WO2021235136A1 - 植物へのガス施用装置および施用方法 - Google Patents
植物へのガス施用装置および施用方法 Download PDFInfo
- Publication number
- WO2021235136A1 WO2021235136A1 PCT/JP2021/015106 JP2021015106W WO2021235136A1 WO 2021235136 A1 WO2021235136 A1 WO 2021235136A1 JP 2021015106 W JP2021015106 W JP 2021015106W WO 2021235136 A1 WO2021235136 A1 WO 2021235136A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- carbon dioxide
- plant
- supply source
- rectifying grid
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G7/00—Botany in general
- A01G7/02—Treatment of plants with carbon dioxide
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G9/00—Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
- A01G9/18—Greenhouses for treating plants with carbon dioxide or the like
Definitions
- the present invention is a gas application device capable of uniformly and appropriately applying a target gas to a cultivated plant located far away from a gas supply source while having a simple structure in the application of gas in a house or a plant factory. And how to apply.
- Patent Documents In indoor plant cultivation such as a house or a plant factory, devices and methods for supplying a target gas such as carbon dioxide to a cultivated plant to promote the growth of the cultivated plant have been proposed (for example, Patent Documents). 1-5).
- the combustion method and the liquefied carbon dioxide gas method are mainly used as the gas supply source.
- the combustion method uses exhaust gas obtained by burning kerosene or LPG (liquefied petroleum gas).
- LPG liquefied petroleum gas
- the liquefied carbon dioxide gas method is a method of supplying pure gas from a liquefied carbon dioxide gas cylinder. Although it is cheaper than other methods in terms of equipment, running cost is high because liquefied carbon dioxide is more expensive than kerosene and LPG.
- Carbon dioxide is a raw material for photosynthesis and is applied for the purpose of promoting photosynthesis, which is a plant production act. Plants can increase yield and quality by synthesizing sugar by photosynthesis, appropriately translocating it, and enlarging fruits and the like.
- An effective application method is to apply carbon dioxide around the leaves of cultivated plants so that the concentration of carbon dioxide in the atmosphere (about 400 ppm) or higher than that of the outside air is maintained during the time when the photosynthesis rate is highest.
- a greenhouse may be ventilated during the day when the temperature inside the greenhouse is high to lower the temperature inside the greenhouse, but even when the greenhouse is ventilated, use tubes or ducts during effective hours.
- the carbon dioxide application device described in Patent Document 1 is provided with a blower in a combustion type carbon dioxide generator that generates carbon dioxide, and the blower is connected to a duct and an irrigation tube.
- Carbon dioxide is ejected from a plurality of holes provided at regular intervals in the length direction of the irrigation tube arranged in the cultivated crop community, increasing the carbon dioxide concentration in the cultivated crop community and growing. Can be promoted.
- Patent Document 2 When the gas pressure is high like a gas cylinder in the liquefied carbon dioxide gas method, it is common to use a porous irrigation tube as a carbon dioxide topical application tube as described in Patent Document 2.
- Patent Document 2 in order to efficiently apply carbon dioxide to the leaves of cultivated crops, the upper part of the porous irrigation tube is covered with a cover so that carbon dioxide can be applied only in the downward direction or the lateral direction. Further, in the same method, in order to spread an even and appropriate amount of carbon dioxide, in Patent Document 3, a plurality of holes are provided in the pipe in the length direction, and the amount of gas outflow is averaged according to the positions of the holes.
- a plant cultivation assisting device equipped with a valve having a flow rate adjusting mechanism is disclosed.
- Patent Documents 4 and 5 also disclose a device for uniformly and efficiently supplying air for growing and growing plants.
- the carbon dioxide supply source is not specified, but the cultivation space is partitioned by the wall portion of the transport member and the cultivation bed, and the cultivation air sent from the transport member is a nozzle. It blows out through the air outlet of the nozzle, and the distance from the attracting member is narrowed near the air outlet of the nozzle, resulting in negative pressure. It comes out from the leeward side of the member toward the plant.
- the attracting air and the cultivation air are diffused to promote the transition from the laminar flow to the turbulent flow, and the windward side of the attracting member is widened, so that a large amount of air is contained in the cultivation space. Attracted by, the air circulation space expands, and the airflow comes into contact with the entire plant. Therefore, it is disclosed that the photosynthesis rate is further increased, and both the promotion of plant growth and the reduction of blast power can be achieved, leading to a reduction in cultivation costs.
- the air flow is immediately applied to the young leaves growing on the top of the stalk of a plant (such as leafletus) in which one stalk grows by a plurality of air radiating parts. Since it is radiated from the side, it has the effect of promoting the evaporation from the leaves and the uptake of water and fertilizer from the roots of the plant. This has the effect of preventing leaf damage caused by the contact between the leaves.
- the carbon dioxide supply source of this plant growing radiator is a carbon dioxide storage tank.
- cultivation air is radiated by a fan built in each air radiating section is also disclosed. In this case, a simple and low-cost facility is provided without providing a pipe for sending air or a large-scale supply facility. Can be.
- the application by the combustion method or the liquefied carbon dioxide gas method requires the purchase of fuel and gas cylinders on a regular basis, and it cannot be said that carbon dioxide, which is the main cause of global warming, can be effectively utilized.
- the combustion method generates heat, which is a disadvantage in the summer.
- temporary power supply such as night lighting and heating and cooling is required to control the timing of growing and shipping when cultivated plants are in short supply, when they are needed or when they are traded at high prices.
- the power receiving equipment cost and the power receiving contract fee for that purpose are also a burden.
- a carbon dioxide supply device using a honeycomb rotor has been proposed as a new gas supply source in place of the combustion method or the liquefied carbon dioxide gas method (for example, Patent Document 6).
- the honeycomb adsorbs and separates and removes carbon dioxide by ventilating the air to be treated such as air and air in the house in the adsorption zone, and in the regeneration zone, it is heated by a regeneration heater or the like.
- Carbon dioxide is desorbed by passing the regenerated air, and the regenerated air with an increased carbon dioxide concentration is continuously supplied to the cultivated plants. Therefore, there is no environmental load and clean gas can be applied.
- the regeneration temperature is about 50 ° C (hereinafter, all temperatures are referred to as "Celsius") and renewable energy and waste heat can be used, the running cost is lower than other methods, and carbon dioxide is cultivated. It can be applied to increase the yield and reduce carbon dioxide. Unlike the combustion method and the liquefied carbon dioxide method, there is no need to bother to procure fuel or gas cylinders.
- Japanese Unexamined Patent Publication No. 2009-153459 Japanese Unexamined Patent Publication No. 2014-161337 Utility Model Registration No. 3197682 Japanese Patent No. 6376992 Japanese Patent No. 6420235 Japanese Unexamined Patent Publication No. 2017-154063
- carbon dioxide is supplied from a plurality of holes provided at regular intervals in the length direction, so that a sufficient amount of fluid flows out from the holes near the gas supply source.
