WO2021235272A1 - Aromatic polycarbonate resin composition and molded article thereof - Google Patents

Aromatic polycarbonate resin composition and molded article thereof Download PDF

Info

Publication number
WO2021235272A1
WO2021235272A1 PCT/JP2021/017866 JP2021017866W WO2021235272A1 WO 2021235272 A1 WO2021235272 A1 WO 2021235272A1 JP 2021017866 W JP2021017866 W JP 2021017866W WO 2021235272 A1 WO2021235272 A1 WO 2021235272A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
bis
resin composition
mass
polycarbonate resin
Prior art date
Application number
PCT/JP2021/017866
Other languages
French (fr)
Japanese (ja)
Inventor
吉進 石谷
弘 首藤
利往 三宅
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020087323A external-priority patent/JP2021181528A/en
Priority claimed from JP2021014984A external-priority patent/JP2022118443A/en
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Publication of WO2021235272A1 publication Critical patent/WO2021235272A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/372Sulfides, e.g. R-(S)x-R'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/524Esters of phosphorous acids, e.g. of H3PO3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present invention relates to an aromatic polycarbonate resin composition and a molded product thereof.
  • the present invention relates to an aromatic polycarbonate resin composition having good weather resistance, excellent hue, molding retention stability and vapor resistance, which is useful as an outdoor optical transparent member, and a molded product formed from the resin composition.
  • the present invention relates to a light diffusing resin composition having good light transmission, weather resistance, excellent hue, light diffusivity and vapor resistance, and a molded product formed from the resin composition.
  • Aromatic polycarbonate has a wide range of uses as a thermoplastic resin with excellent impact resistance, heat resistance, and transparency. Furthermore, it is lighter than inorganic glass and has excellent productivity, so it has excellent weather resistance. For applications that require weather resistance, such as light guide plates, diffuser plates, reflectors, protective films, retardation films, and lighting covers, lighting signs, transmissive screens, and various displays for liquid crystal display devices. Can be suitably used.
  • Patent Document 1 describes a polycarbonate resin composition containing 5 to 25 parts by weight of a benzotriazole-based ultraviolet absorber and 0.1 to 10 parts by weight of a fluorescent whitening agent with respect to 100 parts by weight of a polycarbonate resin. Proposed.
  • the content of the ultraviolet absorber and the fluorescent whitening agent is high, gas during thermal processing becomes a problem, and the longest absorption wavelength of the ultraviolet absorber is 390 nm, which is close to visible light, so that the hue is poor and the commercial value is high. It was low.
  • a polycarbonate resin composition comprising 05 parts by mass or more and less than 2 parts by mass and 0.00001 to 1 part by mass of a fluorescent whitening agent has been proposed.
  • the ultraviolet absorber selected from the benzotriazole-based compound, the benzophenone-based compound and the triazine-based compound having no maximum absorption wavelength at 350 to 400 nm is blended, only a polycarbonate resin composition having a very inferior hue can be obtained.
  • Patent Documents 3 to 5 disclose a resin composition containing 0.0005 to 0.1 parts by mass of malonic acid esters with respect to 100 parts by mass of a methyl methacrylate-based resin, but aromatic polycarbonate. There is no mention of.
  • Patent Document 6 discloses a resin composition containing a malonic acid ester in an aromatic polycarbonate resin. However, specifically, it was insufficient to obtain a resin composition having a low content of malonic acid ester and an excellent balance between good weather resistance, hue, molding retention stability and vapor resistance.
  • Patent Document 7 discloses a light diffusing resin composition containing a light diffusing agent and a malonic acid ester in an aromatic polycarbonate resin. However, it was insufficient to obtain a resin composition having an excellent balance between weather resistance and light diffusivity.
  • Japanese Unexamined Patent Publication No. 07-196904 Japanese Patent Application Laid-Open No. 2002-003710 Japanese Unexamined Patent Publication No. 2002-105271 Japanese Patent Application Laid-Open No. 2003-025406 Japanese Patent Application Laid-Open No. 2003-0268888 Japanese Unexamined Patent Publication No. 2006-83230 Japanese Unexamined Patent Publication No. 2006-117822
  • An object of the present invention is an aromatic polycarbonate resin composition that solves all the problems of the prior art and is useful as an outdoor optical transparent member having good weather resistance, hue, molding retention stability and steam resistance. And to provide a molded product formed from the resin composition.
  • Another object of the present invention is a light-diffusing resin composition and the resin useful as an outdoor optical transparent member having good light transmission, weather resistance, hue, light diffusivity and steam resistance. It is an object of the present invention to provide a molded product formed from a composition.
  • the present inventors have obtained an aromatic polycarbonate resin composition in which a malonate ester-based ultraviolet absorber is blended in a specific ratio with an aromatic polycarbonate resin, and the resin composition.
  • the present invention has been completed by finding that the formed molded product achieves the above object.
  • the outdoors have excellent light transmission, weather resistance, hue, light diffusivity and steam resistance.
  • the present invention has been completed by finding that a light-diffusing resin composition useful as an optical transparent member or the like and a molded product formed from the resin composition achieve the above object.
  • (configuration 1) A resin composition containing 0.15 to 5.0 parts by mass of a malonic acid ester-based ultraviolet absorber (B) with respect to 100 parts by mass of an aromatic polycarbonate resin (A).
  • (Structure 2) The resin composition according to composition 1, further containing 0.05 to 10.0 parts by mass of the light diffusing agent (C) with respect to 100 parts by mass of the aromatic polycarbonate resin (A).
  • the aromatic polycarbonate resin composition of the present invention is useful as an outdoor optical transparent member having excellent weather resistance, hue, molding retention stability and steam resistance without impairing the original characteristics of aromatic polycarbonate. It is a group polycarbonate resin composition, and its industrial effect is exceptional. Further, the light-diffusing resin composition of the present invention is an outdoor optical transparent material having excellent light transmission, weather resistance, hue, light diffusivity and steam resistance without impairing the original characteristics of aromatic polycarbonate. It is a light-diffusing resin composition useful as a member and the like, and its industrial effect is exceptional.
  • the aromatic polycarbonate resin used in the present invention is usually obtained by reacting a dihydroxy compound and a carbonate precursor by an interfacial polycondensation method or a melt ester exchange method, or a carbonate prepolymer by a solid phase ester exchange method. It is polymerized or obtained by polymerizing a cyclic carbonate compound by a ring-opening polymerization method.
  • the dihydroxy component used here may be any as long as it is usually used as the dihydroxy component of aromatic polycarbonate, and may be bisphenols or aliphatic diols.
  • bisphenols examples include 4,4'-dihydroxybiphenyl, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, and 1,1-bis (4-hydroxyphenyl) -1-.
  • Phenylethane 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1-bis (4-hydroxyphenyl) -3,3,5 -Trimethylcyclohexane, 2,2-bis (4-hydroxy-3,3'-biphenyl) propane, 2,2-bis (4-hydroxy-3-isopropylphenyl) propane, 2,2-bis (3-t- Butyl-4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) octane, 2,2-bis (3-bromo-4-hydroxyphenyl) Propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 2,2-bis (3
  • R 13 , R 14 , R 15 , R 16 , R 17 and R 18 are independently substituted with a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or 6 to 12 carbon atoms, respectively. Alternatively, it is an unsubstituted aryl group, c is a natural number, d is 0 or a natural number, c + d is a natural number of 150 or less, and X is a divalent aliphatic group having 2 to 8 carbon atoms.) Examples thereof include a bisphenol compound having a siloxane structure represented by.
  • aliphatic diols examples include 2,2-bis- (4-hydroxycyclohexyl) -propane, 1,14-tetradecanediol, octaethyleneglycol, 1,16-hexadecanediol, and 4,4'-bis (2-).
  • aromatic bisphenols are preferable, and among them, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) propane, and 2,2-bis (4).
  • -Hydroxy-3-methylphenyl) propane 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 4,4'-sulfonyl Diphenol, 2,2'-dimethyl-4,4'-sulfonyldiphenol, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 1,3-bis ⁇ 2- (4-hydroxyphenyl) Propyl ⁇ benzene and 1,4-bis ⁇ 2- (4-hydroxyphenyl) propyl ⁇ benzene are preferred, especially 2,2-bis (4-hydroxyphenyl) propane and 1,1-bis (4-hydroxy).
  • Phenyl) cyclohexane, 2,2-bis (4-hydroxy-3-methylphenyl) propane and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene are preferred.
  • 2,2-bis (4-hydroxyphenyl) propane which has excellent strength and good durability, is most suitable.
  • these may be used individually or in combination of 2 or more types.
  • the polycarbonate resin used in the present invention is preferably a polycarbonate resin composed of repeating units represented by the following general formula [2].
  • R 1 and R 2 are independently hydrogen atom, halogen atom, alkyl group having 1 to 18 carbon atoms, alkoxy group having 1 to 18 carbon atoms, and 6 to 6 carbon atoms, respectively.
  • a and b are each an integer of 1 to 4
  • W is a single bond or at least one group selected from the group consisting of the groups represented by the following general formulas [3] and [4]. ..
  • R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are independently hydrogen atoms, alkyl groups having 1 to 18 carbon atoms, and carbon.
  • R 13 , R 14 , R 15 , R 16 , R 17 and R 18 are independently substituted with a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or 6 to 12 carbon atoms, respectively. Alternatively, it is an unsubstituted aryl group, c is a natural number, d is 0 or a natural number, c + d is a natural number of 150 or less, and X is a divalent aliphatic group having 2 to 8 carbon atoms.
  • the polycarbonate resin used in the present invention may be a branched polycarbonate resin by using a branching agent in combination with the above dihydroxy compound.
  • Examples of the trifunctional or higher polyfunctional aromatic compound used in such a branched polycarbonate resin include fluoroglucolcin, fluoroglucolside, or 4,6-dimethyl-2,4,6-tris (4-hydrochidiphenyl) hepten-2, 2.
  • polycarbonate resins are produced by a reaction method known per se for producing an ordinary aromatic polycarbonate resin, for example, a method of reacting an aromatic dihydroxy component with a carbonic acid precursor such as phosgene or carbonic acid diester.
  • a reaction method known per se for producing an ordinary aromatic polycarbonate resin for example, a method of reacting an aromatic dihydroxy component with a carbonic acid precursor such as phosgene or carbonic acid diester.
  • the reaction is usually carried out in the presence of an acid binder and a solvent.
  • an acid binder for example, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide or an amine compound such as pyridine is used.
  • the solvent for example, halogenated hydrocarbons such as methylene chloride and chlorobenzene are used.
  • a catalyst such as a tertiary amine or a quaternary ammonium salt can also be used to promote the reaction.
  • the reaction temperature is usually 0 to 40 ° C., and the reaction time is several minutes to 5 hours.
  • the transesterification reaction using a carbonic acid diester as a carbonic acid precursor is carried out by a method of distilling off the produced alcohol or phenol by stirring a predetermined ratio of aromatic dihydroxy components with the carbonic acid diester while heating them in an inert gas atmosphere. ..
  • the reaction temperature varies depending on the boiling point of the alcohol or phenol produced, but is usually in the range of 120 to 300 ° C.
  • the reaction is completed by distilling off the produced alcohols or phenols under reduced pressure from the initial stage. It is also possible to use catalysts normally used in transesterification reactions to accelerate the reaction.
  • Examples of the carbonic acid diester used in the transesterification reaction include diphenyl carbonate, dinaphthyl carbonate, bis (diphenyl) carbonate, dimethyl carbonate, diethyl carbonate, dibutyl carbonate and the like. Of these, diphenyl carbonate is particularly preferable.
  • a terminal terminator is used in the polymerization reaction.
  • the terminal terminator is used for molecular weight regulation, and the obtained polycarbonate resin has a closed end, so that it is superior in thermal stability as compared with the non-termination agent.
  • monofunctional phenols represented by the following general formulas [5] to [7] can be shown.
  • A is a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, an alkylphenyl group (the number of carbon atoms in the alkyl moiety is 1 to 9), a phenyl group, or a phenylalkyl group (the number of carbon atoms in the alkyl moiety is 1 to 9).
  • r is an integer of 1 to 5, preferably 1 to 3].
  • X is -RO-, -R-CO-O- or -RO-CO-, where R is a single bond or 1 to 10 carbon atoms, preferably 1 to 5-2. It indicates a valent aliphatic hydrocarbon group, and n represents an integer of 10 to 50.
  • R is a single bond or 1 to 10 carbon atoms, preferably 1 to 5-2. It indicates a valent aliphatic hydrocarbon group, and n represents an integer of 10 to 50.
  • Specific examples of the monofunctional phenols represented by the general formula [5] are, for example, phenol, isopropylphenol, p-tert-butylphenol, p-cresol, p-cumylphenol, 2-phenylphenol, 4-phenyl. Examples include phenol and isooctylphenol.
  • the monofunctional phenols represented by the above general formulas [6] to [7] are phenols having a long-chain alkyl group or an aliphatic ester group as a substituent, and these are used to terminal the polycarbonate resin. When sealed, these not only function as a terminal terminator or a molecular weight modifier, but also improve the melt fluidity of the resin, facilitate the molding process, and have the effect of lowering the water absorption rate of the resin, which is preferable. used.
  • the substituted phenols of the above general formula [6] preferably have n of 10 to 30, particularly 10 to 26, and specific examples thereof include, for example, decylphenol, dodecylphenol, tetradecylphenol, hexadecylphenol, and octadecylphenol. Examples thereof include eicosylphenol, docosylphenol, and triacylphenol.
  • substituted phenols of the above general formula [7] compounds in which X is —R—CO—O— and R is a single bond are suitable, and n is 10 to 30, particularly 10 to 26.
  • Is preferable and specific examples thereof include decyl hydroxybenzoate, dodecyl hydroxybenzoate, tetradecyl hydroxybenzoate, hexadecyl hydroxybenzoate, eikosyl hydroxybenzoate, docosyl hydroxybenzoate, and triacontyl hydroxybenzoate.
  • monofunctional phenols monofunctional phenols represented by the above general formula [5] are preferable, alkyl-substituted or phenylalkyl-substituted phenols are more preferable, and p-tert-butylphenol and p are particularly preferable.
  • terminal terminator of these monofunctional phenols be introduced into the terminal at least 5 mol%, preferably at least 10 mol% with respect to the total terminal of the obtained polycarbonate resin, and the terminal terminator is used alone. Or a mixture of two or more types may be used.
  • the polycarbonate resin used in the present invention may be a polyester carbonate copolymerized with an aromatic dicarboxylic acid, for example, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid or a derivative thereof, as long as the gist of the present invention is not impaired.
  • aromatic dicarboxylic acid for example, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid or a derivative thereof, as long as the gist of the present invention is not impaired.
  • the viscosity average molecular weight of the polycarbonate resin used in the present invention is preferably in the range of 13,000 to 50,000, more preferably in the range of 15,000 to 40,000, and further in the range of 16,000 to 30,000.
  • the range of 17,000 to 28,000 is particularly preferable, and the range of 18,000 to 26,000 is most preferable. If the viscosity average molecular weight exceeds 50,000, the melt viscosity may become too high and the moldability may be inferior. If the molecular weight is less than 13,000, sufficient toughness and crack resistance cannot be obtained, and there is a problem in mechanical strength. May occur.
  • the viscosity average molecular weight of the aromatic polycarbonate resin referred to in the present invention is determined by using an Ostwald viscometer from a solution prepared by dissolving 0.7 g of the polycarbonate resin in 100 ml of methylene chloride at 20 ° C. with the specific viscosity calculated by the following formula.
  • the viscosity average molecular weight Mv was calculated by inserting the obtained specific viscosity by the following formula.
  • the ultraviolet absorber used in the present invention is a malonic acid ester-based ultraviolet absorber.
  • the malonic acid ester-based ultraviolet absorber 2- (1-arylalkylidene) malonic acid esters are preferably used from the viewpoint of durability.
  • the malonic acid ester-based ultraviolet absorber Hostavin PR-25 manufactured by Clariant Japan Co., Ltd., Hostavin B-CAP manufactured by Clariant Japan Co., Ltd., and the like are commercially available.
  • the amount of the malonate ester-based ultraviolet absorber used is 0.15 to 5.0 parts by mass, preferably 0.25 to 4.5 parts by mass, and 0.27 to 4 parts by mass with respect to 100 parts by mass of the aromatic polycarbonate. .0 parts by mass is more preferable, and 0.3 to 3.5 parts by mass is further preferable. If it is less than 0.15 parts by mass, sufficient weather resistance cannot be obtained, and if it exceeds 5.0 parts by mass, the problem of gas generation during processing due to the bleed-out of the ultraviolet absorber and the decrease in mechanical strength occur. Therefore, it is not preferable.
  • the light diffusing agent used as desired in the present invention may be either organic fine particles typified by polymer fine particles or inorganic fine particles.
  • Typical examples of the polymer fine particles are crosslinked particles obtained by polymerizing a non-crosslinkable monomer and a crosslinkable monomer. Further, copolymerizable monomers other than such monomers can also be used. Among them, polymer fine particles are preferable, and crosslinked particles can be particularly preferably used.
  • Examples of the monomer used as the non-crosslinkable monomer in the cross-linked particles include a non-crosslinkable vinyl-based monomer such as an acrylic monomer, a styrene-based monomer, and an acrylonitrile-based monomer, and an olefin-based monomer.
  • a non-crosslinkable vinyl-based monomer such as an acrylic monomer, a styrene-based monomer, and an acrylonitrile-based monomer, and an olefin-based monomer.
  • methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, phenyl methacrylate and the like are used alone or mixed. It is possible to use it. Of these, methyl methacrylate is particularly preferable.
  • alkyl styrene such as styrene, ⁇ -methyl styrene, methyl styrene (vinyl toluene), and ethyl styrene
  • halogenated styrene such as bromoized styrene
  • styrene is particularly preferable. ..
  • acrylonitrile-based monomer acrylonitrile and methacrylonitrile can be used.
  • olefin-based monomer ethylene, various norbornene-type compounds and the like can be used.
  • other copolymerizable monomers glycidyl methacrylate, N-methylmaleimide, maleic anhydride and the like can be exemplified.
  • the organic crosslinked particles of the present invention can also have units such as N-methylglutarimide as a result.
  • examples of the crosslinkable monomer for such a non-crosslinkable vinyl-based monomer include divinylbenzene, allyl methacrylate, triallyl cyanurate, triallyl isocyanate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, and propylene glycol.
  • examples of other crosslinked particles include silicone crosslinked particles typified by polyorganosylsesquioxane.
  • the average particle size of the light diffusing agent is preferably 0.01 to 50 ⁇ m, more preferably 1 to 30 ⁇ m, and even more preferably 2 to 30 ⁇ m. If the average particle size is less than 0.01 ⁇ m or more than 50 ⁇ m, the light diffusivity may be insufficient.
  • the average particle size is represented by a 50% value (D50) of the integrated distribution of the particle size obtained by the laser diffraction / scattering method.
  • the particle size distribution may be single or plural. That is, it is possible to combine two or more kinds of light diffusing agents having different average particle sizes. However, a more preferred light diffusing agent has a narrow particle size distribution.
  • the shape of the light diffusing agent is preferably close to a spherical shape, and more preferably a shape close to a true spherical shape.
  • a sphere includes an ellipsoidal sphere.
  • the refractive index of the light diffusing agent is preferably in the range of 1.30 to 1.80, more preferably 1.33 to 1.70, and even more preferably 1.35 to 1.65. These exhibit a sufficient light diffusing function when blended in the resin composition.
  • the content of the light diffusing agent is preferably 0.05 to 10.0 parts by mass, more preferably 0.1 to 7.0 parts by mass, and even more preferably 0.1 part by mass with respect to 100 parts by mass of the aromatic polycarbonate resin component. It is 0.15 to 5.0 parts by mass, particularly preferably 0.2 to 2.0 parts by mass.
  • the content of the light diffusing agent is not less than the lower limit, sufficient light diffusivity is obtained, and when it is not more than the upper limit, the total light transmittance and weather resistance are good.
  • the amount of the malonate ester-based ultraviolet absorber (B) used is in the range of 0.15 to 2.0 parts by mass with respect to 100 parts by mass of the aromatic polycarbonate resin (A).
  • the range of 0.2 to 1.6 parts by mass is more preferable, the range of 0.25 to 1.0 parts by mass is further preferable, and the range of 0.3 to 0.5 parts by mass is particularly preferable.
  • it is above the lower limit sufficient weather resistance can be obtained, and when it is below the upper limit, gas generation during processing due to bleed-out of the ultraviolet absorber is suppressed, and the total light transmittance, weather resistance and mechanical strength are lowered. Is less likely to occur.
  • the ratio b / c of the amount (b) of the malonic acid ester-based ultraviolet absorber used to the amount (c) of the light diffusing agent is preferably 0.2 or more, preferably 0.25 or more. Is more preferable, 0.3 or more is further preferable, and 0.5 or more is particularly preferable. When b / c is 0.2 or more, sufficient weather resistance can be obtained.
  • the heat stabilizer (D) preferably used in the present invention is preferably a phosphorus-based heat stabilizer and / or a sulfur-based heat stabilizer.
  • phosphite ester or phosphoric acid ester is preferable.
  • the phosphite ester include triphenylphosphite, trisnonylphenylphosphite, tris (2,4-di-tert-butylphenyl) phosphite, trinonylphosphite, tridecylphosphite, and trioctylphosphite.
  • Trioctadecylphosphite Tristearylpentaerythritol diphosphite, tricyclohexylphosphite, monobutyldiphenylphosphite, monooctyldiphenylphosphite, distearylpentaerythritol diphosphite, bis (2,4-di-tert-butyl) Phosphite) pentaerythritol phosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol phosphite, 2,2-methylenebis (4,6-di-tert-butylphenyl) octylphosphite, etc.
  • Examples thereof include triesters, diesters and monoesters of phosphorous acid.
  • the phosphate esters include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, triphenyl phosphate, tricresyl phosphate, tris (nonylphenyl) phosphate, 2-ethylphenyldiphenyl phosphate, and tetrakis (2,4-). Di-tert-butylphenyl) -4,4-diphenylene phosphonite and the like can be mentioned.
  • tris (2,4-di-tert.-butylphenyl) phosphite represented by the above formula (1) is preferable.
  • "IRGAFOS 168 FF" manufactured by BASF is commercially available.
  • sulfur-based heat stabilizer examples include dilauryl-3,3'-thiodipropionic acid ester, ditridecyl-3,3'-thiodipropionic acid ester, dimyristyl-3,3'-thiodipropionic acid ester, and distearyl.
  • pentaerythritol tetrakis (3-laurylthiopropionate) represented by the above formula (2) is preferable.
  • "Sumilyzer TP-D” manufactured by Sumitomo Chemical Co., Ltd. is commercially available.
  • the amount of the heat stabilizer used is preferably 0.01 to 0.1 parts by mass, more preferably 0.02 to 0.08 parts by mass, and 0.03 to 0.07 parts by mass with respect to 100 parts by mass of the aromatic polycarbonate resin.
  • the unit is more preferable. Within the above range, sufficient thermal stability can be obtained and steam resistance is excellent.
  • Release agent (E) As the mold release agent preferably used in the present invention, for example, fatty acid esters, polyolefin waxes (polyethylene wax, 1-alkene polymer, etc., and those modified with a functional group-containing compound such as acid modification are also used.
  • Fluorine compounds fluorine oil typified by polyfluoroalkyl ether, etc.
  • paraffin wax paraffin wax
  • beeswax paraffin wax
  • fatty acid esters are preferable from the viewpoint of easy availability, releasability and transparency.
  • the ratio of the release agent to be contained is preferably 0.1 to 0.5 parts by weight, more preferably 0.15 to 0.4 parts by weight, based on 100 parts by mass of the aromatic polycarbonate resin. More preferably, it is 0.2 to 0.3 parts by weight. Within the above range, mold releasability is good, steam resistance is excellent, and mold contamination during molding is reduced.
  • fatty acid esters are preferably used.
  • Fatty acid esters are esters of fatty alcohols and aliphatic carboxylic acids.
  • the aliphatic alcohol may be a monohydric alcohol or a polyhydric alcohol having a divalent value or higher.
  • the carbon number of the alcohol is preferably in the range of 3 to 32, and more preferably in the range of 5 to 30.
  • monohydric alcohols include dodecanol, tetradecanol, hexadecanol, octadecanol, eicosanol, tetracosanol, ceryl alcohol, triacanthanol and the like.
  • polyhydric alcohols examples include pentaerythritol, dipentaerythritol, tripentaerythritol, polyglycerol (triglycerol to hexaglycerol), ditrimethylolpropane, xylitol, sorbitol, and mannitol. In fatty acid esters, polyhydric alcohols are more preferred.
  • the aliphatic carboxylic acid preferably has 3 to 32 carbon atoms, and particularly preferably an aliphatic carboxylic acid having 10 to 22 carbon atoms.
  • Examples of the aliphatic carboxylic acid include decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid (palmitic acid), heptadecanoic acid, octadecanoic acid (stearic acid), nonadecanoic acid and icosanoic acid.
  • saturated aliphatic carboxylic acids such as docosanoic acid (bechenic acid), and unsaturated aliphatic carboxylic acids such as palmitoleic acid, oleic acid, linoleic acid, linolenic acid, eicosenoic acid, eicosapentaenoic acid, and sethalic acid.
  • the aliphatic carboxylic acid preferably has 14 to 20 carbon atoms. Of these, saturated aliphatic carboxylic acids are preferable.
  • aliphatic carboxylic acids are usually produced from natural fats and oils such as animal fats and oils (such as beef tallow and lard) and vegetable fats and oils (such as palm oil), these aliphatic carboxylic acids usually have carbon atoms. It is a mixture containing other carboxylic acid components different from each other. Therefore, it is also produced from such natural fats and oils in the production of aliphatic carboxylic acids, and is in the form of a mixture containing other carboxylic acid components.
  • the acid value of the fatty acid ester is preferably 20 or less (substantially 0 can be taken).
  • the acid value of full esters is preferably in the range of 3 to 15.
  • the iodine value of the fatty acid ester is preferably 10 or less (substantially 0 can be taken).
  • the fatty acid ester described above may be either a partial ester or a full ester, but a partial ester is preferable in terms of better releasability and durability, and a glycerin monoester is particularly preferable.
  • the glycerin monoester is mainly composed of a monoester of glycerin and a fatty acid, and suitable fatty acids include saturated fatty acids such as stearate, partiminic acid, bechenic acid, araquinic acid, montanic acid, and lauric acid, and oleic acid and linoleic acid.
  • unsaturated fatty acids such as sorbic acid, and those containing glycerin monoesters of stearic acid, behenic acid, and partiminic acid as main components are particularly preferable.
  • the fatty acid is synthesized from a natural fatty acid and is a mixture as described above. Even in such a case, the ratio of the glycerin monoester in the fatty acid ester is preferably 60% by weight or more.
  • Partial esters are often inferior to full esters in terms of thermal stability.
  • the partial ester preferably has a sodium metal content of less than 20 ppm, more preferably less than 5 ppm, still more preferably less than 1 ppm.
  • the fatty acid partial ester having a sodium metal content of less than 1 ppm can be produced by producing the fatty acid partial ester by a usual method and then purifying it by molecular distillation or the like.
  • glycerin is used under the conditions of a distillation temperature of 120 to 150 ° C. and a vacuum degree of 0.01 to 0.03 kPa using a downflow membrane type distillation device.
  • Distillation of high-purity fatty acid partial ester under the conditions of distillation temperature 160-230 ° C. and vacuum degree 0.01-0.2 Torr after removing polyhydric alcohols such as Sodium metal can be removed as a distillation residue.
  • fatty acid esters can be obtained from specialists (for example, Riken Vitamin Co., Ltd.).
  • the aromatic polycarbonate resin composition of the present invention may contain, for example, other ultraviolet absorbers (benzophenone-based, benzotriazole-based, hydroxyphenyltriazine-based, cyclic iminoester-based, cyanoacrylate-based, etc.) and antistatic agents, if necessary. , Colorants, fluidity improvers, flame retardants, anti-aggregation agents and the like may be further added.
  • ultraviolet absorbers benzophenone-based, benzotriazole-based, hydroxyphenyltriazine-based, cyclic iminoester-based, cyanoacrylate-based, etc.
  • antistatic agents if necessary.
  • Colorants, fluidity improvers, flame retardants, anti-aggregation agents and the like may be further added.
  • Mixing and kneading of the aromatic polycarbonate resin composition of the present invention may be carried out by a method applied to ordinary thermoplastic resins, for example, a ribbon blender, a Henschel mixer, a Banbury mixer, a drum tumbler, a single shaft screw extruder, 2 It can be performed by a shaft screw extruder, a multi-screw screw extruder, or the like.
  • the temperature condition for kneading is usually 260 to 320 ° C.
  • a general thermoplastic resin molding method can be applied to the aromatic polycarbonate resin composition of the present invention, and for example, injection molding, injection compression molding, or extrusion molding from a pellet resin composition is possible from the viewpoint of productivity. .. Further, the desired molded product can be obtained by vacuum forming, compressed air forming, or the like from the extruded sheet-shaped molded product.
  • the spectral light transmittance at a wavelength of 350 nm when made into a molded product having a thickness of 2 mm is preferably 5% or less, more preferably 3% or less, and 1%. The following is more preferable. Further, the spectral light transmittance at a wavelength of 380 nm is preferably 30% or more, more preferably 40% or more, still more preferably 45% or more.
  • the molded product obtained from the aromatic polycarbonate resin composition of the present invention is characterized by having a low light transmittance in the ultraviolet region and a high light transmittance in the visible light region.
  • Examples of the molded product of the present invention include optical members such as a lighting cover and a lighting lens, and among them, they can be suitably used as an outdoor transparent optical member.
  • ADEKA ADEKA STAB LA-31 (benzotriazole-based UV absorber) manufactured by ADEKA Corporation (Heat stabilizer (D))
  • D-1 Hostanox P-EPQ (phosphorus heat stabilizer) manufactured by Clariant Japan Co., Ltd.
  • D-2 BASF IRGAFOS 168FF (phosphorus heat stabilizer, compound of formula (1))
  • D-3 Sumitomo Chemical Co., Ltd.
  • Sumilyzer TP-D sulfur-based heat stabilizer, compound of formula (2)
  • E-1 Unistar H-476-S (fatty acid ester) manufactured by NOF CORPORATION
  • test piece 50 mm (width) x 90 mm (length) with a thickness of 1 mm at a cylinder temperature of 350 ° C and a mold temperature of 80 ° C. 2 mm and 3 mm three-stage plates
  • the test piece 50 mm (width) x 90 mm (length) with a thickness of 1 mm at a cylinder temperature of 350 ° C and a mold temperature of 80 ° C. 2 mm and 3 mm three-stage plates
  • Spectral ray transmittance 350 nm, 380 nm
  • the light transmittance of the test piece (thickness 2 mm portion) molded in (1) above was measured using a UV-Vis-NIR spectrophotometer Cary5000 manufactured by Agilent Technologies.
  • the ⁇ E of the test piece was calculated by measuring with a spectrophotometer CE-7000A of the above, using a transmission method of a D65 light source and a 10-degree field of view. The smaller the ⁇ E value, the more preferable.
  • Steam resistance The test piece molded in (1) above was subjected to a wet heat treatment at 120 ° C. for 24 hours with SN-510 manufactured by Autoclave Yamato Scientific Co., Ltd. for laboratories, and the viscosity average molecular weight of the test piece after the treatment was obtained. The difference in viscosity average molecular weight before treatment ( ⁇ Mv ⁇ 10 -3 ) was calculated. The smaller the ⁇ Mv value, the more preferable.
  • the viscosity average molecular weight Mv was first determined by using an Ostwald viscometer from a solution obtained by cutting and dissolving 0.7 g of a test piece in 100 ml of methylene chloride at 20 ° C. for the specific viscosity ( ⁇ SP) calculated by the following formula.
  • Specific viscosity ( ⁇ SP ) (t-t 0 ) / t 0 [T 0 is the number of seconds for methylene chloride to fall, and t is the number of seconds for the data solution to fall]
  • the viscosity average molecular weight Mv was calculated from the obtained specific viscosity ( ⁇ SP) by the following formula.
  • A-1 Teijin Limited Panlite L-1225WX (polycarbonate resin made from bisphenol A, viscosity average molecular weight 19,700)
  • A-2 Teijin Limited Panlite L-1225WP (polycarbonate resin made from bisphenol A, viscosity average molecular weight 22,500)
  • A-3 Polycarbonate resin powder having a branched structure with a viscosity average molecular weight of 25,100 obtained by the following manufacturing method: 2340 parts of ion-exchanged water and 947 parts of 25% sodium hydroxide aqueous solution in a reactor with a thermometer, agitator and a reflux cooler.
  • the organic phase is separated, diluted with methylene chloride, washed with water, acidified with hydrochloric acid and washed with water, and when the conductivity of the aqueous phase becomes almost the same as that of ion-exchanged water, it is poured into a kneader filled with warm water.
  • Methylene chloride was evaporated with stirring to obtain a polycarbonate powder. After dehydration, it was dried at 120 ° C. for 12 hours with a hot air circulation type dryer to obtain a polycarbonate resin powder having a branched structure.
  • A-4 Polycarbonate-polydiorganosiloxane copolymer resin powder having a viscosity average molecular weight of 19,400 obtained by the following production method: Ion-exchanged water 21591 parts, 48.5% water in a reactor with a thermometer, agitator and a reflux cooler. Add 3674 parts of an aqueous sodium oxide solution, and add 3,880 parts of 2,2-bis (4-hydroxyphenyl) propane (bisphenol A) as the dihydroxy compound (I) constituting the carbonate constituent unit represented by the above formula [1], and hydro.
  • a solution prepared by dissolving 430 parts of a polydiorganosiloxane compound represented by the following formula [8] in 1600 parts of methylene chloride as a dihydroxyaryl-terminated polydiorganosiloxane (II) having an average number of repetitions of about 37 in dimethylsiloxane units is prepared as dihydroxyaryl.
  • the terminal polydiorganosiloxane (II) was added at a rate of 0.0008 mol / min per 1 mol of the divalent phenol (I) to bring it into an emulsified state, and then the mixture was vigorously stirred again.
  • C-1 Bead-shaped crosslinked acrylic particles (manufactured by Sekisui Plastics Co., Ltd .: MBX-5 (trade name), average particle diameter 5 ⁇ m)
  • C-2 Beaded cross-linked silicone (manufactured by Momentive Performance Materials Japan GK: TSR9002 (trade name), average particle size 2 ⁇ m)
  • B-1 Hostavin B-CAP manufactured by Clariant Japan Co., Ltd.
  • B-2 Hostavin PR-25 manufactured by Clariant Japan Co., Ltd. (Other UV absorbers (comparative example))
  • b-1 Chemisorb 79 manufactured by Chemipro Kasei Co., Ltd.
  • b-2 BASF's Tinuvin 234 (benzotriazole-based UV absorber)
  • b-3 BASF's Tinuvin1577ED (triazine-based UV absorber)
  • b-4 SEESORB703 (benzotriazole-based UV absorber) manufactured by Cipro Kasei Co., Ltd.
  • b-5 ADEKA ADEKA STAB LA-31 (benzotriazole-based UV absorber) manufactured by ADEKA Corporation (Heat stabilizer (D))
  • D-1 Hostanox P-EPQ (phosphorus heat stabilizer) manufactured by Clariant Japan Co., Ltd.
  • D-2 BASF IRGAFOS 168FF (phosphorus heat stabilizer, compound of formula (1))
  • D-3 Sumitomo Chemical Co., Ltd. Sumilyzer TP-D (sulfur-based heat stabilizer, compound of formula (2)) (Release agent (E))
  • E-1 Unistar H-476-S (fatty acid ester) manufactured by NOF CORPORATION (Other ingredients)
  • F-114P Potassium perfluorobutane sulfonic acid salt (manufactured by Dainippon Ink and Chemicals Co., Ltd .: Megafuck F-114P (trade name))
  • SN3307 Mixture consisting of polytetrafluoroethylene particles and a styrene-acrylic copolymer (manufactured by Shine Polymer: SN3307 (trade name)) (1) Preparation of test piece Using an injection molding machine [Sumitomo Heavy Industries, Ltd.
  • the molding temperature is 280 ° C
  • the mold temperature is 80 ° C
  • the width is 50 mm
  • the length is 90 mm
  • the thickness is A three-stage plate having a length of 3.0 mm (length 20 mm), 2.0 mm (length 45 mm), and 1.0 mm (length 25 mm) was formed from the gate side.
  • (2) Total light transmittance, haze For the total light transmittance and haze of the test piece (thickness 2 mm portion) molded in (1) above, use the reflection / transmittance meter HR-100 manufactured by Murakami Color Technology Research Institute Co., Ltd. It was measured according to JIS-K 7136 used.
  • the taken-out test piece was measured with a spectrophotometer CE-7000A manufactured by Sakata Inx Engineering Co., Ltd. using a D65 light source and a transmission method with a 10-degree field of view, and the ⁇ E of the test piece was calculated. The smaller the ⁇ E value, the more preferable.
  • (5) Steam resistance The test piece molded in (1) above was subjected to a wet heat treatment at 120 ° C. for 24 hours with SN-510 manufactured by Autoclave Yamato Scientific Co., Ltd. for laboratories, and the viscosity average molecular weight of the test piece after the treatment was obtained. The difference in viscosity average molecular weight before treatment ( ⁇ Mv ⁇ 10 -3 ) was calculated. The smaller the ⁇ Mv value, the more preferable.
  • the viscosity average molecular weight Mv was first determined by using an Ostwald viscometer from a solution obtained by cutting and dissolving 0.7 g of a test piece in 100 ml of methylene chloride at 20 ° C. for the specific viscosity ( ⁇ SP) calculated by the following formula.
  • Specific viscosity ( ⁇ SP ) (t-t 0 ) / t 0 [T 0 is the number of seconds for methylene chloride to fall, and t is the number of seconds for the data solution to fall]
  • the viscosity average molecular weight Mv was calculated from the obtained specific viscosity ( ⁇ SP) by the following formula.
  • the aromatic polycarbonate resin composition of the present invention is excellent in good weather resistance, hue, molding retention stability and vapor resistance, and is useful as an outdoor optical transparent member.

