WO2021234994A1 - Outer rotor-type rotating electric machine - Google Patents

Outer rotor-type rotating electric machine Download PDF

Info

Publication number
WO2021234994A1
WO2021234994A1 PCT/JP2020/048317 JP2020048317W WO2021234994A1 WO 2021234994 A1 WO2021234994 A1 WO 2021234994A1 JP 2020048317 W JP2020048317 W JP 2020048317W WO 2021234994 A1 WO2021234994 A1 WO 2021234994A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric machine
rotary electric
rotor
type rotary
abduction type
Prior art date
Application number
PCT/JP2020/048317
Other languages
French (fr)
Japanese (ja)
Inventor
勇介 浅海
暁史 高橋
博洋 床井
努 三好
亮平 税所
海洋 于
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2021234994A1 publication Critical patent/WO2021234994A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/10Casings or enclosures characterised by the shape, form or construction thereof with arrangements for protection from ingress, e.g. water or fingers

Definitions

  • the present invention relates to a rotary electric machine, and particularly to an abduction type rotary electric machine.
  • abduction type rotary electric machine As one of the means for increasing the torque density of the rotary electric machine.
  • the rotor is arranged on the outer peripheral side of the stator, and the radius of the gap between the rotor and the stator can be increased.
  • the abduction type rotary electric machine has a feature that the circumference of one pole is long because the rotor is on the outside and a large magnet can be placed, which makes it possible to increase the torque density compared to the adduction type rotary electric machine. Become.
  • Patent Document 1 is known as an abduction type rotary electric machine.
  • the rotor is composed of a cup-shaped rotor core and a magnet attached to the inside thereof. Further, Patent Document 1 describes that a gap structure is formed between a cover member and a plate or a fixed support, and the cover member is excellent in waterproof and dustproof performance.
  • a large diameter motor there is a large diameter motor for elevators.
  • Large-diameter motors for elevators have a structure in which core shapes are punched out from electrical steel sheets and laminated in the axial length direction. As a result, iron loss is reduced, and the motor is designed to have high output and high efficiency. In this configuration, unevenness may occur on the outer peripheral surface of the rotor core due to an error when punching the electromagnetic steel sheet or a deviation in the outer peripheral direction when the electromagnetic steel sheets are laminated, and the size of the outer diameter of the rotor core is large. The accuracy of is low.
  • Patent Document 1 When the gap structure of Patent Document 1 is applied to a large-diameter motor for an elevator or the like, the accuracy of the outer diameter of the rotor core is low, so it is necessary to make the gap a large width in consideration of tolerances, which is sufficient. It is not possible to prevent the ingress of dust and water droplets. Further, in Patent Document 1, the cover member is fixed in the radial direction with respect to the rotor. In such a configuration, strain occurs in the rotors stacked in the axial length direction, and it is difficult to accurately adjust the width of the gap between the cover member and the plate or the fixed support.
  • the hoistway is not airtight and dust and dirt have entered. Dust or dust entering the sliding surface of the motor or the like causes a failure. Therefore, from the viewpoint of improving reliability and reducing the maintenance burden, the elevator motor installed in the hoistway is required to have a configuration in which dust and water droplets do not enter.
  • An object of the present invention is to provide an abduction type rotary electric machine which prevents dust and water droplets from entering and has improved cooling performance.
  • a stator having a plurality of slots and a coil wound around the slots, and a stator that can rotate in the radial direction of the stator through a predetermined gap with respect to the stator. It has a rotor held in, a stator frame holding the stator, a rotor frame holding the rotor, and an end plate fixed to the end of the rotor in the axial length direction.
  • This is an abduction type rotary electric machine in which an opening is formed between the rotor frame and the stator frame, and a gap connected to the opening is formed between the stator frame and the end plate.
  • FIG. 1 It is a figure which shows the radial direction of the central part of the abduction type rotary electric machine. It is a perspective view which shows the assembly process in the comparative example. It is a perspective view which shows after assembling in the comparative example. It is a figure which shows the perspective view of the stator frame in the comparative example. It is a figure which shows the perspective view seen from the direction opposite to FIG. 1D. It is a figure which shows the axial length direction in the comparative example. It is a figure which shows the enlarged view of the part A of FIG. 1F. It is a figure which shows the axial length direction of the abduction type rotary electric machine of Example 1. FIG. It is an enlarged view of the B part of FIG. 2A.
  • FIG. 5A It is a figure which shows the axial length direction of the abduction type rotary electric machine in Example 2.
  • FIG. It is an enlarged view of the part C of FIG. 3A. It is a figure which shows the axial length direction of the abduction type rotary electric machine in Example 4.
  • FIG. It is an enlarged view of the D part of FIG. 4A. It is a figure which shows the axial length direction of the abduction type rotary electric machine in Example 5.
  • FIG. 5A It is a perspective view of the abduction type rotary electric machine after the assembly of Example 6.
  • FIG. 5 is a perspective view of an abduction type rotary electric machine during assembly of the seventh embodiment. It is a perspective view of the abduction type rotary electric machine after the assembly of Example 7. FIG. It is a perspective view of the abduction type rotary electric machine in the middle of assembling of Example 8. It is a perspective view of the abduction type rotary electric machine after the assembly of Example 8. FIG. It is a figure which shows the radial direction in the central part of the abduction type rotary electric machine of Example 8.
  • FIG. 1A is a diagram showing the radial direction of the central portion of the abduction type rotary electric machine 100.
  • the rotor frame 8 and the stator frame 9 are omitted.
  • the radial direction is the direction indicated by R.
  • the abduction type rotary electric machine 100 is composed of a rotor 3 composed of a rotor core 1 and a permanent magnet 2, a stator core 4 and a coil 5 arranged with a predetermined gap on the inner diameter side of the rotor 3.
  • the stator 6 is provided.
  • the rotor 3 is rotatably arranged with the rotation axis 90 as the central axis. It is desirable that the coil 5 is attached to the stator core 4 by centralized winding. As a result, the length of the coil 5 to the end in the axial length direction is shortened, and the length of the abduction type rotary electric machine 100 in the axial length direction is shortened, so that the size can be reduced.
  • the portion (slot) in which the coil 5 of the stator core 4 is arranged is an open slot. This facilitates the insertion of the coil 5 and improves the assembleability. Further, it is desirable that the vicinity of the gap (tip of the tooth) of the stator core 4 has a curvature smaller than the radius. As a result, the rate of change in the magnetoresistance in the circumferential direction can be reduced, and torque ripple can be reduced.
  • FIG. 1B is a perspective view showing the middle of assembly in the comparative example.
  • FIG. 1C is a perspective view showing after assembly in the comparative example.
  • FIG. 1D is a diagram showing a perspective view of a stator frame 9, which is a component constituting the abduction type rotary electric machine 100 in the comparative example.
  • FIG. 1E is a diagram showing a perspective view seen from a direction opposite to that of FIG. 1D.
  • the stator frame 9 has an inner cylindrical portion 9a and an outer cylindrical portion 9b having different sizes, an inner disc portion 9c that closes one side end portion of the inner cylindrical portion 9a, and an end portion in a direction opposite to the inner disc portion 9c. It is composed of an outer disk portion 9d connecting the inner cylindrical portion 9a and the outer cylindrical portion 9b.
  • a step 9e is provided between the inner cylindrical portion 9a and the outer disc portion 9d so that the stator 6 can be positioned in the axial length direction.
  • the length of the outer cylindrical portion 9b in the axial length direction is longer than the length in the axial length direction of the rotor core 1, and the stator frame 9 covers the rotor core 1.
  • the rotor 3 and the stator 6 have a fully closed structure housed inside the rotor frame 8 and the stator frame 9. As a result, the rotor 3 and the stator 6 cannot be directly blown by air for air cooling.
  • FIG. 1F is a diagram showing the axial length direction of the abduction type rotary electric machine 100 as a comparative example. Further, FIG. 1G shows an enlarged view of part A of FIG. 1F.
  • the stator frame 9 has a structure that covers the rotor core 1 except for the gap 11a formed between the rotor frame 8 and the outer cylindrical portion 9b of the stator frame.
  • the rotor core 1 and the stator frame 9 have a thin air layer 10 shown by diagonal lines.
  • this air layer 10 it is difficult for air to circulate and the thermoelectric conductivity of air is small, which hinders heat dissipation by the heat dissipation path 12 shown by the arrow in FIG. 1F, and is a factor of deterioration of heat dissipation in the structure of the comparative example. It has become.
  • a narrow gap 11a is provided between the rotor frame 8 and the stator frame 9, and this width is controlled to prevent dust and water droplets from entering. Required to construct a closed structure.
  • FIG. 2A is a diagram showing the axial length direction of the abduction type rotary electric machine 100 of the first embodiment.
  • the diagram showing the radial direction of the central portion of the abduction type rotary electric machine 100 is as shown in FIG. 1A for any of Examples 1 to 7.
  • the stator 6 has a plurality of slots and a coil 5 wound around the slots.
  • the rotor 3 is held by the rotor frame 8 so as to be rotatable in the radial direction of the stator 6 through a predetermined gap with respect to the stator 6.
  • the stator frame 9 holds the stator 6 and covers the outer periphery of the end portion (end plate 14 side) of the rotor 3.
  • the stator frame 9 has a step 9e.
  • the step makes it possible to position the stator core 4 in the axial length direction.
  • a gap is formed between the stator frame 9 and the end portion of the stator core 4 in the axial length direction, and the coil end 13 which is the end portion of the coil is formed in the gap. Is placed.
  • the rotor core 1 is formed from a divided core divided so as to divide the central angle of the rotation axis 90 in FIG. 1A into a plurality of parts.
  • the split cores are fitted together and fixed.
  • an opening extending from the rotor frame 8 in the axial length direction and not covering the outer periphery of the rotor core 1 is formed. ..
  • Such an opening is formed by making the length of the outer cylindrical portion 9b of the stator frame 9 that covers the outer periphery of the rotor core 1 in the axial length direction shorter than the length in the axial length direction of the rotor core 1.
  • the axial length direction is the direction indicated by the arrow X.
  • This opening opens the rotor core 1 to the outside air, widens the surface that comes into contact with the outside air, and improves the cooling performance of the abduction type rotary electric machine 100.
  • the fully closed structure is a structure in which dust and water droplets that cause a failure do not enter inside the abduction type rotary electric machine 100 in which the permanent magnet 2 and the coil are present.
  • a gap 11b (first gap) having a width d1 is formed in the radial direction between the rotor core 1 constituting the rotor and the stator frame 9.
  • a gap 11c (second gap) having a width d2 is formed in the axial length direction between the end plate 14 and the stator frame 9.
  • the rotor core 1, the stator frame 9, and the end plate 14 are arranged so that d1> d2.
  • the end plate 14 is a cylindrical member fixed to the end portion (stator frame 9 side) of the rotor core 1 in the axial length direction.
  • the first gap and the second gap are connected to the opening.
  • the radial gap 11b between the rotor core 1 and the stator frame 9 cannot be a narrow gap with high accuracy. .. Further, in order to effectively utilize the loss of the electrical steel sheet at the time of punching, since the rotor core 1 is formed of the split core, it is also not possible to make a narrow gap with high accuracy. Considering the risk of contact between the rotor core 1 and the stator frame 9 when the motor rotates, the gap 11b must have a width with a margin in consideration of dimensional error.
  • the end plate 14 and the stator frame 9 can be processed with high dimensional accuracy by using cast iron as the material. Therefore, the width of the gap 11c in the axial length direction between the end plate 14 and the stator frame 9 can be a narrow gap with high accuracy.