- the farther from the gas supply source the smaller the amount of carbon dioxide outflow from the pores, so the amount of carbon dioxide is not constant, and it tends to be more than the appropriate amount in some parts and less than the appropriate amount in other parts. There may be a difference in the growth of cultivated plants in the community.
- the application device described in Patent Document 2 and Patent Document 3 can be used in a supply source having a high gas pressure such as a gas cylinder, but can be used as a gas supply source such as a combustion method in which the gas pressure is not high. Not suitable for use.
- the house is as long as 30 m, for example, and at a position far away from the gas supply source, the inner diameter of the tube or pipe is small and there is pressure loss, so carbon dioxide does not come out or the amount of gas outflow is small and the concentration becomes low. there is a possibility.
- the carbon dioxide concentration is high in the portion where the pores are opened, but the concentration does not increase in the portion between the pores, and the concentration around the leaves may be non-uniform. ..
- the present invention has a simpler structure than Patent Documents 4 and 5, regardless of the source of the target gas, and is uniformly suitable for cultivated plants even in a place far away from the gas supply source.
- the gas application device of the present invention is characterized in that a rectifying grid is provided on at least one side of the pipe surface so that the target gas from the gas supply source is applied to the cultivated plant.
- the rectifying grid has a larger cross-sectional area through which the gas passes than the tubes and pipes as described in Patent Documents 1 to 5, so that the pressure loss becomes very small and the gas is formed by a long pipe. Even if it is supplied to a position far away from the supply source, an appropriate amount of the target gas can be uniformly applied. Therefore, unlike a gas cylinder, it is not necessary to increase the pressure of the gas, and it can be applied to various supply sources. Further, since the target gas can be uniformly applied in an appropriate amount even though it has a simple structure, the manufacturing cost can be reduced.
- the target gas since the target gas is applied locally in the vicinity of the cultivated plant, the gas concentration in the vicinity of the cultivated plant does not decrease even in a ventilated state, and the target gas is housed. It is possible to reduce the emission to the outside.
- FIG. 1 is a diagram showing an example of a piping form in the gas application device according to the present invention.
- FIG. 2 is a diagram showing a flow of a gas application device according to the present invention.
- FIG. 3 is a diagram showing an example of a gas application form to a cultivated plant according to the present invention.
- FIG. 1 shows an example of a piping form of the gas application device according to the present invention.
- the rectifying grid 2 used for the piping 1 of the gas application device of the present invention includes various resin sheets such as polypropylene, plastic sheets, inorganic fiber sheets such as glass fibers and ceramic fibers, metal sheets such as aluminum, organic fiber sheets, and non-woven fabrics. Materials can be used.
- This sheet is corrugated (corrugated) into a honeycomb shape, and a plurality of sheets are laminated and bonded to form a rectifying grid.
- a non-breathable sheet is preferably used to enhance the rectifying effect.
- This rectifying grid is provided on at least one surface of the pipe 1 to which the target gas is applied.
- the cross-sectional shape of the pipe 1 used in the present invention includes, for example, polygons (including triangles and quadrangles), circles, ellipses, and sectors as shown in FIGS. 1A to 1D, but is not particularly limited. ..
- Examples of the material of the non-breathable side surface 3 provided with no rectifying grid include metal, rubber, vinyl chloride, acrylic, polyethylene and other plastics. If inexpensive sheet materials and piping materials are used, the manufacturing cost can be reduced.
- the side surface of the pipe to which the rectifying grid 2 is provided may be provided according to the gas application form and the cross-sectional shape of the pipe. Further, although the rectifying grid is provided on at least one side of the pipe, the rectifying grid may be provided on the entire surface or a part of the side surface of the pipe.
- FIGS. 1A to 1D show examples of various shapes of the rectifying grid. Examples include (a) honeycomb shape, (b) lattice shape, (c) triangle shape, (d) hexagonal shape, and various other shapes such as circular shape, elliptical shape, and fan shape that can ventilate gas. Be done.
- the processing method of the rectifying grid is changed according to the shape.
- the shape and size of the rectifying grid can also be changed according to the application and purpose.
- the size of the honeycomb is not limited to this example, but examples thereof include a mountain height of 2.5 mm and a pitch of 4.2 mm.
- the flow velocity of the gas supplied to the cultivated plants can be adjusted by changing the honeycomb size. Further, if the honeycomb size is reduced in the portion close to the blower and the honeycomb size is increased as the distance from the blower increases, the amount of gas supplied becomes uniform as a whole.
- the rectifying grid By manufacturing the rectifying grid with a water-absorbent material, it is possible to send water or hot water to the rectifying grid, and to send high-humidity air by vaporization when the target gas passes through. At this time, vaporization cooling occurs, so it is possible to lower the temperature around the cultivated plants. By supplying air regulated with high humidity, it is possible to prevent the leaves of cultivated plants from drying out, to efficiently photosynthesize them, and to promote their growth.
- gas that is harmful to plant growth and the human body gas that is harmful to plant growth and the human body. It is also possible to purify the ingredients and eliminate the effects. For example, by supporting a photocatalyst, organic compounds and bacteria harmful to cultivated plants can be removed, and gas purification action, deodorization action, antibacterial action, antifouling action, water purification action and the like can be expected. Also, in the case of employing the combustion system as a gas supply source, SO X accompanying the combustion of the fuel, NO X, the removal of harmful gas components such as CO is also possible.
- FIG. 2 shows the flow of the gas application device according to the present invention.
- a blower 6 is provided in the gas supply source 5, and the pipe 1 is connected to the blower 6 by a duct (not shown) or the like.
- the target gas supplied from the gas supply source 5 is used as it is or mixed with air as needed, and the target gas is supplied to the pipe 1 arranged in the plant factory or the house by the blower 6 to supply the target gas to the pipe 1.
- the target gas is applied to the cultivated plant through the rectifying grid 2 provided on the side surface of the pipe.
- the rectifying grid 2 has a large cross-sectional area through which gas passes as compared with gas application using tubes and pipes, so that the pressure loss becomes very small, and the rectifying grid 2 is supplied to a position far away from the gas supply source by a long pipe.
- an appropriate amount of the target gas can be uniformly applied. Therefore, unlike a gas cylinder, it is not necessary to increase the pressure of the gas, and it can be applied to various supply sources. Therefore, the gas supply source 5 is not limited, and for example, when the target gas is carbon dioxide, a combustion method, a liquefied carbon dioxide gas method, a carbon dioxide supply device using a honeycomb rotor as described in Patent Document 6, or a pressure swing.
- gas supply source such as a carbon dioxide tank concentrated by the pressure (Pressure Swing Attachment, PSA) method.
- the gas supply source is not limited to one, and a plurality of gas supply sources may be combined.
- the capacity of the blower 6 is determined by the scale of the house or plant factory, the size of the carbon dioxide application area, and the like.
