WO2021168672A1 - 指纹识别装置和电子设备 - Google Patents

指纹识别装置和电子设备 Download PDF

Info

Publication number
WO2021168672A1
WO2021168672A1 PCT/CN2020/076682 CN2020076682W WO2021168672A1 WO 2021168672 A1 WO2021168672 A1 WO 2021168672A1 CN 2020076682 W CN2020076682 W CN 2020076682W WO 2021168672 A1 WO2021168672 A1 WO 2021168672A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
microlens
units
filter
pixel
Prior art date
Application number
PCT/CN2020/076682
Other languages
English (en)
French (fr)
Inventor
程祥
张玮
李顺展
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN202080001548.1A priority Critical patent/CN111801687B/zh
Priority to PCT/CN2020/076682 priority patent/WO2021168672A1/zh
Publication of WO2021168672A1 publication Critical patent/WO2021168672A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1324Sensors therefor by using geometrical optics, e.g. using prisms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1382Detecting the live character of the finger, i.e. distinguishing from a fake or cadaver finger
    • G06V40/1388Detecting the live character of the finger, i.e. distinguishing from a fake or cadaver finger using image processing

Definitions

  • This application relates to the field of optical fingerprint technology, and more specifically, to a fingerprint identification device and electronic equipment.
  • optical fingerprint identification devices brings users a safe and convenient user experience.
  • fingerprint molds and printed fingerprint images made of artificial materials (such as silica gel, white glue, etc.) Hidden dangers. Therefore, how to identify the authenticity of fingerprints to improve the security of fingerprint recognition is a problem that needs to be solved urgently.
  • the embodiments of the present application provide a fingerprint identification device and electronic equipment, which can identify the authenticity of a fingerprint, thereby improving the security of fingerprint identification.
  • a fingerprint identification device including:
  • the micro lens unit array is configured to be arranged below the display screen, and includes a plurality of micro lens unit groups, each micro lens unit group includes a plurality of micro lens units, each micro lens unit includes at least one micro lens, each The micro lens unit group is used to transmit light signals in multiple directions to the pixel unit array;
  • At least one light-blocking layer is arranged under the microlens unit array, and each light-blocking layer in the at least one light-blocking layer is provided with a small hole array;
  • the pixel unit array is arranged under the small hole array of the bottom light-blocking layer in the at least one light-blocking layer, so that the light signal returned from the finger above the display screen is converged by the microlens unit array Afterwards, it is transmitted to the pixel unit array through the small hole array provided in the at least one light blocking layer;
  • the filter unit group array is arranged between the micro lens unit array and the pixel unit array. Each filter unit group in the filter unit group array corresponds to a micro lens unit group.
  • the light unit group includes a plurality of filter units, the plurality of filter units are filter units of multiple colors, and each filter unit of the plurality of filter units is used to transmit light in the multiple directions An optical signal of one color of the optical signal in the first direction;
  • the pixel unit array includes a pixel unit group corresponding to the filter unit group, and a plurality of pixel units in the pixel unit group respectively receive the light signals of the multiple colors through the plurality of filter units, The light signals of the multiple colors are used to detect whether the finger is a real finger.
  • the multiple pixel units corresponding to the filter unit group can collect colors of multiple colors in the single direction
  • the fingerprint image can further determine whether the finger located above the display screen is a real finger based on the color fingerprint image.
  • the micro lens unit group includes four micro lens units, and each of the four micro lens units is used to transmit optical signals in four directions to a corresponding pixel unit.
  • the filter unit corresponding to each micro lens unit is located on the optical path in the first direction.
  • Designing the filter unit to be located on the optical path in the first direction of the four directions can simplify the structural complexity of the fingerprint identification device, for example, the complexity of the optical path design of at least one light blocking layer can be simplified, and the filter unit can be simplified The complexity of laying, so that the laying on at least one light-blocking layer shows a certain rule.
  • the microlens unit group is an array composed of 2*2 microlens units, each microlens unit includes a microlens, and each filter unit group includes four filter units, each Each filter unit corresponds to a micro lens and a pixel unit.
  • the microlens unit group is an array composed of 2*2 microlens units, each microlens unit includes 2*2 microlenses, and each filter unit group includes sixteen filters.
  • each filter unit corresponds to a micro lens and a pixel unit.
  • each filter unit to a pixel unit in the pixel unit group can not only improve the resolution of fingerprint images of different colors, but also ensure that the multiple pixel units corresponding to the filter unit are evenly distributed In the pixel unit group.
  • the microlens unit group is an array composed of 3*3 microlens units, each microlens unit includes a microlens, and the pixel unit group is an array of 4*4 pixel units, so In the 4*4 pixel unit array, a microlens is arranged directly above every 4 adjacent pixel units.
  • the center microlens in the array composed of the 3*3 microlens units is used to transmit the optical signals in the four directions to the corresponding pixel units, and the microlenses on the four corners Each microlens is used to transmit light signals in one direction to the pixel units on the four corners of the corresponding 4*4 pixel unit array, and the other four microlenses in the array composed of the 3*3 microlens units are used for
  • the optical signals in two directions are respectively transmitted to the two pixel units outside the 4*4 pixel unit array under the same micro lens.
  • Each filter unit group includes four filter units, and each filter unit corresponds to a micro lens. And one pixel unit, the filter unit corresponding to each microlens unit is located on the optical path of the optical signal transmitted along the first direction.
  • the microlens unit group is an array composed of 2*2 microlens units, each microlens unit includes an array composed of 3*3 microlenses, and each microlens unit corresponds to 4 *4 pixel unit array, in the 4*4 pixel unit array, a micro lens is arranged directly above every 4 adjacent pixel units.
  • the center microlens of the 3*3 microlens array is used to transmit optical signals in four directions to the corresponding pixel unit, and each of the microlenses on the four corners The microlenses are used to respectively transmit the optical signals in one direction to the pixel units on the corners of the corresponding 4*4 pixel unit array, and the other four microlenses in the array composed of the 3*3 microlenses are used to separate two The optical signal in the direction is transmitted to the two pixel units outside the 4*4 pixel unit array under the same micro lens.
  • Each filter unit group includes sixteen filter units, and each filter unit corresponds to a micro lens and a pixel. Unit, the filter unit corresponding to each microlens unit is located on the optical path in the first direction.
  • each microlens unit corresponds to a filter unit of the same color.
  • the filter unit corresponding to the micro lens unit in the micro lens unit group includes a red filter unit, a blue filter unit, and a green filter unit.
  • the color of the filter units corresponding to the two microlens units on the diagonal in the microlens unit group is the same, and the filter units of the same color are red filter units, Blue filter unit or green filter unit.
  • the filter units corresponding to the micro lens units in the micro lens unit group are respectively a red filter unit, a blue filter unit, a green filter unit, and a white filter unit.
  • the at least one light-blocking layer is a plurality of light-blocking layers
  • the bottom light-blocking layer of the plurality of light-blocking layers is provided with a plurality of respective corresponding to the plurality of pixel units. Small holes, so that the at least one microlens transmits the light signals in the multiple directions to the corresponding pixel units through the multiple small holes, respectively.
  • the apertures of the small holes corresponding to the same pixel unit in the plurality of light blocking layers are sequentially reduced from top to bottom.
  • the top light-blocking layer of the plurality of light-blocking layers is provided with at least one small hole corresponding to the plurality of pixel units.
  • the at least one light blocking layer is a light blocking layer
  • the one light blocking layer is provided with a plurality of small holes corresponding to the plurality of pixel units, so that the at least one micro The lens transmits the optical signals in the multiple directions to the corresponding multiple pixel units through the multiple small holes, respectively.
  • the wavelength range of each filter unit of the plurality of filter units includes only a part of the wavelength range of the optical signal used for fingerprint recognition.
  • the fingerprint identification device further includes:
  • the processing unit is configured to process the fingerprint images of the object to be identified collected by the multiple filter units through the deep learning network, and determine whether the object to be identified is a real finger.
  • the processing unit is further configured to:
  • the color fingerprint image is input to a deep learning network for training, and the model and parameters of the deep learning network are obtained.
  • the processing unit is further configured to:
  • the processing unit is further configured to:
  • the three color values collected by the pixel unit group corresponding to the filter unit group are respectively calibrated to 0-255 to form the color value of the RGB three-channel, wherein the filter unit group includes three color filters of RGB Light unit, and each micro lens unit in the micro lens unit group corresponds to a filter unit;
  • the processing unit is further configured to combine color values collected by pixel units corresponding to filter units of the same color in the filter unit group to obtain a color value, and The one color value is output at a time, wherein the filter unit group includes a plurality of filter units of the same color.
  • an electronic device including:
  • the device is arranged under the display screen to realize the off-screen optical fingerprint identification.
  • Fig. 1 is a schematic structural diagram of a terminal device to which an embodiment of the present application is applicable.
  • Fig. 2 is a comparison diagram of the difference of color fingerprint images corresponding to true and false fingerprints.
  • Fig. 3 is a schematic block diagram of a fingerprint identification device according to an embodiment of the present application.
  • Fig. 4 is a cross-sectional view of a fingerprint identification device according to a specific embodiment of the present application.
  • FIG. 5 is a layout diagram of the filter unit group and the micro lens unit group of the embodiment shown in FIG. 4.
  • FIG. 6 is a color layout diagram of the filter unit of the embodiment shown in FIG. 4.
  • Fig. 7 is a layout diagram of a filter unit group and a micro lens unit group according to another embodiment of the present application.
  • Fig. 8 is a cross-sectional view of a fingerprint identification device according to another specific embodiment of the present application.
  • FIG. 9 is a layout diagram of the filter unit group and the micro lens unit group of the embodiment shown in FIG. 8.
  • FIG. 10 is a schematic diagram of the small hole array in the light blocking layer of the embodiment shown in FIG. 8.
  • Fig. 11 is a layout diagram of a filter unit group and a micro lens unit group according to still another embodiment of the present application.
  • 12-13 are schematic diagrams of two processing methods of color values according to an embodiment of the present application.
  • Fig. 14 is a structural diagram of a convolutional neural network according to an embodiment of the present application.
  • Fig. 15 is a schematic block diagram of an electronic device according to an embodiment of the present application.
  • embodiments of this application can be applied to optical fingerprint systems, including but not limited to optical fingerprint recognition systems and medical diagnostic products based on optical fingerprint imaging.
  • the embodiments of the application constitute any limitation, and the embodiments of the application are also applicable to other systems that use optical imaging technology.
  • the optical fingerprint system provided in the embodiments of this application can be applied to smart phones, tablet computers, and other mobile terminals with display screens or other terminal devices; more specifically, in the above-mentioned terminal devices, fingerprint identification
  • the device may specifically be an optical fingerprint device, which may be arranged in a partial area or an entire area under the display screen, thereby forming an under-display optical fingerprint system.
  • the fingerprint identification device can also be partially or fully integrated into the display screen of the terminal device to form an in-display optical fingerprint system.
  • FIG. 1 is a schematic structural diagram of a terminal device to which the embodiment of the application can be applied.
  • the terminal device 10 includes a display screen 120 and an optical fingerprint device 130, wherein the optical fingerprint device 130 is disposed under the display screen 120 Local area.
  • the optical fingerprint device 130 includes an optical fingerprint sensor, and the optical fingerprint sensor includes a sensing array 133 having a plurality of optical sensing units 131, and the area where the sensing array 133 is located or its sensing area is the fingerprint detection of the optical fingerprint device 130 Area 103.
  • the fingerprint detection area 103 is located in the display area of the display screen 120.
  • the optical fingerprint device 130 may also be arranged in other positions, such as the side of the display screen 120 or the non-transmissive area of the edge of the terminal device 10, and the optical fingerprint device 130 may be designed to The optical signal of at least a part of the display area of the display screen 120 is guided to the optical fingerprint device 130, so that the fingerprint detection area 103 is actually located in the display area of the display screen 120.
  • the area of the fingerprint detection area 103 may be different from the area of the sensing array of the optical fingerprint device 130, for example, through optical path design such as lens imaging, reflective folding optical path design, or other optical path design such as light convergence or reflection, etc.
  • the area of the fingerprint detection area 103 of the optical fingerprint device 130 can be made larger than the area of the sensing array of the optical fingerprint device 130.
  • the fingerprint detection area 103 of the optical fingerprint device 130 can also be designed to be substantially the same as the area of the sensing array of the optical fingerprint device 130.
  • the terminal device 10 adopting the above structure does not need to reserve space on the front side for the fingerprint button (such as the Home button), so that a full-screen solution can be adopted, that is, the display area of the display screen 120 It can be basically extended to the front of the entire terminal device 10.
  • the optical fingerprint device 130 includes a light detecting part 134 and an optical component 132, and the light detecting part 134 includes the sensor array and is electrically connected to the sensor array.
  • the connected reading circuit and other auxiliary circuits can be fabricated on a chip (Die) through a semiconductor process, such as an optical imaging chip or an optical fingerprint sensor.
  • the sensing array is specifically a photodetector (Photodetector) array, which includes A plurality of photodetectors distributed in an array, the photodetector can be used as the optical sensing unit as described above; the optical component 132 can be arranged above the sensing array of the photodetecting part 134, which can specifically include The filter layer (Filter), the light guide layer or the light path guide structure and other optical elements, the filter layer can be used to filter out the ambient light penetrating the finger, and the light guide layer or the light path guide structure is mainly used to remove The reflected light reflected from the finger surface is guided to the sensing array for optical detection.
  • the filter layer Finter
  • the light guide layer or the light path guide structure is mainly used to remove The reflected light reflected from the finger surface is guided to the sensing array for optical detection.
  • the optical assembly 132 and the light detecting part 134 may be packaged in the same optical fingerprint component.
  • the optical component 132 and the optical detection part 134 may be packaged in the same optical fingerprint chip, or the optical component 132 may be arranged outside the chip where the optical detection part 134 is located, for example, the optical component 132 is attached above the chip, or some components of the optical assembly 132 are integrated into the chip.
  • the light guide layer or light path guiding structure of the optical component 132 has multiple implementation schemes.
  • the light guide layer may specifically be a collimator layer made on a semiconductor silicon wafer, which has multiple solutions.
  • a collimating unit or a micro-hole array, the collimating unit may be specifically a small hole.
  • the reflected light reflected from the finger the light that is perpendicularly incident on the collimating unit can pass through and be passed by the optical sensing unit below it.
  • the light with an excessively large incident angle is attenuated by multiple reflections inside the collimating unit. Therefore, each optical sensor unit can basically only receive the reflected light reflected by the fingerprint pattern directly above it.
  • the sensor array can detect the fingerprint image of the finger.
  • the light guide layer or the light path guide structure may also be an optical lens (Lens) layer, which has one or more lens units, such as a lens group composed of one or more aspheric lenses, which The sensing array used to converge the reflected light reflected from the finger to the light detection part 134 below it, so that the sensing array can perform imaging based on the reflected light, thereby obtaining a fingerprint image of the finger.
  • the optical lens layer may further have a pinhole formed in the optical path of the lens unit, and the pinhole may cooperate with the optical lens layer to expand the field of view of the optical fingerprint device to improve the optical The fingerprint imaging effect of the fingerprint device 130.
  • the light guide layer or the light path guide structure may also specifically adopt a micro-lens (Micro-Lens) layer.
  • the micro-lens layer has a micro-lens array formed by a plurality of micro-lenses, which can be grown by semiconductors.
  • a process or other processes are formed above the sensing array of the light detecting part 134, and each microlens may correspond to one of the sensing units of the sensing array, respectively.
  • other optical film layers may be formed between the microlens layer and the sensing unit, such as a dielectric layer or a passivation layer.
  • the microlens layer and the sensing unit may also include The light-blocking layer of the micro-hole, wherein the micro-hole is formed between its corresponding micro-lens and the sensing unit, the light-blocking layer can block the optical interference between the adjacent micro-lens and the sensing unit, and make the sensing The light corresponding to the unit is condensed into the microhole through the microlens and is transmitted to the sensing unit through the microhole to perform optical fingerprint imaging.
