WO2021235201A1 - Quality change detection method, quality change detection system, and program - Google Patents

Quality change detection method, quality change detection system, and program Download PDF

Info

Publication number
WO2021235201A1
WO2021235201A1 PCT/JP2021/016814 JP2021016814W WO2021235201A1 WO 2021235201 A1 WO2021235201 A1 WO 2021235201A1 JP 2021016814 W JP2021016814 W JP 2021016814W WO 2021235201 A1 WO2021235201 A1 WO 2021235201A1
Authority
WO
WIPO (PCT)
Prior art keywords
mounting
quality
change detection
determination
mounting position
Prior art date
Application number
PCT/JP2021/016814
Other languages
French (fr)
Japanese (ja)
Inventor
アレックス ヴァルディヴィエルソ
謙太 中村
昌弘 谷口
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2022524357A priority Critical patent/JPWO2021235201A1/ja
Publication of WO2021235201A1 publication Critical patent/WO2021235201A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages

Definitions

  • This disclosure generally relates to quality change detection methods, quality change detection systems, and programs.
  • Patent Document 1 describes a mounted component inspection device for inspecting a mounted state of a component on a printed circuit board.
  • the mounted component inspection device described in Patent Document 1 detects a component mounting defect based on an image of a component mounting position on a printed circuit board.
  • An object of the present disclosure is to provide a quality change detection method, a quality change detection system, and a program that can prevent the occurrence of mounting defects of the second object with respect to the first object.
  • the quality change detection method includes an acquisition step and a first determination step.
  • the acquisition step is a step of acquiring the amount of mounting position deviation, which is the difference between the actual mounting position of the second object and the target mounting position with respect to the first object.
  • the first determination step is a step of determining that the quality of mounting has changed when the mounting position deviation amount acquired in the acquisition step exceeds the first determination range and falls within the second determination range. Is.
  • the first determination range is included in the second determination range in which the quality of the implementation is determined to be normal.
  • the quality change detection system includes an acquisition unit and a determination unit.
  • the acquisition unit acquires the amount of mounting position deviation, which is the difference between the actual mounting position of the second object and the target mounting position with respect to the first object.
  • the determination unit determines that the quality of the mounting has changed when the mounting position deviation amount acquired by the acquisition unit exceeds the first determination range and falls within the second determination range.
  • the first determination range is included in the second determination range in which the quality of the implementation is determined to be normal.
  • the program according to one aspect of the present disclosure is a program for causing one or more processors to execute the quality change detection method.
  • FIG. 1 is a schematic configuration diagram of a substrate manufacturing line to which the quality change detection system according to the embodiment is applied.
  • FIG. 2 is a schematic plan view of the mounting system that is the detection target of the same quality change detection system.
  • FIG. 3 is a sectional view taken along the line AA of FIG.
  • FIG. 4 is a block diagram of the same quality change detection system.
  • FIG. 5 is a block diagram of the mounting system that is the detection target of the same quality change detection system.
  • FIG. 6A is a diagram showing the distribution of mounting positions of the second object with respect to the first object generated by the same quality change detection system.
  • FIG. 6B is a diagram showing the distribution of the mounting position of the second object with respect to the first object for each mounting angle of the second object with respect to the first object, which was generated by the same quality change detection system.
  • FIG. 7 is a graph showing the amount of mounting position deviation of the second object with respect to the first object, which is generated by the same quality change detection system, and is a second graph which is not normally mounted on the first object. It is a graph when the object is included.
  • FIG. 8 is an explanatory diagram for explaining the first detection process of the same quality change detection system.
  • 9A to 9C are graphs for explaining the second detection process of the same quality change detection system.
  • FIG. 10 is a flowchart showing a quality change detection method executed by the same quality change detection system.
  • each of the figures described in the following embodiments and the like is a schematic view, and the ratio of the size and the thickness of each component in each figure does not necessarily reflect the actual dimensional ratio. Not always.
  • the mounted component inspection device (quality change detection system) described in Patent Document 1 can detect the occurrence of a mounting defect of a component (second object) on a printed circuit board (first object), but the mounting defect is not present. The outbreak could not be prevented.
  • the quality change detection method is a method for detecting that the quality of processing for the first object T1 has changed.
  • the quality change detection system 1 according to the present embodiment is a system used in the above-mentioned quality change detection method.
  • the second object T2 is mounted (processed) on the first object T1 in the mounting system 22.
  • the mounting system 22 is used for the production of various products such as electronic devices, automobiles, clothing, groceries, pharmaceuticals and crafts in facilities such as factories, laboratories, offices and educational facilities. It is a mounting device (mounting machine) to be mounted.
  • a general electronic device has various circuit boards such as a power supply circuit and a control circuit, for example.
  • a soldering step, a mounting step, and a reflow step are performed in this order.
  • creamy solder is applied (or printed) to the substrate (including the printed wiring board).
  • components including electronic components
  • the substrate in which the parts are mounted is heated in a reflow furnace to melt the creamy solder and perform soldering.
  • first to third inspection steps are performed between the solder coating process and the mounting process, between the mounting process and the reflow process, and after the reflow process.
  • first inspection step the state of application of the cream-like solder to the substrate (position, size, film thickness, etc. of the cream-like solder with respect to the substrate) is inspected.
  • second inspection step the mounting state of the second object T2 on the first object T1 (mounting position, mounting angle, etc. of the second object T2 on the first object T1) before the reflow step is performed is inspected.
  • the mounting state of the second object T2 on the first object T1 after the reflow step is performed (the mounting position, mounting angle, etc. of the second object T2 on the first object T1) is inspected. Will be done.
  • the board manufacturing line 2 includes a printing system 21, a mounting system 22, a reflow system 23, a post-printing inspection system 24, a post-mounting inspection system 25, and a post-reflow inspection system 26.
  • the printing system 21 prints solder on the substrate 100 as the first object T1 in the solder coating process.
  • the mounting system 22 performs work of mounting the component 200 as the second object T2 on the substrate 100 as the first object T1.
  • the reflow system 23 heats the substrate 100 on which the component 200 is mounted via solder, melts the solder, and solders the component 200 to the substrate 100.
  • the post-print inspection system 24 (see FIG. 1) inspects the printed state of the solder printed on the substrate 100, which is the first object T1, in the first inspection step.
  • the post-mounting inspection system 25 (see FIG. 1) inspects the mounting state of the second object T2 with respect to the first object T1 in the second inspection step.
  • the post-reflow inspection system 26 (see FIG. 1) inspects the mounting state of the second object T2 with respect to the first object T1 after reflow in the third inspection step.
  • Each facility constituting the board manufacturing line 2 is connected to the quality change detection system 1 via a wired or wireless communication network, and data is transmitted / received between each facility and the quality change detection system 1.
  • each of the printing system 21, the mounting system 22, the reflow system 23, the post-printing inspection system 24, the post-mounting inspection system 25, and the post-reflow inspection system 26, in principle, refer to a single device. It also includes a configuration in which a control unit and a storage unit of the device are arranged outside the device, or a configuration in which the functions of the device are realized by combining a plurality of modules. It also includes a configuration in which a plurality of devices of the same type are grouped together.
  • the quality change detection system 1 detects that the quality of the first object T1 manufactured on the substrate manufacturing line 2 (see FIG. 1) has changed based on the first information D1.
  • the first information D1 is information acquired in the second inspection step, and is input from the post-mounting inspection system 25 described later.
  • the quality change detection method is for detecting that the quality of mounting when the second object T2 is mounted on the first object T1 performed in the mounting process has changed.
  • the mounting quality control method includes an acquisition step and a first determination step (steps ST1 to ST3 in FIG. 10).
  • the acquisition step is based on the amount of mounting position deviation, which is the difference between the actual mounting position of the second object T2 and the target mounting position with respect to the first object T1, included in the first information D1 from the post-mounting inspection system 25.
  • This is a step of acquiring data related to the component 200 to be detected.
  • the acquired data is grouped by the type of parts or the mounting angle as an example.
  • the first determination step is mounted when the amount of mounting position deviation acquired in the acquisition step exceeds the first determination range R1 (see FIG. 7) and falls within the second determination range R2 (see FIG. 7). This is the step of determining that the quality of the product has changed.
  • the second determination range R2 is a range in which the quality of mounting is determined to be normal.
  • the quality change detection system 1 is a system used in the above-mentioned quality change detection method.
  • the quality change detection system 1 includes an acquisition unit 11 and a determination unit 12.
  • the acquisition unit 11 is a mounting which is the difference between the actual mounting position of the second object T2 and the target mounting position on the first object T1 which has undergone the mounting step of mounting the second object T2 on the first object T1. Acquire the amount of misalignment.
  • the determination unit 12 is mounted when the amount of mounting position deviation acquired by the acquisition unit 11 exceeds the first determination range R1 (see FIG. 7) and falls within the second determination range R2 (see FIG. 7). It is judged that the quality of is changed.
  • the second determination range R2 is a range in which the quality of mounting is determined to be normal.
  • normal mounting quality means that at least the range determined to be normal in the post-mounting inspection system 25 that outputs information to the quality change detection system 1 is satisfied.
  • the mounting position deviation amount falls within the second judgment range R2 in which the mounting quality is judged to be normal, it exceeds the first judgment range R1. If so, it is determined that the quality of the implementation has changed. Therefore, before the mounting position deviation amount exceeds the second determination range R2, it can be grasped that the mounting quality has changed in the direction of becoming abnormal (defective). As a result, it is possible to prevent the occurrence of mounting defects of the second object T2 with respect to the first object T1.
  • the mounting system 22 is used for mounting a component (second object T2) by surface mount technology (SMT)
  • SMT surface mount technology
  • the component 200 as the second object T2 is a surface mount device (SMD) and is arranged on the surface (mounting surface 101) of the substrate 100 as the first object T1. It will be implemented with that.
  • the present invention is not limited to this example, and the mounting system 22 may be used for mounting a component (second object T2) by an insertion mounting technology (IMT: Insertion Mount Technology).
  • the component 200 as the second object T2 is a component for insertion mounting having a lead terminal, and by inserting the lead terminal into the hole of the substrate 100 as the first object T1, the substrate 100 It is mounted on the surface (mounting surface 101) of.
  • the component 200 as the second object T2 is arranged on the mounting surface 101 of the substrate 100 as the first object T1, or the component 200 is arranged on the mounting surface 101 of the substrate 100. Includes mounting and inserting the lead terminal of the component 200 into the hole of the substrate 100. Further, the “mounting” referred to in the present disclosure includes joining the component 200 to the substrate 100 and adhering the component 200 to the substrate 100.
  • the "mounting quality” referred to in the present disclosure refers to the quality when the component 200 as the second object T2 is mounted on the substrate 100 as the first object T1, and the component 200 with respect to the substrate 100. Includes mounting position and mounting angle. More specifically, “mounting quality” refers to the mounting position of the board 100 in the first direction (X-axis direction), the mounting position of the board 100 in the second direction (Y-axis direction), and the inside of the mounting surface 101 of the board 100. Including the mounting angle at.
  • the quality of the implementation changes in the present disclosure means that the quality of the implementation changes in a direction away from the range judged to be normal (that is, a direction judged to be abnormal).
  • it means that the mounting position (or mounting angle) of the second object T2 with respect to the first object T1 changes.
  • determining that the quality of mounting has changed means that the amount of deviation of the mounting position (or mounting angle) of the second object T2 with respect to the first object T1 is that the quality of mounting is normal. It is determined whether or not the first determination range R1 (see FIG. 5) included in the second determination range R2 (see FIG. 5) to be determined is exceeded, or the second determination range R1 is contained. This means that the distribution of the amount of deviation of the mounting position (or mounting angle) of the object T2 changes.
  • the "target mounting position" referred to in the present disclosure means a position (coordinates) on which the component 200 as the second object T2 should be mounted on the substrate 100 as the first object T1.
  • the target mounting position is the coordinates in the X-axis direction (X-coordinates) and the Y-axis direction. It is represented by the coordinates (Y coordinates) of.
  • X-axis three axes of X-axis, Y-axis, and Z-axis that are orthogonal to each other are set, and the axes parallel to the surface (mounting surface 101) of the substrate 100, which is the first object T1, are defined as "X-axis” and "X-axis".
  • the "Y-axis” is used, and the axis parallel to the thickness direction of the substrate 100 is the "Z" axis.
  • the capture portion 2211 side as seen from the substrate 100, which is the first object T1 is defined as the positive direction (also referred to as “upward”) of the Z axis.
  • the state seen from the positive direction (upper side) of the Z axis is also referred to as "planar view” below.
  • the X-axis, Y-axis, and Z-axis are all virtual axes, and the arrows indicating "X", "Y", and “Z” in the drawings are shown for illustration purposes only. , Neither is accompanied by substance. Further, these directions are not intended to limit the directions when the mounting system 22 is used.
  • a pipe for circulating cooling water, a cable for supplying electric power, a pipe for supplying pneumatic pressure (including positive pressure and vacuum), and the like are connected to the mounting system 22, but in the present embodiment, these are connected.
  • the illustration is omitted as appropriate.
  • the quality change detection system 1 mainly includes a computer system having one or more processors and one or more memories. That is, the function of the quality change detection system 1 is realized by executing the program recorded in one or more memories of the computer system by one or more processors.
  • the program may be pre-recorded in a memory, may be provided through a telecommunication line such as the Internet, or may be recorded and provided on a non-temporary recording medium such as a memory card.
  • the quality change detection system 1 includes an acquisition unit 11 and a determination unit 12. Further, in the present embodiment, the quality change detection system 1 further includes a prediction unit 13, a factor estimation unit 14, a creation unit 15, and a notification unit 16 in addition to the acquisition unit 11 and the determination unit 12.
  • the quality change detection system 1 mainly includes a computer system having one or more processors and one or more memories. Therefore, each configuration of the quality change detection system 1 (acquisition unit 11, determination unit 12, prediction unit 13, factor estimation unit 14, creation unit 15, and notification unit 16) is realized by executing a program by one or more processors. Be made.
  • the acquisition unit 11 acquires the amount of mounting position deviation, which is the difference between the actual mounting position of the second object T2 and the target mounting position with respect to the first object T1. do. That is, the step (process) in which the acquisition unit 11 acquires the mounting position deviation amount is the acquisition step of the quality change detection method according to the present embodiment. Specifically, the acquisition unit 11 acquires the first information D1 from the post-mounting inspection system 25 (see FIG. 1) described later. Further, the acquisition unit 11 may acquire the second information D2 from the mounting system 22 described later. Further, in the present embodiment, the acquisition unit 11 acquires the first information D1 at the timing when the inspection of one substrate 100 as the first object T1 is completed in the post-mounting inspection system 25.
  • the acquisition unit 11 may acquire the first information D1 at the timing when the inspection of the required number of substrates 100 is completed for the distribution change detection F2 (see FIG. 10) described later. Further, in the present embodiment, the acquisition unit 11 acquires the first information D1 for all the second objects T2 mounted on the mounting surface 101 of one substrate 100. The acquisition unit 11 outputs the acquired first information D1 to the determination unit 12 for each type of the component 200.
  • the "part type” here includes the type of element (resistor, capacitor, lead part, etc.) and the size of the part (0402, 0603, 1005, etc., not limited to actual dimensions, but also standard and data dimensions. ) And, including.
  • "for each type of component” includes at least the meaning of each element type, each component size, and each element type and component size.
  • the first information D1 of the 0603 size resistor and the first information D1 of the 1005 size resistor are separately output to the determination unit 12. That is, even if the types of elements are the same, if the sizes of the parts are different, they are separately output to the determination unit 12. Further, the first information D1 may be output to the determination unit 12 for each type of component and for each mounting angle.
  • the acquisition unit 11 acquires the first information D1 from the management computer 3 (see FIG. 4) that manages the information of the devices constituting the board manufacturing line 2.
  • the first information D1 includes a mounting position deviation amount which is a difference between the actual mounting position of the second object T2 with respect to the first object T1 and the target mounting position of the second object T2 with respect to the first object T1. .. Further, in the first information D1, there is a mounting angle deviation which is a difference between the actual mounting angle of the second object T2 with respect to the first object T1 and the target mounting angle of the second target T2 with respect to the first object T1. The amount may be further included. In the present embodiment, it will be described that only the mounting position shift amount is included in the first information D1.
  • the mounting position deviation amount includes a first mounting position deviation amount which is a deviation amount in the X-axis direction and a second mounting position deviation amount which is a deviation amount in the Y-axis direction.
  • the first information D1 includes a mounting position shift amount before the reflow step is performed.
  • the second information D2 is information acquired from at least one of the plurality of facilities constituting the substrate manufacturing line 2.
  • the second information D2 is information acquired from the mounting system 22 which is one of the plurality of facilities 4 (see FIG. 4).
  • the second information D2 includes lot information, trace information, event information and production information (production data).
  • the lot information is information on the type of the substrate 100 on which the component 200 corresponding to the above-mentioned first information D1 is mounted, and includes, for example, information on a production lot for each substrate 100 and information on a production date and time of the substrate 100.
  • the trace information is the address of the nozzle 2211 or feeder described later used when mounting the component 200 corresponding to the first information D1 described above (that is, at which position the nozzle 2211 mounted on the nozzle holder was mounted, which position.
  • Information about whether it was supplied from a feeder mounted at a position information acquired by a sensor provided in the mounting system 22 (eg, component recognition camera 222), and a correction amount based on the information acquired by the sensor (eg,). , Recognition correction amount), and.
  • the event information is information about an event performed in the mounting process by the mounting system 22, and includes, for example, a feeder exchange.
  • the production information includes, for example, a target mounting position of the component 200 on the substrate 100, a target mounting angle, a circuit number, a component code for individually identifying the component 200, and the like.
  • the part code includes information such as the size of the part, the type of element (that is, a resistor or a capacitor), the vendor of the part, and the like.
  • the determination unit 12 determines that the quality of the implementation has changed based on the first information D1 from the acquisition unit 11. More specifically, the determination unit 12 determines that the amount of mounting position deviation from the acquisition unit 11 exceeds the first determination range R1 (see FIG. 7), and the quality of mounting is determined to be normal. If it falls within the range R2 (see FIG. 7), it is determined that the quality of the mounting has changed. Further, the determination unit 12 determines that the quality of mounting has changed based on the statistical information regarding the amount of mounting position deviation included in the first determination range R1. That is, the step (process) in which the determination unit 12 determines that the quality of the implementation has changed is the determination step (first determination step and second determination step) of the quality change detection method according to the present embodiment.
  • the quality change detection method has a first determination step and a second determination step as determination steps.
  • the first determination step is a step of determining that the quality of mounting has changed when the amount of mounting position deviation exceeds the first determination range R1 and falls within the second determination range R2.
  • the second determination step is a step of determining that the quality of the implementation has changed based on the statistical information regarding the amount of the mounting position deviation of the second object T2 included in the first determination range R1.
  • the first determination range R1 is set based on the standard deviation of the normal state distribution (see FIG. 9A) created by the creation unit 15 described later.
  • the normal state distribution (see FIG. 9A) is a distribution showing how the mounting position shift amount of the second object T2 fluctuates if the state of the substrate manufacturing line 2 is normal.
  • FIG. 6A is a diagram showing the distribution of the mounting positions of the second object T2 with respect to the first object T1 for each type of part and for each production lot.
  • each type of component means each size of component and each type of element.
  • FIG. 6A shows the distribution of the mounting positions of the second object T2 in the X-axis direction.
  • the graphs arranged in the horizontal axis direction show graphs in which production lots are different
  • the graphs arranged in the vertical axis direction are graphs in which the types of parts are different. Is shown.
  • the vertical axis in each graph indicates the amount of mounting position deviation
  • the horizontal axis in each graph indicates the number of times of mounting in each mounting position deviation amount, that is, the number of appearances.
  • the normal state distribution is set according to the type of the component 200 which is the second object T2.
  • the first determination range R1 is set according to the type of the second object T2.
  • the second determination range R2 is also preferably set according to the type of the second object T2.
  • the distribution of the mounting position shift amount of the second object T2 in the Y-axis direction also changes more greatly depending on the type of parts than in the production lot (the shape of the distribution cannot be regarded as the same). Therefore, here, only the distribution of the mounting position in the X-axis direction will be described, and the description of the distribution of the mounting position deviation amount in the Y-axis direction will be omitted.
  • FIG. 6B is a diagram showing the distribution of the mounting position of the second object T2 with respect to the first object T1 for each mounting angle of the second object T2 with respect to the first object T1.
  • FIG. 6B shows the distribution of the mounting positions of the second object T2 in the X-axis direction, as in FIG. 6A.
  • the vertical axis in each graph shows the amount of mounting position deviation, and the horizontal axis in each graph shows the number of occurrences.
  • the graph on the left side in FIG. 6B shows the case where the mounting angle of the second object T2 with respect to the first object T1 is 90 degrees
  • the graph on the right side in FIG. 6B shows the case where the mounting angle is 0 degrees. Is shown. Comparing the graph when the mounting angle is 90 degrees and the graph when the mounting angle is 0 degrees, it can be seen that the distribution of the mounting position deviation amount of the second object T2 is different. In short, the distribution of the mounting position shift amount of the second object T2 changes greatly depending on the mounting angle of the second object T2 with respect to the first object T1 (the shapes of the distributions cannot be regarded as equivalent).
  • the normal state distribution is set according to the mounting angle of the component 200 which is the second object T2 with respect to the first object T1.
  • the first determination range R1 (see FIG. 8) is preferably set according to the mounting angle of the component 200 which is the second object T2 with respect to the first object T1.
  • the second determination range R2 is also set according to the mounting angle of the component 200 which is the second object T2 with respect to the first object T1.
  • the first determination range R1 is a range defined by the first threshold value TH11 and the second threshold value TH12.
  • the absolute values of the first threshold value TH11 and the second threshold value TH12 are different, but the absolute values of the first threshold value TH11 and the second threshold value TH12 may be the same.
  • the horizontal axis indicates the elapsed time t, and the vertical axis indicates the mounting position deviation amount GapX of the second object T2.
  • the second determination range R2 is a range in which the quality of mounting is determined to be normal, as described above.
  • the second determination range R2 is a range defined by the first threshold value TH21 and the second threshold value TH22.
  • the absolute values of the first threshold value TH21 and the second threshold value TH22 are different, but the absolute values of the first threshold value TH21 and the second threshold value TH22 may be the same.
  • a “circle” exceeding the first threshold value TH11 indicates an outlier of the mounting position deviation amount GapX of the second object T2.
  • the “outlier” here means a value that is within the second determination range R2 but exceeds the first determination range R1 (see “Ou1" and “Ou2” in FIG. 8).
  • “DI1” in FIG. 8 indicates the distribution of the mounting position shift amount GapX of the second object T2 (hereinafter referred to as “distribution DI1").
  • the determination unit 12 determines that the mounting position deviation amount GapX (outliers Ou1 and Ou2 in FIG. 8) exceeds the first determination range R1 and falls within the second determination range R2. , Judge that the quality of implementation has changed. That is, in the present embodiment, as shown in FIGS. 7 and 8, the first determination range R1 is included in the second determination range R2.
  • the first determination range R1 is set according to the type of the second object T2. Then, when the type of the second object T2 is different, the determination unit 12 determines that the second object T2 is based on the first determination range R1 set according to the type of the second object T2. Determine that the quality of the implementation has changed. Further, as described above, the first determination range R1 is set according to the mounting angle of the second object T2 with respect to the first object T1. Then, when the mounting angle of the second object T2 with respect to the first object T1 is different, the determination unit 12 determines the mounting quality based on the first determination range R1 set according to the mounting angle. Judge that it has changed.
  • the determination unit 12 changes the quality of mounting based on the first determination range R1 set according to the feeder (serial or address of the feeder) used for mounting the second object T2. It may be determined that it has been done. That is, the determination unit 12 determines that the quality of the implementation has changed based on the determination criteria generated for each different category (type of the second object T2, mounting angle, feeder used for supply, etc.). become. As a result, the variation from the judgment criteria is clarified for a specific category, and the change in the quality of implementation becomes apparent.
  • the determination unit 12 includes the mounting position deviation amount in the first determination range R1 among the plurality of second objects T2 mounted on the mounting surface 101 of the substrate 100 as the first object T1.
  • the distribution change detection F2 (see FIG. 10) described later is executed. That is, the determination unit 12 determines that the quality of the implementation has changed based on the statistical information regarding the amount of the mounting position deviation of the second object T2 included in the first determination range R1.
  • the statistical information includes the average calculated based on the distribution of the mounting misalignment amount of the second object T2 and the variance (or standard deviation) calculated based on the distribution of the mounting misalignment amount of the second object T2. , Including at least one of.
  • the statistical information is the average calculated from the distribution of the mounting misalignment amount of the second object T2 and the variance (or standard deviation) calculated from the distribution of the mounting misalignment amount of the second object T2. And, including both.
  • the determination unit 12 has a large difference between the average calculated from the distribution DI1 of the mounting position deviation amount of the second object T2 and the average calculated from the normal state distribution (FIG. 10).
  • step ST7 it is determined that the quality of the implementation has changed. Further, in the determination unit 12, for example, as shown in FIG. 9C, the ratio of the variance calculated from the distribution DI1 of the mounting position deviation amount of the second object T2 to the variance calculated from the normal state distribution is large (that is,). If the distribution DI1 is wider than the normal state distribution), it is determined that the quality of the implementation has changed.
  • FIG. 9A is a diagram showing a normal state distribution obtained from the past first information D1.
  • the distribution DI1 of the mounting position deviation amount of the second object T2 is distributed with the vicinity of zero of the mounting position deviation amount as an average.
  • the scale on the left side (value of the number of appearances) in FIGS. 9A to 9C is a scale with respect to the normal state distribution
  • the distribution DI1 of the mounting position deviation amount of the second object T2 in FIGS. 9B and 9C is normal. It is normalized according to the state distribution.
  • the prediction unit 13 predicts an abnormality (defectiveness) in the quality of mounting based on the determination result of the determination unit 12.
  • the abnormality in the mounting quality is caused by the specific second object T2 in which the mounting position deviation amount exceeds the first determination range R1 among the plurality of second objects T2 mounted on the first object T1. It occurs when the amount of mounting position deviation of the above exceeds the second determination range R2.
  • the quality of the implementation changes before the anomaly of the quality of the implementation. Therefore, the prediction unit 13 predicts an abnormality in the quality of the mounting based on the first information D1 from the post-mounting inspection system 25.
  • the step (processing) in which the prediction unit 13 predicts an abnormality in the quality of the implementation is a prediction step. For example, when the determination unit 12 determines that the mounting position deviation amount of the second object T2 changes in a direction exceeding the second determination range R2, the prediction unit 13 results in an abnormality (defectiveness) in the mounting quality. Predict that.
  • the prediction unit 13 predicts at least the time until an abnormality occurs in the substrate manufacturing line 2 in the prediction step.