- the target gas exiting the honeycomb rotor is supplied at atmospheric pressure, so that the gas application device of the present invention is particularly suitable. ..
- the concentration of the target gas can be changed according to the application and purpose.
- the target gas is carbon dioxide
- the honeycomb rotor by using an adsorbent capable of adsorbing water together with carbon dioxide as the adsorbent of the honeycomb rotor, it is possible to apply the carbon dioxide concentration and the gas containing a large amount of water from the regeneration zone to the cultivated plant.
- the humidity is too high, such as in summer, the air leaving the processing zone of the honeycomb rotor may be mixed to adjust the moisture content.
- FIG. 3 is a diagram showing an example of gas application to a cultivated plant (for example, strawberry) according to the present invention.
- a gas application form as shown in FIG. 3A, when the cultivated plant 7 is a strawberry, if the pipe 1 is installed near the middle portion of the cultivated plant 7, carbon dioxide is supplied near the strawberry leaf.
- FIG. 3B even if the pipe 1 is installed on both the left and right sides or one side of the cultivated plant 7, the target gas is applied by a pipe provided with a rectifying grid on one side of the pipe. good.
- a pipe 1 is installed in the middle portion in the height direction of the cultivated plant 7 to supply gas in the vertical direction, or as shown in FIG.
- a pipe is installed above the cultivated plant. 1 may be installed (for example, a pipe may be hung from the ceiling) so that gas can be supplied only in the downward direction or from the rectifying grids on both the left and right sides.
- the shape of the pipe, the arrangement of the rectifying grid, the installation position and orientation of the pipe, and the like are not limited to the form shown in FIG. 3, and the target gas may be applied from a plurality of positions around the cultivated plant.
- the place where the beam or pillar for installing the piping of the gas application device of the present invention is installed is a cultivated plant of ridges, a cultivated plant of a cultivated bed, a moving cultivated bed of a cultivated bed mobile system, and a movement of the cultivated plant.
- the carbon dioxide concentration in the outside air is about 400 ppm, but the carbon dioxide concentration in the house may be lower than the outside air because it is absorbed by cultivated plants by photosynthesis.
- the carbon dioxide concentration in the house it is detected when the carbon dioxide decreases, and the cultivated plants start photosynthesis after sunrise, and it is applied so that it does not fall below the outside air concentration as the amount of photosynthesis during the day increases. Then it is effective.
- a carbon dioxide concentration detection sensor is installed near the leaves of a cultivated plant, and when the concentration exceeds the set upper limit concentration, the application of gas is stopped, and when the concentration becomes less than the set lower limit concentration, the application is started.
- the gas concentration detection sensor may be appropriately provided, and the amount of the target gas such as carbon dioxide to be supplied may be adjusted according to the detection concentration of the sensor.
- an illuminance meter is installed in the house in a place where the cultivated plants are not shaded, the illuminance is measured and the gas supply is started when the illuminance exceeds the set illuminance, and the supply is stopped when the illuminance becomes smaller than the set illuminance.
- the application time may be controlled by a timer so that the gas is applied only during the time when photosynthesis is active.
- the cultivated plant is, for example, strawberry
- the yield increases by about 15%, but as mentioned above, the temperature rises, so ventilation is performed to keep the temperature inside the house below 25 ° C. It must be done, and carbon dioxide can only be applied from December to February.
- the gas application device and method according to the present invention the carbon dioxide concentration near the plant is maintained even if the ceiling or side of the house is opened and ventilated. Therefore, the strawberry cultivation period is from October to May.
- the application period can be extended to, and an increase in yield can be expected by this amount.
- carbon dioxide whose temperature and humidity are adjusted may be supplied, or other gas may be used. During the time when photosynthesis is not performed, the supply of carbon dioxide may be stopped and only the humidity-adjusted air may be supplied.
- a reflective surface that reflects light is provided on at least one surface of the non-breathable side surface that does not have a rectifying grid of the application pipe, the reflective surface reflects illumination and sunlight, increasing the light intensity and photosynthesizing. Since the speed is further increased, it is possible to promote plant growth and reduce lighting power consumption.
- the reflective surface may be constructed by using a reflective material, a reflective paint, or another reflective substance.
- the light emitting device does not block the application of gas from the rectifying grid, and the light irradiation can be efficiently performed together with the gas application. Moreover, since the gas application device and the light irradiation device are integrated, it becomes a compact device.
- the cultivated plant is not limited to strawberry, but can be applied to various cultivated plants such as cucumber, tomato, and melon whose quality and yield are improved by applying the target gas.
- carbon dioxide has been described as an example, but as another target gas, it has a ripening effect on fruits, and when used for chrysanthemum, it has an effect of suppressing the flowering time and an elongation growth for some plants.
- Ethylene gas which has an inhibitory effect, or nitrogen, which is used to suppress the growth of plants for the purpose of shipping and procurement, may be applied to promote or suppress the growth of cultivated plants.
- the gas application apparatus In the gas application apparatus according to the present invention, a gas application experiment was conducted using a honeycomb-shaped rectifying grid.
- the gas was carbon dioxide, and the outside air and carbon dioxide from the liquefied carbon dioxide gas cylinder were mixed with a blower to adjust the carbon dioxide concentration to 1160 ppm and the supply flow rate to 20 m 3 / h.
- the gas application pipe has a quadrangular cross-sectional shape, and honeycomb-shaped rectifying grids made of inorganic fiber sheets are arranged on the left and right sides of the pipe, and the pipe length is 10 m.
- the carbon dioxide concentration was 1160 ppm, when it was 3 m, it was 1170 ppm, and when it was 10 m, it was 1160 ppm, indicating that carbon dioxide was uniformly supplied.
- a carbon dioxide supply device using a honeycomb rotor was used as a gas supply source, and the gas application device of the present invention was installed in a strawberry house to apply carbon dioxide.
- the carbon dioxide concentration in the house was lower than the outside air concentration of 400 ppm during the time when photosynthesis was active.
- the apparatus according to the present invention the carbon dioxide concentration around the strawberry leaves can be obtained from the gas supply source even if ventilation is performed during the carbon dioxide application time in order to keep the temperature inside the house at 25 ° C or lower. Even at the farthest position, it was 400 to 500 ppm, and it was possible to maintain a higher carbon dioxide concentration than when no application was applied.
- the cultivated plant is located far away from the gas supply source even though it has a simple structure.
- the present invention also relates to a gas application device and an application method capable of applying a uniform and appropriate amount of the target gas.