  • the fully closed structure of the elevator motor is assumed to satisfy the protection class IP42 defined in JISC 4034-5, and the first digit symbol 4 is a protection structure against solid foreign matter exceeding 1 mm. It is desirable that the width of d2 is less than 1 mm.
  • the rotary electric machine of the elevator hoisting machine has been described, but the present embodiment is not limited to this, and can be applied to a large-diameter motor.
  • the width may be 1 mm or more. It is possible that dimensional errors in the axial length direction may occur by laminating electromagnetic steel sheets with tolerances in the axial length direction, but accuracy is achieved by sandwiching a shim between the end plate 14 and the rotor core 1. It is easy to adjust the width high.
  • the end plate 14 penetrates the rotor core 1 by bolts and is fixed and supported in the axial length direction with respect to the rotor frame 8 and the rotor core 1. Further, the end plate 14 may be fixed to the rotor core 1 in the axial length direction by fitting, adhesive or the like. Even in that case, it is possible to prevent the permanent magnet 2 from popping out and the split core of the rotor from partially popping out.
  • two cylindrical portions (inner cylindrical portion 9a and outer cylindrical portion 9b) having different outer diameters are circular on both sides in the axial length direction. It is configured to be connected to the plate portion (inner disc portion 9c and outer disc portion 9d). With such a configuration, the weight of the stator frame 9 can be reduced even in a rotary electric machine having a large diameter.
  • Patent Document 1 a gap structure is formed by a screwed cover member of another part that covers the rotor core from the outside and a stator frame.
  • a gap structure is formed by a screwed cover member of another part that covers the rotor core from the outside and a stator frame.
  • it is necessary to provide screw holes in the radial direction of the rotor core.
  • stress is applied during machining, which deteriorates the electrical steel sheet, which leads to deterioration of motor characteristics.
  • such processing is unnecessary, mass production is easy, and there is no problem of deterioration of motor characteristics.
  • the rotor of the electric motor for elevators has a large diameter, and the split core is used to effectively utilize the loss of the electrical steel sheet during punching, so the accuracy of the outer diameter of the rotor core is low. It becomes a factor. Therefore, when the gap structure between the rotor core and the stator frame as in Patent Document 1 is applied to a large-diameter motor, it is not sufficient to prevent dust and water droplets from entering.
  • the electromagnetic steel sheets used for the rotor are laminated in the axial length direction.
  • the cover member of Patent Document 1 is configured to be fixed to the rotor by a screw in the radial direction of the abduction type rotary electric machine. Therefore, a hole for fixing the cover member in the radial direction is formed in the rotor. In such a configuration, strain occurs in the rotor, and it is difficult to accurately adjust the width of the gap between the cover member fixed to the rotor and the plate or the fixed support.
  • the end plate 14 of this embodiment is fixed to the rotor core 1 in the axial length direction.
  • a bolt hole through which a fixing member such as a bolt is penetrated can be formed in advance when punching an electromagnetic steel sheet. Therefore, strain is unlikely to occur in the rotor core 1, and the width of the gap formed between the end plate 14 and the stator frame 9 can be adjusted accurately. Therefore, in this embodiment, the structure can be configured to prevent the ingress of dust and water droplets.
  • FIG. 3A is a diagram showing the axial length direction of the abduction type rotary electric machine 100 in the second embodiment.
  • FIG. 3B is an enlarged view of part C of FIG. 3A. The same contents as those of the first embodiment will be omitted.
  • the difference from the first embodiment is that the width of the radial gap 11b between the rotor core 1 and the stator frame 9 is d1, and the width of the radial gap 11d between the end plate 14 and the stator frame 9 is d3. At that time, d1> d3.
  • the width of the radial gap 11d between the end plate 14 and the stator frame 9 is set. It is possible to make a narrow gap with high accuracy.
  • the radial upper end of the end plate 14 is fixed at a protruding position so as to be closer to the stator frame 9 than the upper end of the rotor core 1. Although misalignment may occur when the end plate 14 is attached to the rotor core 1, it is easy to adjust the width with high accuracy by attaching the end plate 14 while adjusting the positional relationship with the stator frame 9.
  • Example 3 will be described with reference to FIG. 3B as in Example 2.
  • a gap 11b having a width d1 is formed in the radial direction between the rotor core 1 and the stator frame 9.
  • a gap 11c having a width d2 is formed between the end plate 14 and the stator frame 9 in the axial length direction.
  • a gap 11d having a width d3 is formed in the radial direction between the end plate 14 and the stator frame 9.
  • the structure is d1> d2 and d1> d3.
  • the same contents as those of the second embodiment will be omitted.
  • FIG. 4A is a diagram showing the axial length direction of the abduction type rotary electric machine 100 in the fourth embodiment.
  • FIG. 4B is an enlarged view of a portion D of FIG. 4A.
  • the same contents as those of the first embodiment will be omitted.
  • the difference from Examples 1 to 3 is that the recess 15 is provided on the radial outer side of the end plate 14.
  • the recesses 15 are provided all around the circumferential direction of the end plate, and dust and water droplets that have entered from the upper side of FIG. 4B fall into the recesses and then are discharged from the lower side of FIG. 4B, so that they are collected in the recesses 15. There is no.
  • the width of the radial gap 11b between the rotor core 1 and the stator frame 9 is d1, and the width of the axial gap 11c between the end plate 14 and the stator frame 9 is d2.
  • d1> d2 may be set.
  • the width of the radial gap 11b between the rotor core 1 and the stator frame 9 is d1
  • the width of the radial gap 11d between the end plate 14 and the stator frame 9 is d3.
  • d1> d3 may be set.
  • d1> d2 and d1> d3 may be used as in Example 3. The more places there are narrow gaps with high accuracy, the more difficult it is for dust and water droplets to enter.
  • FIG. 5A is a diagram showing the axial length direction of the abduction type rotary electric machine 100 in the fifth embodiment.
  • FIG. 5B is an enlarged view of part E of FIG. 5A. The same contents as those of the first embodiment will be omitted.
  • the difference from Examples 1 to 4 is that the outer diameter of the end plate 14 is smaller than the outer diameter of the rotor core 1, and the end plate 14 and the rotor core 1 form a staircase-shaped portion and are fixed.
  • the child frame 9 has a convex portion 16 at a position facing the staircase-shaped portion. Further, the width of the radial gap 11b between the rotor core 1 and the stator frame 9 is d1, and the width of the axial gap 11e between the rotor core 1 and the convex portion 16 of the stator frame 9 is d4. At that time, d1> d4.
  • the length of the rotor core 1 in the axial length direction although there is a dimensional error due to laminating electromagnetic steel sheets with tolerance, it is possible to adjust with higher accuracy than the radial dimension where an error due to punching occurs. .. Further, the surface of the end portion in the axial length direction is a flat surface without unevenness. From this, the width of the gap 11e in the axial length direction between the rotor core 1 and the convex portion 16 can be a narrow gap with higher accuracy than the gap 11b.
  • the width of the radial gap 11b between the rotor core 1 and the stator frame 9 is d1
  • the width of the axial gap 11c between the end plate 14 and the stator frame 9 is d2.
  • the width of the radial gap 11b between the rotor core 1 and the stator frame 9 is d1
  • the width of the radial gap 11d between the end plate 14 and the stator frame 9 is d3.
  • d1> d3 may be set.
  • d1> d2 and d1> d3 may be used as in Example 3.
  • the recess 15 may be provided on the radial outer side of the end plate 14.
  • FIG. 6A is a perspective view of the abduction type rotary electric machine 100 in the middle of assembling the sixth embodiment.
  • FIG. 6B is a perspective view of the abduction type rotary electric machine 100 after the assembly of the sixth embodiment.
  • the same contents as the comparative example will be omitted.
  • the difference from the comparative example is that a plurality of holes 17 are provided in the radial direction of the outer cylindrical portion 9b of the stator frame 9 extending in the axial length direction and covering the rotor core 1.
  • the hole 17 allows the rotor core 1 to come into contact with the outside air.
  • the hole 17 constitutes an opening that dissipates heat from the rotor core 1. Due to this opening, the cooling performance of the abduction type rotary electric machine 100 can be improved.
  • any of the structures described in Examples 1 to 5 may be used.
  • FIG. 7A is a perspective view of the abduction type rotary electric machine 100 during the assembly of the seventh embodiment.
  • FIG. 7B is a perspective view of the abduction type rotary electric machine 100 after the assembly of the seventh embodiment. The same contents as those of the first embodiment will be omitted.
  • the rotor frame 8 has a plurality of ribs 18 extending in the axial length direction, and the ribs 18 are arranged on the outer peripheral surface of the rotor core 1. Further, the end plate 14 and the rotor frame 8 are connected to each other via the rib 18.
  • the rib 18 can be machined with high dimensional accuracy by using cast iron as the material. As a result, as compared with Examples 1 to 5, it is not affected by the dimensional error in the axial length direction that occurs when the electromagnetic steel sheets having tolerances are laminated. Therefore, the width of the gap 11c in the axial length direction between the end plate 14 and the stator frame 9 can be more easily made into a narrow gap with high accuracy.
  • the width of the radial gap 11b between the rotor core 1 and the stator frame 9 is d1, and the shaft between the end plate 14 and the stator frame 9 is the same as in the first embodiment.
  • the width of the gap 11c in the long direction is d2, d1> d2.
  • d1> d2 and d1> d3 may be used as in Example 3.
  • the recess 15 may be provided on the radial outer side of the end plate 14 as in the fourth embodiment, or the outer peripheral surface of the stator frame 9 may have a plurality of holes 17 as in the sixth embodiment. ..
  • FIG. 8A is a perspective view of the abduction type rotary electric machine 100 during the assembly of the eighth embodiment.
  • FIG. 8B is a perspective view of the abduction type rotary electric machine 100 after the assembly of the eighth embodiment.
  • FIG. 8C is a diagram showing a radial direction R in the central portion of the abduction type rotary electric machine 100 of the eighth embodiment.
  • the rotor frame 8 and the stator frame 9 are omitted.
  • Example 2 The same content as in Example 1 will be omitted.
  • the rotor core 1 has a recess 19 on the outer peripheral surface.
  • the recess 19 can improve the cooling performance.
  • any of the structures described in Examples 1 to 5 may be used.
  • a plurality of holes 17 may be provided on the outer peripheral surface of the stator frame 9, and as in the seventh embodiment, a plurality of rotor frames 8 extending in the axial length direction. Ribs 18 may be provided.
  • an electromagnetic steel sheet containing iron as a main component can be considered, and the rotor core 1 and the stator core 1 and the stator core 1 are fixed by laminating the core shape punched out from the electromagnetic steel sheet.
  • the child core 4 can be configured.
  • the rotor core 1 and the stator core 4 are considered to be split cores that can be punched without waste when punching from the electrical steel sheet from the viewpoint of cost reduction, but an integrated core may also be used. .. There is a concern that the efficiency of the split core may decrease due to magnetic flux leakage due to the gap in the split portion.
  • the end plate 14 may be made of one part or may be divided into a plurality of parts. However, when dividing into multiple parts, it is necessary to prevent the accuracy of the gap from becoming low due to misalignment during assembly.
  • the coil winding method can be applied to the above-mentioned embodiment regardless of whether it is a centralized winding or a distributed winding.
  • the rotor can be applied to the above-described embodiment even if it is a surface magnet type formed by attaching a permanent magnet to the surface of the rotor core.
  • the rotor core has a plurality of magnet insertion holes and is an embedded magnet type rotor formed by inserting a magnet into the magnet insertion holes, it can be applied to the above-described embodiment.
  • an induction motor that does not use a permanent magnet, a synchronous reluctance motor, and a switched reluctance motor can also be applied to the above-described embodiment.