  • the prediction unit 13 has, for example, an outlier Ou1 (or Ou2) in which the mounting position deviation amount of the second object T2 exceeds the first determination range R1 from the initial position within the first determination range R1. (In FIG. 7, the time until the first determination range R1 is exceeded) is stored, and the time until the outliers Au1 and Ou2 exceed the second determination range R2 is predicted based on this time.
  • Ou1 or Ou2
  • the time until the outliers Au1 and Ou2 exceed the second determination range R2 is predicted based on this time.
  • the prediction unit 13 may predict the probability of occurrence of an abnormality in the mounting quality, the number of times of occurrence of an abnormality, and the like after a lapse of a predetermined time. Alternatively, the prediction unit 13 may predict the number of production sheets, the probability of abnormality occurrence per production lot, the number of abnormality occurrences, and the like.
  • the factor estimation unit 14 estimates the malfunctioning part in the substrate manufacturing line 2 that causes the change in the mounting quality based on the information regarding the amount of mounting misalignment.
  • the step (processing) in which the factor estimation unit 14 estimates the malfunctioning portion in the substrate manufacturing line 2 that causes the change in the mounting quality is the estimation step. For example, when the determination unit 12 determines that the mounting position deviation amount of the second object T2 changes in a direction exceeding the first determination range R1, the component recognition described later is performed from the second information D2 from the mounting system 22. Information on the fluctuation of the correction amount (recognition correction amount) of the mounting position of the specific second object T2 calculated based on the image pickup result by the camera 222 is called.
  • the factor estimation unit 14 mounts the second object T2 on the first object T1 which is information corresponding to the amount of mounting position deviation, in addition to the first information D1 from the post-mounting inspection system 25.
  • the faulty part is estimated using the second information D2 from the mounting system 22 which is the equipment 4 used at the time.
  • the malfunction location estimated by the factor estimation unit 14 is not limited to the unit constituting the equipment 4 such as the feeder, the head, and the nozzle, but also the processes such as the suction process and the printing process, and the equipment 4 constituting the substrate manufacturing line 2. Also includes.
  • the factor estimation unit 14 may estimate the stop time (time operation loss) due to the failure of the feeder, head, or nozzle which is the estimated malfunction location, the appropriate maintenance time for the malfunction location, and the like.
  • the creation unit 15 distributes the normal state from the amount of mounting position deviation for which the quality of mounting was determined to be normal (that is, within the second determination range R2) through the mounting process in the past. To create.
  • the normal state distribution is created for each type of the second object T2 to be detected and a combination of mounting angles. For example, when a 0603 size resistor and a 1005 size resistor are to be detected, a normal state distribution is created from the mounting misalignment amount corresponding to the 0603 size resistor and the mounting misalignment amount corresponding to the 1005 size resistor. Will be done.
  • the first determination range R1 is calculated from the standard deviation of the normal state distribution.
  • the number of data for the amount of mounting misalignment is preferably large in order to ensure the accuracy of the normal state distribution. Therefore, the mounting misalignment amount data is collected over a plurality of production lots. As an example, the number of data of the amount of mounting position deviation is 8000 points on average.
  • the normal state distribution may be updated at the timing when the data of the mounting position shift amount is sufficiently collected. For example, it may be updated at a predetermined interval in which a certain number or more of data of the amount of mounting position deviation is accumulated for each type of component, for example, every day, and the timing of updating may be appropriately set.
  • the notification unit 16 notifies, for example, a factory manager (worker) of at least one of the determination result of the determination unit 12 and the prediction result of the prediction unit 13.
  • the notification unit 16 notifies the operator of the determination result in the first determination step of the determination unit 12, the determination result in the second determination step of the determination unit 12, and the prediction result of the prediction unit 13.
  • the notification unit 16 notifies the operator that the quality of the mounting has changed.
  • the determination unit 12 determines that it cannot be regarded as equivalent to the normal state distribution based on the statistical information (average or variance) calculated from the distribution of the mounting position shift amount included in the first determination range R1, a notification is given.
  • the unit 16 notifies the operator that the quality of the implementation has changed. Further, when the prediction unit 13 predicts that the mounting quality will be abnormal (defective), the notification unit 16 notifies the operator that the mounting quality abnormality (defective) will occur.
  • the mode of notification performed by the notification unit 16 includes, for example, display and lighting on the display unit (liquid crystal display and light emitting unit) of the equipment 4, and terminals (personal computer, tablet, smartphone, etc.) used by the operator.
  • the notification unit 16 may notify any one of the determination result in the first determination step of the determination unit 12, the determination result in the second determination step, and the prediction result of the prediction unit 13.
  • the mounting system 22 includes a mounting head 221, a component recognition camera 222, a control device 223, a drive device 224, a component supply device 225, and a component supply device 225. It is equipped with a transfer device 226.
  • the mounting head 221 has at least one catching unit 2211.
  • the mounting head 221 has a plurality of capturing portions 2211.
  • the mounting head 221 moves the capture unit 2211 so as to approach the first object T1 (board 100) in a state where the capture unit 2211 captures the second object T2 (component 200), and the second object T2 Is mounted on the mounting surface 101 of the first object T1.
  • the mounting head 221 moves the capture unit 2211 between the first position closer to the first object T1 and the second position farther from the first object T1 than the first position. Hold as possible. That is, the mounting head 221 movably holds the capturing unit 2211 toward the first object T1.
  • the mounting head 221 has an actuator 2212 (see FIG. 5) for moving the capture unit 2211 in addition to the capture unit 2211, and a head body 2213 (see FIG. 3) that holds the capture unit 2211 and the actuator 2212. ) And further.
  • a plurality of capture units 2211 and actuators 2212 are held in one head body 2213.
  • the mounting head 221 can capture a plurality of second objects T2 (components 200).
  • the capture unit 2211 is, for example, a suction nozzle.
  • the capture unit 2211 is controlled by the control device 223 and can switch between a capture state in which the second object T2 is captured (held) and a release state in which the second object T2 is released (capture is released). ..
  • the capturing unit 2211 is not limited to a suction nozzle that sucks the second object T2 by a vacuum force, for example, a chuck mechanism having a structure that physically sandwiches (picks) the second object T2, a robot hand, or other magnetic force. It may be configured to capture (hold) the second object T2 by suction (suction) or the like by static electricity.
  • the mounting head 221 operates by receiving the supply of pneumatic pressure (vacuum) as power. That is, the mounting head 221 switches between the capture state and the release state of the capture unit 2211 by opening and closing the valve on the pneumatic (vacuum) supply path connected to the capture unit 2211.
  • the actuator 2212 moves the capture unit 2211 straight in the Z-axis direction. Further, the actuator 2212 rotates and moves the capture unit 2211 in the rotation direction (hereinafter, referred to as “ ⁇ direction”) about the axis along the Z-axis direction. As an example in the present embodiment, the actuator 2212 is driven by the driving force generated by the linear motor with respect to the movement of the capturing unit 2211 in the Z-axis direction. Regarding the movement of the capture unit 2211 in the ⁇ direction, the actuator 2212 is driven by the driving force generated by the rotary motor. On the other hand, as will be described later, the mounting head 221 moves linearly in the X-axis direction and the Y-axis direction by the drive device 224. As a result, the capture unit 2211 included in the mounting head 221 can be moved in the X-axis direction, the Y-axis direction, the Z-axis direction, and the ⁇ direction by the drive device 224 and the actuator 2212.
  • the head body 2213 is made of metal and is formed in a rectangular parallelepiped shape.
  • the head body 2213 holds the capture unit 2211 and the actuator 2212.
  • the capture unit 2211 is indirectly held by the head body 2213 via the actuator 2212 in a state where it can move in the Z-axis direction and the ⁇ direction.
  • the mounting head 221 moves in the XY plane by moving the head body 2213 in the XY plane by the drive device 224.
  • the mounting head 221 moves so as to bring the capture unit 2211 closer to the first object T1 (board 100) in a state where the capture unit 2211 captures the second object T2 (component 200).
  • the second object T2 can be mounted on the mounting surface 101 of the first object T1. That is, the mounting head 221 has the capture unit 2211 at least between the first position closer to the first object T1 and the second position farther from the first object T1 than the first position. Move it.
  • the mounting head 221 moves the capturing unit 2211 in a state where the second object T2 is captured from the second position to the first position, whereby the second object T2 is moved to the mounting surface 101 of the first object T1.
  • the mounting head 221 further includes a head camera 2214 in addition to the capturing unit 2211, the actuator 2212, and the head body 2213.
  • the head camera 2214 is fixed to the mounting head 221 by being fixed to the side surface of the head body 2213.
  • the mounting system 22 includes one head camera 2214.
  • the head camera 2214 is, for example, an area camera.
  • the head camera 2214 is arranged with the imaging field of view facing downward, and images a positioning substrate mark attached to the first object T1.
  • the head camera 2214 may take an image of a specific region including a joining member (for example, solder) in the mounting surface 101 of the first object T1 (board 100).
  • the parts recognition camera 222 is arranged on the base 220 of the mounting system 22 with the imaging field of view facing upward.
  • the component recognition camera 222 captures an image of the lower surface of the component 200 held by the capture unit 2211 of the mounting head 221 from below.
  • the control device 223 calculates the amount of misalignment of the component 200 with respect to the capture unit 2211 of the mounting head 221, and based on the calculated amount of misalignment, the mounting head 221 attaches the mounting head 221 to the substrate 100. Correct the mounting position of the component 200.
  • the component recognition camera 222 is arranged on the base 220 of the mounting system 22, but the present invention is not limited to this, and for example, the component recognition camera 222 may be integrally provided on the mounting head 221.
  • the control device 223 controls each part of the mounting system 22.
  • the control device 223 mainly comprises a computer system having one or more processors and one or more memories. That is, the function of the control device 223 is realized by executing the program recorded in one or more memories of the computer system by one or more processors.
  • the program may be pre-recorded in a memory, may be provided through a telecommunication line such as the Internet, or may be recorded and provided on a non-temporary recording medium such as a memory card.
  • the control device 223 is electrically connected to, for example, each of the mounting head 221, the head camera 2214, the component recognition camera 222, the drive device 224, the component supply device 225, and the transfer device 226.
  • the control device 223 outputs a control signal to the mounting head 221 and the driving device 224, and mounts the second object T2 captured by at least the capturing unit 2211 on the mounting surface 101 of the first object T1. It controls 221 and the drive device 224. Further, the control device 223 outputs a control signal to the head camera 2214 and the component recognition camera 222 to control the head camera 2214 and the component recognition camera 222, or obtains an image captured by the head camera 2214 and the component recognition camera 222. Obtained from the head camera 2214 and the component recognition camera 222.
  • the drive device 224 is a device for moving the mounting head 221.
  • the drive device 224 moves the mounting head 221 in the XY plane.
  • the "XY plane” here is a plane including the X-axis and the Y-axis, and is a plane orthogonal to the Z-axis.
  • the drive device 224 moves the mounting head 221 in the X-axis direction and the Y-axis direction.
  • the drive device 224 since the head camera 2214 is fixed to the mounting head 221, the drive device 224 also moves the head camera 2214 together with the mounting head 221. In other words, the drive device 224 moves the mounting head 221 and the head camera 2214 in the XY plane.
  • the drive device 224 has an X-axis drive unit 2241 and a Y-axis drive unit 2242, as shown in FIGS. 2 and 3.
  • the X-axis drive unit 2241 moves the mounting head 221 straight in the X-axis direction.
  • the Y-axis drive unit 2242 moves the mounting head 221 linearly in the Y-axis direction.
  • the Y-axis drive unit 2242 moves the mounting head 221 together with the X-axis drive unit 2241 along the Y-axis, thereby moving the mounting head 221 linearly in the Y-axis direction.
  • each of the X-axis drive unit 2241 and the Y-axis drive unit 2242 includes a linear motor, and the mounting head 221 is moved by a driving force generated by the linear motor when it receives electric power.
  • the parts supply device 225 supplies the parts 200 as the second object T2 captured by the capture unit 2211 of the mounting head 221.
  • the component supply device 225 has a plurality of tape feeders 2251 that supply components 200 housed in the carrier tape 6.
  • the component supply device 225 may have a tray on which a plurality of components 200 are placed.
  • the mounting head 221 captures the second object T2 (component 200) from such a component supply device 225 by the capture unit 2211.
  • the transport device 226 is a device that transports the substrate 100 as the first object T1.
  • the transfer device 226 is realized by, for example, a belt conveyor or the like.
  • the transport device 226 transports the first object T1 (board 100) along, for example, the X axis.
  • the transport device 226 transports the first object T1 at least below the mounting head 221, that is, in the mounting space facing the capture unit 2211 in the Z-axis direction. Then, the transfer device 226 stops the first object T1 in the mounting space until the mounting of the second object T2 (component 200) on the first object T1 (board 100) by the mounting head 221 is completed. ..
  • the mounting system 22 also includes, for example, a communication unit and the like.
  • the communication unit is configured to communicate with the host system directly or indirectly via a network or a repeater or the like. As a result, the mounting system 22 can exchange data with and from the host system.
  • the post-mounting inspection system 25 is a system for inspecting the mounting state of the second object T2 with respect to the first object T1 in the second inspection step between the mounting process and the reflow process. As shown in FIG. 4, the post-mounting inspection system 25 is connected to the quality change detection system 1 via the management computer 3, and outputs the first information D1 to the quality change detection system 1. As described above, the first information D1 includes the amount of mounting position deviation of the second object T2 with respect to the first object T1 before the reflow step.
  • the post-mounting inspection system 25 calculates the amount of mounting position deviation of all the second objects T2 mounted on the first object T1. Specifically, the post-mounting inspection system 25 determines the difference between the actual mounting position of the second object T2 with respect to the first object T1 and the target mounting position of the second object T2 with respect to the first object T1. Calculated as the amount of mounting position deviation.
  • the acquisition unit 11 receives the first information D1 from the post-mounting inspection system 25 and the second information D2 from the mounting system 22 at the timing when the production of the preset number of boards 100 (first object T1) is completed. To get. Then, the acquisition unit 11 groups the first information D1 acquired from the post-mounting inspection system 25 for each type of the second object T2 and for each mounting angle of the second object T2 with respect to the first object T1. (Assembly) and output to the determination unit 12.
  • the "timing at which production is completed” may be the timing at which all the processes of production of the substrate 100 in the substrate manufacturing line 2 are completed, or the timing at which the inspection by the post-mounting inspection system 25 is completed.
  • the determination unit 12 executes the outlier detection F1 (steps ST1 to ST3).
  • the determination unit 12 compares the absolute value of the mounting position deviation amount GapX of each second object T2 mounted on the first object T1 with the comparison value 3 ⁇ (step ST1).
  • " ⁇ " in the comparison value 3 ⁇ is the standard deviation of the above-mentioned normal state distribution
  • the comparison value 3 ⁇ is a value that defines the first determination range R1. That is, the first determination range R1 is a range defined by the comparison value + 3 ⁇ and the comparison value -3 ⁇ .
  • the comparison value is set for each category, and in the present embodiment, the determination unit 12 makes a determination based on the comparison value set for each type of the component 200 and for each mounting angle.
  • the determination unit 12 temporarily stores the data of the mounting position deviation amount GapX in the buffer memory (step ST2).
  • the determination unit 12 records the determination result that the mounting position deviation amount GapX is an outlier (step ST3).
  • the determination unit 12 executes outlier detection F1 for all the second objects T2 mounted on the first object T1 (steps ST1 to ST3).
  • the determination unit 12 compares the number of data of the mounting position shift amount GapX stored in the buffer memory with a preset threshold value (minimum number of data for determination) (step ST4). When the number of data is equal to or greater than the threshold value (step ST4: Yes), the determination unit 12 executes the distribution change detection F2 (steps ST5 to ST9). Specifically, the determination unit 12 has the distribution of the mounting position shift amount GapX stored in the buffer memory based on the variance calculated from the distribution in the distribution change detection F2, and the normal state created in advance by the creation unit 15. It is determined whether or not the distribution is homoscedastic (step ST5).
  • homoscedasticity includes not only the case where the two variances are completely equal, but also the case where the ratio of the two variances is included in a certain range. As described above, the normal state distribution is obtained from the past first information D1.
  • the determination unit 12 is in the case where the distribution of the mounting position deviation amount GapX and the normal state distribution are not evenly dispersed (step ST5: No), that is, in the direction in which the distribution of the mounting position deviation amount GapX is larger than that of the normal state distribution. If it has changed, the determination result that the mounting position deviation amount GapX of the second object T2 has changed in the direction exceeding the first determination range R1 is recorded (step ST6). Further, the determination unit 12 determines whether or not the average value of the distribution of the mounting position deviation amount GapX and the average value of the normal state distribution are equal (step ST7).
  • the term "equal average” as used herein includes not only the case where the average values of the two are completely equal to each other, but also the case where the ratio of the average values of the two is included in a certain range.
  • step ST7: No the determination unit 12 determines that the mounting position deviation amount GapX of the second object T2 changes in the direction exceeding the first determination range R1. Is recorded (step ST8).
  • step ST7: Yes the determination unit 12 has a range in which the mounting position deviation GapX of each second object T2 does not exceed a normal range (that is, a range in which the second determination range R2 is not exceeded). ), And the data of the mounting position shift amount GapX stored in the buffer memory is reset (erased) (step ST9).
  • step ST4: No determines the outlier detection F1 and the distribution change when the data to be determined remains (step ST10: Yes). Execute detection F2. On the other hand, if the data to be determined does not remain (step ST10: No), the determination unit 12 ends a series of processes.
  • the step in which the acquisition unit 11 acquires the first information D1 is the acquisition step, and the above-mentioned steps ST1 to ST9 are the determination steps.
  • the mounting position deviation amount GapX of the second object T2 is determined to be normal in the mounting quality. Even if it is within the determination range R2, if it exceeds the first determination range R1 or if it changes in the direction exceeding the first determination range R1, it is determined that the quality of the mounting has changed. Therefore, before the mounting position deviation amount GapX exceeds the second determination range R2, it can be grasped that the mounting quality has changed in the direction of becoming abnormal. As a result, it is possible to prevent the occurrence of mounting defects of the second object T2 with respect to the first object T1.
  • the above embodiment is only one of the various embodiments of the present disclosure.
  • the above-described embodiment can be variously modified depending on the design and the like as long as the object of the present disclosure can be achieved.
  • the same function as the quality change detection method according to the above-described embodiment may be embodied in a quality change detection system 1, a (computer) program, a non-temporary recording medium on which the program is recorded, or the like.
  • the program according to one aspect is a program for causing one or more processors to execute the quality change detection method according to the above-described embodiment.
  • the quality change detection system 1 in the present disclosure includes a computer system.
  • the computer system mainly consists of a processor and a memory as hardware.
  • the processor executes the program recorded in the memory of the computer system, the function as the quality change detection system 1 in the present disclosure is realized.
  • the program may be pre-recorded in the memory of the computer system, may be provided through a telecommunications line, and may be recorded on a non-temporary recording medium such as a memory card, optical disk, hard disk drive, etc. that can be read by the computer system. May be provided.
  • the processor of a computer system is composed of one or more electronic circuits including a semiconductor integrated circuit (IC) or a large scale integrated circuit (LSI).
  • IC semiconductor integrated circuit
  • LSI large scale integrated circuit
  • the integrated circuit such as IC or LSI referred to here has a different name depending on the degree of integration, and includes an integrated circuit called a system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration).
  • an FPGA Field-Programmable Gate Array
  • a plurality of electronic circuits may be integrated on one chip, or may be distributed on a plurality of chips.
  • a plurality of chips may be integrated in one device, or may be distributed in a plurality of devices.
  • the computer system referred to here includes a microcontroller having one or more processors and one or more memories. Therefore, the microprocessor is also composed of one or a plurality of electronic circuits including a semiconductor integrated circuit or a large-scale integrated circuit.
  • the quality change detection system 1 it is not an essential configuration for the quality change detection system 1 that a plurality of functions in the quality change detection system 1 are integrated in one housing.
  • the components of the quality change detection system 1 may be distributed in a plurality of housings. Further, at least a part of the functions of the quality change detection system 1 may be realized by a cloud (cloud computing) or the like.
  • one mounting system 22 may be used for the work of mounting the second target object T2 on the first target object T1, or a plurality of (two in FIG. 1) mounting systems 22 (22A, 22B) may be used.
  • the mounting quality is the quality when the second object T2 is mounted on the first object T1 and includes the mounting position (or mounting angle).
  • the quality may be the case of capturing the second object T2 from 225. That is, the quality of mounting may include the position of the suction nozzle 2211 with respect to the second object T2.
  • the quality change detection method and the quality change detection system 1 are used for the mounting deviation in the mounting process.
  • the quality change detection method and the quality change detection system 1 are used for the coating deviation in the solder coating process. You may use it.
  • the acquisition unit 11 acquires the amount of misalignment between the position of the solder applied (printed) on the first object T1 and the position of the land from the post-print inspection system 24.
  • the equipment 4 is the mounting system 22, but the equipment 4 is not limited to the mounting system 22, and may be, for example, a printing system 21.
  • the first determination range R1 may be set depending on the type of creamy solder.
  • the notification unit 16 notifies the operator of both the determination result of the determination unit 12 and the prediction result of the prediction unit 13, but the notification unit 16 determines, for example, the determination unit 12. Only the result may be notified to the worker, or only the prediction result of the prediction unit 13 may be notified to the worker. Further, the notification unit 16 may notify not only the operator but also the robot that performs the maintenance work of the substrate manufacturing line 2 including the equipment 4 on behalf of the operator.
  • the comparison value of the mounting position deviation amount GapX of the second object T2 is 3 ⁇ , but for example, the comparison value may be 2 ⁇ or 1 ⁇ . May be.
  • the determination unit 12 detects the distribution change F2 when the number of second objects T2 that are not outliers detected in the outlier detection F1 is equal to or more than a certain number. Running.
  • the determination unit 12 may execute the distribution change detection F2 in either the case where the outlier is not detected in the outlier detection F1 or the case where the outlier is detected.
  • the determination unit 12 is based on the statistical information regarding the mounting position deviation amount GapX of the second object T2 even when the mounting position deviation amount GapX of all the second objects T2 is included in the first determination range R1. It may be determined that the quality of the implementation has changed. Even in this case, the determination unit 12 determines that the mounting position deviation amount GapX of the second object T2 changes in the direction exceeding the first determination range R1 because the dispersion is not equal or equal. be able to.
  • the first determination range R1 (range based on the standard deviation of the normal state distribution) for each type of the second object T2 and for each mounting angle of the second object T2 with respect to the first object T1. Is set, but it is not limited to this. For example, when the first determination range R1 is set for each type of the second object T2, the same first determination range R1 is used even if the mounting angle of the second object T2 with respect to the first object T1 is different. May be applied. Further, when the first determination range R1 is set for each mounting angle of the second object T2 with respect to the first object T1, the same first determination range R1 is set even if the type of the second object T2 is different. May be applied. Further, the first determination range R1 may be applied to each unit (feeder or nozzle) used for mounting the second object T2.
  • the center of the first determination range R1 and the center of the second determination range R2 coincide with each other, and the first determination range R1 and the second determination range R2 are concentric. be.
  • the first determination range R1 may be included in the second determination range R2, and the center of the first determination range R1 and the center of the second determination range R2 may be deviated from each other.
  • the shapes of the first determination range R1 and the second determination range R2 are circular, but the shapes of the first determination range R1 and the second determination range R2 are, for example, elliptical. It may be a polygon (for example, a quadrangle). Further, the shapes of the first determination range R1 and the second determination range R2 may be the same or different.
  • the average of the first determination range R1 does not necessarily mean that the mounting position deviation amount is zero.
  • the first information D1 is information acquired in the second inspection step, but is not limited to this.
  • the first information may be information acquired in the third inspection step, or may include both information acquired in the second inspection step and information acquired in the third inspection step.
  • the quality change detection method includes an acquisition step and a first determination step.
  • the acquisition step is a step of acquiring the amount of mounting position deviation, which is the difference between the actual mounting position of the second object (T2) and the target mounting position with respect to the first object (T1).
  • the first determination step when the amount of mounting position deviation acquired in the acquisition step exceeds the first determination range (R1) and falls within the second determination range (R2), the mounting quality has changed. This is the step to judge.
  • the first determination range (R1) is included in the second determination range (R2) in which the quality of the implementation is determined to be normal.
  • the quality change detection method further includes a second determination step in the first aspect.
  • the second determination step is a step of determining that the quality of the implementation has changed based on the statistical information regarding the amount of mounting misalignment included in the first determination range (R1).
  • the statistical information is at least the average calculated from the distribution of the mounting misalignment amount and the variance calculated from the distribution of the mounting misalignment amount. Including one.
  • the number of second objects (T2) whose mounting position deviation amount is included in the first determination range (R1) is a fixed number.
  • the first determination range (R1) is set according to the type of the second object (T2). ..
  • the first determination range (R1) can be set according to the type of the second object (T2).
  • the first determination range (R1) is the second object (T2) with respect to the first object (T1). It is set according to the mounting angle of.
  • the first determination range (R1) can be set according to the mounting angle of the second object (T2) with respect to the first object (T1).
  • the mounting quality control method further has a prediction step in any one of the first to sixth aspects.
  • the prediction step is a step of predicting an abnormality in the quality of the implementation based on the first information (D1).
  • the first information (D1) is information regarding the amount of mounting position deviation.
  • the quality change detection method in the seventh aspect, at least the time until the quality abnormality of the above-mentioned implementation occurs is predicted in the prediction step.
  • the quality change detection method further includes a notification step in the seventh or eighth aspect.
  • the notification step is a step of notifying at least one of a plurality of results including the determination result of the first determination step and the prediction result of the prediction step.
  • At least one of a plurality of results can be notified.
  • the quality change detection method further includes an estimation step in any one of the first to ninth aspects.
  • the estimation step is a step of estimating a malfunctioning part in the mounting system (22), which causes a change in the quality of mounting, based on the first information (D1) regarding the amount of mounting misalignment.
  • the second information (D2) is used in addition to the first information (D1) in the estimation step.
  • the second information (D2) is information corresponding to the amount of mounting misalignment, and is information on the equipment (4) used when mounting the second object (T2) on the first object (T1). Is.
  • the first object (T1) is a part (200) and the second object (T2) is.
  • the quality change detection system (1) includes an acquisition unit (11) and a determination unit (12).
  • the acquisition unit (11) acquires the amount of mounting position deviation, which is the difference between the actual mounting position of the second object (T2) and the target mounting position with respect to the first object (T1).
  • the determination unit (12) determines the quality of mounting when the amount of mounting position deviation acquired by the acquisition unit (11) exceeds the first determination range (R1) and falls within the second determination range (R2). Is determined to have changed.
  • the first determination range (R1) is included in the second determination range (R2) in which the quality of the implementation is determined to be normal.
  • the program according to the fourteenth aspect is a program for causing one or more processors to execute one or more quality change detection methods according to any one of the first to twelfth aspects.
  • the configuration according to the second to twelfth aspects is not an essential configuration for the quality change detection method, and can be omitted as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Operations Research (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