- the target gas is carbon dioxide
- a gas supply device using a honeycomb rotor it is possible to simultaneously supply carbon dioxide to cultivated plants while concentrating and recovering carbon dioxide in the atmosphere, and there is no environmental load. , Clean gas can be applied.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Environmental Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Botany (AREA)
- Ecology (AREA)
- Forests & Forestry (AREA)
- Cultivation Of Plants (AREA)
- Greenhouses (AREA)
Abstract
【課題】ハウスや植物工場などのガスの施用において、目的ガスの供給源によらず、簡易な構造でありながら、ガス供給源から遠く離れた位置にある栽培植物にも均一かつ適量の目的ガスを施用することができる植物へのガス施用装置および施用方法を提供する。 【解決手段】本発明におけるガス施用装置は、配管側面の少なくとも一面に整流格子を設け、目的ガスを栽培植物に施用するように構成したので、圧力損失が非常に小さくなり、長い配管によりガス供給源から遠く離れた位置に供給しても、均一に適量の目的ガスを施用することができ、製作コストを低減できる。
Description
本発明は、ハウスや植物工場などのガスの施用において、簡易な構造でありながらガス供給源から遠く離れた位置にある栽培植物にも均一かつ適量の目的ガスを施用することができるガス施用装置および施用方法に関する。
ハウスや植物工場などの屋内での植物栽培において、栽培植物に例えば二酸化炭素のような目的ガスを供給し、栽培植物の生育を促進させるための装置及び方法が提案されている(例えば、特許文献1~5)。
目的ガスが二酸化炭素の場合、ガス供給源として主に燃焼方式と液化炭酸ガス方式が利用されている。燃焼方式は灯油やLPG(液化石油ガス、Liquefied Petroleum Gas)を燃焼させた排ガスを利用する方式で、灯油の場合、環境負荷はあるが導入コスト、ランニングコストが他の方式に比べて低い。液化炭酸ガス方式は液化炭酸ガスボンベから純ガスを供給する方式である。設備的には他の方式より安価だが、液化炭酸ガスが灯油やLPGに比べて高価であるため、ランニングコストが高くなる。
二酸化炭素は光合成の原料であり、植物の生産行為である光合成を促進させることを目的として施用される。植物は光合成によって糖を合成し、適切に転流させ、果実などを肥大させると収量や品質を高めることができる。
最近では、光合成が始まらない日の出前や光が弱い早朝での二酸化炭素施用は、あまり効果が上がらないことが分かっている。また、ビニールハウス全体に二酸化炭素を充満させるような施用方法はビニールハウスの外へ漏れ出す炭酸ガスが多く、施用効率が悪い。効果的な施用方法として、光合成速度が最も高まる時間帯に大気中の二酸化炭素濃度(400ppm程度)、あるいは外気より高い濃度に維持するように栽培植物の葉の周りに二酸化炭素を施用する方法がある。ビニールハウスはハウス内の温度が高くなる日中には換気を行い、ハウス内の温度を下げることがあるが、換気が行われている状態でも、有効な時間帯にチューブやダクトなどを使って栽培植物の葉の近くに局所的に二酸化炭素を施用することで、栽培植物の周りの二酸化炭素濃度を高くすることができるため、局所的に二酸化炭素を施用する方法が試みられるようになっている。
燃焼方式において、特許文献1記載の二酸化炭素施用装置は、二酸化炭素を発生する燃焼式二酸化炭素発生器に送風機を設け、この送風機とダクト、潅水用チューブが連結される。栽培作物の群落内に配設された潅水用チューブの長さ方向に一定の間隔で設けられた複数の孔から二酸化炭素が噴出され、栽培作物の群落内の二酸化炭素濃度を上昇させ、成長を促進させることができる。
液化炭酸ガス方式においてガスボンベのようにガス圧が高い場合、特許文献2に記載のように、二酸化炭素局所施用チューブとして、多孔質潅水チューブを用いることが一般的である。特許文献2では、栽培作物の葉部分に効率的に二酸化炭素を施用するため、多孔質潅水チューブの上部をカバーで覆い、下方向や横方向のみに二酸化炭素が施用できるようにしてある。また、同方式において、均等かつ適当な量の二酸化炭素を撒布するために、特許文献3では、パイプに複数の孔を長さ方向に設け、孔の位置に合わせて気体の流出量を平均化する流量調節機構を有するバルブを取り付けた植物栽培補助装置が開示されている。
さらに、特許文献4や5にも、植物栽培育成用の空気を均等に効率よく供給する装置が開示されている。特許文献4に記載の植物栽培用吹出装置において、二酸化炭素供給源は特定されていないが、搬送部材の壁部と栽培ベッドで栽培スペースを仕切っており、搬送部材から送られた栽培空気はノズルを通って吹出し、ノズルの空気吹出口付近で誘引部材との間隔が狭まっているので負圧となり、栽培スペース内の空気は負圧によって誘引部材の風上側から誘引されて、栽培用空気とともに誘引部材の風下側から植物に向かって出る。誘引部材の風下側が広がっているので、誘引空気と栽培用空気が拡散して層流から乱流への遷移が促進され、誘引部材の風上側が広がっているので、栽培スペース内の空気が多量に誘引されて空気の循環スペースが広がり、植物全体に気流が接触する。よって、光合成速度が一層高まり、植物生育促進と送風動力削減の両立が図れて栽培コストダウンにつながることが開示されている。
特許文献5に記載の植物育成用空気放射装置は、複数の空気放射部により、1個の茎部が生長する植物体(リーフレタスなど)の茎部の頂部に生える若葉に、空気流がすぐそばからそれぞれ放射されるので、葉部からの蒸散作用を促進し、植物体の根からの水分や肥料の吸い上げを促進させる効果があり、空気放射部が放射する風量は小さくてよく、強い風により葉部同士が触れ合って生じる葉傷を防ぐ効果がある。この植物育成用放射装置の二酸化炭素供給源は二酸化炭素貯留タンクである。また、各空気放射部に内蔵されたファンにより栽培用空気を放射する実施例も開示されており、この場合、空気を送る配管や大規模な供給設備を設けることなく、簡素で低コストの設備とすることができる。
前記燃焼方式や液化炭酸ガス方式による施用は、定期的に燃料やガスボンベの購入が必要で、地球温暖化の主原因である二酸化炭素を有効に活用できているとは言い難い。また燃焼方式は発熱するので、夏期の場合デメリットとなる。さらにハウスや植物工場では、栽培植物が不足する時期や、必要とする時期あるいは高値で取り引きされる時期に育成出荷タイミングをコントロールするために、夜間照明や冷暖房など一時的な給電が必要になることもある。そのための受電設備費や受電契約料金も負担となっている。
ここで、燃焼方式や液化炭酸ガス方式に代わる新しいガス供給源として、ハニカムロータを用いた二酸化炭素供給装置が提案されている(例えば、特許文献6)。二酸化炭素の吸着材を担持したハニカムロータにおいて、吸着ゾーンに大気やハウス内の空気など処理対象空気を通風することでハニカムが二酸化炭素を吸着・分離除去し、再生ゾーンでは再生ヒータなどで加熱した再生空気を通すことで二酸化炭素を脱着し、二酸化炭素濃度を高めた再生空気を連続的に栽培植物に供給する。このため、環境負荷がなく、クリーンなガスを施用することができる。再生温度は50℃(以下、温度は全て「摂氏」とする)程度と再生可能エネルギーや排熱を利用することができるので、他の方式に比べてランニングコストが低くなり、二酸化炭素を栽培植物に施用して、収量を上げて二酸化炭素削減も行うことができる。燃焼方式や液化炭酸ガス方式のように、燃料やガスボンベをわざわざ調達する必要もなくなる。