Abstract

This resin composition contains 0.15-5.0 parts by mass of a malonic acid ester ultraviolet ray absorber (B) per 100 parts by mass of an aromatic polycarbonate resin (A), and is characterized in that the resin composition has excellent weather resistance and superior hue, molding retention stability, and steam resistance.

Description

芳香族ポリカーボネート樹脂組成物およびその成形品Aromatic polycarbonate resin composition and its molded product
 本発明は、芳香族ポリカーボネート樹脂組成物およびその成形品に関する。特に、屋外用光学透明部材などとして有用な良好な耐候性、優れた色相、成形滞留安定性および耐蒸気性を有した芳香族ポリカーボネート樹脂組成物および該樹脂組成物から形成された成形品に関する。さらに、良好な光透過性、耐候性、優れた色相、光拡散性および耐蒸気性を有した光拡散性の樹脂組成物および該樹脂組成物から形成された成形品に関する。 The present invention relates to an aromatic polycarbonate resin composition and a molded product thereof. In particular, the present invention relates to an aromatic polycarbonate resin composition having good weather resistance, excellent hue, molding retention stability and vapor resistance, which is useful as an outdoor optical transparent member, and a molded product formed from the resin composition. Further, the present invention relates to a light diffusing resin composition having good light transmission, weather resistance, excellent hue, light diffusivity and vapor resistance, and a molded product formed from the resin composition.
 芳香族ポリカーボネートは、耐衝撃性、耐熱性、透明性に優れた熱可塑性樹脂として幅広い用途があり、さらに、無機ガラスに比較して軽量で、生産性にも優れているので、優れた耐候性を付与することにより、液晶表示装置の導光板、拡散板、反射板、保護フィルム、位相差フィルム、および、照明カバー、照明看板、透過形のスクリーン、各種ディスプレイなど耐候性を要求される用途に好適に使用できる。 Aromatic polycarbonate has a wide range of uses as a thermoplastic resin with excellent impact resistance, heat resistance, and transparency. Furthermore, it is lighter than inorganic glass and has excellent productivity, so it has excellent weather resistance. For applications that require weather resistance, such as light guide plates, diffuser plates, reflectors, protective films, retardation films, and lighting covers, lighting signs, transmissive screens, and various displays for liquid crystal display devices. Can be suitably used.
 従来、芳香族ポリカーボネートの耐候性を向上させる方法として、各種紫外線吸収剤を添加する方法が知られている。例えば、特許文献1には、ポリカーボネート樹脂100重量部に対して、ベンゾトリアゾール系紫外線吸収剤5~25重量部と蛍光増白剤0.1~10重量部を含有してなるポリカーボネート樹脂組成物が提案されている。しかしながら、紫外線吸収剤及び蛍光増白剤の含有率が高いので熱加工時のガスが問題になり、かつ、紫外線吸収剤の最長吸収波長が390nmと可視光に近いため色相も悪く、商品価値の低いものであった。 Conventionally, as a method for improving the weather resistance of aromatic polycarbonate, a method of adding various ultraviolet absorbers is known. For example, Patent Document 1 describes a polycarbonate resin composition containing 5 to 25 parts by weight of a benzotriazole-based ultraviolet absorber and 0.1 to 10 parts by weight of a fluorescent whitening agent with respect to 100 parts by weight of a polycarbonate resin. Proposed. However, since the content of the ultraviolet absorber and the fluorescent whitening agent is high, gas during thermal processing becomes a problem, and the longest absorption wavelength of the ultraviolet absorber is 390 nm, which is close to visible light, so that the hue is poor and the commercial value is high. It was low.
 また、特許文献2には、ポリカーボネート樹脂100質量部に対し、350~400nmの紫外線領域に極大吸収波長を有しないベンゾトリアゾール系化合物、ベンゾフェノン系化合物及びトリアジン系化合物から選ばれた紫外線吸収剤0.05質量部以上で2質量部未満と、蛍光増白剤0.00001~1質量部とを含有させてなるポリカーボネート樹脂組成物が提案されている。しかしながら、350~400nmに極大吸収波長を有しないベンゾトリアゾール系化合物、ベンゾフェノン系化合物及びトリアジン系化合物から選ばれた紫外線吸収剤の配合では、色相の非常に劣るポリカーボネート樹脂組成物しか得られなかった。 Further, in Patent Document 2, an ultraviolet absorber selected from benzotriazole-based compounds, benzophenone-based compounds and triazine-based compounds having no maximum absorption wavelength in the ultraviolet region of 350 to 400 nm with respect to 100 parts by mass of the polycarbonate resin 0. A polycarbonate resin composition comprising 05 parts by mass or more and less than 2 parts by mass and 0.00001 to 1 part by mass of a fluorescent whitening agent has been proposed. However, when the ultraviolet absorber selected from the benzotriazole-based compound, the benzophenone-based compound and the triazine-based compound having no maximum absorption wavelength at 350 to 400 nm is blended, only a polycarbonate resin composition having a very inferior hue can be obtained.
 一方、特許文献3~5には、メタクリル酸メチル系樹脂100質量部に対し、マロン酸エステル類を0.0005~0.1質量部含有する樹脂組成物が開示されているが、芳香族ポリカーボネートに関する記載は全くない。 On the other hand, Patent Documents 3 to 5 disclose a resin composition containing 0.0005 to 0.1 parts by mass of malonic acid esters with respect to 100 parts by mass of a methyl methacrylate-based resin, but aromatic polycarbonate. There is no mention of.
 また、特許文献6には、芳香族ポリカーボネート樹脂にマロン酸エステルを含有する樹脂組成物が開示されている。しかしながら、具体的にはマロン酸エステルの含有量が少なく、良好な耐候性と、色相、成形滞留安定性および耐蒸気性とのバランスに優れる樹脂組成物を得ることについて不十分であった。 Further, Patent Document 6 discloses a resin composition containing a malonic acid ester in an aromatic polycarbonate resin. However, specifically, it was insufficient to obtain a resin composition having a low content of malonic acid ester and an excellent balance between good weather resistance, hue, molding retention stability and vapor resistance.
 さらに、特許文献7には、芳香族ポリカーボネート樹脂に光拡散剤およびマロン酸エステルを含有する光拡散性樹脂組成物が開示されている。しかしながら耐候性と光拡散性のバランスに優れる樹脂組成物を得ることについて不十分であった。 Further, Patent Document 7 discloses a light diffusing resin composition containing a light diffusing agent and a malonic acid ester in an aromatic polycarbonate resin. However, it was insufficient to obtain a resin composition having an excellent balance between weather resistance and light diffusivity.
特開平07-196904号公報Japanese Unexamined Patent Publication No. 07-196904 特開2002-003710号公報Japanese Patent Application Laid-Open No. 2002-003710 特開2002-105271号公報Japanese Unexamined Patent Publication No. 2002-105271 特開2003-025406号公報Japanese Patent Application Laid-Open No. 2003-025406 特開2003-026888号公報Japanese Patent Application Laid-Open No. 2003-0268888 特開2006-83230号公報Japanese Unexamined Patent Publication No. 2006-83230 特開2006-117822号公報Japanese Unexamined Patent Publication No. 2006-117822
 本発明の目的は、前記従来技術の問題点をすべて解決し、良好な耐候性、色相、成形滞留安定性および耐蒸気性に優れた屋外用光学透明部材などとして有用な芳香族ポリカーボネート樹脂組成物および該樹脂組成物から形成された成形品を提供することにある。 An object of the present invention is an aromatic polycarbonate resin composition that solves all the problems of the prior art and is useful as an outdoor optical transparent member having good weather resistance, hue, molding retention stability and steam resistance. And to provide a molded product formed from the resin composition.
 また、本発明の他の目的は、良好な光透過性、耐候性、色相、光拡散性および耐蒸気性に優れた屋外用光学透明部材などとして有用な光拡散性の樹脂組成物および該樹脂組成物から形成された成形品を提供することにある。 Another object of the present invention is a light-diffusing resin composition and the resin useful as an outdoor optical transparent member having good light transmission, weather resistance, hue, light diffusivity and steam resistance. It is an object of the present invention to provide a molded product formed from a composition.
 本発明者らは、前記課題を解決するため鋭意検討を行った結果、芳香族ポリカーボネート樹脂にマロン酸エステル系紫外線吸収剤を特定の比率で配合した芳香族ポリカーボネート樹脂組成物および該樹脂組成物から形成された成形品が上記目的を達成することを見いだし、本発明を完成させた。 As a result of diligent studies to solve the above problems, the present inventors have obtained an aromatic polycarbonate resin composition in which a malonate ester-based ultraviolet absorber is blended in a specific ratio with an aromatic polycarbonate resin, and the resin composition. The present invention has been completed by finding that the formed molded product achieves the above object.
 また、芳香族ポリカーボネート樹脂に光拡散剤およびマロン酸エステル系紫外線吸収剤を特定の比率で配合することにより、良好な光透過性、耐候性、色相、光拡散性および耐蒸気性に優れた屋外用光学透明部材などとして有用な光拡散性の樹脂組成物および該樹脂組成物から形成された成形品が上記目的を達成することを見いだし、本発明を完成させた。 In addition, by blending a light diffusing agent and a malonic acid ester-based ultraviolet absorber in a specific ratio with the aromatic polycarbonate resin, the outdoors have excellent light transmission, weather resistance, hue, light diffusivity and steam resistance. The present invention has been completed by finding that a light-diffusing resin composition useful as an optical transparent member or the like and a molded product formed from the resin composition achieve the above object.
 すなわち、本発明によれば、下記(構成1)~(構成7)が提供される。
(構成1)
 芳香族ポリカーボネート樹脂(A)100質量部に対して、マロン酸エステル系紫外線吸収剤(B)を0.15~5.0質量部含有した樹脂組成物。
(構成2)
 芳香族ポリカーボネート樹脂(A)100質量部に対して、さらに光拡散剤(C)を0.05~10.0質量部含有した構成1に記載の樹脂組成物。
(構成3)
 マロン酸エステル系紫外線吸収剤(B)を0.15~2.0質量部含有し、且つ、光拡散剤の量(c)に対するマロン酸エステル系紫外線吸収剤の量(b)の割合b/cが0.2以上である構成2に記載の樹脂組成物。
(構成4)
 芳香族ポリカーボネート樹脂(A)100質量部に対して、さらに熱安定剤(D)を0.01~0.1質量部含有した構成1~3のいずれか1項に記載の樹脂組成物。
(構成5)
 熱安定剤(D)が下記式(X)で示されるリン系安定剤および/または下記式(Y)で示される硫黄系安定剤である構成4に記載の樹脂組成物。
That is, according to the present invention, the following (configuration 1) to (configuration 7) are provided.
(Structure 1)
A resin composition containing 0.15 to 5.0 parts by mass of a malonic acid ester-based ultraviolet absorber (B) with respect to 100 parts by mass of an aromatic polycarbonate resin (A).
(Structure 2)
The resin composition according to composition 1, further containing 0.05 to 10.0 parts by mass of the light diffusing agent (C) with respect to 100 parts by mass of the aromatic polycarbonate resin (A).
(Structure 3)
The ratio of the amount (b) of the malonic acid ester-based ultraviolet absorber (b) to the amount (c) of the malonic acid ester-based ultraviolet absorber (B) containing 0.15 to 2.0 parts by mass of the malonic acid ester-based ultraviolet absorber (B) b / The resin composition according to composition 2, wherein c is 0.2 or more.
(Structure 4)
The resin composition according to any one of the above configurations 1 to 3, further containing 0.01 to 0.1 parts by mass of the heat stabilizer (D) with respect to 100 parts by mass of the aromatic polycarbonate resin (A).
(Structure 5)
The resin composition according to composition 4, wherein the heat stabilizer (D) is a phosphorus-based stabilizer represented by the following formula (X) and / or a sulfur-based stabilizer represented by the following formula (Y).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式(Y)中のRはドデシル基を示す。)
(構成6)
 芳香族ポリカーボネート樹脂(A)100質量部に対して、さらに離型剤(E)を0.1~0.5質量部含有した構成1~5のいずれか1項に記載の樹脂組成物。
(構成7)
 構成1~6のいずれか1項に記載の樹脂組成物から形成された成形品。
(R in formula (Y) represents a dodecyl group.)
(Structure 6)
The resin composition according to any one of configurations 1 to 5, further containing 0.1 to 0.5 parts by mass of the release agent (E) with respect to 100 parts by mass of the aromatic polycarbonate resin (A).
(Structure 7)
A molded product formed from the resin composition according to any one of the configurations 1 to 6.
 本発明の芳香族ポリカーボネート樹脂組成物は、芳香族ポリカーボネート本来の特性を損なうことなく、良好な耐候性、色相、成形滞留安定性および耐蒸気性に優れた屋外用光学透明部材などとして有用な芳香族ポリカーボネート樹脂組成物であり、その奏する産業上の効果は格別である。また、本発明の光拡散性の樹脂組成物は、芳香族ポリカーボネート本来の特性を損なうことなく、良好な光透過性、耐候性、色相、光拡散性および耐蒸気性に優れた屋外用光学透明部材などとして有用な光拡散性の樹脂組成物であり、その奏する産業上の効果は格別である。 The aromatic polycarbonate resin composition of the present invention is useful as an outdoor optical transparent member having excellent weather resistance, hue, molding retention stability and steam resistance without impairing the original characteristics of aromatic polycarbonate. It is a group polycarbonate resin composition, and its industrial effect is exceptional. Further, the light-diffusing resin composition of the present invention is an outdoor optical transparent material having excellent light transmission, weather resistance, hue, light diffusivity and steam resistance without impairing the original characteristics of aromatic polycarbonate. It is a light-diffusing resin composition useful as a member and the like, and its industrial effect is exceptional.
 以下、本発明を詳細に説明する。
(芳香族ポリカーボネート樹脂(A))
 本発明で使用される芳香族ポリカーボネート樹脂は、通常ジヒドロキシ化合物とカーボネート前駆体とを界面重縮合法、溶融エステル交換法で反応させて得られたものの他、カーボネートプレポリマーを固相エステル交換法により重合させたもの、または環状カーボネート化合物の開環重合法により重合させて得られるものである。
Hereinafter, the present invention will be described in detail.
(Aromatic Polycarbonate Resin (A))
The aromatic polycarbonate resin used in the present invention is usually obtained by reacting a dihydroxy compound and a carbonate precursor by an interfacial polycondensation method or a melt ester exchange method, or a carbonate prepolymer by a solid phase ester exchange method. It is polymerized or obtained by polymerizing a cyclic carbonate compound by a ring-opening polymerization method.
 ここで使用されるジヒドロキシ成分としては、通常芳香族ポリカーボネートのジヒドロキシ成分として使用されているものであればよく、ビスフェノール類でも脂肪族ジオール類でも良い。 The dihydroxy component used here may be any as long as it is usually used as the dihydroxy component of aromatic polycarbonate, and may be bisphenols or aliphatic diols.
 ビスフェノール類としては、例えば4,4’-ジヒドロキシビフェニル、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシ-3,3’-ビフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-イソプロピルフェニル)プロパン、2,2-ビス(3-t-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、2,2-ビス(3-ブロモ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、1,1-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)シクロヘキサン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、4,4’-ジヒドロキシジフェニルエ-テル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエ-テル、4,4’-スルホニルジフェノール、4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシジフェニルスルフィド、2,2’-ジメチル-4,4’-スルホニルジフェノール、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド、2,2’-ジフェニル-4,4’-スルホニルジフェノール、4,4’-ジヒドロキシ-3,3’-ジフェニルジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジフェニルジフェニルスルフィド、1,3-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼン、1,4-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼン、1,4-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,3-ビス(4-ヒドロキシフェニル)シクロヘキサン、4,8-ビス(4-ヒドロキシフェニル)トリシクロ[5.2.1.02,6]デカン、4,4’-(1,3-アダマンタンジイル)ジフェノール、1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタン、および下記一般式〔1〕 Examples of bisphenols include 4,4'-dihydroxybiphenyl, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, and 1,1-bis (4-hydroxyphenyl) -1-. Phenylethane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1-bis (4-hydroxyphenyl) -3,3,5 -Trimethylcyclohexane, 2,2-bis (4-hydroxy-3,3'-biphenyl) propane, 2,2-bis (4-hydroxy-3-isopropylphenyl) propane, 2,2-bis (3-t- Butyl-4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) octane, 2,2-bis (3-bromo-4-hydroxyphenyl) Propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 2,2-bis (3-cyclohexyl-4-hydroxyphenyl) propane, 1,1-bis (3-cyclohexyl-4-hydroxyphenyl) Hydroxyphenyl) cyclohexane, bis (4-hydroxyphenyl) diphenylmethane, 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 1,1-bis ( 4-Hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) cyclopentane, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxy-3,3'-dimethyldiphenyl ether, 4,4'-sulfonyldiphenol, 4,4'-dihydroxydiphenylsulfoxide, 4,4'-dihydroxydiphenylsulfide, 2,2'-dimethyl-4,4'-sulfonyldiphenol, 4,4'-dihydroxy- 3,3'-Didimethyldiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenylsulfide, 2,2'-diphenyl-4,4'-sulfonyldiphenol, 4,4'-dihydroxy-3, 3'-diphenyldiphenylsulfoxide, 4,4'-dihydroxy-3,3'-diphenyldiphenylsulfide, 1,3-bis {2- (4-hydroxyphenyl) propyl} benzene, 1,4-bis {2-( 4-Hydroxyphenyl) propyl} benzene, 1,4-bis (4-hydroxyphenyl) cyclohexa , 1,3-bis (4-hydroxyphenyl) cyclohexane, 4,8-bis (4-hydroxyphenyl) tricyclo [5.2.1.02,6] decane, 4,4'-(1,3-_) Adamantane diyl) diphenol, 1,3-bis (4-hydroxyphenyl) -5,7-dimethyladamantane, and the following general formula [1]
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(上記一般式〔1〕において、R13、R14、R15、R16、R17及びR18は、各々独立に水素原子、炭素数1~12のアルキル基又は炭素数6~12の置換若しくは無置換のアリール基であり、cは自然数であり、dは0又は自然数であり、c+dは150以下の自然数である。Xは炭素数2~8の二価脂肪族基である。)
で表されるシロキサン構造を有するビスフェノール化合物等が挙げられる。
(In the above general formula [1], R 13 , R 14 , R 15 , R 16 , R 17 and R 18 are independently substituted with a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or 6 to 12 carbon atoms, respectively. Alternatively, it is an unsubstituted aryl group, c is a natural number, d is 0 or a natural number, c + d is a natural number of 150 or less, and X is a divalent aliphatic group having 2 to 8 carbon atoms.)
Examples thereof include a bisphenol compound having a siloxane structure represented by.