  • a microlens layer can be further provided under the collimator layer or the optical lens layer.
  • the collimator layer or the optical lens layer is used in combination with the micro lens layer, its specific laminated structure or optical path may need to be adjusted according to actual needs.
  • the display screen 120 may be a display screen with a self-luminous display unit, such as an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display or a micro-LED (Micro-LED) display Screen.
  • OLED Organic Light-Emitting Diode
  • Micro-LED Micro-LED
  • the optical fingerprint device 130 may use the display unit (ie, an OLED light source) of the OLED display screen 120 located in the fingerprint detection area 103 as an excitation light source for optical fingerprint detection.
  • the display screen 120 emits a beam of light 111 to the target finger 140 above the fingerprint detection area 103.
  • the light 111 is reflected on the surface of the finger 140 to form reflected light or pass through
  • the finger 140 scatters internally to form scattered light.
  • the above-mentioned reflected light and scattered light are collectively referred to as reflected light. Since the ridge and valley of the fingerprint have different light reflection capabilities, the reflected light 151 from the fingerprint ridge and the generated light 152 from the fingerprint ridge have different light intensities.
  • the reflected light passes through the optical component 132, It is received by the sensor array 134 in the optical fingerprint device 130 and converted into a corresponding electrical signal, that is, a fingerprint detection signal; based on the fingerprint detection signal, fingerprint image data can be obtained, and fingerprint matching verification can be further performed, so that the The terminal device 10 implements an optical fingerprint recognition function.
  • the optical fingerprint device 130 may also use a built-in light source or an external light source to provide an optical signal for fingerprint detection.
  • the optical fingerprint device 130 may be suitable for non-self-luminous display screens, such as liquid crystal display screens or other passively-luminous display screens.
  • the optical fingerprint system of the terminal device 10 may also include an excitation light source for optical fingerprint detection.
  • the excitation light source may specifically be an infrared light source or a light source of non-visible light of a specific wavelength, which may be arranged under the backlight module of the liquid crystal display screen or arranged in the edge area under the protective cover of the terminal device 10, and the The optical fingerprint device 130 can be arranged under the edge area of the liquid crystal panel or the protective cover and guided through the light path so that the fingerprint detection light can reach the optical fingerprint device 130; or, the optical fingerprint device 130 can also be arranged in the backlight module. Under the group, and the backlight module is designed to allow the fingerprint detection light to pass through the liquid crystal panel and the backlight module and reach the optical fingerprint device 130 through openings or other optical designs on the film layers such as diffuser, brightness enhancement film, and reflective film. .
  • the optical fingerprint device 130 adopts a built-in light source or an external light source to provide an optical signal for fingerprint detection, the detection principle is the same as that described above.
  • the terminal device 10 further includes a transparent protective cover plate.
  • the cover plate may be a glass cover plate or a sapphire cover plate, which is located above the display screen 120 and covers the terminal.
  • the optical fingerprint device 130 may include only one optical fingerprint sensor.
  • the fingerprint detection area 103 of the optical fingerprint device 130 has a small area and a fixed position, so the user is performing fingerprint input At this time, it is necessary to press the finger to a specific position of the fingerprint detection area 103, otherwise the optical fingerprint device 130 may not be able to collect fingerprint images, resulting in poor user experience.
  • the optical fingerprint device 130 may specifically include multiple optical fingerprint sensors; the multiple optical fingerprint sensors may be arranged side by side under the display screen 120 in a splicing manner, and the multiple optical fingerprint sensors The sensing area of the fingerprint sensor collectively constitutes the fingerprint detection area 103 of the optical fingerprint device 130.
  • the fingerprint detection area 103 of the optical fingerprint device 130 may include multiple sub-areas, and each sub-area corresponds to the sensing area of one of the optical fingerprint sensors, so that the fingerprint collection area of the optical fingerprint module 130 103 can be extended to the main area of the lower half of the display screen, that is, to the area where the finger is habitually pressed, so as to realize the blind fingerprint input operation.
  • the fingerprint detection area 130 can also be extended to half of the display area or even the entire display area, thereby realizing half-screen or full-screen fingerprint detection.
  • the sensing array in the optical fingerprint device may also be referred to as a pixel array
  • the optical sensing unit or sensing unit in the sensing array may also be referred to as a pixel unit.
  • optical fingerprint device in the embodiments of the present application may also be referred to as an optical fingerprint identification module, fingerprint identification device, fingerprint identification module, fingerprint module, fingerprint acquisition device, etc., and the above terms can be replaced with each other.
  • the reflection performance of human skin tissue to specific wavelength light such as red light is significantly different from that of artificial materials such as silica gel, paper, and tape.
  • the present application provides a fingerprint recognition solution, in which multiple color filter units are arranged between the microlens unit array and the pixel unit array in the fingerprint recognition device to transmit light in the first direction among multiple directions.
  • Light signals of multiple colors where each filter unit corresponds to a pixel unit, and the pixel unit corresponding to the filter unit is marked as a characteristic pixel unit.
  • the filter unit can be considered to be disposed above the corresponding characteristic pixel unit.
  • the fingerprint image collected by the characteristic pixel unit is a low-resolution color fingerprint image.
  • the low-resolution color fingerprint image has significantly different characteristics. , As shown in Figure 2, therefore, the authenticity of the fingerprint image can be determined according to the difference of the low-resolution color fingerprint image collected by the characteristic pixel unit.
  • the fingerprint identification device 300 includes: a microlens unit array 310, at least one light blocking layer 320, a pixel unit array 330, and a filter unit group array 340.
  • the micro lens unit array 310 is configured to be arranged below the display screen 120.
  • the microlens unit array 310 includes a plurality of microlens unit groups, each microlens unit group includes a plurality of microlens units, each microlens unit includes at least one microlens, and each microlens unit group is used to combine a plurality of microlens units.
  • the optical signal in the direction is transmitted to the pixel unit array 330.
  • the at least one light blocking layer 320 is disposed under the micro lens unit array. Each of the at least one light blocking layer is provided with an array of small holes corresponding to the pixel units in the pixel unit array 330.
  • the pixel unit array 330 is arranged below the small hole array of the bottom light-blocking layer in the at least one light-blocking layer, so that the light signal returned from the finger above the display screen 120 passes through the microlens unit array After the convergence of 310, it is transmitted to the pixel unit array 330 through the small hole array provided in the at least one light blocking layer 320.
  • the filter unit array 340 is disposed between the micro lens unit array 310 and the pixel unit array 330, and each filter unit group in the filter unit array 340 corresponds to a micro lens unit group ,
  • Each of the filter unit groups includes a plurality of filter units, the plurality of filter units are filter units of multiple colors, and each filter unit of the plurality of filter units is used to transmit An optical signal of one color of the optical signal in the first direction in the plurality of directions.
  • the pixel unit array 330 includes a pixel unit group corresponding to the filter unit group, and a plurality of pixel units in the pixel unit group respectively receive the light signals of the multiple colors through the plurality of filter units. , The light signals of the multiple colors are used to detect whether the finger is a real finger.
  • a plurality of pixel units corresponding to the filter unit in the pixel unit array are marked as characteristic pixel units; other pixel units except the plurality of pixel units are marked as ordinary pixel units ,
  • the background pixel unit that is, the light signal collected by the characteristic pixel unit is used for living body recognition, and the light signal collected by the background pixel unit is used for fingerprint recognition.
  • a filter unit can also be provided above the background pixel unit to filter out light signals that affect fingerprint recognition. It should be noted that, unless otherwise specified, the filter unit in the embodiment of the application refers to It is a filter unit used to transmit light signals of a specific color in a single direction.
  • the filter units in the filter unit group are arranged to transmit light signals of multiple colors in a single direction, so that multiple pixel units corresponding to the filter unit group can collect the
  • the multi-color color fingerprint image in a single direction can further determine whether the finger located above the display screen is a real finger based on the color fingerprint image.
  • the filter unit group may include filter units of two colors, or may also include filter units of three colors, or may also include filter units of more colors.
  • the light unit group includes filter units of three colors as an example to illustrate the color layout of the filter units in each filter unit group, but the embodiment of the present application is not limited to this.
  • the microlens units in the microlens unit group correspond to filter units of the same color.
  • the embodiment of the present application does not specifically limit the number of microlenses included in each microlens unit. For example, There is one or more.
  • the number of filter units of the same color in each filter unit group can be one or more.
  • microlens units included in the microlens unit group for example, 2, 4, etc., which can be specifically based on the color of the filter unit in the filter unit group.
  • the layout is determined, and the text will explain this in detail.
  • each micro lens unit group in the micro lens unit array is used to guide light signals in multiple directions to the corresponding pixel unit group, and the embodiment of the present application does not particularly limit the light signals in the multiple directions.
  • the number of signals for example, may be two, three or more.
  • the following uses four directions as an example for description, but the embodiment of the present application is not limited to this.
  • the filter unit group is used to transmit light signals of multiple colors of light signals in a first direction among the multiple directions, which is denoted as the first type of filter.
  • the fingerprint identification device may further include more types of filter unit groups, for example, a second type of filter unit group, which is used to pass through a second direction of the plurality of directions.
  • Light signal of multiple colors of light signal is taken as an example to describe the color layout and the position layout. The design method is similar, which is not repeated in the embodiment of the present application.
  • a plurality of filter unit groups in the filter unit group array can be discretely distributed in the photosensitive area of the pixel unit array. Accordingly, it can be considered that the characteristic pixel unit groups corresponding to the filter unit groups are discrete. Distributed in the pixel unit array, so as to prevent the excessive number of pixel units continuously covered by the filter unit from affecting the fingerprint recognition performance.
  • the characteristic pixel unit group corresponding to the filter unit group may be evenly distributed in the photosensitive area of the pixel unit array.
  • the filter unit in the filter unit group may be disposed between the corresponding pixel unit group and the corresponding micro lens unit group, and is located on the optical path of the optical signal transmitted in the first direction.
  • the fingerprint identification device of the embodiment of the present application can arrange filter units in part of the light path to realize living body identification, At the same time, the optical signals of other optical paths can also be used for fingerprint identification, so that both living body identification and fingerprint identification can be taken into account.
  • the fingerprint identification device may include a micro lens unit array 310, at least one light blocking layer 320, a pixel unit array 330 and a filter unit group array 340.
  • each microlens unit group in the microlens unit array 310 includes 4 microlens units, each microlens unit includes a microlens 311, and each of the four microlens units is used for
  • the optical signals in the four directions are transmitted to the corresponding pixel units, and the filter unit corresponding to each microlens unit is located on the optical path in the first direction, that is, the filter unit corresponding to each microlens unit is used for
  • the specific wavelength band is a wavelength band that the filter unit can transmit.
  • each microlens is arranged directly above the 2*2 pixel unit array, and the microlens is used to transmit optical signals in four directions to the 2*2 pixel unit array.
  • the at least one light blocking layer 320 includes a bottom light blocking layer 321 and a top light blocking layer 322, wherein the bottom light blocking layer 321 and the top light blocking layer 322 are respectively provided with each of the plurality of microlenses 311 A group of small holes corresponding to the micro lens.
  • the pixel unit in the pixel unit array 330 disposed under the microlens 311 is used to receive the oblique light signal condensed by the microlens and transmitted through the small holes in the bottom light blocking layer and the top light blocking layer.
  • the bottom light blocking layer 321 is provided with four small holes corresponding to the microlenses 311, for example, a first small hole 3211 and a second small hole 3212, and the other small holes are not shown.
  • the top light blocking layer 322 is provided with a third small hole 3221 corresponding to the microlens 311, wherein the connection direction of the second small hole 3212 and the third small hole 3221 is used to form the four directions.
  • the connecting direction of the first small hole 3211 and the third small hole 3221 is used to form the second direction among the four directions. It should be understood that the number of small holes corresponding to each microlens in the top light blocking layer may be one, or each pixel unit in the pixel unit group may correspond to one small hole.
  • the filter unit 341 can be arranged at any position in the optical path of the optical signal in the first direction from the microlens unit array to the corresponding pixel unit array. As an implementation, the filter unit 341 is arranged at Above the second small hole 3212 in the bottom light blocking layer, or may also be provided on the upper surface of the corresponding pixel unit 332.
  • the pixel unit 331 can receive the light signal in the second direction condensed by the micro lens 311 and transmitted through the third small hole 3221 and the first small hole 3211, and the pixel unit 332 can receive the micro lens 311 converged.
  • the optical signal in the first direction is transmitted through the third small hole 3221 and the second small hole 3212. It should be understood that the pixel units 332 are separated by the pixel units 331 in the pixel unit group.
  • the at least one light-blocking layer may also be a light-blocking layer, that is, a small hole corresponding to the four pixel units is provided under the one microlens 311.
  • the filter units corresponding to the four micro lens units in the micro lens unit group include filter units of three colors, namely, a red filter unit, a blue filter unit, and a green filter unit. unit.
  • the color of the filter units corresponding to the two micro lens units on the diagonal in the micro lens unit group is the same, and the colors of the filter units corresponding to the other two filter units are the other two colors .
  • filter units of the same color in a filter unit group are green filter units, and adjacent filter units are separated by background pixel units. If omitted The space between adjacent filter unit groups in the filter unit array above the pixel unit array, that is, the adjacent filter unit groups are spliced together, and the color layout of the filter unit array is obtained as shown in Fig. 6 As shown in a2.
  • the filter units of the same color in a filter unit group may also be red filter units.
  • the color layout of the filter unit group is shown in b1 in FIG.
  • the color layout of the light unit array is shown in b2 in Figure 6.
  • the filter units of the same color in a filter unit group are blue filter units, then the filter unit group is shown as c1 in FIG. 6, and the filter unit group array is Figure 6 shows c2.
  • the filter units corresponding to the micro lens units in the micro lens unit group are respectively a red filter unit, a blue filter unit, a green filter unit, and a white filter unit.
  • the color layout of the filter unit group is shown as d1 in FIG. 6, and the color layout of the filter unit group array is shown as d2 in FIG. 6.
  • the color and position of the filter unit in each filter unit group in the multiple filter unit groups can be set in the same way, or one or the other can be changed.
  • the color and/or position of one or more filter units in a certain filter unit group, that is to say, the color and/or position of the filter unit in the filter unit group can be locally adjusted, as long as it is not It is sufficient to affect the fingerprint recognition performance, which is not limited in the embodiment of the present application.
  • the filter unit in each filter unit group can transmit light signals of three colors in the first direction, correspondingly, the four filter unit groups corresponding to the The pixel unit can collect three-color color fingerprint images in the first direction, and further can determine whether the finger located above the display screen is a real finger based on the color fingerprint image.
  • the fingerprint identification device may further include a transparent medium layer 350.
  • the transparent medium layer 350 can be disposed at at least one of the following positions: between the microlens unit array 310 and the at least one light blocking layer 320; between the at least one light blocking layer 320; and the Between at least one light blocking layer 320 and the pixel unit array 330.
  • the transparent medium layer 350 may include a first medium layer 351 located between the microlens unit array 310 and the at least one light blocking layer 320 (that is, the bottom light blocking layer 321) and the bottom blocking layer.
  • the second dielectric layer 352 between the light layer 321 and the top light blocking layer 322.
