WO2023145197A1 - Aromatic polycarbonate resin composition and molded article thereof - Google Patents

Aromatic polycarbonate resin composition and molded article thereof Download PDF

Info

Publication number
WO2023145197A1
WO2023145197A1 PCT/JP2022/042176 JP2022042176W WO2023145197A1 WO 2023145197 A1 WO2023145197 A1 WO 2023145197A1 JP 2022042176 W JP2022042176 W JP 2022042176W WO 2023145197 A1 WO2023145197 A1 WO 2023145197A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
resin composition
weight
bis
hydroxyphenyl
Prior art date
Application number
PCT/JP2022/042176
Other languages
French (fr)
Japanese (ja)
Inventor
晋輔 磯江
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Publication of WO2023145197A1 publication Critical patent/WO2023145197A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • C08K5/3475Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present invention relates to an aromatic polycarbonate resin composition which is excellent in heat stability and resistance to moist heat, has wavelength-selective absorption characteristics in molded articles formed from it, and has excellent heat stability and light stability of absorption characteristics. .
  • Infrared sensing systems play an important role in autonomous driving technology.
  • Sensing systems using infrared rays include, for example, driver monitoring systems that monitor drivers and LiDARs that detect other vehicles and buildings, and near infrared rays in the vicinity of 800 to 1000 nm are generally used for sensing. .
  • driver monitoring systems that monitor drivers and LiDARs that detect other vehicles and buildings
  • near infrared rays in the vicinity of 800 to 1000 nm are generally used for sensing.
  • visible light to near-infrared light becomes noise, so a cover material that transmits the wavelength range used for sensing and cuts the transmission of the wavelength range below that is required.
  • cover material glass or resin is used, and acrylic resin, polycarbonate resin, etc., which are transparent materials, are generally used as the resin, but polycarbonate resin has good transparency and is excellent in impact resistance and heat resistance.
  • polycarbonate resin has good transparency and is excellent in impact resistance and heat resistance.
  • the cover material of the infrared sensor used in automatic driving technology is molded with a thin thickness of about 1 to 3 mm, polycarbonate resin with a relatively high flow viscosity average molecular weight of 24,000 or less is preferred.
  • the molding temperature is also as high as 300-340°C. Therefore, thermal stability of wavelength characteristics in high-temperature molding is very important.
  • the resin is in an environment where it is constantly exposed to light, and it is important that the wavelength characteristics continue to be stable even when exposed to light for a long period of time. In other words, in order to realize a safe autonomous driving society, infrared sensor cover materials must have thermal and light absorption properties.
  • An object of the present invention is to provide an aromatic polycarbonate resin composition which is excellent in thermal stability and resistance to moisture and heat, has wavelength-selective absorption properties in molded articles formed from it, and is excellent in thermal stability and light stability of absorption properties. It is to provide a product and its molded product.
  • the above item 1 or 2 wherein the maximum value of light transmittance in the thickness direction of a molded product molded to a thickness of 3 mm at a wavelength from 400 nm to the maximum absorption of the B2 component is 5.0% or less.
  • component D benzotriazole-based ultraviolet absorber
  • the resin composition of the present invention has excellent thermal stability and resistance to moist heat, and molded articles made from it have wavelength-selective absorption properties.
  • the infrared light source used for the infrared sensor of the automatic driving system has multiple standards such as 805 nm, 850 nm, 905 nm, and 940 nm, and the requirements for wavelength characteristics differ depending on the vehicle manufacturer. can meet the demand for Furthermore, since the molded article made of the resin composition of the present invention is excellent in the thermal stability and light stability of the absorption characteristics, it is stable under all molding conditions and even under conditions where it is exposed to light for a long period of time. Stable.
  • the resin composition of the present invention is particularly useful as a cover material for covering infrared sensors, especially covering infrared sensors used in driver monitoring systems for monitoring drivers and LiDAR for detecting other vehicles and buildings. It is useful as a material and can contribute to future safe autonomous driving systems.
  • the aromatic polycarbonate resin used as component A in the present invention is obtained by reacting a dihydric phenol and a carbonate precursor.
  • reaction methods include an interfacial polymerization method, a melt transesterification method, a solid-phase transesterification method of a carbonate prepolymer, and a ring-opening polymerization method of a cyclic carbonate compound.
  • dihydric phenols used herein include hydroquinone, resorcinol, 4,4′-biphenol, 1,1-bis(4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxyphenyl ) propane (commonly known as bisphenol A), 2,2-bis(4-hydroxy-3-methylphenyl)propane, 2,2-bis(4-hydroxyphenyl)butane, 1,1-bis(4-hydroxyphenyl)- 1-phenylethane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 2,2-bis(4-hydroxyphenyl) Pentane, 4,4'-(p-phenylenediisopropylidene)diphenol, 4,4'-(m-phenylenediisopropylidene)diphenol, 1,1-bis(4-hydroxyphenyl)-4-isopropylcyclo
  • BPM 4,4′-(m-phenylenediisopropylidene)diphenol
  • Bis-TMC 1,1-bis(4-hydroxy phenyl)cyclohexane
  • Bis-TMC 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane
  • BCF 9,9-bis(4-hydroxyphenyl)
  • BCF polycarbonate
  • dihydric phenols other than BPA are preferably used in an amount of 5 mol % or more, particularly 10 mol % or more, of the total dihydric phenol components constituting the polycarbonate.
  • component A constituting the resin composition is the following copolymerized polycarbonate (1) to (3).
  • BPM is 20 to 80 mol% (more preferably 40 to 75 mol%, still more preferably 45 to 65 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate
  • BCF is 20 to 80 mol % (more preferably 25 to 60 mol %, still more preferably 35 to 55 mol %).
  • BPA is 10 to 95 mol% (more preferably 50 to 90 mol%, still more preferably 60 to 85 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate
  • BCF is 5 to 90 mol % (more preferably 10 to 50 mol %, still more preferably 15 to 40 mol %)
  • BPM is 20 to 80 mol% (more preferably 40 to 75 mol%, still more preferably 45 to 65 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and Bis - A copolymerized polycarbonate in which the TMC is 20-80 mol% (more preferably 25-60 mol%, still more preferably 35-55 mol%).
  • These special polycarbonates may be used singly or in combination of two or more. Moreover, these can also be used by mixing with a widely used bisphenol A type polycarbonate.
  • the water absorption rate of polycarbonate is a value obtained by measuring the water content after immersing a disk-shaped test piece with a diameter of 45 mm and a thickness of 3.0 mm in water at 23 ° C. for 24 hours in accordance with ISO62-1980.
  • Tg glass transition temperature
  • DSC differential scanning calorimeter
  • Carbonate precursors include carbonyl halides, diesters of carbonic acid, haloformates, and the like, and specific examples include phosgene, diphenyl carbonate, and dihaloformates of dihydric phenols.
  • the polycarbonate resin of the present invention is a branched polycarbonate resin obtained by copolymerizing a trifunctional or higher polyfunctional aromatic compound, and a polyester carbonate resin obtained by copolymerizing an aromatic or aliphatic (including alicyclic) bifunctional carboxylic acid.
  • copolymerized polycarbonate resins copolymerized with difunctional alcohols (including alicyclic), and polyester carbonate resins copolymerized with such difunctional carboxylic acids and difunctional alcohols.
  • the mixture which mixed 2 or more types of obtained polycarbonate resin may be sufficient.
  • the branched polycarbonate resin can impart anti-drip performance and the like to the resin composition of the present invention.
  • trifunctional or higher polyfunctional aromatic compounds used in such branched polycarbonate resins include phloroglucine, phloroglucide, or 4,6-dimethyl-2,4,6-tris(4-hydroxydiphenyl)heptene-2,2 ,4,6-trimethyl-2,4,6-tris(4-hydroxyphenyl)heptane, 1,3,5-tris(4-hydroxyphenyl)benzene, 1,1,1-tris(4-hydroxyphenyl) ethane, 1,1,1-tris(3,5-dimethyl-4-hydroxyphenyl)ethane, 2,6-bis(2-hydroxy-5-methylbenzyl)-4-methylphenol, 4- ⁇ 4-[ trisphenols such as 1,1-bis(4-hydroxyphenyl)ethyl]benzene ⁇ - ⁇ , ⁇ -dimethylbenzylphenol, tetra(4
  • Structural units derived from a polyfunctional aromatic compound in the branched polycarbonate are preferably 0.01 to 1 mol %, more preferably 0.05 to 0.9 mol %, still more preferably 0.05 to 0.8 mol %.
  • branched structural units may occur as a side reaction. It is preferably 0.001 to 1 mol %, more preferably 0.005 to 0.9 mol %, still more preferably 0.01 to 0.8 mol %.
  • the ratio of such branched structures can be calculated by 1 H-NMR measurement.
  • the aliphatic bifunctional carboxylic acid is preferably ⁇ , ⁇ -dicarboxylic acid.
  • aliphatic bifunctional carboxylic acids include linear saturated aliphatic dicarboxylic acids such as sebacic acid (decanedioic acid), dodecanedioic acid, tetradecanedioic acid, octadecanedioic acid, icosanedioic acid, and cyclohexanedicarboxylic acid.
  • Alicyclic dicarboxylic acids such as are preferably exemplified.
  • Alicyclic diols are more suitable as bifunctional alcohols, and examples thereof include cyclohexanedimethanol, cyclohexanediol, and tricyclodecanedimethanol.
  • Reaction formats such as the interfacial polymerization method, the melt transesterification method, the carbonate prepolymer solid-phase transesterification method, and the ring-opening polymerization method of a cyclic carbonate compound, which are the methods for producing the aromatic polycarbonate resin of the present invention, can be found in various literatures and patents. This method is well known in publications and the like.
  • the melt volume rate (300° C., 1.2 kg load) of the aromatic polycarbonate resin in the present invention is not particularly limited, but is preferably 1 to 60 cm 3 /10 min, more preferably 3 to 30 cm 3 /10 min, and even more preferably. is 5 to 20 cm 3 /10 min.
  • a resin composition obtained from an aromatic polycarbonate resin having a melt volume rate of less than 1 cm 3 /10 min may be inferior in versatility due to poor fluidity during injection molding.
  • aromatic polycarbonate resins with a melt volume rate exceeding 60 cm 3 /10 min may not provide good mechanical properties.
  • the melt volume rate is also called "MVR" and is measured according to ISO1133.
  • the viscosity average molecular weight (M) of the aromatic polycarbonate resin in the present invention is preferably 24,000 or less, more preferably 22,500 or less, still more preferably 20,000 or less. If the viscosity-average molecular weight exceeds 24,000, the fluidity is poor. Therefore, in order to obtain a thin-walled molded product with a thickness of 1 to 3 mm, which is used as a sensor cover material, it is necessary to set the molding conditions to high temperatures. It may be prone to thermal decomposition. Although the lower limit of the viscosity average molecular weight is not particularly limited, it is preferably 14,000 or more from the viewpoint of impact resistance.
  • the viscosity-average molecular weight M is calculated from the determined specific viscosity ( ⁇ SP ) by the following formula.
  • a polycarbonate-polydiorganosiloxane copolymer resin can also be used as the aromatic polycarbonate resin (component A) of the present invention.
  • a polycarbonate-polydiorganosiloxane copolymer resin is a copolymer prepared by copolymerizing a dihydric phenol represented by the following general formula (1) and a hydroxyaryl-terminated polydiorganosiloxane represented by the following general formula (3). It is preferably a polymeric resin.
  • R 1 and R 2 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, cycloalkyl group having 20 carbon atoms, cycloalkoxy group having 6 to 20 carbon atoms, alkenyl group having 2 to 10 carbon atoms, aryl group having 6 to 14 carbon atoms, aryloxy group having 6 to 14 carbon atoms, carbon atom represents a group selected from the group consisting of an aralkyl group having 7 to 20 carbon atoms, an aralkyloxy group having 7 to 20 carbon atoms, a nitro group, an aldehyde group, a cyano group and a carboxy group; e and f are each an integer of 1 to 4, and W is at least one group selected from the group consisting of a single bond or a group represented by the following general formula (2). ]
  • R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 are each independently a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, a carbon represents a group selected from the group consisting of an aryl group having 6 to 14 atoms and an aralkyl group having 7 to 20 carbon atoms;
  • R 19 and R 20 each independently represents a hydrogen atom, a halogen atom, or a an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a cycloalkyl group having 6 to 20 carbon atoms, a cycloalkoxy group having 6 to 20 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and 6 carbon atoms.
  • an aryl group of up to 14, an aryloxy group of 6 to 10 carbon atoms, an aralkyl group of 7 to 20 carbon atoms, an aralkyloxy group of 7 to 20 carbon atoms, a nitro group, an aldehyde group, a cyano group and a carboxy group represents a group selected from the group consisting of; when there are more than one, they may be the same or different; g is an integer of 1-10; h is an integer of 4-7; ]
  • R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or a substituted group having 6 to 12 carbon atoms. or an unsubstituted aryl group
  • R 9 and R 10 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms
  • p is a natural number.
  • q is 0 or a natural number
  • p+q is a natural number from 10 to 300.
  • X is a divalent aliphatic group having 2 to 8 carbon atoms.
  • Examples of the dihydric phenol (I) represented by the general formula (1) include 4,4′-dihydroxybiphenyl, bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)ethane, 1,1-bis(4-hydroxyphenyl)-1-phenylethane, 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(4-hydroxy-3-methylphenyl)propane, 1,1 -bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 2,2-bis(4-hydroxy-3,3'-biphenyl)propane, 2,2-bis(4-hydroxy-3-isopropyl phenyl)propane, 2,2-bis(3-t-butyl-4-hydroxyphenyl)propane, 2,2-bis(4-hydroxyphenyl)butane, 2,2-bis(4-hydroxyphenyl)octane, 2 , 2-bis(3-bromo-4-hydroxy
  • hydroxyaryl-terminated polydiorganosiloxane represented by the general formula (3) for example, the following compounds are preferably used.
  • Hydroxyaryl-terminated polydiorganosiloxane (II) is selected from phenols having olefinically unsaturated carbon-carbon bonds, preferably vinylphenol, 2-allylphenol, isopropenylphenol, 2-methoxy-4-allylphenol. It is easily produced by subjecting the end of a polysiloxane chain having a degree of polymerization to a hydrosilylation reaction.
  • (2-allylphenol)-terminated polydiorganosiloxane and (2-methoxy-4-allylphenol)-terminated polydiorganosiloxane are preferred, and (2-allylphenol)-terminated polydimethylsiloxane, (2-methoxy-4 -allylphenol) terminated polydimethylsiloxane is preferred.
  • the hydroxyaryl-terminated polydiorganosiloxane (II) preferably has a molecular weight distribution (Mw/Mn) of 3 or less.
  • the molecular weight distribution (Mw/Mn) is more preferably 2.5 or less, still more preferably 2 or less, in order to achieve even better low-outgassing properties and low-temperature impact resistance during high-temperature molding. If the upper limit of the preferred range is exceeded, a large amount of outgas is generated during high-temperature molding, and the low-temperature impact resistance may be poor.
  • the diorganosiloxane polymerization degree (p+q) of the hydroxyaryl-terminated polydiorganosiloxane (II) is suitably 10 to 300 in order to achieve high impact resistance.
  • Such a diorganosiloxane polymerization degree (p+q) is preferably 10-200, more preferably 12-150, still more preferably 14-100. Below the lower limit of the preferred range, impact resistance characteristic of the polycarbonate-polydiorganosiloxane copolymer is not effectively exhibited, and above the upper limit of the preferred range, poor appearance appears.
  • the polydiorganosiloxane content in the total weight of the polycarbonate-polydiorganosiloxane copolymer resin is preferably 0.1 to 50% by weight.
  • the content of such polydiorganosiloxane component is more preferably 0.5 to 30% by weight, more preferably 1 to 20% by weight.
  • Above the lower limit of the preferred range the impact resistance and flame retardancy are excellent, and below the upper limit of the preferred range, a stable appearance that is less susceptible to molding conditions is likely to be obtained.
  • Such polydiorganosiloxane polymerization degree and polydiorganosiloxane content can be calculated by 1 H-NMR measurement.
  • hydroxyaryl-terminated polydiorganosiloxane (II) may be used, or two or more types may be used.
  • a mixed solution containing an oligomer having a terminal chloroformate group is prepared in advance by reacting a dihydric phenol (I) and a carbonate-forming compound in a mixed solution of a water-insoluble organic solvent and an alkaline aqueous solution. do.
  • the whole amount of dihydric phenol (I) used in the method of the present invention may be converted into an oligomer at one time, or part of it may be used as a post-addition monomer to form an interface in the latter stage. It may be added as a reaction raw material to the polycondensation reaction.
  • the post-addition monomer is added in order to facilitate the subsequent polycondensation reaction, and it is not necessary to add it unless necessary.
  • the method of this oligomer-forming reaction is not particularly limited, a method of performing in a solvent in the presence of an acid binder is usually preferred.
  • the ratio of the carbonate-forming compound to be used may be appropriately adjusted in consideration of the stoichiometric ratio (equivalents) of the reaction.
  • a gaseous carbonate-forming compound such as phosgene
  • a method of blowing it into the reaction system can be preferably employed.
  • the acid binder examples include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, organic bases such as pyridine, and mixtures thereof.
  • the ratio of the acid binder to be used may also be appropriately determined in consideration of the stoichiometric ratio (equivalents) of the reaction in the same manner as described above. Specifically, it is preferable to use 2 equivalents or a slightly excess amount of the acid binder with respect to the number of moles of the dihydric phenol (I) used to form the oligomer (usually 1 mol corresponds to 2 equivalents). .
  • a solvent inert to various reactions such as those used in the production of known polycarbonates, may be used singly or as a mixed solvent.
  • Typical examples include hydrocarbon solvents such as xylene, halogenated hydrocarbon solvents such as methylene chloride and chlorobenzene, and the like.
  • halogenated hydrocarbon solvents such as methylene chloride are preferably used.
  • the reaction pressure for oligomer production is not particularly limited, and may be normal pressure, increased pressure, or reduced pressure, but it is usually advantageous to carry out the reaction under normal pressure.
  • the reaction temperature is selected from the range of ⁇ 20 to 50° C. In many cases, heat is generated with polymerization, so water cooling or ice cooling is desirable. Although the reaction time depends on other conditions and cannot be defined unconditionally, it is usually carried out in 0.2 to 10 hours.
  • the pH range of the oligomer-forming reaction is the same as the well-known interfacial reaction conditions, and the pH is always adjusted to 10 or higher.
  • the mixed solution is stirred until the molecular weight distribution (Mw/Mn) is 3 or less.
  • a highly purified hydroxyaryl-terminated polydiorganosiloxane (II) represented by the general formula (3) is added to the dihydric phenol (I), and the hydroxyaryl-terminated polydiorganosiloxane (II) and the oligomer are interfacially polycondensed.
  • a polycarbonate-polydiorganosiloxane copolymer is thus obtained.
  • an acid binder When performing the interfacial polycondensation reaction, an acid binder may be added as appropriate in consideration of the stoichiometric ratio (equivalents) of the reaction.
  • the acid binder include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, organic bases such as pyridine, and mixtures thereof.
  • the hydroxyaryl-terminated polydiorganosiloxane (II) used or, as noted above, the dihydric phenol (I) is added to this reaction step as a post-add monomer, two of the post-add monomers It is preferable to use 2 equivalents or more of the alkali with respect to the total number of moles of the phenol (I) and the hydroxyaryl-terminated polydiorganosiloxane (II) (usually 1 mol corresponds to 2 equivalents).
  • Polycondensation by interfacial polycondensation reaction between the oligomer of dihydric phenol (I) and the hydroxyaryl-terminated polydiorganosiloxane (II) is carried out by vigorously stirring the mixed solution.
  • a terminal terminator or molecular weight modifier is usually used in such a polymerization reaction.
  • terminal terminating agents include compounds having a monovalent phenolic hydroxyl group, such as usual phenol, p-tert-butylphenol, p-cumylphenol, tribromophenol, long-chain alkylphenols and aliphatic carboxylic acids.
  • Examples include chlorides, aliphatic carboxylic acids, hydroxybenzoic acid alkyl esters, hydroxyphenyl alkyl acid esters, and alkyl ether phenols.
  • the amount used is in the range of 100 to 0.5 mol, preferably 50 to 2 mol, per 100 mol of all dihydric phenol compounds used, and it is of course possible to use two or more kinds of compounds together. be.
  • a catalyst such as a tertiary amine such as triethylamine or a quaternary ammonium salt may be added to promote the polycondensation reaction.
  • the reaction time for such a polymerization reaction is preferably 30 minutes or longer, more preferably 50 minutes or longer. If desired, a small amount of antioxidant such as sodium sulfite, hydrosulfide, etc. may be added.
  • a branching agent can be used in combination with the above dihydric phenolic compound to form a branched polycarbonate-polydiorganosiloxane.
  • trifunctional or higher polyfunctional aromatic compounds used in such branched polycarbonate-polydiorganosiloxane copolymer resins include phloroglucine, phloroglucide, or 4,6-dimethyl-2,4,6-tris(4-hydroxydiphenyl ) heptene-2, 2,4,6-trimethyl-2,4,6-tris(4-hydroxyphenyl)heptane, 1,3,5-tris(4-hydroxyphenyl)benzene, 1,1,1-tris (4-hydroxyphenyl)ethane, 1,1,1-tris(3,5-dimethyl-4-hydroxyphenyl)ethane, 2,6-bis(2-hydroxy-5-methylbenzyl)-4-methylphenol, trisphenols such as 4- ⁇ 4-[1,1-bis(4-hydroxyphenyl
  • the ratio of the polyfunctional compound in the branched polycarbonate-polydiorganosiloxane copolymer resin is preferably 0.001 to 1 mol %, more preferably 0.005 to 0.9, based on the total amount of the polycarbonate-polydiorganosiloxane copolymer resin. mol %, more preferably 0.01 to 0.8 mol %, particularly preferably 0.05 to 0.4 mol %.