燃焼方式においては、二酸化炭素をハウス内に充満させるので、換気による影響が大きく、二酸化炭素の無駄が多いという問題がある。例えば、栽培植物がイチゴの場合、ハウス内が25℃以上になるとハウスの天井や側面部を開けて外気を入れることにより、ハウス内の温度を低下させる必要がある。その際に、ハウス内に充満した二酸化炭素が外に放出されてしまう。また、燃料の排気に含まれる硫黄化合物(SOX)や窒素化合物(NOX)や一酸化炭素(CO)などの栽培植物や人への影響が懸念される。さらに、燃料の高騰により、収益が低下することもある。
特許文献1に記載の二酸化炭素施用装置は長さ方向に一定の間隔で設けられた複数の孔から二酸化炭素が供給されるので、ガス供給源に近い孔からは十分な量の流体が流れ出るものの、ガス供給源から遠くなるほど、孔からの流出量が少なくなるので、二酸化炭素の量が一定とならず、一部では適量よりも過大に、他の一部では適量よりも過小になりやすく、群落内の栽培植物の生育などに差が出てしまうことがある。
一方、液化炭酸ガス方式において、特許文献2や特許文献3に記載の施用装置は、ガスボンベのようにガス圧が高い供給源では使用できるが、ガス圧の高くない燃焼方式などのガス供給源に用いるのは不向きである。また、ハウスは例えば30mと長く、ガス供給源から遠く離れた位置では、チューブやパイプの内径が小さく、圧力損失があるので、二酸化炭素が出ない、もしくはガス流出量が少なく、濃度が低くなる可能性がある。特許文献3に記載の装置では、孔が開いている部分は二酸化炭素濃度が高くなるが、孔と孔の間の部分では濃度が上がらず、葉の周りの濃度が不均一となる虞がある。
特許文献4や5に記載の装置では、特殊な形状や仕様のノズルや空気放射部を設ける必要があり、局所供給手段としてはイニシャルコストが高くなる。特許文献4に記載の装置では、搬送部材の壁部と栽培ベッドで栽培スペースを仕切り、ノズルや吹出部材などを工夫することで空気の循環量を低減し、送風動力を少なくしているが、それでも空気を吹出す際の圧力損失は高く、供給のための送風動力削減に限界がある。
以上のような実情に鑑み、本発明は目的ガスの供給源によらず、特許文献4や5より簡易な構造でありながら、ガス供給源から遠く離れた場所においても、均一に栽培植物に適量の目的ガスを施用することができるガス施用装置及び施用方法を提供する。
以上の課題を解決するため、本発明のガス施用装置は、配管側面の少なくとも一面に整流格子を設け、ガス供給源からの目的ガスを栽培植物に施用するように構成したことを特徴とする。
本発明のガス施用装置によれば、整流格子は特許文献1~5に記載のようなチューブやパイプよりガスが通る断面積を大きく取ることで、圧力損失が非常に小さくなり、長い配管によりガス供給源から遠く離れた位置に供給しても、均一に適量の目的ガスを施用することができる。このため、ガスボンベのようにガスを高圧にする必要がなく、種々の供給源に適用することができる。また、簡易な構造でありながら均一に適切な量の目的ガスを施用できるので、製作コストを低減できる。
また、本発明のガス施用装置および施用方法は、目的ガスを栽培植物近傍の局所に施用するため、換気が行われた状態においても、栽培植物近傍のガス濃度は下がることなく、目的ガスがハウスなどの外に放出されることを低減することができる。
さらに、整流格子に触媒や吸着材などを担持したり、吸水性や機能性のあるシートを用いることにより、機能性を持たせた整流格子を用いることによって、植物の生育や人体に有害なガス成分を浄化して影響を排除しつつ、湿度を調整することも可能となる。
図1に本発明に係るガス施用装置の配管形態の一例を示す。本発明のガス施用装置の配管1に用いる整流格子2は、ポリプロピレンなどの樹脂シートやプラスチックシート、ガラス繊維やセラミック繊維などの無機繊維シート、アルミなどの金属シート、有機繊維シート、不織布など、様々な材料を用いることができる。このシートをハニカム形状にコルゲート(波付け加工)し、複数積層接着して整流格子を作製する。整流効果を高めるため、望ましくは非通気性のシートを用いる。この整流格子を、目的ガスを施用する配管1の少なくとも一面に設ける。本発明に用いる配管1の断面形状は、例えば図1の(A)~(D)のように、多角形(三角形、四角形含む)、円形や楕円形、扇形などが挙げられるが、特に限定されない。整流格子を設けない非通気性側面3の材料は金属製、ゴム製、塩化ビニル製、アクリル製、ポリエチレン製などのプラスチック製などが挙げられる。安価なシート材料や配管材料を用いれば、製作コストを低減できる。
なお、整流格子2を設ける配管側面はガスの施用形態や配管の断面形状に応じて、設けるようにするとよい。また、配管側面の少なくとも一面に整流格子を設ける構成としたが、配管側面の全面、あるいは側面の一部分に整流格子を設けるようにしてもよい。
図1の(a)~(d)は整流格子の種々の形状の例を示す。(a)ハニカム状、(b)格子状、(c)三角形状、(d)六角形状などが挙げられ、他にも円形状、楕円状、扇形状など、ガスを通気できる様々な形状が考えられる。形状に応じて、整流格子の加工方法を変える。整流格子の形状やサイズも、用途や目的に応じて変えることができる。
整流格子2の形状が(a)ハニカム状の場合、ハニカムのサイズは、この例に限定されないが、例えば山高2.5mm、ピッチ4.2mmなどのサイズが挙げられる。送風機の動力や風量調整の他に、ハニカムサイズを変えることで、栽培植物に供給されるガスの流速を調整することができる。また、送風機に近い部分ではハニカムサイズを小さくし、送風機から遠ざかるにつれてハニカムサイズを大きくすると供給されるガスの量が全体的に均一となる。ハニカムサイズなどにより適度に流速を調整することで、栽培植物の葉に適度に目的ガスを含む空気が供給され、空気が入れ替わり、空気の淀みおよび温度ムラがなくなり、蒸散作用が促進され、根から水分や養分の吸い上げを促し、成長が促進される効果がある。また、葉面境界層抵抗が低下して光合成速度が一層高まるので、植物生育促進と送風動力削減の両立が図れて栽培コストダウンにもつながる。特許文献2のように、ガスボンベから多孔質チューブで二酸化炭素を施用する場合は、多孔質チューブから二酸化炭素が漏れ出し、栽培植物周辺で空気の流れがほとんどないため、本発明の施用装置で目的ガスを送る方が植物の生育に優位である。
整流格子を吸水性のある材料で製作することにより、水や温水を整流格子に送り、目的ガスが通る時の気化によって、湿度の高い空気を送ることも可能である。この際に気化冷却が生じるので、栽培植物周辺の温度を下げることも可能である。湿度が高く調整された空気を供給することで、栽培植物の葉の乾燥を防ぎ、効率よく光合成させ、成長を促進することができる。
さらに、整流格子に触媒や吸着材などを担持して、あるいは活性炭シートのように機能性のあるシートによって、機能性を持たせた整流格子を用いることで、植物の生育や人体に有害なガス成分を浄化して影響を排除することも可能となる。例えば、光触媒を担持することで、栽培植物に有害な有機化合物や細菌などを除去してガスの浄化作用、脱臭作用、抗菌作用、防汚作用、浄水作用などが期待できる。また、ガス供給源として燃焼方式を採用する場合、燃料の燃焼に伴うSOX、NOX、COなどの有害なガス成分の除去も可能となる。