The problem addressed by the present disclosure is that of pre-empting and preventing the defective mounting of a second target object on a first target object. The quality change detection method according to the present disclosure includes an acquisition step and a first determination step. In the acquisition step, a mounting position deviation amount is acquired, which is the difference between a target position and the actual position of the mounting of a second target object (T2) on a first target object (T1). In the first determination step, mounting quality is determined to have changed if the mounting position deviation amount acquired in the acquisition step exceeds a first determining range and is within a second determining range. The first determining range is included in the second determining range, in which the mounting quality is determined to be normal.

Description

品質変化検知方法、品質変化検知システム、及びプログラムQuality change detection method, quality change detection system, and program
 本開示は、一般に、品質変化検知方法、品質変化検知システム、及びプログラムに関する。 This disclosure generally relates to quality change detection methods, quality change detection systems, and programs.
 特許文献1には、プリント基板に対する部品の実装状態を検査するための装着部品検査装置が記載されている。特許文献1に記載の装着部品検査装置では、プリント基板における部品の実装位置の撮像画像に基づいて部品の実装不良を検出する。 Patent Document 1 describes a mounted component inspection device for inspecting a mounted state of a component on a printed circuit board. The mounted component inspection device described in Patent Document 1 detects a component mounting defect based on an image of a component mounting position on a printed circuit board.
特開2000-349499号公報Japanese Unexamined Patent Publication No. 2000-349499
 本開示の目的は、第1対象物に対する第2対象物の実装不良の発生を未然に防ぐことができる品質変化検知方法、品質変化検知システム、及びプログラムを提供することにある。 An object of the present disclosure is to provide a quality change detection method, a quality change detection system, and a program that can prevent the occurrence of mounting defects of the second object with respect to the first object.
 本開示の一態様に係る品質変化検知方法は、取得ステップと、第1判定ステップと、を有する。前記取得ステップは、第1対象物に対する第2対象物の実際の実装位置と目標実装位置との差である実装位置ずれ量を取得するステップである。前記第1判定ステップは、前記取得ステップで取得した前記実装位置ずれ量が第1判定範囲を超えており、かつ第2判定範囲に収まっている場合に、実装の品質が変化したと判定するステップである。前記第1判定範囲は、前記実装の品質が正常であると判定される前記第2判定範囲に含まれている。 The quality change detection method according to one aspect of the present disclosure includes an acquisition step and a first determination step. The acquisition step is a step of acquiring the amount of mounting position deviation, which is the difference between the actual mounting position of the second object and the target mounting position with respect to the first object. The first determination step is a step of determining that the quality of mounting has changed when the mounting position deviation amount acquired in the acquisition step exceeds the first determination range and falls within the second determination range. Is. The first determination range is included in the second determination range in which the quality of the implementation is determined to be normal.
 本開示の一態様に係る品質変化検知システムは、取得部と、判定部と、を備える。前記取得部は、第1対象物に対する第2対象物の実際の実装位置と目標実装位置との差である実装位置ずれ量を取得する。前記判定部は、前記取得部が取得した前記実装位置ずれ量が第1判定範囲を超えており、かつ第2判定範囲に収まっている場合に、実装の品質が変化したと判定する。前記第1判定範囲は、前記実装の品質が正常であると判定される前記第2判定範囲に含まれている。 The quality change detection system according to one aspect of the present disclosure includes an acquisition unit and a determination unit. The acquisition unit acquires the amount of mounting position deviation, which is the difference between the actual mounting position of the second object and the target mounting position with respect to the first object. The determination unit determines that the quality of the mounting has changed when the mounting position deviation amount acquired by the acquisition unit exceeds the first determination range and falls within the second determination range. The first determination range is included in the second determination range in which the quality of the implementation is determined to be normal.
 本開示の一態様に係るプログラムは、前記品質変化検知方法を1以上のプロセッサに実行させるためのプログラムである。 The program according to one aspect of the present disclosure is a program for causing one or more processors to execute the quality change detection method.
図1は、実施形態に係る品質変化検知システムが適用される基板製造ラインの概略構成図である。FIG. 1 is a schematic configuration diagram of a substrate manufacturing line to which the quality change detection system according to the embodiment is applied. 図2は、同上の品質変化検知システムの検知対象である実装システムの概略平面図である。FIG. 2 is a schematic plan view of the mounting system that is the detection target of the same quality change detection system. 図3は、図2のA-A断面図である。FIG. 3 is a sectional view taken along the line AA of FIG. 図4は、同上の品質変化検知システムのブロック図である。FIG. 4 is a block diagram of the same quality change detection system. 図5は、同上の品質変化検知システムの検知対象である実装システムのブロック図である。FIG. 5 is a block diagram of the mounting system that is the detection target of the same quality change detection system. 図6Aは、同上の品質変化検知システムで生成した、第1対象物に対する第2対象物の実装位置の分布を示す図である。図6Bは、同上の品質変化検知システムで生成した、第1対象物に対する第2対象物の実装角度ごとの第1対象物に対する第2対象物の実装位置の分布を示す図である。FIG. 6A is a diagram showing the distribution of mounting positions of the second object with respect to the first object generated by the same quality change detection system. FIG. 6B is a diagram showing the distribution of the mounting position of the second object with respect to the first object for each mounting angle of the second object with respect to the first object, which was generated by the same quality change detection system. 図7は、同上の品質変化検知システムで生成した、第1対象物に対する第2対象物の実装位置ずれ量を示すグラフであって、第1対象物に対して正常に実装されていない第2対象物を含む場合のグラフである。FIG. 7 is a graph showing the amount of mounting position deviation of the second object with respect to the first object, which is generated by the same quality change detection system, and is a second graph which is not normally mounted on the first object. It is a graph when the object is included. 図8は、同上の品質変化検知システムの第1検知処理を説明するための説明図である。FIG. 8 is an explanatory diagram for explaining the first detection process of the same quality change detection system. 図9A~図9Cは、同上の品質変化検知システムの第2検知処理を説明するためのグラフである。9A to 9C are graphs for explaining the second detection process of the same quality change detection system. 図10は、同上の品質変化検知システムによって実行される品質変化検知方法を示すフローチャートである。FIG. 10 is a flowchart showing a quality change detection method executed by the same quality change detection system.
 (実施形態)
 以下、実施形態に係る品質変化検知方法及び品質変化検知システムについて、図面を参照して説明する。ただし、以下に説明する実施形態及び変形例は、本開示の一例に過ぎず、本開示は、下記の実施形態及び変形例に限定されない。下記の実施形態及び変形例以外であっても、本開示の技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。
(Embodiment)
Hereinafter, the quality change detection method and the quality change detection system according to the embodiment will be described with reference to the drawings. However, the embodiments and modifications described below are merely examples of the present disclosure, and the present disclosure is not limited to the following embodiments and modifications. Other than the following embodiments and modifications, various changes can be made according to the design and the like as long as they do not deviate from the technical idea of the present disclosure.
 また、下記の実施形態等において説明する各図は、いずれも模式的な図であり、各図中の各構成要素の大きさ及び厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。 In addition, each of the figures described in the following embodiments and the like is a schematic view, and the ratio of the size and the thickness of each component in each figure does not necessarily reflect the actual dimensional ratio. Not always.
 特許文献1に記載の装着部品検査装置(品質変化検知システム)では、プリント基板(第1対象物)に対する部品(第2対象物)の実装不良の発生を検出することはできるが、実装不良の発生を未然に防ぐことはできなかった。 The mounted component inspection device (quality change detection system) described in Patent Document 1 can detect the occurrence of a mounting defect of a component (second object) on a printed circuit board (first object), but the mounting defect is not present. The outbreak could not be prevented.
 (1)概要
 まず、本実施形態に係る品質変化検知方法及び品質変化検知システム1の概要について、図1~図3を参照して説明する。
(1) Outline First, an outline of the quality change detection method and the quality change detection system 1 according to the present embodiment will be described with reference to FIGS. 1 to 3.
 本実施形態に係る品質変化検知方法は、第1対象物T1に対する処理の品質が変化したことを検知するための方法である。本実施形態に係る品質変化検知システム1は、上述の品質変化検知方法に用いられるシステムである。図2及び図3に示すように、実装システム22にて第1対象物T1に第2対象物T2が実装(処理)される。実装システム22は、例えば、工場、研究所、事務所及び教育施設等の施設において、電子機器、自動車、衣料品、食料品、医薬品及び工芸品等の種々の製品の製造のための作業に用いられる実装装置(実装機)である。 The quality change detection method according to the present embodiment is a method for detecting that the quality of processing for the first object T1 has changed. The quality change detection system 1 according to the present embodiment is a system used in the above-mentioned quality change detection method. As shown in FIGS. 2 and 3, the second object T2 is mounted (processed) on the first object T1 in the mounting system 22. The mounting system 22 is used for the production of various products such as electronic devices, automobiles, clothing, groceries, pharmaceuticals and crafts in facilities such as factories, laboratories, offices and educational facilities. It is a mounting device (mounting machine) to be mounted.
 本実施形態では、実装システム22が、工場での電子機器の製造に用いられる場合について説明する。一般的な電子機器は、例えば、電源回路及び制御回路等の各種の回路基板を有している。これらの回路基板の製造にあたっては、一例として、はんだ塗布工程、実装工程、及びリフロー工程が、この順で行われる。はんだ塗布工程では、基板(プリント配線板を含む)にクリーム状はんだが塗布(又は印刷)される。実装工程では、基板に部品(電子部品を含む)が実装(搭載)される。リフロー工程では、例えば、部品が実装された状態の基板を、リフロー炉にて加熱することにより、クリーム状はんだを溶かしてはんだ付けが行われる。 In this embodiment, a case where the mounting system 22 is used for manufacturing an electronic device in a factory will be described. A general electronic device has various circuit boards such as a power supply circuit and a control circuit, for example. In manufacturing these circuit boards, as an example, a soldering step, a mounting step, and a reflow step are performed in this order. In the solder application process, creamy solder is applied (or printed) to the substrate (including the printed wiring board). In the mounting process, components (including electronic components) are mounted (mounted) on the board. In the reflow process, for example, the substrate in which the parts are mounted is heated in a reflow furnace to melt the creamy solder and perform soldering.
 また、はんだ塗布工程と実装工程との間、実装工程とリフロー工程との間、及びリフロー工程の後において、3つの検査工程(第1~第3検査工程)が行われる。第1検査工程では、基板に対するクリーム状はんだの塗布状態(基板に対するクリーム状はんだの位置、大きさ、膜厚等)について検査される。第2検査工程では、リフロー工程が行われる前の第1対象物T1に対する第2対象物T2の実装状態(第1対象物T1に対する第2対象物T2の実装位置、実装角度等)について検査される。第3検査工程では、リフロー工程が行われた後の第1対象物T1に対する第2対象物T2の実装状態(第1対象物T1に対する第2対象物T2の実装位置、実装角度等)について検査される。 Further, three inspection steps (first to third inspection steps) are performed between the solder coating process and the mounting process, between the mounting process and the reflow process, and after the reflow process. In the first inspection step, the state of application of the cream-like solder to the substrate (position, size, film thickness, etc. of the cream-like solder with respect to the substrate) is inspected. In the second inspection step, the mounting state of the second object T2 on the first object T1 (mounting position, mounting angle, etc. of the second object T2 on the first object T1) before the reflow step is performed is inspected. NS. In the third inspection step, the mounting state of the second object T2 on the first object T1 after the reflow step is performed (the mounting position, mounting angle, etc. of the second object T2 on the first object T1) is inspected. Will be done.
 これらの工程は、図1に示す基板製造ライン2にて行われる。基板製造ライン2は、印刷システム21、実装システム22、リフローシステム23、印刷後検査システム24、実装後検査システム25、及びリフロー後検査システム26を含む。 These steps are performed on the substrate manufacturing line 2 shown in FIG. The board manufacturing line 2 includes a printing system 21, a mounting system 22, a reflow system 23, a post-printing inspection system 24, a post-mounting inspection system 25, and a post-reflow inspection system 26.
 印刷システム21(図1参照)は、はんだ塗布工程において、第1対象物T1としての基板100に対してはんだを印刷する。実装システム22(図1参照)は、実装工程において、第1対象物T1としての基板100に対して、第2対象物T2としての部品200を実装する作業を行う。リフローシステム23は、部品200がはんだを介して実装された基板100を加熱し、はんだを溶かして部品200を基板100にはんだ付けする。 The printing system 21 (see FIG. 1) prints solder on the substrate 100 as the first object T1 in the solder coating process. In the mounting process, the mounting system 22 (see FIG. 1) performs work of mounting the component 200 as the second object T2 on the substrate 100 as the first object T1. The reflow system 23 heats the substrate 100 on which the component 200 is mounted via solder, melts the solder, and solders the component 200 to the substrate 100.
 印刷後検査システム24(図1参照)は、第1検査工程において、第1対象物T1である基板100に対して印刷されたはんだの印刷状態を検査する。実装後検査システム25(図1参照)は、第2検査工程において、第1対象物T1に対する第2対象物T2の実装状態を検査する。リフロー後検査システム26(図1参照)は、第3検査工程において、リフロー後の第1対象物T1に対する第2対象物T2の実装状態を検査する。 The post-print inspection system 24 (see FIG. 1) inspects the printed state of the solder printed on the substrate 100, which is the first object T1, in the first inspection step. The post-mounting inspection system 25 (see FIG. 1) inspects the mounting state of the second object T2 with respect to the first object T1 in the second inspection step. The post-reflow inspection system 26 (see FIG. 1) inspects the mounting state of the second object T2 with respect to the first object T1 after reflow in the third inspection step.
 基板製造ライン2を構成する各設備は、有線又は無線による通信ネットワークを介して品質変化検知システム1と接続されており、各設備と品質変化検知システム1との間でデータを送受信する。ここで、印刷システム21、実装システム22、リフローシステム23、印刷後検査システム24、実装後検査システム25、及びリフロー後検査システム26の各々は、原則、単一の装置のことを指すが、当該装置の制御部や記憶部が当該装置の外部に配置されるような構成、又は当該装置の機能を複数のモジュールを組み合わせて実現する構成も含む。また、同種の複数の装置をまとめた構成も含む。 Each facility constituting the board manufacturing line 2 is connected to the quality change detection system 1 via a wired or wireless communication network, and data is transmitted / received between each facility and the quality change detection system 1. Here, each of the printing system 21, the mounting system 22, the reflow system 23, the post-printing inspection system 24, the post-mounting inspection system 25, and the post-reflow inspection system 26, in principle, refer to a single device. It also includes a configuration in which a control unit and a storage unit of the device are arranged outside the device, or a configuration in which the functions of the device are realized by combining a plurality of modules. It also includes a configuration in which a plurality of devices of the same type are grouped together.
 本実施形態に係る品質変化検知システム1は、第1情報D1に基づいて、基板製造ライン2(図1参照)で製造される第1対象物T1の品質が変化したことを検知する。第1情報D1は、第2検査工程において取得される情報であって、後述の実装後検査システム25から入力される。 The quality change detection system 1 according to the present embodiment detects that the quality of the first object T1 manufactured on the substrate manufacturing line 2 (see FIG. 1) has changed based on the first information D1. The first information D1 is information acquired in the second inspection step, and is input from the post-mounting inspection system 25 described later.
 すなわち、本実施形態に係る品質変化検知方法は、実装工程で行われる、第1対象物T1に対して第2対象物T2が実装される際の実装の品質が変化したことを検知するための方法である。実装品質管理方法は、取得ステップと、第1判定ステップ(図10のステップST1~ST3)と、を有する。取得ステップは、実装後検査システム25からの第1情報D1に含まれる、第1対象物T1に対する第2対象物T2の実際の実装位置と目標実装位置との差である実装位置ずれ量から、検知対象である部品200に関するデータを取得するステップである。取得されたデータは、一例として、部品の種類、あるいは実装角度でグルーピングされる。第1判定ステップは、取得ステップで取得した実装位置ずれ量が第1判定範囲R1(図7参照)を超えており、かつ第2判定範囲R2(図7参照)に収まっている場合に、実装の品質が変化したと判定するステップである。第2判定範囲R2は、実装の品質が正常であると判定される範囲である。 That is, the quality change detection method according to the present embodiment is for detecting that the quality of mounting when the second object T2 is mounted on the first object T1 performed in the mounting process has changed. The method. The mounting quality control method includes an acquisition step and a first determination step (steps ST1 to ST3 in FIG. 10). The acquisition step is based on the amount of mounting position deviation, which is the difference between the actual mounting position of the second object T2 and the target mounting position with respect to the first object T1, included in the first information D1 from the post-mounting inspection system 25. This is a step of acquiring data related to the component 200 to be detected. The acquired data is grouped by the type of parts or the mounting angle as an example. The first determination step is mounted when the amount of mounting position deviation acquired in the acquisition step exceeds the first determination range R1 (see FIG. 7) and falls within the second determination range R2 (see FIG. 7). This is the step of determining that the quality of the product has changed. The second determination range R2 is a range in which the quality of mounting is determined to be normal.
 また、本実施形態に係る品質変化検知システム1は、上述の品質変化検知方法に用いられるシステムである。品質変化検知システム1は、図4に示すように、取得部11と、判定部12と、を備える。取得部11は、第1対象物T1に対し第2対象物T2を実装する実装工程を経た第1対象物T1に対する第2対象物T2の実際の実装位置と目標実装位置との差である実装位置ずれ量を取得する。判定部12は、取得部11が取得した実装位置ずれ量が第1判定範囲R1(図7参照)を超えており、かつ第2判定範囲R2(図7参照)に収まっている場合に、実装の品質が変化したと判定する。第2判定範囲R2は、実装の品質が正常と判定される範囲である。 Further, the quality change detection system 1 according to the present embodiment is a system used in the above-mentioned quality change detection method. As shown in FIG. 4, the quality change detection system 1 includes an acquisition unit 11 and a determination unit 12. The acquisition unit 11 is a mounting which is the difference between the actual mounting position of the second object T2 and the target mounting position on the first object T1 which has undergone the mounting step of mounting the second object T2 on the first object T1. Acquire the amount of misalignment. The determination unit 12 is mounted when the amount of mounting position deviation acquired by the acquisition unit 11 exceeds the first determination range R1 (see FIG. 7) and falls within the second determination range R2 (see FIG. 7). It is judged that the quality of is changed. The second determination range R2 is a range in which the quality of mounting is determined to be normal.
 本開示でいう「実装の品質が正常」とは、少なくとも、品質変化検知システム1に対して情報を出力する実装後検査システム25において正常と判定される範囲を満たすことをいう。 The term "normal mounting quality" as used in the present disclosure means that at least the range determined to be normal in the post-mounting inspection system 25 that outputs information to the quality change detection system 1 is satisfied.
 本実施形態に係る品質変化検知方法及び品質変化検知システム1では、実装位置ずれ量が、実装の品質が正常と判定される第2判定範囲R2に収まっていても、第1判定範囲R1を超えていれば、実装の品質が変化したと判定している。そのため、実装位置ずれ量が第2判定範囲R2を超える前に、実装の品質が異常(不良)となる方向に変化していることを把握することができる。これにより、第1対象物T1に対する第2対象物T2の実装不良の発生を未然に防ぐことができる。 In the quality change detection method and the quality change detection system 1 according to the present embodiment, even if the mounting position deviation amount falls within the second judgment range R2 in which the mounting quality is judged to be normal, it exceeds the first judgment range R1. If so, it is determined that the quality of the implementation has changed. Therefore, before the mounting position deviation amount exceeds the second determination range R2, it can be grasped that the mounting quality has changed in the direction of becoming abnormal (defective). As a result, it is possible to prevent the occurrence of mounting defects of the second object T2 with respect to the first object T1.
 (2)詳細
 次に、本実施形態に係る品質変化検知方法及び品質変化検知システム1の詳細について、図1~図5を参照して説明する。
(2) Details Next, the details of the quality change detection method and the quality change detection system 1 according to the present embodiment will be described with reference to FIGS. 1 to 5.
 (2.1)前提
 本実施形態では一例として、表面実装技術(SMT:Surface Mount Technology)による部品(第2対象物T2)の実装に、実装システム22が用いられる場合について説明する。つまり、第2対象物T2としての部品200は、表面実装用の部品(SMD:Surface Mount Device)であって、第1対象物T1としての基板100の表面(実装面101)上に配置されることをもって実装される。ただし、この例に限らず、挿入実装技術(IMT:Insertion Mount Technology)による部品(第2対象物T2)の実装に、実装システム22が用いられてもよい。この場合には、第2対象物T2としての部品200は、リード端子を有する挿入実装用の部品であり、第1対象物T1としての基板100の孔にリード端子を挿入することをもって、基板100の表面(実装面101)上に実装される。
(2.1) Premise In this embodiment, as an example, a case where the mounting system 22 is used for mounting a component (second object T2) by surface mount technology (SMT) will be described. That is, the component 200 as the second object T2 is a surface mount device (SMD) and is arranged on the surface (mounting surface 101) of the substrate 100 as the first object T1. It will be implemented with that. However, the present invention is not limited to this example, and the mounting system 22 may be used for mounting a component (second object T2) by an insertion mounting technology (IMT: Insertion Mount Technology). In this case, the component 200 as the second object T2 is a component for insertion mounting having a lead terminal, and by inserting the lead terminal into the hole of the substrate 100 as the first object T1, the substrate 100 It is mounted on the surface (mounting surface 101) of.
 すなわち、本開示でいう「実装」は、第1対象物T1としての基板100の実装面101上に、第2対象物T2としての部品200を配置したり、基板100の実装面101に部品200を装着したり、基板100の孔に部品200のリード端子を挿入したりすることを含む。また、本開示でいう「実装」は、部品200を基板100に接合したり、部品200を基板100に接着したりすることを含む。 That is, in the "mounting" referred to in the present disclosure, the component 200 as the second object T2 is arranged on the mounting surface 101 of the substrate 100 as the first object T1, or the component 200 is arranged on the mounting surface 101 of the substrate 100. Includes mounting and inserting the lead terminal of the component 200 into the hole of the substrate 100. Further, the "mounting" referred to in the present disclosure includes joining the component 200 to the substrate 100 and adhering the component 200 to the substrate 100.
 また、本開示でいう「実装の品質」は、第1対象物T1としての基板100に対して、第2対象物T2としての部品200を実装する場合の品質をいい、基板100に対する部品200の実装位置及び実装角度を含む。より詳細には、「実装の品質」は、基板100の第1方向(X軸方向)における実装位置、基板100の第2方向(Y軸方向)における実装位置、及び基板100の実装面101内での実装角度を含む。 Further, the "mounting quality" referred to in the present disclosure refers to the quality when the component 200 as the second object T2 is mounted on the substrate 100 as the first object T1, and the component 200 with respect to the substrate 100. Includes mounting position and mounting angle. More specifically, "mounting quality" refers to the mounting position of the board 100 in the first direction (X-axis direction), the mounting position of the board 100 in the second direction (Y-axis direction), and the inside of the mounting surface 101 of the board 100. Including the mounting angle at.
 また、本開示でいう「実装の品質が変化する」とは、実装の品質が正常であると判断される範囲から離れる方向(つまり正常でないと判断される方向)へ変化することをいう。例えば、本実施形態では、第1対象物T1に対する第2対象物T2の実装位置(又は実装角度)が変化することを意味する。 Further, "the quality of the implementation changes" in the present disclosure means that the quality of the implementation changes in a direction away from the range judged to be normal (that is, a direction judged to be abnormal). For example, in the present embodiment, it means that the mounting position (or mounting angle) of the second object T2 with respect to the first object T1 changes.
 また、本開示でいう「実装の品質が変化したと判定する」とは、第1対象物T1に対する第2対象物T2の実装位置(又は実装角度)のずれ量が、実装の品質が正常と判定される第2判定範囲R2(図5参照)に含まれる第1判定範囲R1(図5参照)を超えているか否かを判定すること、あるいは、第1判定範囲R1に収まっている第2対象物T2の実装位置(又は実装角度)のずれ量の分布が変化することを意味する。 Further, "determining that the quality of mounting has changed" in the present disclosure means that the amount of deviation of the mounting position (or mounting angle) of the second object T2 with respect to the first object T1 is that the quality of mounting is normal. It is determined whether or not the first determination range R1 (see FIG. 5) included in the second determination range R2 (see FIG. 5) to be determined is exceeded, or the second determination range R1 is contained. This means that the distribution of the amount of deviation of the mounting position (or mounting angle) of the object T2 changes.
 また、本開示でいう「目標実装位置」は、第1対象物T1としての基板100における、第2対象物T2としての部品200が実装されるべき位置(座標)をいう。本実施形態では、図2に示すように、基板100が、後述のX-Y平面と平行に配置されているため、目標実装位置は、X軸方向の座標(X座標)と、Y軸方向の座標(Y座標)と、で表される。 Further, the "target mounting position" referred to in the present disclosure means a position (coordinates) on which the component 200 as the second object T2 should be mounted on the substrate 100 as the first object T1. In this embodiment, as shown in FIG. 2, since the substrate 100 is arranged parallel to the XY plane described later, the target mounting position is the coordinates in the X-axis direction (X-coordinates) and the Y-axis direction. It is represented by the coordinates (Y coordinates) of.
 以下では一例として、互いに直交するX軸、Y軸及びZ軸の3軸を設定し、第1対象物T1である基板100の表面(実装面101)に平行な軸を「X軸」及び「Y軸」とし、基板100の厚み方向に平行な軸を「Z」軸とする。さらに、第1対象物T1である基板100から見た捕捉部2211側を、Z軸の正の向き(「上方」ともいう)と規定する。また、Z軸の正の向き(上方)から見た状態を、以下では「平面視」ともいう。X軸、Y軸、及びZ軸は、いずれも仮想的な軸であり、図面中の「X」、「Y」、「Z」を示す矢印は、説明のために表記しているに過ぎず、いずれも実体を伴わない。また、これらの方向は実装システム22の使用時の方向を限定する趣旨ではない。 In the following, as an example, three axes of X-axis, Y-axis, and Z-axis that are orthogonal to each other are set, and the axes parallel to the surface (mounting surface 101) of the substrate 100, which is the first object T1, are defined as "X-axis" and "X-axis". The "Y-axis" is used, and the axis parallel to the thickness direction of the substrate 100 is the "Z" axis. Further, the capture portion 2211 side as seen from the substrate 100, which is the first object T1, is defined as the positive direction (also referred to as “upward”) of the Z axis. Further, the state seen from the positive direction (upper side) of the Z axis is also referred to as "planar view" below. The X-axis, Y-axis, and Z-axis are all virtual axes, and the arrows indicating "X", "Y", and "Z" in the drawings are shown for illustration purposes only. , Neither is accompanied by substance. Further, these directions are not intended to limit the directions when the mounting system 22 is used.
 また、実装システム22には、冷却水の循環用のパイプ、電力供給用のケーブル及び空圧(正圧及び真空を含む)供給用のパイプ等が接続されるが、本実施形態では、これらの図示を適宜省略する。 Further, a pipe for circulating cooling water, a cable for supplying electric power, a pipe for supplying pneumatic pressure (including positive pressure and vacuum), and the like are connected to the mounting system 22, but in the present embodiment, these are connected. The illustration is omitted as appropriate.
 (2.2)品質変化検知システム
 次に、本実施形態に係る品質変化検知システム1の構成について、図4を参照して説明する。
(2.2) Quality Change Detection System Next, the configuration of the quality change detection system 1 according to the present embodiment will be described with reference to FIG.
 本実施形態では、品質変化検知システム1は、1以上のプロセッサ及び1以上のメモリを有するコンピュータシステムを主構成とする。すなわち、コンピュータシステムの1以上のメモリに記録されたプログラムを、1以上のプロセッサが実行することにより、品質変化検知システム1の機能が実現される。プログラムは、メモリに予め記録されていてもよく、インターネット等の電気通信回線を通して提供されてもよく、メモリカード等の非一時的記録媒体に記録されて提供されてもよい。 In the present embodiment, the quality change detection system 1 mainly includes a computer system having one or more processors and one or more memories. That is, the function of the quality change detection system 1 is realized by executing the program recorded in one or more memories of the computer system by one or more processors. The program may be pre-recorded in a memory, may be provided through a telecommunication line such as the Internet, or may be recorded and provided on a non-temporary recording medium such as a memory card.
 本実施形態に係る品質変化検知システム1は、図4に示すように、取得部11と、判定部12と、を備えている。また、本実施形態では、品質変化検知システム1は、取得部11及び判定部12に加えて、予測部13、要因推定部14、作成部15及び通知部16を更に備えている。 As shown in FIG. 4, the quality change detection system 1 according to the present embodiment includes an acquisition unit 11 and a determination unit 12. Further, in the present embodiment, the quality change detection system 1 further includes a prediction unit 13, a factor estimation unit 14, a creation unit 15, and a notification unit 16 in addition to the acquisition unit 11 and the determination unit 12.
 本実施形態では、上述したように、品質変化検知システム1は、1以上のプロセッサ及び1以上のメモリを有するコンピュータシステムを主構成とする。そのため、品質変化検知システム1の各構成(取得部11、判定部12、予測部13、要因推定部14、作成部15及び通知部16)は、1以上のプロセッサがプログラムを実行することによって具現化される。 In the present embodiment, as described above, the quality change detection system 1 mainly includes a computer system having one or more processors and one or more memories. Therefore, each configuration of the quality change detection system 1 (acquisition unit 11, determination unit 12, prediction unit 13, factor estimation unit 14, creation unit 15, and notification unit 16) is realized by executing a program by one or more processors. Be made.
 (2.2.1)取得部