  • the amount of such branched structures can be calculated by 1 H-NMR measurement.
  • the reaction pressure can be any of reduced pressure, normal pressure, and increased pressure, but usually normal pressure or the self-pressure of the reaction system can be suitably used.
  • the reaction temperature is selected from the range of ⁇ 20 to 50° C. In many cases, heat is generated with polymerization, so water cooling or ice cooling is desirable.
  • the reaction time varies depending on other conditions such as the reaction temperature and cannot be generally defined, but is usually 0.5 to 10 hours.
  • the obtained polycarbonate-polydiorganosiloxane copolymer resin is appropriately subjected to physical treatment (mixing, fractionation, etc.) and/or chemical treatment (polymer reaction, cross-linking treatment, partial decomposition treatment, etc.) to achieve the desired reduction. It can also be obtained as a polycarbonate-polydiorganosiloxane copolymer resin with a viscosity of [ ⁇ SP /c].
  • the obtained reaction product (crude product) can be subjected to various post-treatments such as known separation and purification methods, and recovered as a polycarbonate-polydiorganosiloxane copolymer resin of desired purity (purity).
  • the average size of the polydiorganosiloxane domains in the polycarbonate-polydiorganosiloxane copolymer resin molding is preferably in the range of 1 to 40 nm. Such average size is more preferably 1 to 30 nm, more preferably 5 to 25 nm. Below the lower limit of the preferred range, sufficient impact resistance and flame retardancy may not be exhibited, and above the upper limit of the preferred range, impact resistance may not be exhibited stably. This provides a resin composition with excellent impact resistance and appearance.
  • the average domain size of polydiorganosiloxane domains in the polycarbonate-polydiorganosiloxane copolymer resin molded article of the present invention was evaluated by small angle X-ray scattering (SAXS).
  • SAXS small angle X-ray scattering
  • the small-angle X-ray scattering method is a method of measuring diffuse scattering/diffraction occurring in a small-angle region within a scattering angle (2 ⁇ ) ⁇ 10°. In this small-angle X-ray scattering method, if there are regions with different electron densities on the order of 1 to 100 nm in a substance, diffuse scattering of X-rays is measured from the difference in electron densities. Based on this scattering angle and scattering intensity, the particle diameter of the object to be measured is obtained.
  • the average size of the polydiorganosiloxane domains is obtained by performing a simulation using commercially available analysis software from the hypothetical particle size and hypothetical particle size distribution model. According to the small-angle X-ray scattering method, the average size of the polydiorganosiloxane domains dispersed in the polycarbonate polymer matrix, which cannot be accurately measured by observation with a transmission electron microscope, can be measured accurately, easily, and with good reproducibility. can.
  • Average domain size means the number average of individual domain sizes.
  • the term "average domain size" used in connection with the present invention is a measured value obtained by measuring a 1.0 mm thick portion of a three-tiered plate produced by the method described in Examples by such a small-angle X-ray scattering method. show. In addition, the analysis is performed using an isolated particle model that does not consider the interaction between particles (interference between particles).
  • B component colorant
  • the coloring agent used as the B component in the present invention is a coloring agent containing a coloring agent having an absorption maximum at less than 650 nm (B1 component) and a coloring agent having an absorption maximum at 650 to 880 nm (B2 component).
  • the ratio (weight ratio) of B1 component and B2 component in B component is preferably 2/1 to 40/1, more preferably 2.5/1 to 30/1. It is preferably 3/1 to 25/1, and more preferably 3/1 to 25/1. If the ratio is less than 2/1, sufficient cut characteristics may not be obtained at 700 nm or less, and if it exceeds 40/1, absorption characteristics at 650 to 880 nm may be insufficient. The amount of sunlight that enters the sensor as noise increases, which may adversely affect sensing accuracy.
  • the coloring agent can be selected from dyes (organic, inorganic), pigments (organic, inorganic), etc., and is not particularly limited as long as the aromatic polycarbonate resin composition aimed at by the present invention can be obtained. .
  • the colorant it is preferable to use a dye because the dye does not cause diffuse reflection of light on the surface of the particles.
  • Dye-based coloring agents include, for example, anthraquinone-based coloring agents, perinone-based coloring agents, perylene-based coloring agents, methine-based coloring agents, azo-based coloring agents, quinoline-based coloring agents, phthalocyanine-based coloring agents, squarylium-based coloring agents, and complex coloring agents. Cyclic coloring agents and the like. Among them, anthraquinone-based coloring agents, phthalocyanine-based coloring agents, perylene-based coloring agents, and heterocyclic coloring agents having high heat resistance are more preferable.
  • the content of component B is 0.055 to 1.3 parts by weight, preferably 0.08 to 1.0 parts by weight, and 0.1 to 0.5 parts by weight with respect to 100 parts by weight of component A. Part is more preferred. If the content of component B is less than 0.055 parts by weight, sufficient cutting properties in the range of 400 to 700 nm cannot be obtained. On the other hand, when it exceeds 1.3 parts by weight, the thermal stability of the resin composition deteriorates.
  • C component: heat stabilizer The aromatic polycarbonate resin composition of the present invention contains a phosphorus heat stabilizer and/or a phenol heat stabilizer. Phosphorus-based heat stabilizers improve heat stability during production or molding, and improve mechanical properties, color, and molding stability.
  • Examples of phosphorus-based heat stabilizers include phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid and their esters, and tertiary phosphines.
  • Specific examples of phosphite compounds include triphenylphosphite, tris(nonylphenyl)phosphite, tridecylphosphite, trioctylphosphite, trioctadecylphosphite, didecylmonophenylphosphite, dioctylmonophenyl Phosphite, diisopropylmonophenylphosphite, monobutyldiphenylphosphite, monodecyldiphenylphosphite, monooctyldiphenylphosphite, 2,2-methylenebis(4,6-di-tert-butylphenyl)octylphosphite, tri
  • phosphite compounds those having a cyclic structure which react with dihydric phenols can also be used.
  • 2,2′-methylenebis(4,6-di-tert-butylphenyl)(2,4-di-tert-butylphenyl)phosphite 2,2′-methylenebis(4,6-di-tert- butylphenyl)(2-tert-butyl-4-methylphenyl)phosphite
  • 2,2′-ethylidenebis(4-methyl-6-tert-butylphenyl)(2-tert-butyl-4-methylphenyl)phosphite 2,2′-ethylidenebis(4-methyl-6-tert-butylphenyl)(2-tert-butyl-4-methylpheny
  • Phosphate compounds include tributyl phosphate, trimethyl phosphate, tricresyl phosphate, triphenyl phosphate, trichlorophenyl phosphate, triethyl phosphate, diphenyl cresyl phosphate, diphenyl monoorthoxenyl phosphate, tributoxyethyl phosphate, dibutyl phosphate, dioctyl phosphate, Diisopropyl phosphate and the like can be mentioned, and triphenyl phosphate and trimethyl phosphate are preferred.
  • Phosphonite compounds include tetrakis(2,4-di-tert-butylphenyl)-4,4'-biphenylenediphosphonite, tetrakis(2,4-di-tert-butylphenyl)-4,3'-biphenylenedi Phosphonite, Tetrakis(2,4-di-tert-butylphenyl)-3,3'-biphenylenediphosphonite, Tetrakis(2,6-di-tert-butylphenyl)-4,4'-biphenylenediphosphonite , tetrakis(2,6-di-tert-butylphenyl)-4,3′-biphenylenediphosphonite, tetrakis(2,6-di-tert-butylphenyl)-3,3′-biphenylenediphosphonite, bis (2,4-di-tert-butylphenyl)-4-phen
  • Such a phosphonite compound can be used in combination with a phosphite compound having an aryl group substituted with two or more alkyl groups, and is therefore preferable.
  • Phosphonate compounds include dimethyl benzenephosphonate, diethyl benzenephosphonate, dipropyl benzenephosphonate, and the like.
  • Tertiary phosphines include triethylphosphine, tripropylphosphine, tributylphosphine, trioctylphosphine, triamylphosphine, dimethylphenylphosphine, dibutylphenylphosphine, diphenylmethylphosphine, diphenyloctylphosphine, triphenylphosphine, and tri-p-tolyl. Examples include phosphine, trinaphthylphosphine, and diphenylbenzylphosphine. A particularly preferred tertiary phosphine is triphenylphosphine.
  • the phosphorus-based heat stabilizers may be used singly or in combination of two or more.
  • the combination use of such an alkyl phosphate compound with a phosphite compound and/or a phosphonite compound is also a preferred embodiment.
  • the phenolic heat stabilizer is not particularly limited as long as it has an antioxidant function. , tetrakis ⁇ methylene-3-(3′,5′-di-t-butyl-4-hydroxyphenyl)propionate ⁇ methane, distearyl(4-hydroxy-3-methyl-5-t-butylbenzyl)malonate, tri Ethylene glycol-bis ⁇ 3-(3-t-butyl-5-methyl-4-hydroxyphenyl)propionate ⁇ , 1,6-hexanediol-bis ⁇ 3-(3,5-di-t-butyl-4- hydroxyphenyl)propionate ⁇ , pentaerythrityl-tetrakis ⁇ 3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate ⁇ , 2,2-thiodiethylenebis ⁇ 3-(3,5-di- t-butyl-4-hydroxyphenyl)propionate ⁇ , 2,2-thiobis(4-methyl-6-
  • n-octadecyl-3-(4′-hydroxy-3′,5′-di-t-butylphenyl)propionate pentaerythrityl-tetrakis ⁇ 3-(3,5-di-t-butyl -4-hydroxyphenyl)propionate ⁇ , 3,3′,3′′,5,5′,5′′-hexa-t-butyl-a,a′,a′-(mesitylene-2,4,6-triyl)
  • Tri-p-cresol, 2,2-thiodiethylenebis ⁇ 3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate ⁇ and the like are preferred.
  • the content of component C is 0.003 to 0.5 parts by weight, preferably 0.005 to 0.3 parts by weight, and 0.01 to 0.2 parts by weight with respect to 100 parts by weight of component A. Part is more preferred.
  • the content of the C component is less than 0.003 parts by weight, the thermal stability of the resin composition deteriorates, and the thermal stability of the absorption properties also deteriorates.
  • it exceeds 0.5 parts by weight the moist heat resistance of the resin composition deteriorates.
  • Component D Benzotriazole UV absorber
  • the aromatic polycarbonate resin composition of the present invention preferably contains a benzotriazole ultraviolet absorber.
  • benzotriazole-based UV absorbers examples include 2-(2-hydroxy-5-methylphenyl)benzotriazole, 2-(2-hydroxy-5-tert-octylphenyl)benzotriazole, 2-[2-hydroxy -3,5-bis( ⁇ , ⁇ -dimethylbenzyl)phenyl]-2H-benzotriazole, 2-(2-hydroxy-3-tert-butyl-5-methylphenyl)-5-chlorobenzotriazole, 2,2 '-methylenebis[4-(1,1,3,3-tetramethylbutyl)-6-(2H-benzotriazol-2-yl)phenol], 2-(2-hydroxy-3,5-di-tert- butylphenyl)benzotriazole, 2-(2-hydroxy-3,5-di-tert-butylphenyl)-5-chlorobenzotriazole, 2-(2-hydroxy-3,5-di-tert-amylphenyl) Benzotriazole, 2-(2-hydroxy-5-
  • the above ultraviolet absorber has a structure of a monomer compound capable of radical polymerization, so that the ultraviolet absorbing monomer and/or photostable monomer and a monomer such as alkyl (meth)acrylate It may be a polymer-type ultraviolet absorber obtained by copolymerizing with a body.
  • Preferred examples of the UV-absorbing monomer include compounds containing a benzotriazole skeleton in the ester substituent of (meth)acrylic acid ester. Among them, 2-[2-hydroxy-3,5-bis( ⁇ , ⁇ -dimethylbenzyl)phenyl]-2H-benzotriazole represented by Tinuvin 234 (BASF Japan Ltd.), Tinuvin 326 (BASF Japan) Ltd.) is more preferable.
  • the content of component D is preferably 0.01 to 1 part by weight, more preferably 0.05 to 0.8 part by weight, more preferably 0.1 to 0.1 part by weight, per 100 parts by weight of component A. More preferably 5 parts by weight. If the content of component D is less than 0.01 parts by weight, the light stability of absorption characteristics may deteriorate, while if it exceeds 1 weight, the thermal stability of the resin composition may deteriorate. . (Other additives) Additives used for these improvements are advantageously used in the aromatic polycarbonate resin composition of the present invention in order to improve its thermal stability and design properties. These additives will be specifically described below.
  • the aromatic polycarbonate resin composition of the present invention may contain other heat stabilizers than the phosphorus-based heat stabilizer and the phenol-based heat stabilizer.
  • Such other heat stabilizers are preferably lactone-based stabilizers represented by reaction products of 3-hydroxy-5,7-di-tert-butyl-furan-2-one and o-xylene. be done. Details of such stabilizers are described in JP-A-7-233160.
  • Such a compound is available commercially as Irganox HP-136 (trademark, CIBA SPECIALTY CHEMICALS). Further, stabilizers obtained by mixing said compound with various phosphite compounds and hindered phenol compounds are commercially available.
  • Irganox HP-2921 manufactured by the above company is a suitable example.
  • the content of the lactone stabilizer is preferably 0.0005 to 0.05 parts by weight, more preferably 0.001 to 0.03 parts by weight, per 100 parts by weight of component A.
  • Other stabilizers include sulfur-containing stabilizers such as pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-laurylthiopropionate), and glycerol-3-stearylthiopropionate. exemplified.
  • the content of the sulfur-containing stabilizer is preferably 0.001 to 0.1 parts by weight, more preferably 0.01 to 0.08 parts by weight, per 100 parts by weight of component A.
  • the polycarbonate resin composition of the present invention may optionally contain an epoxy compound. Such epoxy compounds are blended for the purpose of suppressing mold corrosion, and basically all those having epoxy functional groups can be applied.
  • preferred epoxy compounds include 3,4-epoxycyclohexylmethyl-3′,4′-epoxycyclohexylcarboxylate, 2,2-bis(hydroxymethyl)-1-butanol of 1,2-epoxy-4- (2-oxiranyl) cyclohexane adducts, copolymers of methyl methacrylate and glycidyl methacrylate, copolymers of styrene and glycidyl methacrylate, and the like.
  • the content of such an epoxy compound is preferably 0.003 to 0.2 parts by weight, more preferably 0.004 to 0.15 parts by weight, and still more preferably 0.005 to 0.005 parts by weight with respect to 100 parts by weight of component A.
  • the aromatic polycarbonate resin composition of the present invention contains a release agent within a range that does not impair the object of the present invention in order to further improve the releasability from the mold during melt molding. is also possible.
  • release agents include higher fatty acid esters of monohydric or polyhydric alcohols, higher fatty acids, paraffin wax, beeswax, olefinic waxes, olefinic waxes containing carboxy groups and/or carboxylic acid anhydride groups, silicone oils, organopolysiloxane and the like.
  • Preferred higher fatty acid esters are partial or full esters of monohydric or polyhydric alcohols having 1 to 20 carbon atoms and saturated fatty acids having 10 to 30 carbon atoms.
  • Partial or full esters of monohydric or polyhydric alcohols with saturated fatty acids include, for example, stearic acid monoglyceride, stearic acid diglyceride, stearic acid triglyceride, stearic acid monosorbitate, stearyl stearate, behenic acid monoglyceride, and behenic acid.
  • stearic acid monoglyceride stearic acid triglyceride, pentaerythritol tetrastearate, and behenyl behenate are preferably used.
  • saturated fatty acids having 10 to 30 carbon atoms are preferred.
  • Such fatty acids include myristic acid, lauric acid, palmitic acid, stearic acid, behenic acid and the like.
  • release agents may be used alone, or two or more thereof may be used in combination.
  • the content of the release agent is preferably 0.01 to 5 parts by weight per 100 parts by weight of component A.
  • Means for premixing include a Nauta mixer, a V-type blender, a Henschel mixer, a mechanochemical device, an extrusion mixer, and the like. In the pre-mixing, granulation can be performed by an extrusion granulator, a briquetting machine, or the like.
  • the mixture is melt-kneaded by a melt-kneader typified by a vented twin-screw extruder, and pelletized by a device such as a pelletizer.
  • a melt-kneader typified by a vented twin-screw extruder
  • pelletized by a device such as a pelletizer.
  • the melt-kneader include a Banbury mixer, a kneading roll, a constant temperature stirring vessel and the like, but a vented twin-screw extruder is preferred.
  • each component and, optionally, other components may be supplied independently to a melt-kneader typified by a twin-screw extruder without being premixed.
  • the polycarbonate resin composition of the present invention obtained as described above can be used to produce various products by injection molding the pellets produced as described above. Further, it is also possible to directly form a sheet, film, profile extrusion molded product, and injection molded product from the resin melt-kneaded in an extruder without going through pellets.
  • injection molding not only ordinary molding methods but also injection compression molding, injection press molding, gas-assisted injection molding, foam molding (including injection of supercritical fluid), insert molding, Molded articles can be obtained using injection molding methods such as in-mold coating molding, adiabatic molding, rapid heat and cool molding, two-color molding, sandwich molding, and ultra-high speed injection molding.
  • injection molding methods such as in-mold coating molding, adiabatic molding, rapid heat and cool molding, two-color molding, sandwich molding, and ultra-high speed injection molding.
  • the advantages of these various molding methods are already widely known. For molding, either cold runner method or hot runner method can be selected.
  • the resin composition of the present invention can also be
  • a molded article made of the resin composition of the present invention must have an average light transmittance of 1.5% or less in the thickness direction of a molded article having a thickness of 3 mm at a wavelength of 400 to 700 nm.
  • the average light transmittance is more preferably 1.0% or less, more preferably 0.5% or less. If the average value of the light transmittance exceeds 1.5%, the amount of sunlight that causes noise increases, adversely affecting sensing.
  • the lower limit of the average light transmittance is not particularly limited, it is preferably 0% or more.
  • the molded article made of the resin composition of the present invention has a maximum light transmittance of 5.0 in the thickness direction of a molded article molded to a thickness of 3 mm at a wavelength from 400 nm to the wavelength at which the absorption of the B2 component is maximum. % or less, more preferably 3.0% or less, even more preferably 2.0% or less. If the maximum light transmittance exceeds 5.0%, light near the maximum transmittance becomes noise, which may adversely affect sensing. Although the lower limit of the maximum value of the light transmittance is not particularly limited, it is preferably 0% or more.
  • the transmitted wavelength ⁇ tr was read in the same manner for the staying molded product.
  • ⁇ tr- ⁇ t is 0 to 5, it is evaluated as ⁇ , when it is 6 to 10, it is evaluated as ⁇ , when it is 11 to 20, it is evaluated as ⁇ , and when it is 21 or more, it is evaluated as ⁇ . 4.
  • Photostability of Absorption Characteristics The transmission wavelength ⁇ tx of the light-exposed product was read in the same manner as the “average value of light transmittance in the range of 1.400 to 700 nm”. When
  • is 0 to 5, the case is ⁇ ; 5.
  • the mold A plate-shaped specimen with a thickness of 3 mm was formed at a temperature of 80°C. Molding was carried out continuously, and injection was stopped for 10 minutes while resin was present in the cylinder, and then molding was carried out again. A continuously molded product was obtained by molding continuously without stopping the injection, and a staying molded product was obtained by molding after stopping the injection for 10 minutes while the resin was present in the cylinder. [Light exposure treatment of molded product] Using a xenon weather meter (Suga Test Instruments Co., Ltd. NX75Z), the continuously molded product obtained by the above method was measured at a black panel temperature of 63°C, a chamber temperature of 50°C, a relative humidity of 50%, and an irradiation intensity of 0.5°C.
  • a molded article subjected to light exposure treatment for 1000 hours under the condition of 35 W/m 2 (@ 340 nm) was used as a light exposure treated article.
  • [Wet heat treatment of molded product] The continuous molded product obtained by the above method is subjected to wet heat treatment for 1000 hours at a temperature of 80 ° C. and a humidity of 85% using a constant temperature and humidity chamber (Espec Co., Ltd. PR-3J). The product was treated as a wet heat treated product.
  • a component A-1: Panlite L-1225WX manufactured by Teijin Limited (viscosity average molecular weight: 19,700)
  • A-2 Panlite L-1225WP manufactured by Teijin Limited (viscosity average molecular weight: 22,400)
  • A-3 Polycarbonate resin produced by the following method A reactor equipped with a thermometer, a stirrer and a reflux condenser was charged with 3844 parts of a 48% sodium hydroxide aqueous solution and 22,380 parts of ion-exchanged water.
  • this solution is passed through a filter with a mesh size of 0.3 ⁇ m, and is added dropwise to hot water in a kneader with an isolated chamber having a foreign matter outlet at the bearing portion to flake the polycarbonate resin while distilling off the methylene chloride.
  • the liquid-containing flakes were pulverized and dried to obtain a powder.
  • the viscosity average molecular weight was 20,000.
  • B1 component B1-1 NUBIAN BLACK PC-5857 (Orient Chemical Industry Co., Ltd., absorption maximum wavelength 599 nm)
  • B2 component B2-1 Phthalocyanine colorant FDR-004 (Yamada Chemical Industry Co., Ltd., maximum absorption wavelength 720 nm)
  • B2-2 Anthraquinone colorant SDO-7 (Arimoto Chemical Industry Co., Ltd., absorption maximum wavelength 676 nm)
  • B2-3 Anthraquinone colorant SDO-11 (Arimoto Chemical Industry Co., Ltd., absorption maximum wavelength 761 nm)
  • B2-4 heterocyclic coloring agent SDO-C33 (Arimoto Chemical Industry Co., Ltd., absorption maximum wavelength 847 nm)
  • B2-5 Perylene colorant Lumogen IR-765 (BASF Japan Co., Ltd., maximum absorption wavelength 769 nm)
  • C-1 Phosphorus-based heat stabilizer ADEKA STAB 2112 (ADE
  • Tables 1 to 4 are all excellent in thermal stability and resistance to moisture and heat, and have wavelength-selective absorption characteristics, so they can be used with various infrared light sources used in infrared sensors for automatic driving systems. . Furthermore, the result was excellent in the thermal stability and light stability of the absorption characteristics.
  • the content if the content is less than the lower limit, the average value of the light transmittance at 400 nm to 700 nm exceeds 1.5%, and the maximum light transmittance at the wavelength of 400 nm to the maximum absorption of the B2 component is 5. The result exceeded 0%.
  • the thermal stability of the resin composition deteriorated.
  • the C component when the content was less than the lower limit, the result was poor thermal stability of absorption characteristics, and when the content exceeded the upper limit, the result was poor heat and humidity resistance of the resin composition.