Abstract

This outer rotor-type rotating electric machine has a stator having a plurality of slots and coils wound around the slots, a rotor rotatably held in the radial direction of the stator with a predetermined gap interposed between the rotor and the stator, a stator frame for holding the stator, a rotor frame for holding the rotor, and an end plate fixed to an end of the rotor in the axial length direction, wherein: an opening portion is formed between the rotor frame and the stator frame; and a gap connected to the opening portion is formed between the stator frame and the end plate.

Description

外転型回転電機Abduction type rotary electric machine
 本発明は、回転電機に係り、特に外転型回転電機に関する。 The present invention relates to a rotary electric machine, and particularly to an abduction type rotary electric machine.
 回転電機の高トルク密度化の手段の一つとして、外転型回転電機がある。外転型回転電機は、回転子が、固定子の外周側に配置されており、回転子-固定子間の間隙(ギャップ)の半径を大きくできる。また、外転型回転電機は、回転子が外側にあるため1極分の周長が長くなり大きな磁石を配置できるという特徴があり、内転型回転電機に対し、高トルク密度化が可能となる。 There is an abduction type rotary electric machine as one of the means for increasing the torque density of the rotary electric machine. In the abduction type rotary electric machine, the rotor is arranged on the outer peripheral side of the stator, and the radius of the gap between the rotor and the stator can be increased. In addition, the abduction type rotary electric machine has a feature that the circumference of one pole is long because the rotor is on the outside and a large magnet can be placed, which makes it possible to increase the torque density compared to the adduction type rotary electric machine. Become.
 外転型回転電機として特許文献1が知られている。特許文献1に記載されたマルチコプター用の小径モータは、回転子はカップ形状の回転子コアとその内側に張り付けられた磁石で構成される。また、特許文献1には、カバー部材とプレートや固定支持体との間で隙間構造を形成し、防水防塵性能に優れることが記載されている。 Patent Document 1 is known as an abduction type rotary electric machine. In the small-diameter motor for a multicopter described in Patent Document 1, the rotor is composed of a cup-shaped rotor core and a magnet attached to the inside thereof. Further, Patent Document 1 describes that a gap structure is formed between a cover member and a plate or a fixed support, and the cover member is excellent in waterproof and dustproof performance.
特開2018-129893号公報JP-A-2018-129893
 大径のモータの一例として、エレベータ用の大径モータがある。エレベータ用の大径モータでは、電磁鋼板からコア形状を打ち抜いたものを軸長方向に積層した構成としている。これにより鉄損を低下させ、モータの大出力・高効率化を図っている。この構成では、電磁鋼板を打ち抜いた際の誤差や、電磁鋼板を積層させた際の外周方向のズレにより、回転子コア外周面に凹凸が生じることがあり、回転子コアの外径の大きさの精度は低い。 As an example of a large diameter motor, there is a large diameter motor for elevators. Large-diameter motors for elevators have a structure in which core shapes are punched out from electrical steel sheets and laminated in the axial length direction. As a result, iron loss is reduced, and the motor is designed to have high output and high efficiency. In this configuration, unevenness may occur on the outer peripheral surface of the rotor core due to an error when punching the electromagnetic steel sheet or a deviation in the outer peripheral direction when the electromagnetic steel sheets are laminated, and the size of the outer diameter of the rotor core is large. The accuracy of is low.
 特許文献1の隙間構造を、エレベータ用の大径モータなどに適用すると、回転子コアの外径の大きさの精度が低いことから、公差を考慮した大きな幅の隙間とする必要が有り、十分に塵埃や水滴の入り込みを防止できない。また、特許文献1ではカバー部材を回転子に対して径方向に固定した構成である。そのような構成では軸長方向に積層した回転子にひずみが生じ、カバー部材とプレートや固定支持体との間の隙間の幅を精度よく調整することは困難である。 When the gap structure of Patent Document 1 is applied to a large-diameter motor for an elevator or the like, the accuracy of the outer diameter of the rotor core is low, so it is necessary to make the gap a large width in consideration of tolerances, which is sufficient. It is not possible to prevent the ingress of dust and water droplets. Further, in Patent Document 1, the cover member is fixed in the radial direction with respect to the rotor. In such a configuration, strain occurs in the rotors stacked in the axial length direction, and it is difficult to accurately adjust the width of the gap between the cover member and the plate or the fixed support.
 エレベータ用の大径モータでは、建築レイアウトの自由度向上の観点から、専用の機械室を無くして、昇降路内に設置することが望ましい。昇降路内は、その構造上、気密性は無く、ほこりや塵が入り込んでいる。ほこりや塵が、モータの摺動面等に入り込むことは、故障の原因となる。そのため、信頼性の向上と保守負担軽減の観点から、昇降路内に設置されるエレベータ用のモータは、塵埃や水滴が入り込まない構成が求められる。 For large-diameter motors for elevators, it is desirable to eliminate the dedicated machine room and install it in the hoistway from the viewpoint of improving the degree of freedom in building layout. Due to its structure, the hoistway is not airtight and dust and dirt have entered. Dust or dust entering the sliding surface of the motor or the like causes a failure. Therefore, from the viewpoint of improving reliability and reducing the maintenance burden, the elevator motor installed in the hoistway is required to have a configuration in which dust and water droplets do not enter.
 そこで、塵埃や水滴が入り込まないようにするために、回転子の外周側を固定子フレームで覆う必要がある。しかし、固定子フレームで軸長方向に回転子を覆うと、磁石やコイル及びコアで発生する熱が放熱しづらく、回転電機の機内温度が高くなる。これにより磁石温度やコイル温度が上昇し、回転電機の効率の低下を招く。そのため、回転電機内の温度を低下させるために高い冷却性能も求められる。 Therefore, it is necessary to cover the outer peripheral side of the rotor with a stator frame to prevent dust and water droplets from entering. However, if the rotor is covered with the stator frame in the axial length direction, the heat generated by the magnet, the coil, and the core is difficult to dissipate, and the temperature inside the rotating electric machine becomes high. As a result, the magnet temperature and the coil temperature rise, leading to a decrease in the efficiency of the rotary electric machine. Therefore, high cooling performance is also required in order to lower the temperature inside the rotary electric machine.
 本発明の目的は、塵埃や水滴の入り込みを防ぎ、冷却性能を向上した外転型回転電機を提供することにある。 An object of the present invention is to provide an abduction type rotary electric machine which prevents dust and water droplets from entering and has improved cooling performance.
 本発明の好ましい一例としては、複数のスロットと前記スロットに巻き回されたコイルとを有する固定子と、前記固定子に対して所定のギャップを介して、前記固定子の径方向に、回転可能に保持された回転子と、前記固定子を保持する固定子フレームと、前記回転子を保持する回転子フレームと、前記回転子の端部に軸長方向に固定された端板とを有し、前記回転子フレームと前記固定子フレームの間に開口部が形成され、前記固定子フレームと前記端板の間には、前記開口部と繋がる隙間が形成される外転型回転電機である。 As a preferred example of the present invention, a stator having a plurality of slots and a coil wound around the slots, and a stator that can rotate in the radial direction of the stator through a predetermined gap with respect to the stator. It has a rotor held in, a stator frame holding the stator, a rotor frame holding the rotor, and an end plate fixed to the end of the rotor in the axial length direction. This is an abduction type rotary electric machine in which an opening is formed between the rotor frame and the stator frame, and a gap connected to the opening is formed between the stator frame and the end plate.
 本発明によれば、塵埃や水滴の入り込みを防ぎ、冷却性能を向上した外転型回転電機を実現できる。 According to the present invention, it is possible to realize an abduction type rotary electric machine that prevents dust and water droplets from entering and has improved cooling performance.
外転型回転電機の中心部の径方向を示す図である。It is a figure which shows the radial direction of the central part of the abduction type rotary electric machine. 比較例における組立て途中を示す斜視図である。It is a perspective view which shows the assembly process in the comparative example. 比較例における組立て後を示す斜視図である。It is a perspective view which shows after assembling in the comparative example. 比較例における固定子フレームの斜視図を示す図である。It is a figure which shows the perspective view of the stator frame in the comparative example. 図1Dとは反対方向から見た斜視図を示す図である。It is a figure which shows the perspective view seen from the direction opposite to FIG. 1D. 比較例における軸長方向を示す図である。It is a figure which shows the axial length direction in the comparative example. 図1FのA部の拡大図を示す図である。It is a figure which shows the enlarged view of the part A of FIG. 1F. 実施例1の外転型回転電機の軸長方向を示す図である。It is a figure which shows the axial length direction of the abduction type rotary electric machine of Example 1. FIG. 図2AのB部の拡大図である。It is an enlarged view of the B part of FIG. 2A. 実施例2における外転型回転電機の軸長方向を示す図である。It is a figure which shows the axial length direction of the abduction type rotary electric machine in Example 2. FIG. 図3AのC部の拡大図である。It is an enlarged view of the part C of FIG. 3A. 実施例4における外転型回転電機の軸長方向を示す図である。It is a figure which shows the axial length direction of the abduction type rotary electric machine in Example 4. FIG. 図4AのD部の拡大図である。It is an enlarged view of the D part of FIG. 4A. 実施例5における外転型回転電機の軸長方向を示す図である。It is a figure which shows the axial length direction of the abduction type rotary electric machine in Example 5. 図5AのE部の拡大図である。It is an enlarged view of the E part of FIG. 5A. 実施例6の組立て途中における外転型回転電機の斜視図である。It is a perspective view of the abduction type rotary electric machine in the middle of assembling of Example 6. 実施例6の組立て後における外転型回転電機の斜視図である。It is a perspective view of the abduction type rotary electric machine after the assembly of Example 6. 実施例7の組立て途中における外転型回転電機の斜視図ある。FIG. 5 is a perspective view of an abduction type rotary electric machine during assembly of the seventh embodiment. 実施例7の組立て後における外転型回転電機の斜視図である。It is a perspective view of the abduction type rotary electric machine after the assembly of Example 7. FIG. 実施例8の組立て途中における外転型回転電機の斜視図である。It is a perspective view of the abduction type rotary electric machine in the middle of assembling of Example 8. 実施例8の組立て後における外転型回転電機の斜視図である。It is a perspective view of the abduction type rotary electric machine after the assembly of Example 8. FIG. 実施例8の外転型回転電機の中心部における径方向を示す図である。It is a figure which shows the radial direction in the central part of the abduction type rotary electric machine of Example 8.
 発明者は、エレベータ用外転型回転機の性能向上の検討をする過程で、下記の比較例から検討をはじめて、種々の課題を見出し、解決していった。本発明の実施例を説明するに先立ち、まずは比較例について説明する。 In the process of examining the performance improvement of the abduction type rotary machine for elevators, the inventor found and solved various problems by starting the examination from the following comparative example. Prior to explaining the embodiments of the present invention, first, a comparative example will be described.
 図1Aは、外転型回転電機100の中心部の径方向を示す図である。図1Aでは、回転子フレーム8及び固定子フレーム9は省略して表示している。径方向はRで示す方向である。 FIG. 1A is a diagram showing the radial direction of the central portion of the abduction type rotary electric machine 100. In FIG. 1A, the rotor frame 8 and the stator frame 9 are omitted. The radial direction is the direction indicated by R.
 外転型回転電機100は、回転子コア1と永久磁石2により構成された回転子3と、回転子3の内径側に所定の間隙を設けて配置され固定子コア4とコイル5により構成された固定子6を備える。 The abduction type rotary electric machine 100 is composed of a rotor 3 composed of a rotor core 1 and a permanent magnet 2, a stator core 4 and a coil 5 arranged with a predetermined gap on the inner diameter side of the rotor 3. The stator 6 is provided.