 脂肪族ジオール類としては、例えば2,2-ビス-(4-ヒドロキシシクロヘキシル)-プロパン、1,14-テトラデカンジオール、オクタエチレングリコール、1,16-ヘキサデカンジオール、4,4’-ビス(2-ヒドロキシエトキシ)ビフェニル、ビス{(2-ヒドロキシエトキシ)フェニル}メタン、1,1-ビス{(2-ヒドロキシエトキシ)フェニル}エタン、1,1-ビス{(2-ヒドロキシエトキシ)フェニル}-1-フェニルエタン、2,2-ビス{(2-ヒドロキシエトキシ)フェニル}プロパン、2,2-ビス{(2-ヒドロキシエトキシ)-3-メチルフェニル}プロパン、1,1-ビス{(2-ヒドロキシエトキシ)フェニル}-3,3,5-トリメチルシクロヘキサン、2,2-ビス{4-(2-ヒドロキシエトキシ)-3,3’-ビフェニル}プロパン、2,2-ビス{(2-ヒドロキシエトキシ)-3-イソプロピルフェニル}プロパン、2,2-ビス{3-t-ブチル-4-(2-ヒドロキシエトキシ)フェニル}プロパン、2,2-ビス{(2-ヒドロキシエトキシ)フェニル}ブタン、2,2-ビス{(2-ヒドロキシエトキシ)フェニル}-4-メチルペンタン、2,2-ビス{(2-ヒドロキシエトキシ)フェニル}オクタン、1,1-ビス{(2-ヒドロキシエトキシ)フェニル}デカン、2,2-ビス{3-ブロモ-4-(2-ヒドロキシエトキシ)フェニル}プロパン、2,2-ビス{3,5-ジメチル-4-(2-ヒドロキシエトキシ)フェニル}プロパン、2,2-ビス{3-シクロヘキシル-4-(2-ヒドロキシエトキシ)フェニル}プロパン、1,1-ビス{3-シクロヘキシル-4-(2-ヒドロキシエトキシ)フェニル}シクロヘキサン、ビス{(2-ヒドロキシエトキシ)フェニル}ジフェニルメタン、9,9-ビス{(2-ヒドロキシエトキシ)フェニル}フルオレン、9,9-ビス{4-(2-ヒドロキシエトキシ)-3-メチルフェニル}フルオレン、1,1-ビス{(2-ヒドロキシエトキシ)フェニル}シクロヘキサン、1,1-ビス{(2-ヒドロキシエトキシ)フェニル}シクロペンタン、4,4’-ビス(2-ヒドロキシエトキシ)ジフェニルエ-テル、4,4’-ビス(2-ヒドロキシエトキシ)-3,3’-ジメチルジフェニルエ-テル、1,3-ビス[2-{(2-ヒドロキシエトキシ)フェニル}プロピル]ベンゼン、1,4-ビス[2-{(2-ヒドロキシエトキシ)フェニル}プロピル]ベンゼン、1,4-ビス{(2-ヒドロキシエトキシ)フェニル}シクロヘキサン、1,3-ビス{(2-ヒドロキシエトキシ)フェニル}シクロヘキサン、4,8-ビス{(2-ヒドロキシエトキシ)フェニル}トリシクロ[5.2.1.02,6]デカン、1,3-ビス{(2-ヒドロキシエトキシ)フェニル}-5,7-ジメチルアダマンタン、3,9-ビス(2-ヒドロキシ-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ(5,5)ウンデカン、1,4:3,6-ジアンヒドロ-D-ソルビトール(イソソルビド)、1,4:3,6-ジアンヒドロ-D-マンニトール(イソマンニド)、1,4:3,6-ジアンヒドロ-L-イジトール(イソイディッド)等が挙げられる。 Examples of the aliphatic diols include 2,2-bis- (4-hydroxycyclohexyl) -propane, 1,14-tetradecanediol, octaethyleneglycol, 1,16-hexadecanediol, and 4,4'-bis (2-). Hydroxyethoxy) biphenyl, bis {(2-hydroxyethoxy) phenyl} methane, 1,1-bis {(2-hydroxyethoxy) phenyl} ethane, 1,1-bis {(2-hydroxyethoxy) phenyl} -1- Phenylethan, 2,2-bis {(2-hydroxyethoxy) phenyl} propane, 2,2-bis {(2-hydroxyethoxy) -3-methylphenyl} propane, 1,1-bis {(2-hydroxyethoxy) ) Phenyl} -3,3,5-trimethylcyclohexane, 2,2-bis {4- (2-hydroxyethoxy) -3,3'-biphenyl} propane, 2,2-bis {(2-hydroxyethoxy)- 3-Isopropyl} propane, 2,2-bis {3-t-butyl-4- (2-hydroxyethoxy) phenyl} propane, 2,2-bis {(2-hydroxyethoxy) phenyl} butane, 2,2 -Bis {(2-hydroxyethoxy) phenyl} -4-methylpentane, 2,2-bis {(2-hydroxyethoxy) phenyl} octane, 1,1-bis {(2-hydroxyethoxy) phenyl} decane, 2 , 2-bis {3-bromo-4- (2-hydroxyethoxy) phenyl} propane, 2,2-bis {3,5-dimethyl-4- (2-hydroxyethoxy) phenyl} propane, 2,2-bis {3-Cycloxy-4- (2-hydroxyethoxy) phenyl} propane, 1,1-bis {3-cyclohexyl-4- (2-hydroxyethoxy) phenyl} cyclohexane, bis {(2-hydroxyethoxy) phenyl} diphenylmethane , 9,9-bis {(2-hydroxyethoxy) phenyl} fluorene, 9,9-bis {4- (2-hydroxyethoxy) -3-methylphenyl} fluorene, 1,1-bis {(2-hydroxyethoxy) ) Phenyl} cyclohexane, 1,1-bis {(2-hydroxyethoxy) phenyl} cyclopentane, 4,4'-bis (2-hydroxyethoxy) diphenylether, 4,4'-bis (2-hydroxyethoxy) ) -3,3'-dimethyldiphenyl ether, 1,3-bis [2-{(2-hydroxyethoxy) phenyl} propyl] benzene, 1,4-bis [2-{(2-hydroxyethoxy) phenyl} propyl] benzene, 1,4-bis {(2-hydroxyethoxy) phenyl} cyclohexane, 1,3-bis {(2-hydroxyethoxy) phenyl } Cyclohexane, 4,8-bis {(2-hydroxyethoxy) phenyl} tricyclo [5.2.1.02,6] decane, 1,3-bis {(2-hydroxyethoxy) phenyl} -5,7- Dimethyladamantan, 3,9-bis (2-hydroxy-1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro (5,5) undecane, 1,4: 3,6-dianhydro-D -Sorbitol (isosorbide), 1,4: 3,6-dianhydro-D-mannitol (isomannide), 1,4: 3,6-dianhydro-L-iditol (isoidid) and the like can be mentioned.
 これらの中で芳香族ビスフェノール類が好ましく、なかでも1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、4,4’-スルホニルジフェノール、2,2’-ジメチル-4,4’-スルホニルジフェノール、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、1,3-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼン、および1,4-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼン、が好ましく、殊に2,2-ビス(4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパンおよび9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンが好ましい。中でも強度に優れ、良好な耐久性を有する2,2-ビス(4-ヒドロキシフェニル)プロパンが最も好適である。また、これらは単独または二種以上組み合わせて用いてもよい。 Among these, aromatic bisphenols are preferable, and among them, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) propane, and 2,2-bis (4). -Hydroxy-3-methylphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 4,4'-sulfonyl Diphenol, 2,2'-dimethyl-4,4'-sulfonyldiphenol, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 1,3-bis {2- (4-hydroxyphenyl) Propyl} benzene and 1,4-bis {2- (4-hydroxyphenyl) propyl} benzene are preferred, especially 2,2-bis (4-hydroxyphenyl) propane and 1,1-bis (4-hydroxy). Phenyl) cyclohexane, 2,2-bis (4-hydroxy-3-methylphenyl) propane and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene are preferred. Of these, 2,2-bis (4-hydroxyphenyl) propane, which has excellent strength and good durability, is most suitable. Moreover, these may be used individually or in combination of 2 or more types.
 本発明で使用されるポリカーボネート樹脂は、下記一般式〔2〕で表される繰り返し単位からなるポリカーボネート樹脂であることが好ましい。 The polycarbonate resin used in the present invention is preferably a polycarbonate resin composed of repeating units represented by the following general formula [2].
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
[上記一般式〔2〕において、R及びRは夫々独立して水素原子、ハロゲン原子、炭素原子数1~18のアルキル基、炭素原子数1~18のアルコキシ基、炭素原子数6~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数2~10のアルケニル基、炭素原子数6~14のアリール基、炭素原子数6~14のアリールオキシ基、炭素原子数7~20のアラルキル基、炭素原子数7~20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、それぞれ複数ある場合はそれらは同一でも異なっていても良く、a及びbは夫々1~4の整数であり、Wは単結合もしくは下記一般式〔3〕および〔4〕で表される基からなる群より選ばれる少なくとも一つの基である。 [In the above general formula [2], R 1 and R 2 are independently hydrogen atom, halogen atom, alkyl group having 1 to 18 carbon atoms, alkoxy group having 1 to 18 carbon atoms, and 6 to 6 carbon atoms, respectively. 20 cycloalkyl groups, 6 to 20 carbon atoms cycloalkoxy groups, 2 to 10 carbon atoms alkenyl groups, 6 to 14 carbon atoms aryl groups, 6 to 14 carbon atoms aryloxy groups, carbon atoms Represents a group selected from the group consisting of an alkoxy group having a number of 7 to 20 and an alkoxy group having a carbon atom number of 7 to 20, a nitro group, an aldehyde group, a cyano group and a carboxyl group. A and b are each an integer of 1 to 4, and W is a single bond or at least one group selected from the group consisting of the groups represented by the following general formulas [3] and [4]. ..
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(上記一般式〔3〕においてR,R,R,R,R,R,R及びR10は夫々独立して水素原子、炭素原子数1~18のアルキル基、炭素原子数6~14のアリール基及び炭素原子数7~20のアラルキル基からなる群から選ばれる基を表し、R11及びR12は夫々独立して水素原子、ハロゲン原子、炭素原子数1~18のアルキル基、炭素原子数1~10のアルコキシ基、炭素原子数6~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数2~10のアルケニル基、炭素原子数6~14のアリール基、炭素原子数6~10のアリールオキシ基、炭素原子数7~20のアラルキル基、炭素原子数7~20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、複数ある場合はそれらは同一でも異なっていても良く、cは1~10の整数、dは4~7の整数である。)] (In the above general formula [3], R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are independently hydrogen atoms, alkyl groups having 1 to 18 carbon atoms, and carbon. Represents a group selected from the group consisting of an aryl group having 6 to 14 atoms and an aralkyl group having 7 to 20 carbon atoms, and R 11 and R 12 are independent hydrogen atoms, halogen atoms, and carbon atoms 1 to 18 respectively. Alkyl group, alkoxy group with 1 to 10 carbon atoms, cycloalkyl group with 6 to 20 carbon atoms, cycloalkoxy group with 6 to 20 carbon atoms, alkenyl group with 2 to 10 carbon atoms, 6 carbon atoms From an aryl group of up to 14; an aryloxy group having 6 to 10 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, an aralkyloxy group having 7 to 20 carbon atoms, a nitro group, an aldehyde group, a cyano group and a carboxyl group. Represents a group selected from the group of, and if there are multiple, they may be the same or different, c is an integer of 1 to 10 and d is an integer of 4 to 7)].
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(上記一般式〔4〕において、R13、R14、R15、R16、R17及びR18は、各々独立に水素原子、炭素数1~12のアルキル基又は炭素数6~12の置換若しくは無置換のアリール基であり、cは自然数であり、dは0又は自然数であり、c+dは150以下の自然数である。Xは炭素数2~8の二価脂肪族基である。)
 本発明で使用されるポリカーボネート樹脂は、分岐化剤を上記のジヒドロキシ化合物と併用して分岐化ポリカーボネート樹脂としてもよい。かかる分岐ポリカーボネート樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6-ジメチル-2,4,6-トリス(4-ヒドロキジフェニル)ヘプテン-2、2,4,6-トリメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプタン、1,3,5-トリス(4-ヒドロキシフェニル)ベンゼン、1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタン、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、4-{4-[1,1-ビス(4-ヒドロキシフェニル)エチル]ベンゼン}-α,α-ジメチルベンジルフェノール等のトリスフェノール、テトラ(4-ヒドロキシフェニル)メタン、ビス(2,4-ジヒドロキシフェニル)ケトン、1,4-ビス(4,4-ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられ、中でも1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタンが好ましく、特に1,1,1-トリス(4-ヒドロキシフェニル)エタンが好ましい。
(In the above general formula [4], R 13 , R 14 , R 15 , R 16 , R 17 and R 18 are independently substituted with a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or 6 to 12 carbon atoms, respectively. Alternatively, it is an unsubstituted aryl group, c is a natural number, d is 0 or a natural number, c + d is a natural number of 150 or less, and X is a divalent aliphatic group having 2 to 8 carbon atoms.)
The polycarbonate resin used in the present invention may be a branched polycarbonate resin by using a branching agent in combination with the above dihydroxy compound. Examples of the trifunctional or higher polyfunctional aromatic compound used in such a branched polycarbonate resin include fluoroglucolcin, fluoroglucolside, or 4,6-dimethyl-2,4,6-tris (4-hydrochidiphenyl) hepten-2, 2. , 4,6-trimethyl-2,4,6-tris (4-hydroxyphenyl) heptane, 1,3,5-tris (4-hydroxyphenyl) benzene, 1,1,1-tris (4-hydroxyphenyl) Etan, 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane, 2,6-bis (2-hydroxy-5-methylbenzyl) -4-methylphenol, 4- {4- [ 1,1-bis (4-hydroxyphenyl) ethyl] benzene} -α, α-dimethylbenzylphenol and other trisphenols, tetra (4-hydroxyphenyl) methane, bis (2,4-dihydroxyphenyl) ketone, 1, Examples thereof include 4-bis (4,4-dihydroxytriphenylmethyl) benzene, trimellitic acid, pyromellitic acid, benzophenone tetracarboxylic acid and acid chlorides thereof, among which 1,1,1-tris (4-hydroxy). Phenyl) ethane and 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane are preferable, and 1,1,1-tris (4-hydroxyphenyl) ethane is particularly preferable.
 これらのポリカーボネート樹脂は、通常の芳香族ポリカーボネート樹脂を製造するそれ自体公知の反応手段、例えば芳香族ジヒドロキシ成分にホスゲンや炭酸ジエステルなどのカーボネート前駆物質を反応させる方法により製造される。その製造方法について基本的な手段を簡単に説明する。 These polycarbonate resins are produced by a reaction method known per se for producing an ordinary aromatic polycarbonate resin, for example, a method of reacting an aromatic dihydroxy component with a carbonic acid precursor such as phosgene or carbonic acid diester. The basic means for the manufacturing method will be briefly described.
 カーボネート前駆物質として、例えばホスゲンを使用する反応では、通常酸結合剤および溶媒の存在下に反応を行う。酸結合剤としては、例えば水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物またはピリジンなどのアミン化合物が用いられる。溶媒としては、例えば塩化メチレン、クロロベンゼンなどのハロゲン化炭化水素が用いられる。また反応促進のために例えば第三級アミンまたは第四級アンモニウム塩などの触媒を用いることもできる。その際、反応温度は通常0~40℃であり、反応時間は数分~5時間である。カーボネート前駆物質として炭酸ジエステルを用いるエステル交換反応は、不活性ガス雰囲気下所定割合の芳香族ジヒドロキシ成分を炭酸ジエステルと加熱しながら撹拌して、生成するアルコールまたはフェノール類を留出させる方法により行われる。反応温度は生成するアルコールまたはフェノール類の沸点などにより異なるが、通常120~300℃の範囲である。反応はその初期から減圧にして生成するアルコールまたはフェノール類を留出させながら反応を完結させる。また、反応を促進するために通常エステル交換反応に使用される触媒を使用することもできる。前記エステル交換反応に使用される炭酸ジエステルとしては、例えばジフェニルカーボネート、ジナフチルカーボネート、ビス(ジフェニル)カーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネートなどが挙げられる。これらのうち特にジフェニルカーボネートが好ましい。
本発明において、重合反応においては末端停止剤を使用する。末端停止剤は分子量調節のために使用され、また得られたポリカーボネート樹脂は、末端が封鎖されているので、そうでないものと比べて熱安定性に優れている。かかる末端停止剤としては、下記一般式〔5〕~〔7〕で表される単官能フェノール類を示すことができる。
In a reaction using, for example, phosgene as a carbonate precursor, the reaction is usually carried out in the presence of an acid binder and a solvent. As the acid binder, for example, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide or an amine compound such as pyridine is used. As the solvent, for example, halogenated hydrocarbons such as methylene chloride and chlorobenzene are used. Further, a catalyst such as a tertiary amine or a quaternary ammonium salt can also be used to promote the reaction. At that time, the reaction temperature is usually 0 to 40 ° C., and the reaction time is several minutes to 5 hours. The transesterification reaction using a carbonic acid diester as a carbonic acid precursor is carried out by a method of distilling off the produced alcohol or phenol by stirring a predetermined ratio of aromatic dihydroxy components with the carbonic acid diester while heating them in an inert gas atmosphere. .. The reaction temperature varies depending on the boiling point of the alcohol or phenol produced, but is usually in the range of 120 to 300 ° C. The reaction is completed by distilling off the produced alcohols or phenols under reduced pressure from the initial stage. It is also possible to use catalysts normally used in transesterification reactions to accelerate the reaction. Examples of the carbonic acid diester used in the transesterification reaction include diphenyl carbonate, dinaphthyl carbonate, bis (diphenyl) carbonate, dimethyl carbonate, diethyl carbonate, dibutyl carbonate and the like. Of these, diphenyl carbonate is particularly preferable.
In the present invention, a terminal terminator is used in the polymerization reaction. The terminal terminator is used for molecular weight regulation, and the obtained polycarbonate resin has a closed end, so that it is superior in thermal stability as compared with the non-termination agent. As such a terminal terminator, monofunctional phenols represented by the following general formulas [5] to [7] can be shown.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
[式中、Aは水素原子、炭素数1~9のアルキル基、アルキルフェニル基(アルキル部分の炭素数は1~9)、フェニル基、またはフェニルアルキル基(アルキル部分の炭素数1~9)であり、rは1~5、好ましくは1~3の整数である]。 [In the formula, A is a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, an alkylphenyl group (the number of carbon atoms in the alkyl moiety is 1 to 9), a phenyl group, or a phenylalkyl group (the number of carbon atoms in the alkyl moiety is 1 to 9). And r is an integer of 1 to 5, preferably 1 to 3].
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
[式中、Xは-R-O-、-R-CO-O-または-R-O-CO-である、ここでRは単結合または炭素数1~10、好ましくは1~5の二価の脂肪族炭化水素基を示し、nは10~50の整数を示す。]
 上記一般式〔5〕で表される単官能フェノール類の具体例としては、例えばフェノール、イソプロピルフェノール、p-tert-ブチルフェノール、p-クレゾール、p-クミルフェノール、2-フェニルフェノール、4-フェニルフェノール、およびイソオクチルフェノールなどが挙げられる。また、上記一般式〔6〕~〔7〕で表される単官能フェノール類は、長鎖のアルキル基あるいは脂肪族エステル基を置換基として有するフェノール類であり、これらを用いてポリカーボネート樹脂の末端を封鎖すると、これらは末端停止剤または分子量調節剤として機能するのみならず、樹脂の溶融流動性が改良され、成形加工が容易になるばかりでなく、樹脂の吸水率を低くする効果があり好ましく使用される。上記一般式〔6〕の置換フェノール類としてはnが10~30、特に10~26のものが好ましく、その具体例としては例えばデシルフェノール、ドデシルフェノール、テトラデシルフェノール、ヘキサデシルフェノール、オクタデシルフェノール、エイコシルフェノール、ドコシルフェノールおよびトリアコンチルフェノール等を挙げることができる。また、上記一般式〔7〕の置換フェノール類としてはXが-R-CO-O-であり、Rが単結合である化合物が適当であり、nが10~30、特に10~26のものが好適であって、その具体例としては例えばヒドロキシ安息香酸デシル、ヒドロキシ安息香酸ドデシル、ヒドロキシ安息香酸テトラデシル、ヒドロキシ安息香酸ヘキサデシル、ヒドロキシ安息香酸エイコシル、ヒドロキシ安息香酸ドコシルおよびヒドロキシ安息香酸トリアコンチルが挙げられる。これら単官能フェノール類の内、上記一般式〔5〕で表される単官能フェノール類が好ましく、より好ましくはアルキル置換もしくはフェニルアルキル置換のフェノール類であり、特に好ましくはp-tert-ブチルフェノール、p-クミルフェノールまたは2-フェニルフェノールである。これらの単官能フェノール類の末端停止剤は、得られたポリカーボネート樹脂の全末端に対して少なくとも5モル%、好ましくは少なくとも10モル% 末端に導入されることが望ましく、また、末端停止剤は単独でまたは2種以上混合して使用してもよい。
[In the formula, X is -RO-, -R-CO-O- or -RO-CO-, where R is a single bond or 1 to 10 carbon atoms, preferably 1 to 5-2. It indicates a valent aliphatic hydrocarbon group, and n represents an integer of 10 to 50. ]
Specific examples of the monofunctional phenols represented by the general formula [5] are, for example, phenol, isopropylphenol, p-tert-butylphenol, p-cresol, p-cumylphenol, 2-phenylphenol, 4-phenyl. Examples include phenol and isooctylphenol. Further, the monofunctional phenols represented by the above general formulas [6] to [7] are phenols having a long-chain alkyl group or an aliphatic ester group as a substituent, and these are used to terminal the polycarbonate resin. When sealed, these not only function as a terminal terminator or a molecular weight modifier, but also improve the melt fluidity of the resin, facilitate the molding process, and have the effect of lowering the water absorption rate of the resin, which is preferable. used. The substituted phenols of the above general formula [6] preferably have n of 10 to 30, particularly 10 to 26, and specific examples thereof include, for example, decylphenol, dodecylphenol, tetradecylphenol, hexadecylphenol, and octadecylphenol. Examples thereof include eicosylphenol, docosylphenol, and triacylphenol. Further, as the substituted phenols of the above general formula [7], compounds in which X is —R—CO—O— and R is a single bond are suitable, and n is 10 to 30, particularly 10 to 26. Is preferable, and specific examples thereof include decyl hydroxybenzoate, dodecyl hydroxybenzoate, tetradecyl hydroxybenzoate, hexadecyl hydroxybenzoate, eikosyl hydroxybenzoate, docosyl hydroxybenzoate, and triacontyl hydroxybenzoate. Among these monofunctional phenols, monofunctional phenols represented by the above general formula [5] are preferable, alkyl-substituted or phenylalkyl-substituted phenols are more preferable, and p-tert-butylphenol and p are particularly preferable. -Kumilphenol or 2-phenylphenol. It is desirable that the terminal terminator of these monofunctional phenols be introduced into the terminal at least 5 mol%, preferably at least 10 mol% with respect to the total terminal of the obtained polycarbonate resin, and the terminal terminator is used alone. Or a mixture of two or more types may be used.