  • the material of the transparent medium layer 350 is any transparent material that is transparent to light, such as glass, which can also be transitioned by air or vacuum, which is not specifically limited in this application.
  • the microlens unit group is an array of 2*2 microlens units, each microlens unit includes 2*2 microlenses, and each filter unit group includes sixteen.
  • Filter unit each filter unit corresponds to a micro lens and a pixel unit. That is, the four microlenses in each microlens unit correspond to 4 filter units of the same color.
  • the 2*2 microlens in the upper left corner of Figure 7 is a microlens unit, and the corresponding filter unit is 4
  • Two filter units of the same color for example, a red light filter unit; for another example, the 2*2 microlens in the lower right corner of Figure 7 is a microlens unit, and the corresponding filter unit is 4 filters of the same color.
  • Light unit for example, blue light filter unit.
  • Embodiment 2 differs from Embodiment 1 in the number of filter units of the same color for one microlens unit.
  • one microlens unit corresponds to one filter unit in Embodiment 1.
  • one microlens unit since one microlens unit includes 4 microlenses, it corresponds to 4 filter units of the same color.
  • the signals collected by the four pixel units under the four filter units corresponding to one microlens unit can be combined for processing, such as averaging, to reduce the dimension of the color fingerprint image.
  • the fingerprint identification device may include a microlens unit array 310, at least one light blocking layer 320, a pixel unit array 330, and a filter unit group array 340.
  • the at least one light blocking layer 320 includes a bottom light blocking layer 321 and a top light blocking layer 322, wherein the bottom light blocking layer 321 and the top light blocking layer 322 are respectively provided with each of the plurality of microlenses.
  • the pixel units in the pixel unit array 330 arranged under the microlens are used to receive the four directions condensed by the microlens and transmitted through the small holes in the bottom light-blocking layer and the top light-blocking layer. Light signal.
  • the microlens unit array 310 includes an array of 3*3 microlens units, each microlens unit includes a microlens, the pixel unit group is a 4*4 pixel unit array, and the 4*4 pixel A microlens is arranged directly above each adjacent 4 pixel units in the unit array.
  • a microlens can be arranged directly above the center of the 4 pixel units.
  • the central microlens 3111 in the array composed of the 3*3 microlens units is used to transmit the optical signals in the four directions to the corresponding pixel units, and the microlenses 3112-3115 on the four corners are Each of the microlenses is used to transmit optical signals in one direction to the pixel units on the four corners of the corresponding 4*4 pixel unit array.
  • each filter unit group includes four filter units, each filter unit Corresponding to one micro lens and one pixel unit, the filter unit corresponding to each micro lens unit is located on the optical path of the optical signal transmitted along the first direction. That is, the microlens unit group includes three types of microlenses, among which, the first type of microlenses (that is, the microlenses located at the four corners of the microlens unit group) are used to transmit light signals in one direction to the corresponding pixels.
  • the second type of microlens (that is, the microlens located in the center of the microlens unit group) is used to transmit the optical signals in the four directions to the corresponding pixel unit
  • the third type of microlens (that is, the microlens located in the microlens unit group)
  • the other micro-lenses) are used to transmit optical signals in two directions to the corresponding pixel units.
  • the micro-lens can transmit optical signals in a specific direction to the corresponding pixel through an array of small holes in the corresponding light-blocking layer. unit.
  • the first row of microlenses are denoted as microlenses 3112, 3117, and 3113, respectively.
  • the micro lens 3112 corresponds to the second small hole 3212 and the third small hole 3221
  • the micro lens 3117 corresponds to the first small hole 3211
  • the micro lens 3113 corresponds to the first small hole 3211 and The third small hole 3221, other small holes are not shown.
  • the connecting direction of the second small hole 3212 and the third small hole 3221 is used to form the first direction among the four directions, and the connection between the first small hole 3211 and the third small hole 3221 is The line direction is used to form the second direction among the four directions.
  • the number of small holes corresponding to each microlens in the top light-blocking layer may be one, or each pixel unit in the pixel unit group may correspond to one small hole, as shown in FIG. 10,
  • the lens 3118 corresponds to two small holes 3222 in the top light blocking layer, wherein the two small holes 3222 respectively form two directions with the two small holes 3211 in the bottom light blocking layer.
  • the transmission direction of the light is associated with the small hole, that is, small holes with the same reference number can be used for light passing through the same direction. However, this does not mean that they are the same small hole. It can be understood that in order to pass the light signal in a specific direction, the light blocking layer above each microlens needs to be provided with a suitable small hole to form the specific direction.
  • the filter unit 341 can be arranged at any position in the optical path of the optical signal in the first direction from the microlens unit array to the corresponding pixel unit array. As an implementation, the filter unit 341 is arranged at Above the second small hole 3212 in the bottom light blocking layer, or may also be provided on the upper surface of the corresponding pixel unit 332.
  • the pixel unit 331 can receive the light signal in the second direction condensed by the micro lens 311 and transmitted through the third small hole 3221 and the first small hole 3211, and the pixel unit 332 can receive the micro lens 311 converged.
  • the optical signal in the first direction is transmitted through the third small hole 3221 and the second small hole 3212.
  • the pixel units 332 ie, characteristic pixel units in a pixel unit group are adjacent to each other.
  • the at least one light-blocking layer may also be a light-blocking layer, that is, small holes corresponding to the four pixel units are provided under the one microlens.
  • the fingerprint identification device may further include a transparent medium layer 350.
  • a transparent medium layer 350 For specific description, refer to the related description of Embodiment 1, which will not be described again.
  • the filter units corresponding to the 9 micro lens units in each micro lens unit group include filter units of three colors, for example, red filter unit, blue filter unit, and green filter unit. unit.
  • the filter units corresponding to the micro lens units in the micro lens unit group are respectively a red filter unit, a blue filter unit, a green filter unit, and a white filter unit.
  • red filter unit for example, red filter unit, blue filter unit, and green filter unit.
  • the microlens unit group is an array composed of 2*2 microlens units, each microlens unit includes an array composed of 3*3 microlenses, and each microlens unit corresponds to A 4*4 pixel unit array, a microlens is arranged directly above each adjacent 4 pixel units in the 4*4 pixel unit array, as a specific implementation, the center of the 4 pixel units can be directly above Set up a micro lens.
  • the center microlens of the 3*3 microlens array is used to transmit light signals in four directions to the corresponding pixel unit, and each of the microlenses on the four corners is used to separately The optical signal in one direction is transmitted to the pixel unit on the corner of the corresponding 4*4 pixel unit array, and the other four microlenses in the array composed of the 3*3 microlens are used to respectively transmit the optical signals in two directions to Two pixel units outside the 4*4 pixel unit array under the same microlens.
  • one microlens unit group corresponds to one filter unit group. As shown in FIG. 11, one filter unit group includes sixteen filter units, one microlens unit corresponds to four filter units, and four filter units.
  • the units are adjacent in position.
  • the 3*3 microlens in the upper left corner of Figure 11 is a microlens unit
  • the corresponding filter unit is 4 filter units of the same color, for example, a red light filter unit.
  • the filter units are adjacent and distributed in a 2*2 array; for another example, the 3*3 microlenses in the lower right corner of Figure 11 are a microlens unit, and the corresponding filter unit is 4 filter units of the same color.
  • these 4 filter units of the same color are adjacent and distributed in a 2*2 array.
  • Each filter unit corresponds to one micro lens and one pixel unit, and the filter unit corresponding to each micro lens unit is located on the optical path in the first direction.
  • the difference between the fourth embodiment and the third embodiment lies in the number of filter units of the same color corresponding to one microlens unit.
  • one microlens unit corresponds to one filter unit in the third embodiment.
  • Example 4 since one microlens unit includes 9 microlenses, and 4 of the 9 microlenses are used to receive the light signal in the first direction, they correspond to 4 filter units of the same color.
  • the signals collected by the four pixel units under the four filter units corresponding to one microlens unit can be combined for processing, such as averaging, to reduce the dimension of the color fingerprint image.
  • the filter units in the filter unit group are arranged to transmit light signals of multiple colors in a single direction, so that multiple pixel units corresponding to the filter unit group can collect the
  • the multi-color color fingerprint image in a single direction can further determine whether the finger located above the display screen is a real finger based on the color fingerprint image.
  • the fingerprint identification device 300 may further include:
  • the processor is configured to determine whether the fingerprint image comes from a real finger according to the fingerprint image collected by the multiple pixel units.
  • the multiple pixel units of the optical fingerprint sensor can image the fingerprint detection signal reflected from the surface of the object to be identified. Further, the processor can extract and reorganize the data collected by the characteristic pixel unit of the multiple pixel units. Fingerprint image to obtain a low-resolution color fingerprint image, and then the processor can input the low-resolution color fingerprint image to a successfully trained deep learning network, and process the color fingerprint image through the deep learning network to determine Whether the color fingerprint image is from a real finger.
  • the processor may further determine whether the object to be identified is a real finger when the fingerprint image collected by the background pixel unit matches the registered fingerprint template of the object to be identified, and when the object to be identified is In the case of a real finger, it is determined that the fingerprint authentication is successful, and the operation that triggers the fingerprint recognition is executed, for example, operations such as terminal unlocking or payment are performed.
  • the processor may further determine whether the fingerprint image collected by the background pixel unit matches the registered fingerprint template of the object to be identified when the object to be identified is a real finger. Next, it is determined that the fingerprint authentication is successful, and further operations that trigger the fingerprint recognition are performed, for example, operations such as terminal unlocking or payment are performed.
  • the processor may be a processor in a fingerprint module, for example, a microcontroller (Micro Control Unit, MCU), or may also be a processor in an electronic device, such as a master
  • MCU Micro Control Unit
  • the host module is not limited in this embodiment of the application.
  • the processor may also be used to process and output the color values collected by the pixel unit group at one time, thereby saving a lot of collection time.
  • the three color values collected by the pixel unit group corresponding to the filter unit group are calibrated to 0-255 to form the color values of the RGB three channels; the color values of the RGB three channels are combined into 12-bit color value, and output the 12-bit color value at a time, wherein the filter unit group includes three color filter units of RGB, and each micro lens unit in the micro lens unit group corresponds to one filter unit. Light unit.
  • the pixel unit corresponding to the filter unit can collect light signals of three colors, and further sample the light signals of the three colors.
  • the values are respectively calibrated to 0-255 to form the color value of the RGB three channels.
  • the color values collected by the pixel units corresponding to the filter units of the same color in the filter unit group are combined to obtain one color value, and the one color value is output at a time.
  • the filter unit group includes a plurality of filter units of the same color.
  • the color values collected by the pixel unit corresponding to each filter unit are output one by one, it takes more time. Therefore, in the embodiment of the present application, as shown in FIG. 13, the color values collected by the pixel units corresponding to the filter units of the same color in the filter unit group can be combined by the processor, for example, averaged, Output the merged color value once, so that only one color value needs to be output.
  • the collected color values can also be calibrated through the previous implementation method, and further combined into a 12-bit color Value, and output the 12-bit color value at a time, which can further save collection time.
  • the color value collected by the pixel unit is calibrated or combined by the processor, which can reduce the output time of the color value and save a lot of collection time.
  • other structures may not be provided above the background pixel unit, or no material may be coated, that is, the upper portion of the background pixel unit is transparent without processing, in other words, the background pixel unit and its There is an air gap between the upper optical components.
  • a light-transmitting material may be arranged above the background pixel unit. In this case, the fingerprint detection signal entering the background pixel unit is not affected or affected less.
  • a filter layer such as a green filter layer
  • a green filter material may be coated above the background pixel unit, or a green filter may be provided.
  • the fingerprint image collected by the background pixel unit is a green fingerprint image, that is, the fingerprint detection signal in the red and blue bands is filtered out, which is beneficial to reduce the red light and other environments The influence of light signal can improve fingerprint recognition performance.
  • the number of continuous filter units can be set to be less than or equal to a specific threshold, for example, six.
  • a specific threshold for example, six.
  • the number of continuous characteristic pixel units is not greater than the specific threshold, so It can avoid affecting the fingerprint recognition performance.
  • the filter unit usually only allows light signals within a specific wavelength range to pass.
  • the wavelength range of the emitted light of the light source used for fingerprint detection needs to include this
  • the wavelength band of the filter unit, and at least part of other wavelength bands other than this wavelength band, that is, the wavelength band of a single filter unit includes only a part of the wavelength band of the emitted light.
  • the filter unit After passing through the filter unit, a part of the light signal is filtered out, while allowing a part of the light signal to pass through, and further imaging on the characteristic pixel unit, thereby obtaining low Resolution color fingerprint image.
  • the wavelength range of the blue filter unit may be 440nm-475nm in the center wavelength band, and the upper cut-off wavelength band is about 550nm, and the transmittance of blue light is higher than that of green light and red light;
  • the wavelength range of the light unit can be from 520nm to 550nm in the center band, and the upper and lower cutoff bands are about 620nm and 460nm.
  • the transmittance of green light is higher than that of blue and red light; the wavelength range of the red filter unit can be about At 550nm, the transmittance of red light is higher than that of green and blue light.
  • the deep learning network in the embodiment of the present application may be a convolutional neural network or other deep learning network, which is not limited in the embodiment of the present application.
  • a convolutional neural network is taken as an example to illustrate the specific training process.
  • a convolutional neural network structure For example, the two-layer convolutional neural network shown in Figure 14 can be used, or a three-layer network structure or a more-layer network structure can also be used.
  • the structure of each layer of the convolutional network can also be based on The fingerprint information to be extracted is adjusted, which is not limited in the embodiment of the present application.
  • the initial training parameters may be randomly generated, or obtained based on empirical values, or may be parameters of a convolutional neural network model pre-trained based on a large amount of true and false fingerprint data This embodiment of the application does not limit this.
  • the convergence condition may include at least one of the following:
  • the probability of judging a color fingerprint image of a real finger as a fingerprint image of a real finger is greater than the first probability, for example, 98%;
  • the probability of judging the color fingerprint image of the fake finger as the fingerprint image of the fake finger is greater than the second probability, for example, 95%;
  • the probability of judging the color fingerprint image of the real finger as the fingerprint image of the fake finger is less than the third probability, for example, 2%;
  • the probability of judging the color fingerprint image of the fake finger as the fingerprint image of the real finger is less than the fourth probability, for example, 3%.
  • the convolutional neural network can process the above-mentioned color fingerprint images based on the initial training parameters to determine the judgment result of each color fingerprint image, Further, according to the judgment result, the structure of the convolutional neural network and/or the training parameters of each layer are adjusted until the judgment result meets the convergence condition.
  • color fingerprint images collected by the feature pixel unit can be input to the convolutional neural network, so that the convolutional neural network can use the trained parameters to process the color fingerprint image to determine whether the color fingerprint image is from a real finger .
  • an embodiment of the present application further provides an electronic device 400.
  • the electronic device 400 may include a fingerprint identification device 410, and the fingerprint identification device 410 may be the fingerprint identification device 300 in the foregoing device embodiment.
  • the electronic device may include a display screen, and the display screen may refer to related implementations in the display screen 120 in FIG. 1, such as an OLED display screen or other display screens.
  • the display screen is an OLED display screen
  • the optical fingerprint device uses a part of the display unit of the OLED display screen as an excitation light source for optical fingerprint detection.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Computational Linguistics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Image Input (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