 回転子3は、回転軸90を中心軸として回転可能に配置されている。コイル5は、集中巻により固定子コア4に取り付けられることが望ましい。これにより、コイル5の軸長方向端部までの長さが短くなり、外転型回転電機100の軸長方向の長さが短くなり、小型化できる。 The rotor 3 is rotatably arranged with the rotation axis 90 as the central axis. It is desirable that the coil 5 is attached to the stator core 4 by centralized winding. As a result, the length of the coil 5 to the end in the axial length direction is shortened, and the length of the abduction type rotary electric machine 100 in the axial length direction is shortened, so that the size can be reduced.
 さらに、固定子コア4のコイル5が配置される部分(スロット)はオープンスロットとすることが望ましい。これにより、コイル5の挿入が容易となり、組み立て性が向上する。さらに、固定子コア4の間隙付近(ティース先端)は半径より小さな曲率を持たせることが望ましい。これにより、周方向の磁気抵抗の変化率が低減でき、トルクリプルが低減できる。 Further, it is desirable that the portion (slot) in which the coil 5 of the stator core 4 is arranged is an open slot. This facilitates the insertion of the coil 5 and improves the assembleability. Further, it is desirable that the vicinity of the gap (tip of the tooth) of the stator core 4 has a curvature smaller than the radius. As a result, the rate of change in the magnetoresistance in the circumferential direction can be reduced, and torque ripple can be reduced.
 図1Bは、比較例における組立て途中を示す斜視図である。図1Cは、比較例における組立て後を示す斜視図である。 FIG. 1B is a perspective view showing the middle of assembly in the comparative example. FIG. 1C is a perspective view showing after assembly in the comparative example.
 図1Dは、比較例における外転型回転電機100を構成する部品である固定子フレーム9の斜視図を示す図である。 FIG. 1D is a diagram showing a perspective view of a stator frame 9, which is a component constituting the abduction type rotary electric machine 100 in the comparative example.
 図1Eは、図1Dとは反対方向から見た斜視図を示す図である。 FIG. 1E is a diagram showing a perspective view seen from a direction opposite to that of FIG. 1D.
 固定子フレーム9は、大きさが異なる内側円筒部9a及び外側円筒部9bと、内側円筒部9aの片側端部を塞ぐ内側円板部9cと、内側円板部9cとは反対方向の端部で、内側円筒部9a及び外側円筒部9bをつなぐ、外側円板部9dとで構成されている。 The stator frame 9 has an inner cylindrical portion 9a and an outer cylindrical portion 9b having different sizes, an inner disc portion 9c that closes one side end portion of the inner cylindrical portion 9a, and an end portion in a direction opposite to the inner disc portion 9c. It is composed of an outer disk portion 9d connecting the inner cylindrical portion 9a and the outer cylindrical portion 9b.
 また、内側円筒部9aと外側円板部9dの間には段差9eを有し、固定子6の軸長方向の位置決めができるようになっている。外側円筒部9bの軸長方向長さは回転子コア1の軸長方向長さよりも長く、固定子フレーム9が回転子コア1を覆う構造となっている。図1Cに示すように、回転子3及び固定子6は、回転子フレーム8及び固定子フレーム9の内部に収められた全閉型構造となる。これによって、回転子3及び固定子6に風を直接当てて空冷することができない。 Further, a step 9e is provided between the inner cylindrical portion 9a and the outer disc portion 9d so that the stator 6 can be positioned in the axial length direction. The length of the outer cylindrical portion 9b in the axial length direction is longer than the length in the axial length direction of the rotor core 1, and the stator frame 9 covers the rotor core 1. As shown in FIG. 1C, the rotor 3 and the stator 6 have a fully closed structure housed inside the rotor frame 8 and the stator frame 9. As a result, the rotor 3 and the stator 6 cannot be directly blown by air for air cooling.
 図1Fは、比較例である外転型回転電機100の軸長方向を示す図である。また、図1Gは、図1FのA部の拡大図を示す。 FIG. 1F is a diagram showing the axial length direction of the abduction type rotary electric machine 100 as a comparative example. Further, FIG. 1G shows an enlarged view of part A of FIG. 1F.
 図1Gに示すように、回転子フレーム8と固定子フレームの外側円筒部9bとの間に形成される隙間11a以外は、固定子フレーム9が回転子コア1を覆う構造となっている。そのような構成により、回転子コア1と固定子フレーム9には斜線で示す薄い空気層10が存在する。この空気層10において、空気が循環しづらいことと、空気の熱電伝導率が小さいことが、図1Fに矢印で示す放熱経路12による放熱を阻害し、比較例の構造における放熱性悪化の要因となっている。 As shown in FIG. 1G, the stator frame 9 has a structure that covers the rotor core 1 except for the gap 11a formed between the rotor frame 8 and the outer cylindrical portion 9b of the stator frame. With such a configuration, the rotor core 1 and the stator frame 9 have a thin air layer 10 shown by diagonal lines. In this air layer 10, it is difficult for air to circulate and the thermoelectric conductivity of air is small, which hinders heat dissipation by the heat dissipation path 12 shown by the arrow in FIG. 1F, and is a factor of deterioration of heat dissipation in the structure of the comparative example. It has become.
 固定子フレーム9が回転子コア1を覆う構造は、回転子フレーム8と固定子フレーム9の間に細い隙間11aを設けて、この幅を管理することで、塵埃や水滴の入り込みを防止する全閉型構造を構成するために必要である。 In the structure in which the stator frame 9 covers the rotor core 1, a narrow gap 11a is provided between the rotor frame 8 and the stator frame 9, and this width is controlled to prevent dust and water droplets from entering. Required to construct a closed structure.
 図2Aは、実施例1の外転型回転電機100の軸長方向を示す図である。外転型回転電機100の中心部の径方向を示す図は、実施例1~7のいずれについても図1Aに示すとおりである。 FIG. 2A is a diagram showing the axial length direction of the abduction type rotary electric machine 100 of the first embodiment. The diagram showing the radial direction of the central portion of the abduction type rotary electric machine 100 is as shown in FIG. 1A for any of Examples 1 to 7.
 実施例1の外転型回転電機100は、図1Aおよび図1Bに示すように、固定子6は、複数のスロットと、スロットに巻き回されたコイル5とを有する。回転子3は、固定子6に対して所定のギャップを介して、固定子6の径方向に回転可能に、回転子フレーム8に保持される。固定子フレーム9は、固定子6を保持し、回転子3の端部(端板14側)の外周を覆っている。 In the abduction type rotary electric machine 100 of the first embodiment, as shown in FIGS. 1A and 1B, the stator 6 has a plurality of slots and a coil 5 wound around the slots. The rotor 3 is held by the rotor frame 8 so as to be rotatable in the radial direction of the stator 6 through a predetermined gap with respect to the stator 6. The stator frame 9 holds the stator 6 and covers the outer periphery of the end portion (end plate 14 side) of the rotor 3.
 また、図1Dに示したように、固定子フレーム9は、段差9eを有する。その段差により、固定子コア4の軸長方向の位置決めができるようになっている。その位置決めにより、図2Aに示すように、固定子フレーム9と固定子コア4の軸長方向の端部との間に、空隙が形成され、その空隙に、コイルの端部であるコイルエンド13が配置される。 Further, as shown in FIG. 1D, the stator frame 9 has a step 9e. The step makes it possible to position the stator core 4 in the axial length direction. As a result of the positioning, as shown in FIG. 2A, a gap is formed between the stator frame 9 and the end portion of the stator core 4 in the axial length direction, and the coil end 13 which is the end portion of the coil is formed in the gap. Is placed.
 回転子コア1は、図1Aにおける回転軸90における中心角を複数に分けるように分割された分割コアから形成される。分割コアは、互いに嵌め合いで固定される。 The rotor core 1 is formed from a divided core divided so as to divide the central angle of the rotation axis 90 in FIG. 1A into a plurality of parts. The split cores are fitted together and fixed.
 図1Fに示す比較例の構造と異なり実施例1では、回転子フレーム8から固定子フレーム9の間の軸長方向に延びた、回転子コア1の外周を覆わない開口部が形成されている。このような開口部は、回転子コア1の外周を覆う固定子フレーム9の外側円筒部9bの軸長方向の長さを、回転子コア1の軸長方向長さよりも短くすることで形成される。ここで、軸長方向はXの矢印で示す方向である。 Unlike the structure of the comparative example shown in FIG. 1F, in the first embodiment, an opening extending from the rotor frame 8 in the axial length direction and not covering the outer periphery of the rotor core 1 is formed. .. Such an opening is formed by making the length of the outer cylindrical portion 9b of the stator frame 9 that covers the outer periphery of the rotor core 1 in the axial length direction shorter than the length in the axial length direction of the rotor core 1. NS. Here, the axial length direction is the direction indicated by the arrow X.
 この開口部により、回転子コア1が外気に開放され、外気に触れる表面が広くなり、外転型回転電機100の冷却性能が向上する。 This opening opens the rotor core 1 to the outside air, widens the surface that comes into contact with the outside air, and improves the cooling performance of the abduction type rotary electric machine 100.
 ただ、この構造としたときに、比較例のように、回転子フレーム8と固定子フレーム9の間に細い隙間11aを設けて、この幅を管理することで、塵埃や水滴の入り込みを防止する全閉型構造を構成することができない。全閉型構造とは、永久磁石2やコイルが存在する外転型回転電機100の内側に故障の原因となる塵埃や水滴が入らないようにした構造である。 However, when this structure is adopted, as in the comparative example, a narrow gap 11a is provided between the rotor frame 8 and the stator frame 9 to control this width, thereby preventing dust and water droplets from entering. It is not possible to construct a fully closed structure. The fully closed structure is a structure in which dust and water droplets that cause a failure do not enter inside the abduction type rotary electric machine 100 in which the permanent magnet 2 and the coil are present.
 全閉型構造の構成を、図2Bに示す図2AのB部の拡大図で説明する。比較例との違いは、次のとおりである。つまり、回転子を構成する回転子コア1と固定子フレーム9の間の径方向には幅d1の隙間11b(第1の隙間)が形成される。端板14と固定子フレーム9の間の軸長方向には幅d2の隙間11c(第2の隙間)が形成される。そしてd1>d2となるように回転子コア1、固定子フレーム9、端板14が配置されている。ここで、端板14は、軸長方向に回転子コア1の端部(固定子フレーム9側)に固定される円筒形状の部材である。そして第1の隙間および第2の隙間は、開口部と繋がっている。 The configuration of the fully closed structure will be described with reference to the enlarged view of the part B of FIG. 2A shown in FIG. 2B. The differences from the comparative example are as follows. That is, a gap 11b (first gap) having a width d1 is formed in the radial direction between the rotor core 1 constituting the rotor and the stator frame 9. A gap 11c (second gap) having a width d2 is formed in the axial length direction between the end plate 14 and the stator frame 9. The rotor core 1, the stator frame 9, and the end plate 14 are arranged so that d1> d2. Here, the end plate 14 is a cylindrical member fixed to the end portion (stator frame 9 side) of the rotor core 1 in the axial length direction. The first gap and the second gap are connected to the opening.
 回転子コア1は外周面に凹凸が生じやすいこと、大径であることから、回転子コア1と固定子フレーム9の間の径方向の隙間11bは、精度の高い細い隙間とすることができない。また、打ち抜き時に電磁鋼板のロスを少なく有効利用するために、回転子コア1は分割コアで形成されることからも同様に、精度の高い細い隙間とすることができない。
電動機が回転した際に、回転子コア1と固定子フレーム9が接触するリスクを考慮して、隙間11bは寸法誤差を考慮した余裕のある幅としなければならない。
Since the rotor core 1 tends to have irregularities on the outer peripheral surface and has a large diameter, the radial gap 11b between the rotor core 1 and the stator frame 9 cannot be a narrow gap with high accuracy. .. Further, in order to effectively utilize the loss of the electrical steel sheet at the time of punching, since the rotor core 1 is formed of the split core, it is also not possible to make a narrow gap with high accuracy.
Considering the risk of contact between the rotor core 1 and the stator frame 9 when the motor rotates, the gap 11b must have a width with a margin in consideration of dimensional error.
 一方で、端板14と固定子フレーム9は、材料として鋳鉄を用いることで、寸法の精度を高く加工することができる。このため、端板14と固定子フレーム9の間の軸長方向の隙間11cの幅は、精度の高い細い隙間とすることができる。ここで、エレベータ用電動機の全閉型構造とは、JISC 4034-5に定められる保護等級IP42を満たすことを想定しており、第1数字記号4は1mm超過の固形異物に対しての保護構造であり、d2の幅は1mm未満であることが望ましい。 On the other hand, the end plate 14 and the stator frame 9 can be processed with high dimensional accuracy by using cast iron as the material. Therefore, the width of the gap 11c in the axial length direction between the end plate 14 and the stator frame 9 can be a narrow gap with high accuracy. Here, the fully closed structure of the elevator motor is assumed to satisfy the protection class IP42 defined in JISC 4034-5, and the first digit symbol 4 is a protection structure against solid foreign matter exceeding 1 mm. It is desirable that the width of d2 is less than 1 mm.
 前述の実施例ではエレベータ用巻上機の回転電機について説明したが、それに限ることなく、本実施例は大径のモータに適用できる。 In the above-mentioned embodiment, the rotary electric machine of the elevator hoisting machine has been described, but the present embodiment is not limited to this, and can be applied to a large-diameter motor.