 本発明で使用されるポリカーボネート樹脂は、本発明の趣旨を損なわない範囲で、芳香族ジカルボン酸、例えばテレフタル酸、イソフタル酸、ナフタレンジカルボン酸あるいはその誘導体を共重合したポリエステルカーボネートであってもよい。 The polycarbonate resin used in the present invention may be a polyester carbonate copolymerized with an aromatic dicarboxylic acid, for example, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid or a derivative thereof, as long as the gist of the present invention is not impaired.
 本発明で使用されるポリカーボネート樹脂の粘度平均分子量は、13,000~50,000の範囲が好ましく、15,000~40,000の範囲がより好ましく、16,000~30,000の範囲がさらに好ましく、17,000~28,000の範囲が特に好ましく、18,000~26,000の範囲が最も好ましい。粘度平均分子量が50,000を越えると溶融粘度が高くなりすぎて成形性に劣る場合があり、分子量が13,000未満であると十分な靭性や割れ耐性が得られず機械的強度に問題が生じる場合がある。 The viscosity average molecular weight of the polycarbonate resin used in the present invention is preferably in the range of 13,000 to 50,000, more preferably in the range of 15,000 to 40,000, and further in the range of 16,000 to 30,000. The range of 17,000 to 28,000 is particularly preferable, and the range of 18,000 to 26,000 is most preferable. If the viscosity average molecular weight exceeds 50,000, the melt viscosity may become too high and the moldability may be inferior. If the molecular weight is less than 13,000, sufficient toughness and crack resistance cannot be obtained, and there is a problem in mechanical strength. May occur.
 なお、本発明でいう芳香族ポリカーボネート樹脂の粘度平均分子量は、まず次式にて算出される比粘度を塩化メチレン100mlにポリカーボネート樹脂0.7gを20℃で溶解した溶液からオストワルド粘度計を用いて求め、求められた比粘度を次式にて挿入して粘度平均分子量Mvを算出したものである。 The viscosity average molecular weight of the aromatic polycarbonate resin referred to in the present invention is determined by using an Ostwald viscometer from a solution prepared by dissolving 0.7 g of the polycarbonate resin in 100 ml of methylene chloride at 20 ° C. with the specific viscosity calculated by the following formula. The viscosity average molecular weight Mv was calculated by inserting the obtained specific viscosity by the following formula.
  比粘度(ηSP)=(t-t)/t
  [tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
  ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
  [η]=1.23×10-4Mv0.83
  c=0.7
(マロン酸エステル系紫外線吸収剤(B))
 本発明で使用される紫外線吸収剤はマロン酸エステル系紫外線吸収剤である。マロン酸エステル系紫外線吸収剤としては、耐久性の観点から、2-(1-アリールアルキリデン)マロン酸エステル類が好ましく使用される。マロン酸エステル系紫外線吸収剤は、クラリアントジャパン(株)製 Hostavin PR-25やクラリアントジャパン(株)製 Hostavin B-CAPなどが市販されている。
Specific viscosity (η SP ) = (t-t 0 ) / t 0
[T 0 is the number of seconds for methylene chloride to fall, and t is the number of seconds for the sample solution to fall]
η SP / c = [η] +0.45 × [η] 2 c (however, [η] is the ultimate viscosity)
[Η] = 1.23 × 10 -4 Mv 0.83
c = 0.7
(Malonic acid ester UV absorber (B))
The ultraviolet absorber used in the present invention is a malonic acid ester-based ultraviolet absorber. As the malonic acid ester-based ultraviolet absorber, 2- (1-arylalkylidene) malonic acid esters are preferably used from the viewpoint of durability. As the malonic acid ester-based ultraviolet absorber, Hostavin PR-25 manufactured by Clariant Japan Co., Ltd., Hostavin B-CAP manufactured by Clariant Japan Co., Ltd., and the like are commercially available.
 マロン酸エステル系紫外線吸収剤の使用量は、芳香族ポリカーボネート100質量部に対し、0.15~5.0質量部であり、0.25~4.5質量部が好ましく、0.27~4.0質量部がより好ましく、0.3~3.5質量部がさらに好ましい。0.15質量部未満では、充分な耐候性を得ることができず、5.0質量部を超えると、紫外線吸収剤のブリードアウトによる加工時のガス発生の問題や機械的強度の低下が起こるので好ましくない。
(光拡散剤(C))
 本発明で所望により使用される光拡散剤は、高分子微粒子に代表される有機系微粒子、並びに無機系微粒子の何れであってもよい。高分子微粒子としては、非架橋性モノマーと架橋性モノマーとを重合して得られる架橋粒子が代表的に例示される。さらにかかるモノマー以外の他の共重合可能なモノマーを使用することもできる。なかでも、高分子微粒子が好ましく、特に架橋粒子が好適に使用できる。
The amount of the malonate ester-based ultraviolet absorber used is 0.15 to 5.0 parts by mass, preferably 0.25 to 4.5 parts by mass, and 0.27 to 4 parts by mass with respect to 100 parts by mass of the aromatic polycarbonate. .0 parts by mass is more preferable, and 0.3 to 3.5 parts by mass is further preferable. If it is less than 0.15 parts by mass, sufficient weather resistance cannot be obtained, and if it exceeds 5.0 parts by mass, the problem of gas generation during processing due to the bleed-out of the ultraviolet absorber and the decrease in mechanical strength occur. Therefore, it is not preferable.
(Light diffuser (C))
The light diffusing agent used as desired in the present invention may be either organic fine particles typified by polymer fine particles or inorganic fine particles. Typical examples of the polymer fine particles are crosslinked particles obtained by polymerizing a non-crosslinkable monomer and a crosslinkable monomer. Further, copolymerizable monomers other than such monomers can also be used. Among them, polymer fine particles are preferable, and crosslinked particles can be particularly preferably used.
 かかる架橋粒子において、非架橋性モノマーとして使用されるモノマーとして、アクリル系モノマー、スチレン系モノマー、アクリロニトリル系モノマー等の非架橋性ビニル系モノマー及びオレフィン系モノマー等を挙げることができる。 Examples of the monomer used as the non-crosslinkable monomer in the cross-linked particles include a non-crosslinkable vinyl-based monomer such as an acrylic monomer, a styrene-based monomer, and an acrylonitrile-based monomer, and an olefin-based monomer.
 アクリル系モノマーとしては、メチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、2-エチルヘキシルアクリレート、メチルメタクリート、エチルメタクリレート、プロピルメタクリレート、ブチルメタクリレート、2- エチルヘキシルメタクリレート、およびフェニルメタクリレート等を単独でまたは混合して使用することが可能である。このなかでも特にメチルメタクリレートが好ましい。 As the acrylic monomer, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, phenyl methacrylate and the like are used alone or mixed. It is possible to use it. Of these, methyl methacrylate is particularly preferable.
 また、スチレン系モノマーとしては、スチレン、α-メチルスチレン、メチルスチレン(ビニルトルエン)、およびエチルスチレン等のアルキルスチレン、並びにブロモ化スチレンの如きハロゲン化スチレンを使用することができ、特にスチレンが好ましい。 Further, as the styrene-based monomer, alkyl styrene such as styrene, α-methyl styrene, methyl styrene (vinyl toluene), and ethyl styrene, and halogenated styrene such as bromoized styrene can be used, and styrene is particularly preferable. ..
 アクリロニトリル系モノマーとしては、アクリロニトリル、およびメタクリロニトリルを使用することができる。また、オレフィン系モノマーとしては、エチレンおよび各種ノルボルネン型化合物等を使用することができる。さらに、他の共重合可能な他のモノマーとして、グリシジルメタクリレート、N-メチルマレイミド、および無水マレイン酸等を例示することができる。本発明の有機架橋粒子は結果としてN-メチルグルタルイミドの如き単位を有することもできる。 As the acrylonitrile-based monomer, acrylonitrile and methacrylonitrile can be used. Further, as the olefin-based monomer, ethylene, various norbornene-type compounds and the like can be used. Further, as other copolymerizable monomers, glycidyl methacrylate, N-methylmaleimide, maleic anhydride and the like can be exemplified. The organic crosslinked particles of the present invention can also have units such as N-methylglutarimide as a result.
 一方、かかる非架橋性ビニル系モノマーに対する架橋性モノマーとしては、例えば、ジビニルベンゼン、アリルメタクリレート、トリアリルシアヌレート、トリアリルイソシアネート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、プロピレングリコール(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパン(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、ジシクロペンテニルジ(メタ)アクリレート、およびN-メチロール(メタ)アクリルアミド等が挙げられる。また、他の架橋粒子としては、ポリオルガノシルセスキオキサンに代表されるシリコーン架橋粒子を挙げることができる。 On the other hand, examples of the crosslinkable monomer for such a non-crosslinkable vinyl-based monomer include divinylbenzene, allyl methacrylate, triallyl cyanurate, triallyl isocyanate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, and propylene glycol. (Meta) acrylate, 1,6-hexanediol di (meth) acrylate, trimethylolpropane (meth) acrylate, pentaerythritol tetra (meth) acrylate, bisphenol A di (meth) acrylate, dicyclopentanyldi (meth) acrylate , Dicyclopentenyldi (meth) acrylate, N-methylol (meth) acrylamide and the like. In addition, examples of other crosslinked particles include silicone crosslinked particles typified by polyorganosylsesquioxane.
 光拡散剤の平均粒径は0.01~50μmであることが好ましく、より好ましくは1~30μm 、さらに好ましく2~30μmである。平均粒径が0.01μm未満あるいは50μmを超えると光拡散性が不足する場合がある。かかる平均粒径は、レーザー回折・散乱法で求められる粒度の積算分布の50%値(D50)で表されるものである。粒子径の分布は単一であっても複数であってもよい。すなわち平均粒径の異なる2種以上の光拡散剤を組み合わせることが可能である。しかしながらより好ましい光拡散剤は、その粒径分布の狭いものである。平均粒径の前後2μmの範囲に、粒子の70質量%以上が含有される分布を有するものがより好ましい。光拡散剤の形状は、光拡散性の観点から球状に近いものが好ましく、真球状に近い形態であるほどより好ましい。かかる球状には楕円球を含む。 The average particle size of the light diffusing agent is preferably 0.01 to 50 μm, more preferably 1 to 30 μm, and even more preferably 2 to 30 μm. If the average particle size is less than 0.01 μm or more than 50 μm, the light diffusivity may be insufficient. The average particle size is represented by a 50% value (D50) of the integrated distribution of the particle size obtained by the laser diffraction / scattering method. The particle size distribution may be single or plural. That is, it is possible to combine two or more kinds of light diffusing agents having different average particle sizes. However, a more preferred light diffusing agent has a narrow particle size distribution. It is more preferable to have a distribution in which 70% by mass or more of the particles are contained in the range of 2 μm before and after the average particle size. From the viewpoint of light diffusivity, the shape of the light diffusing agent is preferably close to a spherical shape, and more preferably a shape close to a true spherical shape. Such a sphere includes an ellipsoidal sphere.
 光拡散剤の屈折率は、1.30~1.80の範囲が好ましく、より好ましくは1.33~1.70、さらに好ましくは1.35~1.65の範囲である。これらは樹脂組成物に配合した状態において十分な光拡散機能を発揮する。 The refractive index of the light diffusing agent is preferably in the range of 1.30 to 1.80, more preferably 1.33 to 1.70, and even more preferably 1.35 to 1.65. These exhibit a sufficient light diffusing function when blended in the resin composition.
 光拡散剤の含有量は、芳香族ポリカーボネート樹脂成分100質量部に対して、好ましくは0.05~10.0質量部であり、より好ましくは0.1~7.0質量部、さらに好ましくは0.15~5.0質量部、特に好ましくは0.2~2.0質量である。光拡散剤の含有量が下限以上である場合は十分な光拡散性が得られ、上限以下である場合は全光線透過率や耐候性が良好である。 The content of the light diffusing agent is preferably 0.05 to 10.0 parts by mass, more preferably 0.1 to 7.0 parts by mass, and even more preferably 0.1 part by mass with respect to 100 parts by mass of the aromatic polycarbonate resin component. It is 0.15 to 5.0 parts by mass, particularly preferably 0.2 to 2.0 parts by mass. When the content of the light diffusing agent is not less than the lower limit, sufficient light diffusivity is obtained, and when it is not more than the upper limit, the total light transmittance and weather resistance are good.
 また、光拡散剤を使用する場合、マロン酸エステル系紫外線吸収剤(B)の使用量は、芳香族ポリカーボネート樹脂(A)100質量部に対し、0.15~2.0質量部の範囲が好ましく、0.2~1.6質量部の範囲がより好ましく、0.25~1.0質量部の範囲がさらに好ましく、0.3~0.5質量部の範囲が特に好ましい。下限以上である場合は充分な耐候性を得ることができ、上限以下である場合紫外線吸収剤のブリードアウトによる加工時のガス発生が抑制され、全光線透過率、耐候性および機械的強度の低下が起こり難くなる。 When a light diffusing agent is used, the amount of the malonate ester-based ultraviolet absorber (B) used is in the range of 0.15 to 2.0 parts by mass with respect to 100 parts by mass of the aromatic polycarbonate resin (A). The range of 0.2 to 1.6 parts by mass is more preferable, the range of 0.25 to 1.0 parts by mass is further preferable, and the range of 0.3 to 0.5 parts by mass is particularly preferable. When it is above the lower limit, sufficient weather resistance can be obtained, and when it is below the upper limit, gas generation during processing due to bleed-out of the ultraviolet absorber is suppressed, and the total light transmittance, weather resistance and mechanical strength are lowered. Is less likely to occur.
 光拡散剤を配合した光拡散性の樹脂組成物からなる成形品に光を透過させる場合、透明樹脂からなる成形品と比較して成形品中で光が拡散し、光の透過路が長くなってしまうため、光拡散性に対して十分な紫外線吸収剤を使用する必要がある。具体的には光拡散剤の使用量(c)に対するマロン酸エステル系紫外線吸収剤の使用量(b)の割合b/cが0.2以上であることが好ましく、0.25以上であることがより好ましく、0.3以上であることがさらに好ましく、0.5以上であることが特に好ましい。b/cが0.2以上である場合は充分な耐候性を得ることができる。
(熱安定剤(D))
 本発明で好ましく使用される熱安定剤(D)は、リン系熱安定剤および/または硫黄系熱安定剤が好ましい。
When light is transmitted through a molded product made of a light-diffusing resin composition containing a light-diffusing agent, the light is diffused in the molded product and the light transmission path becomes longer as compared with the molded product made of transparent resin. Therefore, it is necessary to use a sufficient UV absorber for light diffusivity. Specifically, the ratio b / c of the amount (b) of the malonic acid ester-based ultraviolet absorber used to the amount (c) of the light diffusing agent is preferably 0.2 or more, preferably 0.25 or more. Is more preferable, 0.3 or more is further preferable, and 0.5 or more is particularly preferable. When b / c is 0.2 or more, sufficient weather resistance can be obtained.
(Heat stabilizer (D))
The heat stabilizer (D) preferably used in the present invention is preferably a phosphorus-based heat stabilizer and / or a sulfur-based heat stabilizer.
 リン系熱安定剤としては、亜リン酸エステルまたはリン酸エステルが好ましい。亜リン酸エステルとしては、例えば、トリフェニルホスファイト、トリスノニルフェニルホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリノニルホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジステアリルペンタエリスリトールジホスファイト、トリシクロヘキシルホスファイト、モノブチルジフェニルホスファイト、モノオクチルジフェニルホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト等の亜リン酸のトリエステル、ジエステル、モノエステル等が挙げられる。 As the phosphorus-based heat stabilizer, phosphite ester or phosphoric acid ester is preferable. Examples of the phosphite ester include triphenylphosphite, trisnonylphenylphosphite, tris (2,4-di-tert-butylphenyl) phosphite, trinonylphosphite, tridecylphosphite, and trioctylphosphite. , Trioctadecylphosphite, distearylpentaerythritol diphosphite, tricyclohexylphosphite, monobutyldiphenylphosphite, monooctyldiphenylphosphite, distearylpentaerythritol diphosphite, bis (2,4-di-tert-butyl) Phosphite) pentaerythritol phosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol phosphite, 2,2-methylenebis (4,6-di-tert-butylphenyl) octylphosphite, etc. Examples thereof include triesters, diesters and monoesters of phosphorous acid.
 また、リン酸エステルとしては、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリス(ノニルフェニル)ホスフェート、2-エチルフェニルジフェニルホスフェート、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4-ジフェニレンホスフォナイト等が挙げられる。 The phosphate esters include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, triphenyl phosphate, tricresyl phosphate, tris (nonylphenyl) phosphate, 2-ethylphenyldiphenyl phosphate, and tetrakis (2,4-). Di-tert-butylphenyl) -4,4-diphenylene phosphonite and the like can be mentioned.
 リン系熱安定剤の中でも、上記式(1)で示されるトリス(2,4-ジ-tert.-ブチルフェニル)ホスファイトが好ましい。具体的にはBASF社製「IRGAFOS 168 FF」が市販されている。 Among the phosphorus-based heat stabilizers, tris (2,4-di-tert.-butylphenyl) phosphite represented by the above formula (1) is preferable. Specifically, "IRGAFOS 168 FF" manufactured by BASF is commercially available.
 硫黄系熱安定剤としては例えば、ジラウリル-3,3’-チオジプロピオン酸エステル、ジトリデシル-3,3’-チオジプロピオン酸エステル、ジミリスチル-3,3’-チオジプロピオン酸エステル、ジステアリル-3,3’-チオジプロピオン酸エステル、ラウリルステアリル-3,3’-チオジプロピオン酸エステル、ペンタエリスリトールテトラキス(3-ラウリルチオプロピオネート)、ビス[2-メチル-4-(3-ラウリルチオプロピオニルオキシ)-5-tert-ブチルフェニル]スルフィド、オクタデシルジスルフィド、メルカプトベンズイミダゾール、2-メルカプト-6-メチルベンズイミダゾール、1,1’-チオビス(2-ナフトール)などを挙げることができる。 Examples of the sulfur-based heat stabilizer include dilauryl-3,3'-thiodipropionic acid ester, ditridecyl-3,3'-thiodipropionic acid ester, dimyristyl-3,3'-thiodipropionic acid ester, and distearyl. -3,3'-thiodipropionic acid ester, laurylstearyl-3,3'-thiodipropionic acid ester, pentaerythritol tetrakis (3-laurylthiopropionate), bis [2-methyl-4- (3-) Laurylthiopropionyloxy) -5-tert-butylphenyl] sulfide, octadecyldisulfide, mercaptobenzimidazole, 2-mercapto-6-methylbenzimidazole, 1,1'-thiobis (2-naphthol) and the like can be mentioned.
 硫黄系熱安定剤の中でも、上記式(2)で示されるペンタエリスリトールテトラキス(3-ラウリルチオプロピオネート)が好ましい。具体的には住友化学(株)社製「スミライザーTP‐D」が市販されている。 Among the sulfur-based heat stabilizers, pentaerythritol tetrakis (3-laurylthiopropionate) represented by the above formula (2) is preferable. Specifically, "Sumilyzer TP-D" manufactured by Sumitomo Chemical Co., Ltd. is commercially available.