 取得部11は、上述したように、第1対象物T1に対する第2対象物T2の実際の実装位置と目標実装位置との差である実装位置ずれ量を取得する。すなわち、取得部11が実装位置ずれ量を取得するステップ(処理)が、本実施形態に係る品質変化検知方法の取得ステップである。具体的には、取得部11は、後述の実装後検査システム25(図1参照)からの第1情報D1を取得する。また、取得部11は、後述の実装システム22からの第2情報D2を取得してもよい。また、本実施形態では、取得部11は、実装後検査システム25において第1対象物T1としての1枚の基板100の検査が完了するタイミングで、第1情報D1を取得する。なお、取得部11は、後述する分布変化検知F2(図10参照)のために、必要な枚数分の基板100の検査が完了するタイミングで、第1情報D1を取得してもよい。また、本実施形態では、取得部11は、1枚の基板100の実装面101上に実装されているすべての第2対象物T2について第1情報D1を取得する。取得部11は、取得した第1情報D1を部品200の種類ごとに判定部12に出力する。
(2.2.1) Acquisition unit As described above, the acquisition unit 11 acquires the amount of mounting position deviation, which is the difference between the actual mounting position of the second object T2 and the target mounting position with respect to the first object T1. do. That is, the step (process) in which the acquisition unit 11 acquires the mounting position deviation amount is the acquisition step of the quality change detection method according to the present embodiment. Specifically, the acquisition unit 11 acquires the first information D1 from the post-mounting inspection system 25 (see FIG. 1) described later. Further, the acquisition unit 11 may acquire the second information D2 from the mounting system 22 described later. Further, in the present embodiment, the acquisition unit 11 acquires the first information D1 at the timing when the inspection of one substrate 100 as the first object T1 is completed in the post-mounting inspection system 25. The acquisition unit 11 may acquire the first information D1 at the timing when the inspection of the required number of substrates 100 is completed for the distribution change detection F2 (see FIG. 10) described later. Further, in the present embodiment, the acquisition unit 11 acquires the first information D1 for all the second objects T2 mounted on the mounting surface 101 of one substrate 100. The acquisition unit 11 outputs the acquired first information D1 to the determination unit 12 for each type of the component 200.
 ここでいう「部品の種類」は、素子の種別(抵抗、コンデンサ、リード部品等)と、部品のサイズ(0402、0603、1005等、実寸法に限らず、規格上、データ上の寸法を含む)と、を含む。また、「部品の種類ごと」とは、素子の種別ごと、部品のサイズごと、及び、素子の種別ごとかつ部品のサイズごとという意味を少なくとも含む。例えば、0603サイズの抵抗の第1情報D1と、1005サイズの抵抗の第1情報D1とは別々に判定部12に出力される。すなわち、素子の種別が同じであっても、部品のサイズが異なる場合、別々に判定部12に出力する。さらに、部品の種類ごとかつ実装角度ごとに判定部12に第1情報D1を出力してもよい。なお、本実施形態では、取得部11は、基板製造ライン2を構成する装置の情報を管理する管理コンピュータ3(図4参照)から第1情報D1を取得する。 The "part type" here includes the type of element (resistor, capacitor, lead part, etc.) and the size of the part (0402, 0603, 1005, etc., not limited to actual dimensions, but also standard and data dimensions. ) And, including. Further, "for each type of component" includes at least the meaning of each element type, each component size, and each element type and component size. For example, the first information D1 of the 0603 size resistor and the first information D1 of the 1005 size resistor are separately output to the determination unit 12. That is, even if the types of elements are the same, if the sizes of the parts are different, they are separately output to the determination unit 12. Further, the first information D1 may be output to the determination unit 12 for each type of component and for each mounting angle. In this embodiment, the acquisition unit 11 acquires the first information D1 from the management computer 3 (see FIG. 4) that manages the information of the devices constituting the board manufacturing line 2.
 第1情報D1は、第1対象物T1に対する第2対象物T2の実際の実装位置と、第1対象物T1に対する第2対象物T2の目標実装位置との差である実装位置ずれ量を含む。また、第1情報D1には、第1対象物T1に対する第2対象物T2の実際の実装角度と、第1対象物T1に対する第2対象物T2の目標実装角度との差である実装角度ずれ量が更に含まれていてもよい。本実施形態では、実装位置ずれ量のみが第1情報D1に含まれていることとして説明する。また、実装位置ずれ量には、X軸方向のずれ量である第1実装位置ずれ量と、Y軸方向のずれ量である第2実装位置ずれ量と、が含まれている。第1情報D1は、リフロー工程が行われる前の実装位置ずれ量を含む。 The first information D1 includes a mounting position deviation amount which is a difference between the actual mounting position of the second object T2 with respect to the first object T1 and the target mounting position of the second object T2 with respect to the first object T1. .. Further, in the first information D1, there is a mounting angle deviation which is a difference between the actual mounting angle of the second object T2 with respect to the first object T1 and the target mounting angle of the second target T2 with respect to the first object T1. The amount may be further included. In the present embodiment, it will be described that only the mounting position shift amount is included in the first information D1. Further, the mounting position deviation amount includes a first mounting position deviation amount which is a deviation amount in the X-axis direction and a second mounting position deviation amount which is a deviation amount in the Y-axis direction. The first information D1 includes a mounting position shift amount before the reflow step is performed.
 第2情報D2は、基板製造ライン2を構成する複数の設備のうち少なくとも1つの設備から取得される情報である。本実施形態では、第2情報D2は、複数の設備のうちの1つの設備4である実装システム22から取得される情報である(図4参照)。第2情報D2は、ロット情報、トレース情報、イベント情報及び生産情報(生産データ)を含む。ロット情報は、上述の第1情報D1に対応する部品200が実装された基板100の種類に関する情報であって、例えば、基板100ごとの生産ロット、基板100の生産日時に関する情報を含む。トレース情報は、上述の第1情報D1に対応する部品200を実装する際に用いられる後述のノズル2211やフィーダのアドレス(つまり、どの位置のノズルホルダに取り付けられたノズル2211で実装されたか、どの位置に取り付けられたフィーダから供給されたか)に関する情報と、実装システム22に設けられたセンサ(例えば、部品認識カメラ222)により取得される情報と、センサにより取得される情報に基づく補正量(例えば、認識補正量)と、を含む。イベント情報は、実装システム22による実装工程において行われるイベントに関する情報であって、例えば、フィーダの交換を含む。生産情報は、例えば、基板100における部品200の目標実装位置、目標実装角度、回路番号、及び部品200を個別に識別する部品コード等を含む。部品コードは、部品のサイズ、素子の種別(つまり、抵抗か、コンデンサか)、部品のベンダー等の情報を含む。 The second information D2 is information acquired from at least one of the plurality of facilities constituting the substrate manufacturing line 2. In the present embodiment, the second information D2 is information acquired from the mounting system 22 which is one of the plurality of facilities 4 (see FIG. 4). The second information D2 includes lot information, trace information, event information and production information (production data). The lot information is information on the type of the substrate 100 on which the component 200 corresponding to the above-mentioned first information D1 is mounted, and includes, for example, information on a production lot for each substrate 100 and information on a production date and time of the substrate 100. The trace information is the address of the nozzle 2211 or feeder described later used when mounting the component 200 corresponding to the first information D1 described above (that is, at which position the nozzle 2211 mounted on the nozzle holder was mounted, which position. Information about whether it was supplied from a feeder mounted at a position, information acquired by a sensor provided in the mounting system 22 (eg, component recognition camera 222), and a correction amount based on the information acquired by the sensor (eg,). , Recognition correction amount), and. The event information is information about an event performed in the mounting process by the mounting system 22, and includes, for example, a feeder exchange. The production information includes, for example, a target mounting position of the component 200 on the substrate 100, a target mounting angle, a circuit number, a component code for individually identifying the component 200, and the like. The part code includes information such as the size of the part, the type of element (that is, a resistor or a capacitor), the vendor of the part, and the like.
 (2.2.2)判定部
 判定部12は、取得部11からの第1情報D1に基づいて、実装の品質が変化したと判定する。より詳細には、判定部12は、取得部11からの実装位置ずれ量が第1判定範囲R1(図7参照)を超えており、かつ実装の品質が正常であると判定される第2判定範囲R2(図7参照)に収まっている場合に、実装の品質が変化したと判定する。また、判定部12は、第1判定範囲R1に含まれている実装位置ずれ量に関する統計情報に基づいて、実装の品質が変化したと判定する。すなわち、判定部12が実装の品質が変化したと判定するステップ(処理)が、本実施形態に係る品質変化検知方法の判定ステップ(第1判定ステップ及び第2判定ステップ)である。
(2.2.2) Judgment unit The determination unit 12 determines that the quality of the implementation has changed based on the first information D1 from the acquisition unit 11. More specifically, the determination unit 12 determines that the amount of mounting position deviation from the acquisition unit 11 exceeds the first determination range R1 (see FIG. 7), and the quality of mounting is determined to be normal. If it falls within the range R2 (see FIG. 7), it is determined that the quality of the mounting has changed. Further, the determination unit 12 determines that the quality of mounting has changed based on the statistical information regarding the amount of mounting position deviation included in the first determination range R1. That is, the step (process) in which the determination unit 12 determines that the quality of the implementation has changed is the determination step (first determination step and second determination step) of the quality change detection method according to the present embodiment.
 本実施形態に係る品質変化検知方法は、判定ステップとして、第1判定ステップと、第2判定ステップと、を有する。第1判定ステップは、実装位置ずれ量が第1判定範囲R1を超えており、かつ第2判定範囲R2に収まっている場合に、実装の品質が変化したと判定するステップである。第2判定ステップは、第1判定範囲R1に含まれている第2対象物T2の実装位置ずれ量に関する統計情報に基づいて、実装の品質が変化したと判定するステップである。第1判定範囲R1は、後述する作成部15で作成される正常状態分布(図9A参照)の標準偏差に基づいて設定される。言い換えると、正常状態分布(図9A参照)とは、基板製造ライン2の状態が正常であれば、第2対象物T2の実装位置ずれ量がどのように変動するかを示す分布である。 The quality change detection method according to the present embodiment has a first determination step and a second determination step as determination steps. The first determination step is a step of determining that the quality of mounting has changed when the amount of mounting position deviation exceeds the first determination range R1 and falls within the second determination range R2. The second determination step is a step of determining that the quality of the implementation has changed based on the statistical information regarding the amount of the mounting position deviation of the second object T2 included in the first determination range R1. The first determination range R1 is set based on the standard deviation of the normal state distribution (see FIG. 9A) created by the creation unit 15 described later. In other words, the normal state distribution (see FIG. 9A) is a distribution showing how the mounting position shift amount of the second object T2 fluctuates if the state of the substrate manufacturing line 2 is normal.
 図6Aは、部品の種類ごとかつ生産ロットごとの、第1対象物T1に対する第2対象物T2の実装位置の分布を示す図である。本実施形態において、部品の種類ごととは、部品のサイズごとかつ素子の種別ごとという意味である。図6Aでは、X軸方向における第2対象物T2の実装位置の分布を示している。図6Aにおいて横軸方向に並ぶ(図示例では2個)グラフは、生産ロットが異なるグラフを示し、図6Aにおいて縦軸方向に並ぶ(図示例では2個)グラフは、部品の種類が異なるグラフを示している。また、各グラフにおける縦軸は実装位置ずれ量を示し、各グラフにおける横軸は各実装位置ずれ量に実装される回数、すなわち出現回数を示している。 FIG. 6A is a diagram showing the distribution of the mounting positions of the second object T2 with respect to the first object T1 for each type of part and for each production lot. In the present embodiment, each type of component means each size of component and each type of element. FIG. 6A shows the distribution of the mounting positions of the second object T2 in the X-axis direction. In FIG. 6A, the graphs arranged in the horizontal axis direction (two in the illustrated example) show graphs in which production lots are different, and in FIG. 6A, the graphs arranged in the vertical axis direction (two in the illustrated example) are graphs in which the types of parts are different. Is shown. Further, the vertical axis in each graph indicates the amount of mounting position deviation, and the horizontal axis in each graph indicates the number of times of mounting in each mounting position deviation amount, that is, the number of appearances.
 図6Aにおいて横軸方向に並ぶ、部品の種類は同じであるが生産ロットが異なる二つのグラフを参照すると、生産ロットが異なっていても、部品の種類が同じであれば(つまり第2対象物T2の種類が同じであれば)、第2対象物T2の実装位置の分布の変化が小さい(分布の形状が同等とみなせる)ことが分かる。一方、図6Aにおいて縦軸方向に並ぶ、生産ロットは同じであるが部品の種類が異なるグラフを参照すると、生産ロットが同じであっても、部品の種類が異なっていれば(つまり第2対象物T2の種類が異なっていれば)、第2対象物T2の実装位置の分布の変化が大きい(分布の形状が同等とみなせない)ことが分かる。要するに、第2対象物T2の実装位置の分布は、生産ロットよりも、第2対象物T2(部品200)の種類によって大きく変化する。したがって、正常状態分布は、第2対象物T2である部品200の種類に応じて設定されることが好ましい。ここでは、第1判定範囲R1(図8参照)は、第2対象物T2の種類に応じて設定されることが好ましい。同様に、第2判定範囲R2(図8参照)も、第2対象物T2の種類に応じて設定されることが好ましい。 Looking at the two graphs arranged in the horizontal axis direction in FIG. 6A, which have the same type of parts but different production lots, if the types of parts are the same even if the production lots are different (that is, the second object). It can be seen that if the types of T2 are the same), the change in the distribution of the mounting position of the second object T2 is small (the shape of the distribution can be regarded as equivalent). On the other hand, referring to the graph in FIG. 6A, which is arranged in the vertical direction and has the same production lot but different types of parts, even if the production lots are the same, if the types of parts are different (that is, the second target). It can be seen that if the type of the object T2 is different), the change in the distribution of the mounting position of the second object T2 is large (the shapes of the distributions cannot be regarded as equivalent). In short, the distribution of the mounting positions of the second object T2 varies greatly depending on the type of the second object T2 (part 200) rather than the production lot. Therefore, it is preferable that the normal state distribution is set according to the type of the component 200 which is the second object T2. Here, it is preferable that the first determination range R1 (see FIG. 8) is set according to the type of the second object T2. Similarly, the second determination range R2 (see FIG. 8) is also preferably set according to the type of the second object T2.
 なお、Y軸方向における第2対象物T2の実装位置ずれ量の分布についても、生産ロットよりも部品の種類によって大きく変化する(分布の形状が同等とみなせなくなる)。そのため、ここではX軸方向における実装位置の分布についてのみ説明し、Y軸方向における実装位置ずれ量の分布については説明を省略する。 The distribution of the mounting position shift amount of the second object T2 in the Y-axis direction also changes more greatly depending on the type of parts than in the production lot (the shape of the distribution cannot be regarded as the same). Therefore, here, only the distribution of the mounting position in the X-axis direction will be described, and the description of the distribution of the mounting position deviation amount in the Y-axis direction will be omitted.
 また、図6Bは、第1対象物T1に対する第2対象物T2の実装角度ごとの、第1対象物T1に対する第2対象物T2の実装位置の分布を示す図である。図6Bでは、図6Aと同様、X軸方向における第2対象物T2の実装位置の分布を示している。各グラフにおける縦軸は実装位置ずれ量を示し、各グラフにおける横軸は出現回数を示している。 Further, FIG. 6B is a diagram showing the distribution of the mounting position of the second object T2 with respect to the first object T1 for each mounting angle of the second object T2 with respect to the first object T1. FIG. 6B shows the distribution of the mounting positions of the second object T2 in the X-axis direction, as in FIG. 6A. The vertical axis in each graph shows the amount of mounting position deviation, and the horizontal axis in each graph shows the number of occurrences.
 さらに、図6Bにおける左側のグラフは、第1対象物T1に対する第2対象物T2の実装角度が90度である場合を示し、図6Bにおける右側のグラフは、上記実装角度が0度である場合を示している。上記実装角度が90度である場合のグラフと、上記実装角度が0度である場合のグラフとを比較すると、第2対象物T2の実装位置ずれ量の分布が異なっていることが分かる。要するに、第2対象物T2の実装位置ずれ量の分布は、第1対象物T1に対する第2対象物T2の実装角度に応じて大きく変化する(分布の形状が同等とみなせない)。したがって、正常状態分布は、第1対象物T1に対する第2対象物T2である部品200の実装角度に応じて設定されることが好ましい。ここでは、第1判定範囲R1(図8参照)は、第1対象物T1に対する第2対象物T2である部品200の実装角度に応じて設定されることが好ましい。同様に、第2判定範囲R2も、第1対象物T1に対する第2対象物T2である部品200の実装角度に応じて設定されることが好ましい。 Further, the graph on the left side in FIG. 6B shows the case where the mounting angle of the second object T2 with respect to the first object T1 is 90 degrees, and the graph on the right side in FIG. 6B shows the case where the mounting angle is 0 degrees. Is shown. Comparing the graph when the mounting angle is 90 degrees and the graph when the mounting angle is 0 degrees, it can be seen that the distribution of the mounting position deviation amount of the second object T2 is different. In short, the distribution of the mounting position shift amount of the second object T2 changes greatly depending on the mounting angle of the second object T2 with respect to the first object T1 (the shapes of the distributions cannot be regarded as equivalent). Therefore, it is preferable that the normal state distribution is set according to the mounting angle of the component 200 which is the second object T2 with respect to the first object T1. Here, the first determination range R1 (see FIG. 8) is preferably set according to the mounting angle of the component 200 which is the second object T2 with respect to the first object T1. Similarly, it is preferable that the second determination range R2 is also set according to the mounting angle of the component 200 which is the second object T2 with respect to the first object T1.
 (2.2.2.1)第1判定ステップ(外れ値検知F1)
 第1判定範囲R1は、図7に示すように、第1閾値TH11と第2閾値TH12とで規定される範囲である。ここで、本実施形態では、第1閾値TH11及び第2閾値TH12の絶対値が異なっているが、第1閾値TH11及び第2閾値TH12の絶対値は同じであってもよい。図7では、横軸が時間経過tを示し、縦軸が第2対象物T2の実装位置ずれ量GapXを示している。
(2.2.2.1) First judgment step (outlier detection F1)
As shown in FIG. 7, the first determination range R1 is a range defined by the first threshold value TH11 and the second threshold value TH12. Here, in the present embodiment, the absolute values of the first threshold value TH11 and the second threshold value TH12 are different, but the absolute values of the first threshold value TH11 and the second threshold value TH12 may be the same. In FIG. 7, the horizontal axis indicates the elapsed time t, and the vertical axis indicates the mounting position deviation amount GapX of the second object T2.
 第2判定範囲R2は、上述したように、実装の品質が正常と判定される範囲である。第2判定範囲R2は、図7に示すように、第1閾値TH21と第2閾値TH22とで規定される範囲である。ここで、本実施形態では、第1閾値TH21及び第2閾値TH22の絶対値が異なっているが、第1閾値TH21及び第2閾値TH22の絶対値は同じであってもよい。また、図7において第1閾値TH11を超えている「丸印」は、第2対象物T2の実装位置ずれ量GapXの外れ値を示している。ここでいう「外れ値」は、第2判定範囲R2に収まっているが、第1判定範囲R1を超えている値(図8の「Ou1」、「Ou2」参照)をいう。なお、図8における「DI1」は、第2対象物T2の実装位置ずれ量GapXの分布(以下、「分布DI1」という)を示している。 The second determination range R2 is a range in which the quality of mounting is determined to be normal, as described above. As shown in FIG. 7, the second determination range R2 is a range defined by the first threshold value TH21 and the second threshold value TH22. Here, in the present embodiment, the absolute values of the first threshold value TH21 and the second threshold value TH22 are different, but the absolute values of the first threshold value TH21 and the second threshold value TH22 may be the same. Further, in FIG. 7, a “circle” exceeding the first threshold value TH11 indicates an outlier of the mounting position deviation amount GapX of the second object T2. The "outlier" here means a value that is within the second determination range R2 but exceeds the first determination range R1 (see "Ou1" and "Ou2" in FIG. 8). Note that "DI1" in FIG. 8 indicates the distribution of the mounting position shift amount GapX of the second object T2 (hereinafter referred to as "distribution DI1").
 したがって、判定部12は、上述したように、実装位置ずれ量GapX(図8の外れ値Ou1,Ou2)が第1判定範囲R1を超えており、かつ第2判定範囲R2に収まっている場合に、実装の品質が変化したと判定する。すなわち、本実施形態では、図7及び図8に示すように、第1判定範囲R1は第2判定範囲R2に含まれている。 Therefore, as described above, the determination unit 12 determines that the mounting position deviation amount GapX (outliers Ou1 and Ou2 in FIG. 8) exceeds the first determination range R1 and falls within the second determination range R2. , Judge that the quality of implementation has changed. That is, in the present embodiment, as shown in FIGS. 7 and 8, the first determination range R1 is included in the second determination range R2.
 ところで、第1判定範囲R1は、上述したように、第2対象物T2の種類に応じて設定される。そして、判定部12は、第2対象物T2の種類が異なっている場合には、第2対象物T2の種類に応じて設定された第1判定範囲R1に基づいて、第2対象物T2の実装の品質が変化したと判定する。また、第1判定範囲R1は、上述したように、第1対象物T1に対する第2対象物T2の実装角度に応じて設定される。そして、判定部12は、第1対象物T1に対する第2対象物T2の実装角度が異なっている場合には、実装角度に応じて設定された第1判定範囲R1に基づいて、実装の品質が変化したと判定する。なお、判定部12は、第2対象物T2を実装するために使用されるフィーダ(フィーダのシリアル、あるいは、アドレス)に応じて設定された第1判定範囲R1に基づいて、実装の品質が変化したと判定してもよい。すなわち、判定部12は、異なるカテゴリ(第2対象物T2の種類、実装角度、供給に使用されたフィーダ等)ごとに生成された判断基準に基づいて、実装の品質が変化したと判定することになる。これにより、特定のカテゴリについて、判断基準からの変動が明確化され、実装の品質の変化が顕在化する。 By the way, as described above, the first determination range R1 is set according to the type of the second object T2. Then, when the type of the second object T2 is different, the determination unit 12 determines that the second object T2 is based on the first determination range R1 set according to the type of the second object T2. Determine that the quality of the implementation has changed. Further, as described above, the first determination range R1 is set according to the mounting angle of the second object T2 with respect to the first object T1. Then, when the mounting angle of the second object T2 with respect to the first object T1 is different, the determination unit 12 determines the mounting quality based on the first determination range R1 set according to the mounting angle. Judge that it has changed. The determination unit 12 changes the quality of mounting based on the first determination range R1 set according to the feeder (serial or address of the feeder) used for mounting the second object T2. It may be determined that it has been done. That is, the determination unit 12 determines that the quality of the implementation has changed based on the determination criteria generated for each different category (type of the second object T2, mounting angle, feeder used for supply, etc.). become. As a result, the variation from the judgment criteria is clarified for a specific category, and the change in the quality of implementation becomes apparent.
 (2.2.2.2)第2判定ステップ(分布変化検知F2)
 また、判定部12は、第1対象物T1としての基板100の実装面101上に実装されている複数の第2対象物T2のうち、実装位置ずれ量が第1判定範囲R1に含まれている第2対象物T2の個数が一定数以上集まった場合に、後述の分布変化検知F2(図10参照)を実行する。すなわち、判定部12は、第1判定範囲R1に含まれている第2対象物T2の実装位置ずれ量に関する統計情報に基づいて、実装の品質が変化したと判定する。
(2.2.2.2) Second determination step (distribution change detection F2)
Further, the determination unit 12 includes the mounting position deviation amount in the first determination range R1 among the plurality of second objects T2 mounted on the mounting surface 101 of the substrate 100 as the first object T1. When the number of the second objects T2 is equal to or more than a certain number, the distribution change detection F2 (see FIG. 10) described later is executed. That is, the determination unit 12 determines that the quality of the implementation has changed based on the statistical information regarding the amount of the mounting position deviation of the second object T2 included in the first determination range R1.
 統計情報は、第2対象物T2の実装位置ずれ量の分布に基づいて算出される平均と、第2対象物T2の実装位置ずれ量の分布に基づいて算出される分散(又は標準偏差)と、の少なくとも一方を含む。本実施形態では、統計情報は、第2対象物T2の実装位置ずれ量の分布から算出される平均と、第2対象物T2の実装位置ずれ量の分布から算出される分散(又は標準偏差)と、の両方を含む。判定部12は、例えば、図9Bに示すように、第2対象物T2の実装位置ずれ量の分布DI1から算出される平均と正常状態分布から算出される平均との差が大きい場合(図10のステップST7の閾値以上)、実装の品質が変化していると判定する。また、判定部12は、例えば、図9Cに示すように、第2対象物T2の実装位置ずれ量の分布DI1から算出される分散と正常状態分布から算出される分散との比が大きい(つまり分布DI1が正常状態分布に比べて広がっている)場合、実装の品質が変化していると判定する。 The statistical information includes the average calculated based on the distribution of the mounting misalignment amount of the second object T2 and the variance (or standard deviation) calculated based on the distribution of the mounting misalignment amount of the second object T2. , Including at least one of. In the present embodiment, the statistical information is the average calculated from the distribution of the mounting misalignment amount of the second object T2 and the variance (or standard deviation) calculated from the distribution of the mounting misalignment amount of the second object T2. And, including both. For example, as shown in FIG. 9B, the determination unit 12 has a large difference between the average calculated from the distribution DI1 of the mounting position deviation amount of the second object T2 and the average calculated from the normal state distribution (FIG. 10). (More than the threshold value of step ST7), it is determined that the quality of the implementation has changed. Further, in the determination unit 12, for example, as shown in FIG. 9C, the ratio of the variance calculated from the distribution DI1 of the mounting position deviation amount of the second object T2 to the variance calculated from the normal state distribution is large (that is,). If the distribution DI1 is wider than the normal state distribution), it is determined that the quality of the implementation has changed.
 なお、図9Aは、過去の第1情報D1から求めた正常状態分布を示す図である。図9Aでは、第2対象物T2の実装位置ずれ量の分布DI1は、実装位置ずれ量のゼロ近傍を平均として分布している。また、図9A~図9Cにおける左側の目盛り(出現回数の値)は、正常状態分布に対する目盛りであって、図9B及び図9Cにおける第2対象物T2の実装位置ずれ量の分布DI1は、正常状態分布に合わせて正規化している。 Note that FIG. 9A is a diagram showing a normal state distribution obtained from the past first information D1. In FIG. 9A, the distribution DI1 of the mounting position deviation amount of the second object T2 is distributed with the vicinity of zero of the mounting position deviation amount as an average. Further, the scale on the left side (value of the number of appearances) in FIGS. 9A to 9C is a scale with respect to the normal state distribution, and the distribution DI1 of the mounting position deviation amount of the second object T2 in FIGS. 9B and 9C is normal. It is normalized according to the state distribution.
 (2.2.3)予測部
 予測部13は、判定部12の判定結果に基づいて、実装の品質の異常(不良)を予測する。ここで、実装の品質の異常は、第1対象物T1に実装される複数の第2対象物T2のうち、実装位置ずれ量が第1判定範囲R1を超えている特定の第2対象物T2の実装位置ずれ量が第2判定範囲R2を超えることによって発生する。言い換えると、実装の品質の異常の前には、実装の品質が変化する。したがって、予測部13は、実装後検査システム25からの第1情報D1に基づいて、実装の品質の異常を予測する。すなわち、予測部13が実装の品質の異常を予測するステップ(処理)が予測ステップである。予測部13は、例えば、第2対象物T2の実装位置ずれ量が第2判定範囲R2を超える方向に変化していると判定部12が判定した場合、実装の品質が異常(不良)になることを予測する。
(2.2.3) Prediction unit The prediction unit 13 predicts an abnormality (defectiveness) in the quality of mounting based on the determination result of the determination unit 12. Here, the abnormality in the mounting quality is caused by the specific second object T2 in which the mounting position deviation amount exceeds the first determination range R1 among the plurality of second objects T2 mounted on the first object T1. It occurs when the amount of mounting position deviation of the above exceeds the second determination range R2. In other words, the quality of the implementation changes before the anomaly of the quality of the implementation. Therefore, the prediction unit 13 predicts an abnormality in the quality of the mounting based on the first information D1 from the post-mounting inspection system 25. That is, the step (processing) in which the prediction unit 13 predicts an abnormality in the quality of the implementation is a prediction step. For example, when the determination unit 12 determines that the mounting position deviation amount of the second object T2 changes in a direction exceeding the second determination range R2, the prediction unit 13 results in an abnormality (defectiveness) in the mounting quality. Predict that.
 また、予測部13は、予測ステップにおいて、少なくとも基板製造ライン2における異常が発生するまでの時間を予測する。具体的には、予測部13は、例えば、第2対象物T2の実装位置ずれ量が、第1判定範囲R1に収まっている初期位置から第1判定範囲R1を超える外れ値Ou1(又はOu2)になる(図7において第1判定範囲R1を超える)までの時間を記憶しており、この時間に基づいて外れ値Ou1,Ou2が第2判定範囲R2を超えるまでの時間を予測する。このように、本実施形態に係る品質変化検知方法及び品質変化検知システム1によれば、実装の品質の異常が発生するまでの時間を予測することができる。 Further, the prediction unit 13 predicts at least the time until an abnormality occurs in the substrate manufacturing line 2 in the prediction step. Specifically, the prediction unit 13 has, for example, an outlier Ou1 (or Ou2) in which the mounting position deviation amount of the second object T2 exceeds the first determination range R1 from the initial position within the first determination range R1. (In FIG. 7, the time until the first determination range R1 is exceeded) is stored, and the time until the outliers Au1 and Ou2 exceed the second determination range R2 is predicted based on this time. As described above, according to the quality change detection method and the quality change detection system 1 according to the present embodiment, it is possible to predict the time until an abnormality in the quality of the mounting occurs.
 なお、予測部13は、所定時間経過後に、実装の品質の異常が発生する異常発生確率、異常発生回数等を予測してもよい。あるいは、予測部13は、生産枚数や生産ロットあたりの異常発生確率、異常発生回数等を予測してもよい。 Note that the prediction unit 13 may predict the probability of occurrence of an abnormality in the mounting quality, the number of times of occurrence of an abnormality, and the like after a lapse of a predetermined time. Alternatively, the prediction unit 13 may predict the number of production sheets, the probability of abnormality occurrence per production lot, the number of abnormality occurrences, and the like.
 (2.2.4)要因推定部
 要因推定部14は、実装位置ずれ量に関する情報に基づいて、実装の品質が変化した要因となる基板製造ライン2における不調箇所を推定する。要因推定部14が、実装の品質が変化した要因となる基板製造ライン2における不調箇所を推定するステップ(処理)が推定ステップである。例えば、第2対象物T2の実装位置ずれ量が第1判定範囲R1を超える方向に変化していると判定部12が判定した場合、実装システム22からの第2情報D2から、後述する部品認識カメラ222による撮像結果に基づいて算出される特定の第2対象物T2の実装位置の補正量(認識補正量)の変動に関する情報を呼び出す。実装位置ずれ量の第1判定範囲R1を越える方向への変化と認識補正量の変動に相関があると、実装の品質の変化は吸着工程における不調に起因すると推定する。あるいは、実装位置ずれ量の第1判定範囲R1を越える方向への変化が特定のフィーダから第2対象物T2を供給した場合に発生していれば、実装の品質の変化は特定のフィーダの不調に起因すると推定する。すなわち、要因推定部14は、実装後検査システム25からの第1情報D1に加えて、実装位置ずれ量に対応する情報であって第1対象物T1に対して第2対象物T2を実装する際に用いられる設備4である実装システム22からの第2情報D2を用いて不調箇所を推定する。
