WO2021234810A1 - Air conditioning system and data provision method - Google Patents

Air conditioning system and data provision method Download PDF

Info

Publication number
WO2021234810A1
WO2021234810A1 PCT/JP2020/019743 JP2020019743W WO2021234810A1 WO 2021234810 A1 WO2021234810 A1 WO 2021234810A1 JP 2020019743 W JP2020019743 W JP 2020019743W WO 2021234810 A1 WO2021234810 A1 WO 2021234810A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
storage
air
unit
air conditioner
Prior art date
Application number
PCT/JP2020/019743
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 坂
雅史 冨田
瑞朗 酒井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022523787A priority Critical patent/JP7343049B2/en
Priority to PCT/JP2020/019743 priority patent/WO2021234810A1/en
Publication of WO2021234810A1 publication Critical patent/WO2021234810A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature

Definitions

  • This disclosure relates to an air conditioning system and a method of providing data on a computer used in the air conditioning system.
  • the management server and the air conditioner are connected so as to be able to transmit or receive data, and the time until the room temperature reaches the target value.
  • the management server manages the display data for displaying the information on the capacity deterioration of the air conditioner (corresponding to the maintenance information of Patent Document 1).
  • the data processing system provided to the terminal is disclosed.
  • Patent Document 1 does not disclose a method for determining a predetermined time. That is, in Patent Document 1, if the threshold time is not appropriately determined, the display data cannot be provided at an appropriate timing. For this reason, there are cases where the information regarding the capacity reduction is displayed even though the capacity of the air conditioner is not reduced, or the information regarding the capacity reduction is not displayed even though the capacity of the air conditioner is reduced. In both cases, there was a problem that the convenience of the user was reduced.
  • the present disclosure aims to obtain an air conditioning system and a computer data providing method used for the air conditioning system, which determines an appropriate threshold time and improves user convenience.
  • the air-conditioning system of the present disclosure is an air-conditioning device that harmonizes the temperature of the air in the air-conditioning target space with a predetermined set temperature, and the air temperature of the air-conditioning target space before the air-conditioning device harmonizes.
  • the temperature acquisition unit that acquires the temperature before the start and acquires the temperature after the threshold time, which is the temperature of the air in the air conditioning target space at the time when the threshold time elapses after the air conditioner starts harmonization, and the threshold time is measured.
  • a storage unit that stores a plurality of storage arrival times, which is the time required to reach the storage set temperature set in the air conditioner, and stores the storage model data and the storage pre-operation temperature and the storage arrival time in association with each other, and the pre-operation temperature.
  • the analysis unit that extracts multiple storage arrival times associated with the storage model data related to the model data that indicates the temperature before the start of the storage operation and the type of air conditioner, and the multiple storage arrival times that are extracted.
  • the capacity of the air conditioner is reduced by the calculation unit that calculates the threshold time based on the above, the judgment unit that determines whether the capacity of the air conditioner is reduced based on the temperature after the threshold time and the set temperature, and the judgment unit. It is provided with a notification control unit that controls the notification unit to notify that the capacity of the air conditioner is reduced when it is determined that the condition is low.
  • data is collected from a plurality of air conditioners via a network, the collected data is stored as a past data group, and the threshold time is calculated using the past data group to calculate the threshold time. It is a data provision method executed by a computer used in an air conditioning system to determine whether or not the capacity of any one of the air conditioning devices is reduced by using the past data group.
  • Storage model data indicating each type of harmonizing device and storage, which is the temperature of the air harmonizing target space before each of the multiple air harmonizing devices harmonizes.
  • Storage related to model data and pre-operation temperature The threshold is based on the second step of extracting multiple storage arrival times related to the operation start temperature from the past data group and the multiple storage arrival times extracted in the second step.
  • the third step of calculating the time and the fourth step of providing the threshold time calculated in the third step to the air conditioner for which the operation data group is acquired in the first step are provided.
  • the air conditioning system of the present disclosure and the data providing method of the computer used in the air conditioning system can determine an appropriate threshold time and have the effect of improving the convenience of the user.
  • FIG. 1 is a schematic diagram of an air conditioning system according to an embodiment.
  • the outline of the air conditioning system will be described with reference to FIG.
  • the air conditioning system 100 has a plurality of air conditioning devices 1 and a server 5.
  • the description will be given with the addition of lowercase letters.
  • the air conditioners 1a to 1d are devices having the same functions, they are referred to as the air conditioner 1 when the explanations are common, and are described with the subscript as the air conditioner 1a when the explanations are distinguished. do.
  • the quantity is not limited to this, and the quantity of the air conditioner 1 may be 2 or more. Further, the building 200 and the network 300 shown in FIG. 1 are described for the sake of explanation and are not included in the air conditioning system 100.
  • the air conditioner 1 harmonizes the air in the room of the building 200.
  • the air conditioner 1 includes an indoor unit 2, an outdoor unit 3, and a remote controller 4.
  • the indoor unit 2 and the remote controller 4 are installed inside the room of the building 200, and the outdoor unit 3 is installed outside the building 200.
  • the inside of the room of the building 200 is referred to as an indoor, and the outside of the building 200 is referred to as an outdoor.
  • the air in the air conditioning target space to be harmonized by the air conditioning device 1 corresponds to the air in the room.
  • the indoor unit 2 and the outdoor unit 3 are connected by wire or wirelessly so that signals can be transmitted and received to each other.
  • the indoor unit 2 and the remote controller 4 are connected by wire or wirelessly so that signals can be transmitted and received to each other.
  • the remote controller 4 is connected to a network 300 such as the Internet by wire or wirelessly.
  • the signal is converted so that it can be transmitted and received by attaching an identifier or the like to the data. Therefore, the content contained in the signal includes data.
  • the server 5 stores the data included in the signal transmitted from the air conditioner 1.
  • the server 5 is connected to the network 300 by wire or wirelessly. That is, the remote controller 4 and the server 5 are connected so as to be able to send and receive signals to and from each other via the network 300.
  • FIG. 2 is a schematic diagram of the air conditioner according to the embodiment. Next, the air conditioner 1 will be described with reference to FIG.
  • the air conditioner 1 includes a compressor 10, an outdoor heat exchanger 11, an expansion valve 12, an indoor heat exchanger 13, a four-way valve 14, a refrigerant pipe 15, an outdoor blower 16, an indoor blower 17, and the like. It includes an outdoor temperature sensor 18, an indoor temperature sensor 19, an indoor unit control device 20, an outdoor unit control device 21, a notification terminal 24, and an input terminal 25. Further, the indoor heat exchanger 13, the indoor blower 17, the indoor temperature sensor 19, and the indoor unit control device 20 are provided in the indoor unit 2. Further, the compressor 10, the outdoor heat exchanger 11, the expansion valve 12, the four-way valve 14, the outdoor blower 16, the outdoor temperature sensor 18, and the outdoor unit control device 21 are provided in the outdoor unit 3. Further, the notification terminal 24 and the input terminal 25 are provided on the remote controller 4.
  • the compressor 10, the outdoor heat exchanger 11, the expansion valve 12, the indoor heat exchanger 13, and the four-way valve 14 are connected by a refrigerant pipe 15, and a refrigerant circuit through which the refrigerant circulates is formed in the air conditioner 1.
  • the air conditioner 1 has, for example, a cooling operation mode in which the air in the room of the building 200 is cooled to a preset temperature in the preset cooling operation mode, and a set temperature in the heating operation mode in which the room air is preset. It has two types of operation modes: a heating operation mode that heats up to.
  • the refrigerant circuit in the cooling operation mode and the refrigerant circuit in the heating operation mode are different from each other.
  • a refrigerant that evaporates or condenses in the outdoor heat exchanger 11 and the indoor heat exchanger 13 is used.
  • the compressor 10 compresses the refrigerant sucked from the suction port into a high-temperature and high-pressure gas state and discharges the refrigerant from the discharge port.
  • the compressor 10 may be configured by, for example, an inverter compressor whose capacity can be controlled.
  • a flow path through which the refrigerant flows is formed inside the outdoor heat exchanger 11.
  • the outdoor heat exchanger 11 exchanges heat between the refrigerant flowing in the flow path and the outdoor air.
  • the expansion valve 12 depressurizes the refrigerant passing through the inside.
  • the expansion valve 12 may be composed of an electronic expansion valve or the like that can arbitrarily adjust the flow rate of the refrigerant.
  • a flow path through which the refrigerant flows is formed inside the indoor heat exchanger 13.
  • the indoor heat exchanger 13 exchanges heat between the refrigerant flowing in the flow path and the indoor air.
  • the four-way valve 14 switches between the refrigerant circuit in the cooling operation mode and the refrigerant circuit in the heating operation mode.
  • the four-way valve 14 has four ports, an a port, a b port, a c port, and a d port.
  • the refrigerant pipe 15 connects the compressor 10, the outdoor heat exchanger 11, the expansion valve 12, the indoor heat exchanger 13, and the four-way valve 14. Specifically, the refrigerant pipe 15 connects the discharge port of the compressor 10 and the a port of the four-way valve 14. The refrigerant pipe 15 connects the b port of the four-way valve 14 and one end of the flow path of the outdoor heat exchanger 11. The refrigerant pipe 15 connects the other end of the flow path of the outdoor heat exchanger 11 to the expansion valve 12. The refrigerant pipe 15 connects the expansion valve 12 and one end of the flow path of the indoor heat exchanger 13. The refrigerant pipe 15 connects the other end of the flow path of the indoor heat exchanger 13 to the c port of the four-way valve 14. The refrigerant pipe 15 connects the d port of the four-way valve 14 and the suction port of the compressor 10.
  • the outdoor blower 16 generates an air flow and blows the outdoor air to the outdoor heat exchanger 11.
  • the outdoor blower 16 may be composed of, for example, a fan that generates an air flow by rotating and a motor that rotates the fan.
  • the indoor blower 17 generates an air flow and blows the indoor air to the indoor heat exchanger 13.
  • the indoor blower 17 may be composed of a fan and a motor in the same manner as the outdoor blower 16.
  • the outdoor temperature sensor 18 measures the temperature of the outdoor air.
  • the outdoor temperature sensor 18 is provided in the middle of the air flow generated by the outdoor blower 16, and is located on the upstream side of the outdoor heat exchanger 11. That is, the outdoor temperature sensor 18 measures the temperature of the outdoor air blown to the outdoor heat exchanger 11.
  • the indoor temperature sensor 19 measures the temperature of the indoor air.
  • the indoor temperature sensor 19 is provided in the middle of the air flow generated by the indoor blower 17, and is located on the upstream side of the indoor heat exchanger 13. That is, the indoor temperature sensor 19 measures the temperature of the indoor air blown to the indoor heat exchanger 13.
  • the indoor unit control device 20 controls each configuration provided in the indoor unit 2 or acquires data measured by each configuration. Specifically, the indoor unit control device 20 controls the air volume and the wind direction of the indoor blower 17, and acquires the temperature of the indoor air measured by the indoor temperature sensor 19.
  • the outdoor unit control device 21 controls each configuration provided in the outdoor unit 3 or acquires data measured by each configuration. Specifically, the outdoor unit control device 21 controls the rotation speed of the compressor 10, the opening degree of the expansion valve 12, the flow path of the four-way valve 14, and the amount of air blown by the outdoor blower 16, and the outdoor temperature sensor 18 measures the temperature. Get the temperature of the outdoor air.
  • the indoor unit control device 20 and the remote controller 4 are connected so that data can be transmitted or received by the first signal line 22. Further, the indoor unit control device 20 and the outdoor unit control device 21 are connected so that data can be transmitted or received by the second signal line 23. That is, the outdoor unit control device 21 and the remote controller 4 are also connected so as to be able to transmit or receive data.
  • the notification terminal 24 notifies the user who operates the air conditioner 1 of data by notation or voice.
  • Examples of the data notified by the notification device 24 include data on the operating status of the air conditioning device 1 and data on the set temperature set in the air conditioning device 1. Further, for example, a liquid crystal display or a speaker is used for the notification terminal 24, and in the embodiment, a case where a display is used for the notification terminal 24 will be described.
  • the input terminal 25 is used for inputting operations by the user.
  • the user's operation input from the input terminal includes selection of whether the air conditioner operates in the cooling operation mode or the heating operation mode, and the change of the set temperature. Further, a switch such as a push button is used for the input terminal 25. Further, the notification terminal 24 and the input terminal 25 may be integrated, and a touch panel may be used for the notification terminal 24 and the input terminal 25.
  • the refrigerant circuit formed in the air conditioner 1 will be described.
  • the refrigerant circuit in the cooling operation mode the four-way valve 14 connects the a port and the b port and connects the c port and the d port as shown by the solid line in FIG.
  • the refrigerant discharged from the compressor 10 flows into the outdoor heat exchanger 11.
  • the refrigerant flowing into the outdoor heat exchanger 11 flows through the flow path formed inside the outdoor heat exchanger 11 and heats the outdoor air blown from the outdoor blower 16. That is, in the refrigerant circuit in the cooling operation mode, the outdoor heat exchanger 11 functions as a condenser.
  • the refrigerant that heats the outdoor air flows out from the outdoor heat exchanger 11 and flows into the expansion valve 12 to reduce the pressure.
  • the refrigerant decompressed by the expansion valve 12 flows into the indoor heat exchanger 13.
  • the refrigerant flowing into the indoor heat exchanger 13 flows through the flow path formed inside the indoor heat exchanger 13 and cools the indoor refrigerant blown from the indoor blower 17. That is, in the refrigerant circuit in the cooling operation mode, the indoor heat exchanger 13 functions as an evaporator.
  • the refrigerant that has cooled the indoor air flows out from the indoor heat exchanger 13, is sucked into the compressor 10, is compressed, and is discharged again.
  • the refrigerant circuit in the heating operation mode In the refrigerant circuit in the heating operation mode, the four-way valve 14 connects the a port and the c port and the b port and the d port as shown by the broken line in FIG.
  • the refrigerant discharged from the compressor 10 flows into the indoor heat exchanger 13.
  • the refrigerant flowing into the indoor heat exchanger 13 flows through the flow path formed inside the indoor heat exchanger 13 and heats the indoor air blown from the indoor blower 17. That is, in the refrigerant circuit in the heating operation mode, the indoor heat exchanger 13 functions as a condenser.
  • the refrigerant that has heated the indoor air flows out from the indoor heat exchanger 13 and flows into the expansion valve 12 to reduce the pressure.
  • the refrigerant decompressed by the expansion valve 12 flows into the outdoor heat exchanger 11.
  • the refrigerant flowing into the outdoor heat exchanger 11 flows through the flow path formed inside the outdoor heat exchanger 11 and cools the indoor refrigerant blown from the outdoor blower 16. That is, in the refrigerant circuit in the heating operation mode, the outdoor heat exchanger 11 functions as an evaporator.