 ただし、粉塵が発生しづらい環境下などでは1mm以上の幅とすることも考えられる。公差のある電磁鋼板を、軸長方向に積層することにより、軸長方向の寸法誤差が発生する可能性も考えられるが、端板14と回転子コア1の間にシムを挟むことなどで精度高く幅を調整することは容易である。 However, in an environment where dust is unlikely to be generated, the width may be 1 mm or more. It is possible that dimensional errors in the axial length direction may occur by laminating electromagnetic steel sheets with tolerances in the axial length direction, but accuracy is achieved by sandwiching a shim between the end plate 14 and the rotor core 1. It is easy to adjust the width high.
 端板14は、ボルトにより、回転子コア1を貫通して、回転子フレーム8および回転子コア1に対して、軸長方向に固定されて支えられる。また、嵌め合い、接着剤などで端板14を回転子コア1に対して、軸長方向に固定してもよい。その場合でも、永久磁石2が飛び出したり、回転子の分割コアが部分的に飛び出したりするのを防げる。 The end plate 14 penetrates the rotor core 1 by bolts and is fixed and supported in the axial length direction with respect to the rotor frame 8 and the rotor core 1. Further, the end plate 14 may be fixed to the rotor core 1 in the axial length direction by fitting, adhesive or the like. Even in that case, it is possible to prevent the permanent magnet 2 from popping out and the split core of the rotor from partially popping out.
 本実施例では、図1Dや図1Eに示すように、固定子フレーム9については、外径の異なる2つの円筒部(内側円筒部9a及び外側円筒部9b)が、軸長方向の両側において円板部(内側円板部9cと外側円板部9d)と繋がる構成である。このような構成により、大径の回転電機においても、固定子フレーム9の軽量化を実現できる。 In this embodiment, as shown in FIGS. 1D and 1E, for the stator frame 9, two cylindrical portions (inner cylindrical portion 9a and outer cylindrical portion 9b) having different outer diameters are circular on both sides in the axial length direction. It is configured to be connected to the plate portion (inner disc portion 9c and outer disc portion 9d). With such a configuration, the weight of the stator frame 9 can be reduced even in a rotary electric machine having a large diameter.
 また、特許文献1では、回転子コアを外側から覆う別パーツのねじ止めしたカバー部材と固定子フレームで隙間構造を形成している。そのような構成では、回転子コアの径方向にねじ穴を設ける必要が有る。さらに加工時に応力がかかることにより電磁鋼板が劣化して、モータ特性の悪化につながる。本実施例では、そのような加工は不要であり、量産が容易であるとともにモータ特性の悪化の問題はない。 Further, in Patent Document 1, a gap structure is formed by a screwed cover member of another part that covers the rotor core from the outside and a stator frame. In such a configuration, it is necessary to provide screw holes in the radial direction of the rotor core. Further, stress is applied during machining, which deteriorates the electrical steel sheet, which leads to deterioration of motor characteristics. In this embodiment, such processing is unnecessary, mass production is easy, and there is no problem of deterioration of motor characteristics.
 エレベータ用の電動機の回転子は大径であることや、打ち抜き時に電磁鋼板のロスを少なく有効利用するために、分割コアとしていることも、回転子コア部の外径の大きさの精度が低い要因となる。そのため、特許文献1のような回転子コアと固定子フレームとの隙間構造を、大径のモータに適用すると、塵埃や水滴の入り込みの防止が十分ではない。 The rotor of the electric motor for elevators has a large diameter, and the split core is used to effectively utilize the loss of the electrical steel sheet during punching, so the accuracy of the outer diameter of the rotor core is low. It becomes a factor. Therefore, when the gap structure between the rotor core and the stator frame as in Patent Document 1 is applied to a large-diameter motor, it is not sufficient to prevent dust and water droplets from entering.
 また、エレベータ用の大径モータでは、回転子に用いる電磁鋼板は、軸長方向に積層される。特許文献1のカバー部材は、外転型回転電機の径方向に、ねじにより回転子に固定される構成である。そのため、回転子にカバー部材を径方向に固定する穴を加工することになる。そのような構成では、回転子にはひずみが生じ、回転子に固定されるカバー部材とプレートや固定支持体との間の隙間の幅を精度よく調整することは困難である。 Further, in a large-diameter motor for an elevator, the electromagnetic steel sheets used for the rotor are laminated in the axial length direction. The cover member of Patent Document 1 is configured to be fixed to the rotor by a screw in the radial direction of the abduction type rotary electric machine. Therefore, a hole for fixing the cover member in the radial direction is formed in the rotor. In such a configuration, strain occurs in the rotor, and it is difficult to accurately adjust the width of the gap between the cover member fixed to the rotor and the plate or the fixed support.
 本実施例の端板14は、軸長方向に回転子コア1と固定される。そのような構成では、ボルトなどの固定部材を貫通させるボルト穴は電磁鋼板を打ち抜く際に予め形成できる。そのため、回転子コア1にはひずみが生じにくく、端板14と固定子フレーム9の間に形成される隙間の幅を精度よく調整できる。よって、本実施例では塵埃や水滴の入り込みを防止できる構造とすることができる。 The end plate 14 of this embodiment is fixed to the rotor core 1 in the axial length direction. In such a configuration, a bolt hole through which a fixing member such as a bolt is penetrated can be formed in advance when punching an electromagnetic steel sheet. Therefore, strain is unlikely to occur in the rotor core 1, and the width of the gap formed between the end plate 14 and the stator frame 9 can be adjusted accurately. Therefore, in this embodiment, the structure can be configured to prevent the ingress of dust and water droplets.
 図3Aは、実施例2における外転型回転電機100の軸長方向を示す図である。図3Bは、図3AのC部の拡大図である。実施例1と同じ内容については説明を省略する。 FIG. 3A is a diagram showing the axial length direction of the abduction type rotary electric machine 100 in the second embodiment. FIG. 3B is an enlarged view of part C of FIG. 3A. The same contents as those of the first embodiment will be omitted.
 実施例1と異なる点は、回転子コア1と固定子フレーム9の径方向の隙間11bの幅をd1、端板14と固定子フレーム9の間の径方向の隙間11dの幅をd3としたとき、d1>d3となっていることである。 The difference from the first embodiment is that the width of the radial gap 11b between the rotor core 1 and the stator frame 9 is d1, and the width of the radial gap 11d between the end plate 14 and the stator frame 9 is d3. At that time, d1> d3.
 端板14と固定子フレーム9は、材料として鋳鉄を用いることで、寸法の精度を高く加工することができるため、端板14と固定子フレーム9の間の径方向の隙間11dの幅は、精度の高い細い隙間とすることができる。端板14の径方向の上端は、回転子コア1の上端に比べて固定子フレーム9に近くなるように突き出た位置に固定される。端板14を回転子コア1に取り付ける際にズレが発生する可能性があるが、固定子フレーム9との位置関係を調整しながら取り付けることで、精度高く幅を調整することは容易である。 Since the end plate 14 and the stator frame 9 can be machined with high dimensional accuracy by using cast iron as the material, the width of the radial gap 11d between the end plate 14 and the stator frame 9 is set. It is possible to make a narrow gap with high accuracy. The radial upper end of the end plate 14 is fixed at a protruding position so as to be closer to the stator frame 9 than the upper end of the rotor core 1. Although misalignment may occur when the end plate 14 is attached to the rotor core 1, it is easy to adjust the width with high accuracy by attaching the end plate 14 while adjusting the positional relationship with the stator frame 9.
 実施例3は、実施例2と同じく図3Bに基づいて説明する。回転子コア1と固定子フレーム9の間の径方向に幅d1の隙間11bが形成される。端板14と固定子フレーム9の間の軸長方向に幅をd2の隙間11cが形成される。端板14と固定子フレーム9の間の径方向に幅d3の隙間11dが形成される。この場合に、d1>d2かつ、d1>d3となっている構造である。実施例3の説明では、実施例2と同じ内容については説明を省略する。 Example 3 will be described with reference to FIG. 3B as in Example 2. A gap 11b having a width d1 is formed in the radial direction between the rotor core 1 and the stator frame 9. A gap 11c having a width d2 is formed between the end plate 14 and the stator frame 9 in the axial length direction. A gap 11d having a width d3 is formed in the radial direction between the end plate 14 and the stator frame 9. In this case, the structure is d1> d2 and d1> d3. In the description of the third embodiment, the same contents as those of the second embodiment will be omitted.
 本実施例では、d1>d2かつ、d1>d3とすることで、精度の高い細い隙間を2か所で形成することができ、より塵埃や水滴が入りこみにくい構造とすることができる。 In this embodiment, by setting d1> d2 and d1> d3, it is possible to form fine gaps with high accuracy at two places, and it is possible to make the structure more difficult for dust and water droplets to enter.
 図4Aは、実施例4における外転型回転電機100の軸長方向を示す図である。図4Bは、図4AのD部の拡大図である。実施例1と同じ内容については説明を省略する。実施例1~3と異なる点は、端板14の径方向外側に凹部15を有していることにある。 FIG. 4A is a diagram showing the axial length direction of the abduction type rotary electric machine 100 in the fourth embodiment. FIG. 4B is an enlarged view of a portion D of FIG. 4A. The same contents as those of the first embodiment will be omitted. The difference from Examples 1 to 3 is that the recess 15 is provided on the radial outer side of the end plate 14.
 凹部を有することで、塵埃や水滴が浸入した際に、凹部に落ち込むため、外転型回転電機100の内部(コイル5及び永久磁石2が存在する空間)への侵入を防止することができる。凹部15は端板の周方向全周に設けられており、図4Bの上側から侵入した塵埃や水滴は、凹部に落ち込んだ後、図4Bの下側から排出されるため、凹部15に溜まることはない。 By having the recess, when dust or water droplets infiltrate, it falls into the recess, so that it is possible to prevent the abduction type rotary electric machine 100 from entering the inside (the space where the coil 5 and the permanent magnet 2 are present). The recesses 15 are provided all around the circumferential direction of the end plate, and dust and water droplets that have entered from the upper side of FIG. 4B fall into the recesses and then are discharged from the lower side of FIG. 4B, so that they are collected in the recesses 15. There is no.
 このとき、実施例1と同様に回転子コア1と固定子フレーム9の径方向の隙間11bの幅をd1、端板14と固定子フレーム9の間の軸長方向の隙間11cの幅をd2としたとき、d1>d2となっていても良い。または、実施例2と同様に回転子コア1と固定子フレーム9の径方向の隙間11bの幅をd1、端板14と固定子フレーム9の間の径方向の隙間11dの幅をd3としたとき、d1>d3となっていても良い。あるいは、実施例3と同様にd1>d2かつ、d1>d3としても良い。精度の高い細い隙間となる箇所が多いほど、塵埃や水滴は入り込みづらくなる。 At this time, as in the first embodiment, the width of the radial gap 11b between the rotor core 1 and the stator frame 9 is d1, and the width of the axial gap 11c between the end plate 14 and the stator frame 9 is d2. Then, d1> d2 may be set. Alternatively, as in the second embodiment, the width of the radial gap 11b between the rotor core 1 and the stator frame 9 is d1, and the width of the radial gap 11d between the end plate 14 and the stator frame 9 is d3. Occasionally, d1> d3 may be set. Alternatively, d1> d2 and d1> d3 may be used as in Example 3. The more places there are narrow gaps with high accuracy, the more difficult it is for dust and water droplets to enter.
 図5Aは、実施例5における外転型回転電機100の軸長方向を示す図である。図5Bは、図5AのE部の拡大図である。実施例1と同じ内容については説明を省略する。 FIG. 5A is a diagram showing the axial length direction of the abduction type rotary electric machine 100 in the fifth embodiment. FIG. 5B is an enlarged view of part E of FIG. 5A. The same contents as those of the first embodiment will be omitted.
 実施例1~4と異なる点は、端板14の外径は、回転子コア1の外径よりも小さいことで、端板14と回転子コア1で階段形状部を構成しており、固定子フレーム9は、階段形状部と対向する箇所に凸部16を有している。さらに、回転子コア1と固定子フレーム9の径方向の隙間11bの幅をd1、回転子コア1と固定子フレーム9の凸部16の間の軸長方向の隙間11eの幅をd4としたとき、d1>d4となっていることにある。 The difference from Examples 1 to 4 is that the outer diameter of the end plate 14 is smaller than the outer diameter of the rotor core 1, and the end plate 14 and the rotor core 1 form a staircase-shaped portion and are fixed. The child frame 9 has a convex portion 16 at a position facing the staircase-shaped portion. Further, the width of the radial gap 11b between the rotor core 1 and the stator frame 9 is d1, and the width of the axial gap 11e between the rotor core 1 and the convex portion 16 of the stator frame 9 is d4. At that time, d1> d4.