図2に本発明に係るガス施用装置のフローを示す。ガス施用装置4は、ガス供給源5に送風機6を設け、この送風機6とダクト(図示せず)などによって、配管1が連結される。ガス供給源5から供給される目的ガスは、そのまま、あるいは必要に応じて空気と混合され、送風機6により植物工場やハウス内に配設された配管1に目的ガスを供給して、配管1の配管側面に設けられた整流格子2を通じて、栽培植物に目的ガスが施用される。
整流格子2は、チューブやパイプによるガス施用と比較して、ガスが通る断面積を大きく取ることで、圧力損失が非常に小さくなり、長い配管によりガス供給源から遠く離れた位置に供給しても、均一に適量の目的ガスを施用することができる。このため、ガスボンベのようにガスを高圧にする必要がなく、種々の供給源に適用することができる。従って、ガス供給源5は限定されず、例えば、目的ガスが二酸化炭素の場合、燃焼方式、液化炭酸ガス方式、特許文献6に記載のようにハニカムロータを用いた二酸化炭素供給装置や、圧力スイング吸着(Pressure Swing Adsorption、PSA)方式により濃縮した二酸化炭素タンクなど様々なガス供給源に適用することができる。なお、ガス供給源は一つに限らず、複数組み合わせてもよい。送風機6の能力については、ハウスや植物工場の規模や二酸化炭素施用領域の広さなどによって決定される。
液化炭酸ガスや二酸化炭素タンクを用いる場合、ガスボンベやガスタンクからの二酸化炭素を空気と混合して所定の二酸化炭素濃度に調整した後、本発明のガス施用装置を用いてガスを施用することもできる。
特許文献6に記載のようなハニカムロータを用いたガス供給装置をガス供給源として用いる場合、ハニカムロータを出た目的ガスを大気圧で供給するので、特に本発明のガス施用装置が適している。ガスフローや再生温度、ロータ回転数などを調整することにより、目的ガスの濃度は用途や目的に応じて、変化させることができる。目的ガスが二酸化炭素の場合、ハニカムロータを用いたガス供給装置を用いて大気の二酸化炭素を濃縮回収しながら、栽培植物に二酸化炭素を同時に供給することができ、環境負荷がなく、クリーンなガスを施用することができる。また、ハニカムロータの吸着材として二酸化炭素とともに水分を吸着することができる吸着材を用いることで、再生ゾーンを出た二酸化炭素濃度と水分が多く含むガスを栽培植物に施用することができる。一方で、夏期など湿度が高すぎる場合は、ハニカムロータの処理ゾーンを出た空気を混合して水分を調整するようにしてもよい。
図3は本発明に係る栽培植物(例えばイチゴ)へのガス施用の一例を示す図である。ガス施用形態として、図3(A)に示すように、栽培植物7がイチゴの場合、栽培植物7の中間部近くに配管1を設置すると、二酸化炭素がイチゴの葉の近くに供給される。他の形態として、図3(B)のように、栽培植物7の左右両側あるいは片側に配管1を設置し、一つの配管側面に整流格子を設けた配管により目的ガスを施用するようにしてもよい。また、図3(C)のように、栽培植物7の高さ方向中間部に配管1を設置し、上下方向にガスを供給したり、図3(D)のように栽培植物の上部に配管1を設置して(例えば、天井から配管を吊るし)、下方向のみや左右両側面の整流格子からガスを供給するようにしたりしてもよい。なお、配管形状や整流格子の配置、配管の設置位置や向きなどは図3に示す形態に限定されず、栽培植物周辺の複数の位置から目的ガスを施用するようにしてもよい。
近年、畝の栽培植物や地面に固定された栽培ベッドの栽培植物のみだけでなく、栽培ベッドを載せた栽培ベンチを移動させることにより通路となる部分を減らし、固定式より多くの栽培ベッドを設置することができる栽培ベッド移動式システムが実用化されている。そこで、本発明のガス施用装置の配管を設置するための梁や柱を設置する場所を畝の栽培植物や栽培ベッドの栽培植物、栽培ベッド移動式システムの移動する栽培ベッドとその栽培植物の移動の妨げとならない場所とすることにより、様々な栽培形態の栽培植物のガス施用に展開することができる。
外気の二酸化炭素濃度はおよそ400ppmだが、ハウス内の二酸化炭素濃度は光合成により栽培植物が吸収するため外気を下回ることがある。ハウス内の二酸化炭素濃度の測定により、二酸化炭素がいつ低下するかを検出し、日の出後に栽培植物が光合成を開始し、日中の光合成量の増大に合わせて、外気濃度を下回らないように施用すると効果的である。また、ハウス内の経時的な二酸化濃度推移を把握し、目的濃度に維持できるように管理するようにするとよい。例えば、栽培植物の葉に近い部分に二酸化炭素濃度検知センサを設置して、設定上限濃度以上になった場合はガスの施用を停止し、設定下限濃度以下になった場合は施用を開始する。このように、ガス濃度検知センサを適宜設けるようにし、センサの検出濃度に応じて供給する二酸化炭素などの目的ガスの量を調整するようにしてもよい。
また、照度計をハウス内で栽培植物が日陰にならない場所に設置し、照度を測定して設定照度以上になった場合はガスの供給を開始し、設定照度より小さくなった場合は供給を停止するようにすると、曇天や雨天、夕方から夜間にガスを施用しないようにすることができる。あるいは、タイマーで施用時間を制御して、光合成の盛んな時間帯のみガスを施用するようにしてもよい。前述のガス濃度検知センサやこれらを組み合わせることにより、より細やかなガス施用を行うことができ、光合成に使用されない二酸化炭素の施用を抑制することができる。また、栽培植物の生育状況に合わせて二酸化炭素などの目的ガスの濃度を調整するようにしてもよい。さらに、必要に応じて、湿度センサを設ける構成にしてもよい。
栽培植物が例えばイチゴの場合、燃焼方式によってハウス内全体へ二酸化炭素を施用すると収量は15%程度増加するが、前述のように温度上昇するため、ハウス内温度を25℃以下に保つために換気しなければならず、12月~2月までしか二酸化炭素の施用ができない。一方、本発明にかかるガス施用装置および方法によれば、ハウスの天井や側面を開けて換気しても植物近傍の二酸化炭素濃度が保たれているので、イチゴの栽培期間の10月~5月まで施用期間を延ばすことができ、この分収量の増加も期待できる。
さらに温度や湿度を調整した二酸化炭素を供給するようにしてもよく、その他のガスを用いるようにしてもよい。光合成の行われていない時間帯は二酸化炭素の供給を停止し、湿度調整を行った空気のみを供給するようにしてもよい。
施用配管の整流格子を設けない非通気性側面の、少なくとも一面に光を反射させる反射面を設けるようにすると、反射面が照明や太陽光を反射することにより、光強度を大きくして、光合成速度が一層高まるので、植物生育促進と照明消費電力削減を図ることができる。反射面は、反射材や反射塗料、そのほかの反射物質を用いて構成するとよい。
また、栽培植物に光を照射する発光装置を配管側面に適宜設けるようにすると、発光装置が整流格子からのガスの施用を遮ることがなく、ガス施用とともに光照射を効率よく行うことができ、しかもガス施用装置と光照射装置が一体型となるので、コンパクトな装置となる。
栽培植物については、イチゴを例示したがこれに限定されず、キュウリやトマト、メロンなど、目的ガスの施用により品質や収量が高まる種々の栽培植物に応用することができる。
本発明において、二酸化炭素を例にして説明したが、他の目的ガスとして、果物類の追熟効果のあり、菊に使用した場合開花時期の抑制効果や一部の植物に対して伸長成長を阻害する効果のあるエチレンガスや、出荷調達等を目的として植物の生育を抑制したい場合には窒素など、栽培植物の成長を促進・抑制するためのガスを施用するようにしてもよい。
上記の具体的構成は、本発明の一例を示したものであり、本発明はそのような具体的構成に限定されることなく、本発明の趣旨を逸脱しない範囲で様々な態様を取り得るものである。
