通过封装贴合技术设置在所述指纹传感器的上方。
  24. 根据权利要求1-23中任一项所述的指纹识别装置,其特征在于,还包括导光结构,所述导光结构用于将来自所述目标的光信号引导至所述指纹传感器的像素阵列。
  25. 根据权利要求24所述的指纹识别装置,其特征在于,所述导光结构包括准直器阵列,或所述导光结构包括微透镜阵列和设置在所述微透镜阵列下方的至少一个挡光层。
  26. 根据权利要求24或25所述的指纹识别装置,其特征在于,所述导光结构设置在所述等离子体激元滤光层的上方。
  27. 根据权利要求1-26中任一项所述的指纹识别装置,其特征在于,所述多个第二类像素点包括像素点a和像素点b,所述像素点a和所述像素点b相邻,且所述像素点a和所述像素点b接收的光信号不同。
  28. 根据权利要求1-27中任一项所述的指纹识别装置,其特征在于,相邻滤光器之间的区域为空气或设置有透光材料,所述多个第一类像素点用于接收所述目标返回的并经过所述相邻滤光器之间的区域的光信号。
  29. 根据权利要求1-28中任一项所述的指纹识别装置,其特征在于,所述多个第一类像素点接收的光信号用于生成所述目标的指纹信息。
  30. 根据权利要求1-29中任一项所述的指纹识别装置,其特征在于,还包括处理器,用于根据每个第二类像素点接收的光信号的强度,以及与所述每个第二类像素点邻近的至少一个第一类像素点接收的光信号的强度,确 定所述目标是否为真实手指。
  31. 根据权利要求1-29中任一项所述的指纹识别装置,其特征在于,所述电子设备还包括处理器,所述处理器用于根据每个第二类像素点接收的光信号的强度,以及与所述每个第二类像素点邻近的至少一个第一类像素点接收的光信号的强度,确定所述目标是否为真实手指。
  32. 根据权利要求30或31所述的指纹识别装置,其特征在于,所述处理器用于:
    根据所述每个第二类像素点接收的光信号的强度与邻近的所述至少一个第一类像素点接收的光信号的强度,确定所述每个第二类像素点的相对光强;
    根据所述每个第二类像素点的相对光强和相对光强范围,确定所述目标是否为真实手指。
  33. 根据权利要求32所述的指纹识别装置,其特征在于,所述处理器用于:
    将所述每个第二类像素点接收的光信号的强度和邻近的所述至少一个第一类像素点接收的光信号的强度的至少一个比值,确定为所述每个第二类像素点的相对光强。
  34. 根据权利要求32所述的指纹识别装置,其特征在于,所述处理器还用于:
    确定相对光强在所述相对光强范围内的第二类像素点的数量;
    根据所述数量,确定所述目标是否为真实手指。
  35. 根据权利要求34所述的指纹识别装置,其特征在于,所述处理器还用于:
    若所述数量大于或等于特定数量阈值,或所述数量占所述第二类像素点的总数量的比例大于或等于特定比例阈值,确定所述目标为真实手指;或
    若所述数量小于所述特定数量阈值,或所述数量占所述第二类像素点的总数量的比例小于所述特定比例阈值,确定所述目标为假手指。
  36. 根据权利要求35所述的指纹识别装置,其特征在于,所述处理器还用于:
    根据触发指纹识别的操作的安全等级以及第一对应关系,确定所述特定比例阈值或所述特定数量阈值,其中,所述第一对应关系为安全等级和比例 阈值或数量阈值的对应关系。
  37. 根据权利要求36所述的指纹识别装置,其特征在于,在所述第一对应关系中,第一安全等级对应第一比例阈值或第一数量阈值,第二安全等级对应第二比例阈值或第二数量阈值,其中,所述第一安全等级高于所述第二安全等级,所述第一比例阈值大于所述第二比例阈值,所述第一数量阈值大于所述第二数量阈值。
  38. 根据权利要求32-37中任一项所述的指纹识别装置,其特征在于,所述处理器还用于:
    根据触发指纹识别的操作的安全等级以及第二对应关系,确定所述相对光强范围,其中,所述第二对应关系为安全等级和相对光强范围的对应关系。
  39. 根据权利要求38所述的指纹识别装置,其特征在于,在所述第二对应关系中,第一安全等级对应第一光强范围,第二安全等级对应第二光强范围,其中,所述第一安全等级高于所述第二安全等级,所述第一光强范围的上下限的差值小于所述第二光强范围的上下限的差值。
  40. 根据权利要求32-39中任一项所述的指纹识别装置,其特征在于,所述处理器还用于:
    根据所述第二类像素点接收的光信号来自的手指位置,确定所述相对光强范围,其中,指纹脊和指纹谷分别对应不同的相对光强范围。
  41. 根据权利要求32-40中任一项所述的指纹识别装置,其特征在于,所述处理器还用于:
    根据所述多个第一类像素点和所述多个第二类像素点多次采集的来自真实手指的光信号的强度,确定所述相对光强范围。
  42. 根据权利要求30-41中任一项所述的指纹识别装置,其特征在于,所述处理器还用于:
    在所述目标的指纹信息与预存的所述目标的指纹信息匹配,并且,所述目标为真实手指的情况下,确定指纹认证成功。
  43. 一种电子设备,其特征在于,包括:
    显示屏;
    以及如权利要求1-42中任一项所述的指纹识别装置。
  44. 根据权利要求43所述的电子设备,其特征在于,所述指纹识别装置设置在所述显示屏的下方。
PCT/CN2020/092667 2020-05-27 2020-05-27 指纹识别装置和电子设备 WO2021237524A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/092667 WO2021237524A1 (zh) 2020-05-27 2020-05-27 指纹识别装置和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/092667 WO2021237524A1 (zh) 2020-05-27 2020-05-27 指纹识别装置和电子设备