提供了一种指纹识别装置和电子设备。该指纹识别装置包括:微透镜单元阵列;至少一个挡光层;像素单元阵列;滤光单元组阵列,设置在所述微透镜单元阵列和所述像素单元阵列之间,其中,每个滤光单元组包括多个滤光单元,所述多个滤光单元为多种颜色的滤光单元,所述多个滤光单元中的每个滤光单元用于透过所述多个方向中第一方向的光信号的一种颜色的光信号;其中,所述像素单元阵列包括所述滤光单元组对应的像素单元组,所述像素单元组中的多个像素单元分别通过所述多个滤光单元接收所述多种颜色的光信号,所述多种颜色的光信号用于检测所述手指是否为真手指。该指纹识别装置能够在不影响指纹识别效果的基础上,提高指纹识别的安全性。

Description

指纹识别装置和电子设备 技术领域
本申请涉及光学指纹技术领域,并且更具体地,涉及一种指纹识别装置和电子设备。
背景技术
光学指纹识别装置的应用给用户带来了安全和便捷的用户体验,但是通过人工材料(例如,硅胶、白胶等)制造的指纹模具、打印的指纹图像等伪造的指纹是指纹应用中一个安全隐患。因此,如何识别指纹的真假,以提升指纹识别的安全性是一项亟需解决的问题。
发明内容
本申请实施例提供了一种指纹识别装置和电子设备,能够识别指纹的真假,从而能够提升指纹识别的安全性。
第一方面,提供了一种指纹识别装置,包括:
微透镜单元阵列,用于设置在所述显示屏的下方,包括多个微透镜单元组,每个微透镜单元组包括多个微透镜单元,每个微透镜单元包括至少一个微透镜,每个微透镜单元组用于将多个方向的光信号传输至像素单元阵列;
至少一个挡光层,设置在所述微透镜单元阵列的下方,所述至少一个挡光层中的每一个挡光层设置有小孔阵列;
所述像素单元阵列,设置在所述至少一个挡光层中的底层挡光层的小孔阵列的下方,使得从所述显示屏上方的手指返回的光信号通过所述微透镜单元阵列的会聚后,通过所述至少一个挡光层中设置的小孔阵列传输至所述像素单元阵列;
滤光单元组阵列,设置在所述微透镜单元阵列和所述像素单元阵列之间,所述滤光单元组阵列中的每个滤光单元组对应一个微透镜单元组,所述每个滤光单元组包括多个滤光单元,所述多个滤光单元为多种颜色的滤光单元,所述多个滤光单元中的每个滤光单元用于透过所述多个方向中第一方向的光信号的一种颜色的光信号;
其中,所述像素单元阵列包括所述滤光单元组对应的像素单元组,所述 像素单元组中的多个像素单元分别通过所述多个滤光单元接收所述多种颜色的光信号,所述多种颜色的光信号用于检测所述手指是否为真手指。
通过设置滤光单元组中的滤光单元透过单一方向上的多种颜色的光信号,这样,所述滤光单元组对应的多个像素单元可以采集该单一方向上的多种颜色的彩色指纹图像,进一步可以基于该彩色指纹图像确定位于显示屏上方的手指是否为真手指。
在一种可能的实现方式中,所述微透镜单元组包括四个微透镜单元,所述四个微透镜单元中的每个微透镜用于将四个方向的光信号传输至对应的像素单元,所述每个微透镜单元对应的滤光单元位于所述第一方向的光路上。
设计所述滤光单元位于所述四个方向的第一方向的光路上,能够简化指纹识别装置结构复杂度,例如,能够简化至少一个挡光层的光路设计的复杂度,能够简化滤光单元的铺设复杂度,使其在至少一个挡光层上的铺设呈现出一定的规律。
在一种可能的实现方式中,所述微透镜单元组为2*2微透镜单元组成的阵列,每个微透镜单元包括一个微透镜,每个滤光单元组包括四个滤光单元,每个滤光单元对应一个微透镜和一个像素单元。
在一种可能的实现方式中,所述微透镜单元组为2*2微透镜单元组成的阵列,每个微透镜单元包括2*2个微透镜,每个滤光单元组包括十六个滤光单元,每个滤光单元对应一个微透镜和一个像素单元。
将每一个滤光单元对应到所述像素单元组中的一个像素单元,不仅可以提高不同颜色的指纹图像的分辨率,还能够保证将所述滤光单元所对应的多个像素单元均匀地分布在像素单元组内。
在一种可能的实现方式中,所述微透镜单元组为3*3微透镜单元组成的阵列,每个微透镜单元包括一个微透镜,所述像素单元组为4*4像素单元阵列,所述4*4像素单元阵列中每相邻的4个像素单元的正上方设置有一个微透镜。
在一种可能的实现方式中,所述3*3微透镜单元组成的阵列中的中心微透镜用于将四个方向的光信号传输至对应的像素单元,四个角上的微透镜中的每一个微透镜分别用于将一个方向的光信号传输至对应4*4像素单元阵列的四个角上的像素单元,所述3*3微透镜单元组成的阵列中其他四个微透镜 用于分别将两个方向的光信号传输至同一微透镜下方处于4*4像素单元阵列外侧的两个像素单元,每个滤光单元组包括四个滤光单元,每个滤光单元对应一个微透镜和一个像素单元,所述每个微透镜单元对应的滤光单元位于沿所述第一方向传输的光信号的光路上。
在一种可能的实现方式中,所述微透镜单元组为2*2微透镜单元组成的阵列,每个微透镜单元包括3*3微透镜组成的阵列,所述每个微透镜单元对应4*4像素单元阵列,所述4*4像素单元阵列中每相邻的4个像素单元的正上方设置有一个微透镜。
在一种可能的实现方式中,所述3*3微透镜组成的阵列的中心微透镜用于将四个方向的光信号传输至对应的像素单元,四个角上的微透镜中的每一个微透镜用于分别将一个方向的光信号传输至对应4*4像素单元阵列的角上的像素单元,所述3*3微透镜组成的阵列中的其他四个微透镜用于分别将两个方向的光信号传输至同一微透镜下方处于4*4像素单元阵列外侧的两个像素单元,每个滤光单元组包括十六个滤光单元,每个滤光单元对应一个微透镜和一个像素单元,所述每个微透镜单元对应的滤光单元位于所述第一方向的光路上。
在一种可能的实现方式中,每个微透镜单元的单元内部对应相同颜色的滤光单元。
在一种可能的实现方式中,所述微透镜单元组中的微透镜单元所对应的滤光单元包括红色滤光单元、蓝色滤光单元和绿色滤光单元。
在一种可能的实现方式中,在所述微透镜单元组中处于对角线上的两个微透镜单元所对应的滤光单元的颜色相同,相同颜色的滤光单元为红色滤光单元、蓝色滤光单元或绿色滤光单元。
在一种可能的实现方式中,所述微透镜单元组中的微透镜单元所对应的滤光单元分别为红色滤光单元、蓝色滤光单元和绿色滤光单元和白色滤光单元。
在一种可能的实现方式中,所述至少一个挡光层为多个挡光层,所述多个挡光层中的底层挡光层设置有与所述多个像素单元分别对应的多个小孔,以使所述至少一个微透镜通过所述多个小孔将所述多个方向上的光信号分别传输至对应的像素单元。
在一种可能的实现方式中,所述多个挡光层中与同一像素单元对应的小 孔由上至下孔径依次减小。
在一种可能的实现方式中,所述多个挡光层的顶层挡光层设置有所述多个像素单元对应的至少一个小孔。
在一种可能的实现方式中,所述至少一个挡光层为一个挡光层,所述一个挡光层设置有与所述多个像素单元分别对应多个小孔,使得所述至少一个微透镜通过所述多个小孔将所述多个方向上的光信号分别传输至对应的所述多个像素单元。
在一种可能的实现方式中,所述多个滤光单元中的每个滤光单元的波段范围只包括用于指纹识别的光信号的波段范围中的部分。
在一种可能的实现方式中,所述指纹识别装置还包括:
处理单元,用于通过深度学习网络对所述多个滤光单元采集的待识别物体的指纹图像进行处理,确定所述待识别物体是否为真实手指。
在一种可能的实现方式中,所述处理单元还用于:
从所述多个像素单元采集的多个真实手指和假指纹的指纹图像中,提取每个指纹图像中所述滤光单元对应的像素单元的采样值,重组得到彩色指纹图像;
将所述彩色指纹图像输入至深度学习网络进行训练,得到所述深度学习网络的模型和参数。
在一种可能的实现方式中,所述处理单元还用于:
根据所述多个像素单元中除所述多个滤光单元以外的其他像素单元采集的指纹图像进行指纹识别。
在一种可能的实现方式中,所述处理单元还用于:
将所述滤光单元组对应的像素单元组采集的三种颜色值分别校准到0-255,以形成RGB三通道的颜色值,其中,所述滤光单元组中包括RGB三种颜色的滤光单元,并且所述微透镜单元组中每个微透镜单元对应一个滤光单元;
将所述RGB三通道的颜色值组合为12位颜色值,并一次输出所述12位颜色值。
在一种可能的实现方式中,所述处理单元还用于:将所述滤光单元组中的同一颜色的滤光单元对应的像素单元采集的颜色值进行合并处理,得到一个颜色值,并一次输出所述一个颜色值,其中,所述滤光单元组中包括多个 同一颜色的滤光单元。
第二方面,提供了一种电子设备,包括:
显示屏;以及
如第一方面所述的指纹识别装置,所述装置设置于所述显示屏下方,以实现屏下光学指纹识别。
附图说明
图1是本申请实施例所适用的终端设备的结构示意图。
图2是真假指纹对应的彩色指纹图像的差异对比图。
图3是根据本申请实施例的指纹识别装置的示意性框图。
图4是根据本申请一具体实施例的指纹识别装置的剖视图。
图5是图4所示实施例的滤光单元组和微透镜单元组的布局图。
图6是图4所示实施例的滤光单元的颜色布局图。
图7是根据本申请另一实施例的滤光单元组和微透镜单元组的布局图。
图8是根据本申请又一具体实施例的指纹识别装置的剖视图。
图9是图8所示实施例的滤光单元组和微透镜单元组的布局图。
图10是图8所示实施例的挡光层中的小孔阵列的示意图。
图11是根据本申请再一实施例的滤光单元组和微透镜单元组的布局图。
图12-13是根据本申请实施例的颜色值的两种处理方式的示意性图。
图14是本申请实施例的卷积神经网络的结构图。
图15是根据本申请实施例的电子设备的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
应理解,本申请实施例可以应用于光学指纹系统,包括但不限于光学指纹识别系统和基于光学指纹成像的医疗诊断产品,本申请实施例仅以光学指纹系统为例进行说明,但不应对本申请实施例构成任何限定,本申请实施例同样适用于其他采用光学成像技术的系统等。
作为一种常见的应用场景,本申请实施例提供的光学指纹系统可以应用在智能手机、平板电脑以及其他具有显示屏的移动终端或者其他终端设备;更具体地,在上述终端设备中,指纹识别装置可以具体为光学指纹装置,其 可以设置在显示屏下方的局部区域或者全部区域,从而形成屏下(Under-display)光学指纹系统。或者,所述指纹识别装置也可以部分或者全部集成至所述终端设备的显示屏内部,从而形成屏内(In-display)光学指纹系统。
如图1所示为本申请实施例可以适用的终端设备的结构示意图,所述终端设备10包括显示屏120和光学指纹装置130,其中,所述光学指纹装置130设置在所述显示屏120下方的局部区域。所述光学指纹装置130包括光学指纹传感器,所述光学指纹传感器包括具有多个光学感应单元131的感应阵列133,所述感应阵列133所在区域或者其感应区域为所述光学指纹装置130的指纹检测区域103。如图1所示,所述指纹检测区域103位于所述显示屏120的显示区域之中。在一种替代实施例中,所述光学指纹装置130还可以设置在其他位置,比如所述显示屏120的侧面或者所述终端设备10的边缘非透光区域,并通过光路设计来将所述显示屏120的至少部分显示区域的光信号导引到所述光学指纹装置130,从而使得所述指纹检测区域103实际上位于所述显示屏120的显示区域。
应当理解,所述指纹检测区域103的面积可以与所述光学指纹装置130的感应阵列的面积不同,例如通过例如透镜成像的光路设计、反射式折叠光路设计或者其他光线汇聚或者反射等光路设计,可以使得所述光学指纹装置130的指纹检测区域103的面积大于所述光学指纹装置130感应阵列的面积。在其他替代实现方式中,如果采用例如光线准直方式进行光路引导,所述光学指纹装置130的指纹检测区域103也可以设计成与所述光学指纹装置130的感应阵列的面积基本一致。
因此,使用者在需要对所述终端设备进行解锁或者其他指纹验证的时候,只需要将手指按压在位于所述显示屏120的指纹检测区域103,便可以实现指纹输入。由于指纹检测可以在屏内实现,因此采用上述结构的终端设备10无需其正面专门预留空间来设置指纹按键(比如Home键),从而可以采用全面屏方案,即所述显示屏120的显示区域可以基本扩展到整个终端设备10的正面。
作为一种可选的实现方式,如图1所示,所述光学指纹装置130包括光检测部分134和光学组件132,所述光检测部分134包括所述感应阵列以及与所述感应阵列电性连接的读取电路及其他辅助电路,其可以在通过半导体 工艺制作在一个芯片(Die),比如光学成像芯片或者光学指纹传感器,所述感应阵列具体为光探测器(Photo detector)阵列,其包括多个呈阵列式分布的光探测器,所述光探测器可以作为如上所述的光学感应单元;所述光学组件132可以设置在所述光检测部分134的感应阵列的上方,其可以具体包括滤光层(Filter)、导光层或光路引导结构以及其他光学元件,所述滤光层可以用于滤除穿透手指的环境光,而所述导光层或光路引导结构主要用于从手指表面反射回来的反射光导引至所述感应阵列进行光学检测。
在具体实现上,所述光学组件132可以与所述光检测部分134封装在同一个光学指纹部件。比如,所述光学组件132可以与所述光学检测部分134封装在同一个光学指纹芯片,也可以将所述光学组件132设置在所述光检测部分134所在的芯片外部,比如将所述光学组件132贴合在所述芯片上方,或者将所述光学组件132的部分元件集成在上述芯片之中。
其中,所述光学组件132的导光层或者光路引导结构有多种实现方案,比如,所述导光层可以具体为在半导体硅片制作而成的准直器(Collimator)层,其具有多个准直单元或者微孔阵列,所述准直单元可以具体为小孔,从手指反射回来的反射光中,垂直入射到所述准直单元的光线可以穿过并被其下方的光学感应单元接收,而入射角度过大的光线在所述准直单元内部经过多次反射被衰减掉,因此每一个光学感应单元基本只能接收到其正上方的指纹纹路反射回来的反射光,从而所述感应阵列便可以检测出手指的指纹图像。
在另一种实施例中,所述导光层或者光路引导结构也可以为光学透镜(Lens)层,其具有一个或多个透镜单元,比如一个或多个非球面透镜组成的透镜组,其用于将从手指反射回来的反射光汇聚到其下方的光检测部分134的感应阵列,以使得所述感应阵列可以基于所述反射光进行成像,从而得到所述手指的指纹图像。可选地,所述光学透镜层在所述透镜单元的光路中还可以形成有针孔,所述针孔可以配合所述光学透镜层扩大所述光学指纹装置的视场,以提高所述光学指纹装置130的指纹成像效果。
在其他实施例中,所述导光层或者光路引导结构也可以具体采用微透镜(Micro-Lens)层,所述微透镜层具有由多个微透镜形成的微透镜阵列,其可以通过半导体生长工艺或者其他工艺形成在所述光检测部分134的感应阵列上方,并且每一个微透镜可以分别对应于所述感应阵列的其中一个感应单 元。并且,所述微透镜层和所述感应单元之间还可以形成其他光学膜层,比如介质层或者钝化层,更具体地,所述微透镜层和所述感应单元之间还可以包括具有微孔的挡光层,其中所述微孔形成在其对应的微透镜和感应单元之间,所述挡光层可以阻挡相邻微透镜和感应单元之间的光学干扰,并使得所述感应单元所对应的光线通过所述微透镜汇聚到所述微孔内部并经由所述微孔传输到所述感应单元以进行光学指纹成像。应当理解,上述光路引导结构的几种实现方案可以单独使用也可以结合使用,比如,可以在所述准直器层或者所述光学透镜层下方进一步设置微透镜层。当然,在所述准直器层或者所述光学透镜层与所述微透镜层结合使用时,其具体叠层结构或者光路可能需要按照实际需要进行调整。