(2.2.4) Factor estimation unit The factor estimation unit 14 estimates the malfunctioning part in the substrate manufacturing line 2 that causes the change in the mounting quality based on the information regarding the amount of mounting misalignment. The step (processing) in which the factor estimation unit 14 estimates the malfunctioning portion in the substrate manufacturing line 2 that causes the change in the mounting quality is the estimation step. For example, when the determination unit 12 determines that the mounting position deviation amount of the second object T2 changes in a direction exceeding the first determination range R1, the component recognition described later is performed from the second information D2 from the mounting system 22. Information on the fluctuation of the correction amount (recognition correction amount) of the mounting position of the specific second object T2 calculated based on the image pickup result by the camera 222 is called. If there is a correlation between the change in the mounting position deviation amount in the direction exceeding the first determination range R1 and the change in the recognition correction amount, it is presumed that the change in the mounting quality is caused by the malfunction in the adsorption process. Alternatively, if the change in the mounting position deviation amount in the direction exceeding the first determination range R1 occurs when the second object T2 is supplied from the specific feeder, the change in the mounting quality is a malfunction of the specific feeder. It is presumed to be caused by. That is, the factor estimation unit 14 mounts the second object T2 on the first object T1 which is information corresponding to the amount of mounting position deviation, in addition to the first information D1 from the post-mounting inspection system 25. The faulty part is estimated using the second information D2 from the mounting system 22 which is the equipment 4 used at the time.
 なお、要因推定部14が推定する不調箇所とは、フィーダやヘッド、ノズル等の設備4を構成するユニットに限らず、吸着工程、印刷工程等の工程や、基板製造ライン2を構成する設備4も含む。 The malfunction location estimated by the factor estimation unit 14 is not limited to the unit constituting the equipment 4 such as the feeder, the head, and the nozzle, but also the processes such as the suction process and the printing process, and the equipment 4 constituting the substrate manufacturing line 2. Also includes.
 また、要因推定部14は、推定された不調箇所であるフィーダやヘッド、ノズルが故障することによる停止時間(時間稼働ロス)や、不調箇所に対する適切なメンテナンス時期等を推定してもよい。 Further, the factor estimation unit 14 may estimate the stop time (time operation loss) due to the failure of the feeder, head, or nozzle which is the estimated malfunction location, the appropriate maintenance time for the malfunction location, and the like.
 (2.2.5)作成部
 作成部15は、過去に実装工程を経て実装の品質が正常と判定された(すなわち、第2判定範囲R2に収まっていた)実装位置ずれ量から正常状態分布を作成する。正常状態分布は、検知対象である第2対象物T2の種類や、実装角度の組み合わせごとに作成される。例えば、0603サイズの抵抗と1005サイズの抵抗が検知対象である場合、0603サイズの抵抗に対応する実装位置ずれ量と、1005サイズの抵抗に対応する実装位置ずれ量から、それぞれ正常状態分布が作成される。第1判定範囲R1は、正常状態分布の標準偏差から算出される。検知対象である第2対象物T2に対応する正常状態分布がある場合、正常状態分布から算出される第1判定範囲R1、平均、分散に関する情報が、判定部12に出力される。実装位置ずれ量のデータの数は、正常状態分布の正確性を確保するため、多いのが好ましい。したがって、実装位置ずれ量のデータは複数の生産ロットにわたって集められる。一例として、実装位置ずれ量のデータの数は平均8000点である。実装位置ずれ量のデータが十分集まったタイミングで、正常状態分布は更新されてもよい。例えば、部品の種類ごとに実装位置ずれ量のデータが一定数以上蓄積される所定の間隔、例えば1日ごとに更新し、更新するタイミングは適宜設定してよい。
(2.2.5) Creation unit The creation unit 15 distributes the normal state from the amount of mounting position deviation for which the quality of mounting was determined to be normal (that is, within the second determination range R2) through the mounting process in the past. To create. The normal state distribution is created for each type of the second object T2 to be detected and a combination of mounting angles. For example, when a 0603 size resistor and a 1005 size resistor are to be detected, a normal state distribution is created from the mounting misalignment amount corresponding to the 0603 size resistor and the mounting misalignment amount corresponding to the 1005 size resistor. Will be done. The first determination range R1 is calculated from the standard deviation of the normal state distribution. When there is a normal state distribution corresponding to the second object T2 to be detected, information on the first determination range R1, average, and variance calculated from the normal state distribution is output to the determination unit 12. The number of data for the amount of mounting misalignment is preferably large in order to ensure the accuracy of the normal state distribution. Therefore, the mounting misalignment amount data is collected over a plurality of production lots. As an example, the number of data of the amount of mounting position deviation is 8000 points on average. The normal state distribution may be updated at the timing when the data of the mounting position shift amount is sufficiently collected. For example, it may be updated at a predetermined interval in which a certain number or more of data of the amount of mounting position deviation is accumulated for each type of component, for example, every day, and the timing of updating may be appropriately set.
 (2.2.6)通知部
 通知部16は、判定部12の判定結果及び予測部13の予測結果の少なくとも一方を、例えば、工場の管理者(作業者)に通知する。本実施形態では、通知部16は、判定部12の第1判定ステップにおける判定結果、及び判定部12の第2判定ステップにおける判定結果、並びに、予測部13の予測結果を作業者に通知する。例えば、実装位置ずれ量が第1判定範囲R1の閾値(TH11、TH12)に近づいていると判定部12が判定した場合、通知部16は、実装の品質が変化した旨を作業者に通知し、第1判定範囲R1に含まれている実装位置ずれ量の分布から算出される統計情報(平均や分散)に基づいて、正常状態分布と同等とみなせないと判定部12が判定した場合、通知部16は、実装の品質が変化した旨を作業者に通知する。また、実装の品質が異常(不良)になることを予測部13が予測した場合、通知部16は、実装の品質の異常(不良)が発生する旨を作業者に通知する。ここで、通知部16が行う通知の態様には、例えば、設備4の表示部(液晶ディスプレイや発光部)への表示、点灯や、作業者が使用する端末(パーソナルコンピュータ、タブレット、スマートフォン等)へのデータの送信、表示、音声出力、非一時的記録媒体への記録(書き込み)及び印刷(プリントアウト)等が含まれる。なお、通知部16は、判定部12の第1判定ステップにおける判定結果、及び第2判定ステップにおける判定結果、並びに、予測部13の予測結果のいずれか1つを通知してもよい。
(2.2.6) Notification unit The notification unit 16 notifies, for example, a factory manager (worker) of at least one of the determination result of the determination unit 12 and the prediction result of the prediction unit 13. In the present embodiment, the notification unit 16 notifies the operator of the determination result in the first determination step of the determination unit 12, the determination result in the second determination step of the determination unit 12, and the prediction result of the prediction unit 13. For example, when the determination unit 12 determines that the mounting position deviation amount is approaching the threshold value (TH11, TH12) of the first determination range R1, the notification unit 16 notifies the operator that the quality of the mounting has changed. , If the determination unit 12 determines that it cannot be regarded as equivalent to the normal state distribution based on the statistical information (average or variance) calculated from the distribution of the mounting position shift amount included in the first determination range R1, a notification is given. The unit 16 notifies the operator that the quality of the implementation has changed. Further, when the prediction unit 13 predicts that the mounting quality will be abnormal (defective), the notification unit 16 notifies the operator that the mounting quality abnormality (defective) will occur. Here, the mode of notification performed by the notification unit 16 includes, for example, display and lighting on the display unit (liquid crystal display and light emitting unit) of the equipment 4, and terminals (personal computer, tablet, smartphone, etc.) used by the operator. Includes transmission, display, audio output, recording (writing) and printing (printout) of data to a non-temporary recording medium. The notification unit 16 may notify any one of the determination result in the first determination step of the determination unit 12, the determination result in the second determination step, and the prediction result of the prediction unit 13.
 (2.3)実装システム
 次に、本実施形態に係る実装システム22の構成について、図2、図3及び図5を参照して説明する。
(2.3) Mounting System Next, the configuration of the mounting system 22 according to the present embodiment will be described with reference to FIGS. 2, 3 and 5.
 本実施形態に係る実装システム22は、図2、図3及び図5に示すように、実装ヘッド221と、部品認識カメラ222と、制御装置223と、駆動装置224と、部品供給装置225と、搬送装置226と、を備えている。 As shown in FIGS. 2, 3 and 5, the mounting system 22 according to the present embodiment includes a mounting head 221, a component recognition camera 222, a control device 223, a drive device 224, a component supply device 225, and a component supply device 225. It is equipped with a transfer device 226.
 (2.3.1)実装ヘッド
 実装ヘッド221は、少なくとも1つの捕捉部2211を有している。本実施形態では、実装ヘッド221は、複数の捕捉部2211を有している。実装ヘッド221は、捕捉部2211にて第2対象物T2(部品200)を捕捉した状態で、捕捉部2211を第1対象物T1(基板100)に近づけるように移動させ、第2対象物T2を第1対象物T1の実装面101に実装する。言い換えると、実装ヘッド221は、捕捉部2211を、第1対象物T1に近づけた第1位置と、第1位置に比較して第1対象物T1から離れた第2位置と、の間で移動可能に保持する。つまり、実装ヘッド221は、捕捉部2211を、第1対象物T1に向けて移動可能に保持する。
(2.3.1) Mounting Head The mounting head 221 has at least one catching unit 2211. In this embodiment, the mounting head 221 has a plurality of capturing portions 2211. The mounting head 221 moves the capture unit 2211 so as to approach the first object T1 (board 100) in a state where the capture unit 2211 captures the second object T2 (component 200), and the second object T2 Is mounted on the mounting surface 101 of the first object T1. In other words, the mounting head 221 moves the capture unit 2211 between the first position closer to the first object T1 and the second position farther from the first object T1 than the first position. Hold as possible. That is, the mounting head 221 movably holds the capturing unit 2211 toward the first object T1.
 本実施形態では、実装ヘッド221は、捕捉部2211に加えて、捕捉部2211を移動させるためのアクチュエータ2212(図5参照)と、捕捉部2211及びアクチュエータ2212を保持するヘッドボディ2213(図3参照)と、を更に有している。本実施形態に係る実装システム22では、1つのヘッドボディ2213に、捕捉部2211及びアクチュエータ2212を複数個ずつ保持している。これにより、実装ヘッド221では、複数の第2対象物T2(部品200)を捕捉可能である。 In the present embodiment, the mounting head 221 has an actuator 2212 (see FIG. 5) for moving the capture unit 2211 in addition to the capture unit 2211, and a head body 2213 (see FIG. 3) that holds the capture unit 2211 and the actuator 2212. ) And further. In the mounting system 22 according to the present embodiment, a plurality of capture units 2211 and actuators 2212 are held in one head body 2213. As a result, the mounting head 221 can capture a plurality of second objects T2 (components 200).
 捕捉部2211は、例えば、吸着ノズルである。捕捉部2211は、制御装置223にて制御され、第2対象物T2を捕捉(保持)する捕捉状態と、第2対象物T2を解放(捕捉を解除)する解放状態と、を切替可能である。ただし、捕捉部2211は、真空力により第2対象物T2を吸着する吸着ノズルに限らず、例えば、物理的に第2対象物T2を挟む(摘む)構造を有するチャック機構やロボットハンド、その他磁力や静電気で第2対象物T2を吸着(吸引)する構成等、によって捕捉(保持)する構成であってもよい。 The capture unit 2211 is, for example, a suction nozzle. The capture unit 2211 is controlled by the control device 223 and can switch between a capture state in which the second object T2 is captured (held) and a release state in which the second object T2 is released (capture is released). .. However, the capturing unit 2211 is not limited to a suction nozzle that sucks the second object T2 by a vacuum force, for example, a chuck mechanism having a structure that physically sandwiches (picks) the second object T2, a robot hand, or other magnetic force. It may be configured to capture (hold) the second object T2 by suction (suction) or the like by static electricity.
 捕捉部2211による第2対象物T2の捕捉に関しては、実装ヘッド221は、動力としての空圧(真空)の供給を受けて動作する。つまり、実装ヘッド221は、捕捉部2211に繋がる空圧(真空)の供給路上のバルブを開閉することによって、捕捉部2211の捕捉状態と、解放状態と、を切り替える。 Regarding the capture of the second object T2 by the capture unit 2211, the mounting head 221 operates by receiving the supply of pneumatic pressure (vacuum) as power. That is, the mounting head 221 switches between the capture state and the release state of the capture unit 2211 by opening and closing the valve on the pneumatic (vacuum) supply path connected to the capture unit 2211.
 アクチュエータ2212は、捕捉部2211をZ軸方向に直進移動させる。さらに、アクチュエータ2212は、捕捉部2211をZ軸方向に沿った軸線を中心とする回転方向(以下、「θ方向」という)に回転移動させる。本実施形態では一例として、Z軸方向への捕捉部2211の移動に関しては、アクチュエータ2212は、リニアモータで発生する駆動力にて駆動する。θ方向への捕捉部2211の移動に関しては、アクチュエータ2212は、回転型モータで発生する駆動力にて駆動する。一方で、後述するように、実装ヘッド221は、駆動装置224によりX軸方向及びY軸方向に直進移動する。結果的に、実装ヘッド221に含まれる捕捉部2211は、駆動装置224及びアクチュエータ2212によって、X軸方向、Y軸方向、Z軸方向及びθ方向に移動することが可能である。 The actuator 2212 moves the capture unit 2211 straight in the Z-axis direction. Further, the actuator 2212 rotates and moves the capture unit 2211 in the rotation direction (hereinafter, referred to as “θ direction”) about the axis along the Z-axis direction. As an example in the present embodiment, the actuator 2212 is driven by the driving force generated by the linear motor with respect to the movement of the capturing unit 2211 in the Z-axis direction. Regarding the movement of the capture unit 2211 in the θ direction, the actuator 2212 is driven by the driving force generated by the rotary motor. On the other hand, as will be described later, the mounting head 221 moves linearly in the X-axis direction and the Y-axis direction by the drive device 224. As a result, the capture unit 2211 included in the mounting head 221 can be moved in the X-axis direction, the Y-axis direction, the Z-axis direction, and the θ direction by the drive device 224 and the actuator 2212.
 ヘッドボディ2213は、一例として、金属製であって直方体状に形成されている。捕捉部2211及びアクチュエータ2212がヘッドボディ2213に組み付けられることによって、ヘッドボディ2213は捕捉部2211及びアクチュエータ2212を保持する。本実施形態では、捕捉部2211は、Z軸方向及びθ方向への移動が可能な状態で、アクチュエータ2212を介してヘッドボディ2213に間接的に保持される。実装ヘッド221は、ヘッドボディ2213が駆動装置224にてX-Y平面内で移動させられることによって、X-Y平面内を移動する。 As an example, the head body 2213 is made of metal and is formed in a rectangular parallelepiped shape. By assembling the capture unit 2211 and the actuator 2212 to the head body 2213, the head body 2213 holds the capture unit 2211 and the actuator 2212. In the present embodiment, the capture unit 2211 is indirectly held by the head body 2213 via the actuator 2212 in a state where it can move in the Z-axis direction and the θ direction. The mounting head 221 moves in the XY plane by moving the head body 2213 in the XY plane by the drive device 224.
 上述した構成によれば、実装ヘッド221は、捕捉部2211にて第2対象物T2(部品200)を捕捉した状態で、捕捉部2211を第1対象物T1(基板100)に近づけるように移動させ、第2対象物T2を第1対象物T1の実装面101に実装することが可能となる。つまり、実装ヘッド221は、捕捉部2211を、少なくとも、第1対象物T1に近づけた第1位置と、第1位置に比較して第1対象物T1から離れた第2位置と、の間で移動させる。要するに、実装ヘッド221は、第2対象物T2を捕捉した状態の捕捉部2211を、第2位置から第1位置に移動させることで、第2対象物T2を第1対象物T1の実装面101に実装する。 According to the above-described configuration, the mounting head 221 moves so as to bring the capture unit 2211 closer to the first object T1 (board 100) in a state where the capture unit 2211 captures the second object T2 (component 200). The second object T2 can be mounted on the mounting surface 101 of the first object T1. That is, the mounting head 221 has the capture unit 2211 at least between the first position closer to the first object T1 and the second position farther from the first object T1 than the first position. Move it. In short, the mounting head 221 moves the capturing unit 2211 in a state where the second object T2 is captured from the second position to the first position, whereby the second object T2 is moved to the mounting surface 101 of the first object T1. Implemented in.
 本実施形態では、実装ヘッド221は、捕捉部2211、アクチュエータ2212及びヘッドボディ2213に加えて、ヘッドカメラ2214を更に有している。ヘッドカメラ2214は、ヘッドボディ2213の側面に固定されることで実装ヘッド221に固定されている。本実施形態では、実装システム22は、1つのヘッドカメラ2214を備えている。ヘッドカメラ2214は、例えば、エリアカメラである。本実施形態では、ヘッドカメラ2214は、撮像視野を下方に向けて配置されており、第1対象物T1に付された位置決め用の基板マークを撮像する。なお、ヘッドカメラ2214は、第1対象物T1(基板100)の実装面101のうち、接合部材(例えば、はんだ)を含む特定領域を撮像してもよい。 In the present embodiment, the mounting head 221 further includes a head camera 2214 in addition to the capturing unit 2211, the actuator 2212, and the head body 2213. The head camera 2214 is fixed to the mounting head 221 by being fixed to the side surface of the head body 2213. In this embodiment, the mounting system 22 includes one head camera 2214. The head camera 2214 is, for example, an area camera. In the present embodiment, the head camera 2214 is arranged with the imaging field of view facing downward, and images a positioning substrate mark attached to the first object T1. The head camera 2214 may take an image of a specific region including a joining member (for example, solder) in the mounting surface 101 of the first object T1 (board 100).
 (2.3.2)部品認識カメラ
 部品認識カメラ222は、実装システム22の基台220上に、撮像視野を上向きに配置されている。部品認識カメラ222は、実装ヘッド221の捕捉部2211に保持された状態の部品200の下面を下方から撮像する。撮像された画像に基づき、制御装置223(後述する)は、実装ヘッド221の捕捉部2211に対する部品200の位置ずれ量を算出し、算出された位置ずれ量に基づき実装ヘッド221による基板100への部品200の実装位置を補正する。なお、本実施形態においては、部品認識カメラ222は、実装システム22の基台220上に配置されているが、これに限らず、例えば、実装ヘッド221に一体的に設けられていてもよい。
(2.3.2) Parts recognition camera The parts recognition camera 222 is arranged on the base 220 of the mounting system 22 with the imaging field of view facing upward. The component recognition camera 222 captures an image of the lower surface of the component 200 held by the capture unit 2211 of the mounting head 221 from below. Based on the captured image, the control device 223 (described later) calculates the amount of misalignment of the component 200 with respect to the capture unit 2211 of the mounting head 221, and based on the calculated amount of misalignment, the mounting head 221 attaches the mounting head 221 to the substrate 100. Correct the mounting position of the component 200. In the present embodiment, the component recognition camera 222 is arranged on the base 220 of the mounting system 22, but the present invention is not limited to this, and for example, the component recognition camera 222 may be integrally provided on the mounting head 221.
 (2.3.3)制御装置
 制御装置223は、実装システム22の各部を制御する。制御装置223は、1以上のプロセッサ及び1以上のメモリを有するコンピュータシステムを主構成とする。すなわち、コンピュータシステムの1以上のメモリに記録されたプログラムを、1以上のプロセッサが実行することにより、制御装置223の機能が実現される。プログラムは、メモリに予め記録されていてもよく、インターネット等の電気通信回線を通して提供されてもよく、メモリカード等の非一時的記録媒体に記録されて提供されてもよい。
(2.3.3) Control device The control device 223 controls each part of the mounting system 22. The control device 223 mainly comprises a computer system having one or more processors and one or more memories. That is, the function of the control device 223 is realized by executing the program recorded in one or more memories of the computer system by one or more processors. The program may be pre-recorded in a memory, may be provided through a telecommunication line such as the Internet, or may be recorded and provided on a non-temporary recording medium such as a memory card.
 制御装置223は、例えば、実装ヘッド221、ヘッドカメラ2214、部品認識カメラ222、駆動装置224、部品供給装置225及び搬送装置226の各々と電気的に接続されている。制御装置223は、実装ヘッド221及び駆動装置224に制御信号を出力し、少なくとも捕捉部2211にて捕捉した第2対象物T2を第1対象物T1の実装面101に実装するように、実装ヘッド221及び駆動装置224を制御する。また、制御装置223は、ヘッドカメラ2214及び部品認識カメラ222に制御信号を出力し、ヘッドカメラ2214及び部品認識カメラ222を制御したり、ヘッドカメラ2214及び部品認識カメラ222で撮像された画像を、ヘッドカメラ2214及び部品認識カメラ222から取得したりする。 The control device 223 is electrically connected to, for example, each of the mounting head 221, the head camera 2214, the component recognition camera 222, the drive device 224, the component supply device 225, and the transfer device 226. The control device 223 outputs a control signal to the mounting head 221 and the driving device 224, and mounts the second object T2 captured by at least the capturing unit 2211 on the mounting surface 101 of the first object T1. It controls 221 and the drive device 224. Further, the control device 223 outputs a control signal to the head camera 2214 and the component recognition camera 222 to control the head camera 2214 and the component recognition camera 222, or obtains an image captured by the head camera 2214 and the component recognition camera 222. Obtained from the head camera 2214 and the component recognition camera 222.
 (2.3.4)駆動装置
 駆動装置224は、実装ヘッド221を移動させる装置である。本実施形態では、駆動装置224は、X-Y平面内で、実装ヘッド221を移動させる。ここでいう「X-Y平面」は、X軸及びY軸を含む平面であって、Z軸と直交する平面である。言い換えると、駆動装置224は、実装ヘッド221をX軸方向及びY軸方向に移動させる。本実施形態では、ヘッドカメラ2214が実装ヘッド221に固定されているため、駆動装置224は、ヘッドカメラ2214についても実装ヘッド221と共に移動させる。言い換えると、駆動装置224は、実装ヘッド221及びヘッドカメラ2214を、X-Y平面内で移動させる。
(2.3.4) Drive device The drive device 224 is a device for moving the mounting head 221. In this embodiment, the drive device 224 moves the mounting head 221 in the XY plane. The "XY plane" here is a plane including the X-axis and the Y-axis, and is a plane orthogonal to the Z-axis. In other words, the drive device 224 moves the mounting head 221 in the X-axis direction and the Y-axis direction. In the present embodiment, since the head camera 2214 is fixed to the mounting head 221, the drive device 224 also moves the head camera 2214 together with the mounting head 221. In other words, the drive device 224 moves the mounting head 221 and the head camera 2214 in the XY plane.
 具体的には、駆動装置224は、図2及び図3に示すように、X軸駆動部2241と、Y軸駆動部2242と、を有している。X軸駆動部2241は、実装ヘッド221をX軸方向に直進移動させる。Y軸駆動部2242は、実装ヘッド221をY軸方向に直進移動させる。Y軸駆動部2242は、実装ヘッド221を、X軸駆動部2241ごとY軸に沿って移動させることで、実装ヘッド221をY軸方向に直進移動させる。本実施形態では一例として、X軸駆動部2241及びY軸駆動部2242の各々は、リニアモータを含み、電力供給を受けてリニアモータで発生する駆動力により、実装ヘッド221を移動させる。 Specifically, the drive device 224 has an X-axis drive unit 2241 and a Y-axis drive unit 2242, as shown in FIGS. 2 and 3. The X-axis drive unit 2241 moves the mounting head 221 straight in the X-axis direction. The Y-axis drive unit 2242 moves the mounting head 221 linearly in the Y-axis direction. The Y-axis drive unit 2242 moves the mounting head 221 together with the X-axis drive unit 2241 along the Y-axis, thereby moving the mounting head 221 linearly in the Y-axis direction. In the present embodiment, as an example, each of the X-axis drive unit 2241 and the Y-axis drive unit 2242 includes a linear motor, and the mounting head 221 is moved by a driving force generated by the linear motor when it receives electric power.
 (2.3.5)部品供給装置
 部品供給装置225は、実装ヘッド221の捕捉部2211にて捕捉される第2対象物T2としての部品200を供給する。部品供給装置225は、一例として、キャリアテープ6に収容された部品200を供給するテープフィーダ2251を複数有している。または、部品供給装置225は、複数の部品200が載せ置かれたトレイを有していてもよい。実装ヘッド221は、このような部品供給装置225から、第2対象物T2(部品200)を捕捉部2211にて捕捉する。
(2.3.5) Parts supply device The parts supply device 225 supplies the parts 200 as the second object T2 captured by the capture unit 2211 of the mounting head 221. As an example, the component supply device 225 has a plurality of tape feeders 2251 that supply components 200 housed in the carrier tape 6. Alternatively, the component supply device 225 may have a tray on which a plurality of components 200 are placed. The mounting head 221 captures the second object T2 (component 200) from such a component supply device 225 by the capture unit 2211.
 (2.3.6)搬送装置
 搬送装置226は、第1対象物T1としての基板100を搬送する装置である。搬送装置226は、例えば、ベルトコンベヤ等で実現される。搬送装置226は、第1対象物T1(基板100)を、例えば、X軸に沿って搬送する。搬送装置226は、少なくとも実装ヘッド221の下方、つまりZ軸方向において捕捉部2211と対向する実装スペースに、第1対象物T1を搬送する。そして、搬送装置226は、実装ヘッド221による第1対象物T1(基板100)への第2対象物T2(部品200)の実装が完了するまでは、実装スペースに第1対象物T1を停止させる。
(2.3.6) Transport device The transport device 226 is a device that transports the substrate 100 as the first object T1. The transfer device 226 is realized by, for example, a belt conveyor or the like. The transport device 226 transports the first object T1 (board 100) along, for example, the X axis. The transport device 226 transports the first object T1 at least below the mounting head 221, that is, in the mounting space facing the capture unit 2211 in the Z-axis direction. Then, the transfer device 226 stops the first object T1 in the mounting space until the mounting of the second object T2 (component 200) on the first object T1 (board 100) by the mounting head 221 is completed. ..
 (2.3.7)その他
 また、実装システム22は、上記構成に加えて、例えば、通信部等を備えている。通信部は、直接的、又はネットワーク若しくは中継器等を介して間接的に、上位システムと通信するように構成されている。これにより、実装システム22は、上位システムとの間でデータを授受することが可能である。
(2.3.7) Others In addition to the above configuration, the mounting system 22 also includes, for example, a communication unit and the like. The communication unit is configured to communicate with the host system directly or indirectly via a network or a repeater or the like. As a result, the mounting system 22 can exchange data with and from the host system.
 (2.4)検査システム
 次に、実装後検査システム25について説明する。
(2.4) Inspection system Next, the post-mounting inspection system 25 will be described.
 実装後検査システム25は、上述したように、実装工程とリフロー工程との間の第2検査工程において、第1対象物T1に対する第2対象物T2の実装状態を検査するためのシステムである。実装後検査システム25は、図4に示すように、管理コンピュータ3を介して品質変化検知システム1と接続されており、品質変化検知システム1に対して第1情報D1を出力する。第1情報D1は、上述したように、リフロー工程前の、第1対象物T1に対する第2対象物T2の実装位置ずれ量を含む。 As described above, the post-mounting inspection system 25 is a system for inspecting the mounting state of the second object T2 with respect to the first object T1 in the second inspection step between the mounting process and the reflow process. As shown in FIG. 4, the post-mounting inspection system 25 is connected to the quality change detection system 1 via the management computer 3, and outputs the first information D1 to the quality change detection system 1. As described above, the first information D1 includes the amount of mounting position deviation of the second object T2 with respect to the first object T1 before the reflow step.
 実装後検査システム25は、第1対象物T1に実装される全ての第2対象物T2の実装位置ずれ量を算出する。具体的には、実装後検査システム25は、第1対象物T1に対する第2対象物T2の実際の実装位置と、第1対象物T1に対する第2対象物T2の目標実装位置との差を、上記実装位置ずれ量として算出する。 The post-mounting inspection system 25 calculates the amount of mounting position deviation of all the second objects T2 mounted on the first object T1. Specifically, the post-mounting inspection system 25 determines the difference between the actual mounting position of the second object T2 with respect to the first object T1 and the target mounting position of the second object T2 with respect to the first object T1. Calculated as the amount of mounting position deviation.
 (3)動作
 次に、本実施形態に係る品質変化検知方法について、図10を参照して説明する。
(3) Operation Next, the quality change detection method according to the present embodiment will be described with reference to FIG.
 取得部11は、予め設定された枚数の基板100(第1対象物T1)の生産が完了したタイミングで、実装後検査システム25からの第1情報D1、及び実装システム22からの第2情報D2を取得する。そして、取得部11は、実装後検査システム25から取得した第1情報D1を、第2対象物T2の種類ごとに、かつ第1対象物T1に対する第2対象物T2の実装角度ごとに、グルーピング(組み分け)して、判定部12に出力する。ここで、「生産が完了したタイミング」とは、基板製造ライン2における基板100の生産の全工程が完了したタイミングでもよいし、実装後検査システム25による検査が完了したタイミングでもよい。 The acquisition unit 11 receives the first information D1 from the post-mounting inspection system 25 and the second information D2 from the mounting system 22 at the timing when the production of the preset number of boards 100 (first object T1) is completed. To get. Then, the acquisition unit 11 groups the first information D1 acquired from the post-mounting inspection system 25 for each type of the second object T2 and for each mounting angle of the second object T2 with respect to the first object T1. (Assembly) and output to the determination unit 12. Here, the "timing at which production is completed" may be the timing at which all the processes of production of the substrate 100 in the substrate manufacturing line 2 are completed, or the timing at which the inspection by the post-mounting inspection system 25 is completed.
 判定部12は、取得部11から第1情報D1が入力されると、外れ値検知F1を実行する(ステップST1~ST3)。判定部12は、外れ値検知F1において、第1対象物T1に実装されている各第2対象物T2の実装位置ずれ量GapXの絶対値と比較値3σとを比較する(ステップST1)。ここで、比較値3σにおける「σ」は上述の正常状態分布の標準偏差であり、比較値3σは第1判定範囲R1を規定する値である。すなわち、第1判定範囲R1は、比較値+3σと比較値-3σとで規定される範囲である。比較値はカテゴリごとに設定されており、本実施形態では、判定部12は、部品200の種類ごとかつ実装角度ごとに設定された比較値に基づいて判定している。判定部12は、実装位置ずれ量GapXの絶対値が比較値3σよりも小さい場合(ステップST1:Yes)、バッファメモリに実装位置ずれ量GapXのデータを一時的に蓄積させる(ステップST2)。一方、判定部12は、実装位置ずれ量GapXの絶対値が3σ以上である場合(ステップST1:No)、実装位置ずれ量GapXが外れ値であるとの判定結果を記録する(ステップST3)。判定部12は、第1対象物T1に実装されているすべての第2対象物T2について、外れ値検知F1を実行する(ステップST1~ST3)。 When the first information D1 is input from the acquisition unit 11, the determination unit 12 executes the outlier detection F1 (steps ST1 to ST3). In the outlier detection F1, the determination unit 12 compares the absolute value of the mounting position deviation amount GapX of each second object T2 mounted on the first object T1 with the comparison value 3σ (step ST1). Here, "σ" in the comparison value 3σ is the standard deviation of the above-mentioned normal state distribution, and the comparison value 3σ is a value that defines the first determination range R1. That is, the first determination range R1 is a range defined by the comparison value + 3σ and the comparison value -3σ. The comparison value is set for each category, and in the present embodiment, the determination unit 12 makes a determination based on the comparison value set for each type of the component 200 and for each mounting angle. When the absolute value of the mounting position deviation amount GapX is smaller than the comparison value 3σ (step ST1: Yes), the determination unit 12 temporarily stores the data of the mounting position deviation amount GapX in the buffer memory (step ST2). On the other hand, when the absolute value of the mounting position deviation amount GapX is 3σ or more (step ST1: No), the determination unit 12 records the determination result that the mounting position deviation amount GapX is an outlier (step ST3). The determination unit 12 executes outlier detection F1 for all the second objects T2 mounted on the first object T1 (steps ST1 to ST3).