Publications (1)

Publication Number Publication Date
WO2021237524A1 true WO2021237524A1 (zh) 2021-12-02

Family

ID=78745433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092667 WO2021237524A1 (zh) 2020-05-27 2020-05-27 指纹识别装置和电子设备

Country Status (1)

Country Link
WO (1) WO2021237524A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114445867A (zh) * 2022-02-21 2022-05-06 厦门天马微电子有限公司 一种指纹识别器及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104123539A (zh) * 2014-07-10 2014-10-29 中南大学 一种提高指纹识别装置识别准确率的方法和装置
US20150070079A1 (en) * 2013-09-09 2015-03-12 Apple Inc. Capacitive Sensing Array Having Electrical Isolation
US20150331508A1 (en) * 2014-05-16 2015-11-19 Apple Inc. Integrated silicon-oled display and touch sensor panel
CN108399352A (zh) * 2017-02-04 2018-08-14 上海箩箕技术有限公司 指纹成像模组和电子设备
CN109196522A (zh) * 2018-08-24 2019-01-11 深圳市汇顶科技股份有限公司 背光模组、屏下指纹识别方法、装置和电子设备
CN109313706A (zh) * 2018-09-25 2019-02-05 深圳市汇顶科技股份有限公司 指纹识别装置、方法和终端设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150070079A1 (en) * 2013-09-09 2015-03-12 Apple Inc. Capacitive Sensing Array Having Electrical Isolation
US20150331508A1 (en) * 2014-05-16 2015-11-19 Apple Inc. Integrated silicon-oled display and touch sensor panel
CN104123539A (zh) * 2014-07-10 2014-10-29 中南大学 一种提高指纹识别装置识别准确率的方法和装置
CN108399352A (zh) * 2017-02-04 2018-08-14 上海箩箕技术有限公司 指纹成像模组和电子设备
CN109196522A (zh) * 2018-08-24 2019-01-11 深圳市汇顶科技股份有限公司 背光模组、屏下指纹识别方法、装置和电子设备
CN109313706A (zh) * 2018-09-25 2019-02-05 深圳市汇顶科技股份有限公司 指纹识别装置、方法和终端设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114445867A (zh) * 2022-02-21 2022-05-06 厦门天马微电子有限公司 一种指纹识别器及显示装置

Similar Documents

Publication Publication Date Title
CN111611952B (zh) 指纹识别装置和电子设备
WO2020119330A1 (zh) 指纹识别装置和电子设备
CN211349385U (zh) 光学图像采集单元、光学图像采集系统和电子设备
CN108885693B (zh) 具有发散光学元件的生物计量传感器
WO2020223881A1 (zh) 指纹检测的方法、装置和电子设备
WO2021203337A1 (zh) 指纹识别的方法、装置和电子设备
WO2020147018A1 (zh) 光学图像采集系统和电子设备
WO2021035622A1 (zh) 指纹识别装置和电子设备
CN111837132B (zh) 指纹检测的装置和电子设备
WO2021184269A1 (zh) 指纹识别装置和电子设备
CN111598068B (zh) 指纹识别装置和电子设备
CN111353405B (zh) 指纹识别装置、指纹识别系统以及电子设备
WO2021237524A1 (zh) 指纹识别装置和电子设备
WO2021082680A1 (zh) 图像采集光学结构及鉴别真假生物特征的方法和电子设备
CN211742126U (zh) 指纹检测的装置和电子设备
US11783619B2 (en) Fingerprint identification apparatus and electronic device
CN113065445B (zh) 指纹识别装置和电子设备
WO2021168672A1 (zh) 指纹识别装置和电子设备
CN213659463U (zh) 指纹识别装置和电子设备
WO2021042396A1 (zh) 指纹识别装置和电子设备
CN211628257U (zh) 指纹识别装置和电子设备
CN209897141U (zh) 光学图像采集单元、光学图像采集系统和电子设备
CN213069853U (zh) 指纹识别装置和电子设备
US11816920B2 (en) Fingerprint identification apparatus and electronic device
CN215068277U (zh) 指纹识别装置和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20937841

Country of ref document: EP

Kind code of ref document: A1