 熱安定剤の使用量は芳香族ポリカーボネート樹脂100質量部に対し、0.01~0.1質量部が好ましく、0.02~0.08質量部がより好ましく、0.03~0.07質量部がさらに好ましい。上記範囲内では、充分な熱安定性を得ることができ、耐蒸気性に優れる。
(離型剤(E))
 本発明で好ましく使用される離型剤としては、例えば、脂肪酸エステル、ポリオレフィン系ワックス(ポリエチレンワックス、1-アルケン重合体などであり、酸変性などの官能基含有化合物で変性されているものも使用できる)、フッ素化合物(ポリフルオロアルキルエーテルに代表されるフッ素オイルなど)、パラフィンワックス、蜜蝋などを挙げることができる。これらの中でも入手の容易さ、離型性および透明性の点から脂肪酸エステルが好ましい。
The amount of the heat stabilizer used is preferably 0.01 to 0.1 parts by mass, more preferably 0.02 to 0.08 parts by mass, and 0.03 to 0.07 parts by mass with respect to 100 parts by mass of the aromatic polycarbonate resin. The unit is more preferable. Within the above range, sufficient thermal stability can be obtained and steam resistance is excellent.
(Release agent (E))
As the mold release agent preferably used in the present invention, for example, fatty acid esters, polyolefin waxes (polyethylene wax, 1-alkene polymer, etc., and those modified with a functional group-containing compound such as acid modification are also used. ), Fluorine compounds (fluorine oil typified by polyfluoroalkyl ether, etc.), paraffin wax, beeswax, etc. can be mentioned. Among these, fatty acid esters are preferable from the viewpoint of easy availability, releasability and transparency.
 かかる離型剤を含有させる割合は、芳香族ポリカーボネート樹脂100質量部に対して、好ましくは0.1~0.5重量部であり、より好ましくは0.15~0.4重量部であり、さらに好ましくは0.2~0.3重量部である。上記範囲であると、離型性が良好で、耐蒸気性に優れ、成形時の金型汚染も低減される。 The ratio of the release agent to be contained is preferably 0.1 to 0.5 parts by weight, more preferably 0.15 to 0.4 parts by weight, based on 100 parts by mass of the aromatic polycarbonate resin. More preferably, it is 0.2 to 0.3 parts by weight. Within the above range, mold releasability is good, steam resistance is excellent, and mold contamination during molding is reduced.
 上記離型剤の中でも脂肪酸エステルが好ましく用いられる。脂肪酸エステルは、脂肪族アルコールと脂肪族カルボン酸とのエステルである。脂肪族アルコールは1価アルコールであっても2価以上の多価アルコールであってもよい。また該アルコールの炭素数としては、好適には3~32の範囲、より好適には5~30の範囲である。かかる一価アルコールとしては、例えばドデカノール、テトラデカノール、ヘキサデカノール、オクタデカノール、エイコサノール、テトラコサノール、セリルアルコール、およびトリアコンタノールなどが例示される。かかる多価アルコールとしては、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ポリグリセロール(トリグリセロール~ヘキサグリセロール)、ジトリメチロールプロパン、キシリトール、ソルビトール、およびマンニトールなどが挙げられる。脂肪酸エステルにおいては多価アルコールがより好ましい。 Among the above mold release agents, fatty acid esters are preferably used. Fatty acid esters are esters of fatty alcohols and aliphatic carboxylic acids. The aliphatic alcohol may be a monohydric alcohol or a polyhydric alcohol having a divalent value or higher. The carbon number of the alcohol is preferably in the range of 3 to 32, and more preferably in the range of 5 to 30. Examples of such monohydric alcohols include dodecanol, tetradecanol, hexadecanol, octadecanol, eicosanol, tetracosanol, ceryl alcohol, triacanthanol and the like. Examples of such polyhydric alcohols include pentaerythritol, dipentaerythritol, tripentaerythritol, polyglycerol (triglycerol to hexaglycerol), ditrimethylolpropane, xylitol, sorbitol, and mannitol. In fatty acid esters, polyhydric alcohols are more preferred.
 一方、脂肪族カルボン酸は炭素数3~32であることが好ましく、特に炭素数10~22の脂肪族カルボン酸が好ましい。該脂肪族カルボン酸としては、例えばデカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸(パルミチン酸)、ヘプタデカン酸、オクタデカン酸(ステアリン酸)、ノナデカン酸、イコサン酸、およびドコサン酸(ベヘン酸)などの飽和脂肪族カルボン酸、並びにパルミトレイン酸、オレイン酸、リノール酸、リノレン酸、エイコセン酸、エイコサペンタエン酸、およびセトレイン酸などの不飽和脂肪族カルボン酸を挙げることができる。上記の中でも脂肪族カルボン酸は、炭素原子数14~20であるものが好ましい。なかでも飽和脂肪族カルボン酸が好ましい。かかる脂肪族カルボン酸は通常、動物性油脂(牛脂および豚脂など)や植物性油脂(パーム油など)などの天然油脂類から製造されるため、これらの脂肪族カルボン酸は、通常炭素原子数の異なる他のカルボン酸成分を含む混合物である。したがって脂肪族カルボン酸の製造においてもかかる天然油脂類から製造され、他のカルボン酸成分を含む混合物の形態からなる。脂肪酸エステルにおける酸価は、20以下(実質的に0を取り得る)であることが好ましい。しかしながら全エステル(フルエステル)の場合には、離型性を向上させるため、少なくからず遊離の脂肪酸を含有することが好ましく、この点においてフルエステルにおける酸価は3~15の範囲が好ましい。また脂肪酸エステルのヨウ素価は、10以下(実質的に0を取り得る)が好ましい。これらの特性はJIS K 0070に規定された方法により求めることができる。 On the other hand, the aliphatic carboxylic acid preferably has 3 to 32 carbon atoms, and particularly preferably an aliphatic carboxylic acid having 10 to 22 carbon atoms. Examples of the aliphatic carboxylic acid include decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid (palmitic acid), heptadecanoic acid, octadecanoic acid (stearic acid), nonadecanoic acid and icosanoic acid. And saturated aliphatic carboxylic acids such as docosanoic acid (bechenic acid), and unsaturated aliphatic carboxylic acids such as palmitoleic acid, oleic acid, linoleic acid, linolenic acid, eicosenoic acid, eicosapentaenoic acid, and sethalic acid. can. Among the above, the aliphatic carboxylic acid preferably has 14 to 20 carbon atoms. Of these, saturated aliphatic carboxylic acids are preferable. Since such aliphatic carboxylic acids are usually produced from natural fats and oils such as animal fats and oils (such as beef tallow and lard) and vegetable fats and oils (such as palm oil), these aliphatic carboxylic acids usually have carbon atoms. It is a mixture containing other carboxylic acid components different from each other. Therefore, it is also produced from such natural fats and oils in the production of aliphatic carboxylic acids, and is in the form of a mixture containing other carboxylic acid components. The acid value of the fatty acid ester is preferably 20 or less (substantially 0 can be taken). However, in the case of all esters (full esters), it is preferable to contain not a small amount of free fatty acids in order to improve releasability, and in this respect, the acid value of full esters is preferably in the range of 3 to 15. The iodine value of the fatty acid ester is preferably 10 or less (substantially 0 can be taken). These characteristics can be obtained by the method specified in JIS K0070.
 前述の脂肪酸エステルは、部分エステルおよびフルエステルのいずれであってもよいが、より良好な離型性および耐久性の点で部分エステルが好ましく、特にグリセリンモノエステルが好ましい。グリセリンモノエステルは、グリセリンと脂肪酸のモノエステルが主成分であり、好適な脂肪酸としてはステアリン酸、パルチミン酸、ベヘン酸、アラキン酸、モンタン酸、およびラウリン酸等の飽和脂肪酸やオレイン酸、リノール酸、およびソルビン酸等の不飽和脂肪酸が挙げられ、特にステアリン酸、ベヘン酸、およびパルチミン酸のグリセリンモノエステルを主成分としたものが好ましい。尚、かかる脂肪酸は、天然の脂肪酸から合成されたものであり、上述のとおり混合物となる。そのような場合でも、脂肪酸エステル中のグリセリンモノエステルの割合は60重量%以上であることが好ましい。 The fatty acid ester described above may be either a partial ester or a full ester, but a partial ester is preferable in terms of better releasability and durability, and a glycerin monoester is particularly preferable. The glycerin monoester is mainly composed of a monoester of glycerin and a fatty acid, and suitable fatty acids include saturated fatty acids such as stearate, partiminic acid, bechenic acid, araquinic acid, montanic acid, and lauric acid, and oleic acid and linoleic acid. , And unsaturated fatty acids such as sorbic acid, and those containing glycerin monoesters of stearic acid, behenic acid, and partiminic acid as main components are particularly preferable. The fatty acid is synthesized from a natural fatty acid and is a mixture as described above. Even in such a case, the ratio of the glycerin monoester in the fatty acid ester is preferably 60% by weight or more.
 なお、部分エステルは、熱安定性の点ではフルエステルに対して劣る場合が多い。かかる部分エステルの熱安定性を向上するため、部分エステルは、好ましくは20ppm未満、より好ましくは5ppm未満、更に好ましくは1ppm未満のナトリウム金属含有量とすることが好ましい。ナトリウム金属含有量が1ppm未満の脂肪酸部分エステルは、脂肪酸部分エステルを通常の方法で製造した後、分子蒸留などにより精製して製造することができる。 Partial esters are often inferior to full esters in terms of thermal stability. In order to improve the thermal stability of the partial ester, the partial ester preferably has a sodium metal content of less than 20 ppm, more preferably less than 5 ppm, still more preferably less than 1 ppm. The fatty acid partial ester having a sodium metal content of less than 1 ppm can be produced by producing the fatty acid partial ester by a usual method and then purifying it by molecular distillation or the like.
 具体的には、スプレーノズル式脱ガス装置によりガス分および低沸点物質を除去した後に流下膜式蒸留装置を用い蒸留温度120~150℃、真空度0.01~0.03kPaの条件にてグリセリン等の多価アルコール分を除去し、更に遠心式分子蒸留装置を用いて、蒸留温度160~230℃、真空度0.01~0.2Torrの条件にて高純度の脂肪酸部分エステルを留出分として得る方法などがあり、ナトリウム金属は蒸留残渣として除去できる。得られた留出分に対し、繰り返し分子蒸留を行うことにより、更に純度を上げ、ナトリウム金属含有量の更に少ない脂肪酸部分エステルを得ることもできる。また前もって適切な方法にて分子蒸留装置内を十分に洗浄し、また気密性を高めるなどにより外部環境からのナトリウム金属成分の混入を防ぐことも肝要である。かかる脂肪酸エステルは、専門業者(例えば理研ビタミン(株))から入手可能である。 Specifically, after removing gas and low boiling point substances with a spray nozzle type degassing device, glycerin is used under the conditions of a distillation temperature of 120 to 150 ° C. and a vacuum degree of 0.01 to 0.03 kPa using a downflow membrane type distillation device. Distillation of high-purity fatty acid partial ester under the conditions of distillation temperature 160-230 ° C. and vacuum degree 0.01-0.2 Torr after removing polyhydric alcohols such as Sodium metal can be removed as a distillation residue. By repeatedly performing molecular distillation on the obtained distillate, it is possible to further increase the purity and obtain a fatty acid partial ester having a lower sodium metal content. It is also important to thoroughly clean the inside of the molecular distillation apparatus by an appropriate method in advance and to prevent the mixing of sodium metal components from the external environment by improving the airtightness. Such fatty acid esters can be obtained from specialists (for example, Riken Vitamin Co., Ltd.).
 本発明の芳香族ポリカーボネート樹脂組成物には、必要に応じて例えば、他の紫外線吸収剤(ベンゾフェノン系、ベンゾトリアゾール系、ヒドロキシフェニルトリアジン系、環状イミノエステル系、シアノアクリレート系など)、帯電防止剤、着色剤、流動性改良剤、難燃剤、凝集防止剤等を更に添加してもよい。 The aromatic polycarbonate resin composition of the present invention may contain, for example, other ultraviolet absorbers (benzophenone-based, benzotriazole-based, hydroxyphenyltriazine-based, cyclic iminoester-based, cyanoacrylate-based, etc.) and antistatic agents, if necessary. , Colorants, fluidity improvers, flame retardants, anti-aggregation agents and the like may be further added.
 本発明の芳香族ポリカーボネート樹脂組成物の混合及び混練は、通常の熱可塑性樹脂に適用される方法で行えばよく、例えばリボンブレンダー、ヘンシェルミキサー、バンバリーミキサー、ドラムタンブラー、単軸スクリュー押出機、2軸スクリユー押出機、多軸スクリュー押出機等により行うことができる。混練の温度条件は通常、260~320℃が適当である。 Mixing and kneading of the aromatic polycarbonate resin composition of the present invention may be carried out by a method applied to ordinary thermoplastic resins, for example, a ribbon blender, a Henschel mixer, a Banbury mixer, a drum tumbler, a single shaft screw extruder, 2 It can be performed by a shaft screw extruder, a multi-screw screw extruder, or the like. The temperature condition for kneading is usually 260 to 320 ° C.
 本発明の芳香族ポリカーボネート樹脂組成物は、一般的な熱可塑性樹脂の成形方法が適用でき、例えば生産性の点からペレット状樹脂組成物からの射出成形、射出圧縮成形、押出成形が可能である。さらに押出成形されたシート状成形品からの真空成形、圧空成形等により目的の成形品とすることもできる。 A general thermoplastic resin molding method can be applied to the aromatic polycarbonate resin composition of the present invention, and for example, injection molding, injection compression molding, or extrusion molding from a pellet resin composition is possible from the viewpoint of productivity. .. Further, the desired molded product can be obtained by vacuum forming, compressed air forming, or the like from the extruded sheet-shaped molded product.
 本発明の芳香族ポリカーボネート樹脂組成物は、厚み2mmの成形品とした際の350nmの波長の分光光線透過率が5%以下であることが好ましく、3%以下であることがより好ましく、1%以下であることがさらに好ましい。また、380nmの波長の分光光線透過率が30%以上であることが好ましく、40%以上であることがより好ましく、45%以上であることがさらに好ましい。本発明の芳香族ポリカーボネート樹脂組成物から得られる成形品は、紫外線領域の光線透過率が低く、且つ可視光線領域の光線透過率が高いという特徴を有する。 In the aromatic polycarbonate resin composition of the present invention, the spectral light transmittance at a wavelength of 350 nm when made into a molded product having a thickness of 2 mm is preferably 5% or less, more preferably 3% or less, and 1%. The following is more preferable. Further, the spectral light transmittance at a wavelength of 380 nm is preferably 30% or more, more preferably 40% or more, still more preferably 45% or more. The molded product obtained from the aromatic polycarbonate resin composition of the present invention is characterized by having a low light transmittance in the ultraviolet region and a high light transmittance in the visible light region.
 本発明の成形品としては、照明カバー、照明用レンズ等の光学部材が挙げられ、中でも屋外用透明光学部材として好適に用いることができる。 Examples of the molded product of the present invention include optical members such as a lighting cover and a lighting lens, and among them, they can be suitably used as an outdoor transparent optical member.
 以下、本発明を実施例により更に詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
(態様I)
 以下の実施例と比較例で使用した原料は次の通りである。
(芳香族ポリカーボネート樹脂(A))
 A-1:帝人(株)製パンライトL-1225WX(ビスフェノールAを原料としたポリカーボネート樹脂、粘度平均分子量19,700)
(マロン酸エステル系紫外線吸収剤(B))
 B-1:クラリアントジャパン(株)製Hostavin B-CAP
 B-2:クラリアントジャパン(株)製Hostavin PR-25
(他の紫外線吸収剤(比較例))
 b-1:ケミプロ化成(株)製ケミソーブ79(ベンゾトリアゾール系紫外線吸収剤)
 b-2:BASF製Tinuvin234(ベンゾトリアゾール系紫外線吸収剤)
 b-3:BASF製Tinuvin1577ED(トリアジン系紫外線吸収剤)
 b-4:シプロ化成(株)製SEESORB703(ベンゾトリアゾール系紫外線吸収剤)
 b-5:(株)ADEKA製アデカスタブLA-31(ベンゾトリアゾール系紫外線吸収剤)
(熱安定剤(D))
 D-1:クラリアントジャパン(株)製ホスタノックスP-EPQ(リン系熱安定剤)
 D-2:BASF製IRGAFOS168FF(リン系熱安定剤、式(1)の化合物)
 D-3:住友化学(株)社製スミライザーTP‐D(硫黄系熱安定剤、式(2)の化合物)
(離型剤(E))
 E-1:日油(株)製ユニスターH-476-S(脂肪酸エステル)
 実施例と比較例で使用した評価方法は次の通りである。
(1)試験片の作成
 (株)日本製鋼所製J85ELIII成形機を用い、シリンダー温度350℃、金型温度80℃にて試験片(50mm(幅)×90mm(長さ)で厚みが1mm、2mm及び3mmの3段プレート)を作成し、以下測定を実施した。
(2)分光光線透過率(350nm、380nm)
 前記(1)で成形した試験片(厚さ2mm部分)の光線透過率を、アジレント・テクノロジー(株)製のUV-Vis-NIR分光光度計Cary5000を用いて測定した。
(3)色相評価
 前記(1)で成形した試験片の色相をサカタインクスエンジニアリング(株)製の分光光度計CE-7000Aで、C2光源、2度視野の透過法により測定し、該試験片のYIを算出した。YI値は小さいほど好ましい。
(4)成形滞留安定性
 前記(1)で試験片を成形する際、金型より直ちに取り出した試験片と金型に10分間滞留させたのち取り出した試験片の色相をサカタインクスエンジニアリング(株)製の分光光度計CE-7000Aで、D65光源、10度視野の透過法で測定し、該試験片のΔEを算出した。ΔE値は小さいほど好ましい。
(5)耐蒸気性
 前記(1)で成形した試験片をラボ用オートクレーブヤマト科学(株)製SN-510で120℃、24時間の湿熱処理を行い、処理後の試験片の粘度平均分子量と処理前の粘度平均分子量の差(ΔMv×10-3)を算出した。ΔMv値は小さいほど好ましい。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples as long as the gist of the present invention is not exceeded.
(Aspect I)
The raw materials used in the following examples and comparative examples are as follows.
(Aromatic Polycarbonate Resin (A))
A-1: Teijin Limited Panlite L-1225WX (polycarbonate resin made from bisphenol A, viscosity average molecular weight 19,700)
(Malonic acid ester UV absorber (B))
B-1: Hostavin B-CAP manufactured by Clariant Japan Co., Ltd.
B-2: Hostavin PR-25 manufactured by Clariant Japan Co., Ltd.
(Other UV absorbers (comparative example))
b-1: Chemisorb 79 manufactured by Chemipro Kasei Co., Ltd. (benzotriazole-based UV absorber)
b-2: BASF's Tinuvin 234 (benzotriazole-based UV absorber)
b-3: BASF's Tinuvin1577ED (triazine-based UV absorber)
b-4: SEESORB703 (benzotriazole-based UV absorber) manufactured by Cipro Kasei Co., Ltd.
b-5: ADEKA ADEKA STAB LA-31 (benzotriazole-based UV absorber) manufactured by ADEKA Corporation
(Heat stabilizer (D))
D-1: Hostanox P-EPQ (phosphorus heat stabilizer) manufactured by Clariant Japan Co., Ltd.
D-2: BASF IRGAFOS 168FF (phosphorus heat stabilizer, compound of formula (1))
D-3: Sumitomo Chemical Co., Ltd. Sumilyzer TP-D (sulfur-based heat stabilizer, compound of formula (2))
(Release agent (E))
E-1: Unistar H-476-S (fatty acid ester) manufactured by NOF CORPORATION
The evaluation methods used in the examples and comparative examples are as follows.
(1) Preparation of test piece Using a J85ELIII molding machine manufactured by Japan Steel Works, Ltd., the test piece (50 mm (width) x 90 mm (length) with a thickness of 1 mm at a cylinder temperature of 350 ° C and a mold temperature of 80 ° C. 2 mm and 3 mm three-stage plates) were prepared, and the following measurements were carried out.
(2) Spectral ray transmittance (350 nm, 380 nm)
The light transmittance of the test piece (thickness 2 mm portion) molded in (1) above was measured using a UV-Vis-NIR spectrophotometer Cary5000 manufactured by Agilent Technologies.
(3) Hue evaluation The hue of the test piece molded in (1) above was measured with a spectrophotometer CE-7000A manufactured by Sakata Inx Engineering Co., Ltd. using a C2 light source and a two-degree visual field transmission method, and the YI of the test piece was measured. Was calculated. The smaller the YI value, the more preferable.
(4) Molding retention stability When molding the test piece in (1) above, the hues of the test piece taken out immediately from the mold and the test piece taken out after staying in the mold for 10 minutes are manufactured by Sakata Inx Engineering Co., Ltd. The ΔE of the test piece was calculated by measuring with a spectrophotometer CE-7000A of the above, using a transmission method of a D65 light source and a 10-degree field of view. The smaller the ΔE value, the more preferable.