Abstract

The present invention provides an aromatic polycarbonate resin composition that has exceptional heat stability and moist heat resistance and that yields a molded article having wavelength-selective absorption characteristics and furthermore having exceptional heat stability and light stability in terms of absorption characteristics. The present invention is a resin composition containing, per 100 parts by weight of (A) an aromatic polycarbonate resin (component A), 0.055-1.3 parts by weight of (B) a colorant (component B) that includes (B1) a colorant (component B1) having an absorption maximum of less than 650 nm and (B2) a colorant (component B2) having an absorption maximum of 650-880 nm, and 0.003-0.5 parts by weight of (C) a phosphorus-based heat stabilizer and/or a phenol-based heat stabilizer (component C), wherein the resin composition is characterized in that the average value of thickness-direction light transmittance of a molded article molded to a thickness of 3 mm at 400-700 nm is 1.5% or less.

Description

芳香族ポリカーボネート樹脂組成物及びその成形品Aromatic polycarbonate resin composition and molded article thereof
 本発明は熱安定性および耐湿熱性に優れ、かつそれよりなる成形品が波長選択的な吸収特性を有し、さらに吸収特性の熱安定性および光安定性に優れる、芳香族ポリカーボネート樹脂組成物に関する。 The present invention relates to an aromatic polycarbonate resin composition which is excellent in heat stability and resistance to moist heat, has wavelength-selective absorption characteristics in molded articles formed from it, and has excellent heat stability and light stability of absorption characteristics. .
 近年、自動運転技術が急速な発展を遂げている。自動運転技術には、赤外線によるセンシングシステムが重要な役割を果たす。赤外線によるセンシングシステムとしては、例えば、ドライバーを監視するドライバーモニタリングシステムや他の車両や建築物を検知するためのLiDARが該当し、センシングには800~1000nm付近の近赤外線が一般的に使用される。但し、赤外線によるセンシングを行う際、可視光~近赤外線の光がノイズとなるため、センシングに用いる波長領域を透過させ、それ以下の波長領域の透過をカットするカバー材が必要となる。カバー材としては、ガラスや樹脂が用いられ、樹脂では透明材であるアクリル樹脂やポリカーボネート樹脂などが一般的に用いられるが、良好な透明性を有しかつ耐衝撃性、耐熱性に優れるポリカーボネート樹脂へのニーズが大きい。
波長選択制御ポリカーボネート樹脂に関する検討は過去にも実施されている。それらは、吸収波長帯の異なる色剤を複数併用することで可視光領域~一部の近赤外領域をカットする技術である(特許文献1~4参照)。しかしそれらの文献において、吸収特性の安定性は開示されていない。また、自動運転技術に用いる赤外線センサーのカバー材は1~3mm程度の薄肉厚みで成形されるため、ポリカーボネート樹脂の粘度平均分子量としては24,000以下の比較的高流動のものが好まれ、さらに成形温度も300~340℃と高温になる。そのため高温成形における波長特性の熱安定性が非常に重要である。さらに、自動車の中では樹脂は絶えず光に晒される環境にあり、長時間光が当たっても波長特性が安定し続けることが重要である。すなわち、安全な自動運転社会の実現に向けて、赤外線センサーのカバー材には吸収特性の熱安定性および光安定性が必要である。
Autonomous driving technology has made rapid progress in recent years. Infrared sensing systems play an important role in autonomous driving technology. Sensing systems using infrared rays include, for example, driver monitoring systems that monitor drivers and LiDARs that detect other vehicles and buildings, and near infrared rays in the vicinity of 800 to 1000 nm are generally used for sensing. . However, when infrared sensing is performed, visible light to near-infrared light becomes noise, so a cover material that transmits the wavelength range used for sensing and cuts the transmission of the wavelength range below that is required. As the cover material, glass or resin is used, and acrylic resin, polycarbonate resin, etc., which are transparent materials, are generally used as the resin, but polycarbonate resin has good transparency and is excellent in impact resistance and heat resistance. there is a great need for
Studies on wavelength-selective control polycarbonate resins have been made in the past. These are techniques for cutting the visible light region to a part of the near-infrared region by using a plurality of colorants with different absorption wavelength bands (see Patent Documents 1 to 4). However, the stability of the absorption properties is not disclosed in those documents. In addition, since the cover material of the infrared sensor used in automatic driving technology is molded with a thin thickness of about 1 to 3 mm, polycarbonate resin with a relatively high flow viscosity average molecular weight of 24,000 or less is preferred. The molding temperature is also as high as 300-340°C. Therefore, thermal stability of wavelength characteristics in high-temperature molding is very important. Furthermore, in an automobile, the resin is in an environment where it is constantly exposed to light, and it is important that the wavelength characteristics continue to be stable even when exposed to light for a long period of time. In other words, in order to realize a safe autonomous driving society, infrared sensor cover materials must have thermal and light absorption properties.
特許第5040827号公報Japanese Patent No. 5040827 特許第6354888号公報Japanese Patent No. 6354888 WO2019/022169号公報WO2019/022169 特許第6658942号公報Japanese Patent No. 6658942
 本発明の目的は、熱安定性および耐湿熱性に優れ、かつそれよりなる成形品が波長選択的な吸収特性を有し、さらに吸収特性の熱安定性および光安定性に優れる芳香族ポリカーボネート樹脂組成物及びその成形品を提供することにある。 An object of the present invention is to provide an aromatic polycarbonate resin composition which is excellent in thermal stability and resistance to moisture and heat, has wavelength-selective absorption properties in molded articles formed from it, and is excellent in thermal stability and light stability of absorption properties. It is to provide a product and its molded product.
 本発明者は、鋭意研究を重ねた結果、特定の色剤および熱安定剤を含有する芳香族ポリカーボネート樹脂組成物により、上記課題を解決し得ることを見出した。すなわち本発明者は、上記課題が下記の芳香族ポリカーボネート樹脂組成物及びその成形品により達成されることを見出した。
1.(A)芳香族ポリカーボネート樹脂(A成分)100重量部に対し、(B)(B1)650nm未満に吸収極大を有する色剤(B1成分)および(B2)650~880nmに吸収極大を有する色剤(B2成分)を含む色剤(B成分)0.055~1.3重量部および(C)リン系熱安定剤および/またはフェノール系熱安定剤(C成分)0.003~0.5重量部を含有する樹脂組成物であって、400~700nmにおける厚さ3mmに成形した成形品の厚さ方向の光線透過率の平均値が1.5%以下であることを特徴とする樹脂組成物。
2.B1成分とB2成分との割合(重量比)(B1成分/B2成分)が2/1~40/1であることを特徴とする前項1に記載の樹脂組成物。
3.400nm~B2成分の吸収が極大である波長における厚さ3mmに成形した成形品の厚さ方向の光線透過率の最大値が5.0%以下であることを特徴とする前項1または2に記載の樹脂組成物。
4.B2成分がアントラキノン系色剤、フタロシアニン系色剤、ペリレン系色剤および複素環系色剤からなる群より選ばれる少なくとも1種の色剤であることを特徴とする前項1~3のいずれかに記載の樹脂組成物。
5.A成分100重量部に対し、(D)ベンゾトリアゾール系紫外線吸収剤(D成分)0.01~1重量部を含有することを特徴とする前項1~4のいずれかに記載の樹脂組成物。
6.A成分の粘度平均分子量が24,000以下であることを特徴とする前項1~5のいずれかに記載の樹脂組成物。
7.前項1~6のいずれかに記載の樹脂組成物を成形してなる成形品。
8.赤外線センサーを覆うカバー材料である前項7に記載の成形品。
9.ドライバーを監視するドライバーモニタリングシステム並びに他の車両および建築物を検知するためのLiDARに使用される赤外線センサーを覆うカバー材料である前項8に記載の成形品。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that the above problems can be solved by an aromatic polycarbonate resin composition containing a specific coloring agent and a heat stabilizer. That is, the present inventors have found that the above objects can be achieved by the following aromatic polycarbonate resin composition and molded article thereof.
1. (A) Per 100 parts by weight of the aromatic polycarbonate resin (component A), (B) (B1) a coloring agent having an absorption maximum at less than 650 nm (component B1) and (B2) a coloring agent having an absorption maximum at 650 to 880 nm 0.055 to 1.3 parts by weight of a colorant (B component) containing (B2 component) and 0.003 to 0.5 parts by weight of (C) a phosphorus heat stabilizer and/or a phenolic heat stabilizer (C component) wherein the average value of the light transmittance in the thickness direction of a molded article having a thickness of 3 mm at 400 to 700 nm is 1.5% or less. .
2. 2. The resin composition according to item 1, wherein the ratio (weight ratio) of B1 component and B2 component (B1 component/B2 component) is 2/1 to 40/1.
3. The above item 1 or 2, wherein the maximum value of light transmittance in the thickness direction of a molded product molded to a thickness of 3 mm at a wavelength from 400 nm to the maximum absorption of the B2 component is 5.0% or less. The resin composition according to .
4. 3. Any one of the preceding items 1 to 3, wherein the B2 component is at least one colorant selected from the group consisting of anthraquinone colorants, phthalocyanine colorants, perylene colorants and heterocyclic colorants. The described resin composition.
5. 5. The resin composition according to any one of the preceding items 1 to 4, characterized by containing 0.01 to 1 part by weight of (D) a benzotriazole-based ultraviolet absorber (component D) with respect to 100 parts by weight of component A.
6. 6. The resin composition as described in any one of 1 to 5 above, wherein the viscosity average molecular weight of component A is 24,000 or less.
7. A molded article obtained by molding the resin composition according to any one of 1 to 6 above.
8. 8. The molded product according to the preceding item 7, which is a cover material for covering the infrared sensor.
9. 9. The molded article according to item 8, which is a cover material for covering an infrared sensor used in a driver monitoring system that monitors a driver and LiDAR for detecting other vehicles and buildings.
 本発明の樹脂組成物は、熱安定性および耐湿熱性に優れかつそれよりなる成形品は波長選択的な吸収特性を有する。自動運転システムの赤外線センサーに使用される赤外線光源は、805nm、850nm、905nm、940nmなど複数の規格があり、波長特性の要求は車両メーカーによって異なるため、本発明の樹脂組成物は、異なる車両メーカーへの要求に応えることができる。さらに本発明の樹脂組成物よりなる成形品は吸収特性の熱安定性および光安定性に優れているため、あらゆる成形条件に対して安定であり、また長期間光が晒される条件に対しても安定である。従って、本発明の樹脂組成物は、特に赤外線センサーを覆うカバー材料、その中でも、ドライバーを監視するドライバーモニタリングシステム並びに他の車両および建築物を検知するためのLiDARに使用される赤外線センサーを覆うカバー材料として有用であり、将来の安全な自動運転システムに貢献できる。 The resin composition of the present invention has excellent thermal stability and resistance to moist heat, and molded articles made from it have wavelength-selective absorption properties. The infrared light source used for the infrared sensor of the automatic driving system has multiple standards such as 805 nm, 850 nm, 905 nm, and 940 nm, and the requirements for wavelength characteristics differ depending on the vehicle manufacturer. can meet the demand for Furthermore, since the molded article made of the resin composition of the present invention is excellent in the thermal stability and light stability of the absorption characteristics, it is stable under all molding conditions and even under conditions where it is exposed to light for a long period of time. Stable. Accordingly, the resin composition of the present invention is particularly useful as a cover material for covering infrared sensors, especially covering infrared sensors used in driver monitoring systems for monitoring drivers and LiDAR for detecting other vehicles and buildings. It is useful as a material and can contribute to future safe autonomous driving systems.
(A成分:芳香族ポリカーボネート樹脂)
 本発明においてA成分として使用される芳香族ポリカーボネート樹脂は、二価フェノールとカーボネート前駆体とを反応させて得られるものである。反応方法の一例として界面重合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法などを挙げることができる。
(A component: aromatic polycarbonate resin)
The aromatic polycarbonate resin used as component A in the present invention is obtained by reacting a dihydric phenol and a carbonate precursor. Examples of reaction methods include an interfacial polymerization method, a melt transesterification method, a solid-phase transesterification method of a carbonate prepolymer, and a ring-opening polymerization method of a cyclic carbonate compound.
 ここで使用される二価フェノールの代表的な例としては、ハイドロキノン、レゾルシノール、4,4’-ビフェノール、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)プロパン(通称ビスフェノールA)、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、4,4’-(p-フェニレンジイソプロピリデン)ジフェノール、4,4’-(m-フェニレンジイソプロピリデン)ジフェノール、1,1-ビス(4-ヒドロキシフェニル)-4-イソプロピルシクロヘキサン、ビス(4-ヒドロキシフェニル)オキシド、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニル)スルホキシド、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)ケトン、ビス(4-ヒドロキシフェニル)エステル、ビス(4-ヒドロキシ-3-メチルフェニル)スルフィド、9,9-ビス(4-ヒドロキシフェニル)フルオレンおよび9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンなどが挙げられる。好ましい二価フェノールは、ビス(4-ヒドロキシフェニル)アルカンであり、なかでも耐衝撃性の点からビスフェノールAが特に好ましく、汎用されている。 Representative examples of dihydric phenols used herein include hydroquinone, resorcinol, 4,4′-biphenol, 1,1-bis(4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxyphenyl ) propane (commonly known as bisphenol A), 2,2-bis(4-hydroxy-3-methylphenyl)propane, 2,2-bis(4-hydroxyphenyl)butane, 1,1-bis(4-hydroxyphenyl)- 1-phenylethane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 2,2-bis(4-hydroxyphenyl) Pentane, 4,4'-(p-phenylenediisopropylidene)diphenol, 4,4'-(m-phenylenediisopropylidene)diphenol, 1,1-bis(4-hydroxyphenyl)-4-isopropylcyclohexane , bis(4-hydroxyphenyl) oxide, bis(4-hydroxyphenyl) sulfide, bis(4-hydroxyphenyl) sulfoxide, bis(4-hydroxyphenyl) sulfone, bis(4-hydroxyphenyl) ketone, bis(4- hydroxyphenyl) ester, bis(4-hydroxy-3-methylphenyl)sulfide, 9,9-bis(4-hydroxyphenyl)fluorene and 9,9-bis(4-hydroxy-3-methylphenyl)fluorene. be done. Preferred dihydric phenols are bis(4-hydroxyphenyl)alkanes, of which bisphenol A is particularly preferred from the standpoint of impact resistance and is widely used.
 本発明では、汎用のポリカーボネートであるビスフェノールA型のポリカーボネート以外にも、他の2価フェノール類を用いて製造した特殊なポリカーボネ-トをA成分として使用することが可能である。 In the present invention, in addition to bisphenol A-type polycarbonate, which is a general-purpose polycarbonate, it is possible to use special polycarbonates produced using other dihydric phenols as the A component.
 例えば、2価フェノール成分の一部又は全部として、4,4’-(m-フェニレンジイソプロピリデン)ジフェノール(以下“BPM”と略称することがある)、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン(以下“Bis-TMC”と略称することがある)、9,9-ビス(4-ヒドロキシフェニル)フルオレン及び9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン(以下“BCF”と略称することがある)を用いたポリカーボネ-ト(単独重合体又は共重合体)は、吸水による寸法変化や形態安定性の要求が特に厳しい用途に適当である。これらのBPA以外の2価フェノールは、該ポリカーボネートを構成する2価フェノール成分全体の5モル%以上、特に10モル%以上、使用するのが好ましい。 For example, as part or all of the dihydric phenol component, 4,4′-(m-phenylenediisopropylidene)diphenol (hereinafter sometimes abbreviated as “BPM”), 1,1-bis(4-hydroxy phenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane (hereinafter sometimes abbreviated as "Bis-TMC"), 9,9-bis(4-hydroxyphenyl) Polycarbonate (homopolymer or copolymer) using fluorene and 9,9-bis(4-hydroxy-3-methylphenyl)fluorene (hereinafter sometimes abbreviated as “BCF”) has dimensions due to water absorption. Suitable for applications with particularly stringent demands on change and morphological stability. These dihydric phenols other than BPA are preferably used in an amount of 5 mol % or more, particularly 10 mol % or more, of the total dihydric phenol components constituting the polycarbonate.
 殊に、高剛性かつより良好な耐加水分解性が要求される場合には、樹脂組成物を構成するA成分が次の(1)~(3)の共重合ポリカーボネートであるのが特に好適である。
(1)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPMが20~80モル%(より好適には40~75モル%、さらに好適には45~65モル%)であり、かつBCFが20~80モル%(より好適には25~60モル%、さらに好適には35~55モル%)である共重合ポリカーボネート。
(2)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPAが10~95モル%(より好適には50~90モル%、さらに好適には60~85モル%)であり、かつBCFが5~90モル%(より好適には10~50モル%、さらに好適には15~40モル%)である共重合ポリカーボネート。
(3)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPMが20~80モル%(より好適には40~75モル%、さらに好適には45~65モル%)であり、かつBis-TMCが20~80モル%(より好適には25~60モル%、さらに好適には35~55モル%)である共重合ポリカーボネート。
In particular, when high rigidity and better hydrolysis resistance are required, it is particularly preferable that component A constituting the resin composition is the following copolymerized polycarbonate (1) to (3). be.
(1) BPM is 20 to 80 mol% (more preferably 40 to 75 mol%, still more preferably 45 to 65 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and BCF is 20 to 80 mol % (more preferably 25 to 60 mol %, still more preferably 35 to 55 mol %).
(2) BPA is 10 to 95 mol% (more preferably 50 to 90 mol%, still more preferably 60 to 85 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and BCF is 5 to 90 mol % (more preferably 10 to 50 mol %, still more preferably 15 to 40 mol %).
(3) BPM is 20 to 80 mol% (more preferably 40 to 75 mol%, still more preferably 45 to 65 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and Bis - A copolymerized polycarbonate in which the TMC is 20-80 mol% (more preferably 25-60 mol%, still more preferably 35-55 mol%).
 これらの特殊なポリカーボネートは、単独で用いてもよく、2種以上を適宜混合して使用してもよい。また、これらを汎用されているビスフェノールA型のポリカーボネートと混合して使用することもできる。 These special polycarbonates may be used singly or in combination of two or more. Moreover, these can also be used by mixing with a widely used bisphenol A type polycarbonate.
 これらの特殊なポリカーボネートの製法及び特性については、例えば、特開平6-172508号公報、特開平8-27370号公報、特開2001-55435号公報及び特開2002-117580号公報等に詳しく記載されている。 The manufacturing method and characteristics of these special polycarbonates are described in detail in, for example, JP-A-6-172508, JP-A-8-27370, JP-A-2001-55435 and JP-A-2002-117580. ing.
 なお、上述した各種のポリカーボネートの中でも、共重合組成等を調整して、吸水率及びTg(ガラス転移温度)を下記(i)または(ii)の範囲内にしたものは、ポリマー自体の耐加水分解性が良好で、かつ成形後の低反り性においても格段に優れているため、形態安定性が要求される分野では特に好適である。
(i)吸水率が0.05~0.15%、好ましくは0.06~0.13%であり、かつTgが120~180℃であるポリカーボネート。
(ii)Tgが160~250℃、好ましくは170~230℃であり、かつ吸水率が0.10~0.30%、好ましくは0.13~0.30%、より好ましくは0.14~0.27%であるポリカーボネート。
Among the various polycarbonates described above, those having a water absorption rate and Tg (glass transition temperature) within the range of (i) or (ii) below by adjusting the copolymer composition etc. are resistant to water of the polymer itself. Since it has good degradability and is remarkably excellent in low warpage after molding, it is particularly suitable in fields where shape stability is required.
(i) Polycarbonate having a water absorption of 0.05-0.15%, preferably 0.06-0.13%, and a Tg of 120-180°C.
(ii) Tg is 160 to 250° C., preferably 170 to 230° C., and water absorption is 0.10 to 0.30%, preferably 0.13 to 0.30%, more preferably 0.14 to Polycarbonate at 0.27%.
 ここで、ポリカーボネートの吸水率は、直径45mm、厚み3.0mmの円板状試験片を用い、ISO62-1980に準拠して23℃の水中に24時間浸漬した後の水分率を測定した値である。また、Tg(ガラス転移温度)は、JIS K7121に準拠した示差走査熱量計(DSC)測定により求められる値である。 Here, the water absorption rate of polycarbonate is a value obtained by measuring the water content after immersing a disk-shaped test piece with a diameter of 45 mm and a thickness of 3.0 mm in water at 23 ° C. for 24 hours in accordance with ISO62-1980. be. Further, Tg (glass transition temperature) is a value determined by differential scanning calorimeter (DSC) measurement in accordance with JIS K7121.
 カーボネート前駆体としてはカルボニルハライド、炭酸ジエステルまたはハロホルメートなどが使用され、具体的にはホスゲン、ジフェニルカーボネートまたは二価フェノールのジハロホルメートなどが挙げられる。 Carbonate precursors include carbonyl halides, diesters of carbonic acid, haloformates, and the like, and specific examples include phosgene, diphenyl carbonate, and dihaloformates of dihydric phenols.
 前記二価フェノールとカーボネート前駆体を界面重合法によってポリカーボネート樹脂を製造するに当っては、必要に応じて触媒、末端停止剤、二価フェノールが酸化するのを防止するための酸化防止剤などを使用してもよい。また本発明のポリカーボネート樹脂は三官能以上の多官能性芳香族化合物を共重合した分岐ポリカーボネート樹脂、芳香族または脂肪族(脂環式を含む)の二官能性カルボン酸を共重合したポリエステルカーボネート樹脂、二官能性アルコール(脂環式を含む)を共重合した共重合ポリカーボネート樹脂、並びにかかる二官能性カルボン酸および二官能性アルコールを共に共重合したポリエステルカーボネート樹脂を含む。また、得られたポリカーボネート樹脂の2種以上を混合した混合物であってもよい。 In producing a polycarbonate resin by interfacial polymerization of the dihydric phenol and the carbonate precursor, if necessary, a catalyst, a terminal terminator, an antioxidant for preventing oxidation of the dihydric phenol, and the like are added. may be used. The polycarbonate resin of the present invention is a branched polycarbonate resin obtained by copolymerizing a trifunctional or higher polyfunctional aromatic compound, and a polyester carbonate resin obtained by copolymerizing an aromatic or aliphatic (including alicyclic) bifunctional carboxylic acid. , copolymerized polycarbonate resins copolymerized with difunctional alcohols (including alicyclic), and polyester carbonate resins copolymerized with such difunctional carboxylic acids and difunctional alcohols. Moreover, the mixture which mixed 2 or more types of obtained polycarbonate resin may be sufficient.