  • the refrigerant that has cooled the outdoor air flows out from the outdoor heat exchanger 11, is sucked into the compressor 10, is compressed, and is discharged again.
  • FIG. 3 is a block diagram showing the hardware configuration of the air conditioning system according to the embodiment. Next, the hardware configuration of the air conditioning system 100 will be described with reference to FIG.
  • the remote controller 4 includes a notification terminal 24, an input terminal 25, a processor 26, a memory 27, a hardware interface 28, and a timer 29. Further, each hardware included in the remote controller 4 is connected so as to be able to transmit or receive data. Since the notification terminal 24 and the input terminal 25 have been described above, the description thereof will be omitted.
  • the processor 26 executes the control or processing of the hardware included in the remote controller 4 by executing the program stored in the memory 27. For example, the processor 26 changes the content notified by the notification terminal 24.
  • the memory 27 stores a program executed by the processor 26 and data necessary for executing the program. Further, the memory 27 is used as a work area of the processor 26. For example, the memory 27 stores the set temperature.
  • the hardware interface 28 transmits or receives signals wirelessly or by wire with other hardware interfaces.
  • Timer 29 measures the elapsed time from the start of measurement.
  • the indoor unit 2 includes an indoor blower 17, an indoor temperature sensor 19, a processor 30, a memory 31, and a hardware interface 32. Further, each hardware included in the indoor unit 2 is connected so as to be able to transmit or receive data. Since the indoor blower 17 and the indoor temperature sensor 19 have been described above, the description thereof will be omitted. Further, since the hardware interface 32 is the same as the hardware interface 28, the description thereof will be omitted.
  • the processor 30 executes the control or processing of the hardware included in the indoor unit 2 by executing the program stored in the memory 31. For example, the processor 30 changes the amount of air blown by the indoor blower 17.
  • the memory 31 stores a program executed by the processor 30 and data necessary for executing the program. Further, the memory 31 is used as a work area of the processor 30. For example, the memory 31 stores the indoor temperature measured by the indoor temperature sensor 19.
  • the outdoor unit 3 includes a compressor 10, an expansion valve 12, a four-way valve 14, an outdoor blower 16, an outdoor temperature sensor 18, a processor 33, a memory 34, and a hardware interface 35. Further, each hardware included in the outdoor unit 3 is connected so as to be able to transmit or receive data. Since the compressor 10, the expansion valve 12, the four-way valve 14, the outdoor blower 16, and the outdoor temperature sensor 18 have been described above, the description thereof will be omitted. Further, since the hardware interface 35 is the same as the hardware interface 28, the description thereof will be omitted.
  • the processor 33 executes the control or processing of the hardware included in the outdoor unit 3 by executing the program stored in the memory 34. For example, the processor 33 changes the rotation speed of the compressor 10.
  • the memory 34 stores the program executed by the processor 33 and the data necessary for executing the program. Further, the memory 34 is used as a work area of the processor 33. For example, the memory 34 stores the outdoor temperature measured by the outdoor temperature sensor 18.
  • the server 5 includes a processor 51, a memory 52, and a hardware interface 53. Since the hardware interface 53 is the same as the hardware interface 28, the description thereof will be omitted.
  • the processor 51 executes the process by executing the program stored in the memory 52. The processing performed by the processor 51 will be described later.
  • the memory 52 stores a program executed by the processor 51 and data necessary for executing the program. Further, the memory 52 is used as a work area of the processor 51. The data stored in the memory 52 will be described later.
  • Processors 26, 30, 33 and 51 are, for example, CPUs (Central Processing Units).
  • the memories 27, 31, 34 and 52 are, for example, a volatile memory such as a RAM (Random Access Memory), a non-volatile memory such as a ROM (Read Only Memory), or both a volatile memory and a non-volatile memory.
  • Hardware interfaces 28, 32, 35 and 53 are, for example, wireless communication interfaces or wired communication interfaces.
  • FIG. 4 is a block diagram showing a functional configuration of the air conditioning system according to the embodiment. Next, the functional configuration of the air conditioning system 100 will be described with reference to FIG.
  • the air conditioner 1 includes a timer unit 36, a temperature acquisition unit 37, an air conditioner side storage unit 38, an input unit 39, a first determination unit 40, a command unit 41, an air conditioner unit 42, and the like. It includes a data generation unit 43, an air conditioner side transmission unit 44, an air conditioner side reception unit 45, a second determination unit 46, a notification control unit 47, and a notification unit 48.
  • the timer unit 36 measures the elapsed time from the start of measurement.
  • the temperature acquisition unit 37 acquires the temperature of the indoor air and the temperature of the outdoor air that the air conditioner 1 harmonizes.
  • the air conditioner side storage unit 38 stores various data used for processing in the first determination unit 40, the command unit 41, the data generation unit 43, the second determination unit 46, or the notification control unit 47. Examples of various data include set temperatures. Further, in the embodiment, the air conditioner side storage unit 38 stores model data indicating the type of the air conditioner 1 such as the model number at the time of manufacturing the air conditioner 1, and the air conditioner 1 is installed in the building 200. It is assumed that the installation date, which is the date set, is stored at the time of installation of the air conditioner side 1.
  • Data related to the operation is input from the user to the input unit 39.
  • the user can perform an operation such as changing the set temperature from the input unit 39.
  • the first determination unit 40 makes a determination based on the elapsed time measured by the timer unit 36, the temperature acquired by the temperature acquisition unit 37, and the data stored in the air conditioner side storage unit 38. The detailed contents of the judgment made by the first judgment unit 40 will be described later.
  • the command unit 41 generates a command signal to be transmitted to the air conditioner unit 42 based on the temperature acquired by the temperature acquisition unit 37 and the data stored in the air conditioner side storage unit 38.
  • Examples of the command signal include a signal for changing the rotation speed of the compressor 10 to a predetermined rotation speed.
  • the air conditioning unit 42 harmonizes the indoor air.
  • the data generation unit 43 generates data to be transmitted to the server 5 based on the determination content of the first determination unit 40 and the data stored in the air conditioner side storage unit 38.
  • the air conditioner side transmission unit 44 converts the data generated by the data generation unit 43 into a signal and transmits it to the server 5.
  • the receiving unit 45 on the air conditioner side receives a signal from the server 5 and converts the received signal into a format that can be processed by the second determination unit 46.
  • the second determination unit 46 receives the elapsed time measured by the timer unit 36, the temperature acquired by the temperature acquisition unit 37, the data stored in the air conditioner side storage unit 38, and the signal received by the air conditioner side receiver 45. Make a decision based on the data contained. The detailed contents of the judgment made by the second judgment unit 46 will be described later.
  • the notification control unit 47 controls the notification unit 48 based on the determination content of the second determination unit 46. Further, the notification control unit 47 generates data to be notified by the notification unit 48.
  • the notification unit 48 notifies the user of information based on the data generated by the notification control unit 47.
  • the first determination unit 40, the command unit 41, the data generation unit 43, the second determination unit 46, and the notification control unit 47 are according to a program in which the processors 26, 30 or 33 are stored in the memory 27, 31 or 34, respectively. It is realized by executing the process. Further, the timer unit 36 is realized by the timer 29. Further, the temperature acquisition unit 37 is realized by the outdoor temperature sensor 18 and the indoor temperature sensor 19. Further, the input unit 39 is realized by the input terminal 25. Further, the air conditioning unit 42 is realized by the compressor 10, the expansion valve 12, the four-way valve 14, the indoor blower 17, and the outdoor blower 16. Further, the transmission unit 44 on the air conditioner side and the reception unit 45 on the air conditioner side are each realized by the hardware interface 28. Further, the notification unit 48 is realized by the notification terminal 24.
  • the server 5 includes a server-side receiving unit 54, a server-side storage unit 55, an analysis unit 56, a calculation unit 57, and a server-side transmitting unit 58.
  • the server-side receiving unit 54 receives a signal from the air conditioner 1 and converts the received signal into a format that can be stored in the server-side storage unit 55 and a format that can be processed by the analysis unit 56.
  • the server-side storage unit 55 stores the data used for the processing of the analysis unit 56. The details of the data stored in the server-side storage unit 55 will be described later.
  • the analysis unit 56 performs processing based on the data included in the signal received by the server-side receiving unit 54 and the data stored in the server-side storage unit 55. The detailed contents of the processing performed by the analysis unit 56 will be described later.
  • the calculation unit 57 performs a calculation based on the result of the processing performed by the analysis unit 56. The detailed contents of the calculation performed by the calculation unit 57 will be described later.
  • the server-side transmission unit 58 converts the calculation result data of the calculation unit 57 into a signal and transmits it to the air conditioner 1.
  • the server-side receiving unit 54 and the server-side transmitting unit 58 are each realized by the hardware interface 53.
  • the server-side storage unit 55 is realized by the memory 52.
  • the analysis unit 56 and the calculation unit 57 are realized by the processor 51 executing processing according to a program stored in the memory 52.
  • the air conditioning system 1 performs operation data storage control and operation data analysis control.
  • FIG. 5 is a sequence diagram of operation data accumulation control of the air conditioning system according to the embodiment.
  • the server 5 collects the operation data of each of the air conditioners 1a to 1d, and stores the collected operation data in the server-side storage unit 55.
  • the operation data storage control starts the operation of the air conditioner 1 when the user inputs an operation to operate the air conditioner 1 to the input unit 39 or when the time reaches a preset operation start time. It is executed when you do.
  • the storage unit 38 on the air conditioner side indicates the set temperature Ts and the mode indicating whether the air conditioner 1 operates in the cooling operation mode or the heating operation mode. The data is stored.
  • step S101 the temperature acquisition unit 37 acquires the pre-operation indoor temperature Trb, which is the temperature of the indoor air before the air conditioner 1 starts operation, and the outdoor temperature To, which is the temperature of the outdoor air.
  • the temperature measured by the indoor temperature sensor 19 at the time of step S101 is defined as the indoor temperature Trb before the start of operation
  • the temperature measured by the outdoor temperature sensor 18 is defined as the outdoor temperature To.
  • step S101 the air conditioner 1 performs the processing in step S102.
  • step S102 the air conditioner side storage unit 38 stores the pre-operation indoor temperature Trb and the outdoor temperature To acquired in step S101.
  • step S103 the command unit 41 transmits a command signal to start the operation of the air conditioning device 1 to the air conditioning unit 42, and starts the operation of the air conditioning device 1.
  • the command unit 41 includes a command signal for changing the four-way valve 14 to a flow path corresponding to the operation stored in the mode data, a command signal for setting the opening degree of the expansion valve 12 to a predetermined opening degree, and a command signal.
  • a command signal for starting the operation of the compressor 10, a command signal for starting the operation of the indoor blower 16, and a command signal for starting the operation of the outdoor blower 16 are transmitted to the air conditioning unit 42.
  • the air-conditioning unit 42 that has received various command signals starts operation, and the air-conditioning device 1 starts the air-conditioning in the room.
  • step S104 the air conditioner 1 performs a standby process.
  • the standby process is a process of waiting until the temperature of the air in the room reaches the arrival determination temperature Tac, which will be described later, after the air conditioning device 1 starts air conditioning in the room.
  • FIG. 6 is a flowchart of the standby process of the air conditioner according to the embodiment. Here, the standby process will be described in detail with reference to FIG.
  • step S201 the timer unit 36 starts measuring the arrival time touch.
  • the timer unit 36 resets the arrival time touch and measures the time from 0.
  • step S202 the temperature acquisition unit 37 acquires the standby room temperature Trs.
  • the standby room temperature Trs is the temperature of the air in the room during the standby process.
  • the temperature measured by the indoor temperature sensor 19 at the time of step S202 is defined as the standby indoor temperature Trs.
  • step S203 the first determination unit 40 determines whether or not the air conditioner 1 is operating in the cooling operation mode.
  • the first determination unit 40 acquires the mode data stored in the air conditioner side storage unit 38, and when the mode data is data indicating that the operation is performed in the cooling operation mode, air is used. If it is determined that the air conditioner 1 is operating in the cooling operation mode and the mode data is data indicating that the operation is performed in the heating operation mode, it is assumed that the air conditioner 1 is operating in the heating operation mode. to decide.
  • step S204 the first determination unit 40 determines whether or not the standby room temperature Trs acquired in step S202 is equal to or lower than the arrival determination temperature Tac in the cooling operation mode. That is, in step S204, the first determination unit 40 determines whether or not the condition of Trs ⁇ Tac is satisfied.
  • the arrival determination temperature Tac in the cooling operation mode is a value obtained by adding the permissible difference temperature ⁇ Ts, which is predetermined to a value of 0 or more, to the set temperature Ts. Since the set temperature Ts and the permissible difference temperature ⁇ Ts are predetermined values, the arrival determination temperature Tac in the cooling operation mode is also a predetermined value.
  • step S204 when the first determination unit 40 determines that the standby room temperature Trs is equal to or lower than the arrival determination temperature Tac (step S204, YES), the air conditioner 1 performs the process of step S205. ..
  • step S205 the timer unit 36 ends the measurement of the arrival time touch. That is, the arrival time touch measures the time from the start of the process of step S201 to the start of the process of step S205.
  • the arrival time tack is such that the temperature of the air in the room is equal to or less than the arrival determination temperature Tac after the air conditioner 1 starts the operation in the cooling operation mode. I am measuring the time until it becomes.
  • step S205 the air conditioner 1 performs the processing of step S206.
  • step S206 the air conditioner side storage unit 38 stores the arrival time touch for which the measurement was completed in step S205.
  • step S206 After the processing in step S206 is completed, the air conditioner 1 ends the standby processing.
  • step S204 when the first determination unit 40 determines that the standby room temperature Trs is larger than the arrival determination temperature Tac (step S204, NO), the air conditioner 1 returns to the process of step S202 and returns to the process of step S202.
  • the temperature acquisition unit 37 acquires the standby room temperature Trs.
  • step S203 when the first determination unit 40 determines that the air conditioner 1 is not operating in the cooling operation mode (steps S203, NO), the air conditioner 1 performs the process of step S207. conduct.
  • step S207 the first determination unit 40 determines whether or not the standby room temperature Trs acquired in step S202 is equal to or higher than the arrival determination temperature Tah in the heating operation mode. That is, in step S207, the first determination unit 40 determines whether or not the condition of Trs ⁇ Tah is satisfied.
  • the arrival determination temperature Tah in the heating operation mode is a value obtained by subtracting the permissible difference temperature ⁇ Ts, which is set to a value of 0 or more in advance, with respect to the set temperature Ts. Since the set temperature Ts and the permissible difference temperature ⁇ Ts are predetermined values, the arrival determination temperature Tah in the heating operation mode is also a predetermined value.