 回転子コア1の軸長方向の長さについては、公差のある電磁鋼板を積層することによる寸法誤差はあるものの、打ち抜きによる誤差などが生じる径方向の寸法よりも精度を高く調整が可能である。また、軸長方向端部の表面は凸凹のない平面である。このことから、回転子コア1と凸部16の間の軸長方向の隙間11eの幅は、隙間11bと比べて、精度の高い細い隙間とすることができる。 Regarding the length of the rotor core 1 in the axial length direction, although there is a dimensional error due to laminating electromagnetic steel sheets with tolerance, it is possible to adjust with higher accuracy than the radial dimension where an error due to punching occurs. .. Further, the surface of the end portion in the axial length direction is a flat surface without unevenness. From this, the width of the gap 11e in the axial length direction between the rotor core 1 and the convex portion 16 can be a narrow gap with higher accuracy than the gap 11b.
 このとき、実施例1と同様に回転子コア1と固定子フレーム9の径方向の隙間11bの幅をd1、端板14と固定子フレーム9の間の軸長方向の隙間11cの幅をd2としたとき、d1>d2となっていても良い。 At this time, as in the first embodiment, the width of the radial gap 11b between the rotor core 1 and the stator frame 9 is d1, and the width of the axial gap 11c between the end plate 14 and the stator frame 9 is d2. Then, d1> d2 may be set.
 また、実施例2と同様に回転子コア1と固定子フレーム9の径方向の隙間11bの幅をd1、端板14と固定子フレーム9の間の径方向の隙間11dの幅をd3としたとき、d1>d3となっていても良い。あるいは、実施例3と同様にd1>d2かつ、d1>d3としても良い。また、実施例4と同様に端板14の径方向外側に凹部15を有しても良い。これらの要素を組み合わせることで、より塵埃や水滴は入り込みづらい構造にできる。 Further, as in the second embodiment, the width of the radial gap 11b between the rotor core 1 and the stator frame 9 is d1, and the width of the radial gap 11d between the end plate 14 and the stator frame 9 is d3. Occasionally, d1> d3 may be set. Alternatively, d1> d2 and d1> d3 may be used as in Example 3. Further, as in the fourth embodiment, the recess 15 may be provided on the radial outer side of the end plate 14. By combining these elements, it is possible to create a structure that makes it more difficult for dust and water droplets to enter.
 図6Aは、実施例6の組立て途中における外転型回転電機100の斜視図である。図6Bは、実施例6の組立て後における外転型回転電機100の斜視図である。比較例と同じ内容については説明を省略する。 FIG. 6A is a perspective view of the abduction type rotary electric machine 100 in the middle of assembling the sixth embodiment. FIG. 6B is a perspective view of the abduction type rotary electric machine 100 after the assembly of the sixth embodiment. The same contents as the comparative example will be omitted.
 比較例と異なる点は、軸長方向に延び、回転子コア1を覆う固定子フレーム9における外側円筒部9bの径方向に、複数個の穴17が設けられていることにある。この穴17により、回転子コア1は外気に触れるようになる。穴17は回転子コア1からの熱を放熱する開口部を構成する。この開口部があるため、外転型回転電機100の冷却性能を改善することができる。 The difference from the comparative example is that a plurality of holes 17 are provided in the radial direction of the outer cylindrical portion 9b of the stator frame 9 extending in the axial length direction and covering the rotor core 1. The hole 17 allows the rotor core 1 to come into contact with the outside air. The hole 17 constitutes an opening that dissipates heat from the rotor core 1. Due to this opening, the cooling performance of the abduction type rotary electric machine 100 can be improved.
 また、塵埃や水滴の侵入を防止する構造としては、実施例1~5に記載のいずれかの構造を用いればよい。 Further, as a structure for preventing the intrusion of dust and water droplets, any of the structures described in Examples 1 to 5 may be used.
 図7Aは、実施例7の組立て途中における外転型回転電機100の斜視図ある。図7Bは、実施例7の組立て後における外転型回転電機100の斜視図である。実施例1と同じ内容については説明を省略する。 FIG. 7A is a perspective view of the abduction type rotary electric machine 100 during the assembly of the seventh embodiment. FIG. 7B is a perspective view of the abduction type rotary electric machine 100 after the assembly of the seventh embodiment. The same contents as those of the first embodiment will be omitted.
 実施例1~6と異なる点は、回転子フレーム8が軸長方向に延びた複数本のリブ18を有しており、リブ18は回転子コア1の外周面に配置される。さらにリブ18を介して、端板14と回転子フレーム8が接続されていることにある。 The difference from the first to sixth embodiments is that the rotor frame 8 has a plurality of ribs 18 extending in the axial length direction, and the ribs 18 are arranged on the outer peripheral surface of the rotor core 1. Further, the end plate 14 and the rotor frame 8 are connected to each other via the rib 18.
 リブ18は回転子フレーム8と同様に材料として鋳鉄を用いることで、寸法の精度を高く加工することができる。これにより、実施例1乃至実施例5と比べて、公差のある電磁鋼板を積層した際に発生する軸長方向の寸法誤差に影響されない。そのため、端板14と固定子フレーム9の間の軸長方向の隙間11cの幅は、より容易に精度の高い細い隙間とすることができる。 As with the rotor frame 8, the rib 18 can be machined with high dimensional accuracy by using cast iron as the material. As a result, as compared with Examples 1 to 5, it is not affected by the dimensional error in the axial length direction that occurs when the electromagnetic steel sheets having tolerances are laminated. Therefore, the width of the gap 11c in the axial length direction between the end plate 14 and the stator frame 9 can be more easily made into a narrow gap with high accuracy.
 リブ18と対向しない箇所において、回転子コア1は外気に触れるため、放熱性に問題はない。塵埃や水滴の侵入を防止する構造としては、実施例1と同様に回転子コア1と固定子フレーム9の径方向の隙間11bの幅をd1、端板14と固定子フレーム9の間の軸長方向の隙間11cの幅をd2としたとき、d1>d2とする。または、実施例3と同様にd1>d2かつ、d1>d3としても良い。また実施例4と同様に端板14の径方向外側に凹部15を有しても良いし、実施例6と同様に固定子フレーム9の外周面に複数個の穴17を有しても良い。 Since the rotor core 1 comes into contact with the outside air at a location that does not face the rib 18, there is no problem with heat dissipation. As a structure for preventing the intrusion of dust and water droplets, the width of the radial gap 11b between the rotor core 1 and the stator frame 9 is d1, and the shaft between the end plate 14 and the stator frame 9 is the same as in the first embodiment. When the width of the gap 11c in the long direction is d2, d1> d2. Alternatively, d1> d2 and d1> d3 may be used as in Example 3. Further, the recess 15 may be provided on the radial outer side of the end plate 14 as in the fourth embodiment, or the outer peripheral surface of the stator frame 9 may have a plurality of holes 17 as in the sixth embodiment. ..
 図8Aは、実施例8の組立て途中における外転型回転電機100の斜視図である。図8Bは、実施例8の組立て後における外転型回転電機100の斜視図である。 FIG. 8A is a perspective view of the abduction type rotary electric machine 100 during the assembly of the eighth embodiment. FIG. 8B is a perspective view of the abduction type rotary electric machine 100 after the assembly of the eighth embodiment.
 また、図8Cは、実施例8の外転型回転電機100の中心部における径方向Rを示す図である。図8Cでは、回転子フレーム8及び固定子フレーム9は省略して表示している。 Further, FIG. 8C is a diagram showing a radial direction R in the central portion of the abduction type rotary electric machine 100 of the eighth embodiment. In FIG. 8C, the rotor frame 8 and the stator frame 9 are omitted.
 実施例1と同じ内容については説明を省略する。 The same content as in Example 1 will be omitted.
 実施例1~7と異なる点は、回転子コア1の外周面に凹部19を有することにある。凹部19を設けることにより、外気に触れる回転子コア1の表面積が増える。そのため、凹部19は冷却性能を向上させることができる。 The difference from Examples 1 to 7 is that the rotor core 1 has a recess 19 on the outer peripheral surface. By providing the recess 19, the surface area of the rotor core 1 that comes into contact with the outside air increases. Therefore, the recess 19 can improve the cooling performance.
 塵埃や水滴の侵入を防止する構造としては、実施例1~5に記載のいずれかの構造を用いればよい。 As a structure for preventing the intrusion of dust and water droplets, any of the structures described in Examples 1 to 5 may be used.
 また、実施例6と同様に、固定子フレーム9の外周面に複数個の穴17を有しても良いし、実施例7と同様に、回転子フレーム8が軸長方向に延びた複数本のリブ18を有しても良い。 Further, as in the sixth embodiment, a plurality of holes 17 may be provided on the outer peripheral surface of the stator frame 9, and as in the seventh embodiment, a plurality of rotor frames 8 extending in the axial length direction. Ribs 18 may be provided.
 回転子コア1及び固定子コア4の材質としては、前述の通り、鉄が主成分の電磁鋼板が考えられ、電磁鋼板からコア形状を打ち抜いたものを積層することで、回転子コア1及び固定子コア4を構成できる。回転子コア1及び固定子コア4は、前述の通り、コストの低減を図る観点から、電磁鋼板から打ち抜く際に無駄なく打ち抜くことができる分割コアとすることが考えられるが、一体型コアでも良い。分割コアは、分割部の隙間による磁束漏れにより、効率の低下が懸念される。 As the material of the rotor core 1 and the stator core 4, as described above, an electromagnetic steel sheet containing iron as a main component can be considered, and the rotor core 1 and the stator core 1 and the stator core 1 are fixed by laminating the core shape punched out from the electromagnetic steel sheet. The child core 4 can be configured. As described above, the rotor core 1 and the stator core 4 are considered to be split cores that can be punched without waste when punching from the electrical steel sheet from the viewpoint of cost reduction, but an integrated core may also be used. .. There is a concern that the efficiency of the split core may decrease due to magnetic flux leakage due to the gap in the split portion.
 一体型コアであれば、分割部の隙間による磁束漏れはないため、効率の向上が見込める。コイル5の材質としては、銅やアルミを用いることが考えられる。端板14と固定子フレーム9の材質としては、前述の通り、加工精度が高い鋳鉄などを用いることが考えられるが、加工精度が高ければ他の材質でも良い。端板14は1パーツで作っても良いし、複数のパーツに分かれていても良い。ただし、複数のパーツに分ける場合には組立て時のズレなどで、隙間の精度が低くならないようにしなければならない。 If it is an integrated core, there is no magnetic flux leakage due to the gap between the split parts, so efficiency can be expected to improve. As the material of the coil 5, it is conceivable to use copper or aluminum. As the material of the end plate 14 and the stator frame 9, as described above, cast iron having high processing accuracy may be used, but other materials may be used as long as the processing accuracy is high. The end plate 14 may be made of one part or may be divided into a plurality of parts. However, when dividing into multiple parts, it is necessary to prevent the accuracy of the gap from becoming low due to misalignment during assembly.
 前述した実施例では、永久磁石2の極数40、コイル数48の3相駆動回転電機のときの説明をしたが、その他の極数・スロット数の組み合わせであっても良い。 In the above-described embodiment, the case of a three-phase drive rotary electric machine having 40 poles and 48 coils of the permanent magnet 2 has been described, but other combinations of the number of poles and the number of slots may be used.
 コイルの巻き方は集中巻でも分布巻でも前述した実施例に適用できる。また、回転子は永久磁石を回転子コア表面に貼り付けることで形成した表面磁石型でも前述した実施例に適用できる。また、回転子コアが複数の磁石挿入孔を有し、磁石挿入孔に磁石を挿入することで形成した埋込磁石型の回転子であっても前述した実施例に適用できる。また、永久磁石を用いない誘導モータや、シンクロナスリラクタンスモータ、スイッチドリラクタンスモータでも前述した実施例に適用できる。 The coil winding method can be applied to the above-mentioned embodiment regardless of whether it is a centralized winding or a distributed winding. Further, the rotor can be applied to the above-described embodiment even if it is a surface magnet type formed by attaching a permanent magnet to the surface of the rotor core. Further, even if the rotor core has a plurality of magnet insertion holes and is an embedded magnet type rotor formed by inserting a magnet into the magnet insertion holes, it can be applied to the above-described embodiment. Further, an induction motor that does not use a permanent magnet, a synchronous reluctance motor, and a switched reluctance motor can also be applied to the above-described embodiment.
1…回転子コア、
2…永久磁石、
3…回転子、
4…固定子コア、
5…コイル、
6…固定子、
7…スロット、
8…回転子フレーム、
9…固定子フレーム、
9a…内側円筒部、
9b…外側円筒部、
9c…内側円板部、
9d…外側円板部、
9e…段差、
10…空気層、
11a、11b、11c、11d…隙間、
12…放熱経路、
13…コイルエンド、
14…端板、
15…凹部、
16…凸部、
17…穴、
18…リブ、
19…回転子コア外周面の凹部、
90…回転軸、
100…外転型回転電機
1 ... Rotor core,
2 ... Permanent magnet,
3 ... Rotor,
4 ... Stator core,
5 ... coil,
6 ... Stator,
7 ... slot,
8 ... Rotor frame,
9 ... Stator frame,
9a ... Inner cylinder,
9b ... Outer cylindrical part,
9c ... Inner disk part,
9d ... Outer disk part,
9e ... Step,
10 ... Air layer,
11a, 11b, 11c, 11d ... Gap,
12 ... Heat dissipation path,
13 ... Coil end,
14 ... end plate,
15 ... recess,
16 ... Convex part,
17 ... hole,
18 ... Rib,
19 ... Recessed surface on the outer peripheral surface of the rotor core,
90 ... rotation axis,
100 ... Abduction type rotary electric machine