 分岐ポリカーボネート樹脂は、本発明の樹脂組成物に、ドリップ防止性能などを付与できる。かかる分岐ポリカーボネート樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6-ジメチル-2,4,6-トリス(4-ヒドロキジフェニル)ヘプテン-2、2,4,6-トリメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプタン、1,3,5-トリス(4-ヒドロキシフェニル)ベンゼン、1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタン、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、4-{4-[1,1-ビス(4-ヒドロキシフェニル)エチル]ベンゼン}-α,α-ジメチルベンジルフェノール等のトリスフェノール、テトラ(4-ヒドロキシフェニル)メタン、ビス(2,4-ジヒドロキシフェニル)ケトン、1,4-ビス(4,4-ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられ、中でも1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタンが好ましく、特に1,1,1-トリス(4-ヒドロキシフェニル)エタンが好ましい。 The branched polycarbonate resin can impart anti-drip performance and the like to the resin composition of the present invention. Examples of trifunctional or higher polyfunctional aromatic compounds used in such branched polycarbonate resins include phloroglucine, phloroglucide, or 4,6-dimethyl-2,4,6-tris(4-hydroxydiphenyl)heptene-2,2 ,4,6-trimethyl-2,4,6-tris(4-hydroxyphenyl)heptane, 1,3,5-tris(4-hydroxyphenyl)benzene, 1,1,1-tris(4-hydroxyphenyl) ethane, 1,1,1-tris(3,5-dimethyl-4-hydroxyphenyl)ethane, 2,6-bis(2-hydroxy-5-methylbenzyl)-4-methylphenol, 4-{4-[ trisphenols such as 1,1-bis(4-hydroxyphenyl)ethyl]benzene}-α,α-dimethylbenzylphenol, tetra(4-hydroxyphenyl)methane, bis(2,4-dihydroxyphenyl)ketone, 1, 4-bis(4,4-dihydroxytriphenylmethyl)benzene, or trimellitic acid, pyromellitic acid, benzophenonetetracarboxylic acid and acid chlorides thereof, among others, 1,1,1-tris(4-hydroxy Phenyl)ethane and 1,1,1-tris(3,5-dimethyl-4-hydroxyphenyl)ethane are preferred, and 1,1,1-tris(4-hydroxyphenyl)ethane is particularly preferred.
 分岐ポリカーボネートにおける多官能性芳香族化合物から誘導される構成単位は、2価フェノールから誘導される構成単位とかかる多官能性芳香族化合物から誘導される構成単位との合計100モル%中、好ましくは0.01~1モル%、より好ましくは0.05~0.9モル%、さらに好ましくは0.05~0.8モル%である。 Structural units derived from a polyfunctional aromatic compound in the branched polycarbonate are preferably 0.01 to 1 mol %, more preferably 0.05 to 0.9 mol %, still more preferably 0.05 to 0.8 mol %.
 また、特に溶融エステル交換法の場合、副反応として分岐構造単位が生ずる場合があるが、かかる分岐構造単位量についても、2価フェノールから誘導される構成単位との合計100モル%中、好ましくは0.001~1モル%、より好ましくは0.005~0.9モル%、さらに好ましくは0.01~0.8モル%であるものが好ましい。なお、かかる分岐構造の割合についてはH-NMR測定により算出することが可能である。 In addition, particularly in the case of the melt transesterification method, branched structural units may occur as a side reaction. It is preferably 0.001 to 1 mol %, more preferably 0.005 to 0.9 mol %, still more preferably 0.01 to 0.8 mol %. The ratio of such branched structures can be calculated by 1 H-NMR measurement.
 脂肪族の二官能性のカルボン酸は、α,ω-ジカルボン酸が好ましい。脂肪族の二官能性のカルボン酸としては例えば、セバシン酸(デカン二酸)、ドデカン二酸、テトラデカン二酸、オクタデカン二酸、イコサン二酸などの直鎖飽和脂肪族ジカルボン酸、並びにシクロヘキサンジカルボン酸などの脂環族ジカルボン酸が好ましく挙げられる。二官能性アルコールとしては脂環族ジオールがより好適であり、例えばシクロヘキサンジメタノール、シクロヘキサンジオール、およびトリシクロデカンジメタノールなどが例示される。 The aliphatic bifunctional carboxylic acid is preferably α,ω-dicarboxylic acid. Examples of aliphatic bifunctional carboxylic acids include linear saturated aliphatic dicarboxylic acids such as sebacic acid (decanedioic acid), dodecanedioic acid, tetradecanedioic acid, octadecanedioic acid, icosanedioic acid, and cyclohexanedicarboxylic acid. Alicyclic dicarboxylic acids such as are preferably exemplified. Alicyclic diols are more suitable as bifunctional alcohols, and examples thereof include cyclohexanedimethanol, cyclohexanediol, and tricyclodecanedimethanol.
 本発明の芳香族ポリカーボネート樹脂の製造方法である界面重合法、溶融エステル交換法、カーボネートプレポリマー固相エステル交換法、および環状カーボネート化合物の開環重合法などの反応形式は、各種の文献および特許公報などで良く知られている方法である。 Reaction formats such as the interfacial polymerization method, the melt transesterification method, the carbonate prepolymer solid-phase transesterification method, and the ring-opening polymerization method of a cyclic carbonate compound, which are the methods for producing the aromatic polycarbonate resin of the present invention, can be found in various literatures and patents. This method is well known in publications and the like.
 本発明における芳香族ポリカーボネート樹脂のメルトボリュームレート(300℃、1.2kg荷重)は、特に限定されないが、好ましくは1~60cm/10minであり、より好ましくは3~30cm/10min、さらに好ましくは5~20cm/10minである。メルトボリュームレートが1cm/10min未満の芳香族ポリカーボネート樹脂から得られる樹脂組成物は、射出成形時の流動性に劣る点で汎用性に劣る場合がある。一方、メルトボリュームレートが60cm/10minを超える芳香族ポリカーボネート樹脂では、良好な機械的特性が得られない場合がある。なお、メルトボリュームレートは「MVR」とも呼ばれ、はISO1133に準拠して測定される。 The melt volume rate (300° C., 1.2 kg load) of the aromatic polycarbonate resin in the present invention is not particularly limited, but is preferably 1 to 60 cm 3 /10 min, more preferably 3 to 30 cm 3 /10 min, and even more preferably. is 5 to 20 cm 3 /10 min. A resin composition obtained from an aromatic polycarbonate resin having a melt volume rate of less than 1 cm 3 /10 min may be inferior in versatility due to poor fluidity during injection molding. On the other hand, aromatic polycarbonate resins with a melt volume rate exceeding 60 cm 3 /10 min may not provide good mechanical properties. The melt volume rate is also called "MVR" and is measured according to ISO1133.
 本発明における芳香族ポリカーボネート樹脂の粘度平均分子量(M)は24,000以下であることが好ましく、より好ましくは22,500以下であり、さらに好ましくは20,000以下である.粘度平均分子量が24,000を超えると流動性が悪いため、センサーカバー材として使用される1~3mm厚みの薄肉成形品を得るために成形条件を高温にする必要があり、樹脂または色剤が熱分解しやすくなる場合がある。また、粘度平均分子量の下限は、特に限定されないが耐衝撃性の観点から14,000以上であることが好ましい。なお、本発明でいう粘度平均分子量(M)は、まず、次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlにポリカーボネート樹脂0.7gを溶解した溶液からオストワルド粘度計を用いて求め、
  比粘度(ηSP)=(t-t)/t
  [tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mを算出する。
The viscosity average molecular weight (M) of the aromatic polycarbonate resin in the present invention is preferably 24,000 or less, more preferably 22,500 or less, still more preferably 20,000 or less. If the viscosity-average molecular weight exceeds 24,000, the fluidity is poor. Therefore, in order to obtain a thin-walled molded product with a thickness of 1 to 3 mm, which is used as a sensor cover material, it is necessary to set the molding conditions to high temperatures. It may be prone to thermal decomposition. Although the lower limit of the viscosity average molecular weight is not particularly limited, it is preferably 14,000 or more from the viewpoint of impact resistance. The viscosity-average molecular weight (M) referred to in the present invention is obtained by first measuring the specific viscosity (η SP ) calculated by the following formula at 20° C. with an Ostwald viscometer using a solution of 0.7 g of a polycarbonate resin dissolved in 100 ml of methylene chloride. and
Specific viscosity (η SP ) = (tt 0 )/t 0
[t 0 is the number of seconds the methylene chloride falls, t is the number of seconds the sample solution falls]
The viscosity-average molecular weight M is calculated from the determined specific viscosity (η SP ) by the following formula.
  ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
  [η]=1.23×10-40.83
  c=0.7
 本発明の芳香族ポリカーボネート樹脂(A成分)としてポリカーボネート-ポリジオルガノシロキサン共重合樹脂を使用することも出来る。ポリカーボネート-ポリジオルガノシロキサン共重合樹脂とは下記一般式(1)で表される二価フェノールおよび下記一般式(3)で表されるヒドロキシアリール末端ポリジオルガノシロキサンを共重合させることにより調製される共重合樹脂であることが好ましい。
η SP /c=[η]+0.45×[η] 2 c (where [η] is the intrinsic viscosity)
[η]=1.23×10 −4 M 0.83
c=0.7
A polycarbonate-polydiorganosiloxane copolymer resin can also be used as the aromatic polycarbonate resin (component A) of the present invention. A polycarbonate-polydiorganosiloxane copolymer resin is a copolymer prepared by copolymerizing a dihydric phenol represented by the following general formula (1) and a hydroxyaryl-terminated polydiorganosiloxane represented by the following general formula (3). It is preferably a polymeric resin.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
[上記一般式(1)において、R及びRは夫々独立して水素原子、ハロゲン原子、炭素原子数1~18のアルキル基、炭素原子数1~18のアルコキシ基、炭素原子数6~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数2~10のアルケニル基、炭素原子数6~14のアリール基、炭素原子数6~14のアリールオキシ基、炭素原子数7~20のアラルキル基、炭素原子数7~20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシ基からなる群から選ばれる基を表し、それぞれ複数ある場合、それらは同一でも異なっていても良く、e及びfは夫々1~4の整数であり、Wは単結合もしくは下記一般式(2)で表される基からなる群より選ばれる少なくとも一つの基である。] [In the above general formula (1), R 1 and R 2 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, cycloalkyl group having 20 carbon atoms, cycloalkoxy group having 6 to 20 carbon atoms, alkenyl group having 2 to 10 carbon atoms, aryl group having 6 to 14 carbon atoms, aryloxy group having 6 to 14 carbon atoms, carbon atom represents a group selected from the group consisting of an aralkyl group having 7 to 20 carbon atoms, an aralkyloxy group having 7 to 20 carbon atoms, a nitro group, an aldehyde group, a cyano group and a carboxy group; e and f are each an integer of 1 to 4, and W is at least one group selected from the group consisting of a single bond or a group represented by the following general formula (2). ]
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
[上記一般式(2)においてR11,R12,R13,R14,R15,R16,R17及びR18は夫々独立して水素原子、炭素原子数1~18のアルキル基、炭素原子数6~14のアリール基及び炭素原子数7~20のアラルキル基からなる群から選ばれる基を表し、R19及びR20は夫々独立して水素原子、ハロゲン原子、炭素原子数1~18のアルキル基、炭素原子数1~10のアルコキシ基、炭素原子数6~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数2~10のアルケニル基、炭素原子数6~14のアリール基、炭素原子数6~10のアリールオキシ基、炭素原子数7~20のアラルキル基、炭素原子数7~20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシ基からなる群から選ばれる基を表し、複数ある場合、それらは同一でも異なっていても良く、gは1~10の整数、hは4~7の整数である。] [In the above general formula (2), R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 are each independently a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, a carbon represents a group selected from the group consisting of an aryl group having 6 to 14 atoms and an aralkyl group having 7 to 20 carbon atoms; R 19 and R 20 each independently represents a hydrogen atom, a halogen atom, or a an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a cycloalkyl group having 6 to 20 carbon atoms, a cycloalkoxy group having 6 to 20 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and 6 carbon atoms. an aryl group of up to 14, an aryloxy group of 6 to 10 carbon atoms, an aralkyl group of 7 to 20 carbon atoms, an aralkyloxy group of 7 to 20 carbon atoms, a nitro group, an aldehyde group, a cyano group and a carboxy group represents a group selected from the group consisting of; when there are more than one, they may be the same or different; g is an integer of 1-10; h is an integer of 4-7; ]
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
[上記一般式(3)において、R、R、R、R、R及びRは、各々独立に水素原子、炭素数1~12のアルキル基又は炭素数6~12の置換若しくは無置換のアリール基であり、R及びR10は夫々独立して水素原子、ハロゲン原子、炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基であり、pは自然数であり、qは0又は自然数であり、p+qは10~300の自然数である。Xは炭素数2~8の二価脂肪族基である。]
 一般式(1)で表される二価フェノール(I)としては、例えば、4,4’-ジヒドロキシビフェニル、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシ-3,3’-ビフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-イソプロピルフェニル)プロパン、2,2-ビス(3-t-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、2,2-ビス(3-ブロモ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、1,1-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)シクロヘキサン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、4,4’-ジヒドロキシジフェニルエ-テル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエ-テル、4,4’-スルホニルジフェノール、4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシジフェニルスルフィド、2,2’-ジメチル-4,4’-スルホニルジフェノール、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド、2,2’-ジフェニル-4,4’-スルホニルジフェノール、4,4’-ジヒドロキシ-3,3’-ジフェニルジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジフェニルジフェニルスルフィド、1,3-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼン、1,4-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼン、1,4-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,3-ビス(4-ヒドロキシフェニル)シクロヘキサン、4,8-ビス(4-ヒドロキシフェニル)トリシクロ[5.2.1.02,6]デカン、4,4’-(1,3-アダマンタンジイル)ジフェノール、1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタン等が挙げられる。
[In the general formula (3), R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or a substituted group having 6 to 12 carbon atoms. or an unsubstituted aryl group, R 9 and R 10 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and p is a natural number. , q is 0 or a natural number, and p+q is a natural number from 10 to 300. X is a divalent aliphatic group having 2 to 8 carbon atoms. ]
Examples of the dihydric phenol (I) represented by the general formula (1) include 4,4′-dihydroxybiphenyl, bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)ethane, 1,1-bis(4-hydroxyphenyl)-1-phenylethane, 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(4-hydroxy-3-methylphenyl)propane, 1,1 -bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 2,2-bis(4-hydroxy-3,3'-biphenyl)propane, 2,2-bis(4-hydroxy-3-isopropyl phenyl)propane, 2,2-bis(3-t-butyl-4-hydroxyphenyl)propane, 2,2-bis(4-hydroxyphenyl)butane, 2,2-bis(4-hydroxyphenyl)octane, 2 , 2-bis(3-bromo-4-hydroxyphenyl)propane, 2,2-bis(3,5-dimethyl-4-hydroxyphenyl)propane, 2,2-bis(3-cyclohexyl-4-hydroxyphenyl) Propane, 1,1-bis(3-cyclohexyl-4-hydroxyphenyl)cyclohexane, bis(4-hydroxyphenyl)diphenylmethane, 9,9-bis(4-hydroxyphenyl)fluorene, 9,9-bis(4-hydroxy -3-methylphenyl)fluorene, 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)cyclopentane, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxy-3,3'-dimethyldiphenyl ether, 4,4'-sulfonyldiphenol, 4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxydiphenyl sulfide, 2,2'-dimethyl-4, 4'-sulfonyldiphenol, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfide, 2,2'-diphenyl-4,4' -sulfonyldiphenol, 4,4'-dihydroxy-3,3'-diphenyldiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-diphenyldiphenyl sulfide, 1,3-bis{2-(4-hydroxyphenyl ) propyl}benzene, 1,4-bis{2-(4-hydroxyphenyl)propyl}benzene, 1,4-bis(4-hydroxyphenyl)cyclohexane, 1,3-bis(4-hydroxyphenyl)cyclohexane, 4 ,8-bis(4-hydroxyphenyl)tricyclo[5.2.1.02,6]decane, 4,4′-(1,3-adamantanediyl)diphenol, 1,3-bis(4-hydroxyphenyl )-5,7-dimethyladamantane and the like.
 なかでも、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、4,4’-スルホニルジフェノール、2,2’-ジメチル-4,4’-スルホニルジフェノール、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、1,3-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼン、1,4-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼンが好ましく、殊に2,2-ビス(4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(BPZ)、4,4’-スルホニルジフェノール、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンが好ましい。中でも強度に優れ、良好な耐久性を有する2,2-ビス(4-ヒドロキシフェニル)プロパンが最も好適である。また、これらは単独または二種以上組み合わせて用いてもよい。 Among others, 1,1-bis(4-hydroxyphenyl)-1-phenylethane, 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(4-hydroxy-3-methylphenyl)propane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 4,4'-sulfonyldiphenol, 2,2'-dimethyl- 4,4′-sulfonyldiphenol, 9,9-bis(4-hydroxy-3-methylphenyl)fluorene, 1,3-bis{2-(4-hydroxyphenyl)propyl}benzene, 1,4-bis{ 2-(4-Hydroxyphenyl)propyl}benzene is preferred, especially 2,2-bis(4-hydroxyphenyl)propane, 1,1-bis(4-hydroxyphenyl)cyclohexane (BPZ), 4,4′- Sulfonyldiphenol, 9,9-bis(4-hydroxy-3-methylphenyl)fluorene are preferred. Among them, 2,2-bis(4-hydroxyphenyl)propane, which has excellent strength and good durability, is most preferable. Moreover, these may be used alone or in combination of two or more.
 上記一般式(3)で表されるヒドロキシアリール末端ポリジオルガノシロキサンとしては、例えば下記に示すような化合物が好適に用いられる。 As the hydroxyaryl-terminated polydiorganosiloxane represented by the general formula (3), for example, the following compounds are preferably used.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 ヒドロキシアリール末端ポリジオルガノシロキサン(II)は、オレフィン性の不飽和炭素-炭素結合を有するフェノール類、好適にはビニルフェノール、2-アリルフェノール、イソプロペニルフェノール、2-メトキシ-4-アリルフェノールを所定の重合度を有するポリシロキサン鎖の末端に、ハイドロシリレーション反応させることにより容易に製造される。なかでも、(2-アリルフェノール)末端ポリジオルガノシロキサン、(2-メトキシ-4-アリルフェノール)末端ポリジオルガノシロキサンが好ましく、殊に(2-アリルフェノール)末端ポリジメチルシロキサン、(2-メトキシ-4-アリルフェノール)末端ポリジメチルシロキサンが好ましい。ヒドロキシアリール末端ポリジオルガノシロキサン(II)は、その分子量分布(Mw/Mn)が3以下であることが好ましい。さらに優れた高温成形時の低アウトガス性と低温衝撃性を発現させるために、かかる分子量分布(Mw/Mn)はより好ましくは2.5以下であり、さらに好ましくは2以下である。かかる好適な範囲の上限を超えると高温成形時のアウトガス発生量が多く、また、低温衝撃性に劣る場合がある。 Hydroxyaryl-terminated polydiorganosiloxane (II) is selected from phenols having olefinically unsaturated carbon-carbon bonds, preferably vinylphenol, 2-allylphenol, isopropenylphenol, 2-methoxy-4-allylphenol. It is easily produced by subjecting the end of a polysiloxane chain having a degree of polymerization to a hydrosilylation reaction. Among them, (2-allylphenol)-terminated polydiorganosiloxane and (2-methoxy-4-allylphenol)-terminated polydiorganosiloxane are preferred, and (2-allylphenol)-terminated polydimethylsiloxane, (2-methoxy-4 -allylphenol) terminated polydimethylsiloxane is preferred. The hydroxyaryl-terminated polydiorganosiloxane (II) preferably has a molecular weight distribution (Mw/Mn) of 3 or less. The molecular weight distribution (Mw/Mn) is more preferably 2.5 or less, still more preferably 2 or less, in order to achieve even better low-outgassing properties and low-temperature impact resistance during high-temperature molding. If the upper limit of the preferred range is exceeded, a large amount of outgas is generated during high-temperature molding, and the low-temperature impact resistance may be poor.
 また、高度な耐衝撃性を実現するためにヒドロキシアリール末端ポリジオルガノシロキサン(II)のジオルガノシロキサン重合度(p+q)は10~300が適切である。かかるジオルガノシロキサン重合度(p+q)は好ましくは10~200、より好ましくは12~150、更に好ましくは14~100である。かかる好適な範囲の下限未満では、ポリカーボネート-ポリジオルガノシロキサン共重合体の特徴である耐衝撃性が有効に発現せず、かかる好適な範囲の上限を超えると外観不良が現れる。 In addition, the diorganosiloxane polymerization degree (p+q) of the hydroxyaryl-terminated polydiorganosiloxane (II) is suitably 10 to 300 in order to achieve high impact resistance. Such a diorganosiloxane polymerization degree (p+q) is preferably 10-200, more preferably 12-150, still more preferably 14-100. Below the lower limit of the preferred range, impact resistance characteristic of the polycarbonate-polydiorganosiloxane copolymer is not effectively exhibited, and above the upper limit of the preferred range, poor appearance appears.
 ポリカーボネート-ポリジオルガノシロキサン共重合樹脂全重量に占めるポリジオルガノシロキサン含有量は0.1~50重量%が好ましい。かかるポリジオルガノシロキサン成分含有量はより好ましくは0.5~30重量%、さらに好ましくは1~20重量%である。かかる好適な範囲の下限以上では、耐衝撃性や難燃性に優れ、かかる好適な範囲の上限以下では、成形条件の影響を受けにくい安定した外観が得られやすい。かかるポリジオルガノシロキサン重合度、ポリジオルガノシロキサン含有量は、H-NMR測定により算出することが可能である。 The polydiorganosiloxane content in the total weight of the polycarbonate-polydiorganosiloxane copolymer resin is preferably 0.1 to 50% by weight. The content of such polydiorganosiloxane component is more preferably 0.5 to 30% by weight, more preferably 1 to 20% by weight. Above the lower limit of the preferred range, the impact resistance and flame retardancy are excellent, and below the upper limit of the preferred range, a stable appearance that is less susceptible to molding conditions is likely to be obtained. Such polydiorganosiloxane polymerization degree and polydiorganosiloxane content can be calculated by 1 H-NMR measurement.
 本発明において、ヒドロキシアリール末端ポリジオルガノシロキサン(II)は1種のみを用いてもよく、また、2種以上を用いてもよい。 In the present invention, only one type of hydroxyaryl-terminated polydiorganosiloxane (II) may be used, or two or more types may be used.