  • step S207 when the first determination unit 40 determines that the standby indoor temperature Trs is equal to or higher than the arrival determination temperature Tah (steps S207, YES), the air conditioner 1 performs the process of step S205. , The measurement of the arrival time touch is completed. That is, when the air conditioner 1 is operating in the heating operation mode, the arrival time touch is such that the temperature of the air in the room becomes equal to or higher than the arrival determination temperature Tah after the air conditioner 1 starts operation in the heating operation mode. I am measuring the time until it becomes.
  • step S205 After the process of step S205 is completed, the air conditioner 1 performs the process of step S206, and the air conditioner side storage unit 38 stores the arrival time touch. After the processing in step S206 is completed, the air conditioner 1 ends the standby processing.
  • step S207 when the first determination unit 40 determines that the standby room temperature Trs is smaller than the arrival determination temperature Tah (steps S207, NO), the air conditioner 1 returns to the process of step S202.
  • the temperature acquisition unit 37 acquires the standby room temperature Trs.
  • step S105 the data generation unit 43 generates an operation data group and an arrival time data group.
  • the operation data group is a data group indicating under what circumstances the air conditioner 1 is operating, and is composed of a plurality of data.
  • the operation data group includes at least the room temperature Trb before the start of operation and model data. Further, in the embodiment, the operation data group includes the outdoor temperature To, the set temperature Ts, and the installation date in addition to the indoor temperature Trb before the start of operation and the model data.
  • the arrival time data group is a data group relating to the time from the start of operation of the air conditioner 1 to the arrival determination temperature, and is composed of a single data or a plurality of data.
  • the arrival time data group includes at least the arrival time touch. In the embodiment, the arrival time data group includes only the arrival time touch. In the following description, when both the operation data group and the arrival data group are referred to, they are simply referred to as a data group.
  • step S106 the air conditioner side transmission unit 44 converts the data group generated in step S105 into a signal, and transmits the converted signal to the server 5.
  • the signal transmitted from the air conditioner 1 in step S106 is referred to as a storage feed signal.
  • step S107 the server-side receiving unit 54 receives the stored feed signal transmitted from the air conditioner 1 in step S106. Further, in step S107, the server-side receiving unit 54 converts the stored feed signal into a format in which the server-side storage unit 55 can store the data group.
  • step S108 the server-side storage unit 55 associates and stores the data included in the data group. That is, in step S108, the server-side storage unit 55 stores at least the room temperature Trb before the start of operation, the model data, and the arrival time touch in association with each other. Further, in the embodiment, the server-side storage unit 55 stores the indoor temperature Trb before the start of operation, the set temperature Ts, the arrival time touch, the outdoor temperature To, the model data, and the installation date in association with each other.
  • the operation data group and the arrival time data group stored in the server-side storage unit 55 will be referred to as a storage operation data group and a storage arrival time data group, respectively. Further, when it refers to both the storage operation data group and the storage arrival time data group, it is referred to as a storage data group. Further, the indoor temperature Trb before the start of operation, the set temperature Ts, the outdoor temperature To, the model data, the installation date, and the arrival time stored in the storage unit 55 on the server side are stored. And the memory model data, the memory installation date, and the memory arrival time, respectively.
  • FIG. 7 is a diagram for explaining data stored in the server-side storage unit according to the air conditioning system of the embodiment.
  • the same ID includes the pre-operation indoor temperature Trb, the set temperature Ts, the arrival time touch, the outdoor temperature To, the model data, and the installation date included in the same storage feed signal. It is associated and memorized by adding.
  • the storage model data of MSZ-AXXX with ID 0001 the storage installation date of February 14, 2010, the storage temperature of 28.0 ° C before air conditioning, and the storage of 30.0 ° C.
  • the outdoor temperature, the storage set temperature of 24.0 ° C., and the storage arrival time of 730 sec are the data originally included in the same storage feed signal.
  • step S109 the server-side transmission unit 58 transmits the storage return signal to the air conditioner 1 that has transmitted the storage feed signal.
  • the storage return signal includes data for notifying that the data included in the operation data group and the arrival time data group is stored in the server-side storage unit 55.
  • step S109 After the processing in step S109 is completed, the server 5 ends the operation data storage control. Further, after the processing in step S109 is completed, the air conditioner 1 performs the processing in step S110. In step S110, the air conditioner side receiving unit 45 receives the accumulated return signal transmitted from the server 5 in step S109. After the processing of step S110 is completed, the air conditioner 1 ends the operation data storage control.
  • the air conditioning system 100 controls the accumulation of operation data.
  • the server 5 accumulates the data included in the operation data group and the arrival time data group generated by the air conditioner 1 connected to the server 5 so as to be able to transmit or receive the data.
  • the server 5 stores the data included in the operation data group and the arrival time data group generated by the four air conditioner 1s 1a to 1d.
  • step S101 when the set temperature Ts is changed while the air conditioning system 100 is processing the operation data accumulation control from step S101 to step S105, the air conditioning system 100 performs the operation before the set temperature Ts is changed.
  • the operation data storage control is terminated and the operation data storage control is newly started.
  • FIG. 8 is a sequence diagram of operation data analysis control of the air conditioning system according to the embodiment.
  • the operation data analysis control analysis is performed based on the operation data group of the air conditioner 1 at the time of the operation data analysis control and the storage data group stored in the server 5, and whether or not the capacity of the air conditioner 1 is deteriorated. It is a control to judge whether or not.
  • the operation data analysis control starts the operation of the air conditioner 1 when the user inputs an operation to operate the air conditioner 1 to the input unit 39 or when the time reaches a preset operation start time. It is executed when you do. That is, in the embodiment, the operation data analysis control is started at the same timing as the operation data accumulation control.
  • the storage unit 38 on the air conditioner side determines the set temperature Ts and whether the air conditioner 1 operates in the cooling operation mode or the heating operation mode.
  • the mode data and the analysis correction value Td are stored.
  • the analysis correction value Td is a value used in determining whether or not the capacity of the air conditioner 1 is deteriorated in the operation data analysis control, and is predetermined to be an arbitrary value of 0 or more.
  • step S301 the air conditioning device 1 first performs the process of step S301.
  • step S301 as in step S101, the temperature acquisition unit 37 sets the pre-operation indoor temperature Trb, which is the temperature of the indoor air before the air conditioner 1 starts operation, and the outdoor temperature To, which is the temperature of the outdoor air. get. Since the process of step S301 is the same as the process of step S101 described above and the operation data analysis control and the operation data storage control are started at the same timing, the process of step S101 and step S301 is the same one process. It may be.
  • step S301 the air conditioner 1 performs the processing of step S302.
  • step S302 the air conditioner side storage unit 38 stores the pre-operation indoor temperature Trb and the outdoor temperature To acquired in step S301 in the same manner as in step S102. For the same reason as in step S301, step S102 and step S302 may be treated as the same process.
  • step S303 the data generation unit 43 generates an operation data group.
  • the operation data group generated in step S303 is the same as the operation data group described in the process of step S105.
  • the operation data group generated in step S105 is used as the operation data group in the operation data analysis control without generating the operation data group in step S303. You may use it.
  • the operation data group generated in step S303 is used as the operation data group in the operation data storage control without generating the operation data group in step S105. You may use it.
  • step S304 the air conditioner side transmission unit 44 converts the operation data group generated in step S303 into a signal, and transmits the converted signal to the server 5.
  • the signal transmitted from the air conditioner 1 in step S304 is referred to as an analysis feed signal.
  • step S305 the air conditioner 1 performs the process of step S305.
  • step S305 similarly to step S103, the command unit 41 transmits a command signal to start the operation of the air conditioning device 1 to the air conditioning unit 42, and starts the operation of the air conditioning device 1. If the process of step S103 has already been performed and the air conditioner 1 is operating at the time when the process of step S305 is started, the process of step S305 is omitted and the process of step S305 is treated as completed.
  • step S304 the server 5 performs the process of step S306.
  • step S306 the server-side receiving unit 54 receives the analysis feed signal transmitted from the air conditioner 1 in step S304. Further, in step S306, the server-side receiving unit 54 converts the analysis feed signal into a format in which the analysis unit 56 can acquire the data of the operation data group.
  • step S307 the analysis unit 56 extracts from the server-side storage unit 55 the storage arrival time associated with the storage operation data group related to the data of the operation data group included in the analysis feed signal.
  • the pre-operation indoor temperature Trb, the set temperature Ts, the outdoor temperature To, the model data, and the storage date, which are included in the analysis feed signal are related to the pre-operation indoor temperature, the storage set temperature, and the storage outdoor temperature, respectively.
  • the storage arrival time associated with the storage model data and the storage installation date is extracted. More specifically, the associated storage pre-start indoor temperature, storage set temperature Ts, storage outdoor temperature To, and storage model data are analyzed in step S306.
  • the pre-operation indoor temperature Trb and the set temperature are included in the feed signal.
  • the Ts, the outdoor temperature To, and the model data match, and the storage arrival time after the installation date in which the associated storage installation date is included in the analysis feed signal is extracted.
  • step S307 will be described in detail with reference to FIG. 7.
  • the data of the operation data group included in the analysis feed signal received in step S306 is that the model data is MSZ-AXXXX, the installation date is January 30, 2010, and the room temperature Trb before air conditioning is 28. It is assumed that the temperature is 0 ° C., the outdoor temperature To is 30.0 ° C., and the set temperature Ts is 24.0 ° C.
  • the storage arrival time extracted by the process of step S307 is 730 sec with ID 0001, 710 sec with ID 0007, and 720 sec with ID 0008.
  • ID0002 the storage model data is different from the model data included in the analysis feed signal.
  • the storage outdoor temperature is different from the outdoor temperature To included in the analysis feed signal. Is different from the air conditioning pre-chamber temperature Trb included in the analysis feed signal, so the storage set temperature is different from the set temperature Ts included in the analysis feed signal for ID0005, so the storage installation date is included in the analysis feed signal for ID0006. Since it is before the installation date, the arrival time data with each ID is not extracted.
  • step S307 The operation data analysis control after the processing of step S307 is completed will be described with reference to FIG.
  • the server performs the processing of step S308.
  • the calculation unit 57 calculates the threshold time tt based on the memory arrival time extracted in step S307.
  • a method of calculating the threshold time tt based on the memory arrival time for example, a method in which the average value of the memory arrival time extracted in step S307 is set as the threshold time tt, and a method in which the storage arrival time extracted in step S307 has a large indoor space.
  • Examples thereof include a method in which the most frequent value of the stored memory arrival time is set as the threshold time tt.
  • the average value of the memory arrival time extracted in step S307 is defined as the threshold time tt.
  • step S308 A specific example of the processing in step S308 will be described.
  • the memory arrival times extracted in step S307 are 730 sec, 710 sec, and 720 sec.
  • the average value of the storage arrival times extracted in step S307 is set as the threshold time tt, so that the threshold time tt is 720 sec.
  • step S309 the server-side transmission unit 58 transmits the analysis return signal to the air conditioner 1 that has transmitted the analysis transmission signal.
  • the analysis return signal includes the threshold time tt derived in step S308. That is, in step S309, the server 5 provides the air conditioner 1 with the threshold time tt.
  • step S309 the server 5 ends the operation data analysis control. Further, after the processing of step S305 and step S309 is completed, the air conditioner 1 performs the processing of step S310.
  • step S310 the air conditioner side receiving unit 45 receives the analysis return signal transmitted from the server 5 in step S309. Further, in step S310, the receiving unit 45 on the air conditioner side converts the analysis return signal into a format in which the second determination unit 46 can acquire the threshold time tt.
  • step S310 the air conditioner 1 performs the processing of step 311.
  • step S311 the air conditioner 1 performs a capacity reduction determination process.
  • the capacity reduction determination process is a process for determining whether or not the capacity of the air conditioner 1 is reduced.
  • FIG. 9 is a flowchart of the capacity reduction determination process of the air conditioner according to the embodiment. Here, the capacity reduction determination process will be described in detail with reference to FIG.
  • step S401 the timer unit 36 starts measuring the elapsed time t.
  • the timer unit 36 resets the elapsed time t and measures the time from 0.
  • step S401 the air conditioner 1 performs the processing of step S402.
  • step S402 the second determination unit 46 determines whether or not the elapsed time t has elapsed the threshold time tt included in the analysis return signal received in step S310. That is, in step S402, the second determination unit 46 determines whether or not the condition of t ⁇ tt is satisfied.
  • step S402 when the second determination unit 46 determines that the elapsed time t has not elapsed the threshold time tt (steps S402, NO), the air conditioner 1 performs the process of step S402 again. ..
  • step S403 when the second determination unit 46 determines that the elapsed time t has passed the threshold time tt (step S402, YES), the air conditioner 1 performs the process of step S403.
  • the temperature acquisition unit 37 acquires the indoor temperature Tra after the threshold time, which is the temperature of the air in the room after the threshold time tt has elapsed.
  • the temperature measured by the indoor temperature sensor 19 at the time of step S403 is defined as the indoor temperature Tra after the threshold time.
  • step S404 the second determination unit 46 determines whether or not the air conditioner 1 is operating in the cooling operation mode.
  • the second determination unit 46 acquires the mode data stored in the air conditioner side storage unit 38 as in step S203, and the mode data indicates that the operation is performed in the cooling operation mode. If, it is determined that the air conditioner 1 is operating in the cooling operation mode, and if the mode data is data indicating that the operation is performed in the heating operation mode, the air conditioner 1 is operated in the heating operation mode. Judge that you are doing.
  • step S404 when the second determination unit 46 determines that the air conditioner 1 is operating in the cooling operation mode (steps S404, YES), the air conditioner 1 performs the process of step S405. conduct.
  • step S405 the second determination unit 46 determines whether or not the capacity of the air conditioner 1 is reduced based on the room temperature Tra after the threshold time, the set temperature Ts, and the analysis correction value Td acquired in step S403.
  • the second determination unit 46 determines whether or not the room temperature Tra after the threshold time is larger than the sum of the set temperature Ts and the analysis correction value Td. That is, in step S405, the second determination unit 46 determines whether or not the condition of Tra> Ts + Td is satisfied.
  • the second determination unit 46 of the embodiment determines that the capacity of the air conditioner 1 is reduced when the condition of Tra> Ts + Td is satisfied, and when the condition of Tra> Ts + Td is not satisfied, the air conditioner is harmonized. It is determined that the capacity of the device 1 has not deteriorated.
  • FIG. 10 shows the temperature of the air in the room and the start of operation of the air conditioner when the second determination unit of the air conditioner according to the embodiment determines that the capacity of the air conditioner has not deteriorated in the cooling operation mode. This is an example of a graph showing the relationship with the elapsed time from.
  • FIG. 11 shows the temperature of the air in the room and the start of operation of the air conditioner when the second determination unit of the air conditioner according to the embodiment determines that the capacity of the air conditioner is reduced in the cooling operation mode. This is an example of a graph showing the relationship with the elapsed time from.
  • the temperature of the air in the room decreases as the elapsed time from the start of operation of the air conditioner increases in both FIGS. 10 and 11.