作为一种可选的实施例,所述显示屏120可以采用具有自发光显示单元的显示屏,比如有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏或者微型发光二极管(Micro-LED)显示屏。以采用OLED显示屏为例,所述光学指纹装置130可以利用所述OLED显示屏120位于所述指纹检测区域103的显示单元(即OLED光源)来作为光学指纹检测的激励光源。当手指140按压在所述指纹检测区域103时,显示屏120向所述指纹检测区域103上方的目标手指140发出一束光111,该光111在手指140的表面发生反射形成反射光或者经过所述手指140内部散射而形成散射光,在相关专利申请中,为便于描述,上述反射光和散射光统称为反射光。由于指纹的嵴(ridge)与峪(valley)对于光的反射能力不同,因此,来自指纹嵴的反射光151和来自指纹峪的发生过152具有不同的光强,反射光经过光学组件132后,被光学指纹装置130中的感应阵列134所接收并转换为相应的电信号,即指纹检测信号;基于所述指纹检测信号便可以获得指纹图像数据,并且可以进一步进行指纹匹配验证,从而在所述终端设备10实现光学指纹识别功能。
在其他实施例中,所述光学指纹装置130也可以采用内置光源或者外置光源来提供用于进行指纹检测的光信号。在这种情况下,所述光学指纹装置130可以适用于非自发光显示屏,比如液晶显示屏或者其他的被动发光显示屏。以应用在具有背光模组和液晶面板的液晶显示屏为例,为支持液晶显示屏的屏下指纹检测,所述终端设备10的光学指纹系统还可以包括用于光学指纹检测的激励光源,所述激励光源可以具体为红外光源或者特定波长非可见光的光源,其可以设置在所述液晶显示屏的背光模组下方或者设置在所述 终端设备10的保护盖板下方的边缘区域,而所述光学指纹装置130可以设置液晶面板或者保护盖板的边缘区域下方并通过光路引导以使得指纹检测光可以到达所述光学指纹装置130;或者,所述光学指纹装置130也可以设置在所述背光模组下方,且所述背光模组通过对扩散片、增亮片、反射片等膜层进行开孔或者其他光学设计以允许指纹检测光穿过液晶面板和背光模组并到达所述光学指纹装置130。当采用所述光学指纹装置130采用内置光源或者外置光源来提供用于进行指纹检测的光信号时,其检测原理与上面描述内容是一致的。
应当理解的是,在具体实现上,所述终端设备10还包括透明保护盖板,所述盖板可以为玻璃盖板或者蓝宝石盖板,其位于所述显示屏120的上方并覆盖所述终端设备10的正面。因为,本申请实施例中,所谓的手指按压在所述显示屏120实际上是指按压在所述显示屏120上方的盖板或者覆盖所述盖板的保护层表面。
另一方面,在某些实施例中,所述光学指纹装置130可以仅包括一个光学指纹传感器,此时光学指纹装置130的指纹检测区域103的面积较小且位置固定,因此用户在进行指纹输入时需要将手指按压到所述指纹检测区域103的特定位置,否则光学指纹装置130可能无法采集到指纹图像而造成用户体验不佳。在其他替代实施例中,所述光学指纹装置130可以具体包括多个光学指纹传感器;所述多个光学指纹传感器可以通过拼接方式并排设置在所述显示屏120的下方,且所述多个光学指纹传感器的感应区域共同构成所述光学指纹装置130的指纹检测区域103。也即是说,所述光学指纹装置130的指纹检测区域103可以包括多个子区域,每个子区域分别对应于其中一个光学指纹传感器的感应区域,从而将所述光学指纹模组130的指纹采集区域103可以扩展到所述显示屏的下半部分的主要区域,即扩展到手指惯常按压区域,从而实现盲按式指纹输入操作。可替代地,当所述光学指纹传感器数量足够时,所述指纹检测区域130还可以扩展到半个显示区域甚至整个显示区域,从而实现半屏或者全屏指纹检测。
还应理解,在本申请实施例中,光学指纹装置中的感应阵列也可以称为像素阵列,感应阵列中的光学感应单元或感应单元也可称为像素单元。
需要说明的是,本申请实施例中的光学指纹装置也可以称为光学指纹识别模组、指纹识别装置、指纹识别模组、指纹模组、指纹采集装置等,上述 术语可相互替换。
通常来说,受人体皮肤组织的皮层厚度、血红蛋白浓度、黑色素含量等因素的影响,人体皮肤组织对特定波长光线例如红色光线的反射性能与硅胶、纸张和胶带等人工材料具有显著差别。
基于此,本申请提供了一种指纹识别方案,在指纹识别装置中的微透镜单元阵列和像素单元阵列之间设置多种颜色的滤光单元,用于透过多个方向中第一方向的多种颜色的光信号,其中,每个滤光单元对应一个像素单元,将对应滤光单元的像素单元记为特征像素单元,在位置上可以认为滤光单元设置于对应特征像素单元的上方。这样,通过特征像素单元采集的指纹图像即为低分辨率的彩色指纹图像,对于不同的材料(例如,人体手指和硅胶等人工材料)而言,该低分辨率彩色指纹图像具有明显不同的特性,如图2所示,因此,可以根据特征像素单元采集的低分辨率的彩色指纹图像的差异,确定指纹图像的真假。
以下,结合附图,详细介绍本申请实施例的指纹识别装置。
需要说明的是,为便于理解,在以下示出的实施例中,相同的结构采用相同的附图标记,并且为了简洁,省略对相同结构的详细说明。
应理解,在以下所示出的本申请实施例中的像素单元、滤光单元、微透镜、微透镜单元、滤光单元组以及微透镜单元组的数量和排布方式等仅为示例性说明,而不应对本申请构成任何限定。
图3是本申请实施例提供的一种指纹识别装置300的示意性框图,该指纹识别装置300包括:微透镜单元阵列310、至少一个挡光层320、像素单元阵列330及滤光单元组阵列340。
所述微透镜单元阵列310,用于设置在所述显示屏120的下方。所述微透镜单元阵列310包括多个微透镜单元组,每个微透镜单元组包括多个微透镜单元,每个微透镜单元包括至少一个微透镜,每个微透镜单元组用于将多个方向的光信号传输至像素单元阵列330。
所述至少一个挡光层320,设置在所述微透镜单元阵列的下方。所述至少一个挡光层中的每一个挡光层设置有与所述像素单元阵列330中的像素单元对应的小孔阵列。
所述像素单元阵列330,设置在所述至少一个挡光层中的底层挡光层的小孔阵列的下方,使得从所述显示屏120上方的手指返回的光信号通过所述 微透镜单元阵列310的会聚后,通过所述至少一个挡光层320中设置的小孔阵列传输至所述像素单元阵列330。
所述滤光单元组阵列340,设置在所述微透镜单元阵列310和所述像素单元阵列330之间,所述滤光单元组阵列340中的每个滤光单元组对应一个微透镜单元组,所述每个滤光单元组包括多个滤光单元,所述多个滤光单元为多种颜色的滤光单元,所述多个滤光单元中的每个滤光单元用于透过所述多个方向中第一方向的光信号的一种颜色的光信号。
其中,所述像素单元阵列330包括所述滤光单元组对应的像素单元组,所述像素单元组中的多个像素单元分别通过所述多个滤光单元接收所述多种颜色的光信号,所述多种颜色的光信号用于检测所述手指是否为真手指。
为便于区分和说明,在本申请实施例中,将像素单元阵列中对应滤光单元的多个像素单元记为特征像素单元;将该多个像素单元之外的其他像素单元记为普通像素单元,或称背景像素单元,即该特征像素单元采集的光信号用于活体识别,背景像素单元采集的光信号用于指纹识别。
需要说明的是,在实际应用中,背景像素单元的上方也可以设置滤光单元,用于滤除影响指纹识别的光信号,应注意,除非特别说明,本申请实施例中的滤光单元指的是用于透过单一方向上的特定颜色的光信号的滤光单元。
因此,在本申请实施例中,通过设置滤光单元组中的滤光单元透过单一方向上的多种颜色的光信号,这样,所述滤光单元组对应的多个像素单元可以采集该单一方向上的多种颜色的彩色指纹图像,进一步可以基于该彩色指纹图像确定位于显示屏上方的手指是否为真手指。
应理解,所述滤光单元组中可以包括两种颜色的滤光单元,或者也可以包括三种颜色的滤光单元,或者也可以包括更多种颜色的滤光单元,以下以所述滤光单元组包括三种颜色的滤光单元为例说明每个滤光单元组中的滤光单元的颜色布局,但本申请实施例并不限于此。
在本申请实施例中,所述微透镜单元组中的微透镜单元对应相同颜色的滤光单元,本申请实施例对于该每个微透镜单元包括的微透镜的个数不作具体限定,例如可以为1个,或者多个,对应地,每个滤光单元组中相同颜色的滤光单元的个数可以为1个或多个。
需要说明的是,本申请实施例并不限定所述微透镜单元组包括的微透镜 单元的个数,例如,2个,4个等,具体可以根据滤光单元组中的滤光单元的颜色布局确定,以文对此做具体说明。
还应理解,所述微透镜单元阵列中的每个微透镜单元组用于将多个方向的光信号引导至对应的像素单元组,本申请实施例并不特别限定所述多个方向的光信号的个数,例如,可以是两个,三个或者更多个,以下,以所述多个方向为4个方向为例进行说明,但本申请实施例并不限于此。
需要说明的是,在本申请实施例中,所述滤光单元组用于透过所述多个方向中的第一方向的光信号的多种颜色的光信号,记为第一类滤光单元组,在其他实施例中,所述指纹识别装置还可以包括更多类滤光单元组,例如,第二类滤光单元组,用于透过所述多个方向中的第二方向的光信号的多种颜色的光信号。以下,以用于透过所述多个方向中的第一方向的光信号的多种颜色的光信号的滤光单元组为例说明其中的颜色布局以及位置布局,其他类滤光单元组的设计方式类似,本申请实施例对此不作赘述。
作为一个可选实施例,该滤光单元组阵列中的多个滤光单元组可以离散分布在该像素单元阵列的感光区域中,相应地,可以认为滤光单元组对应的特征像素单元组离散分布在该像素单元阵列中,从而能够避免滤光单元连续覆盖的像素单元的个数过多影响指纹识别性能。可选地,滤光单元组对应的特征像素单元组可以均匀分布在像素单元阵列的感光区域。
在本申请实施例中,所述滤光单元组中的滤光单元可以设置在对应的像素单元组和对应的微透镜单元组之间,并且位于沿所述第一方向传输的光信号的光路中,以透过沿所述第一方向传输的光信号中的多种颜色的光信号,也就是说,本申请实施例的指纹识别装置可以在部分光路中布局滤光单元从而实现活体识别,同时还可以利用其他光路的光信号进行指纹识别,从而能够兼顾活体识别和指纹识别。
下面结合图4至图11,说明根据本申请实施例的指纹识别装置的具体实现方式。
实施例1:
在该实施例1中,如图4和图5所示,所述指纹识别装置可以包括微透镜单元阵列310、至少一个挡光层320、像素单元阵列330及滤光单元组阵列340。
其中,所述微透镜单元阵列310中的每个微透镜单元组包括4个微透镜 单元,每个微透镜单元包括一个微透镜311,所述四个微透镜单元中的每个微透镜用于将四个方向的光信号传输至对应的像素单元,所述每个微透镜单元对应的滤光单元位于所述第一方向的光路上,即所述每个微透镜单元对应的滤光单元用于透过所述第一方向的光信号中的特定波段的光信号,所述特定波段为所述滤光单元能够透过的波段。
作为一个示例,每个微透镜设置在2*2像素单元阵列的正上方,所述微透镜用于将四个方向的光信号传输至所述2*2像素单元阵列。
所述至少一个挡光层320包括底层挡光层321和顶层挡光层322,其中,所述底层挡光层321和顶层挡光层322中分别设置有所述多个微透镜311中每一个微透镜对应的一组小孔。
所述微透镜311下方设置的像素单元阵列330中的像素单元用于接收经所述微透镜会聚的并经过所述底层挡光层和顶层挡光层中的小孔传输的倾斜光信号。
作为一种示例,所述底层挡光层321设置有微透镜311对应的4个小孔,例如,第一小孔3211和第二小孔3212,其他小孔未示出。所述顶层挡光层322设置有微透镜311对应的第三小孔3221,其中,所述第二小孔3212和所述第三小孔3221的连线方向用于形成所述四个方向中的第一方向,所述第一小孔3211和所述第三小孔3221的连线方向用于形成所述四个方向中的第二方向。应理解,所述顶层挡光层中每个微透镜对应的小孔的个数可以是一个,或者也可以是像素单元组中的每个像素单元对应一个小孔。
所述滤光单元341可以设置在从微透镜单元阵列到对应的像素单元阵列之间的第一方向的光信号的光路中的任一位置,作为一种实现,所述滤光单元341设置在所述底层挡光层中的第二小孔3212上方,或者也可以设置在所述对应的像素单元332的上表面。
在具体光路中,所述像素单元331可以接收微透镜311会聚的并通过第三小孔3221和第一小孔3211传输的第二方向的光信号,所述像素单元332可以接收微透镜311会聚的并通过第三小孔3221和第二小孔3212传输的第一方向的光信号。应理解,所述像素单元332在像素单元组内被所述像素单元331间隔开。
在其他实施例中,所述至少一个挡光层也可以为一个挡光层,即在所述一个微透镜311的下方设置有所述4个像素单元分别对应的小孔。
结合图5和图6说明,该实施例1中的滤光单元组中的颜色布局。
在一种实现方式中,所述微透镜单元组中的四个微透镜单元所对应的滤光单元包括三种颜色的滤光单元,即红色滤光单元、蓝色滤光单元和绿色滤光单元。
可选地,所述微透镜单元组中处于对角线上的两个微透镜单元所对应的滤光单元的颜色相同,其他两个滤光单元对应的滤光单元的颜色为其他两种颜色。
在一种实现方式中,如图6中的a1所示,即一个滤光单元组中相同颜色的滤光单元为绿色滤光单元,相邻的滤光单元被背景像素单元隔开,若忽略将像素单元阵列上方的滤光单元阵列中的相邻滤光单元组之间的间隔,即将相邻的滤光单元组拼接起来,则得到的所述滤光单元组阵列的颜色布局如图6中的a2所示。
在另一种实现方式中,一个滤光单元组中相同颜色的滤光单元也可以为红色滤光单元,所述滤光单元组的颜色布局如图6中的b1所示,整个所述滤光单元组阵列的颜色布局如图6中的b2所示。
在再一实现方式中,一个滤光单元组中相同颜色的滤光单元为蓝色滤光单元,则所述滤光单元组如图6中的c1所示,所述滤光单元组阵列如图6中的c2所示。
在其他替代实现方式中,所述微透镜单元组中的微透镜单元所对应的滤光单元分别为红色滤光单元、蓝色滤光单元和绿色滤光单元和白色滤光单元。这这种情况下,所述滤光单元组的颜色布局如图6中的d1所示,所述滤光单元组阵列的颜色布局如图6中的d2所示。
需要说明的是,在本申请实施例中,多个滤光单元组中的每个滤光单元组中的滤光单元的颜色和位置的设置方式可以相同,或者也可以变更其中的某个或某几个滤光单元组中的一个或多个滤光单元的颜色和/或位置,也就是说,可以对滤光单元组中的滤光单元的颜色和/或位置进行局部调整,只要不影响指纹识别性能即可,本申请实施例对此不作限定。
综上,在该实施例1中,通过设置每个滤光单元组中的滤光单元透过第一方向上的三种颜色的光信号,对应地,所述滤光单元组对应的四个像素单元可以采集该第一方向上的三种颜色的彩色指纹图像,进一步可以基于该彩色指纹图像确定位于显示屏上方的手指是否为真手指。
应理解,所述指纹识别装置还可以包括透明介质层350。
其中,透明介质层350可以设置在以下位置中的至少一处:所述微透镜单元阵列310和所述至少一个挡光层320之间;所述至少一个挡光层320之间;以及所述至少一个挡光层320和像素单元阵列330之间。
例如,所述透明介质层350可以包括位于所述微透镜单元阵列310和所述至少一个挡光层320(即所述底层挡光层321)之间的第一介质层351以及所述底层挡光层321和所述顶层挡光层322之间的第二介质层352。
透明介质层350的材料是对光透明的任一透明材料,例如玻璃,也可以是由空气或真空过渡,本申请对此不做具体限定。
实施例2:
可选地,如图7所示,所述微透镜单元组为2*2微透镜单元组成的阵列,每个微透镜单元包括2*2个微透镜,每个滤光单元组包括十六个滤光单元,每个滤光单元对应一个微透镜和一个像素单元。即每个微透镜单元中的四个微透镜对应4个相同颜色的滤光单元,例如,图7中左上角的2*2个微透镜为一个微透镜单元,其对应的滤光单元为4个相同颜色的滤光单元,例如,红光滤光单元;又例如,图7中右下角的2*2个微透镜为一个微透镜单元,其对应的滤光单元为4个相同颜色的滤光单元,例如,蓝光滤光单元。