 また、本発明の妨げにならない範囲で、上記二価フェノール(I)、ヒドロキシアリール末端ポリジオルガノシロキサン(II)以外の他のコモノマーを共重合体の全重量に対して10重量%以下の範囲で併用することもできる。 In addition, other comonomers than the dihydric phenol (I) and the hydroxyaryl-terminated polydiorganosiloxane (II) are added in an amount of 10% by weight or less based on the total weight of the copolymer, as long as they do not interfere with the present invention. They can also be used in combination.
 本発明においては、あらかじめ水に不溶性の有機溶媒とアルカリ水溶液との混合液中における二価フェノール(I)と炭酸エステル形成性化合物の反応により末端クロロホルメート基を有するオリゴマーを含む混合溶液を調製する。 In the present invention, a mixed solution containing an oligomer having a terminal chloroformate group is prepared in advance by reacting a dihydric phenol (I) and a carbonate-forming compound in a mixed solution of a water-insoluble organic solvent and an alkaline aqueous solution. do.
 二価フェノール(I)のオリゴマーを生成するにあたり、本発明の方法に用いられる二価フェノール(I)の全量を一度にオリゴマーにしてもよく、又は、その一部を後添加モノマーとして後段の界面重縮合反応に反応原料として添加してもよい。後添加モノマーとは、後段の重縮合反応を速やかに進行させるために加えるものであり、必要のない場合には敢えて加える必要はない。 In producing the oligomer of dihydric phenol (I), the whole amount of dihydric phenol (I) used in the method of the present invention may be converted into an oligomer at one time, or part of it may be used as a post-addition monomer to form an interface in the latter stage. It may be added as a reaction raw material to the polycondensation reaction. The post-addition monomer is added in order to facilitate the subsequent polycondensation reaction, and it is not necessary to add it unless necessary.
 このオリゴマー生成反応の方式は特に限定はされないが、通常、酸結合剤の存在下、溶媒中で行う方式が好適である。 Although the method of this oligomer-forming reaction is not particularly limited, a method of performing in a solvent in the presence of an acid binder is usually preferred.
 炭酸エステル形成性化合物の使用割合は、反応の化学量論比(当量)を考慮して適宜調整すればよい。また、ホスゲン等のガス状の炭酸エステル形成性化合物を使用する場合、これを反応系に吹き込む方法が好適に採用できる。 The ratio of the carbonate-forming compound to be used may be appropriately adjusted in consideration of the stoichiometric ratio (equivalents) of the reaction. When a gaseous carbonate-forming compound such as phosgene is used, a method of blowing it into the reaction system can be preferably employed.
 前記酸結合剤としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、ピリジン等の有機塩基あるいはこれらの混合物などが用いられる。酸結合剤の使用割合も、上記同様に、反応の化学量論比(当量)を考慮して適宜定めればよい。具体的には、オリゴマーの形成に使用する二価フェノール(I)のモル数(通常1モルは2当量に相当)に対して2当量若しくはこれより若干過剰量の酸結合剤を用いることが好ましい。 Examples of the acid binder include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, organic bases such as pyridine, and mixtures thereof. The ratio of the acid binder to be used may also be appropriately determined in consideration of the stoichiometric ratio (equivalents) of the reaction in the same manner as described above. Specifically, it is preferable to use 2 equivalents or a slightly excess amount of the acid binder with respect to the number of moles of the dihydric phenol (I) used to form the oligomer (usually 1 mol corresponds to 2 equivalents). .
 前記溶媒としては、公知のポリカーボネートの製造に使用されるものなど各種の反応に不活性な溶媒を1種単独であるいは混合溶媒として使用すればよい。代表的な例としては、例えば、キシレン等の炭化水素溶媒、塩化メチレン、クロロベンゼンをはじめとするハロゲン化炭化水素溶媒などが挙げられる。特に塩化メチレン等のハロゲン化炭化水素溶媒が好適に用いられる。 As the solvent, a solvent inert to various reactions, such as those used in the production of known polycarbonates, may be used singly or as a mixed solvent. Typical examples include hydrocarbon solvents such as xylene, halogenated hydrocarbon solvents such as methylene chloride and chlorobenzene, and the like. In particular, halogenated hydrocarbon solvents such as methylene chloride are preferably used.
 オリゴマー生成の反応圧力は特に制限はなく、常圧、加圧、減圧のいずれでもよいが、通常常圧下で反応を行うことが有利である。反応温度は-20~50℃の範囲から選ばれ、多くの場合、重合に伴い発熱するので、水冷又は氷冷することが望ましい。反応時間は他の条件に左右され一概に規定できないが、通常、0.2~10時間で行われる。オリゴマー生成反応のpH範囲は、公知の界面反応条件と同様であり、pHは常に10以上に調製される。 The reaction pressure for oligomer production is not particularly limited, and may be normal pressure, increased pressure, or reduced pressure, but it is usually advantageous to carry out the reaction under normal pressure. The reaction temperature is selected from the range of −20 to 50° C. In many cases, heat is generated with polymerization, so water cooling or ice cooling is desirable. Although the reaction time depends on other conditions and cannot be defined unconditionally, it is usually carried out in 0.2 to 10 hours. The pH range of the oligomer-forming reaction is the same as the well-known interfacial reaction conditions, and the pH is always adjusted to 10 or higher.
 本発明はこのようにして、末端クロロホルメート基を有する二価フェノール(I)のオリゴマーを含む混合溶液を得た後、該混合溶液を攪拌しながら分子量分布(Mw/Mn)が3以下まで高度に精製された一般式(3)で表わされるヒドロキシアリール末端ポリジオルガノシロキサン(II)を二価フェノール(I)に加え、該ヒドロキシアリール末端ポリジオルガノシロキサン(II)と該オリゴマーを界面重縮合させることによりポリカーボネート-ポリジオルガノシロキサン共重合体を得る。 In the present invention, after obtaining a mixed solution containing an oligomer of dihydric phenol (I) having a terminal chloroformate group, the mixed solution is stirred until the molecular weight distribution (Mw/Mn) is 3 or less. A highly purified hydroxyaryl-terminated polydiorganosiloxane (II) represented by the general formula (3) is added to the dihydric phenol (I), and the hydroxyaryl-terminated polydiorganosiloxane (II) and the oligomer are interfacially polycondensed. A polycarbonate-polydiorganosiloxane copolymer is thus obtained.
 界面重縮合反応を行うにあたり、酸結合剤を反応の化学量論比(当量)を考慮して適宜追加してもよい。酸結合剤としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、ピリジン等の有機塩基あるいはこれらの混合物などが用いられる。具体的には、使用するヒドロキシアリール末端ポリジオルガノシロキサン(II)、又は上記の如く二価フェノール(I)の一部を後添加モノマーとしてこの反応段階に添加する場合には、後添加分の二価フェノール(I)とヒドロキシアリール末端ポリジオルガノシロキサン(II)との合計モル数(通常1モルは2当量に相当)に対して2当量若しくはこれより過剰量のアルカリを用いることが好ましい。 When performing the interfacial polycondensation reaction, an acid binder may be added as appropriate in consideration of the stoichiometric ratio (equivalents) of the reaction. Examples of the acid binder include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, organic bases such as pyridine, and mixtures thereof. Specifically, if a portion of the hydroxyaryl-terminated polydiorganosiloxane (II) used or, as noted above, the dihydric phenol (I) is added to this reaction step as a post-add monomer, two of the post-add monomers It is preferable to use 2 equivalents or more of the alkali with respect to the total number of moles of the phenol (I) and the hydroxyaryl-terminated polydiorganosiloxane (II) (usually 1 mol corresponds to 2 equivalents).
 二価フェノール(I)のオリゴマーとヒドロキシアリール末端ポリジオルガノシロキサン(II)との界面重縮合反応による重縮合は、上記混合液を激しく攪拌することにより行われる。 Polycondensation by interfacial polycondensation reaction between the oligomer of dihydric phenol (I) and the hydroxyaryl-terminated polydiorganosiloxane (II) is carried out by vigorously stirring the mixed solution.
 かかる重合反応においては、末端停止剤或いは分子量調節剤が通常使用される。末端停止剤としては一価のフェノール性水酸基を有する化合物が挙げられ、通常のフェノール、p-tert-ブチルフェノール、p-クミルフェノール、トリブロモフェノールなどの他に、長鎖アルキルフェノール、脂肪族カルボン酸クロライド、脂肪族カルボン酸、ヒドロキシ安息香酸アルキルエステル、ヒドロキシフェニルアルキル酸エステル、アルキルエーテルフェノールなどが例示される。その使用量は用いる全ての二価フェノール系化合物100モルに対して、100~0.5モル、好ましくは50~2モルの範囲であり、二種以上の化合物を併用することも当然に可能である。 A terminal terminator or molecular weight modifier is usually used in such a polymerization reaction. Examples of terminal terminating agents include compounds having a monovalent phenolic hydroxyl group, such as usual phenol, p-tert-butylphenol, p-cumylphenol, tribromophenol, long-chain alkylphenols and aliphatic carboxylic acids. Examples include chlorides, aliphatic carboxylic acids, hydroxybenzoic acid alkyl esters, hydroxyphenyl alkyl acid esters, and alkyl ether phenols. The amount used is in the range of 100 to 0.5 mol, preferably 50 to 2 mol, per 100 mol of all dihydric phenol compounds used, and it is of course possible to use two or more kinds of compounds together. be.
 重縮合反応を促進するために、トリエチルアミンのような第三級アミン又は第四級アンモニウム塩などの触媒を添加してもよい。 A catalyst such as a tertiary amine such as triethylamine or a quaternary ammonium salt may be added to promote the polycondensation reaction.
 かかる重合反応の反応時間は、好ましくは30分以上、更に好ましくは50分以上である。所望に応じ、亜硫酸ナトリウム、ハイドロサルファイドなどの酸化防止剤を少量添加してもよい。 The reaction time for such a polymerization reaction is preferably 30 minutes or longer, more preferably 50 minutes or longer. If desired, a small amount of antioxidant such as sodium sulfite, hydrosulfide, etc. may be added.
 分岐化剤を上記の二価フェノール系化合物と併用して分岐化ポリカーボネート-ポリジオルガノシロキサンとすることができる。かかる分岐ポリカーボネート-ポリジオルガノシロキサン共重合樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6-ジメチル-2,4,6-トリス(4-ヒドロキジフェニル)ヘプテン-2、2,4,6-トリメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプタン、1,3,5-トリス(4-ヒドロキシフェニル)ベンゼン、1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタン、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、4-{4-[1,1-ビス(4-ヒドロキシフェニル)エチル]ベンゼン}-α,α-ジメチルベンジルフェノール等のトリスフェノール、テトラ(4-ヒドロキシフェニル)メタン、ビス(2,4-ジヒドロキシフェニル)ケトン、1,4-ビス(4,4-ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられ、中でも1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタンが好ましく、特に1,1,1-トリス(4-ヒドロキシフェニル)エタンが好ましい。分岐ポリカーボネート-ポリジオルガノシロキサン共重合樹脂中の多官能性化合物の割合は、ポリカーボネート-ポリジオルガノシロキサン共重合樹脂全量中、好ましくは0.001~1モル%、より好ましくは0.005~0.9モル%、さらに好ましくは0.01~0.8モル%、特に好ましくは0.05~0.4モル%である。なお、かかる分岐構造量についてはH-NMR測定により算出することが可能である。 A branching agent can be used in combination with the above dihydric phenolic compound to form a branched polycarbonate-polydiorganosiloxane. Examples of trifunctional or higher polyfunctional aromatic compounds used in such branched polycarbonate-polydiorganosiloxane copolymer resins include phloroglucine, phloroglucide, or 4,6-dimethyl-2,4,6-tris(4-hydroxydiphenyl ) heptene-2, 2,4,6-trimethyl-2,4,6-tris(4-hydroxyphenyl)heptane, 1,3,5-tris(4-hydroxyphenyl)benzene, 1,1,1-tris (4-hydroxyphenyl)ethane, 1,1,1-tris(3,5-dimethyl-4-hydroxyphenyl)ethane, 2,6-bis(2-hydroxy-5-methylbenzyl)-4-methylphenol, trisphenols such as 4-{4-[1,1-bis(4-hydroxyphenyl)ethyl]benzene}-α,α-dimethylbenzylphenol, tetra(4-hydroxyphenyl)methane, bis(2,4-dihydroxy phenyl)ketone, 1,4-bis(4,4-dihydroxytriphenylmethyl)benzene, or trimellitic acid, pyromellitic acid, benzophenonetetracarboxylic acid and their acid chlorides, among others, 1,1,1 -tris(4-hydroxyphenyl)ethane and 1,1,1-tris(3,5-dimethyl-4-hydroxyphenyl)ethane are preferred, and 1,1,1-tris(4-hydroxyphenyl)ethane is particularly preferred. . The ratio of the polyfunctional compound in the branched polycarbonate-polydiorganosiloxane copolymer resin is preferably 0.001 to 1 mol %, more preferably 0.005 to 0.9, based on the total amount of the polycarbonate-polydiorganosiloxane copolymer resin. mol %, more preferably 0.01 to 0.8 mol %, particularly preferably 0.05 to 0.4 mol %. The amount of such branched structures can be calculated by 1 H-NMR measurement.
 反応圧力は、減圧、常圧、加圧のいずれでも可能であるが、通常は、常圧若しくは反応系の自圧程度で好適に行い得る。反応温度は-20~50℃の範囲から選ばれ、多くの場合、重合に伴い発熱するので、水冷又は氷冷することが望ましい。反応時間は反応温度等の他の条件によって異なるので一概に規定はできないが、通常、0.5~10時間で行われる。 The reaction pressure can be any of reduced pressure, normal pressure, and increased pressure, but usually normal pressure or the self-pressure of the reaction system can be suitably used. The reaction temperature is selected from the range of −20 to 50° C. In many cases, heat is generated with polymerization, so water cooling or ice cooling is desirable. The reaction time varies depending on other conditions such as the reaction temperature and cannot be generally defined, but is usually 0.5 to 10 hours.
 場合により、得られたポリカーボネート-ポリジオルガノシロキサン共重合樹脂に適宜物理的処理(混合、分画など)及び/又は化学的処理(ポリマー反応、架橋処理、部分分解処理など)を施して所望の還元粘度[ηSP/c]のポリカーボネート-ポリジオルガノシロキサン共重合樹脂として取得することもできる。 In some cases, the obtained polycarbonate-polydiorganosiloxane copolymer resin is appropriately subjected to physical treatment (mixing, fractionation, etc.) and/or chemical treatment (polymer reaction, cross-linking treatment, partial decomposition treatment, etc.) to achieve the desired reduction. It can also be obtained as a polycarbonate-polydiorganosiloxane copolymer resin with a viscosity of [η SP /c].
 得られた反応生成物(粗生成物)は公知の分離精製法等の各種の後処理を施して、所望の純度(精製度)のポリカーボネート-ポリジオルガノシロキサン共重合樹脂として回収することができる。  The obtained reaction product (crude product) can be subjected to various post-treatments such as known separation and purification methods, and recovered as a polycarbonate-polydiorganosiloxane copolymer resin of desired purity (purity). 
 ポリカーボネート-ポリジオルガノシロキサン共重合樹脂成形品中のポリジオルガノシロキサンドメインの平均サイズは、1~40nmの範囲が好ましい。かかる平均サイズはより好ましくは1~30nm、更に好ましくは5~25nmである。かかる好適な範囲の下限未満では、耐衝撃性や難燃性が十分に発揮されず、かかる好適な範囲の上限を超えると耐衝撃性が安定して発揮されない場合がある。これにより耐衝撃性および外観に優れた樹脂組成物が提供される。 The average size of the polydiorganosiloxane domains in the polycarbonate-polydiorganosiloxane copolymer resin molding is preferably in the range of 1 to 40 nm. Such average size is more preferably 1 to 30 nm, more preferably 5 to 25 nm. Below the lower limit of the preferred range, sufficient impact resistance and flame retardancy may not be exhibited, and above the upper limit of the preferred range, impact resistance may not be exhibited stably. This provides a resin composition with excellent impact resistance and appearance.
 本発明におけるポリカーボネート-ポリジオルガノシロキサン共重合樹脂成形品のポリジオルガノシロキサンドメインの平均ドメインサイズ、小角エックス線散乱法(Small Angle X-ray Scattering:SAXS)により評価した。小角エックス線散乱法とは、散乱角(2θ)<10°以内の小角領域で生じる散漫な散乱・回折を測定する方法である。この小角エックス線散乱法では、物質中に1~100nm程度の大きさの電子密度の異なる領域があると、その電子密度差によりエックス線の散漫散乱が計測される。この散乱角と散乱強度に基づいて測定対象物の粒子径を求める。ポリカーボネートポリマーのマトリックス中にポリジオルガノシロキサンドメインが分散した凝集構造となるポリカーボネート-ポリジオルガノシロキサン共重合樹脂の場合、ポリカーボネートマトリックスとポリジオルガノシロキサンドメインの電子密度差により、エックス線の散漫散乱が生じる。散乱角(2θ)が10°未満の範囲の各散乱角(2θ)における散乱強度I を測定して、小角エックス線散乱プロファイルを測定し、ポリジオルガノシロキサンドメインが球状ドメインであり、粒径分布のばらつきが存在すると仮定して、仮の粒径と仮の粒径分布モデルから、市販の解析ソフトウェアを用いてシミュレーションを行い、ポリジオルガノシロキサンドメインの平均サイズを求める。小角エックス線散乱法によれば、透過型電子顕微鏡による観察では正確に測定できない、ポリカーボネートポリマーのマトリックス中に分散したポリジオルガノシロキサンドメインの平均サイズを、精度よく、簡便に、再現性良く測定することができる。平均ドメインサイズとは個々のドメインサイズの数平均を意味する。本発明に関連して用いる用語「平均ドメインサイズ」は、かかる小角エックス線散乱法により、実施例記載の方法で作製した3段型プレートの厚み1.0mm部を測定することにより得られる測定値を示す。また、粒子間相互作用(粒子間干渉)を考慮しない孤立粒子モデルにて解析を行う。
(B成分:色剤)
 本発明においてB成分として使用される色剤は、650nm未満に吸収極大を有する色剤(B1成分)および650~880nmに吸収極大を有する色剤(B2成分)を含む色剤である。B成分におけるB1成分とB2成分との割合(重量比)(B1成分/B2成分)は2/1~40/1であることが好ましく、2.5/1~30/1であることがより好ましく、3/1~25/1であることがより好ましい。該割合が2/1未満の場合、700nm以下にて十分なカット特性が得られない場合があり、40/1を超えた場合、650~880nmでの吸収特性が不十分となる場合があり、ノイズとしてセンサーに入る太陽光の光量が多くなり、センシング精度に悪影響を与える恐れがある。
The average domain size of polydiorganosiloxane domains in the polycarbonate-polydiorganosiloxane copolymer resin molded article of the present invention was evaluated by small angle X-ray scattering (SAXS). The small-angle X-ray scattering method is a method of measuring diffuse scattering/diffraction occurring in a small-angle region within a scattering angle (2θ)<10°. In this small-angle X-ray scattering method, if there are regions with different electron densities on the order of 1 to 100 nm in a substance, diffuse scattering of X-rays is measured from the difference in electron densities. Based on this scattering angle and scattering intensity, the particle diameter of the object to be measured is obtained. In the case of a polycarbonate-polydiorganosiloxane copolymer resin having an aggregate structure in which polydiorganosiloxane domains are dispersed in a polycarbonate polymer matrix, diffuse scattering of X-rays occurs due to the electron density difference between the polycarbonate matrix and the polydiorganosiloxane domains. The scattering intensity I at each scattering angle (2θ) in the range of less than 10° scattering angle (2θ) is measured to measure the small-angle X-ray scattering profile, and the polydiorganosiloxane domain is a spherical domain and the particle size distribution varies. Assuming the existence of , the average size of the polydiorganosiloxane domains is obtained by performing a simulation using commercially available analysis software from the hypothetical particle size and hypothetical particle size distribution model. According to the small-angle X-ray scattering method, the average size of the polydiorganosiloxane domains dispersed in the polycarbonate polymer matrix, which cannot be accurately measured by observation with a transmission electron microscope, can be measured accurately, easily, and with good reproducibility. can. Average domain size means the number average of individual domain sizes. The term "average domain size" used in connection with the present invention is a measured value obtained by measuring a 1.0 mm thick portion of a three-tiered plate produced by the method described in Examples by such a small-angle X-ray scattering method. show. In addition, the analysis is performed using an isolated particle model that does not consider the interaction between particles (interference between particles).
(B component: colorant)
The coloring agent used as the B component in the present invention is a coloring agent containing a coloring agent having an absorption maximum at less than 650 nm (B1 component) and a coloring agent having an absorption maximum at 650 to 880 nm (B2 component). The ratio (weight ratio) of B1 component and B2 component in B component (B1 component/B2 component) is preferably 2/1 to 40/1, more preferably 2.5/1 to 30/1. It is preferably 3/1 to 25/1, and more preferably 3/1 to 25/1. If the ratio is less than 2/1, sufficient cut characteristics may not be obtained at 700 nm or less, and if it exceeds 40/1, absorption characteristics at 650 to 880 nm may be insufficient. The amount of sunlight that enters the sensor as noise increases, which may adversely affect sensing accuracy.
 色剤は、染料(有機、無機)、顔料(有機、無機)等から選択することができ、本発明が目的とする芳香族ポリカーボネート樹脂組成物を得ることができる限り特に制限されることはない。色剤としては、染料の方が粒子の表面での光乱反射がないため、染料を用いることが好ましい。染料系色剤としては、例えば、アントラキノン系色剤、ペリノン系色剤、ペリレン系色剤、メチン系色剤、アゾ系色剤、キノリン系色剤、フタロシアニン系色剤、スクアリリウム系色剤、複素環系色剤などが挙げられる。その中でも、耐熱性の高いアントラキノン系色剤、フタロシアニン系色剤、ペリレン系色剤及び複素環系色剤がより好ましい。 The coloring agent can be selected from dyes (organic, inorganic), pigments (organic, inorganic), etc., and is not particularly limited as long as the aromatic polycarbonate resin composition aimed at by the present invention can be obtained. . As the colorant, it is preferable to use a dye because the dye does not cause diffuse reflection of light on the surface of the particles. Dye-based coloring agents include, for example, anthraquinone-based coloring agents, perinone-based coloring agents, perylene-based coloring agents, methine-based coloring agents, azo-based coloring agents, quinoline-based coloring agents, phthalocyanine-based coloring agents, squarylium-based coloring agents, and complex coloring agents. Cyclic coloring agents and the like. Among them, anthraquinone-based coloring agents, phthalocyanine-based coloring agents, perylene-based coloring agents, and heterocyclic coloring agents having high heat resistance are more preferable.
 B成分の含有量は、A成分100重量部に対し、0.055~1.3重量部であり、0.08~1.0重量部であることが好ましく、0.1~0.5重量部であることがより好ましい。B成分の含有量が0.055重量部未満の場合、400~700nmにおける十分なカット特性が得られない。一方、1.3重量部を超えると、樹脂組成物の熱安定性が悪化する。
(C成分:熱安定剤)