  • the amount of decrease in the temperature of the indoor air per elapsed time is smaller in FIG. 11 than in FIG. Therefore, assuming that the room temperature after the threshold time is Tra, which is the temperature of the air in the room when the elapsed time reaches the threshold time tt, the room temperature after the threshold time in FIG. 11 is compared with the room temperature Tra after the threshold time in FIG. Tra is higher.
  • the room temperature Tra after the threshold time in FIG. 10 is smaller than the sum of the set temperature Ts and the analysis correction value Td. Therefore, in FIG. 10, the condition of Tra> Ts + Td is not satisfied.
  • the room temperature Tra after the threshold time in FIG. 11 is larger than the sum of the set temperature Ts and the analysis correction value Td. Therefore, in FIG. 11, the condition of Tra> Ts + Td is satisfied.
  • the threshold time tt matches the indoor temperature Trb before the start of operation, the set temperature Ts, the outdoor temperature To, and the model data of the air conditioner 1 that controls the operation data analysis, and the installation date is the operation.
  • the average value of the storage arrival time of the air conditioner 1 after the air conditioner 1 that controls the data analysis is used. Therefore, the fact that the condition of Tra> Ts + Td is not satisfied can be said to be higher or equivalent to the average cooling capacity of the air conditioner 1 of the same model installed under the same environment. Further, satisfying the condition of Tra> Ts + Td means that the cooling capacity is lower than the average cooling capacity of the air conditioner 1 of the same model installed under the same environment. Further, the cooling capacity corresponds to the capacity of the air conditioner 1 in the cooling operation mode. Therefore, it can be determined whether or not the capacity of the air conditioner 1 is reduced based on the room temperature Tra after the threshold time, the set temperature Ts, and the analysis correction value Td.
  • step S405 The capacity reduction determination process after the process of step S405 is completed will be described with reference to FIG.
  • the second determination unit 46 determines that the capacity of the air conditioner 1 is reduced in the process of step S405 (steps S405 and YES)
  • the air conditioner 1 performs the process of step S406.
  • the notification control unit 47 controls the notification unit 48 so that the notification unit 48 notifies the user that the capacity of the air conditioner 1 is reduced.
  • the notification control unit 47 generates display data to be displayed on the display, which is the notification unit 48, and the display displays the generated display data.
  • FIG. 12 is a diagram showing an example of display contents displayed on the notification unit of the air conditioner according to the embodiment.
  • the display content shown in FIG. 12 is displayed on the notification unit 48 in step S407.
  • the display contents include the symbol information 48a and the character information 48b.
  • the symbol information 48a uses a symbol to notify that the capacity of the air conditioner 1 is reduced.
  • the symbol information 48a is, for example, a graph showing the relationship between the temperature of the air in the room and the time.
  • the character information 48b uses characters to notify that the capacity of the air conditioner 1 is reduced.
  • the character information 18a is, for example, a sentence of "the cooling capacity is reduced".
  • the text information 18a of the embodiment is a sentence of "As a result of analyzing the operation data of the same model and the operation data of this air conditioner, the cooling capacity is reduced, so it is recommended to purchase a new air conditioner.” Is displayed, and the text is a text prompting a new purchase of the air conditioner 1.
  • step S406 The capacity reduction determination process after the process of step S406 is completed will be described with reference to FIG. After the end of step S406, the air conditioner 1 ends the capacity reduction determination process.
  • the air conditioner 1 ends the capacity decrease determination process.
  • step S404 determines that the air conditioner 1 is not operating in the cooling operation mode in the process of step S404 (step S404, NO)
  • the air conditioner 1 performs the process of step S407. conduct.
  • step S407 the second determination unit 46 determines whether or not the capacity of the air conditioner 1 is reduced based on the room temperature Tra after the threshold time, the set temperature Ts, and the analysis correction value Td acquired in step S403.
  • the air conditioner 1 is operated in the heating operation mode. Therefore, in the embodiment, in step S407, the second determination unit 46 determines whether or not the room temperature Tra after the threshold time is smaller than the difference between the set temperature Ts and the analysis correction value Td.
  • step S405 the second determination unit 46 determines whether or not the condition of Tra ⁇ Ts-Td is satisfied. Further, the second determination unit 46 of the embodiment determines that the capacity of the air conditioner 1 is reduced when the condition of Tra ⁇ Ts-Td is satisfied, and does not satisfy the condition of Tra ⁇ Ts-Td. In that case, it is determined that the capacity of the air conditioner 1 has not deteriorated.
  • the threshold time tt is a combination of the indoor temperature Trb before the start of operation of the air conditioner 1 performing operation data analysis control, the set temperature Ts, the outdoor temperature To, and the model data.
  • the average value of the past arrival times of the air conditioner 1 after the installation date of the air conditioner 1 whose operation data analysis control is performed is used. Therefore, the fact that the condition of Tra ⁇ Ts-Td is not satisfied can be said to be higher or equivalent to the average heating capacity of the air conditioner 1 of the same model installed under the same environment. .. Further, satisfying the condition of Tra ⁇ Ts-Td means that the heating capacity is lower than the average heating capacity of the air conditioner 1 of the same model installed under the same environment.
  • the heating capacity corresponds to the capacity of the air conditioner 1 in the heating operation mode. Therefore, it can be determined whether or not the capacity of the air conditioner 1 is reduced based on the room temperature Tra after the threshold time, the set temperature Ts, and the analysis correction value Td.
  • step S407 determines that the capacity of the air conditioner 1 is reduced (step S407, YES)
  • the air conditioner 1 performs the processing of step S406, and then the air conditioner 1. 1 ends the capacity reduction determination process. Since the process of step S406 is the same as the process described above, the description thereof will be omitted.
  • step S407 determines that the capacity of the air conditioner 1 has not decreased in the process of step S407 (step S407, NO)
  • the air conditioner 1 ends the capacity decrease determination process.
  • step S311 The operation data analysis control after the capacity reduction determination process in step S311 is completed will be described with reference to FIG. After the processing of step S311 is completed, the air conditioner 1 ends the operation data analysis control.
  • the air conditioning system 100 performs operation data analysis control. This makes it possible to determine whether or not the capacity of the air conditioner 1 is reduced based on the storage operation data group stored in the server 5 and the storage arrival time. In other words, in the case shown in FIG. 1, whether or not the capacity of the current air-conditioning device 1a is reduced is determined by checking the air in the air-conditioning target space different from the air-conditioning target space in which the air-conditioning device 1a is harmonized. It is possible to make a judgment based on the operation data group and the arrival time data group generated in the past by the harmonizing air conditioning devices 1b to 1d.
  • the air conditioning system 100 performs the operation data analysis control performed before the set temperature Ts is changed. It ends and starts new operation data analysis control.
  • the configuration of the air conditioning system 100 includes an air conditioning device 1a that harmonizes the temperature of the air in the air conditioning target space (corresponding to indoor air) with a predetermined set temperature, and air conditioning.
  • the pre-operation temperature (corresponding to the room temperature Trb before the start of operation), which is the temperature of the air in the air conditioning target space before the device 1a performs harmonization, is acquired, and the threshold time tt after the air-conditioning device 1a starts the harmonization.
  • the temperature acquisition unit 37 that acquires the temperature after the threshold time (corresponding to the room temperature Tra after the threshold time), which is the temperature of the air in the air conditioning target space at the time when the air conditioning target space has passed, the timer unit 36 that measures the threshold time tt, and the air.
  • Other air conditioners different from the harmonization target space A memory indicating the type of other air conditioner set in another air conditioner (corresponding to at least one of air conditioners 1b to 1d) that harmonizes the air in the target space.
  • the storage arrival time which is the time until the temperature of the air-conditioning target space in the air conditioner reaches the arrival determination temperature set in the other air-conditioning device, is stored and the storage model data is associated with the storage pre-start temperature and the storage arrival time.
  • the storage unit (corresponding to the server-side storage unit 55) and the storage model data related to the storage model data indicating the pre-operation temperature related to the storage operation start temperature and the type of the air conditioner 1a are associated with each other.
  • An analysis unit 56 that extracts a plurality of storage arrival times from the storage unit, a calculation unit 57 that calculates a threshold time tt based on a plurality of storage arrival times extracted by the analysis unit 56, and air conditioning based on the temperature after the threshold time and the set temperature.
  • a judgment unit (corresponding to the second judgment unit 46) for determining whether or not the capacity of the device 1a is reduced, and a notification unit 48 when the judgment unit determines that the capacity of the air conditioning device 1a is reduced.
  • a notification control unit 47 that controls to notify that the capacity of the air conditioner 1a is reduced is provided.
  • the analysis unit 56 and the analysis unit 56 extract a plurality of storage arrival times associated with the storage pre-operation temperature related to the pre-operation temperature and the storage model data related to the model data from the storage unit.
  • the calculation unit 57 that calculates the threshold time tt based on the plurality of extracted memory arrival times, the air conditioning system of the embodiment sets an appropriate threshold time and suppresses the deterioration of user convenience. Has the effect of being able to.
  • the storage unit stores a plurality of storage model data, a plurality of storage operation pre-start temperatures, and a plurality of storage arrival times, and the analysis unit.
  • the air conditioning system 100 according to the embodiment can set a more appropriate threshold time as compared with the case where the storage model data stored in the storage unit and the storage arrival time are one. It has the effect that can be achieved.
  • the air conditioning system 100 has a storage pre-start temperature related to the pre-operation temperature, which is a storage pre-start temperature that matches the pre-operation temperature, and is model data.
  • the storage model data related to the above has a configuration in which the storage model data matches the model data.
  • the air conditioning device 1a can be operated in a cooling operation mode in which the temperature of the air in the air conditioning target space is lowered, and the determination unit is in air conditioning.
  • the device 1a is in the cooling operation mode and the temperature after the threshold time is larger than the sum of the set temperature and the predetermined analysis correction value, it has a configuration for determining that the capacity of the air conditioning device 1a is reduced.
  • the air conditioning system 100 according to the embodiment can accurately determine whether or not the capacity of the air conditioning device 1a is reduced when the air conditioning device 1a is in the cooling operation mode. It works.
  • the air conditioning device 1a can be operated in a heating operation mode in which the temperature of the air in the air conditioning target space is raised, and the determination unit is in air conditioning.
  • the device 1a is in the heating operation mode and the temperature after the threshold time is smaller than the difference between the set temperature and the predetermined analysis correction value, it has a configuration for determining that the capacity of the air conditioning device 1a is reduced.
  • the air conditioning system 100 according to the embodiment can accurately determine whether or not the capacity of the air conditioning device 1a is reduced when the air conditioning device 1a is in the heating operation mode. It works.
  • the storage unit stores a plurality of storage set temperatures which are set temperatures set in other air harmonizing devices, and stores the storage set temperature and the storage model data.
  • Storage The temperature before the start of operation and the arrival time of storage are stored in association with each other, and the analysis unit 56 stores the temperature before the start of operation, the temperature before the start of operation, the storage model data, and the set temperature. It has a configuration in which a plurality of memory arrival times associated with and are extracted from the storage unit.
  • the air conditioning system 100 according to the embodiment has the effect of being able to set a more appropriate threshold time, as will be shown later.
  • the air conditioning system 100 has, as an additional configuration, a configuration in which the storage set temperature related to the set temperature is a storage set temperature that matches the set temperature.
  • the air conditioning system 100 according to the embodiment has the effect of being able to set a more appropriate threshold time, as will be shown later.
  • the temperature acquisition unit 37 acquires the outdoor temperature To, which is the temperature of the air in the outdoor space, which is a space different from the air conditioning target space.
  • the storage unit stores multiple storage outdoor temperatures, which are past air temperatures in the outdoor space, which is a space different from other air harmonization target spaces, and stores the storage outdoor temperature, storage model data, storage operation start temperature, and storage arrival time.
  • the analysis unit 56 stores the storage before the start of operation, the storage model data related to the model data, and the storage arrival time related to the outdoor temperature To. It has a configuration for extracting a plurality from the storage unit.
  • the air conditioning system 100 has the effect of being able to set a more appropriate threshold time, as will be shown later.
  • the air conditioning system 100 has, as an additional configuration, a configuration in which the storage outdoor temperature related to the outdoor temperature To is a storage outdoor temperature that coincides with the outdoor temperature To.
  • the air conditioning system 100 according to the embodiment has the effect of being able to set a more appropriate threshold time, as will be shown later.
  • the storage unit stores and stores a plurality of storage installation dates, which are the dates when the other air conditioning devices are installed in the other air conditioning target spaces.
  • Day and storage Model data and storage The temperature before the start of operation and the arrival time of storage are stored in association with each other, and the analysis unit 56 stores the temperature related to the temperature before the start of operation and the storage model data related to the model data and air harmony. It has a configuration in which a plurality of memory arrival times associated with a memory installation date related to the installation date, which is the date when the device is installed in the air harmonized target space, are extracted from the storage unit.
  • the air conditioning system 100 has the effect of being able to set a more appropriate threshold time, as will be shown later.
  • the air conditioning system 100 has a configuration in which the storage installation date related to the installation date is a storage installation date of a date after the installation date.
  • the air conditioning system 100 according to the embodiment has the effect of being able to set a more appropriate threshold time, as will be shown later.
  • the temperature acquisition unit 37 acquires the temperature of the air in the air conditioning target space, and the timer 29 is the temperature after the air conditioning device starts harmonization.
  • the acquisition unit 37 measures the arrival time, which is the time until the temperature of the air in the air harmonization target space acquired reaches the arrival determination temperature, and the storage unit stores the pre-operation temperature, model data, and achievement time, respectively, before the start of operation. It has a configuration in which the temperature and the storage model data are associated with the storage arrival time and stored.
  • the air conditioning system 100 collects the operation data group of the air conditioning device 1a, and when the collected operation data group is determined to reduce the capacity of the other air conditioning devices 1b to 1d. It has an effect that can be used for.
  • data is collected from a plurality of air conditioners (corresponding to air conditioners 1a to 1d) via a network, the collected data is stored as a storage data group, and the storage data group is used.
  • the storage data group is the storage model data indicating each type of a plurality of air conditioners and before each of the plurality of air conditioners perform harmonization.
  • the first step (corresponding to step S306) to acquire the current operation data group including the temperature before the start of operation, which is the temperature of, and the storage model data related to the model data and the storage operation start related to the temperature before the start of operation.
  • the second step (corresponding to step S307) for extracting the storage arrival time related to the previous temperature from the stored data group, and the third step (step S307) for calculating the threshold time based on the storage arrival time extracted in the second step.
  • Step S308 is applicable
  • a fourth step (corresponding to step S309) of providing the threshold time calculated in the third step to the air conditioner 1a for which the operation data group is acquired in the first step is provided. It is a composition.
  • the data providing method according to the embodiment has a configuration for extracting a plurality of storage arrival times in the second step as an additional configuration.