 判定部12は、バッファメモリに蓄積させた実装位置ずれ量GapXのデータのデータ数と予め設定された閾値(判定用の最小データ数)とを比較する(ステップST4)。判定部12は、上記データ数が上記閾値以上の場合(ステップST4:Yes)、分布変化検知F2を実行する(ステップST5~ST9)。具体的には、判定部12は、分布変化検知F2において、分布から算出される分散に基づいて、バッファメモリに蓄積させた実装位置ずれ量GapXの分布と、予め作成部15で作成した正常状態分布とが等分散であるか否かを判定する(ステップST5)。ここでいう「等分散」は、2つの分散が完全に等しい場合だけでなく、2つの分散の比が一定範囲に含まれている場合も含む。上述したように、正常状態分布は、過去の第1情報D1から求められる。 The determination unit 12 compares the number of data of the mounting position shift amount GapX stored in the buffer memory with a preset threshold value (minimum number of data for determination) (step ST4). When the number of data is equal to or greater than the threshold value (step ST4: Yes), the determination unit 12 executes the distribution change detection F2 (steps ST5 to ST9). Specifically, the determination unit 12 has the distribution of the mounting position shift amount GapX stored in the buffer memory based on the variance calculated from the distribution in the distribution change detection F2, and the normal state created in advance by the creation unit 15. It is determined whether or not the distribution is homoscedastic (step ST5). The term "homoscedasticity" as used herein includes not only the case where the two variances are completely equal, but also the case where the ratio of the two variances is included in a certain range. As described above, the normal state distribution is obtained from the past first information D1.
 判定部12は、実装位置ずれ量GapXの分布と正常状態分布とが等分散でない場合(ステップST5:No)、すなわち正常状態分布に比べて実装位置ずれ量GapXの分布の分散が大きくなる方向に変化していれば、第2対象物T2の実装位置ずれ量GapXが第1判定範囲R1を超える方向に変化しているとの判定結果を記録する(ステップST6)。さらに、判定部12は、実装位置ずれ量GapXの分布の平均値と正常状態分布の平均値とが等平均であるか否かを判定する(ステップST7)。ここでいう「等平均」は、両者の平均値が完全に等しい場合だけでなく、両者の平均値の比が一定範囲に含まれている場合も含む。 The determination unit 12 is in the case where the distribution of the mounting position deviation amount GapX and the normal state distribution are not evenly dispersed (step ST5: No), that is, in the direction in which the distribution of the mounting position deviation amount GapX is larger than that of the normal state distribution. If it has changed, the determination result that the mounting position deviation amount GapX of the second object T2 has changed in the direction exceeding the first determination range R1 is recorded (step ST6). Further, the determination unit 12 determines whether or not the average value of the distribution of the mounting position deviation amount GapX and the average value of the normal state distribution are equal (step ST7). The term "equal average" as used herein includes not only the case where the average values of the two are completely equal to each other, but also the case where the ratio of the average values of the two is included in a certain range.
 判定部12は、両者の平均値が等平均でない場合(ステップST7:No)、第2対象物T2の実装位置ずれ量GapXが第1判定範囲R1を超える方向に変化しているとの判定結果を記録する(ステップST8)。一方、判定部12は、両者の平均値が等平均である場合(ステップST7:Yes)、各第2対象物T2の実装位置ずれGapXが正常な範囲(つまり第2判定範囲R2を超えない範囲)にあると判定し、バッファメモリに記憶させた実装位置ずれ量GapXのデータをリセット(消去)する(ステップST9)。 When the average value of the two is not equal (step ST7: No), the determination unit 12 determines that the mounting position deviation amount GapX of the second object T2 changes in the direction exceeding the first determination range R1. Is recorded (step ST8). On the other hand, when the average value of both is equal (step ST7: Yes), the determination unit 12 has a range in which the mounting position deviation GapX of each second object T2 does not exceed a normal range (that is, a range in which the second determination range R2 is not exceeded). ), And the data of the mounting position shift amount GapX stored in the buffer memory is reset (erased) (step ST9).
 一方、判定部12は、上記データ数が上記閾値よりも少ない場合(ステップST4:No)、判定対象となるデータが残っていれば(ステップST10:Yes)、上述の外れ値検知F1及び分布変化検知F2を実行する。一方、判定部12は、判定対象となるデータが残っていなければ(ステップST10:No)、一連の処理を終了する。本実施形態では、取得部11が第1情報D1を取得するステップが取得ステップであり、上述のステップST1~ST9が判定ステップである。 On the other hand, when the number of data is smaller than the threshold value (step ST4: No), the determination unit 12 determines the outlier detection F1 and the distribution change when the data to be determined remains (step ST10: Yes). Execute detection F2. On the other hand, if the data to be determined does not remain (step ST10: No), the determination unit 12 ends a series of processes. In the present embodiment, the step in which the acquisition unit 11 acquires the first information D1 is the acquisition step, and the above-mentioned steps ST1 to ST9 are the determination steps.
 このように、本実施形態に係る品質変化検知方法及び品質変化検知システム1では、上述したように、第2対象物T2の実装位置ずれ量GapXが、実装の品質が正常と判定される第2判定範囲R2に収まっていても、第1判定範囲R1を超えていれば、あるいは、第1判定範囲R1を超える方向に変化していれば、実装の品質が変化したと判定している。そのため、実装位置ずれ量GapXが第2判定範囲R2を超える前に、実装の品質が異常となる方向に変化していることを把握することができる。これにより、第1対象物T1に対する第2対象物T2の実装不良の発生を未然に防ぐことができる。 As described above, in the quality change detection method and the quality change detection system 1 according to the present embodiment, as described above, the mounting position deviation amount GapX of the second object T2 is determined to be normal in the mounting quality. Even if it is within the determination range R2, if it exceeds the first determination range R1 or if it changes in the direction exceeding the first determination range R1, it is determined that the quality of the mounting has changed. Therefore, before the mounting position deviation amount GapX exceeds the second determination range R2, it can be grasped that the mounting quality has changed in the direction of becoming abnormal. As a result, it is possible to prevent the occurrence of mounting defects of the second object T2 with respect to the first object T1.
 (4)変形例
 上述の実施形態は、本開示の様々な実施形態の一つに過ぎない。上述の実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。また、上述の実施形態に係る品質変化検知方法と同様の機能は、品質変化検知システム1、(コンピュータ)プログラム、又はプログラムを記録した非一時的記録媒体等で具現化されてもよい。一態様に係るプログラムは、上述の実施形態に係る品質変化検知方法を1以上のプロセッサに実行させるためのプログラムである。
(4) Modifications The above embodiment is only one of the various embodiments of the present disclosure. The above-described embodiment can be variously modified depending on the design and the like as long as the object of the present disclosure can be achieved. Further, the same function as the quality change detection method according to the above-described embodiment may be embodied in a quality change detection system 1, a (computer) program, a non-temporary recording medium on which the program is recorded, or the like. The program according to one aspect is a program for causing one or more processors to execute the quality change detection method according to the above-described embodiment.
 以下、上述の実施形態の変形例を列挙する。以下に説明する変形例は、適宜組み合わせて適用可能である。 Hereinafter, modified examples of the above-described embodiment are listed. The modifications described below can be applied in combination as appropriate.
 本開示における品質変化検知システム1は、コンピュータシステムを含んでいる。コンピュータシステムは、ハードウェアとしてのプロセッサ及びメモリを主構成とする。コンピュータシステムのメモリに記録されたプログラムをプロセッサが実行することによって、本開示における品質変化検知システム1としての機能が実現される。プログラムは、コンピュータシステムのメモリに予め記録されてもよく、電気通信回線を通じて提供されてもよく、コンピュータシステムで読み取り可能なメモリカード、光学ディスク、ハードディスクドライブ等の非一時的記録媒体に記録されて提供されてもよい。コンピュータシステムのプロセッサは、半導体集積回路(IC)又は大規模集積回路(LSI)を含む1ないし複数の電子回路で構成される。ここでいうIC又はLSI等の集積回路は、集積の度合いによって呼び方が異なっており、システムLSI、VLSI(Very Large Scale Integration)、又はULSI(Ultra Large Scale Integration)と呼ばれる集積回路を含む。更に、LSIの製造後にプログラムされる、FPGA(Field-Programmable Gate Array)、又はLSI内部の接合関係の再構成若しくはLSI内部の回路区画の再構成が可能な論理デバイスについても、プロセッサとして採用することができる。複数の電子回路は、1つのチップに集約されていてもよいし、複数のチップに分散して設けられていてもよい。複数のチップは、1つの装置に集約されていてもよいし、複数の装置に分散して設けられていてもよい。ここでいうコンピュータシステムは、1以上のプロセッサ及び1以上のメモリを有するマイクロコントローラを含む。したがって、マイクロコントローラについても、半導体集積回路又は大規模集積回路を含む1ないし複数の電子回路で構成される。 The quality change detection system 1 in the present disclosure includes a computer system. The computer system mainly consists of a processor and a memory as hardware. When the processor executes the program recorded in the memory of the computer system, the function as the quality change detection system 1 in the present disclosure is realized. The program may be pre-recorded in the memory of the computer system, may be provided through a telecommunications line, and may be recorded on a non-temporary recording medium such as a memory card, optical disk, hard disk drive, etc. that can be read by the computer system. May be provided. The processor of a computer system is composed of one or more electronic circuits including a semiconductor integrated circuit (IC) or a large scale integrated circuit (LSI). The integrated circuit such as IC or LSI referred to here has a different name depending on the degree of integration, and includes an integrated circuit called a system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration). Further, an FPGA (Field-Programmable Gate Array) programmed after the LSI is manufactured, or a logical device capable of reconfiguring the junction relationship inside the LSI or reconfiguring the circuit partition inside the LSI should also be adopted as a processor. Can be done. A plurality of electronic circuits may be integrated on one chip, or may be distributed on a plurality of chips. A plurality of chips may be integrated in one device, or may be distributed in a plurality of devices. The computer system referred to here includes a microcontroller having one or more processors and one or more memories. Therefore, the microprocessor is also composed of one or a plurality of electronic circuits including a semiconductor integrated circuit or a large-scale integrated circuit.
 また、品質変化検知システム1における複数の機能が、1つの筐体内に集約されていることは品質変化検知システム1に必須の構成ではない。品質変化検知システム1の構成要素は、複数の筐体に分散して設けられていてもよい。さらに、品質変化検知システム1の少なくとも一部の機能は、クラウド(クラウドコンピューティング)等によって実現されてもよい。 Further, it is not an essential configuration for the quality change detection system 1 that a plurality of functions in the quality change detection system 1 are integrated in one housing. The components of the quality change detection system 1 may be distributed in a plurality of housings. Further, at least a part of the functions of the quality change detection system 1 may be realized by a cloud (cloud computing) or the like.
 実装工程では、第1対象物T1に対して第2対象物T2を実装する作業に1つの実装システム22が用いられてもよいし、複数(図1では2つ)の実装システム22(22A,22B)が用いられてもよい。 In the mounting process, one mounting system 22 may be used for the work of mounting the second target object T2 on the first target object T1, or a plurality of (two in FIG. 1) mounting systems 22 (22A, 22B) may be used.
 上述の実施形態では、実装の品質は、第1対象物T1に対して第2対象物T2を実装する場合の品質であって、実装位置(又は実装角度)を含むとしているが、部品供給装置225から第2対象物T2を捕捉する場合の品質でもよい。すなわち、実装の品質は、第2対象物T2に対する吸着ノズル2211の位置を含んでいてもよい。 In the above-described embodiment, the mounting quality is the quality when the second object T2 is mounted on the first object T1 and includes the mounting position (or mounting angle). The quality may be the case of capturing the second object T2 from 225. That is, the quality of mounting may include the position of the suction nozzle 2211 with respect to the second object T2.
 上述の実施形態では、品質変化検知方法及び品質変化検知システム1を、実装工程の実装ずれに用いているが、例えば、品質変化検知方法及び品質変化検知システム1を、はんだ塗布工程の塗布ずれに用いてもよい。この場合、取得部11は、印刷後検査システム24から第1対象物T1上に塗布(印刷)されたはんだの位置とランドの位置との位置ずれ量を取得する。 In the above-described embodiment, the quality change detection method and the quality change detection system 1 are used for the mounting deviation in the mounting process. For example, the quality change detection method and the quality change detection system 1 are used for the coating deviation in the solder coating process. You may use it. In this case, the acquisition unit 11 acquires the amount of misalignment between the position of the solder applied (printed) on the first object T1 and the position of the land from the post-print inspection system 24.
 また、上述の実施形態では、設備4が実装システム22であるが、設備4は実装システム22に限らず、例えば、印刷システム21であってもよい。この場合、第1判定範囲R1は、クリーム状はんだの種類によって設定してもよい。 Further, in the above-described embodiment, the equipment 4 is the mounting system 22, but the equipment 4 is not limited to the mounting system 22, and may be, for example, a printing system 21. In this case, the first determination range R1 may be set depending on the type of creamy solder.
 また、上述の実施形態では、通知部16は、判定部12の判定結果及び予測部13の予測結果の両方を作業者に通知しているが、通知部16は、例えば、判定部12の判定結果のみを作業者に通知してもよいし、予測部13の予測結果のみを作業者に通知してもよい。さらに、通知部16は、作業者に限らず、作業者に代わって設備4を含む基板製造ライン2の保守作業を実施するロボットに通知してもよい。 Further, in the above-described embodiment, the notification unit 16 notifies the operator of both the determination result of the determination unit 12 and the prediction result of the prediction unit 13, but the notification unit 16 determines, for example, the determination unit 12. Only the result may be notified to the worker, or only the prediction result of the prediction unit 13 may be notified to the worker. Further, the notification unit 16 may notify not only the operator but also the robot that performs the maintenance work of the substrate manufacturing line 2 including the equipment 4 on behalf of the operator.
 また、上述の実施形態では、図10に示すように、第2対象物T2の実装位置ずれ量GapXの比較値が3σであるが、例えば、比較値は、2σであってもよいし、1σであってもよい。 Further, in the above-described embodiment, as shown in FIG. 10, the comparison value of the mounting position deviation amount GapX of the second object T2 is 3σ, but for example, the comparison value may be 2σ or 1σ. May be.
 上述の実施形態では、判定部12は、図10に示すように、外れ値検知F1において検知された外れ値でない第2対象物T2の個数が一定数以上集まった場合に、分布変化検知F2を実行している。判定部12は、外れ値検知F1において外れ値が検知されない場合、あるいは外れ値が検知される場合のいずれでも、分布変化検知F2を実行してもよい。判定部12は、すべての第2対象物T2の実装位置ずれ量GapXが第1判定範囲R1に含まれている場合でも、第2対象物T2の実装位置ずれ量GapXに関する統計情報に基づいて、実装の品質が変化したと判定してもよい。この場合においても、判定部12は、等分散でないこと、又は等平均でないことをもって、第2対象物T2の実装位置ずれ量GapXが第1判定範囲R1を超える方向に変化していると判定することができる。 In the above-described embodiment, as shown in FIG. 10, the determination unit 12 detects the distribution change F2 when the number of second objects T2 that are not outliers detected in the outlier detection F1 is equal to or more than a certain number. Running. The determination unit 12 may execute the distribution change detection F2 in either the case where the outlier is not detected in the outlier detection F1 or the case where the outlier is detected. The determination unit 12 is based on the statistical information regarding the mounting position deviation amount GapX of the second object T2 even when the mounting position deviation amount GapX of all the second objects T2 is included in the first determination range R1. It may be determined that the quality of the implementation has changed. Even in this case, the determination unit 12 determines that the mounting position deviation amount GapX of the second object T2 changes in the direction exceeding the first determination range R1 because the dispersion is not equal or equal. be able to.
 上述の実施形態では、第2対象物T2の種類ごとに、かつ第1対象物T1に対する第2対象物T2の実装角度ごとに、第1判定範囲R1(正常状態分布の標準偏差に基づく範囲)を設定しているが、これに限定されない。例えば、第2対象物T2の種類ごとに第1判定範囲R1を設定している場合には、第1対象物T1に対する第2対象物T2の実装角度が異なっていても同じ第1判定範囲R1を適用してもよい。また、第1対象物T1に対する第2対象物T2の実装角度ごとに第1判定範囲R1を設定している場合には、第2対象物T2の種類が異なっていても同じ第1判定範囲R1を適用してもよい。また、第2対象物T2を実装するために使用されるユニット(フィーダやノズル)ごとに、第1判定範囲R1を適用してもよい。 In the above embodiment, the first determination range R1 (range based on the standard deviation of the normal state distribution) for each type of the second object T2 and for each mounting angle of the second object T2 with respect to the first object T1. Is set, but it is not limited to this. For example, when the first determination range R1 is set for each type of the second object T2, the same first determination range R1 is used even if the mounting angle of the second object T2 with respect to the first object T1 is different. May be applied. Further, when the first determination range R1 is set for each mounting angle of the second object T2 with respect to the first object T1, the same first determination range R1 is set even if the type of the second object T2 is different. May be applied. Further, the first determination range R1 may be applied to each unit (feeder or nozzle) used for mounting the second object T2.
 上述の実施形態では、図8に示すように、第1判定範囲R1の中心と第2判定範囲R2の中心とが一致しており、第1判定範囲R1と第2判定範囲R2とが同心である。これに対して、第1判定範囲R1が第2判定範囲R2に含まれていればよく、第1判定範囲R1の中心と第2判定範囲R2の中心とがずれていてもよい。また、上述の実施形態では、第1判定範囲R1及び第2判定範囲R2の各々の形状が円形であるが、第1判定範囲R1及び第2判定範囲R2の各々の形状は、例えば、楕円であってもよいし、多角形(例えば四角形)であってもよい。さらに、第1判定範囲R1及び第2判定範囲R2の各々の形状は同じであってもよいし、異なっていてもよい。また、図9A~図9Cに示すように、第1判定範囲R1の平均は、実装位置ずれ量がゼロとは限らない。 In the above-described embodiment, as shown in FIG. 8, the center of the first determination range R1 and the center of the second determination range R2 coincide with each other, and the first determination range R1 and the second determination range R2 are concentric. be. On the other hand, the first determination range R1 may be included in the second determination range R2, and the center of the first determination range R1 and the center of the second determination range R2 may be deviated from each other. Further, in the above-described embodiment, the shapes of the first determination range R1 and the second determination range R2 are circular, but the shapes of the first determination range R1 and the second determination range R2 are, for example, elliptical. It may be a polygon (for example, a quadrangle). Further, the shapes of the first determination range R1 and the second determination range R2 may be the same or different. Further, as shown in FIGS. 9A to 9C, the average of the first determination range R1 does not necessarily mean that the mounting position deviation amount is zero.
 上述の実施形態では、第1情報D1は、第2検査工程において取得される情報であるが、これに限らない。第1情報は、第3検査工程において取得される情報であってもよいし、第2検査工程で取得される情報、及び第3検査工程で取得される情報の両方を含んでいてもよい。 In the above-described embodiment, the first information D1 is information acquired in the second inspection step, but is not limited to this. The first information may be information acquired in the third inspection step, or may include both information acquired in the second inspection step and information acquired in the third inspection step.
 (まとめ)
 以上説明したように、第1の態様に係る品質変化検知方法は、取得ステップと、第1判定ステップと、を有する。取得ステップは、第1対象物(T1)に対する第2対象物(T2)の実際の実装位置と目標実装位置との差である実装位置ずれ量を取得するステップである。第1判定ステップは、取得ステップで取得した実装位置ずれ量が第1判定範囲(R1)を超えており、かつ第2判定範囲(R2)に収まっている場合に、実装の品質が変化したと判定するステップである。第1判定範囲(R1)は、上記実装の品質が正常であると判定される第2判定範囲(R2)に含まれている。
(summary)
As described above, the quality change detection method according to the first aspect includes an acquisition step and a first determination step. The acquisition step is a step of acquiring the amount of mounting position deviation, which is the difference between the actual mounting position of the second object (T2) and the target mounting position with respect to the first object (T1). In the first determination step, when the amount of mounting position deviation acquired in the acquisition step exceeds the first determination range (R1) and falls within the second determination range (R2), the mounting quality has changed. This is the step to judge. The first determination range (R1) is included in the second determination range (R2) in which the quality of the implementation is determined to be normal.
 この態様によれば、第1対象物(T1)に対する第2対象物(T2)の実装不良の発生を未然に防ぐことができる。 According to this aspect, it is possible to prevent the occurrence of mounting defects of the second object (T2) with respect to the first object (T1).
 第2の態様に係る品質変化検知方法は、第1の態様において、第2判定ステップを更に有する。第2判定ステップは、第1判定範囲(R1)に含まれている実装位置ずれ量に関する統計情報に基づいて、実装の品質が変化したと判定するステップである。 The quality change detection method according to the second aspect further includes a second determination step in the first aspect. The second determination step is a step of determining that the quality of the implementation has changed based on the statistical information regarding the amount of mounting misalignment included in the first determination range (R1).
 この態様によれば、第1対象物(T1)に対する第2対象物(T2)の実装不良の発生を未然に防ぐことができる。 According to this aspect, it is possible to prevent the occurrence of mounting defects of the second object (T2) with respect to the first object (T1).
 第3の態様に係る品質変化検知方法では、第2の態様において、統計情報は、実装位置ずれ量の分布から算出される平均と、実装位置ずれ量の分布から算出される分散と、の少なくとも一方を含む。 In the quality change detection method according to the third aspect, in the second aspect, the statistical information is at least the average calculated from the distribution of the mounting misalignment amount and the variance calculated from the distribution of the mounting misalignment amount. Including one.
 第4の態様に係る品質変化検知方法では、第2又は第3の態様において、実装位置ずれ量が第1判定範囲(R1)に含まれている第2対象物(T2)の個数が一定数以上集まった場合に、第2判定ステップを実行する。 In the quality change detection method according to the fourth aspect, in the second or third aspect, the number of second objects (T2) whose mounting position deviation amount is included in the first determination range (R1) is a fixed number. When the above is gathered, the second determination step is executed.
 この態様によれば、第1対象物(T1)に対する第2対象物(T2)の実装不良の発生を未然に防ぐことができる。 According to this aspect, it is possible to prevent the occurrence of mounting defects of the second object (T2) with respect to the first object (T1).
 第5の態様に係る品質変化検知方法では、第1~第4の態様のいずれか1つにおいて、第1判定範囲(R1)は、第2対象物(T2)の種類に応じて設定される。 In the quality change detection method according to the fifth aspect, in any one of the first to fourth aspects, the first determination range (R1) is set according to the type of the second object (T2). ..
 この態様によれば、第2対象物(T2)の種類に応じて第1判定範囲(R1)を設定することができる。 According to this aspect, the first determination range (R1) can be set according to the type of the second object (T2).
 第6の態様に係る品質変化検知方法では、第1~第5の態様のいずれか1つにおいて、第1判定範囲(R1)は、第1対象物(T1)に対する第2対象物(T2)の実装角度に応じて設定される。 In the quality change detection method according to the sixth aspect, in any one of the first to fifth aspects, the first determination range (R1) is the second object (T2) with respect to the first object (T1). It is set according to the mounting angle of.
 この態様によれば、第1対象物(T1)に対する第2対象物(T2)の実装角度に応じて第1判定範囲(R1)を設定することができる。 According to this aspect, the first determination range (R1) can be set according to the mounting angle of the second object (T2) with respect to the first object (T1).
 第7の態様に係る実装品質管理方法は、第1~第6の態様のいずれか1つにおいて、予測ステップを更に有する。予測ステップは、第1情報(D1)に基づいて、上記実装の品質の異常を予測するステップである。第1情報(D1)は、実装位置ずれ量に関する情報である。 The mounting quality control method according to the seventh aspect further has a prediction step in any one of the first to sixth aspects. The prediction step is a step of predicting an abnormality in the quality of the implementation based on the first information (D1). The first information (D1) is information regarding the amount of mounting position deviation.
 この態様によれば、第1対象物(T1)に対する第2対象物(T2)の実装不良の発生を未然に防ぐことができる。 According to this aspect, it is possible to prevent the occurrence of mounting defects of the second object (T2) with respect to the first object (T1).
 第8の態様に係る品質変化検知方法では、第7の態様において、予測ステップでは、少なくとも上記実装の品質の異常が発生するまでの時間を予測する。 In the quality change detection method according to the eighth aspect, in the seventh aspect, at least the time until the quality abnormality of the above-mentioned implementation occurs is predicted in the prediction step.
 この態様によれば、上記実装の品質の異常が発生するまでの時間を予測することができる。 According to this aspect, it is possible to predict the time until the quality abnormality of the above implementation occurs.
 第9の態様に係る品質変化検知方法は、第7又は第8の態様において、通知ステップを更に備える。通知ステップは、第1判定ステップの判定結果及び予測ステップの予測結果を含む複数の結果の少なくとも1つを通知するステップである。 The quality change detection method according to the ninth aspect further includes a notification step in the seventh or eighth aspect. The notification step is a step of notifying at least one of a plurality of results including the determination result of the first determination step and the prediction result of the prediction step.
 この態様によれば、複数の結果の少なくとも1つを通知することができる。 According to this aspect, at least one of a plurality of results can be notified.
 第10の態様に係る品質変化検知方法は、第1~第9の態様のいずれか1つにおいて、推定ステップを更に有する。推定ステップは、実装位置ずれ量に関する第1情報(D1)に基づいて、実装の品質が変化した要因となる実装システム(22)における不調箇所を推定するステップである。 The quality change detection method according to the tenth aspect further includes an estimation step in any one of the first to ninth aspects. The estimation step is a step of estimating a malfunctioning part in the mounting system (22), which causes a change in the quality of mounting, based on the first information (D1) regarding the amount of mounting misalignment.
 この態様によれば、実装システム(22)における不調箇所を推定することができる。 According to this aspect, it is possible to estimate the malfunctioning part in the mounting system (22).
 第11の態様に係る品質変化検知方法では、第10の態様において、推定ステップでは、第1情報(D1)に加えて、第2情報(D2)を用いる。第2情報(D2)は、実装位置ずれ量に対応する情報であって、第1対象物(T1)に対して第2対象物(T2)を実装する際に用いられる設備(4)に関する情報である。 In the quality change detection method according to the eleventh aspect, in the tenth aspect, the second information (D2) is used in addition to the first information (D1) in the estimation step. The second information (D2) is information corresponding to the amount of mounting misalignment, and is information on the equipment (4) used when mounting the second object (T2) on the first object (T1). Is.
 この態様によれば、第1対象物(T1)に対する第2対象物(T2)の実装不良の発生を未然に防ぐことができる。 According to this aspect, it is possible to prevent the occurrence of mounting defects of the second object (T2) with respect to the first object (T1).
 第12の態様に係る品質変化検知方法では、第1~第11の態様のいずれか1つにおいて、第1対象物(T1)は、部品(200)であり、第2対象物(T2)は、部品(200)が実装される基板(100)である。 In the quality change detection method according to the twelfth aspect, in any one of the first to eleventh aspects, the first object (T1) is a part (200) and the second object (T2) is. , The substrate (100) on which the component (200) is mounted.
 この態様によれば、基板(100)に対する部品(200)の実装不良の発生を未然に防ぐことができる。 According to this aspect, it is possible to prevent the occurrence of mounting defects of the component (200) on the substrate (100).
 第13の態様に係る品質変化検知システム(1)は、取得部(11)と、判定部(12)と、を備える。取得部(11)は、第1対象物(T1)に対する第2対象物(T2)の実際の実装位置と目標実装位置との差である実装位置ずれ量を取得する。判定部(12)は、取得部(11)が取得した実装位置ずれ量が第1判定範囲(R1)を超えており、かつ第2判定範囲(R2)に収まっている場合に、実装の品質が変化したと判定する。第1判定範囲(R1)は、上記実装の品質が正常であると判定される第2判定範囲(R2)に含まれている。 The quality change detection system (1) according to the thirteenth aspect includes an acquisition unit (11) and a determination unit (12). The acquisition unit (11) acquires the amount of mounting position deviation, which is the difference between the actual mounting position of the second object (T2) and the target mounting position with respect to the first object (T1). The determination unit (12) determines the quality of mounting when the amount of mounting position deviation acquired by the acquisition unit (11) exceeds the first determination range (R1) and falls within the second determination range (R2). Is determined to have changed. The first determination range (R1) is included in the second determination range (R2) in which the quality of the implementation is determined to be normal.
 この態様によれば、第1対象物(T1)に対する第2対象物(T2)の実装不良の発生を未然に防ぐことができる。 According to this aspect, it is possible to prevent the occurrence of mounting defects of the second object (T2) with respect to the first object (T1).
 第14の態様に係るプログラムは、第1~第12の態様のいずれか1つの品質変化検知方法を1以上のプロセッサに実行させるためのプログラムである。 The program according to the fourteenth aspect is a program for causing one or more processors to execute one or more quality change detection methods according to any one of the first to twelfth aspects.
 この態様によれば、第1対象物(T1)に対する第2対象物(T2)の実装不良の発生を未然に防ぐことができる。 According to this aspect, it is possible to prevent the occurrence of mounting defects of the second object (T2) with respect to the first object (T1).
 第2~第12の態様に係る構成については、品質変化検知方法に必須の構成ではなく、適宜省略可能である。 The configuration according to the second to twelfth aspects is not an essential configuration for the quality change detection method, and can be omitted as appropriate.
1 品質変化検知システム
4 設備
11 取得部
12 判定部
100 基板
200 部品
D1 第1情報
D2 第2情報
R1 第1判定範囲
R2 第2判定範囲
T1 第1対象物
T2 第2対象物
1 Quality change detection system 4 Equipment 11 Acquisition unit 12 Judgment unit 100 Board 200 Parts D1 1st information D2 2nd information R1 1st judgment range R2 2nd judgment range T1 1st object T2 2nd object