 本発明の芳香族ポリカーボネート樹脂組成物は、リン系熱安定剤および/またはフェノール系熱安定剤を含有する。リン系熱安定剤は製造時または成形加工時の熱安定性を向上させ、機械的特性、色相、および成形安定性を向上させる。リン系熱安定剤としては、亜リン酸、リン酸、亜ホスホン酸、ホスホン酸およびこれらのエステル、並びに第3級ホスフィンなどが例示される。具体的にはホスファイト化合物としては、例えば、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ-iso-プロピルフェニル)ホスファイト、トリス(ジ-n-ブチルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,6-ジ-tert-ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-エチルフェニル)ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ジシクロヘキシルペンタエリスリトールジホスファイトなどが挙げられる。更に他のホスファイト化合物としては二価フェノール類と反応し環状構造を有するものも使用できる。例えば、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2,4-ジ-tert-ブチルフェニル)ホスファイト、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、2,2’-エチリデンビス(4-メチル-6-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイトなどを挙げることができる。ホスフェート化合物としては、トリブチルホスフェート、トリメチルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、トリエチルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、トリブトキシエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェートなどを挙げることができ、好ましくはトリフェニルホスフェート、トリメチルホスフェートである。
The content of component B is 0.055 to 1.3 parts by weight, preferably 0.08 to 1.0 parts by weight, and 0.1 to 0.5 parts by weight with respect to 100 parts by weight of component A. Part is more preferred. If the content of component B is less than 0.055 parts by weight, sufficient cutting properties in the range of 400 to 700 nm cannot be obtained. On the other hand, when it exceeds 1.3 parts by weight, the thermal stability of the resin composition deteriorates.
(C component: heat stabilizer)
The aromatic polycarbonate resin composition of the present invention contains a phosphorus heat stabilizer and/or a phenol heat stabilizer. Phosphorus-based heat stabilizers improve heat stability during production or molding, and improve mechanical properties, color, and molding stability. Examples of phosphorus-based heat stabilizers include phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid and their esters, and tertiary phosphines. Specific examples of phosphite compounds include triphenylphosphite, tris(nonylphenyl)phosphite, tridecylphosphite, trioctylphosphite, trioctadecylphosphite, didecylmonophenylphosphite, dioctylmonophenyl Phosphite, diisopropylmonophenylphosphite, monobutyldiphenylphosphite, monodecyldiphenylphosphite, monooctyldiphenylphosphite, 2,2-methylenebis(4,6-di-tert-butylphenyl)octylphosphite, tris( diethylphenyl)phosphite, tris(di-iso-propylphenyl)phosphite, tris(di-n-butylphenyl)phosphite, tris(2,4-di-tert-butylphenyl)phosphite, tris(2, 6-di-tert-butylphenyl)phosphite, distearylpentaerythritol diphosphite, bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite, bis(2,6-di-tert-butyl -4-methylphenyl)pentaerythritol diphosphite, bis(2,6-di-tert-butyl-4-ethylphenyl)pentaerythritol diphosphite, phenylbisphenol A pentaerythritol diphosphite, bis(nonylphenyl)penta Erythritol diphosphite, dicyclohexylpentaerythritol diphosphite and the like. Furthermore, as other phosphite compounds, those having a cyclic structure which react with dihydric phenols can also be used. For example, 2,2′-methylenebis(4,6-di-tert-butylphenyl)(2,4-di-tert-butylphenyl)phosphite, 2,2′-methylenebis(4,6-di-tert- butylphenyl)(2-tert-butyl-4-methylphenyl)phosphite, 2,2′-methylenebis(4-methyl-6-tert-butylphenyl)(2-tert-butyl-4-methylphenyl)phosphite , 2,2′-ethylidenebis(4-methyl-6-tert-butylphenyl)(2-tert-butyl-4-methylphenyl)phosphite. Phosphate compounds include tributyl phosphate, trimethyl phosphate, tricresyl phosphate, triphenyl phosphate, trichlorophenyl phosphate, triethyl phosphate, diphenyl cresyl phosphate, diphenyl monoorthoxenyl phosphate, tributoxyethyl phosphate, dibutyl phosphate, dioctyl phosphate, Diisopropyl phosphate and the like can be mentioned, and triphenyl phosphate and trimethyl phosphate are preferred.
 ホスホナイト化合物としては、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,3’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-3,3’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,3’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-3,3’-ビフェニレンジホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-n-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト等が挙げられ、テトラキス(ジ-tert-ブチルフェニル)-ビフェニレンジホスホナイト、ビス(ジ-tert-ブチルフェニル)-フェニル-フェニルホスホナイトが好ましく、テトラキス(2,4-ジ-tert-ブチルフェニル)-ビフェニレンジホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-フェニル-フェニルホスホナイトがより好ましい。かかるホスホナイト化合物は上記アルキル基が2以上置換したアリール基を有するホスファイト化合物との併用可能であり好ましい。ホスホネイト化合物としては、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、およびベンゼンホスホン酸ジプロピル等が挙げられる。第3級ホスフィンとしては、トリエチルホスフィン、トリプロピルホスフィン、トリブチルホスフィン、トリオクチルホスフィン、トリアミルホスフィン、ジメチルフェニルホスフィン、ジブチルフェニルホスフィン、ジフェニルメチルホスフィン、ジフェニルオクチルホスフィン、トリフェニルホスフィン、トリ-p-トリルホスフィン、トリナフチルホスフィン、およびジフェニルベンジルホスフィンなどが例示される。特に好ましい第3級ホスフィンは、トリフェニルホスフィンである。上記リン系熱安定剤は、1種のみならず2種以上を混合して用いることができる。上記リン系熱安定剤の中でもトリメチルホスフェートに代表されるアルキルホスフェート化合物が配合されることが好ましい。またかかるアルキルホスフェート化合物と、ホスファイト化合物および/またはホスホナイト化合物との併用も好ましい態様である。 Phosphonite compounds include tetrakis(2,4-di-tert-butylphenyl)-4,4'-biphenylenediphosphonite, tetrakis(2,4-di-tert-butylphenyl)-4,3'-biphenylenedi Phosphonite, Tetrakis(2,4-di-tert-butylphenyl)-3,3'-biphenylenediphosphonite, Tetrakis(2,6-di-tert-butylphenyl)-4,4'-biphenylenediphosphonite , tetrakis(2,6-di-tert-butylphenyl)-4,3′-biphenylenediphosphonite, tetrakis(2,6-di-tert-butylphenyl)-3,3′-biphenylenediphosphonite, bis (2,4-di-tert-butylphenyl)-4-phenyl-phenylphosphonite, bis(2,4-di-tert-butylphenyl)-3-phenyl-phenylphosphonite, bis(2,6-di -n-butylphenyl)-3-phenyl-phenylphosphonite, bis(2,6-di-tert-butylphenyl)-4-phenyl-phenylphosphonite, bis(2,6-di-tert-butylphenyl) -3-phenyl-phenylphosphonite and the like, preferably tetrakis(di-tert-butylphenyl)-biphenylenediphosphonite, bis(di-tert-butylphenyl)-phenyl-phenylphosphonite, tetrakis(2, 4-di-tert-butylphenyl)-biphenylenediphosphonite, bis(2,4-di-tert-butylphenyl)-phenyl-phenylphosphonite are more preferred. Such a phosphonite compound can be used in combination with a phosphite compound having an aryl group substituted with two or more alkyl groups, and is therefore preferable. Phosphonate compounds include dimethyl benzenephosphonate, diethyl benzenephosphonate, dipropyl benzenephosphonate, and the like. Tertiary phosphines include triethylphosphine, tripropylphosphine, tributylphosphine, trioctylphosphine, triamylphosphine, dimethylphenylphosphine, dibutylphenylphosphine, diphenylmethylphosphine, diphenyloctylphosphine, triphenylphosphine, and tri-p-tolyl. Examples include phosphine, trinaphthylphosphine, and diphenylbenzylphosphine. A particularly preferred tertiary phosphine is triphenylphosphine. The phosphorus-based heat stabilizers may be used singly or in combination of two or more. Among the above phosphorus-based heat stabilizers, it is preferable to blend an alkyl phosphate compound represented by trimethyl phosphate. In addition, the combination use of such an alkyl phosphate compound with a phosphite compound and/or a phosphonite compound is also a preferred embodiment.
 フェノール系熱安定剤としては、酸化防止機能を有するものであれば特に限定されないが、例えば、n-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)プロピオネート、テトラキス{メチレン-3-(3’,5’-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート}メタン、ジステアリル(4-ヒドロキシ-3-メチル-5-t-ブチルベンジル)マロネート、トリエチレグリコール-ビス{3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート}、1,6-ヘキサンジオール-ビス{3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート}、ペンタエリスリチル-テトラキス{3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート}、2,2-チオジエチレンビス{3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート}、2,2-チオビス(4-メチル-6-t-ブチルフェノール)、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレート、2,4-ビス{(オクチルチオ)メチル}-o-クレゾール、イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,5,7,8-テトラメチル-2(4’,8’,12’-トリメチルトリデシル)クロマン-6-オール、3,3’,3”,5,5’,5”-ヘキサ-t-ブチル-a,a’,a”-(メシチレン-2,4,6-トリイル)トリ-p-クレゾール等が挙げられる。 The phenolic heat stabilizer is not particularly limited as long as it has an antioxidant function. , tetrakis{methylene-3-(3′,5′-di-t-butyl-4-hydroxyphenyl)propionate}methane, distearyl(4-hydroxy-3-methyl-5-t-butylbenzyl)malonate, tri Ethylene glycol-bis{3-(3-t-butyl-5-methyl-4-hydroxyphenyl)propionate}, 1,6-hexanediol-bis{3-(3,5-di-t-butyl-4- hydroxyphenyl)propionate}, pentaerythrityl-tetrakis {3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate}, 2,2-thiodiethylenebis{3-(3,5-di- t-butyl-4-hydroxyphenyl)propionate}, 2,2-thiobis(4-methyl-6-t-butylphenol), 1,3,5-trimethyl-2,4,6-tris(3,5-di -t-butyl-4-hydroxybenzyl)benzene, tris(3,5-di-t-butyl-4-hydroxybenzyl)-isocyanurate, 2,4-bis{(octylthio)methyl}-o-cresol, isooctyl -3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, 2,5,7,8-tetramethyl-2(4′,8′,12′-trimethyltridecyl)chroman-6 -ol, 3,3′,3″,5,5′,5″-hexa-t-butyl-a,a′,a″-(mesitylene-2,4,6-triyl)tri-p-cresol, etc. is mentioned.
 これらの中で、n-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)プロピオネート、ペンタエリスリチル-テトラキス{3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート}、3,3’,3”,5,5’,5”-ヘキサ-t-ブチル-a,a’,a’-(メシチレン-2,4,6-トリイル)トリ-p-クレゾール、2,2-チオジエチレンビス{3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート}等が好ましい。 Among these, n-octadecyl-3-(4′-hydroxy-3′,5′-di-t-butylphenyl)propionate, pentaerythrityl-tetrakis{3-(3,5-di-t-butyl -4-hydroxyphenyl)propionate}, 3,3′,3″,5,5′,5″-hexa-t-butyl-a,a′,a′-(mesitylene-2,4,6-triyl) Tri-p-cresol, 2,2-thiodiethylenebis{3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate} and the like are preferred.
 C成分の含有量は、A成分100重量部に対し、0.003~0.5重量部であり、0.005~0.3重量部であることが好ましく、0.01~0.2重量部であることがより好ましい。C成分の含有量が0.003重量部未満の場合、樹脂組成物の熱安定性が悪化し、かつ吸収特性の熱安定性も悪化する。一方、0.5重量部を超えると、樹脂組成物の耐湿熱性が悪化する。
(D成分:ベンゾトリアゾール系紫外線吸収剤)
 本発明の芳香族ポリカーボネート樹脂組成物はベンゾトリアゾール系紫外線吸収剤を含有することが好ましい。ベンゾトリアゾール系紫外線吸収剤として、例えば、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾ-ル、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-3-tert-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]、2-(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-アミルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-5-tert-ブチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-4-オクトキシフェニル)ベンゾトリアゾ-ル、2,2’-メチレンビス(4-クミル-6-ベンゾトリアゾールフェニル)、2,2’-p-フェニレンビス(1,3-ベンゾオキサジン-4-オン)、および2-[2-ヒドロキシ-3-(3,4,5,6-テトラヒドロフタルイミドメチル)-5-メチルフェニル]ベンゾトリアゾ-ル、並びに2-(2’-ヒドロキシ-5-メタクリロキシエチルフェニル)-2H-ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体や2-(2’―ヒドロキシ-5-アクリロキシエチルフェニル)―2H―ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体などの2-ヒドロキシフェニル-2H-ベンゾトリアゾール骨格を有する重合体などが例示される。さらに上記紫外線吸収剤は、ラジカル重合が可能な単量体化合物の構造をとることにより、かかる紫外線吸収性単量体および/または光安定性単量体と、アルキル(メタ)アクリレートなどの単量体とを共重合したポリマー型の紫外線吸収剤であってもよい。前記紫外線吸収性単量体としては、(メタ)アクリル酸エステルのエステル置換基中にベンゾトリアゾール骨格を含有する化合物が好適に例示される。それらの中でも、チヌビン234(BASFジャパン(株))に代表される2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、チヌビン326(BASFジャパン(株))に代表される2-(2-ヒドロキシ-3-tert-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾールがより好ましい。
The content of component C is 0.003 to 0.5 parts by weight, preferably 0.005 to 0.3 parts by weight, and 0.01 to 0.2 parts by weight with respect to 100 parts by weight of component A. Part is more preferred. When the content of the C component is less than 0.003 parts by weight, the thermal stability of the resin composition deteriorates, and the thermal stability of the absorption properties also deteriorates. On the other hand, when it exceeds 0.5 parts by weight, the moist heat resistance of the resin composition deteriorates.
(Component D: Benzotriazole UV absorber)
The aromatic polycarbonate resin composition of the present invention preferably contains a benzotriazole ultraviolet absorber. Examples of benzotriazole-based UV absorbers include 2-(2-hydroxy-5-methylphenyl)benzotriazole, 2-(2-hydroxy-5-tert-octylphenyl)benzotriazole, 2-[2-hydroxy -3,5-bis(α,α-dimethylbenzyl)phenyl]-2H-benzotriazole, 2-(2-hydroxy-3-tert-butyl-5-methylphenyl)-5-chlorobenzotriazole, 2,2 '-methylenebis[4-(1,1,3,3-tetramethylbutyl)-6-(2H-benzotriazol-2-yl)phenol], 2-(2-hydroxy-3,5-di-tert- butylphenyl)benzotriazole, 2-(2-hydroxy-3,5-di-tert-butylphenyl)-5-chlorobenzotriazole, 2-(2-hydroxy-3,5-di-tert-amylphenyl) Benzotriazole, 2-(2-hydroxy-5-tert-octylphenyl)benzotriazole, 2-(2-hydroxy-5-tert-butylphenyl)benzotriazole, 2-(2-hydroxy-4-octyl oxyphenyl)benzotriazole, 2,2'-methylenebis(4-cumyl-6-benzotriazolephenyl), 2,2'-p-phenylenebis(1,3-benzoxazin-4-one), and 2- [2-hydroxy-3-(3,4,5,6-tetrahydrophthalimidomethyl)-5-methylphenyl]benzotriazole and 2-(2′-hydroxy-5-methacryloxyethylphenyl)-2H-benzo a copolymer of triazole and a vinyl-based monomer copolymerizable with the monomer, or 2-(2'-hydroxy-5-acryloxyethylphenyl)-2H-benzotriazole and a vinyl-based monomer copolymerizable with the monomer; and polymers having a 2-hydroxyphenyl-2H-benzotriazole skeleton such as copolymers of. Further, the above ultraviolet absorber has a structure of a monomer compound capable of radical polymerization, so that the ultraviolet absorbing monomer and/or photostable monomer and a monomer such as alkyl (meth)acrylate It may be a polymer-type ultraviolet absorber obtained by copolymerizing with a body. Preferred examples of the UV-absorbing monomer include compounds containing a benzotriazole skeleton in the ester substituent of (meth)acrylic acid ester. Among them, 2-[2-hydroxy-3,5-bis(α,α-dimethylbenzyl)phenyl]-2H-benzotriazole represented by Tinuvin 234 (BASF Japan Ltd.), Tinuvin 326 (BASF Japan) Ltd.) is more preferable.
 D成分の含有量は、A成分100重量部に対し、0.01~1重量部であることが好ましく、0.05~0.8重量部であることがより好ましく、0.1~0.5重量部であることがさらに好ましい。D成分の含有量が0.01重量部未満である場合、吸収特性の光安定性が悪化する場合があり、一方、1重量を超えると、樹脂組成物の熱安定性が低下する場合がある。
(その他の添加剤)
 本発明の芳香族ポリカーボネート樹脂組成物には、その熱安定性、意匠性の改良のために、これらの改良に使用されている添加剤が有利に使用される。以下、これらの添加剤について具体的に説明する。
(I)C成分以外の熱安定剤
 本発明の芳香族ポリカーボネート樹脂組成物には、前記リン系熱安定剤およびフェノール系熱安定剤以外の他の熱安定剤を配合することもできる。かかる他の熱安定剤としては、例えば3-ヒドロキシ-5,7-ジ-tert-ブチル-フラン-2-オンとo-キシレンとの反応生成物に代表されるラクトン系安定剤が好適に例示される。かかる安定剤の詳細は特開平7-233160号公報に記載されている。かかる化合物はIrganox HP-136(商標、CIBA SPECIALTY CHEMICALS社製)として市販され、該化合物を利用できる。更に該化合物と各種のホスファイト化合物およびヒンダードフェノール化合物を混合した安定剤が市販されている。例えば前記社製のIrganoxHP-2921が好適に例示される。ラクトン系安定剤の含有量は、A成分100重量部に対して、好ましくは0.0005~0.05重量部、より好ましくは0.001~0.03重量部である。またその他の安定剤としては、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-ラウリルチオプロピオネート)、およびグリセロール-3-ステアリルチオプロピオネートなどのイオウ含有安定剤が例示される。かかるイオウ含有安定剤の含有量は、A成分100重量部に対して、好ましくは0.001~0.1重量部、より好ましくは0.01~0.08重量部である。本発明のポリカーボネート樹脂組成物には、必要に応じてエポキシ化合物を配合することができる。かかるエポキシ化合物は、金型腐食を抑制するという目的で配合されるものであり、基本的にエポキシ官能基を有するもの全てが適用できる。好ましいエポキシ化合物の具体例としては、3,4ーエポキシシクロヘキシルメチルー3’,4’ーエポキシシクロヘキシルカルボキシレート、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロセキサン付加物、メチルメタクリレートとグリシジルメタクリレートの共重合体、スチレンとグリシジルメタクリレートの共重合体等が挙げられる。かかるエポキシ化合物の含有量は、A成分100重量部に対し、0.003~0.2重量部が好ましく、より好ましくは0.004~0.15重量部であり、さらに好ましくは0.005~0.1重量部である。
(II)離型剤
 本発明の芳香族ポリカーボネート樹脂組成物は、溶融成形時の金型からの離型性をより向上させるために、本発明の目的を損なわない範囲で離型剤を配合することも可能である。
The content of component D is preferably 0.01 to 1 part by weight, more preferably 0.05 to 0.8 part by weight, more preferably 0.1 to 0.1 part by weight, per 100 parts by weight of component A. More preferably 5 parts by weight. If the content of component D is less than 0.01 parts by weight, the light stability of absorption characteristics may deteriorate, while if it exceeds 1 weight, the thermal stability of the resin composition may deteriorate. .
(Other additives)
Additives used for these improvements are advantageously used in the aromatic polycarbonate resin composition of the present invention in order to improve its thermal stability and design properties. These additives will be specifically described below.
(I) Heat stabilizer other than component C The aromatic polycarbonate resin composition of the present invention may contain other heat stabilizers than the phosphorus-based heat stabilizer and the phenol-based heat stabilizer. Such other heat stabilizers are preferably lactone-based stabilizers represented by reaction products of 3-hydroxy-5,7-di-tert-butyl-furan-2-one and o-xylene. be done. Details of such stabilizers are described in JP-A-7-233160. Such a compound is available commercially as Irganox HP-136 (trademark, CIBA SPECIALTY CHEMICALS). Further, stabilizers obtained by mixing said compound with various phosphite compounds and hindered phenol compounds are commercially available. For example, Irganox HP-2921 manufactured by the above company is a suitable example. The content of the lactone stabilizer is preferably 0.0005 to 0.05 parts by weight, more preferably 0.001 to 0.03 parts by weight, per 100 parts by weight of component A. Other stabilizers include sulfur-containing stabilizers such as pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-laurylthiopropionate), and glycerol-3-stearylthiopropionate. exemplified. The content of the sulfur-containing stabilizer is preferably 0.001 to 0.1 parts by weight, more preferably 0.01 to 0.08 parts by weight, per 100 parts by weight of component A. The polycarbonate resin composition of the present invention may optionally contain an epoxy compound. Such epoxy compounds are blended for the purpose of suppressing mold corrosion, and basically all those having epoxy functional groups can be applied. Specific examples of preferred epoxy compounds include 3,4-epoxycyclohexylmethyl-3′,4′-epoxycyclohexylcarboxylate, 2,2-bis(hydroxymethyl)-1-butanol of 1,2-epoxy-4- (2-oxiranyl) cyclohexane adducts, copolymers of methyl methacrylate and glycidyl methacrylate, copolymers of styrene and glycidyl methacrylate, and the like. The content of such an epoxy compound is preferably 0.003 to 0.2 parts by weight, more preferably 0.004 to 0.15 parts by weight, and still more preferably 0.005 to 0.005 parts by weight with respect to 100 parts by weight of component A. 0.1 parts by weight.
(II) Release agent The aromatic polycarbonate resin composition of the present invention contains a release agent within a range that does not impair the object of the present invention in order to further improve the releasability from the mold during melt molding. is also possible.
 かかる離型剤としては、一価または多価アルコールの高級脂肪酸エステル、高級脂肪酸、パラフィンワックス、蜜蝋、オレフィン系ワックス、カルボキシ基および/またはカルボン酸無水物基を含有するオレフィン系ワックス、シリコーンオイル、オルガノポリシロキサン等が挙げられる。高級脂肪酸エステルとしては、炭素原子数1~20の一価または多価アルコールと炭素原子数10~30の飽和脂肪酸との部分エステルまたは全エステルが好ましい。かかる一価または多価アルコールと飽和脂肪酸との部分エステルまたは全エステルとしては、例えば、ステアリン酸モノグリセリド、ステアリン酸ジグリセリド、ステアリン酸トリグリセリド、ステアリン酸モノソルビテート、ステアリン酸ステアリル、ベヘニン酸モノグリセリド、ベヘニン酸ベヘニル、ペンタエリスリトールモノステアレート、ペンタエリスリトールテトラステアレート、ペンタエリスリトールテトラペラルゴネート、プロピレングリコールモノステアレート、ステアリルステアレート、パルミチルパルミテート、ブチルステアレート、メチルラウレート、イソプロピルパルミテート、ビフェニルビフェネ-ト、ソルビタンモノステアレート、2-エチルヘキシルステアレート等が挙げられる。なかでも、ステアリン酸モノグリセリド、ステアリン酸トリグリセリド、ペンタエリスリトールテトラステアレート、ベヘニン酸ベヘニルが好ましく用いられる。高級脂肪酸としては、炭素原子数10~30の飽和脂肪酸が好ましい。かかる脂肪酸としては、ミリスチン酸、ラウリン酸、パルミチン酸、ステアリン酸、ベヘニン酸などが挙げられる。 Examples of such release agents include higher fatty acid esters of monohydric or polyhydric alcohols, higher fatty acids, paraffin wax, beeswax, olefinic waxes, olefinic waxes containing carboxy groups and/or carboxylic acid anhydride groups, silicone oils, organopolysiloxane and the like. Preferred higher fatty acid esters are partial or full esters of monohydric or polyhydric alcohols having 1 to 20 carbon atoms and saturated fatty acids having 10 to 30 carbon atoms. Partial or full esters of monohydric or polyhydric alcohols with saturated fatty acids include, for example, stearic acid monoglyceride, stearic acid diglyceride, stearic acid triglyceride, stearic acid monosorbitate, stearyl stearate, behenic acid monoglyceride, and behenic acid. Behenyl, pentaerythritol monostearate, pentaerythritol tetrastearate, pentaerythritol tetrapelargonate, propylene glycol monostearate, stearyl stearate, palmityl palmitate, butyl stearate, methyl laurate, isopropyl palmitate, biphenyl biphene -to, sorbitan monostearate, 2-ethylhexyl stearate and the like. Among them, stearic acid monoglyceride, stearic acid triglyceride, pentaerythritol tetrastearate, and behenyl behenate are preferably used. As higher fatty acids, saturated fatty acids having 10 to 30 carbon atoms are preferred. Such fatty acids include myristic acid, lauric acid, palmitic acid, stearic acid, behenic acid and the like.