  • the data providing method according to the embodiment has an effect that a more appropriate threshold time can be set as compared with the case where one storage arrival time is extracted.
  • the data providing method according to the embodiment has a storage pre-start temperature that coincides with the pre-operation temperature with the pre-operation temperature related to the pre-operation temperature in the second step.
  • the storage model data related to the model data has a configuration in which the storage model data matches the model data.
  • the stored data group includes the storage model data, the temperature before the start of the storage operation, and the storage set temperature and storage preset for each of the plurality of air conditioners.
  • the operation data group acquired in the first step is stored in association with each arrival time, and includes the set temperature preset in the air conditioner 1a, and is stored in the second step with the stored model data related to the model data. It is provided with a configuration for extracting a plurality of storage arrival times related to the storage pre-start temperature related to the operation start temperature and the storage set temperature related to the set temperature from the storage data group.
  • the data providing method according to the embodiment has, as an additional configuration, a configuration in which the storage set temperature related to the set temperature in the second step is a storage set temperature that matches the set temperature.
  • the data providing method according to the embodiment has an effect that a more appropriate threshold time can be set as shown for the reason described later.
  • the storage data group is the temperature of the past air in the outdoor space different from the air harmonization target space of each of the plurality of air harmonizers. Temperature and storage Model data and storage The temperature before the start of operation and the storage arrival time are stored in association with each other, and the operation data group acquired in the first step contains the temperature of the outdoor space different from the air harmonization target space of the air conditioner 1a.
  • the storage model data related to the model data and the storage related to the temperature before the start of operation The storage arrival time related to the temperature before the start of operation and the storage outdoor temperature related to the outdoor temperature are included. It is provided with a configuration for extracting a plurality of temperatures from a stored data group.
  • the data providing method according to the embodiment has an effect that a more appropriate threshold time can be set as shown for the reason described later.
  • the data providing method according to the embodiment has, as an additional configuration, a configuration in which the storage outdoor temperature related to the outdoor temperature in the second step is a storage outdoor temperature that matches the outdoor temperature.
  • the data providing method according to the embodiment has an effect that a more appropriate threshold time can be set as shown for the reason described later.
  • the storage data group includes the storage installation date and the storage model data, which are the dates when each of the plurality of air harmonizers is installed in the air harmonization target space.
  • the operation data group acquired in the first step includes the installation date, which is the date when the air conditioner 1a is installed in the air adjustment target space.
  • storage model data related to model data and storage related to pre-operation temperature Storage related to pre-operation start temperature and installation date
  • Multiple storage arrival times related to installation date are extracted from the storage data group. It has a configuration.
  • the data providing method according to the embodiment has an effect that a more appropriate threshold time can be set as shown for the reason described later.
  • the data providing method according to the embodiment has a configuration in which the storage installation date related to the installation date in the second step is a storage installation date of a date after the installation date.
  • the data providing method according to the embodiment has an effect that a more appropriate threshold time can be set as shown for the reason described later.
  • the indoor temperature before the start of the storage operation is related to the indoor temperature Trb before the start of the operation, but the present invention is not limited to this.
  • the room temperature before the start of the storage operation is within the temperature range in which the room temperature Trb is contained, the room temperature before the start of the storage operation may be related to the room temperature Trb before the start of the operation.
  • the indoor temperature before the start of the storage operation is lower than the indoor temperature Trb before the start of operation by a predetermined temperature, which is equal to or higher than the indoor temperature Trbl before the start of operation, and is higher than the indoor temperature Trb before the start of operation by a predetermined temperature.
  • the room temperature Trbh may be related to the room temperature Trb before the start of operation. More specifically, when the indoor temperature Trb before the start of operation is 30.0 ° C., 29.5 ° C., which is 0.5 ° C. lower than the indoor temperature Trb before the start of operation, is set as the lower limit indoor temperature Trbl before the start of operation. When the upper limit pre-start room temperature Trbh is 30.5 ° C, which is 0.5 ° C higher than the pre-start room temperature Trb, and the pre-start room temperature falls within the temperature range of 29.5 ° C to 30.5 ° C.
  • the room temperature before the start of operation may be related to the room temperature Trb before the start of operation.
  • the storage set temperature when the storage set temperature is within the temperature range in which the set temperature Ts is entered, the storage set temperature may be related to the set temperature Ts.
  • the storage outdoor temperature when the storage outdoor temperature falls within the temperature range in which the outdoor temperature To enters, the storage outdoor temperature may be related to the outdoor temperature To.
  • the room temperature Trb before the start of the operation is entered.
  • the room temperature before the start of the storage operation is within the temperature range, the room temperature before the start of the storage operation can derive a more appropriate threshold time tt as compared with the case where the room temperature before the start of the operation is related to the room temperature Trb. In the latter case, for example, when the majority of the room temperature before the start of the memory operation is higher than the room temperature Trb before the start of the memory operation, the room temperature before the start of the memory operation is the room temperature before the start of the memory operation.
  • the case where the temperature in the room before the start of the memory operation is related to the temperature Trb in the room before the start of the operation when it matches the temperature in the front room Trb includes a case where a clearly appropriate threshold time tt is set. Therefore, when the indoor temperature before the start of the memory operation matches the indoor temperature Trb before the start of the operation, it is desirable that the indoor temperature before the start of the memory operation is related to the indoor temperature Trb before the start of the operation. This also applies to the storage set temperature and the storage outdoor temperature.
  • the storage model data when the storage model data matches the model data, the storage model data is related to the model data, but the present invention is not limited to this, and even if the storage model data and the model data do not exactly match.
  • the storage model data and the model data may be related. For example, when the air conditioner whose model data is MSZ-AXXX is replaced by the air conditioner whose model data is MSZ-AZZZ due to a model change, when the model data is MSZ-AXXX, the stored model data is MSZ-AZZZ. Data may also be relevant.
  • the storage model data matches the model data and the storage model data is related to the model data, the storage model data and the model data do not exactly match. Even so, a more appropriate threshold time tt can be derived as compared with the case where the storage model data and the model data are related. Therefore, when the stored model data matches the model data, it is desirable that the stored model data is related to the model data.
  • the memory installation date is a date after the installation date
  • the memory installation date is related to the installation date, but the present invention is not limited to this, and the memory installation date is a date before the installation date. Even if there is, it may be said that the storage model data and the model data are related.
  • the storage installation date is later than the installation date and the storage model data is related to the model data, even if the storage installation date is earlier than the installation date, it will be the storage model data.
  • a more appropriate threshold time tt can be derived as compared with the case where the model data is involved. This means that if the storage installation date is earlier than the installation date, the storage operation data associated with the storage installation date is the storage operation data for the air conditioner older than the air conditioner for which the installation date was acquired. This is because there is a high possibility that the data is stored operation data when the capacity is lowered as compared with the case where the storage installation date is a date after the installation date. It is clear that a more appropriate threshold time tt is set when the storage operation data is smaller when the capacity is reduced. Therefore, it is preferable that the storage model data is related to the model data when the storage installation date is later than the installation date.
  • the indoor temperature before the start of operation Trb, the set temperature Ts, the outdoor temperature To, the model data, and the storage date related to the installation date are stored.
  • the memory arrival time associated with the memory installation date is extracted, but not limited to this.
  • At least the storage arrival time associated with the storage pre-start indoor temperature and the storage model data related to the pre-operation start room temperature Trb and the model data may be extracted.
  • a more appropriate threshold time tt is set by specifying using the set temperature Ts, the outdoor temperature To, and the installation date.
  • the storage arrival time associated with the storage data related to the data may be extracted by using the indoor temperature Trb before the start of operation, the set temperature Ts, the outdoor temperature To, the model data, and the data other than the installation date.
  • the calculation unit 57 is provided in the server 5, but the present invention is not limited to this, and the calculation unit 57 may be provided in the air conditioner 1.
  • the arithmetic unit 57 is realized by the processor 26, 30 or 33 executing the process according to the program stored in the memory 27, 31 or 34.
  • the server performs the processing of step S309.
  • the analysis return signal transmitted in step S309 includes the storage arrival time extracted in step S307.
  • the air conditioner 1 performs the processing of step S308 to derive the threshold time tt.
  • FIG. 13 is a schematic diagram of an air conditioning system according to a modified example of the embodiment.
  • FIG. 14 is a diagram showing an example of display contents displayed on the notification device according to the modified example of the embodiment.
  • the user is notified that the capacity of the air conditioning device 1 is lower than that of the notification terminal 24 of the remote controller 4, but the data is not limited to this and the data is transmitted to the notification device 400 not included in the air conditioning system 1. By sending the data, the user may be notified that the capacity of the air conditioner 1 is reduced.
  • the notification device 400 is a device that notifies the user of data by notation or voice.
  • Examples of the notification device 400 include a personal computer, a television, a smartphone, a tablet terminal, and the like.
  • the notification device 400 is connected to the air conditioner 1 so as to be able to transmit or receive data.
  • the air conditioner 1 and the notification device 400 are configured to be able to directly transmit or receive data, but the configuration is not limited to this, and the air conditioner 1 and the notification device 400 are not limited to this, for example, via a network 300.
  • the configuration may be such that data can be indirectly transmitted or received.
  • the notification unit 48 is realized by the notification device 400 and is not included in the air conditioning system 1.
  • FIG. 14 is a diagram showing an example of display contents displayed on the notification device according to the modified example of the embodiment.
  • the display content shown in FIG. 14 is displayed on the notification device 400 in step S407.
  • the display contents include the symbol information 400e and the character information 400f. Since the symbol information 400e is the same as the symbol information 48a described in the embodiment, the description thereof will be omitted. Since the character information 400f is the same as the character information 48b described in the embodiment except that the URL (Uniform Resource Locator) of the online shop of the air conditioner is displayed, the description thereof will be omitted. By selecting the URL, the user can shop at the online shop of the air conditioner.
  • URL Uniform Resource Locator
  • an icon in which the hyperlink of the online shop of the air conditioner is set may be displayed in the symbol information 400a.
  • the notification control unit 47 when the determination unit determines that the capacity of the air conditioning device is reduced, the notification control unit 47 is notified by the notification unit (notification device 400). Applicable) has a configuration to display the hyperlink of the online shop of the air conditioner.
  • the additional configuration has the effect of encouraging users to purchase a replacement air conditioner with reduced performance.

Abstract

The purpose of the present invention is to obtain an air conditioning system that determines an appropriate threshold time and curbs any decrease in user convenience. An air conditioning system 100 of the present disclosure is provided with: an air conditioning device 1; a temperature acquisition unit 37; a timer 29; a server-side storage unit 55 for associating together and storing stored model data that has been set for another air conditioning device, a stored pre-operation-start temperature, and a stored arrival time; an analysis unit 56 for extracting, from the server-side storage unit 55, the stored arrival time that has been associated with a stored pre-operation-start temperature related to a pre-operation-start temperature and stored model data related to model data; a computation unit 57 for computing a threshold time on the basis of a plurality of stored arrival times that have been extracted; a second determination unit 46 for determining whether the capability of the air conditioning device 1 has decreased on the basis of a post-threshold-time temperature and a set temperature; and a notification control unit 46 for performing control for causing a notification unit 47 to notify that the capability of the air conditioning device 1 has decreased if the second determination unit 46 has determined that the capability of the air conditioning device 1 has decreased.

Description

空気調和システムおよびデータ提供方法Air conditioning system and data provision method
 本開示は空気調和システムおよび空気調和システムに用いられるコンピュータのデータ提供方法に関する。 This disclosure relates to an air conditioning system and a method of providing data on a computer used in the air conditioning system.
 従来、特許文献1のように、管理サーバーと空気調和装置(特許文献1のエアコンが該当)とがデータの送信または受信が可能なように接続され、室内温度が目標値に到達するまでの時間が閾時間(特許文献1の所定時間が該当)を超えた場合には空気調和装置の能力低下に関する情報(特許文献1のメンテナンス情報が該当)を表示するための表示データを管理サーバーがモバイル情報端末に提供するデータ処理システムが開示されている。 Conventionally, as in Patent Document 1, the management server and the air conditioner (corresponding to the air conditioner of Patent Document 1) are connected so as to be able to transmit or receive data, and the time until the room temperature reaches the target value. When the threshold time (corresponding to the predetermined time of Patent Document 1) is exceeded, the management server manages the display data for displaying the information on the capacity deterioration of the air conditioner (corresponding to the maintenance information of Patent Document 1). The data processing system provided to the terminal is disclosed.
WO2014/171118号公報WO2014 / 171118 Gazette
 しかしながら、特許文献1では所定時間の決定方法について開示されていない。つまり、特許文献1では閾時間が適切に決定されていない場合には、適切なタイミングで表示データを提供することができない。このため、空気調和装置の能力が低下していないにも関わらず能力低下に関する情報を表示する場合、または空気調和装置の能力が低下しているにも関わらず能力低下に関する情報を表示しない場合が生じ、双方の場合でユーザーの利便性が低下するという課題があった。 However, Patent Document 1 does not disclose a method for determining a predetermined time. That is, in Patent Document 1, if the threshold time is not appropriately determined, the display data cannot be provided at an appropriate timing. For this reason, there are cases where the information regarding the capacity reduction is displayed even though the capacity of the air conditioner is not reduced, or the information regarding the capacity reduction is not displayed even though the capacity of the air conditioner is reduced. In both cases, there was a problem that the convenience of the user was reduced.
 本開示は、適切な閾時間を決定しユーザーの利便性を向上する空気調和システムおよび空気調和システムに用いられるコンピュータのデータ提供方法を得ることを目的とする。 The present disclosure aims to obtain an air conditioning system and a computer data providing method used for the air conditioning system, which determines an appropriate threshold time and improves user convenience.