Claims (14)

  1.  第1対象物に対する第2対象物の実際の実装位置と目標実装位置との差である実装位置ずれ量を取得する取得ステップと、
     前記取得ステップで取得した前記実装位置ずれ量が第1判定範囲を超えており、かつ第2判定範囲に収まっている場合に、実装の品質が変化したと判定する第1判定ステップと、を有し、
     前記第1判定範囲は、前記実装の品質が正常であると判定される前記第2判定範囲に含まれている、
     品質変化検知方法。
    An acquisition step for acquiring the amount of mounting position deviation, which is the difference between the actual mounting position of the second object and the target mounting position with respect to the first object, and
    When the amount of the mounting position deviation acquired in the acquisition step exceeds the first determination range and falls within the second determination range, the first determination step of determining that the quality of the mounting has changed is provided. death,
    The first determination range is included in the second determination range in which the quality of the implementation is determined to be normal.
    Quality change detection method.
  2.  前記第1判定範囲に含まれている前記実装位置ずれ量に関する統計情報に基づいて、前記実装の品質が変化したと判定する第2判定ステップを更に有する、
     請求項1に記載の品質変化検知方法。
    Further, it has a second determination step of determining that the quality of the implementation has changed based on the statistical information regarding the amount of the mounting position shift included in the first determination range.
    The quality change detection method according to claim 1.
  3.  前記統計情報は、
      前記実装位置ずれ量の分布から算出される平均と、
      前記実装位置ずれ量の分布から算出される分散と、の少なくとも一方を含む、
     請求項2に記載の品質変化検知方法。
    The statistical information is
    The average calculated from the distribution of the mounting position shift amount and
    Including at least one of the variance calculated from the distribution of the amount of mounting misalignment.
    The quality change detection method according to claim 2.
  4.  前記実装位置ずれ量が前記第1判定範囲に含まれている前記第2対象物の個数が一定数以上集まった場合に、前記第2判定ステップを実行する、
     請求項2又は3に記載の品質変化検知方法。
    When the number of the second objects whose mounting position shift amount is included in the first determination range is equal to or more than a certain number, the second determination step is executed.
    The quality change detection method according to claim 2 or 3.
  5.  前記第1判定範囲は、前記第2対象物の種類に応じて設定される、
     請求項1~4のいずれか1項に記載の品質変化検知方法。
    The first determination range is set according to the type of the second object.
    The quality change detection method according to any one of claims 1 to 4.
  6.  前記第1判定範囲は、前記第1対象物に対する前記第2対象物の実装角度に応じて設定される、
     請求項1~5のいずれか1項に記載の品質変化検知方法。
    The first determination range is set according to the mounting angle of the second object with respect to the first object.
    The quality change detection method according to any one of claims 1 to 5.
  7.  前記実装位置ずれ量に関する第1情報に基づいて、前記実装の品質の異常を予測する予測ステップを更に有する、
     請求項1~6のいずれか1項に記載の品質変化検知方法。
    Further having a prediction step for predicting an abnormality in the quality of the mounting based on the first information regarding the amount of mounting misalignment.
    The quality change detection method according to any one of claims 1 to 6.
  8.  前記予測ステップでは、少なくとも前記実装の品質の異常が発生するまでの時間を予測する、
     請求項7に記載の品質変化検知方法。
    In the prediction step, at least the time until the quality abnormality of the implementation occurs is predicted.
    The quality change detection method according to claim 7.
  9.  前記第1判定ステップの判定結果及び前記予測ステップの予測結果を含む複数の結果の少なくとも1つを通知する通知ステップを更に備える、
     請求項7又は8に記載の品質変化検知方法。
    Further comprising a notification step for notifying at least one of a plurality of results including the determination result of the first determination step and the prediction result of the prediction step.
    The quality change detection method according to claim 7 or 8.
  10.  前記実装位置ずれ量に関する第1情報に基づいて、前記実装の品質が変化した要因となる実装システムにおける不調箇所を推定する推定ステップを更に有する、
     請求項1~9のいずれか1項に記載の品質変化検知方法。
    It further comprises an estimation step of estimating a malfunctioning part in the mounting system that causes the quality of the mounting to change based on the first information regarding the amount of mounting misalignment.
    The quality change detection method according to any one of claims 1 to 9.
  11.  前記推定ステップでは、前記第1情報に加えて、前記実装位置ずれ量に対応する情報であって前記第1対象物に対して前記第2対象物を実装する際に用いられる設備に関する第2情報を用いる、
     請求項10に記載の品質変化検知方法。
    In the estimation step, in addition to the first information, the information corresponding to the mounting position shift amount and the second information regarding the equipment used when mounting the second object on the first object. Using,
    The quality change detection method according to claim 10.
  12.  前記第1対象物は、部品であり、
     前記第2対象物は、前記部品が実装される基板である、
     請求項1~11のいずれか1項に記載の品質変化検知方法。
    The first object is a part.
    The second object is a substrate on which the component is mounted.
    The quality change detection method according to any one of claims 1 to 11.
  13.  第1対象物に対する第2対象物の実際の実装位置と目標実装位置との差である実装位置ずれ量を取得する取得部と、
     前記取得部が取得した前記実装位置ずれ量が第1判定範囲を超えており、かつ第2判定範囲に収まっている場合に、実装の品質が変化したと判定する判定部と、を備え、
     前記第1判定範囲は、前記実装の品質が正常であると判定される前記第2判定範囲に含まれている、
     品質変化検知システム。
    An acquisition unit that acquires the amount of mounting position deviation, which is the difference between the actual mounting position of the second object and the target mounting position with respect to the first object, and
    A determination unit for determining that the quality of mounting has changed when the amount of the mounting position deviation acquired by the acquisition unit exceeds the first determination range and falls within the second determination range is provided.
    The first determination range is included in the second determination range in which the quality of the implementation is determined to be normal.
    Quality change detection system.
  14.  請求項1~12のいずれか1項に記載の品質変化検知方法を1以上のプロセッサに実行させるためのプログラム。 A program for causing one or more processors to execute the quality change detection method according to any one of claims 1 to 12.
PCT/JP2021/016814 2020-05-19 2021-04-27 Quality change detection method, quality change detection system, and program WO2021235201A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022524357A JPWO2021235201A1 (en) 2020-05-19 2021-04-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020087726 2020-05-19
JP2020-087726 2020-05-19