本発明に係るガス施用装置において、ハニカム形状の整流格子を用いて、ガス施用実験を行った。ガスは二酸化炭素とし、外気と液化炭酸ガスボンベからの二酸化炭素を送風機で混合して二酸化炭素濃度1160ppm、供給流量を20m3/hとなるよう調整した。ガス施用配管は図1(A)のように、断面形状は四角形とし、配管の左側面と右側面に無機繊維シートからなるハニカム形状整流格子を配置し、配管長さを10mとした。二酸化炭素供給源に近い方からの配管距離が0m地点のとき二酸化炭素濃度は1160ppm、3m地点のとき1170ppm、10m地点においては1160ppmとなり、均一に二酸化炭素が供給されていることがわかった。送風機の選定や風量調整、整流格子のセルサイズ、供給流量を調整することにより、ガス施用装置から栽培植物へのガス供給量を柔軟に均一に調整することが可能である。
ガス供給源としてハニカムロータによる二酸化炭素供給装置を用い、本発明のガス施用装置をイチゴのハウス内に設置し、二酸化炭素を施用した。無施用の場合、ハウス内の二酸化炭素濃度は、光合成の盛んな時間帯では外気濃度400ppmを下回った。一方、本発明に係る装置を用いることで、ハウス内温度を25℃以下に保つために二酸化炭素施用時間中は換気が行われていても、イチゴの葉周辺の二酸化炭素濃度はガス供給源から最も離れた位置においても400~500ppmとなり、無施用よりも高い二酸化炭素濃度を維持することができた。
ハウスや植物工場などの屋内での植物栽培におけるガス施用において、本発明に係るガス施用装置およびガス施用方法によれば、簡易な構造でありながら、ガス供給源から遠く離れた位置にある栽培植物にも均一かつ適量の目的ガスを施用することができるガス施用装置および施用方法に関する。また、目的ガスが二酸化炭素の場合、ハニカムロータを用いたガス供給装置と組み合わせることにより、大気の二酸化炭素を濃縮回収しながら、栽培植物に二酸化炭素を同時に供給することができ、環境負荷がなく、クリーンなガスを施用することができる。
1 配管
2 整流格子
3 非通気性側面
4 ガス施用装置
5 ガス供給源
6 送風機
7 栽培植物
2 整流格子
3 非通気性側面
4 ガス施用装置
5 ガス供給源
6 送風機
7 栽培植物
Claims (13)
- ガス供給源からの目的ガスを植物へ施用する配管の側面の少なくとも一面に整流格子を設け、前記整流格子を通して植物にガスを施用するようにしたことを特徴とする植物へのガス施用装置。
- 前記配管の断面形状が多角形、円形、楕円形もしくは扇形のいずれか少なくとも一つの形状であることを特徴とする請求項1に記載の植物へのガス施用装置。
- 前記整流格子はハニカム形状、格子状、三角形状、六角形状、円形状、楕円形状、扇形状のいずれか少なくとも一つの形状であることを特徴とする請求項1または2に記載の植物へのガス施用装置。
- 前記整流格子が樹脂シート、プラスチックシート、無機繊維シート、金属シート、有機繊維シート、不織布の少なくとも1種類以上から選ばれるシートにより構成されることを特徴とする請求項1から3のいずれか一項に記載の植物へのガス施用装置。
- 前記整流格子は吸水性を有することを特徴とする請求項1から4のいずれか一項に記載の植物へのガス施用装置。
- 前記整流格子に触媒及び/又は吸着材を担持したことを特徴とする請求項1から5のいずれか一項に記載の植物へのガス施用装置。
- 前記整流格子に機能性のあるシートを用いることを特徴とする請求項1から5のいずれか一項に記載の植物へのガス施用装置。
- 前記配管が栽培植物の中間部、左右両側もしくは片側、あるいは上部のうち、少なくとも一箇所以上から目的ガスを施用することを特徴とする請求項1から7のいずれか一項に記載の植物へのガス施用装置。
- 前記ガス供給源がハニカムロータを用いたガス供給装置であることを特徴とする請求項1から8のいずれか一項に記載の植物へのガス施用装置。
- 前記ガスは二酸化炭素であって、前記ガス供給源として、燃焼方式、液化炭酸ガス方式、ハニカムロータを用いたガス供給装置、あるいはガスタンクのうち少なくともいずれか一つを用いたことを特徴とする請求項1から8のいずれか一項に記載の植物へのガス施用装置。
- ガス供給源からのガスを施用する配管の断面形状が多角形、円形、楕円形もしくは扇形であって、前記配管側面の少なくとも一面に整流格子を設け、前記整流格子を通して栽培植物に目的ガスを施用するようにしたことを特徴とする植物へのガス施用方法。
- 前記ガス供給源がハニカムロータを用いたガス供給装置であることを特徴とする請求項11に記載の植物へのガス施用方法。
- 前記ガスは二酸化炭素であって、前記ガス供給源として、燃焼方式、液化炭酸ガス方式、ハニカムロータを用いたガス供給装置、あるいはガスタンクのうち少なくともいずれか1つを用いたことを特徴とする請求項11に記載の植物へのガス施用方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-087792 | 2020-05-20 | ||
JP2020087792A JP7569165B2 (ja) | 2020-05-20 | 2020-05-20 | 植物へのガス施用装置および施用方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021235136A1 true WO2021235136A1 (ja) | 2021-11-25 |
Family
ID=78605803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/015106 WO2021235136A1 (ja) | 2020-05-20 | 2021-04-12 | 植物へのガス施用装置および施用方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7569165B2 (ja) |
WO (1) | WO2021235136A1 (ja) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51100444A (ja) * | 1975-02-28 | 1976-09-04 | Tooseroguriin Kiko Kk | Shokubutsunitaisurutansangasunokyokyuhoho |
JPH0234798U (ja) * | 1988-08-30 | 1990-03-06 | ||
JP2000209969A (ja) * | 2000-03-29 | 2000-08-02 | Taikisha Ltd | 植物栽培装置 |
JP2006067888A (ja) * | 2004-09-01 | 2006-03-16 | Kansai Electric Power Co Inc:The | 温室栽培の炭酸ガス施与方法および炭酸ガス施与装置 |
US20120216459A1 (en) * | 2011-02-28 | 2012-08-30 | David Frederick Currier | Method and apparatus for optimal enrichment of co2 for plant production |
WO2012133026A1 (ja) * | 2011-03-25 | 2012-10-04 | 株式会社宮入バルブ製作所 | Co2散布装置 |
JP2014161241A (ja) * | 2013-02-22 | 2014-09-08 | Daikin Ind Ltd | 二酸化炭素供給システム |
JP2017127302A (ja) * | 2016-01-15 | 2017-07-27 | 戸田建設株式会社 | 植物生育促進装置、該植物生育促進装置を用いた植物生育促進システム、及び植物生育促進方法 |