 本開示の空気調和システムは、空気調和対象空間の空気の温度を予め定められた設定温度に調和する空気調和装置と、空気調和装置が調和を行う前の空気調和対象空間の空気の温度である開始前温度を取得し空気調和装置が調和を開始してから閾時間を経過した時点の空気調和対象空間の空気の温度である閾時間後温度を取得する温度取得部と、閾時間を計時するタイマーと、空気調和対象空間と異なる他の空気調和対象空間の空気を調和する他の空気調和装置に設定された他の空気調和装置の種類を示す記憶機種データを複数記憶し他の空気調和装置が調和を開始する前の他の空気調和対象空間の温度である記憶運転開始前温度を複数記憶し他の空気調和装置が調和を開始してから他の空気調和対象空間の温度が他の空気調和装置に設定された記憶設定温度に達するまでの時間である記憶到達時間を複数記憶し記憶機種データと記憶運転開始前温度と記憶到達時間をそれぞれ関連付けて記憶する記憶部と、運転開始前温度に関係する記憶運転開始前温度と空気調和装置の種類を示す機種データに関係する記憶機種データとに関連付けられた記憶到達時間を記憶部から複数抽出する解析部と、抽出した複数の記憶到達時間に基づき閾時間を演算する演算部と、閾時間後温度と設定温度に基づき空気調和装置の能力が低下しているか否かを判断する判断部と、判断部が空気調和装置の能力が低下していると判断した場合に、報知部に対して空気調和装置の能力が低下していることを報知させる制御を行う報知制御部と、を備える。 The air-conditioning system of the present disclosure is an air-conditioning device that harmonizes the temperature of the air in the air-conditioning target space with a predetermined set temperature, and the air temperature of the air-conditioning target space before the air-conditioning device harmonizes. The temperature acquisition unit that acquires the temperature before the start and acquires the temperature after the threshold time, which is the temperature of the air in the air conditioning target space at the time when the threshold time elapses after the air conditioner starts harmonization, and the threshold time is measured. A timer and a storage model indicating the type of another air conditioner set in another air conditioner that harmonizes the air in another air conditioner different from the air conditioner target space. Is the temperature of the other air-conditioning target space before the start of harmony. Stores multiple temperatures before the start of operation, and after the other air-conditioning device starts the harmony, the temperature of the other air-conditioning target space is the other air. A storage unit that stores a plurality of storage arrival times, which is the time required to reach the storage set temperature set in the air conditioner, and stores the storage model data and the storage pre-operation temperature and the storage arrival time in association with each other, and the pre-operation temperature. The analysis unit that extracts multiple storage arrival times associated with the storage model data related to the model data that indicates the temperature before the start of the storage operation and the type of air conditioner, and the multiple storage arrival times that are extracted. The capacity of the air conditioner is reduced by the calculation unit that calculates the threshold time based on the above, the judgment unit that determines whether the capacity of the air conditioner is reduced based on the temperature after the threshold time and the set temperature, and the judgment unit. It is provided with a notification control unit that controls the notification unit to notify that the capacity of the air conditioner is reduced when it is determined that the condition is low.
 また、本開示のデータ提供方法は、ネットワークを介して複数の空気調和装置からデータを収集し収集したデータを過去データ群として記憶し過去データ群を用いて閾時間を演算し演算した閾時間を用いて複数の空気調和装置のいずれか一つの空気調和装置の能力が低下しているか否かを判断する空気調和システムに用いられるコンピュータが実行するデータ提供方法であり、過去データ群は複数の空気調和装置のそれぞれの種類を示す記憶機種データと複数の空気調和装置のそれぞれが調和を行う前の空気調和対象空間の温度である記憶運転開始前温度と空気調和装置のそれぞれが調和を開始してから空気調和装置のそれぞれに設定された到達判定温度に達するまでの時間である記憶到達温度とを関連付けて記憶されたデータ群であり、ネットワークを介し空気調和装置から当該空気調和装置の種類を示す機種データと当該空気調和装置が調和を行う前の空気調和対象空間の空気の温度である運転開始前温度とを含む現在の運転データ群を取得する第1のステップと、機種データに関係する記憶機種データと運転開始前温度に関係する記憶運転開始温度とに関連する記憶到達時間を過去データ群より複数抽出する第二のステップと、第二のステップで抽出した複数の記憶到達時間に基づき閾時間を演算する第三のステップと、第三のステップで演算した閾時間を第一のステップで運転データ群を取得した空気調和装置に提供する第四のステップと、を備える。 Further, in the data providing method of the present disclosure, data is collected from a plurality of air conditioners via a network, the collected data is stored as a past data group, and the threshold time is calculated using the past data group to calculate the threshold time. It is a data provision method executed by a computer used in an air conditioning system to determine whether or not the capacity of any one of the air conditioning devices is reduced by using the past data group. Storage model data indicating each type of harmonizing device and storage, which is the temperature of the air harmonizing target space before each of the multiple air harmonizing devices harmonizes. It is a data group stored in association with the storage arrival temperature, which is the time required to reach the arrival determination temperature set for each of the air conditioners, and indicates the type of the air conditioner from the air conditioner via the network. The first step to acquire the current operation data group including the model data and the temperature before the start of operation, which is the temperature of the air in the air harmonization target space before the air conditioner is harmonized, and the memory related to the model data. Storage related to model data and pre-operation temperature The threshold is based on the second step of extracting multiple storage arrival times related to the operation start temperature from the past data group and the multiple storage arrival times extracted in the second step. The third step of calculating the time and the fourth step of providing the threshold time calculated in the third step to the air conditioner for which the operation data group is acquired in the first step are provided.
 本開示の空気調和システムおよび空気調和システムに用いられるコンピュータのデータ提供方法は、適切な閾時間を決定することができ、ユーザーの利便性を向上する効果を奏する。 The air conditioning system of the present disclosure and the data providing method of the computer used in the air conditioning system can determine an appropriate threshold time and have the effect of improving the convenience of the user.
実施の形態に係る空気調和システムの概略図である。It is a schematic diagram of the air conditioning system which concerns on embodiment. 実施の形態に係る空気調和装置の概略図である。It is a schematic diagram of the air conditioner which concerns on embodiment. 実施の形態に係る空気調和システムのハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware composition of the air conditioning system which concerns on embodiment. 実施の形態に係る空気調和システムの機能構成を示すブロック図である。It is a block diagram which shows the functional structure of the air conditioning system which concerns on embodiment. 実施の形態に係る空気調和システムの運転データ蓄積制御のシーケンス図である。It is a sequence diagram of the operation data accumulation control of the air conditioning system which concerns on embodiment. 実施の形態に係る空気調和装置の待機処理のフローチャートである。It is a flowchart of the standby process of the air conditioner which concerns on embodiment. 実施の形態の空気調和システムに係るサーバー側記憶部に蓄積されるデータを説明するための図である。It is a figure for demonstrating the data stored in the server-side storage part which concerns on the air-conditioning system of embodiment. 実施の形態に係る空気調和システムの運転データ解析制御のシーケンス図である。It is a sequence diagram of the operation data analysis control of the air conditioning system which concerns on embodiment. 実施の形態に係る空気調和装置の能力低下判定処理のフローチャートである。It is a flowchart of the capacity reduction determination process of the air conditioner which concerns on embodiment. 実施の形態に係る空気調和装置の第二の判断部が空気調和装置の能力が低下していないと判断する場合における室内の空気の温度と空気調和装置の運転開始からの経過時間との関係を表すグラフの一例である。The relationship between the temperature of the air in the room and the elapsed time from the start of operation of the air conditioner when the second determination unit of the air conditioner according to the embodiment determines that the capacity of the air conditioner has not deteriorated. This is an example of a graph to represent. 実施の形態に係る空気調和装置の第二の判断部が空気調和装置の能力が低下していると判断する場合における室内の空気の温度と空気調和装置の運転開始からの経過時間との関係を表すグラフの一例である。The relationship between the temperature of the air in the room and the elapsed time from the start of operation of the air conditioner when the second determination unit of the air conditioner according to the embodiment determines that the capacity of the air conditioner is deteriorated. This is an example of a graph to represent. 実施の形態に係る空気調和装置の報知部に表示される表示内容の例を示す図である。It is a figure which shows the example of the display content which is displayed in the notification part of the air conditioner which concerns on embodiment. 実施の形態の変形例に係る空気調和システムの概略図である。It is a schematic diagram of the air conditioning system which concerns on the modification of embodiment. 実施の形態の変形例に係る報知機器に表示される表示内容の例を示す図である。It is a figure which shows the example of the display content displayed on the notification device which concerns on the modification of embodiment.
 本開示の実施の形態に係る空気調和システムについて図面に基づいて説明する。なお、本開示は以降の実施の形態のみに限定されることはなく、本開示の趣旨を逸脱しない範囲で変形または省略することが可能である。また、各図において共通する要素には同一の符号を付して重複する説明を省略する。 The air conditioning system according to the embodiment of the present disclosure will be described with reference to the drawings. The present disclosure is not limited to the following embodiments, and can be modified or omitted without departing from the spirit of the present disclosure. Further, the same reference numerals are given to common elements in each figure, and duplicate description will be omitted.
実施の形態.
 図1は実施の形態に係る空気調和システムの概略図である。図1を用いて空気調和システムの概略について説明する。空気調和システム100は複数の空気調和装置1とサーバー5とを有する。なお、同様の機能を有する複数の装置から、一の装置を区別して説明する場合には英小文字の添字を付して説明する。例えば空気調和装置1aから1dはそれぞれ同様の機能を有する装置であるので、説明が共通する場合は空気調和装置1と表記し、区別して説明する場合は空気調和装置1aと添字を付して表記する。さらに、実施の形態では添字としてaからdを用いるが、数量がこれに限定されるものではなく、空気調和装置1の数量は2以上であれば良い。また、図1に記載している建築物200とネットワーク300は説明のために記載されており、空気調和システム100に含まれない。
Embodiment.
FIG. 1 is a schematic diagram of an air conditioning system according to an embodiment. The outline of the air conditioning system will be described with reference to FIG. The air conditioning system 100 has a plurality of air conditioning devices 1 and a server 5. In addition, in the case of distinguishing one device from a plurality of devices having the same function, the description will be given with the addition of lowercase letters. For example, since the air conditioners 1a to 1d are devices having the same functions, they are referred to as the air conditioner 1 when the explanations are common, and are described with the subscript as the air conditioner 1a when the explanations are distinguished. do. Further, although a to d are used as subscripts in the embodiment, the quantity is not limited to this, and the quantity of the air conditioner 1 may be 2 or more. Further, the building 200 and the network 300 shown in FIG. 1 are described for the sake of explanation and are not included in the air conditioning system 100.
 空気調和装置1は建築物200の部屋の空気を調和する。空気調和装置1は室内機2と室外機3とリモコン4とを備える。室内機2とリモコン4は建築物200の部屋の内部に設置され、室外機3は建築物200の外部に設置される。なお、以降の説明では建築物200の部屋の内部を室内と称し、建築物200の外部を室外と称する。また、空気調和装置1が調和を行う空気調和対象空間の空気は室内の空気が該当する。 The air conditioner 1 harmonizes the air in the room of the building 200. The air conditioner 1 includes an indoor unit 2, an outdoor unit 3, and a remote controller 4. The indoor unit 2 and the remote controller 4 are installed inside the room of the building 200, and the outdoor unit 3 is installed outside the building 200. In the following description, the inside of the room of the building 200 is referred to as an indoor, and the outside of the building 200 is referred to as an outdoor. Further, the air in the air conditioning target space to be harmonized by the air conditioning device 1 corresponds to the air in the room.
 また、室内機2と室外機3は互いに信号の送受信ができるよう有線または無線で接続される。室内機2とリモコン4は互いに信号の送受信ができるよう有線または無線で接続される。リモコン4はインターネットなどのネットワーク300に有線または無線で接続される。なお、本開示において信号はデータに識別子などを付し送受信が可能なように変換したものである。従って、信号に含まれる内容にはデータが含まれる。 Further, the indoor unit 2 and the outdoor unit 3 are connected by wire or wirelessly so that signals can be transmitted and received to each other. The indoor unit 2 and the remote controller 4 are connected by wire or wirelessly so that signals can be transmitted and received to each other. The remote controller 4 is connected to a network 300 such as the Internet by wire or wirelessly. In the present disclosure, the signal is converted so that it can be transmitted and received by attaching an identifier or the like to the data. Therefore, the content contained in the signal includes data.
 サーバー5は空気調和装置1から送信される信号に含まれるデータを蓄積する。サーバー5はネットワーク300に有線または無線で接続される。つまり、リモコン4とサーバー5はネットワーク300を介して互いに信号の送受信ができるよう接続される。 The server 5 stores the data included in the signal transmitted from the air conditioner 1. The server 5 is connected to the network 300 by wire or wirelessly. That is, the remote controller 4 and the server 5 are connected so as to be able to send and receive signals to and from each other via the network 300.
 図2は実施の形態に係る空気調和装置の概略図である。次に図2を用いて空気調和装置1について説明する。 FIG. 2 is a schematic diagram of the air conditioner according to the embodiment. Next, the air conditioner 1 will be described with reference to FIG.
 空気調和装置1は、圧縮機10と、室外熱交換器11と、膨張弁12と、室内熱交換器13と、四方弁14と、冷媒配管15と、室外送風機16と、室内送風機17と、室外温度センサ18と、室内温度センサ19と、室内機制御装置20と、室外機制御装置21と、報知端末24と、入力端末25と、を備える。また、室内熱交換器13と室内送風機17と室内温度センサ19と室内機制御装置20とは室内機2に設けられる。また、圧縮機10と室外熱交換器11と膨張弁12と四方弁14と室外送風機16と室外温度センサ18と室外機制御装置21とは室外機3に設けられる。また、報知端末24と入力端末25はリモコン4に設けられる。 The air conditioner 1 includes a compressor 10, an outdoor heat exchanger 11, an expansion valve 12, an indoor heat exchanger 13, a four-way valve 14, a refrigerant pipe 15, an outdoor blower 16, an indoor blower 17, and the like. It includes an outdoor temperature sensor 18, an indoor temperature sensor 19, an indoor unit control device 20, an outdoor unit control device 21, a notification terminal 24, and an input terminal 25. Further, the indoor heat exchanger 13, the indoor blower 17, the indoor temperature sensor 19, and the indoor unit control device 20 are provided in the indoor unit 2. Further, the compressor 10, the outdoor heat exchanger 11, the expansion valve 12, the four-way valve 14, the outdoor blower 16, the outdoor temperature sensor 18, and the outdoor unit control device 21 are provided in the outdoor unit 3. Further, the notification terminal 24 and the input terminal 25 are provided on the remote controller 4.
 圧縮機10と室外熱交換器11と膨張弁12と室内熱交換器13と四方弁14は、冷媒配管15で接続され、空気調和装置1には冷媒が循環する冷媒回路が形成される。また、空気調和装置1は例えば建築物200の部屋の空気を予め設定された冷房運転モード時の設定温度まで冷却させる冷房運転モードと、部屋の空気を予め設定された暖房運転モード時の設定温度まで加熱する暖房運転モードと、の二種類の運転モードを有する。冷房運転モード時の冷媒回路と暖房運転モード時の冷媒回路はそれぞれ異なる。 The compressor 10, the outdoor heat exchanger 11, the expansion valve 12, the indoor heat exchanger 13, and the four-way valve 14 are connected by a refrigerant pipe 15, and a refrigerant circuit through which the refrigerant circulates is formed in the air conditioner 1. Further, the air conditioner 1 has, for example, a cooling operation mode in which the air in the room of the building 200 is cooled to a preset temperature in the preset cooling operation mode, and a set temperature in the heating operation mode in which the room air is preset. It has two types of operation modes: a heating operation mode that heats up to. The refrigerant circuit in the cooling operation mode and the refrigerant circuit in the heating operation mode are different from each other.