Claims (12)

  1. 複数のスロットと前記スロットに巻き回されたコイルとを有する固定子と、
    前記固定子に対して所定のギャップを介して、前記固定子の径方向に、回転可能に保持された回転子と、
    前記固定子を保持する固定子フレームと、
    前記回転子を保持する回転子フレームと、
    前記回転子の端部に軸長方向に固定された端板とを有し、
    前記回転子フレームと前記固定子フレームの間に開口部が形成され、
    前記固定子フレームと前記端板の間には、前記開口部と繋がる隙間が形成される外転型回転電機。
    A stator having a plurality of slots and a coil wound around the slot,
    A rotor that is rotatably held in the radial direction of the stator through a predetermined gap with respect to the stator.
    A stator frame that holds the stator and
    A rotor frame that holds the rotor and
    It has an end plate fixed in the axial length direction at the end of the rotor.
    An opening is formed between the rotor frame and the stator frame.
    An abduction type rotary electric machine in which a gap connecting to the opening is formed between the stator frame and the end plate.
  2. 請求項1に記載の外転型回転電機において、
    前記開口部は、
    前記固定子フレームの外側円筒部の軸長方向の長さを、前記回転子の軸長方向の長さより短くして形成される外転型回転電機。
    In the abduction type rotary electric machine according to claim 1,
    The opening is
    An abduction type rotary electric machine formed by making the length of the outer cylindrical portion of the stator frame in the axial length direction shorter than the length in the axial length direction of the rotor.
  3. 請求項1に記載の外転型回転電機において、
    前記開口部は、
    前記固定子フレームの径方向に設けられた穴である外転型回転電機。
    In the abduction type rotary electric machine according to claim 1,
    The opening is
    An abduction type rotary electric machine which is a hole provided in the radial direction of the stator frame.
  4. 請求項1に記載の外転型回転電機において、
    前記回転子と前記固定子フレームの間の径方向に、幅d1の第1の隙間が形成され、
    前記端板と前記固定子フレームの間の前記軸長方向に、幅d2の第2の隙間が形成され、d1>d2である外転型回転電機。
    In the abduction type rotary electric machine according to claim 1,
    A first gap having a width d1 is formed in the radial direction between the rotor and the stator frame.
    An abduction type rotary electric machine in which a second gap having a width d2 is formed in the axial length direction between the end plate and the stator frame, and d1> d2.
  5. 請求項1に記載の外転型回転電機において、
    前記回転子と前記固定子フレームの間の径方向に、幅d1の第1の隙間が形成され、
    前記端板と前記固定子フレームの間の径方向に、幅d3の第2の隙間が形成され、
    d1>d3である外転型回転電機。
    In the abduction type rotary electric machine according to claim 1,
    A first gap having a width d1 is formed in the radial direction between the rotor and the stator frame.
    A second gap having a width of d3 is formed in the radial direction between the end plate and the stator frame.
    Abduction type rotary electric machine with d1> d3.
  6. 請求項1に記載の外転型回転電機において、
    前記回転子と前記固定子フレームの間の径方向に、幅d1の第1の隙間が形成され、
    前記端板と前記固定子フレームの間の前記軸長方向に、幅d2の第2の隙間が形成され、
    前記端板と前記固定子フレームの間の径方向に、幅d3の第3の隙間が形成され、
    d1>d2かつ、d1>d3である外転型回転電機。
    In the abduction type rotary electric machine according to claim 1,
    A first gap having a width d1 is formed in the radial direction between the rotor and the stator frame.
    A second gap having a width d2 is formed in the axial length direction between the end plate and the stator frame.
    A third gap having a width of d3 is formed in the radial direction between the end plate and the stator frame.
    An abduction type rotary electric machine having d1> d2 and d1> d3.
  7. 請求項1に記載の外転型回転電機において、
    前記端板の外周面に凹部が設けられている外転型回転電機。
    In the abduction type rotary electric machine according to claim 1,
    An abduction type rotary electric machine in which a recess is provided on the outer peripheral surface of the end plate.
  8. 請求項1に記載の外転型回転電機において、
    前記端板の外径は、前記回転子の外径よりも小さく、
    前記固定子フレームは、前記端板と対向する箇所に凸部を有しており、
    前記回転子と前記固定子フレームの間の径方向に、幅d1の第1の隙間が形成され、
    前記回転子と前記固定子フレームの間の前記軸長方向に、幅d4の第2の隙間が形成され、d1>d4である外転型回転電機。
    In the abduction type rotary electric machine according to claim 1,
    The outer diameter of the end plate is smaller than the outer diameter of the rotor.
    The stator frame has a convex portion at a position facing the end plate, and the stator frame has a convex portion.
    A first gap having a width d1 is formed in the radial direction between the rotor and the stator frame.
    An abduction type rotary electric machine in which a second gap having a width d4 is formed in the axial length direction between the rotor and the stator frame, and d1> d4.
  9. 請求項8に記載の外転型回転電機において、
    前記端板と前記固定子フレームの間の前記軸長方向に、幅d2の第3の隙間が形成され、d1>d2である外転型回転電機。
    In the abduction type rotary electric machine according to claim 8,
    An abduction type rotary electric machine in which a third gap having a width d2 is formed in the axial length direction between the end plate and the stator frame, and d1> d2.
  10. 請求項1に記載の外転型回転電機において、
    前記回転子フレームは、前記軸長方向に延びる複数本のリブを有し、
    前記リブと前記端板が接続される外転型回転電機。
    In the abduction type rotary electric machine according to claim 1,
    The rotor frame has a plurality of ribs extending in the axial length direction.
    An abduction type rotary electric machine to which the rib and the end plate are connected.
  11. 請求項1に記載の外転型回転電機において、
    前記回転子の外周面には、複数の凹部が配置される外転型回転電機。
    In the abduction type rotary electric machine according to claim 1,
    An abduction type rotary electric machine in which a plurality of recesses are arranged on the outer peripheral surface of the rotor.
  12. 請求項1に記載の外転型回転電機において、
    前記固定子フレームは、
    外径の異なる内側円筒部及び外側円筒部が、軸長方向の両側において内側円板部と外側円板部と繋がる構成である外転型回転電機。
    In the abduction type rotary electric machine according to claim 1,
    The stator frame is
    An abduction type rotary electric machine in which the inner cylindrical portion and the outer cylindrical portion having different outer diameters are connected to the inner disk portion and the outer disk portion on both sides in the axial length direction.
PCT/JP2020/048317 2020-05-22 2020-12-23 Outer rotor-type rotating electric machine WO2021234994A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020089873A JP2021184674A (en) 2020-05-22 2020-05-22 Abduction-type rotary electric machine
JP2020-089873 2020-05-22