需要说明的是,该实施例2和实施例1的区别在于一个微透镜单元对应相同颜色的滤光单元的个数,其中,实施例1中一个微透镜单元对应一个滤光单元,在该实施例2中由于一个微透镜单元包括4个微透镜,则其对应4个相同颜色的滤光单元。
应理解,该实施例2中的挡光层的设计可以参考实施例1的相关描述,这里不再赘述。
在实际应用中,可以将一个微透镜单元对应的四个滤光单元下方的四个像素单元所采集的信号进行合并处理,例如求平均,以降低彩色指纹图像的维度。
实施例3:
如图8所示,所述指纹识别装置可以包括微透镜单元阵列310、至少一个挡光层320、像素单元阵列330及滤光单元组阵列340。
所述至少一个挡光层320包括底层挡光层321和顶层挡光层322,其中,所述底层挡光层321和顶层挡光层322中分别设置有所述多个微透镜中每一 个微透镜对应的一组小孔。
所述微透镜下方设置的像素单元阵列330中的像素单元用于接收经所述微透镜会聚的并经过所述底层挡光层和顶层挡光层中的小孔传输的所述四个方向的光信号。
具体地,所述微透镜单元阵列310包括3*3微透镜单元组成的阵列,每个微透镜单元包括一个微透镜,所述像素单元组为4*4像素单元阵列,所述4*4像素单元阵列中每相邻的4个像素单元的正上方设置有一个微透镜,作为一个具体实现,所述4个像素单元的中心的正上方可以设置一个微透镜。
如图9所示,所述3*3微透镜单元组成的阵列中的中心微透镜3111用于将四个方向的光信号传输至对应的像素单元,四个角上的微透镜3112-3115中的每一个微透镜分别用于将一个方向的光信号传输至对应4*4像素单元阵列的四个角上的像素单元,所述3*3微透镜单元组成的阵列中其他四个微透镜3116-3119用于分别将两个方向的光信号传输至同一微透镜下方处于4*4像素单元阵列外侧的两个像素单元,每个滤光单元组包括四个滤光单元,每个滤光单元对应一个微透镜和一个像素单元,所述每个微透镜单元对应的滤光单元位于沿所述第一方向传输的光信号的光路上。即所述微透镜单元组中包括三类微透镜,其中,第一类微透镜(即位于微透镜单元组的四个角上的微透镜)用于将一个方向的光信号传输至对应的像素单元,第二类微透镜(即位于微透镜单元组的中心位置的微透镜)用于将四个方向的光信号传输至对应的像素单元,第三类微透镜(即位于微透镜单元组中的其他微透镜)用于将两个方向的光信号传输至对应的像素单元,具体地,微透镜可以通过对应的挡光层中的小孔阵列实现将特定方向的光信号传输至对应的像素单元。
以图9中的一个微透镜单元组的第一行的微透镜所对应的挡光层中的小孔设计为例,第一行微透镜分别记为微透镜3112、3117和3113。其中,微透镜3112对应第二小孔3212和第三小孔3221,微透镜3117对应第一小孔3211、第二小孔3212和第三小孔3221,微透镜3113对应第一小孔3211和第三小孔3221,其他小孔未示出。所述第二小孔3212和所述第三小孔3221的连线方向用于形成所述四个方向中的第一方向,所述第一小孔3211和所述第三小孔3221的连线方向用于形成所述四个方向中的第二方向。应理解,所述顶层挡光层中每个微透镜对应的小孔的个数可以是一个,或者也可以是 像素单元组中的每个像素单元对应一个小孔,如图10所示,微透镜3118在顶层挡光层中对应两个小孔3222,其中,所述两个小孔3222分别与底层挡光层中的两个小孔3211形成两个方向。
应理解,在图9的示例中,为便于理解如何通过小孔控制光的传输方向,将光的传输方向和小孔关联,即采用同一附图标记的小孔可以用于通过同一方向的光信号,但这并不表示其为同一小孔,可以理解,为了通过特定方向的光信号,每个微透镜上方的挡光层都需要设置合适的小孔以形成所述特定方向。
所述滤光单元341可以设置在从微透镜单元阵列到对应的像素单元阵列之间的第一方向的光信号的光路中的任一位置,作为一种实现,所述滤光单元341设置在所述底层挡光层中的第二小孔3212上方,或者也可以设置在所述对应的像素单元332的上表面。
在具体光路中,所述像素单元331可以接收微透镜311会聚的并通过第三小孔3221和第一小孔3211传输的第二方向的光信号,所述像素单元332可以接收微透镜311会聚的并通过第三小孔3221和第二小孔3212传输的第一方向的光信号。应理解,在该实施例3中,一个像素单元组内的所述像素单元332(即特征像素单元)相邻。
类似地,在该实施例3中,所述至少一个挡光层也可以为一个挡光层,即在所述一个微透镜的下方设置有所述4个像素单元分别对应的小孔。
应理解,所述指纹识别装置还可以包括透明介质层350。具体说明参考实施例1的相关描述,不再阐述。
结合图9说明,该实施例3中的滤光单元组中的颜色布局。
与实施例1类似,每个微透镜单元组中的9个微透镜单元所对应的滤光单元包括三种颜色的滤光单元,例如,红色滤光单元、蓝色滤光单元和绿色滤光单元。在其他替代实现方式中,所述微透镜单元组中的微透镜单元所对应的滤光单元分别为红色滤光单元、蓝色滤光单元和绿色滤光单元和白色滤光单元。具体的颜色布局参考实施例1的相关描述,这里不再赘述。
实施例4:
可选地,如图11所示,所述微透镜单元组为2*2微透镜单元组成的阵列,每个微透镜单元包括3*3微透镜组成的阵列,所述每个微透镜单元对应4*4像素单元阵列,所述4*4像素单元阵列中每相邻的4个像素单元的正上 方设置有一个微透镜,作为一个具体实现,所述4个像素单元的中心的正上方可以设置一个微透镜。
具体地,所述3*3微透镜组成的阵列的中心微透镜用于将四个方向的光信号传输至对应的像素单元,四个角上的微透镜中的每一个微透镜用于分别将一个方向的光信号传输至对应4*4像素单元阵列的角上的像素单元,所述3*3微透镜组成的阵列中的其他四个微透镜用于分别将两个方向的光信号传输至同一微透镜下方处于4*4像素单元阵列外侧的两个像素单元。应理解,一个微透镜单元组对应一个滤光单元组,如图11所示,一个滤光单元组包括十六个滤光单元,一个微透镜单元对应四个滤光单元,且四个滤光单元在位置上相邻。例如,图11中左上角的3*3个微透镜为一个微透镜单元,其对应的滤光单元为4个相同颜色的滤光单元,例如,红光滤光单元,这4个相同颜色的滤光单元相邻且呈2*2阵列分布;又例如,图11中右下角的3*3个微透镜为一个微透镜单元,其对应的滤光单元为4个相同颜色的滤光单元,例如,蓝光滤光单元,这4个相同颜色的滤光单元相邻且呈2*2阵列分布。每个滤光单元对应一个微透镜和一个像素单元,所述每个微透镜单元对应的滤光单元位于所述第一方向的光路上。
需要说明的是,该实施例4和实施例3的区别在于一个微透镜单元对应相同颜色的滤光单元的个数,其中,实施例3中一个微透镜单元对应一个滤光单元,在该实施例4中由于一个微透镜单元包括9个微透镜,所述9个微透镜中有4个微透镜用于接收所述第一方向的光信号,故其对应4个相同颜色的滤光单元。
应理解,该实施例4中的挡光层的设计可以参考实施例3的相关描述,这里不再赘述。
在实际应用中,可以将一个微透镜单元对应的四个滤光单元下方的四个像素单元所采集的信号进行合并处理,例如求平均,以降低彩色指纹图像的维度。
因此,在本申请实施例中,通过设置滤光单元组中的滤光单元透过单一方向上的多种颜色的光信号,这样,所述滤光单元组对应的多个像素单元可以采集该单一方向上的多种颜色的彩色指纹图像,进一步可以基于该彩色指纹图像确定位于显示屏上方的手指是否为真手指。
可选地,在本申请实施例中,该指纹识别装置300还可以包括:
处理器,用于根据所述多个像素单元采集的指纹图像,确定指纹图像是否来自真实手指。
具体而言,光学指纹传感器的多个像素单元可以对从待识别物体表面反射的指纹检测信号进行成像,进一步地,该处理器可以提取并重组该多个像素单元中的特征像素单元所采集的指纹图像,得到低分辨率的彩色指纹图像,然后该处理器可以将该低分辨率的彩色指纹图像输入到已训练成功的深度学习网络,通过该深度学习网络对该彩色指纹图像进行处理,确定该彩色指纹图像是否来自真实手指。
作为一个实施例,该处理器可以在该背景像素单元采集的指纹图像与注册的该待识别物体的指纹模板匹配的情况下,进一步判断该待识别物体是否为真实手指,在该待识别物体为真实手指的情况下确定指纹认证成功,从而执行触发该指纹识别的操作,例如,进行终端解锁或支付等操作。
作为另一实施例,该处理器也可以在该待识别物体为真实手指的情况下,进一步判断该背景像素单元采集的指纹图像是否与注册的该待识别物体的指纹模板匹配,在匹配的情况下确定指纹认证成功,进一步执行触发该指纹识别的操作,例如,进行终端解锁或支付等操作。
可选地,在本申请实施例中,该处理器可以为指纹模组中的处理器,例如,微控制器(Micro Control Unit,MCU),或者也可以为电子设备中的处理器,例如主控(Host)模块,本申请实施例对此不作限定。
进一步地,在本申请一些实施例中,该处理器还可以用于对像素单元组采集的颜色值进行处理并一次输出,从而节约大量的采集时间。
在一种实现方式中,将滤光单元组对应的像素单元组采集的三种颜色值分别校准到0-255,以形成RGB三通道的颜色值;将所述RGB三通道的颜色值组合为12位颜色值,并一次输出所述12位颜色值,其中,所述滤光单元组中包括RGB三种颜色的滤光单元,并且所述微透镜单元组中每个微透镜单元对应一个滤光单元。
以如图5和图9所示滤光单元布局为例,如图12所示,则滤光单元对应的像素单元可以采集三种颜色的光信号,进一步将该三种颜色的光信号的采样值分别校准到0-255,形成RGB三通道的颜色值。将所述RGB三通道的颜色值组合为12位颜色值,例如,RGB三通道的12位颜色值中的0-3,4-7,8-11位颜色值,分别表示R通道的颜色值,G通道的颜色值和B通道 的颜色值。
在另一种实现方式中,将滤光单元组中的同一颜色的滤光单元对应的像素单元采集的颜色值进行合并处理,得到一个颜色值,并一次输出所述一个颜色值,其中,所述滤光单元组中包括多个同一颜色的滤光单元。
以图7和图11所示滤光单元布局为例,在实际应用中,若每个滤光单元对应的像素单元所采集的颜色值都一一输出,需要较多的时间。因此,在本申请实施例中,如图13所示,可以通过处理器对滤光单元组中的相同颜色的滤光单元对应的像素单元所采集的颜色值进行合并处理,例如,进行平均,将合并处理后的颜色值进行一次输出,这样只需输出一个颜色值。
可选地,在对上述相同颜色滤光单元对应的像素单元所采集的的颜色值进行合并处理后,还可以通过前一种实现方式,对采集的颜色值进行校准,进一步合并为12位颜色值,并一次输出所述12位颜色值,从而能够进一步节约采集时间。
综上,通过处理器对像素单元所采集的颜色值进行校准或合并处理,从而能够降低颜色值的输出时间,节约大量的采集时间。在一种可选的实现方式中,背景像素单元的上方可以不设置其他结构,或者不涂覆任何材料,即,该背景像素单元的上方透明不做处理,换句话说,背景像素单元和其上方的光学组件之间为空气间隙。
在另一可选的实现方式中,可以在背景像素单元的上方设置透光材料,此情况下,进入背景像素单元的指纹检测信号也不受影响或影响较小。
在其他可选的实现方式中,背景像素单元的上方也可以设置滤光层,例如绿色滤光层,可选地,可以在该背景像素单元的上方涂覆绿色滤光材料,或者设置绿色滤光片,这样,指纹检测信号经过该绿色滤光层后,背景像素单元所采集的指纹图像为绿色指纹图像,即滤除了红色波段和蓝色波段的指纹检测信号,有利于降低红光等环境光信号的影响,从而能够提升指纹识别性能。
可选地,在本申请实施例中,可以设置连续的滤光单元的数量小于或等于特定阈值,例如,6个,对应地,连续的特征像素单元的个数也不大于该特定阈值,从而能够避免影响指纹识别性能。
可选地,在本申请实施例中,滤光单元通常只允许特定波段范围内的光信号通过,则对于单个滤光单元而言,用于指纹检测的光源的发射光的波段 范围需要包括该滤光单元的波段,以及除此波段以外的至少部分其他波段,也就是说,单个滤光单元的波段只包括该发射光的部分波段。这样,该发射光在待识别物体的表面反射后,进入滤光单元,经过该滤光单元后滤除一部分光信号,同时允许一部分光信号通过,进一步在特征像素单元上成像,进而可以得到低分辨率的彩色指纹图像。
可选地,在本申请实施例中,蓝色滤光单元的波段范围可以是中心波段为440nm~475nm,上截止波段约为550nm,蓝光的透过率高于绿光和红光;绿色滤光单元的波段范围可以是中心波段为520nm~550nm,上下截止波段约为620nm、460nm,绿光的透过率高于蓝光和红光;红色滤光单元的波段范围可以是下截止波段约为550nm,红光的透过率高于绿光和蓝光。
可选地,在本申请实施例中的深度学习网络可以为卷积神经网络,或者其他深度学习网络,本申请实施例对此不作限定。以下,以卷积神经网络为例,说明具体的训练过程。
首先,构建卷积神经网络结构,例如可以采用图14所示的二层卷积神经网络,或者也可以采用三层网络结构或更多层网络结构,每层卷积网络结构的构成也可以根据待提取的指纹信息进行调整,本申请实施例对此不作限定。
其次,设置该卷积神经网络的初始训练参数和收敛条件。
可选地,在本申请实施例中,该初始训练参数可以是随机生成的,或根据经验值获取的,或者也可以是根据大量的真假指纹数据预训练好的卷积神经网络模型的参数,本申请实施例对此不作限定。
可选地,在本申请实施例中,该收敛条件可以包括以下中的至少一项:
1、将真实手指的彩色指纹图像判定为真实手指的指纹图像的概率大于第一概率,例如,98%;
2、将假手指的彩色指纹图像判断为假手指的指纹图像的概率大于第二概率,例如95%;
3、将真实手指的彩色指纹图像判定为假手指的指纹图像的概率小于第三概率,例如,2%;
4、将假手指的彩色指纹图像判断为真实手指的指纹图像的概率小于第四概率,例如3%。
然后,向该卷积神经网络输入大量的真实手指和假手指的彩色指纹图 像,该卷积神经网络可以基于初始训练参数对上述彩色指纹图像进行处理,确定对每个彩色指纹图像的判定结果,进一步地,根据该判定结果,调整卷积神经网络的结构和/或各层的训练参数,直至判定结果满足收敛条件。
之后,可以将特征像素单元采集的其他彩色指纹图像输入到该卷积神经网络,从而该卷积神经网络可以使用训练好的参数对该彩色指纹图像进行处理,确定该彩色指纹图像是否来自真实手指。
如图15所示,本申请实施例还提供了一种电子设备400,所述电子设备400可以包括指纹识别装置410,该指纹识别装置410可以为前述装置实施例中的指纹识别装置300。
应理解,该电子设备可以包括显示屏,该显示屏可以参考图1中关于显示屏120中的相关实现方式,例如OLED显示屏或其他显示屏等,为了简洁,在此不再赘述。
在一个具体实施例中,所述显示屏为OLED显示屏,所述光学指纹装置利用所述OLED显示屏的部分显示单元作为光学指纹检测的激励光源。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
应理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应所述理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时 可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者所述技术方案的部分可以以软件产品的形式体现出来,所述计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (23)