 冷媒回路を循環する冷媒としては、室外熱交換器11および室内熱交換器13で蒸発または凝縮するような冷媒が用いられる。 As the refrigerant circulating in the refrigerant circuit, a refrigerant that evaporates or condenses in the outdoor heat exchanger 11 and the indoor heat exchanger 13 is used.
 圧縮機10は吸入口から吸入した冷媒を圧縮して高温高圧のガス状態にして吐出口から吐出する。圧縮機10は、例えば容量制御可能なインバータ圧縮機などで構成すると良い。 The compressor 10 compresses the refrigerant sucked from the suction port into a high-temperature and high-pressure gas state and discharges the refrigerant from the discharge port. The compressor 10 may be configured by, for example, an inverter compressor whose capacity can be controlled.
 室外熱交換器11には内部に冷媒が流れる流路が形成される。室外熱交換器11は流路に流れる冷媒と室外の空気との間で熱交換を行わせる。 A flow path through which the refrigerant flows is formed inside the outdoor heat exchanger 11. The outdoor heat exchanger 11 exchanges heat between the refrigerant flowing in the flow path and the outdoor air.
 膨張弁12は内部を通過する冷媒を減圧させる。膨張弁12は冷媒の流量を任意に調整することができる電子膨張弁などで構成すると良い。 The expansion valve 12 depressurizes the refrigerant passing through the inside. The expansion valve 12 may be composed of an electronic expansion valve or the like that can arbitrarily adjust the flow rate of the refrigerant.
 室内熱交換器13には内部に冷媒が流れる流路が形成される。室内熱交換器13は流路に流れる冷媒と室内の空気との間で熱交換を行わせる。 A flow path through which the refrigerant flows is formed inside the indoor heat exchanger 13. The indoor heat exchanger 13 exchanges heat between the refrigerant flowing in the flow path and the indoor air.
 四方弁14は冷房運転モード時の冷媒回路と暖房運転モード時の冷媒回路とを切り替える。四方弁14はaポートとbポートとcポートとdポートの四つのポートを有する。 The four-way valve 14 switches between the refrigerant circuit in the cooling operation mode and the refrigerant circuit in the heating operation mode. The four-way valve 14 has four ports, an a port, a b port, a c port, and a d port.
 冷媒配管15は圧縮機10と室外熱交換器11と膨張弁12と室内熱交換器13と四方弁14とを接続する。具体的には冷媒配管15は圧縮機10の吐出口と四方弁14のaポートとを接続する。冷媒配管15は四方弁14のbポートと室外熱交換器11の流路の一方の端部とを接続する。冷媒配管15は室外熱交換器11の流路の他方の端部と膨張弁12とを接続する。冷媒配管15は膨張弁12と室内熱交換器13の流路の一方の端部とを接続する。冷媒配管15は室内熱交換器13の流路の他方の端部と四方弁14のcポートとを接続する。冷媒配管15は四方弁14のdポートと圧縮機10の吸入口とを接続する。 The refrigerant pipe 15 connects the compressor 10, the outdoor heat exchanger 11, the expansion valve 12, the indoor heat exchanger 13, and the four-way valve 14. Specifically, the refrigerant pipe 15 connects the discharge port of the compressor 10 and the a port of the four-way valve 14. The refrigerant pipe 15 connects the b port of the four-way valve 14 and one end of the flow path of the outdoor heat exchanger 11. The refrigerant pipe 15 connects the other end of the flow path of the outdoor heat exchanger 11 to the expansion valve 12. The refrigerant pipe 15 connects the expansion valve 12 and one end of the flow path of the indoor heat exchanger 13. The refrigerant pipe 15 connects the other end of the flow path of the indoor heat exchanger 13 to the c port of the four-way valve 14. The refrigerant pipe 15 connects the d port of the four-way valve 14 and the suction port of the compressor 10.
 室外送風機16は空気流を生成し、室外熱交換器11に室外の空気を送風する。室外送風機16は例えば回転することで空気流を生成するファンとファンを回転させるモータとで構成すると良い。 The outdoor blower 16 generates an air flow and blows the outdoor air to the outdoor heat exchanger 11. The outdoor blower 16 may be composed of, for example, a fan that generates an air flow by rotating and a motor that rotates the fan.
 室内送風機17は空気流を生成し、室内熱交換器13に室内の空気を送風する。室内送風機17は、室外送風機16と同様にファンとモータとで構成すると良い。 The indoor blower 17 generates an air flow and blows the indoor air to the indoor heat exchanger 13. The indoor blower 17 may be composed of a fan and a motor in the same manner as the outdoor blower 16.
 室外温度センサ18は、室外の空気の温度を計測する。室外温度センサ18は室外送風機16が生成する空気流の途中に設けられており、室外熱交換器11よりも上流側に位置する。つまり、室外温度センサ18は室外熱交換器11に送風される室外の空気の温度を測定する。 The outdoor temperature sensor 18 measures the temperature of the outdoor air. The outdoor temperature sensor 18 is provided in the middle of the air flow generated by the outdoor blower 16, and is located on the upstream side of the outdoor heat exchanger 11. That is, the outdoor temperature sensor 18 measures the temperature of the outdoor air blown to the outdoor heat exchanger 11.
 室内温度センサ19は、室内の空気の温度を計測する。室内温度センサ19は室内送風機17が生成する空気流の途中に設けられており、室内熱交換器13よりも上流側に位置する。つまり、室内温度センサ19は室内熱交換器13に送風される室内の空気の温度を測定する。 The indoor temperature sensor 19 measures the temperature of the indoor air. The indoor temperature sensor 19 is provided in the middle of the air flow generated by the indoor blower 17, and is located on the upstream side of the indoor heat exchanger 13. That is, the indoor temperature sensor 19 measures the temperature of the indoor air blown to the indoor heat exchanger 13.
 室内機制御装置20は、室内機2に設けられた各構成を制御または各構成が計測したデータを取得する。具体的には、室内機制御装置20は、室内送風機17の送風量および風向を制御し、室内温度センサ19が計測した室内の空気の温度を取得する。 The indoor unit control device 20 controls each configuration provided in the indoor unit 2 or acquires data measured by each configuration. Specifically, the indoor unit control device 20 controls the air volume and the wind direction of the indoor blower 17, and acquires the temperature of the indoor air measured by the indoor temperature sensor 19.
 室外機制御装置21は、室外機3に設けられた各構成を制御または各構成が計測したデータを取得する。具体的には、室外機制御装置21は、圧縮機10の回転数と膨張弁12の開度と四方弁14の流路と室外送風機16の送風量とを制御し、室外温度センサ18が計測した室外の空気の温度を取得する。 The outdoor unit control device 21 controls each configuration provided in the outdoor unit 3 or acquires data measured by each configuration. Specifically, the outdoor unit control device 21 controls the rotation speed of the compressor 10, the opening degree of the expansion valve 12, the flow path of the four-way valve 14, and the amount of air blown by the outdoor blower 16, and the outdoor temperature sensor 18 measures the temperature. Get the temperature of the outdoor air.
 室内機制御装置20とリモコン4とは第一の信号線22でデータの送信または受信が可能となるように接続される。また、室内機制御装置20と室外機制御装置21とは第二の信号線23でデータの送信または受信が可能となるように接続されている。つまり、室外機制御装置21とリモコン4についてもデータの送信または受信が可能となるように接続されている。 The indoor unit control device 20 and the remote controller 4 are connected so that data can be transmitted or received by the first signal line 22. Further, the indoor unit control device 20 and the outdoor unit control device 21 are connected so that data can be transmitted or received by the second signal line 23. That is, the outdoor unit control device 21 and the remote controller 4 are also connected so as to be able to transmit or receive data.
 報知端末24は、空気調和装置1を操作するユーザーにデータを表記または音声で報知する。報知装置24が報知するデータとしては、例えば空気調和装置1の運転状況に関するデータまたは空気調和装置1に設定された設定温度に関するデータなどが挙げられる。また、報知端末24には例えば液晶ディスプレイまたはスピーカーなどが用いられ、実施の形態では報知端末24にディスプレイを用いる場合について説明する。 The notification terminal 24 notifies the user who operates the air conditioner 1 of data by notation or voice. Examples of the data notified by the notification device 24 include data on the operating status of the air conditioning device 1 and data on the set temperature set in the air conditioning device 1. Further, for example, a liquid crystal display or a speaker is used for the notification terminal 24, and in the embodiment, a case where a display is used for the notification terminal 24 will be described.
 入力端末25は、ユーザーによる操作の入力が行われる。入力端末から入力されるユーザーの操作としては、空気調和装置が冷房運転モードで運転を行うか暖房運転モードで運転を行うかの選択、設定温度の変更などが挙げられる。また、入力端末25には例えば押しボタンなどのスイッチが用いられる。さらに、報知端末24と入力端末25とを一体化し、報知端末24と入力端末25にタッチパネルを用いても構わない。 The input terminal 25 is used for inputting operations by the user. The user's operation input from the input terminal includes selection of whether the air conditioner operates in the cooling operation mode or the heating operation mode, and the change of the set temperature. Further, a switch such as a push button is used for the input terminal 25. Further, the notification terminal 24 and the input terminal 25 may be integrated, and a touch panel may be used for the notification terminal 24 and the input terminal 25.
 次に空気調和装置1に形成された冷媒回路について説明する。まずは、冷房運転モード時の冷媒回路について説明する。冷房運転モード時の冷媒回路では、四方弁14は図2の実線が示すようにaポートとbポートとを接続しcポートとdポートとを接続する。圧縮機10から吐出された冷媒は室外熱交換器11に流入する。室外熱交換器11に流入した冷媒は、室外熱交換器11の内部に形成された流路を流れ、室外送風機16から送風された室外の空気を加熱する。つまり、冷房運転モード時の冷媒回路では室外熱交換器11は凝縮器として機能する。室外の空気を加熱した冷媒は室外熱交換器11より流出し、膨張弁12に流入して減圧される。膨張弁12で減圧された冷媒は室内熱交換器13に流入する。室内熱交換器13に流入した冷媒は、室内熱交換器13の内部に形成された流路を流れ、室内送風機17から送風された室内の冷媒を冷却する。つまり、冷房運転モード時の冷媒回路では室内熱交換器13は蒸発器として機能する。室内の空気を冷却した冷媒は室内熱交換器13より流出し、圧縮機10に吸入され圧縮されてから再び吐出される。 Next, the refrigerant circuit formed in the air conditioner 1 will be described. First, the refrigerant circuit in the cooling operation mode will be described. In the refrigerant circuit in the cooling operation mode, the four-way valve 14 connects the a port and the b port and connects the c port and the d port as shown by the solid line in FIG. The refrigerant discharged from the compressor 10 flows into the outdoor heat exchanger 11. The refrigerant flowing into the outdoor heat exchanger 11 flows through the flow path formed inside the outdoor heat exchanger 11 and heats the outdoor air blown from the outdoor blower 16. That is, in the refrigerant circuit in the cooling operation mode, the outdoor heat exchanger 11 functions as a condenser. The refrigerant that heats the outdoor air flows out from the outdoor heat exchanger 11 and flows into the expansion valve 12 to reduce the pressure. The refrigerant decompressed by the expansion valve 12 flows into the indoor heat exchanger 13. The refrigerant flowing into the indoor heat exchanger 13 flows through the flow path formed inside the indoor heat exchanger 13 and cools the indoor refrigerant blown from the indoor blower 17. That is, in the refrigerant circuit in the cooling operation mode, the indoor heat exchanger 13 functions as an evaporator. The refrigerant that has cooled the indoor air flows out from the indoor heat exchanger 13, is sucked into the compressor 10, is compressed, and is discharged again.
 次に暖房運転モード時の冷媒回路について説明する。暖房運転モード時の冷媒回路では、四方弁14は図2の破線が示すようにaポートとcポートとを接続しbポートとdポートとを接続する。圧縮機10から吐出された冷媒は室内熱交換器13に流入する。室内熱交換器13に流入した冷媒は、室内熱交換器13の内部に形成された流路を流れ、室内送風機17から送風された室内の空気を加熱する。つまり、暖房運転モード時の冷媒回路では室内熱交換器13は凝縮器として機能する。室内の空気を加熱した冷媒は室内熱交換器13より流出し、膨張弁12に流入して減圧される。膨張弁12で減圧された冷媒は室外熱交換器11に流入する。室外熱交換器11に流入した冷媒は、室外熱交換器11の内部に形成された流路を流れ、室外送風機16から送風された室内の冷媒を冷却する。つまり、暖房運転モード時の冷媒回路では室外熱交換器11は蒸発器として機能する。室外の空気を冷却した冷媒は室外熱交換器11より流出し、圧縮機10に吸入され圧縮されてから再び吐出される。 Next, the refrigerant circuit in the heating operation mode will be described. In the refrigerant circuit in the heating operation mode, the four-way valve 14 connects the a port and the c port and the b port and the d port as shown by the broken line in FIG. The refrigerant discharged from the compressor 10 flows into the indoor heat exchanger 13. The refrigerant flowing into the indoor heat exchanger 13 flows through the flow path formed inside the indoor heat exchanger 13 and heats the indoor air blown from the indoor blower 17. That is, in the refrigerant circuit in the heating operation mode, the indoor heat exchanger 13 functions as a condenser. The refrigerant that has heated the indoor air flows out from the indoor heat exchanger 13 and flows into the expansion valve 12 to reduce the pressure. The refrigerant decompressed by the expansion valve 12 flows into the outdoor heat exchanger 11. The refrigerant flowing into the outdoor heat exchanger 11 flows through the flow path formed inside the outdoor heat exchanger 11 and cools the indoor refrigerant blown from the outdoor blower 16. That is, in the refrigerant circuit in the heating operation mode, the outdoor heat exchanger 11 functions as an evaporator. The refrigerant that has cooled the outdoor air flows out from the outdoor heat exchanger 11, is sucked into the compressor 10, is compressed, and is discharged again.
 図3は実施の形態に係る空気調和システムのハードウェア構成を示すブロック図である。次に図3を用いて空気調和システム100のハードウェア構成について説明する。 FIG. 3 is a block diagram showing the hardware configuration of the air conditioning system according to the embodiment. Next, the hardware configuration of the air conditioning system 100 will be described with reference to FIG.
 リモコン4は、報知端末24と入力端末25とプロセッサ26とメモリ27とハードウェアインターフェース28とタイマー29とを備える。また、リモコン4が備える各ハードウェアはデータの送信または受信が可能となるように接続されている。なお、報知端末24と入力端末25については前述したため説明を省略する。 The remote controller 4 includes a notification terminal 24, an input terminal 25, a processor 26, a memory 27, a hardware interface 28, and a timer 29. Further, each hardware included in the remote controller 4 is connected so as to be able to transmit or receive data. Since the notification terminal 24 and the input terminal 25 have been described above, the description thereof will be omitted.