 これらの離型剤は、1種を単独で用いても良く、2種以上を併用しても良い。かかる離型剤の含有量は、A成分100重量部に対し、0.01~5重量部であることが好ましい。
<樹脂組成物の製造方法>
 本発明のポリカーボネート樹脂組成物を製造するには、任意の方法が採用される。例えば各成分、並びに任意に他の成分を予備混合し、その後溶融混練し、ペレット化する方法を挙げることができる。予備混合の手段としては、ナウターミキサー、V型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、押出混合機などを挙げることができる。予備混合においては場合により押出造粒器やブリケッティングマシーンなどにより造粒を行うこともできる。予備混合後、ベント式二軸押出機に代表される溶融混練機で溶融混練、およびペレタイザー等の機器によりペレット化する。溶融混練機としては他にバンバリーミキサー、混練ロール、恒熱撹拌容器などを挙げることができるが、ベント式ニ軸押出機が好ましい。他に、各成分、並びに任意に他の成分を予備混合することなく、それぞれ独立に二軸押出機に代表される溶融混練機に供給する方法も取ることもできる。
<成形品について>
 上記の如く得られた本発明のポリカーボネート樹脂組成物は通常前記の如く製造されたペレットを射出成形して各種製品を製造することができる。更にペレットを経由することなく、押出機で溶融混練された樹脂を直接シート、フィルム、異型押出成形品および射出成形品にすることも可能である。かかる射出成形においては、通常の成形方法だけでなく、適宜目的に応じて、射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体の注入によるものを含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、サンドイッチ成形、および超高速射出成形などの射出成形法を用いて成形品を得ることができる。これら各種成形法の利点は既に広く知られるところである。また成形はコールドランナー方式およびホットランナー方式のいずれも選択することができる。また本発明の樹脂組成物は、押出成形により各種異形押出成形品、シートを成形することも可能である。
One of these release agents may be used alone, or two or more thereof may be used in combination. The content of the release agent is preferably 0.01 to 5 parts by weight per 100 parts by weight of component A.
<Method for producing resin composition>
Any method is employed to produce the polycarbonate resin composition of the present invention. For example, a method of premixing each component and optionally other components, followed by melt-kneading and pelletizing can be mentioned. Means for premixing include a Nauta mixer, a V-type blender, a Henschel mixer, a mechanochemical device, an extrusion mixer, and the like. In the pre-mixing, granulation can be performed by an extrusion granulator, a briquetting machine, or the like. After pre-mixing, the mixture is melt-kneaded by a melt-kneader typified by a vented twin-screw extruder, and pelletized by a device such as a pelletizer. Other examples of the melt-kneader include a Banbury mixer, a kneading roll, a constant temperature stirring vessel and the like, but a vented twin-screw extruder is preferred. Alternatively, each component and, optionally, other components may be supplied independently to a melt-kneader typified by a twin-screw extruder without being premixed.
<About molded products>
The polycarbonate resin composition of the present invention obtained as described above can be used to produce various products by injection molding the pellets produced as described above. Further, it is also possible to directly form a sheet, film, profile extrusion molded product, and injection molded product from the resin melt-kneaded in an extruder without going through pellets. In such injection molding, not only ordinary molding methods but also injection compression molding, injection press molding, gas-assisted injection molding, foam molding (including injection of supercritical fluid), insert molding, Molded articles can be obtained using injection molding methods such as in-mold coating molding, adiabatic molding, rapid heat and cool molding, two-color molding, sandwich molding, and ultra-high speed injection molding. The advantages of these various molding methods are already widely known. For molding, either cold runner method or hot runner method can be selected. Moreover, the resin composition of the present invention can also be molded into various shaped extruded products and sheets by extrusion molding.
 本願発明の樹脂組成物からなる成形品は、400~700nmにおける厚さ3mmに成形した成形品の厚さ方向の光線透過率の平均値が1.5%以下であることが必要である。該光線透過率の平均値は1.0%以下であることがより好ましく、0.5%以下であることがさらに好ましい。該光線透過率の平均値が1.5%を超えるとノイズとなる太陽光の光量が多くなり、センシングに悪影響が出る。なお、該光線透過率の平均値の下限は特に限定されないが、0%以上であることが好ましい。 A molded article made of the resin composition of the present invention must have an average light transmittance of 1.5% or less in the thickness direction of a molded article having a thickness of 3 mm at a wavelength of 400 to 700 nm. The average light transmittance is more preferably 1.0% or less, more preferably 0.5% or less. If the average value of the light transmittance exceeds 1.5%, the amount of sunlight that causes noise increases, adversely affecting sensing. Although the lower limit of the average light transmittance is not particularly limited, it is preferably 0% or more.
 また、本願発明の樹脂組成物からなる成形品は、400nm~B2成分の吸収が極大である波長における、厚さ3mmに成形した成形品の厚さ方向の光線透過率の最大値が5.0%以下であることが好ましく、3.0%以下であることがより好ましく、2.0%以下であることがさらに好ましい。該光線透過率の最大値が5.0%を超えると、透過率最大値付近の光がノイズとなり、センシングに悪影響が出る場合がある。なお、該光線透過率の最大値の下限は特に限定されないが、0%以上であることが好ましい。 In addition, the molded article made of the resin composition of the present invention has a maximum light transmittance of 5.0 in the thickness direction of a molded article molded to a thickness of 3 mm at a wavelength from 400 nm to the wavelength at which the absorption of the B2 component is maximum. % or less, more preferably 3.0% or less, even more preferably 2.0% or less. If the maximum light transmittance exceeds 5.0%, light near the maximum transmittance becomes noise, which may adversely affect sensing. Although the lower limit of the maximum value of the light transmittance is not particularly limited, it is preferably 0% or more.
 以下に、本発明を実施例により具体的に説明するが、本発明はそれら実施例に制限されるものではない。尚、「部」は断りの無い限り、重量部である。なお、評価は下記の方法によって実施した。
[樹脂組成物の評価]
1.400~700nmにおける光線透過率の平均値
 下記方法にて作製した連続成形品について、紫外可視近赤外分光光度計(日本分光株式会社製V-770)を用い、300~2500nmの範囲で分光光線透過率を測定した。得られた分光スペクトルより、400~700nmの光線透過率の平均値を算出した。
2.400nm~B2成分の吸収極大波長での光線透過率の最大値
 「1.400~700nmにおける光線透過率の平均値」と同様の方法で、分光光線透過率を測定した。得られた分光スペクトルから、400nm~B2成分の吸収極大波長における光線透過率の最大値を読み取った。
3.吸収特性の熱安定性
 「1.400~700nmにおける光線透過率の平均値」と同様の方法で、連続成形品の分光光線透過率を測定した。得られた分光スペクトルについて、波長1100nmから低波長側にスキャンし、初めて透過率80%以下に達する波長(透過波長λt)を読み取った。滞留成形品についても同様の方法で、透過波長λtrを読み取った。λtr-λtが0~5の場合を◎、6~10の場合を〇、11~20の場合を△、21以上の場合を×とした。
4.吸収特性の光安定性
 「1.400~700nmにおける光線透過率の平均値」と同様の方法で、光暴露処理品について透過波長λtxを読み取った。|λtx-λt|が0~5の場合を◎、6~10の場合を〇、11~20の場合を△、21以上の場合を×とした。
5.樹脂組成物の熱安定性(粘度平均分子量)
 連続成形品の粘度平均分子量(M)および滞留成形品の粘度平均分子量(M)を、下記の方法で測定した。M-M<1,000を満たす場合を○、満たさない場合を×とした。
EXAMPLES The present invention will be specifically described below with reference to Examples, but the present invention is not limited to these Examples. "Parts" are parts by weight unless otherwise specified. In addition, evaluation was implemented by the following method.
[Evaluation of Resin Composition]
1. Average value of light transmittance at 400 to 700 nm For a continuous molded product produced by the following method, using an ultraviolet visible near infrared spectrophotometer (V-770 manufactured by JASCO Corporation), in the range of 300 to 2500 nm Spectral light transmittance was measured. The average light transmittance of 400 to 700 nm was calculated from the obtained spectrum.
2. Maximum value of light transmittance at absorption maximum wavelength of component B2 from 400 nm Spectral light transmittance was measured in the same manner as "Average value of light transmittance at 1.400 to 700 nm". From the obtained spectrum, the maximum value of light transmittance was read from 400 nm to the maximum absorption wavelength of the B2 component.
3. Thermal Stability of Absorption Characteristics The spectral light transmittance of the continuous molded product was measured in the same manner as the "average value of light transmittance at 1.400 to 700 nm". The spectral spectrum obtained was scanned from a wavelength of 1100 nm toward the lower wavelength side, and the wavelength (transmission wavelength λt) at which the transmittance reached 80% or less for the first time was read. The transmitted wavelength λtr was read in the same manner for the staying molded product. When λtr-λt is 0 to 5, it is evaluated as ⊚, when it is 6 to 10, it is evaluated as ◯, when it is 11 to 20, it is evaluated as Δ, and when it is 21 or more, it is evaluated as ×.
4. Photostability of Absorption Characteristics The transmission wavelength λtx of the light-exposed product was read in the same manner as the “average value of light transmittance in the range of 1.400 to 700 nm”. When |λtx−λt| is 0 to 5, the case is ⊚;
5. Thermal stability of resin composition (viscosity average molecular weight)
The viscosity average molecular weight (M 0 ) of the continuously molded product and the viscosity average molecular weight (M 1 ) of the staying molded product were measured by the following methods. A case where M 0 −M 1 <1,000 was satisfied was evaluated as ◯, and a case where M 0 −M 1 <1,000 was not satisfied was evaluated as X.
 粘度平均分子量(M)は、まず、次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlに下記の方法で得られた成形品 0.7gを溶解した溶液からオストワルド粘度計を用いて求め、
  比粘度(ηSP)=(t-t)/t
  [tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式によりを算出した。
The viscosity-average molecular weight (M) is obtained by first calculating the specific viscosity (η SP ) calculated by the following formula at 20° C. by dissolving 0.7 g of the molded product obtained by the following method in 100 ml of methylene chloride, and then calculating the Ostwald viscosity. using a meter,
Specific viscosity (η SP ) = (tt 0 )/t 0
[t 0 is the number of seconds the methylene chloride falls, t is the number of seconds the sample solution falls]
was calculated from the obtained specific viscosity (η SP ) by the following formula.
  ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
  [η]=1.23×10-40.83
  c=0.7
6.樹脂組成物の耐湿熱性(粘度平均分子量)
 連続成形品の粘度平均分子量(M)および湿熱処理品の粘度平均分子量(M)を、「5.樹脂組成物の熱安定性」と同様の方法で測定した。M-M<1,000を満たす場合を○、満たさない場合を×とした。
[実施例1~41、比較例1~4]
[樹脂ペレットの作製]
 表1~表4に示す成分、含有量に基づき、タンブラーを用いて各種配合成分を混合し二軸押出機((株)日本製鋼所TEX30α)を用いてシリンダー温度280℃にて溶融混練し、各種ペレットを得た。使用した成分は、それぞれ次のとおりである。
[射出成形による成形品の作製]
 上記方法にて得られたペレットを、120℃で5時間熱風循環式乾燥機にて乾燥した後、射出成形機(FANUC(株)製 ROBOSHOTα-S100iA)を使用し、シリンダー温度340℃、金型温度80℃の条件で、厚さ3mmの板状試験片を成形した。成形は、連続して成形し、シリンダー中に樹脂が存在する状態で10分間射出を中止した後再度成形を実施した。射出を途中で停止することなく連続的に成形したものを連続成形品、シリンダー中に樹脂が存在する状態で10分間射出を中止した後に成形したものを滞留成形品とした。
[成形品の光暴露処理]
 上記方法にて得られた連続成形品に対して、キセノンウェザーメーター(スガ試験機(株)NX75Z)を用い、ブラックパネル温度63℃、槽内温度50℃、相対湿度50%、照射強度0.35W/m(@340nm)の条件にて1000時間の光暴露処理を実施した成形品を光暴露処理品とした。
[成形品の湿熱処理]
 上記方法にて得られた連続成形品に対して、恒温恒湿器(エスペック(株)PR-3J)を用い、温度80℃、湿度85%の条件にて1000時間の湿熱処理を実施した成形品を湿熱処理品とした。
(A成分)
A-1:帝人(株)製パンライトL-1225WX(粘度平均分子量:19,700)
A-2:帝人(株)製パンライトL-1225WP(粘度平均分子量:22,400)
A-3:下記の方法で製造したポリカーボネート樹脂
 温度計、撹拌機および還流冷却器の付いた反応器に、48%水酸化ナトリウム水溶液3844部およびイオン交換水22,380部を仕込み、これに2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン(Bis-C、本州化学製)1,992部、2,2-ビス(4-ヒドロキシフェニル)プロパン(Bis-A、新日鐵化学製)1,773部、およびハイドロサルファイト7.53部(和光純薬製)を溶解した後、塩化メチレン13,210部を加え、撹拌下、15~25℃でホスゲン2,000部を約60分かけて吹き込んだ。ホスゲンの吹き込み終了後、48%水酸化ナトリウム水溶液640部およびp-tert-ブチルフェノール93.2部を加え、撹拌を再開、乳化後トリエチルアミン3.24部を加え、さらに28~33℃で1時間撹拌して反応を終了した。反応終了後生成物を塩化メチレンで希釈して水洗した後、塩酸酸性にして水洗し、さらに水相の導電率がイオン交換水とほぼ同じになるまで水洗を繰り返し、ポリカーボネート樹脂の塩化メチレン溶液を得た。次いで、この溶液を目開き0.3μmのフィルターに通過させ、さらに軸受け部に異物取出口を有する隔離室付きニーダー中の温水に滴下、塩化メチレンを留去しながらポリカーボネート樹脂をフレーク化し、引続き該含液フレークを粉砕・乾燥してパウダーを得た。粘度平均分子量は20,000であった。
(B1成分)
B1-1:NUBIAN BLACK PC-5857(オリヱント化学工業(株)、吸収極大波長599nm)
(B2成分)
B2-1:フタロシアニン系色剤FDR-004(山田化学工業(株)、吸収極大波長720nm)
B2-2:アントラキノン系色剤SDO-7(有本化学工業(株)、吸収極大波長676nm)
B2-3:アントラキノン系色剤SDO-11(有本化学工業(株)、吸収極大波長761nm)
B2-4:複素環系色剤SDO-C33(有本化学工業(株)、吸収極大波長847nm)
B2-5:ペリレン系色剤Lumogen IR-765(BASFジャパン(株)、吸収極大波長769nm)
(C成分)
C-1:リン系熱安定剤アデカスタブ2112((株)ADEKA)
C-2:フェノール系熱安定剤AO-50((株)ADEKA)
(D成分)
D-1:ベンゾトリアゾール系紫外線吸収剤チヌビン234(BASFジャパン(株))
D-2:ベンゾトリアゾール系紫外線吸収剤チヌビン326(BASFジャパン(株))
D-3:ベンゾトリアゾール系紫外線吸収剤シーソーブ709(シプロ化成(株))
(その他成分)
E-1:ユニスターH476S(日油(株))
E-2:リケスターEW-400(理研ビタミン(株))
G-1:フタロシアニン系色剤FDN-004(山田化学工業(株)、吸収極大波長887nm)
η SP /c=[η]+0.45×[η] 2 c (where [η] is the intrinsic viscosity)
[η]=1.23×10 −4 M 0.83
c=0.7
6. Wet heat resistance of resin composition (viscosity average molecular weight)
The viscosity-average molecular weight (M 0 ) of the continuously molded product and the viscosity-average molecular weight (M 2 ) of the wet-heat-treated product were measured in the same manner as in “5. Thermal stability of resin composition”. A case where M 0 −M 2 <1,000 was satisfied was indicated by ◯, and a case where it was not satisfied was indicated by ×.
[Examples 1 to 41, Comparative Examples 1 to 4]
[Production of resin pellets]
Based on the components and contents shown in Tables 1 to 4, various ingredients are mixed using a tumbler and melt-kneaded at a cylinder temperature of 280 ° C. using a twin-screw extruder (Japan Steel Works, Ltd. TEX30α). Various pellets were obtained. The components used are as follows.
[Preparation of molded product by injection molding]
After drying the pellets obtained by the above method in a hot air circulation dryer at 120 ° C. for 5 hours, an injection molding machine (FANUC Co., Ltd. ROBOSHOT α-S100iA) was used, and the cylinder temperature was 340 ° C. The mold A plate-shaped specimen with a thickness of 3 mm was formed at a temperature of 80°C. Molding was carried out continuously, and injection was stopped for 10 minutes while resin was present in the cylinder, and then molding was carried out again. A continuously molded product was obtained by molding continuously without stopping the injection, and a staying molded product was obtained by molding after stopping the injection for 10 minutes while the resin was present in the cylinder.
[Light exposure treatment of molded product]
Using a xenon weather meter (Suga Test Instruments Co., Ltd. NX75Z), the continuously molded product obtained by the above method was measured at a black panel temperature of 63°C, a chamber temperature of 50°C, a relative humidity of 50%, and an irradiation intensity of 0.5°C. A molded article subjected to light exposure treatment for 1000 hours under the condition of 35 W/m 2 (@ 340 nm) was used as a light exposure treated article.
[Wet heat treatment of molded product]
The continuous molded product obtained by the above method is subjected to wet heat treatment for 1000 hours at a temperature of 80 ° C. and a humidity of 85% using a constant temperature and humidity chamber (Espec Co., Ltd. PR-3J). The product was treated as a wet heat treated product.
(A component)
A-1: Panlite L-1225WX manufactured by Teijin Limited (viscosity average molecular weight: 19,700)
A-2: Panlite L-1225WP manufactured by Teijin Limited (viscosity average molecular weight: 22,400)
A-3: Polycarbonate resin produced by the following method A reactor equipped with a thermometer, a stirrer and a reflux condenser was charged with 3844 parts of a 48% sodium hydroxide aqueous solution and 22,380 parts of ion-exchanged water. , 2-bis (4-hydroxy-3-methylphenyl) propane (Bis-C, manufactured by Honshu Chemical) 1,992 parts, 2,2-bis (4-hydroxyphenyl) propane (Bis-A, Nippon Steel Chemical After dissolving 1,773 parts of hydrosulfite (manufactured by Wako Pure Chemical Industries, Ltd.) and 7.53 parts of hydrosulfite (manufactured by Wako Pure Chemical Industries, Ltd.), 13,210 parts of methylene chloride was added, and 2,000 parts of phosgene was added to about 2,000 parts of phosgene at 15 to 25°C while stirring. It was blown for 60 minutes. After the completion of blowing of phosgene, 640 parts of a 48% aqueous sodium hydroxide solution and 93.2 parts of p-tert-butylphenol are added, stirring is resumed, 3.24 parts of triethylamine is added after emulsification, and the mixture is further stirred at 28 to 33°C for 1 hour. to terminate the reaction. After the completion of the reaction, the product was diluted with methylene chloride and washed with water, then acidified with hydrochloric acid and washed with water. The washing with water was repeated until the conductivity of the aqueous phase became approximately the same as that of ion-exchanged water. Obtained. Next, this solution is passed through a filter with a mesh size of 0.3 μm, and is added dropwise to hot water in a kneader with an isolated chamber having a foreign matter outlet at the bearing portion to flake the polycarbonate resin while distilling off the methylene chloride. The liquid-containing flakes were pulverized and dried to obtain a powder. The viscosity average molecular weight was 20,000.
(B1 component)
B1-1: NUBIAN BLACK PC-5857 (Orient Chemical Industry Co., Ltd., absorption maximum wavelength 599 nm)
(B2 component)
B2-1: Phthalocyanine colorant FDR-004 (Yamada Chemical Industry Co., Ltd., maximum absorption wavelength 720 nm)
B2-2: Anthraquinone colorant SDO-7 (Arimoto Chemical Industry Co., Ltd., absorption maximum wavelength 676 nm)
B2-3: Anthraquinone colorant SDO-11 (Arimoto Chemical Industry Co., Ltd., absorption maximum wavelength 761 nm)
B2-4: heterocyclic coloring agent SDO-C33 (Arimoto Chemical Industry Co., Ltd., absorption maximum wavelength 847 nm)
B2-5: Perylene colorant Lumogen IR-765 (BASF Japan Co., Ltd., maximum absorption wavelength 769 nm)
(C component)
C-1: Phosphorus-based heat stabilizer ADEKA STAB 2112 (ADEKA Corporation)
C-2: Phenolic heat stabilizer AO-50 (ADEKA Corporation)
(D component)
D-1: Benzotriazole-based UV absorber Tinuvin 234 (BASF Japan Ltd.)
D-2: Benzotriazole-based UV absorber Tinuvin 326 (BASF Japan Ltd.)
D-3: Benzotriazole-based UV absorber Seesorb 709 (Shipro Kasei Co., Ltd.)
(Other ingredients)
E-1: Unistar H476S (NOF Corporation)
E-2: Likester EW-400 (Riken Vitamin Co., Ltd.)
G-1: Phthalocyanine colorant FDN-004 (Yamada Chemical Industry Co., Ltd., maximum absorption wavelength 887 nm)
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表1~表4に記載の実施例は、いずれも熱安定性および耐湿熱性に優れ、波長選択的な吸収特性を有するため、自動運転システムの赤外線センサーに使用される種々の赤外線光源に対応できる。さらに吸収特性の熱安定性および光安定性に優れる結果であった。 The examples listed in Tables 1 to 4 are all excellent in thermal stability and resistance to moisture and heat, and have wavelength-selective absorption characteristics, so they can be used with various infrared light sources used in infrared sensors for automatic driving systems. . Furthermore, the result was excellent in the thermal stability and light stability of the absorption characteristics.
 B成分については、含有量が下限未満の場合、400nm~700nmでの光線透過率の平均値が1.5%を超え、かつ400nm~B2成分吸収極大波長での光線透過率の最大値が5.0%を超える結果となった。含有量が上限を超える場合、樹脂組成物の熱安定性が悪化した。C成分については、含有量が下限未満の場合、吸収特性の熱安定性に劣る結果であり、含有量が上限を超える場合、樹脂組成物の耐湿熱性に劣る結果であった。
 