  1. 一种指纹识别装置,其特征在于,所述指纹识别装置适用于显示屏的下方,以实现屏下光学指纹识别,所述指纹识别装置包括:
    微透镜单元阵列,用于设置在所述显示屏的下方,包括多个微透镜单元组,每个微透镜单元组包括多个微透镜单元,每个微透镜单元包括至少一个微透镜,每个微透镜单元组用于将多个方向的光信号传输至像素单元阵列;
    至少一个挡光层,设置在所述微透镜单元阵列的下方,所述至少一个挡光层中的每一个挡光层设置有小孔阵列;
    所述像素单元阵列,设置在所述至少一个挡光层中的底层挡光层的小孔阵列的下方,使得从所述显示屏上方的手指返回的光信号通过所述微透镜单元阵列的会聚后,通过所述至少一个挡光层中设置的小孔阵列传输至所述像素单元阵列;
    滤光单元组阵列,设置在所述微透镜单元阵列和所述像素单元阵列之间,所述滤光单元组阵列中的每个滤光单元组对应一个微透镜单元组,所述每个滤光单元组包括多个滤光单元,所述多个滤光单元为多种颜色的滤光单元,所述多个滤光单元中的每个滤光单元用于透过所述多个方向中第一方向的光信号的一种颜色的光信号;
    其中,所述像素单元阵列包括所述滤光单元组对应的像素单元组,所述像素单元组中的多个像素单元分别通过所述多个滤光单元接收所述多种颜色的光信号,所述多种颜色的光信号用于检测所述手指是否为真手指。
  2. 根据权利要求1所述的指纹识别装置,其特征在于,所述微透镜单元组包括四个微透镜单元,所述四个微透镜单元中的每个微透镜用于将四个方向的光信号传输至对应的像素单元,所述每个微透镜单元对应的滤光单元位于所述第一方向的光路上。
  3. 根据权利要求2所述的指纹识别装置,其特征在于,所述微透镜单元组为2*2微透镜单元组成的阵列,每个微透镜单元包括一个微透镜,每个滤光单元组包括四个滤光单元,每个滤光单元对应一个微透镜和一个像素单元。
  4. 根据权利要求2所述的指纹识别装置,其特征在于,所述微透镜单元组为2*2微透镜单元组成的阵列,每个微透镜单元包括2*2个微透镜,每个滤光单元组包括十六个滤光单元,每个滤光单元对应一个微透镜和一个像 素单元。
  5. 根据权利要求1所述的指纹识别装置,其特征在于,所述微透镜单元组为3*3微透镜单元组成的阵列,每个微透镜单元包括一个微透镜,所述像素单元组为4*4像素单元阵列,所述4*4像素单元阵列中每相邻的4个像素单元的正上方设置有一个微透镜。
  6. 根据权利要求5所述的指纹识别装置,其特征在于,所述3*3微透镜单元组成的阵列中的中心微透镜用于将四个方向的光信号传输至对应的像素单元,四个角上的微透镜中的每一个微透镜分别用于将一个方向的光信号传输至对应4*4像素单元阵列的四个角上的像素单元,所述3*3微透镜单元组成的阵列中其他四个微透镜用于分别将两个方向的光信号传输至同一微透镜下方处于4*4像素单元阵列外侧的两个像素单元,每个滤光单元组包括四个滤光单元,每个滤光单元对应一个微透镜和一个像素单元,所述每个微透镜单元对应的滤光单元位于沿所述第一方向传输的光信号的光路上。
  7. 根据权利要求1所述的指纹识别装置,其特征在于,所述微透镜单元组为2*2微透镜单元组成的阵列,每个微透镜单元包括3*3微透镜组成的阵列,所述每个微透镜单元对应4*4像素单元阵列,所述4*4像素单元阵列中每相邻的4个像素单元的正上方设置有一个微透镜。
  8. 根据权利要求7所述的指纹识别装置,其特征在于,所述3*3微透镜组成的阵列的中心微透镜用于将四个方向的光信号传输至对应的像素单元,四个角上的微透镜中的每一个微透镜用于分别将一个方向的光信号传输至对应4*4像素单元阵列的角上的像素单元,所述3*3微透镜组成的阵列中的其他四个微透镜用于分别将两个方向的光信号传输至同一微透镜下方处于4*4像素单元阵列外侧的两个像素单元,每个滤光单元组包括十六个滤光单元,每个滤光单元对应一个微透镜和一个像素单元,所述每个微透镜单元对应的滤光单元位于所述第一方向的光路上。
  9. 根据权利要求2-8中任一项所述的指纹识别装置,其特征在于,每个微透镜单元包括的微透镜所对应的滤光单元的颜色相同。
  10. 根据权利要求9所述的指纹识别装置,其特征在于,所述微透镜单元组中的微透镜单元所对应的滤光单元包括红色滤光单元、蓝色滤光单元和绿色滤光单元。
  11. 根据权利要求10所述的指纹识别装置,其特征在于,在所述微透 镜单元组中处于对角线上的两个微透镜单元所对应的滤光单元的颜色相同,相同颜色的滤光单元为红色滤光单元、蓝色滤光单元或绿色滤光单元。
  12. 根据权利要求9所述的指纹识别装置,其特征在于,所述微透镜单元组中的微透镜单元所对应的滤光单元分别为红色滤光单元、蓝色滤光单元和绿色滤光单元和白色滤光单元。
  13. 根据权利要求1-12中任一项所述的指纹识别装置,其特征在于,所述至少一个挡光层为多个挡光层,所述多个挡光层中的底层挡光层设置有与所述多个像素单元分别对应的多个小孔,以使所述至少一个微透镜通过所述多个小孔将所述多个方向上的光信号分别传输至对应的像素单元。
  14. 根据权利要求13所述的指纹识别装置,其特征在于,所述多个挡光层中与同一像素单元对应的小孔由上至下孔径依次减小。
  15. 根据权利要求14所述的指纹识别装置,其特征在于,所述多个挡光层的顶层挡光层设置有所述多个像素单元对应的至少一个小孔。
  16. 根据权利要求1-12中任一项所述的指纹识别装置,其特征在于,所述至少一个挡光层为一个挡光层,所述一个挡光层设置有与所述多个像素单元分别对应多个小孔,使得所述至少一个微透镜通过所述多个小孔将所述多个方向上的光信号分别传输至对应的所述多个像素单元。
  17. 根据权利要求1-16中任一项所述的指纹识别装置,其特征在于,所述多个滤光单元中的每个滤光单元的波段范围只包括用于指纹识别的光信号的波段范围中的部分。
  18. 根据权利要求1-17中任一项所述的指纹识别装置,其特征在于,所述指纹识别装置还包括:
    处理单元,用于确定所述待识别物体是否为真实手指。
  19. 根据权利要求18所述的指纹识别装置,其特征在于,所述处理单元还用于:
    从所述多个像素单元采集的多个真实手指和假指纹的指纹图像中,提取每个指纹图像中所述滤光单元对应的像素单元的采样值,重组得到彩色指纹图像;
    将所述彩色指纹图像输入至深度学习网络进行训练,得到所述深度学习网络的模型和参数;
    通过深度学习网络对所述多个滤光单元采集的待识别物体的指纹图像 进行处理。
  20. 根据权利要求18或19所述的指纹识别装置,其特征在于,所述处理单元还用于:
    根据所述多个像素单元中除所述多个滤光单元以外的其他像素单元采集的指纹图像进行指纹识别。
  21. 根据权利要求18所述的指纹识别装置,其特征在于,所述处理单元还用于:
    将滤光单元组对应的像素单元组采集的三种颜色值分别校准到0-255,以形成RGB三通道的颜色值;
    将所述RGB三通道的颜色值组合为12位颜色值,并一次输出所述12位颜色值,其中,所述滤光单元组中包括RGB三种颜色的滤光单元,并且所述微透镜单元组中每个微透镜单元对应一个滤光单元。
  22. 根据权利要求18所述的指纹识别装置,其特征在于,所述处理单元还用于:
    将滤光单元组中的同一颜色的滤光单元对应的像素单元采集的颜色值进行合并处理,得到一个颜色值,并一次输出所述一个颜色值,其中,所述滤光单元组中包括多个同一颜色的滤光单元。
  23. 一种电子设备,其特征在于,包括:
    显示屏;以及
    根据权利要求1至22中任一项所述的指纹识别装置,所述装置设置于所述显示屏下方,以实现屏下光学指纹识别。
PCT/CN2020/076682 2020-02-25 2020-02-25 指纹识别装置和电子设备 WO2021168672A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080001548.1A CN111801687B (zh) 2020-02-25 2020-02-25 指纹识别装置和电子设备
PCT/CN2020/076682 WO2021168672A1 (zh) 2020-02-25 2020-02-25 指纹识别装置和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/076682 WO2021168672A1 (zh) 2020-02-25 2020-02-25 指纹识别装置和电子设备