WO2018020935A1 (ja) * | 2016-07-29 | 2018-02-01 | パナソニックIpマネジメント株式会社 | 水耕栽培装置及び水耕栽培方法 |
US20190029186A1 (en) * | 2017-07-27 | 2019-01-31 | Stewart E. Erickson | Integrated, self supporting elevated gas delivery tube and led light for crop foliage |
-
2020
- 2020-05-20 JP JP2020087792A patent/JP7569165B2/ja active Active
-
2021
- 2021-04-12 WO PCT/JP2021/015106 patent/WO2021235136A1/ja active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51100444A (ja) * | 1975-02-28 | 1976-09-04 | Tooseroguriin Kiko Kk | Shokubutsunitaisurutansangasunokyokyuhoho |
JPH0234798U (ja) * | 1988-08-30 | 1990-03-06 | ||
JP2000209969A (ja) * | 2000-03-29 | 2000-08-02 | Taikisha Ltd | 植物栽培装置 |
JP2006067888A (ja) * | 2004-09-01 | 2006-03-16 | Kansai Electric Power Co Inc:The | 温室栽培の炭酸ガス施与方法および炭酸ガス施与装置 |
US20120216459A1 (en) * | 2011-02-28 | 2012-08-30 | David Frederick Currier | Method and apparatus for optimal enrichment of co2 for plant production |
WO2012133026A1 (ja) * | 2011-03-25 | 2012-10-04 | 株式会社宮入バルブ製作所 | Co2散布装置 |
JP2014161241A (ja) * | 2013-02-22 | 2014-09-08 | Daikin Ind Ltd | 二酸化炭素供給システム |
JP2017127302A (ja) * | 2016-01-15 | 2017-07-27 | 戸田建設株式会社 | 植物生育促進装置、該植物生育促進装置を用いた植物生育促進システム、及び植物生育促進方法 |
WO2018020935A1 (ja) * | 2016-07-29 | 2018-02-01 | パナソニックIpマネジメント株式会社 | 水耕栽培装置及び水耕栽培方法 |
US20190029186A1 (en) * | 2017-07-27 | 2019-01-31 | Stewart E. Erickson | Integrated, self supporting elevated gas delivery tube and led light for crop foliage |
Also Published As
Publication number | Publication date |
---|---|
JP2021180636A (ja) | 2021-11-25 |
JP7569165B2 (ja) | 2024-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101917789B1 (ko) | 비용 효율적인 식량생산을 위한 환경 조정형 온실의 개선 | |
US20240245018A1 (en) | Growing system and method | |
CA1315554C (en) | Method and structure for environmental control of plant growth | |
ES2713064T3 (es) | Sistema de control climático en un entorno espacial para organismos, entorno espacial adaptado a este, sistema de control y programa para ello | |
US20080014857A1 (en) | System for improving both energy efficiency and indoor air quality in buildings | |
KR101131614B1 (ko) | 창문에 부착할 수 있는 광합성 생물을 이용한 실내용 공기정화장치 | |
JP5013346B2 (ja) | 局所温度調節装置、短日局所夜冷処理システム及びイチゴ栽培システム | |
JP5515118B2 (ja) | 植物育成用施設 | |
WO2011115806A4 (en) | Plant air purification enclosure apparatus and method | |
NL1031357C2 (nl) | Nevelkas. | |
JP2007060981A (ja) | 大気浄化、害虫捕獲、気温緩和となる緑化装置 | |
WO2021235136A1 (ja) | 植物へのガス施用装置および施用方法 | |
RU2419282C1 (ru) | Устройство для очистки воздуха животноводческого помещения | |
JP7215984B2 (ja) | 混成栽培システム | |
JP2011172522A (ja) | 温室の遮光装置 | |
KR101210241B1 (ko) | 수직형 작물재배시설 | |
KR20180104848A (ko) | 육묘 재배 하우스 | |
CN103650992B (zh) | 一种基于链条式生物质燃料采暖炉的二氧化碳施肥机 | |
JP4489536B2 (ja) | 温室栽培の炭酸ガス施与方法 | |
CN102357343B (zh) | 一种处理恶臭和有机废气的生态棚 | |
Tianning et al. | Cost-effectiveness analysis of greenhouse dehumidification and integrated pest management using air’s water holding capacity-a case study of the Trella Greenhouse in Taizhou, China | |
CN212344706U (zh) | 一种兰花大棚气体搜集释放装置 | |
JP7495552B2 (ja) | 二酸化炭素供給装置及び方法 | |
JPH03187321A (ja) | 断熱暗室における植物栽培方法 | |
CN205922254U (zh) | 一种基于溶洞空气的垂直农场调控装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21808637 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21808637 Country of ref document: EP Kind code of ref document: A1 |