Regarding the B component, if the content is less than the lower limit, the average value of the light transmittance at 400 nm to 700 nm exceeds 1.5%, and the maximum light transmittance at the wavelength of 400 nm to the maximum absorption of the B2 component is 5. The result exceeded 0%. When the content exceeded the upper limit, the thermal stability of the resin composition deteriorated. Regarding the C component, when the content was less than the lower limit, the result was poor thermal stability of absorption characteristics, and when the content exceeded the upper limit, the result was poor heat and humidity resistance of the resin composition.

Claims (9)

  1.  (A)芳香族ポリカーボネート樹脂(A成分)100重量部に対し、(B)(B1)650nm未満に吸収極大を有する色剤(B1成分)および(B2)650~880nmに吸収極大を有する色剤(B2成分)を含む色剤(B成分)0.055~1.3重量部および(C)リン系熱安定剤および/またはフェノール系熱安定剤(C成分)0.003~0.5重量部を含有する樹脂組成物であって、400~700nmにおける厚さ3mmに成形した成形品の厚さ方向の光線透過率の平均値が1.5%以下であることを特徴とする樹脂組成物。 (A) Per 100 parts by weight of the aromatic polycarbonate resin (component A), (B) (B1) a coloring agent having an absorption maximum at less than 650 nm (component B1) and (B2) a coloring agent having an absorption maximum at 650 to 880 nm 0.055 to 1.3 parts by weight of a colorant (B component) containing (B2 component) and 0.003 to 0.5 parts by weight of (C) a phosphorus heat stabilizer and/or a phenolic heat stabilizer (C component) wherein the average value of the light transmittance in the thickness direction of a molded article having a thickness of 3 mm at 400 to 700 nm is 1.5% or less. .
  2.  B1成分とB2成分との割合(重量比)(B1成分/B2成分)が2/1~40/1であることを特徴とする請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the ratio (weight ratio) of the B1 component and the B2 component (B1 component/B2 component) is 2/1 to 40/1.
  3.  400nm~B2成分の吸収が極大である波長における、厚さ3mmに成形した成形品の厚さ方向の光線透過率の最大値が5.0%以下であることを特徴とする請求項1または2に記載の樹脂組成物。 2. The maximum value of the light transmittance in the thickness direction of a molded article having a thickness of 3 mm is 5.0% or less at a wavelength from 400 nm to which the absorption of the B2 component is maximum. The resin composition according to .
  4.  B2成分がアントラキノン系色剤、フタロシアニン系色剤、ペリレン系色剤および複素環系色剤からなる群より選ばれる少なくとも1種の色剤であることを特徴とする請求項1~3のいずれかに記載の樹脂組成物。 4. The B2 component is at least one colorant selected from the group consisting of anthraquinone colorants, phthalocyanine colorants, perylene colorants and heterocyclic colorants. The resin composition according to .
  5.  A成分100重量部に対し、(D)ベンゾトリアゾール系紫外線吸収剤(D成分)0.01~1重量部を含有することを特徴とする請求項1~4のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, characterized by containing 0.01 to 1 part by weight of (D) a benzotriazole-based ultraviolet absorber (component D) with respect to 100 parts by weight of component A. .
  6.  A成分の粘度平均分子量が24,000以下であることを特徴とする請求項1~5のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 5, wherein the viscosity average molecular weight of component A is 24,000 or less.
  7.  請求項1~6のいずれかに記載の樹脂組成物を成形してなる成形品。 A molded product obtained by molding the resin composition according to any one of claims 1 to 6.
  8.  赤外線センサーを覆うカバー材料である請求項7に記載の成形品。 The molded article according to claim 7, which is a cover material for covering the infrared sensor.
  9.  ドライバーを監視するドライバーモニタリングシステム並びに他の車両および建築物を検知するためのLiDARに使用される赤外線センサーを覆うカバー材料である請求項8に記載の成形品。
     
    9. The molded article of claim 8, which is a cover material for covering infrared sensors used in driver monitoring systems to monitor drivers and LiDAR to detect other vehicles and buildings.
PCT/JP2022/042176 2022-01-28 2022-11-14 Aromatic polycarbonate resin composition and molded article thereof WO2023145197A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022011505 2022-01-28
JP2022-011505 2022-01-28

Publications (1)

Publication Number Publication Date
WO2023145197A1 true WO2023145197A1 (en) 2023-08-03

Family

ID=87471390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042176 WO2023145197A1 (en) 2022-01-28 2022-11-14 Aromatic polycarbonate resin composition and molded article thereof

Country Status (1)

Country Link
WO (1) WO2023145197A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070290172A1 (en) * 2006-06-19 2007-12-20 General Electric Company Infrared transmissive thermoplastic composition, and articles formed therefrom
JP2020519706A (en) * 2017-04-24 2020-07-02 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag Laser beam transparent base material for sensor applications
US20200393568A1 (en) * 2017-12-21 2020-12-17 Covestro Deutschland Ag Device comprising a multi-layer body and a lidar sensor
JP2021025029A (en) * 2019-08-08 2021-02-22 住化ポリカーボネート株式会社 Wavelength-selectively transparent polycarbonate resin composition
JP2021143233A (en) * 2020-03-10 2021-09-24 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition
JP2021188010A (en) * 2020-06-03 2021-12-13 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition
JP2021188011A (en) * 2020-06-03 2021-12-13 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition
US20220033651A1 (en) * 2020-07-28 2022-02-03 Hyundai Mobis Co., Ltd. Polycarbonate resin composition and molded article containing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070290172A1 (en) * 2006-06-19 2007-12-20 General Electric Company Infrared transmissive thermoplastic composition, and articles formed therefrom
JP2020519706A (en) * 2017-04-24 2020-07-02 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag Laser beam transparent base material for sensor applications
US20200393568A1 (en) * 2017-12-21 2020-12-17 Covestro Deutschland Ag Device comprising a multi-layer body and a lidar sensor
JP2021025029A (en) * 2019-08-08 2021-02-22 住化ポリカーボネート株式会社 Wavelength-selectively transparent polycarbonate resin composition
JP2021143233A (en) * 2020-03-10 2021-09-24 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition
JP2021188010A (en) * 2020-06-03 2021-12-13 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition
JP2021188011A (en) * 2020-06-03 2021-12-13 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition
US20220033651A1 (en) * 2020-07-28 2022-02-03 Hyundai Mobis Co., Ltd. Polycarbonate resin composition and molded article containing the same

Similar Documents

Publication Publication Date Title
JP5684588B2 (en) Polycarbonate resin composition and molded article
JP4890766B2 (en) Light diffusing aromatic polycarbonate resin composition
JP5768810B2 (en) Transparent flame retardant aromatic polycarbonate resin composition and molded article
TWI473843B (en) Polycarbonate-polydiorganosiloxane copolymer
JP4373577B2 (en) Light diffusing aromatic polycarbonate resin composition
JP5542810B2 (en) Polycarbonate resin composition and molded article thereof
US8501303B2 (en) Aromatic polycarbonate resin composition
JP3516908B2 (en) Aromatic polycarbonate resin composition and molded article
JP5684548B2 (en) Glass fiber reinforced resin composition
KR20130018988A (en) Aromatic polyarbonate resin composition for lightguide plate and lightguide plate
US8927633B2 (en) Aromatic polycarbonate resin composition, and molded article comprising same
US20100330362A1 (en) Polycarbonate resin laminated sheet
JP5749177B2 (en) Resin composition containing bisbenzoxazinone compound
WO2013141005A1 (en) Light-diffusible resin composition
JP5141053B2 (en) Resin composition and resin molded body
JP6577162B2 (en) Transparent flame retardant thermoplastic resin composition and molded article thereof
JP2008127557A (en) Polycarbonate resin composition containing red dyestuff, and molded article made from the resin composition
EP3279235B1 (en) Injection-molded body for vehicle, automobile light guide using same, automobile interior panel, and automobile lamp lens
JP2000109669A (en) Aromatic polycarbonate resin composition and optical molded article
WO2023145197A1 (en) Aromatic polycarbonate resin composition and molded article thereof
JP2006083230A (en) Aromatic polycarbonate resin composition and its molded article
JP2008174655A (en) Polycarbonate resin sheet or film
JP2011207954A (en) Polycarbonate resin composition and molded article thereof
KR20170016842A (en) Polycarbonate resin composition, and molded article and method for manufacturing same
JP2009286850A (en) Aromatic polycarbonate resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22924050

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023576637

Country of ref document: JP