(5) Steam resistance The test piece molded in (1) above was subjected to a wet heat treatment at 120 ° C. for 24 hours with SN-510 manufactured by Autoclave Yamato Scientific Co., Ltd. for laboratories, and the viscosity average molecular weight of the test piece after the treatment was obtained. The difference in viscosity average molecular weight before treatment (ΔMv × 10 -3 ) was calculated. The smaller the ΔMv value, the more preferable.
 なお、粘度平均分子量Mvは、まず次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlに試験片を0.7g切り取り溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(ηSP)=(t-t)/t
[tは塩化メチレンの落下秒数、tは資料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mvを算出したものである。
ηSP/c=[η]+0.45×[η]c (但し[η]は極限粘度)
[η]=1.23×10-4Mv0.83
c=0.7
[実施例A1~A16及び比較例A1~A6]
 表1に示す割合で各原料をブレンドした後、スクリュー径30mmの(株)日本製鋼所製ベント付き二軸押出機TEX30αによりシリンダー温度280℃で溶融混錬し、ストランドカットによりペレット化した。該ペレットを120℃で5時間乾燥した後、前記の条件で評価用試験片を成形し、前記の評価を行い評価結果について表1に示した。
The viscosity average molecular weight Mv was first determined by using an Ostwald viscometer from a solution obtained by cutting and dissolving 0.7 g of a test piece in 100 ml of methylene chloride at 20 ° C. for the specific viscosity (η SP) calculated by the following formula.
Specific viscosity (η SP ) = (t-t 0 ) / t 0
[T 0 is the number of seconds for methylene chloride to fall, and t is the number of seconds for the data solution to fall]
The viscosity average molecular weight Mv was calculated from the obtained specific viscosity (η SP) by the following formula.
η SP / c = [η] +0.45 × [η] 2 c (However, [η] is the limit viscosity)
[Η] = 1.23 × 10 -4 Mv 0.83
c = 0.7
[Examples A1 to A16 and Comparative Examples A1 to A6]
After blending the raw materials at the ratios shown in Table 1, they were melt-kneaded at a cylinder temperature of 280 ° C. using a twin-screw extruder TEX30α with a vent manufactured by Japan Steel Works, Ltd. with a screw diameter of 30 mm, and pelletized by strand cutting. After the pellet was dried at 120 ° C. for 5 hours, an evaluation test piece was formed under the above conditions, the above evaluation was performed, and the evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
(態様II)
 以下の実施例と比較例で使用した原料は次の通りである。
(芳香族ポリカーボネート樹脂(A))
 A-1:帝人(株)製パンライトL-1225WX(ビスフェノールAを原料としたポリカーボネート樹脂、粘度平均分子量19,700)
 A-2:帝人(株)製パンライトL-1225WP(ビスフェノールAを原料としたポリカーボネート樹脂、粘度平均分子量22,500)
 A-3:下記製法により得られた粘度平均分子量25,100の分岐構造を有するポリカーボネート樹脂パウダー
 温度計、攪拌機、還流冷却器付き反応器にイオン交換水2340部、25%水酸化ナトリウム水溶液947部、ハイドロサルファイト0.7部を仕込み、攪拌下にビスフェノールA710部を溶解した(ビスフェノールA溶液)後、塩化メチレン2299部と48.5%水酸化ナトリウム水溶液112部、14%濃度の水酸化ナトリウム水溶液に1,1,1-トリス(4-ヒドロキシフェニル)エタンを25%濃度で溶解した水溶液38.1部(1.00mol%)を加えて、15~25℃でホスゲン354部を約90分かけて吹き込みホスゲン化反応を行った。ホスゲン化終了後、11%濃度のp-tert-ブチルフェノールの塩化メチレン溶液219部と48.5%水酸化ナトリウム水溶液88部を加えて、攪拌を停止し、10分間静置分離後、攪拌を行い乳化させ5分後、ホモミキサー(特殊機化工業(株))で回転数1200rpm、バス回数35回で処理し高乳化ドープを得た。該高乳化ドープを重合槽(攪拌機付き)で、無攪拌条件下、温度35℃で3時間反応し重合を終了した。反応終了後、有機相を分離し、塩化メチレンで希釈して水洗した後塩酸酸性にして水洗し、水相の導電率がイオン交換水と殆ど同じになったところで温水を張ったニーダーに投入して、攪拌しながら塩化メチレンを蒸発させ、ポリカーボネートのパウダーを得た。脱水後、熱風循環式乾燥機により120℃で12時間乾燥し、分岐構造を有するポリカーボネート樹脂パウダーを得た。
(Aspect II)
The raw materials used in the following examples and comparative examples are as follows.
(Aromatic Polycarbonate Resin (A))
A-1: Teijin Limited Panlite L-1225WX (polycarbonate resin made from bisphenol A, viscosity average molecular weight 19,700)
A-2: Teijin Limited Panlite L-1225WP (polycarbonate resin made from bisphenol A, viscosity average molecular weight 22,500)
A-3: Polycarbonate resin powder having a branched structure with a viscosity average molecular weight of 25,100 obtained by the following manufacturing method: 2340 parts of ion-exchanged water and 947 parts of 25% sodium hydroxide aqueous solution in a reactor with a thermometer, agitator and a reflux cooler. , 0.7 part of hydrosulfite was charged, and 710 parts of bisphenol A was dissolved under stirring (bisphenol A solution), then 2299 parts of methylene chloride, 112 parts of 48.5% sodium hydroxide aqueous solution, and 14% concentration of sodium hydroxide. Add 38.1 parts (1.00 mol%) of an aqueous solution prepared by dissolving 1,1,1-tris (4-hydroxyphenyl) ethane at a concentration of 25% to the aqueous solution, and add 354 parts of phosgen at 15 to 25 ° C. for about 90 minutes. The phosgenation reaction was carried out by blowing in. After completion of phosgenation, 219 parts of methylene chloride solution of 11% concentration p-tert-butylphenol and 88 parts of 48.5% sodium hydroxide aqueous solution were added, stirring was stopped, and the mixture was allowed to stand for 10 minutes and then stirred. After 5 minutes of emulsification, it was treated with a homomixer (Special Machinery Chemical Industry Co., Ltd.) at a rotation speed of 1200 rpm and a bath number of 35 times to obtain a highly emulsified dope. The highly emulsified dope was reacted in a polymerization tank (with a stirrer) at a temperature of 35 ° C. for 3 hours under no stirring conditions to complete the polymerization. After completion of the reaction, the organic phase is separated, diluted with methylene chloride, washed with water, acidified with hydrochloric acid and washed with water, and when the conductivity of the aqueous phase becomes almost the same as that of ion-exchanged water, it is poured into a kneader filled with warm water. Methylene chloride was evaporated with stirring to obtain a polycarbonate powder. After dehydration, it was dried at 120 ° C. for 12 hours with a hot air circulation type dryer to obtain a polycarbonate resin powder having a branched structure.
 A-4:下記製法により得られた粘度平均分子量19,400のポリカーボネートーポリジオルガノシロキサン共重合樹脂パウダー
 温度計、撹拌機、還流冷却器付き反応器にイオン交換水21591部、48.5%水酸化ナトリウム水溶液3674部を入れ、上記式〔1〕で表されるカーボネート構成単位を構成するジヒドロキシ化合物(I)として2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)3880部、およびハイドロサルファイト7.6部を溶解した後、塩化メチレン14565部(ジヒドロキシ化合物(I)1モルに対して14モル)を加え、撹拌下22~30℃でホスゲン1900部を60分要して吹き込んだ。次に、48.5%水酸化ナトリウム水溶液1131部、p-tert-ブチルフェノール108部を塩化メチレン800部に溶解した溶液を加え、攪拌しながら上記式〔3〕で表わされるカーボネート構成単位を構成するジメチルシロキサン単位の平均繰返し数が約37であるジヒドロキシアリール末端ポリジオルガノシロキサン(II)として下記式〔8〕で表されるポリジオルガノシロキサン化合物430部を塩化メチレン1600部に溶解した溶液を、ジヒドロキシアリール末端ポリジオルガノシロキサン(II)が二価フェノール(I)の量1モルあたり0.0008モル/minとなる速度で加えて乳化状態とした後、再度激しく撹拌した。かかる攪拌下、反応液が26℃の状態でトリエチルアミン4.3部を加えて温度26~31℃において45分撹拌を続けて反応を終了した。反応終了後、有機相を分離し、塩化メチレンで希釈して水洗した後塩酸酸性にして水洗し、水相の導電率がイオン交換水と殆ど同じになったところで温水を張ったニーダーに投入して、攪拌しながら塩化メチレンを蒸発させ、ポリカーボネート-ポリジオルガノシロキサン共重合樹脂のパウダーを得た。脱水後、熱風循環式乾燥機により120℃で12時間乾燥し、ポリカーボネートーポリジオルガノシロキサン共重合樹脂パウダーを得た。(ポリジオルガノシロキサン成分含有量8.2%、粘度平均分子量19,400)
A-4: Polycarbonate-polydiorganosiloxane copolymer resin powder having a viscosity average molecular weight of 19,400 obtained by the following production method: Ion-exchanged water 21591 parts, 48.5% water in a reactor with a thermometer, agitator and a reflux cooler. Add 3674 parts of an aqueous sodium oxide solution, and add 3,880 parts of 2,2-bis (4-hydroxyphenyl) propane (bisphenol A) as the dihydroxy compound (I) constituting the carbonate constituent unit represented by the above formula [1], and hydro. After dissolving 7.6 parts of sulfite, 14565 parts of methylene chloride (14 mol with respect to 1 mol of dihydroxy compound (I)) was added, and 1900 parts of phosgene was blown at 22 to 30 ° C. over 60 minutes with stirring. .. Next, a solution prepared by dissolving 1131 parts of a 48.5% sodium hydroxide aqueous solution and 108 parts of p-tert-butylphenol in 800 parts of methylene chloride is added to form a carbonate constituent unit represented by the above formula [3] while stirring. A solution prepared by dissolving 430 parts of a polydiorganosiloxane compound represented by the following formula [8] in 1600 parts of methylene chloride as a dihydroxyaryl-terminated polydiorganosiloxane (II) having an average number of repetitions of about 37 in dimethylsiloxane units is prepared as dihydroxyaryl. The terminal polydiorganosiloxane (II) was added at a rate of 0.0008 mol / min per 1 mol of the divalent phenol (I) to bring it into an emulsified state, and then the mixture was vigorously stirred again. Under such stirring, 4.3 parts of triethylamine was added while the reaction solution was at 26 ° C., and stirring was continued at a temperature of 26 to 31 ° C. for 45 minutes to complete the reaction. After completion of the reaction, the organic phase is separated, diluted with methylene chloride, washed with water, acidified with hydrochloric acid and washed with water, and when the conductivity of the aqueous phase becomes almost the same as that of ion-exchanged water, it is poured into a kneader filled with warm water. Then, methylene chloride was evaporated with stirring to obtain a powder of a polycarbonate-polydiorganosiloxane copolymer resin. After dehydration, it was dried at 120 ° C. for 12 hours with a hot air circulation type dryer to obtain a polycarbonate-polydiorganosiloxane copolymer resin powder. (Polydiorganosiloxane component content 8.2%, viscosity average molecular weight 19,400)
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(光拡散剤(C))
 C-1:ビーズ状架橋アクリル粒子(積水化成品工業(株)製:MBX-5(商品名)、平均粒子径5μm)
 C-2:ビーズ状架橋シリコーン(モメンティブパフォーマンスマテリアルズジャパン合同会社(株)製:TSR9002(商品名)、平均粒子径2μm)
(マロン酸エステル系紫外線吸収剤(B))
 B-1:クラリアントジャパン(株)製Hostavin B-CAP
 B-2:クラリアントジャパン(株)製Hostavin PR-25
(他の紫外線吸収剤(比較例))
 b-1:ケミプロ化成(株)製ケミソーブ79(ベンゾトリアゾール系紫外線吸収剤)
 b-2:BASF製Tinuvin234(ベンゾトリアゾール系紫外線吸収剤)
 b-3:BASF製Tinuvin1577ED(トリアジン系紫外線吸収剤)
 b-4:シプロ化成(株)製SEESORB703(ベンゾトリアゾール系紫外線吸収剤)
 b-5:(株)ADEKA製アデカスタブLA-31(ベンゾトリアゾール系紫外線吸収剤)
(熱安定剤(D))
 D-1:クラリアントジャパン(株)製ホスタノックスP-EPQ(リン系熱安定剤)
 D-2:BASF製IRGAFOS168FF(リン系熱安定剤、式(1)の化合物)
 D-3:住友化学(株)社製スミライザーTP‐D(硫黄系熱安定剤、式(2)の化合物)
(離型剤(E))
 E-1:日油(株)製ユニスターH-476-S(脂肪酸エステル)
(その他成分)
 F-114P:パーフルオロブタンスルホン酸カリウム塩(大日本インキ化学(株)製:メガファックF-114P(商品名))
 SN3307::ポリテトラフルオロエチレン粒子とスチレン-アクリル系共重合体からなる混合物(Shine Polymer 製:SN3307(商品名))
(1)試験片の作成
 射出成形機[住友重機械工業(株)SG150U・S-M IV]を用いて、成形温度280℃、金型温度80℃にて幅50mm、長さ90mm、厚みがゲート側から3.0mm(長さ20mm)、2.0mm(長さ45mm)、1.0mm(長さ25mm)である3段型プレートを成形した。
(2)全光線透過率、ヘーズ
 前記(1)で成形した試験片(厚さ2mm部分)の全光線透過率およびヘーズを(株)村上色彩技術研究所製 反射・透過率計HR-100を用いJIS-K 7136に従い測定した。
(3)分光光線透過率(350nm、380nm)
 前記(1)で成形した試験片(厚さ2mm部分)の光線透過率を、アジレント・テクノロジー(株)製のUV-Vis-NIR分光光度計Cary5000を用いて測定した。350nmの分光光線透過率が低く、380nmの分光光線透過率が高くなると、色相に優れる。
(4)耐候性
 前記(1)で成形した試験片をブラックパネル温度63℃、湿度50%、放射照度0.35W/m(340nm)、に設定した東洋精機製作所製アトラスCi4000に試験片の片面を照射するように設置し、500時間後に取り出した。取り出した試験片をサカタインクスエンジニアリング(株)製の分光光度計CE-7000Aで、D65光源、10度視野の透過法で測定し、該試験片のΔEを算出した。ΔE値は小さいほど好ましい。
(5)耐蒸気性
 前記(1)で成形した試験片をラボ用オートクレーブヤマト科学(株)製SN-510で120℃、24時間の湿熱処理を行い、処理後の試験片の粘度平均分子量と処理前の粘度平均分子量の差(ΔMv×10-3)を算出した。ΔMv値は小さいほど好ましい。
(Light diffuser (C))
C-1: Bead-shaped crosslinked acrylic particles (manufactured by Sekisui Plastics Co., Ltd .: MBX-5 (trade name), average particle diameter 5 μm)
C-2: Beaded cross-linked silicone (manufactured by Momentive Performance Materials Japan GK: TSR9002 (trade name), average particle size 2 μm)
(Malonic acid ester UV absorber (B))
B-1: Hostavin B-CAP manufactured by Clariant Japan Co., Ltd.
B-2: Hostavin PR-25 manufactured by Clariant Japan Co., Ltd.
(Other UV absorbers (comparative example))
b-1: Chemisorb 79 manufactured by Chemipro Kasei Co., Ltd. (benzotriazole-based UV absorber)
b-2: BASF's Tinuvin 234 (benzotriazole-based UV absorber)
b-3: BASF's Tinuvin1577ED (triazine-based UV absorber)
b-4: SEESORB703 (benzotriazole-based UV absorber) manufactured by Cipro Kasei Co., Ltd.
b-5: ADEKA ADEKA STAB LA-31 (benzotriazole-based UV absorber) manufactured by ADEKA Corporation
(Heat stabilizer (D))
D-1: Hostanox P-EPQ (phosphorus heat stabilizer) manufactured by Clariant Japan Co., Ltd.
D-2: BASF IRGAFOS 168FF (phosphorus heat stabilizer, compound of formula (1))
D-3: Sumitomo Chemical Co., Ltd. Sumilyzer TP-D (sulfur-based heat stabilizer, compound of formula (2))
(Release agent (E))
E-1: Unistar H-476-S (fatty acid ester) manufactured by NOF CORPORATION
(Other ingredients)
F-114P: Potassium perfluorobutane sulfonic acid salt (manufactured by Dainippon Ink and Chemicals Co., Ltd .: Megafuck F-114P (trade name))
SN3307 :: Mixture consisting of polytetrafluoroethylene particles and a styrene-acrylic copolymer (manufactured by Shine Polymer: SN3307 (trade name))
(1) Preparation of test piece Using an injection molding machine [Sumitomo Heavy Industries, Ltd. SG150U / S-MIV], the molding temperature is 280 ° C, the mold temperature is 80 ° C, the width is 50 mm, the length is 90 mm, and the thickness is A three-stage plate having a length of 3.0 mm (length 20 mm), 2.0 mm (length 45 mm), and 1.0 mm (length 25 mm) was formed from the gate side.
(2) Total light transmittance, haze For the total light transmittance and haze of the test piece (thickness 2 mm portion) molded in (1) above, use the reflection / transmittance meter HR-100 manufactured by Murakami Color Technology Research Institute Co., Ltd. It was measured according to JIS-K 7136 used.
(3) Spectral ray transmittance (350 nm, 380 nm)
The light transmittance of the test piece (thickness 2 mm portion) molded in (1) above was measured using a UV-Vis-NIR spectrophotometer Cary5000 manufactured by Agilent Technologies. When the spectral light transmittance at 350 nm is low and the spectral light transmittance at 380 nm is high, the hue is excellent.
(4) Weather resistance The test piece molded in (1) above was placed on an Atlas Ci4000 manufactured by Toyo Seiki Seisakusho, where the black panel temperature was 63 ° C, the humidity was 50%, and the irradiance was 0.35 W / m 2 (340 nm). It was installed so as to irradiate one side, and was taken out after 500 hours. The taken-out test piece was measured with a spectrophotometer CE-7000A manufactured by Sakata Inx Engineering Co., Ltd. using a D65 light source and a transmission method with a 10-degree field of view, and the ΔE of the test piece was calculated. The smaller the ΔE value, the more preferable.
(5) Steam resistance The test piece molded in (1) above was subjected to a wet heat treatment at 120 ° C. for 24 hours with SN-510 manufactured by Autoclave Yamato Scientific Co., Ltd. for laboratories, and the viscosity average molecular weight of the test piece after the treatment was obtained. The difference in viscosity average molecular weight before treatment (ΔMv × 10 -3 ) was calculated. The smaller the ΔMv value, the more preferable.
 なお、粘度平均分子量Mvは、まず次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlに試験片を0.7g切り取り溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(ηSP)=(t-t)/t
[tは塩化メチレンの落下秒数、tは資料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mvを算出したものである。
ηSP/c=[η]+0.45×[η]c (但し[η]は極限粘度)
[η]=1.23×10-4Mv0.83
c=0.7
[実施例B1~B19および比較例B1~B6]
 表1に示す割合で各原料をブレンドした後、スクリュー径30mmの(株)日本製鋼所製ベント付き二軸押出機TEX30αによりシリンダー温度280℃で溶融混錬し、ストランドカットによりペレット化した。該ペレットを120℃で5時間乾燥した後、前記の条件で評価用試験片を成形し、前記の評価を行い評価結果について表1に示した。
The viscosity average molecular weight Mv was first determined by using an Ostwald viscometer from a solution obtained by cutting and dissolving 0.7 g of a test piece in 100 ml of methylene chloride at 20 ° C. for the specific viscosity (η SP) calculated by the following formula.
Specific viscosity (η SP ) = (t-t 0 ) / t 0
[T 0 is the number of seconds for methylene chloride to fall, and t is the number of seconds for the data solution to fall]
The viscosity average molecular weight Mv was calculated from the obtained specific viscosity (η SP) by the following formula.
η SP / c = [η] +0.45 × [η] 2 c (However, [η] is the limit viscosity)
[Η] = 1.23 × 10 -4 Mv 0.83
c = 0.7
[Examples B1 to B19 and Comparative Examples B1 to B6]
After blending the raw materials at the ratios shown in Table 1, they were melt-kneaded at a cylinder temperature of 280 ° C. using a twin-screw extruder TEX30α with a vent manufactured by Japan Steel Works, Ltd. with a screw diameter of 30 mm, and pelletized by strand cutting. After the pellet was dried at 120 ° C. for 5 hours, an evaluation test piece was formed under the above conditions, the above evaluation was performed, and the evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 本発明の芳香族ポリカーボネート樹脂組成物は、良好な耐候性、色相、成形滞留安定性および耐蒸気性に優れ、屋外用光学透明部材として有用である。 The aromatic polycarbonate resin composition of the present invention is excellent in good weather resistance, hue, molding retention stability and vapor resistance, and is useful as an outdoor optical transparent member.