Publications (1)

Publication Number Publication Date
WO2021235201A1 true WO2021235201A1 (en) 2021-11-25

Family

ID=78708531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016814 WO2021235201A1 (en) 2020-05-19 2021-04-27 Quality change detection method, quality change detection system, and program

Country Status (2)

Country Link
JP (1) JPWO2021235201A1 (en)
WO (1) WO2021235201A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024105931A1 (en) * 2022-11-17 2024-05-23 パナソニックIpマネジメント株式会社 Production assistance system, production assistance method, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081080A (en) * 2005-09-14 2007-03-29 Omron Corp Substrate inspection system
JP2007149817A (en) * 2005-11-25 2007-06-14 I-Pulse Co Ltd Mounting line, its managing method and inspection machine
JP2015153914A (en) * 2014-02-14 2015-08-24 オムロン株式会社 Quality managing device, quality managing method and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081080A (en) * 2005-09-14 2007-03-29 Omron Corp Substrate inspection system
JP2007149817A (en) * 2005-11-25 2007-06-14 I-Pulse Co Ltd Mounting line, its managing method and inspection machine
JP2015153914A (en) * 2014-02-14 2015-08-24 オムロン株式会社 Quality managing device, quality managing method and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024105931A1 (en) * 2022-11-17 2024-05-23 パナソニックIpマネジメント株式会社 Production assistance system, production assistance method, and program

Also Published As

Publication number Publication date
JPWO2021235201A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
US10209704B2 (en) Data updating method of circuit board work system and circuit board work system
JP5246064B2 (en) Electronic component mounting method
JP4793187B2 (en) Electronic component mounting system and electronic component mounting method
US20020157488A1 (en) Method, apparatus, system, method and device for data creating, and program for mounting electronic component
JP4767995B2 (en) Component mounting method, component mounting machine, mounting condition determining method, mounting condition determining apparatus, and program
KR100915128B1 (en) Control method for mounting parts, mounting tester and mounting system
WO2018142532A1 (en) Production management device
WO2021235201A1 (en) Quality change detection method, quality change detection system, and program
CN104380853A (en) Electronic component mounting system and electronic component mounting method
JP6830538B2 (en) Board work management system
WO2015029209A1 (en) Component mounting device, control method for same, and program for component mounting device
JP4918445B2 (en) Substrate processing equipment, management computer equipment, multi-stage surface mounter
WO2007139716A2 (en) Embedded inspection image archival for electronics assembly machines
EP2897449B1 (en) Work system for substrate and workbench-quantity-determining program
JP7126122B2 (en) Mounting system and production control equipment
JP2020061492A (en) Mounting system, mounting method, and mounting program
CN114041332B (en) Mounting device, mounting system, and inspection mounting method
JP6587871B2 (en) Component mounting apparatus and component mounting system
CN114731780A (en) Mounting system and mounting method
JP2012038692A (en) Connector defect inspection device
TWI400020B (en) Picking-up and placing method with integrated pcb information
JP2008541489A (en) Method and apparatus for evaluating part picking motion of an electronic assembly machine
JP7515093B2 (en) CONTROL SYSTEM, SUBSTRATE MANUFACTURING SYSTEM, CONTROL METHOD, AND PROGRAM
Field et al. SMD placement using machine vision
JP2003092496A (en) Electronic component mounting device and method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808070

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022524357

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21808070

Country of ref document: EP

Kind code of ref document: A1