Publications (1)

Publication Number Publication Date
WO2021168672A1 true WO2021168672A1 (zh) 2021-09-02

Family

ID=72834236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076682 WO2021168672A1 (zh) 2020-02-25 2020-02-25 指纹识别装置和电子设备

Country Status (2)

Country Link
CN (1) CN111801687B (zh)
WO (1) WO2021168672A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114359978A (zh) * 2021-03-03 2022-04-15 神盾股份有限公司 屏下指纹感测装置以及指纹感测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190096939A1 (en) * 2017-09-26 2019-03-28 Huaian Imaging Device Manufacturer Corporation Image Sensor, Color Filter Array, and Preparation Method Thereof
CN110582780A (zh) * 2019-08-01 2019-12-17 深圳市汇顶科技股份有限公司 指纹识别和防伪的方法、装置和电子设备
CN210091193U (zh) * 2018-12-13 2020-02-18 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020133378A1 (zh) * 2018-12-29 2020-07-02 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN109716351B (zh) * 2018-12-13 2021-04-23 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN211349383U (zh) * 2019-01-22 2020-08-25 深圳市汇顶科技股份有限公司 指纹识别的装置和电子设备
CN110720106B (zh) * 2019-01-22 2021-04-23 深圳市汇顶科技股份有限公司 指纹识别的装置和电子设备
CN210052176U (zh) * 2019-07-12 2020-02-11 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备
CN211628257U (zh) * 2020-02-25 2020-10-02 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190096939A1 (en) * 2017-09-26 2019-03-28 Huaian Imaging Device Manufacturer Corporation Image Sensor, Color Filter Array, and Preparation Method Thereof
CN210091193U (zh) * 2018-12-13 2020-02-18 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN110582780A (zh) * 2019-08-01 2019-12-17 深圳市汇顶科技股份有限公司 指纹识别和防伪的方法、装置和电子设备

Also Published As

Publication number Publication date
CN111801687B (zh) 2024-02-06
CN111801687A (zh) 2020-10-20

Similar Documents

Publication Publication Date Title
WO2020119330A1 (zh) 指纹识别装置和电子设备
CN111488830B (zh) 指纹识别装置和电子设备
WO2020056771A1 (zh) 指纹识别装置和电子设备
WO2020151158A1 (zh) 生物特征识别的装置
WO2021189478A1 (zh) 指纹检测的装置和电子设备
WO2021077259A1 (zh) 识别指纹的方法、指纹识别装置和电子设备
US11928885B2 (en) Fingerprint identification method, fingerprint identification apparatus and electronic device
WO2021184269A1 (zh) 指纹识别装置和电子设备
WO2021035622A1 (zh) 指纹识别装置和电子设备
WO2021138776A1 (zh) 指纹防伪的方法、指纹识别装置和电子设备
WO2021007964A1 (zh) 指纹检测装置和电子设备
CN111353405B (zh) 指纹识别装置、指纹识别系统以及电子设备
WO2020227986A1 (zh) 图像采集的装置、方法和电子设备
WO2021168672A1 (zh) 指纹识别装置和电子设备
CN211742126U (zh) 指纹检测的装置和电子设备
CN211628257U (zh) 指纹识别装置和电子设备
CN113065445B (zh) 指纹识别装置和电子设备
CN213069853U (zh) 指纹识别装置和电子设备
CN113853610A (zh) 纹路识别装置以及对向基板
WO2021056425A1 (zh) 滤光片、指纹检测的装置和电子设备
US11816920B2 (en) Fingerprint identification apparatus and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20921489

Country of ref document: EP

Kind code of ref document: A1