Claims (7)

  1.  芳香族ポリカーボネート樹脂(A)100質量部に対して、マロン酸エステル系紫外線吸収剤(B)を0.15~5.0質量部含有した樹脂組成物。 A resin composition containing 0.15 to 5.0 parts by mass of a malonic acid ester-based ultraviolet absorber (B) with respect to 100 parts by mass of an aromatic polycarbonate resin (A).
  2.  芳香族ポリカーボネート樹脂(A)100質量部に対して、さらに光拡散剤(C)を0.05~10.0質量部含有した請求項1に記載の樹脂組成物。 The resin composition according to claim 1, further containing 0.05 to 10.0 parts by mass of the light diffusing agent (C) with respect to 100 parts by mass of the aromatic polycarbonate resin (A).
  3.  マロン酸エステル系紫外線吸収剤(B)を0.15~2.0質量部含有し、且つ、光拡散剤の量(c)に対するマロン酸エステル系紫外線吸収剤の量(b)の割合b/cが0.2以上である請求項2に記載の樹脂組成物。 The ratio of the amount (b) of the malonic acid ester-based ultraviolet absorber (b) to the amount (c) of the malonic acid ester-based ultraviolet absorber (B) containing 0.15 to 2.0 parts by mass of the malonic acid ester-based ultraviolet absorber (B) b / The resin composition according to claim 2, wherein c is 0.2 or more.
  4.  芳香族ポリカーボネート樹脂(A)100質量部に対して、さらに熱安定剤(D)を0.01~0.1質量部含有した請求項1~3のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, further containing 0.01 to 0.1 parts by mass of the heat stabilizer (D) with respect to 100 parts by mass of the aromatic polycarbonate resin (A).
  5.  熱安定剤(D)が下記式(X)で示されるリン系安定剤および/または下記式(Y)で示される硫黄系安定剤である請求項4に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (式(Y)中のRはドデシル基を示す。)
    The resin composition according to claim 4, wherein the heat stabilizer (D) is a phosphorus-based stabilizer represented by the following formula (X) and / or a sulfur-based stabilizer represented by the following formula (Y).
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (R in formula (Y) represents a dodecyl group.)
  6.  芳香族ポリカーボネート樹脂(A)100質量部に対して、さらに離型剤(E)を0.1~0.5質量部含有した請求項1~5のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 5, further containing 0.1 to 0.5 parts by mass of the release agent (E) with respect to 100 parts by mass of the aromatic polycarbonate resin (A).
  7.  請求項1~6のいずれか1項に記載の樹脂組成物から形成された成形品。 A molded product formed from the resin composition according to any one of claims 1 to 6.
PCT/JP2021/017866 2020-05-19 2021-05-11 Aromatic polycarbonate resin composition and molded article thereof WO2021235272A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-087323 2020-05-19
JP2020087323A JP2021181528A (en) 2020-05-19 2020-05-19 Aromatic polycarbonate resin composition and molded product thereof
JP2021014984A JP2022118443A (en) 2021-02-02 2021-02-02 Light-diffusing resin composition and compact thereof
JP2021-014984 2021-02-02