Publications (1)

Publication Number Publication Date
WO2021234994A1 true WO2021234994A1 (en) 2021-11-25

Family

ID=78708405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048317 WO2021234994A1 (en) 2020-05-22 2020-12-23 Outer rotor-type rotating electric machine

Country Status (2)

Country Link
JP (1) JP2021184674A (en)
WO (1) WO2021234994A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0511765U (en) * 1991-07-26 1993-02-12 西芝電機株式会社 Power generation / transmission device via airtight bulkhead
JPH0677458U (en) * 1993-04-07 1994-10-28 株式会社富士通ゼネラル Outer rotor type induction motor
JP2013258889A (en) * 2012-05-17 2013-12-26 Toyota Industries Corp Induction motor
JP2015198532A (en) * 2014-04-02 2015-11-09 株式会社豊田自動織機 rotor
JP2020043693A (en) * 2018-09-11 2020-03-19 株式会社日立産機システム Outer rotor type rotary electric machine and winch

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0511765U (en) * 1991-07-26 1993-02-12 西芝電機株式会社 Power generation / transmission device via airtight bulkhead
JPH0677458U (en) * 1993-04-07 1994-10-28 株式会社富士通ゼネラル Outer rotor type induction motor
JP2013258889A (en) * 2012-05-17 2013-12-26 Toyota Industries Corp Induction motor
JP2015198532A (en) * 2014-04-02 2015-11-09 株式会社豊田自動織機 rotor
JP2020043693A (en) * 2018-09-11 2020-03-19 株式会社日立産機システム Outer rotor type rotary electric machine and winch

Also Published As

Publication number Publication date
JP2021184674A (en) 2021-12-02

Similar Documents

Publication Publication Date Title
US6249066B1 (en) Stepping motor
KR20040008090A (en) Induction motor
JP2004254496A (en) Rotor assembly for motor, stator assembly for motor, permanent magnet motor, and motor
JPH1155902A (en) Structure of sensor built-in motor
US10931154B2 (en) Axial-gap type motor
WO2004108579A1 (en) Hoist and motor for elevator
CN111725927A (en) Rotating electrical machine
JP4665454B2 (en) motor
JP2014180094A (en) Permanent magnet rotary electric machine and elevator driving winch
JP2006304539A (en) Rotor structure of axial gap rotating electric machine
JPS63287345A (en) Rotary electric machine with external rotor
US7923878B2 (en) Axial gap coreless motor and positioning unit
JP2006254561A (en) Rotary electric machine
WO2021234994A1 (en) Outer rotor-type rotating electric machine
JP5468237B2 (en) Electric motor
CN108155756B (en) External rotation type rotating electric machine
JP5319912B2 (en) Electric motor
WO2020202390A1 (en) Outer rotor-type motor
WO2021124703A1 (en) Hoisting machine and elevator
CN113541348A (en) Rotating electrical machine
JP2006038808A (en) Stator fixed structure of resolver
WO2020214884A1 (en) Electric motor
WO2021157331A1 (en) Rotating electrical machine
WO2017175461A1 (en) Axial gap rotary electric machine
JP3671928B2 (en) Outer rotor structure of rotating electrical machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20936862

Country of ref document: EP

Kind code of ref document: A1