Publications (1)

Publication Number Publication Date
WO2021235272A1 true WO2021235272A1 (en) 2021-11-25

Family

ID=78707839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017866 WO2021235272A1 (en) 2020-05-19 2021-05-11 Aromatic polycarbonate resin composition and molded article thereof

Country Status (1)

Country Link
WO (1) WO2021235272A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063122A (en) * 2004-08-25 2006-03-09 Mitsubishi Engineering Plastics Corp Light-diffusing resin composition and light-diffusing member obtained using the same
JP2006083230A (en) * 2004-09-14 2006-03-30 Mitsubishi Engineering Plastics Corp Aromatic polycarbonate resin composition and its molded article
WO2006043618A1 (en) * 2004-10-22 2006-04-27 Idemitsu Kosan Co., Ltd. Polycarbonate light diffusing resin composition
JP2006249157A (en) * 2005-03-09 2006-09-21 Mitsubishi Engineering Plastics Corp Light diffusing resin composition and light diffusing member using the same
JP2006257299A (en) * 2005-03-17 2006-09-28 Idemitsu Kosan Co Ltd Light-diffusing resin composition
JP2006342246A (en) * 2005-06-08 2006-12-21 Idemitsu Kosan Co Ltd Light-diffusing polycarbonate-based resin composition and light-diffusing plate using the same resin composition
JP2007106943A (en) * 2005-10-17 2007-04-26 Mitsubishi Chemicals Corp Light-diffusing resin composition and light-diffusing member using the same
JP2007332327A (en) * 2006-06-19 2007-12-27 Idemitsu Kosan Co Ltd Polycarbonate-based light diffusible resin composition and light-diffusing plate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063122A (en) * 2004-08-25 2006-03-09 Mitsubishi Engineering Plastics Corp Light-diffusing resin composition and light-diffusing member obtained using the same
JP2006083230A (en) * 2004-09-14 2006-03-30 Mitsubishi Engineering Plastics Corp Aromatic polycarbonate resin composition and its molded article
WO2006043618A1 (en) * 2004-10-22 2006-04-27 Idemitsu Kosan Co., Ltd. Polycarbonate light diffusing resin composition
JP2006249157A (en) * 2005-03-09 2006-09-21 Mitsubishi Engineering Plastics Corp Light diffusing resin composition and light diffusing member using the same
JP2006257299A (en) * 2005-03-17 2006-09-28 Idemitsu Kosan Co Ltd Light-diffusing resin composition
JP2006342246A (en) * 2005-06-08 2006-12-21 Idemitsu Kosan Co Ltd Light-diffusing polycarbonate-based resin composition and light-diffusing plate using the same resin composition
JP2007106943A (en) * 2005-10-17 2007-04-26 Mitsubishi Chemicals Corp Light-diffusing resin composition and light-diffusing member using the same
JP2007332327A (en) * 2006-06-19 2007-12-27 Idemitsu Kosan Co Ltd Polycarbonate-based light diffusible resin composition and light-diffusing plate

Similar Documents

Publication Publication Date Title
JP5073226B2 (en) Light diffusing resin composition and light diffusing plate using the same
TWI448508B (en) A polycarbonate light-diffusing resin composition and a light diffusion plate
TWI473843B (en) Polycarbonate-polydiorganosiloxane copolymer
JP4914027B2 (en) Light diffusing polycarbonate resin composition and light diffusing plate using the resin composition
JP5663659B2 (en) Polycarbonate resin composition for light guide, and light guide and surface light source comprising the same
CN100393803C (en) Polycarbonate resin composition and optical member
JP5847292B2 (en) Light diffusing resin composition
EP2801589A1 (en) Resin composition having light guiding properties, and light-guiding molded article and planar light source made from same
JP2002060609A (en) Aromatic polycarbonate resin composition and molded article
JP2014062203A (en) Aromatic polycarbonate resin composition and molded article using the resin composition
JP4859434B2 (en) Light diffusing resin composition and light diffusing member using the same
WO2021235272A1 (en) Aromatic polycarbonate resin composition and molded article thereof
JP6483340B2 (en) Polycarbonate resin composition having light guide performance and light guide comprising the same
CN112689661A (en) Polycarbonate resin composition
JP2012014195A (en) Light diffusing member using light diffusing resin composition
JP2022118443A (en) Light-diffusing resin composition and compact thereof
JP2006083230A (en) Aromatic polycarbonate resin composition and its molded article
JP2014185261A (en) Flame-retardant and light-diffusing polycarbonate resin composition
JP4946089B2 (en) Light diffusing resin composition and light diffusing member
JP2005015716A (en) Polycarbonate resin composition and molded article thereof
JP6918536B2 (en) Polycarbonate resin composition
WO2024062815A1 (en) Aromatic polycarbonate resin composition and molded article thereof
JP2020111691A (en) Fluorescent resin composition
WO2023145197A1 (en) Aromatic polycarbonate resin composition and molded article thereof
CN117120548A (en) Polycarbonate resin composition and molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21808641

Country of ref document: EP

Kind code of ref document: A1