 プロセッサ26は、メモリ27に記憶されているプログラムを実行することでリモコン4が備えるハードウェアの制御または処理を実行する。例えば、プロセッサ26は報知端末24が報知する内容を変更する。 The processor 26 executes the control or processing of the hardware included in the remote controller 4 by executing the program stored in the memory 27. For example, the processor 26 changes the content notified by the notification terminal 24.
 メモリ27は、プロセッサ26が実行するプログラムおよびプログラムの実行に必要なデータを記憶する。また、メモリ27はプロセッサ26の作業領域として用いられる。例えば、メモリ27は設定温度を記憶する。 The memory 27 stores a program executed by the processor 26 and data necessary for executing the program. Further, the memory 27 is used as a work area of the processor 26. For example, the memory 27 stores the set temperature.
 ハードウェアインターフェース28は、他のハードウェアインターフェースと無線または有線で信号の送信または受信を行う。 The hardware interface 28 transmits or receives signals wirelessly or by wire with other hardware interfaces.
 タイマー29は計測開始からの経過時間の測定を行う。 Timer 29 measures the elapsed time from the start of measurement.
 室内機2は、室内送風機17と室内温度センサ19とプロセッサ30とメモリ31とハードウェアインターフェース32とを備える。また、室内機2が備える各ハードウェアはデータの送信または受信が可能となるように接続されている。なお、室内送風機17と室内温度センサ19については前述したため説明を省略する。また、ハードウェアインターフェース32についてはハードウェアインターフェース28と同様であるため説明を省略する。 The indoor unit 2 includes an indoor blower 17, an indoor temperature sensor 19, a processor 30, a memory 31, and a hardware interface 32. Further, each hardware included in the indoor unit 2 is connected so as to be able to transmit or receive data. Since the indoor blower 17 and the indoor temperature sensor 19 have been described above, the description thereof will be omitted. Further, since the hardware interface 32 is the same as the hardware interface 28, the description thereof will be omitted.
 プロセッサ30は、メモリ31に記憶されているプログラムを実行することで室内機2が備えるハードウェアの制御または処理を実行する。例えば、プロセッサ30は室内送風機17の送風量を変更する。 The processor 30 executes the control or processing of the hardware included in the indoor unit 2 by executing the program stored in the memory 31. For example, the processor 30 changes the amount of air blown by the indoor blower 17.
 メモリ31は、プロセッサ30が実行するプログラムおよびプログラムの実行に必要なデータを記憶する。また、メモリ31はプロセッサ30の作業領域として用いられる。例えば、メモリ31は室内温度センサ19が測定した室内の温度を記憶する。 The memory 31 stores a program executed by the processor 30 and data necessary for executing the program. Further, the memory 31 is used as a work area of the processor 30. For example, the memory 31 stores the indoor temperature measured by the indoor temperature sensor 19.
 室外機3は、圧縮機10と膨張弁12と四方弁14と室外送風機16と室外温度センサ18とプロセッサ33とメモリ34とハードウェアインターフェース35とを備える。また、室外機3が備える各ハードウェアはデータの送信または受信が可能となるように接続されている。なお、圧縮機10と膨張弁12と四方弁14と室外送風機16と室外温度センサ18については前述したため説明を省略する。また、ハードウェアインターフェース35についてはハードウェアインターフェース28と同様であるため説明を省略する。 The outdoor unit 3 includes a compressor 10, an expansion valve 12, a four-way valve 14, an outdoor blower 16, an outdoor temperature sensor 18, a processor 33, a memory 34, and a hardware interface 35. Further, each hardware included in the outdoor unit 3 is connected so as to be able to transmit or receive data. Since the compressor 10, the expansion valve 12, the four-way valve 14, the outdoor blower 16, and the outdoor temperature sensor 18 have been described above, the description thereof will be omitted. Further, since the hardware interface 35 is the same as the hardware interface 28, the description thereof will be omitted.
 プロセッサ33は、メモリ34に記憶されているプログラムを実行することで室外機3が備えるハードウェアの制御または処理を実行する。例えば、プロセッサ33は圧縮機10の回転数を変更する。 The processor 33 executes the control or processing of the hardware included in the outdoor unit 3 by executing the program stored in the memory 34. For example, the processor 33 changes the rotation speed of the compressor 10.
 メモリ34は、プロセッサ33が実行するプログラムおよびプログラムの実行に必要なデータを記憶する。また、メモリ34はプロセッサ33の作業領域として用いられる。例えば、メモリ34は室外温度センサ18が測定した室外の温度を記憶する。 The memory 34 stores the program executed by the processor 33 and the data necessary for executing the program. Further, the memory 34 is used as a work area of the processor 33. For example, the memory 34 stores the outdoor temperature measured by the outdoor temperature sensor 18.
 サーバー5は、プロセッサ51とメモリ52とハードウェアインターフェース53とを備える。なお、ハードウェアインターフェース53についてはハードウェアインターフェース28と同様であるため説明を省略する。 The server 5 includes a processor 51, a memory 52, and a hardware interface 53. Since the hardware interface 53 is the same as the hardware interface 28, the description thereof will be omitted.
 プロセッサ51は、メモリ52に記憶されているプログラムを実行することで処理を実行する。プロセッサ51が行う処理については後述する。 The processor 51 executes the process by executing the program stored in the memory 52. The processing performed by the processor 51 will be described later.
 メモリ52は、プロセッサ51が実行するプログラムおよびプログラムの実行に必要なデータを記憶する。また、メモリ52はプロセッサ51の作業領域として用いられる。メモリ52が記憶するデータについては後述する。 The memory 52 stores a program executed by the processor 51 and data necessary for executing the program. Further, the memory 52 is used as a work area of the processor 51. The data stored in the memory 52 will be described later.
 プロセッサ26、30、33及び51は例えばCPU(Central Processing Unit)である。メモリ27、31、34及び52は例えばRAM(Randam Access Memory)などの揮発性メモリ、ROM(Read Only Memory)などの不揮発性メモリまたは揮発性メモリと不揮発性メモリの両方である。ハードウェアインターフェース28、32、35及び53は例えば無線通信インターフェースまたは有線通信インターフェースである。 Processors 26, 30, 33 and 51 are, for example, CPUs (Central Processing Units). The memories 27, 31, 34 and 52 are, for example, a volatile memory such as a RAM (Random Access Memory), a non-volatile memory such as a ROM (Read Only Memory), or both a volatile memory and a non-volatile memory. Hardware interfaces 28, 32, 35 and 53 are, for example, wireless communication interfaces or wired communication interfaces.
 図4は実施の形態に係る空気調和システムの機能構成を示すブロック図である。次に図4を用いて空気調和システム100の機能構成について説明する。 FIG. 4 is a block diagram showing a functional configuration of the air conditioning system according to the embodiment. Next, the functional configuration of the air conditioning system 100 will be described with reference to FIG.
 空気調和装置1は、タイマー部36と、温度取得部37と、空気調和装置側記憶部38と、入力部39と、第一の判断部40と、指令部41と、空気調和部42と、データ生成部43と、空気調和装置側送信部44と、空気調和装置側受信部45と、第二の判断部46と、報知制御部47と、報知部48と、を備える。 The air conditioner 1 includes a timer unit 36, a temperature acquisition unit 37, an air conditioner side storage unit 38, an input unit 39, a first determination unit 40, a command unit 41, an air conditioner unit 42, and the like. It includes a data generation unit 43, an air conditioner side transmission unit 44, an air conditioner side reception unit 45, a second determination unit 46, a notification control unit 47, and a notification unit 48.
 タイマー部36は、計測開始からの経過時間の測定を行う。 The timer unit 36 measures the elapsed time from the start of measurement.
 温度取得部37は、空気調和装置1が調和を行う室内の空気の温度および室外の空気の温度を取得する。 The temperature acquisition unit 37 acquires the temperature of the indoor air and the temperature of the outdoor air that the air conditioner 1 harmonizes.
 空気調和装置側記憶部38は、第一の判断部40、指令部41、データ生成部43、第二の判断部46または報知制御部47における処理に用いられる各種データを記憶する。各種データとしては例えば設定温度などが挙げられる。また、実施の形態では空気調和装置側記憶部38には、型番などの空気調和装置1の種類を示す機種データが空気調和装置1の製造時に記憶され、空気調和装置1が建築物200に設置された日である設置日が空気調和装置側1の設置時に記憶されているとする。 The air conditioner side storage unit 38 stores various data used for processing in the first determination unit 40, the command unit 41, the data generation unit 43, the second determination unit 46, or the notification control unit 47. Examples of various data include set temperatures. Further, in the embodiment, the air conditioner side storage unit 38 stores model data indicating the type of the air conditioner 1 such as the model number at the time of manufacturing the air conditioner 1, and the air conditioner 1 is installed in the building 200. It is assumed that the installation date, which is the date set, is stored at the time of installation of the air conditioner side 1.
 入力部39は、ユーザーから操作に関するデータが入力される。ユーザーは入力部39より設定温度を変更する操作などを行うことができる。 Data related to the operation is input from the user to the input unit 39. The user can perform an operation such as changing the set temperature from the input unit 39.
 第一の判断部40は、タイマー部36が測定した経過時間と温度取得部37が取得した温度と空気調和装置側記憶部38が記憶するデータとに基づいて判断を行う。第一の判断部40が行う判断の詳細な内容については後述する。 The first determination unit 40 makes a determination based on the elapsed time measured by the timer unit 36, the temperature acquired by the temperature acquisition unit 37, and the data stored in the air conditioner side storage unit 38. The detailed contents of the judgment made by the first judgment unit 40 will be described later.
 指令部41は、温度取得部37が取得した温度と空気調和装置側記憶部38が記憶するデータに基づいて空気調和部42へ送信する指令信号を生成する。指令信号の例としては例えば圧縮機10の回転数を所定の回転数に変更する信号が挙げられる。 The command unit 41 generates a command signal to be transmitted to the air conditioner unit 42 based on the temperature acquired by the temperature acquisition unit 37 and the data stored in the air conditioner side storage unit 38. Examples of the command signal include a signal for changing the rotation speed of the compressor 10 to a predetermined rotation speed.
 空気調和部42は、室内の空気を調和する。 The air conditioning unit 42 harmonizes the indoor air.
 データ生成部43は、第一の判断部40の判断内容と空気調和装置側記憶部38が記憶するデータに基づいてサーバー5に送信されるデータを生成する。 The data generation unit 43 generates data to be transmitted to the server 5 based on the determination content of the first determination unit 40 and the data stored in the air conditioner side storage unit 38.
 空気調和装置側送信部44は、データ生成部43が生成したデータを信号に変換し、サーバー5へ送信する。 The air conditioner side transmission unit 44 converts the data generated by the data generation unit 43 into a signal and transmits it to the server 5.
 空気調和装置側受信部45は、サーバー5から信号を受信し、受信した信号を第二の判断部46で処理できる形式に変換する。 The receiving unit 45 on the air conditioner side receives a signal from the server 5 and converts the received signal into a format that can be processed by the second determination unit 46.
 第二の判断部46は、タイマー部36が測定した経過時間と温度取得部37が取得した温度と空気調和装置側記憶部38が記憶するデータと空気調和装置側受信部45で受信した信号に含まれるデータとに基づいて判断を行う。第二の判断部46が行う判断の詳細な内容については後述する。 The second determination unit 46 receives the elapsed time measured by the timer unit 36, the temperature acquired by the temperature acquisition unit 37, the data stored in the air conditioner side storage unit 38, and the signal received by the air conditioner side receiver 45. Make a decision based on the data contained. The detailed contents of the judgment made by the second judgment unit 46 will be described later.
 報知制御部47は、第二の判断部46の判断内容に基づいて報知部48を制御する。また、報知制御部47は、報知部48で報知するデータを生成する。 The notification control unit 47 controls the notification unit 48 based on the determination content of the second determination unit 46. Further, the notification control unit 47 generates data to be notified by the notification unit 48.
 報知部48は報知制御部47で生成されたデータに基づいてユーザーに情報を報知する。 The notification unit 48 notifies the user of information based on the data generated by the notification control unit 47.
 第一の判断部40と指令部41とデータ生成部43と第二の判断部46と報知制御部47とは、それぞれプロセッサ26、30又は33がメモリ27、31又は34に記憶されたプログラムに従って処理を実行することで実現される。また、タイマー部36はタイマー29で実現される。また、温度取得部37は室外温度センサ18と室内温度センサ19とで実現される。また、入力部39は入力端末25で実現される。また、空気調和部42は圧縮機10と膨張弁12と四方弁14と室内送風機17と室外送風機16とで実現される。また、空気調和装置側送信部44と空気調和装置側受信部45とはそれぞれハードウェアインターフェース28で実現される。また、報知部48は報知端末24で実現される。 The first determination unit 40, the command unit 41, the data generation unit 43, the second determination unit 46, and the notification control unit 47 are according to a program in which the processors 26, 30 or 33 are stored in the memory 27, 31 or 34, respectively. It is realized by executing the process. Further, the timer unit 36 is realized by the timer 29. Further, the temperature acquisition unit 37 is realized by the outdoor temperature sensor 18 and the indoor temperature sensor 19. Further, the input unit 39 is realized by the input terminal 25. Further, the air conditioning unit 42 is realized by the compressor 10, the expansion valve 12, the four-way valve 14, the indoor blower 17, and the outdoor blower 16. Further, the transmission unit 44 on the air conditioner side and the reception unit 45 on the air conditioner side are each realized by the hardware interface 28. Further, the notification unit 48 is realized by the notification terminal 24.
 サーバー5は、サーバー側受信部54と、サーバー側記憶部55と、解析部56と、演算部57と、サーバー側送信部58とを備える。 The server 5 includes a server-side receiving unit 54, a server-side storage unit 55, an analysis unit 56, a calculation unit 57, and a server-side transmitting unit 58.
 サーバー側受信部54は、空気調和装置1から信号を受信し、サーバー側記憶部55に記憶できる形式および解析部56が処理できる形式に受信した信号を変換する。 The server-side receiving unit 54 receives a signal from the air conditioner 1 and converts the received signal into a format that can be stored in the server-side storage unit 55 and a format that can be processed by the analysis unit 56.
 サーバー側記憶部55は、解析部56の処理に用いられるデータを記憶する。サーバー側記憶部55が記憶するデータの詳細については後述する。 The server-side storage unit 55 stores the data used for the processing of the analysis unit 56. The details of the data stored in the server-side storage unit 55 will be described later.
 解析部56は、サーバー側受信部54が受信した信号に含まれるデータと、サーバー側記憶部55に記憶されているデータと、に基づき処理を行う。解析部56が行う処理についての詳細な内容は後述する。 The analysis unit 56 performs processing based on the data included in the signal received by the server-side receiving unit 54 and the data stored in the server-side storage unit 55. The detailed contents of the processing performed by the analysis unit 56 will be described later.
 演算部57は、解析部56が処理を行った結果に基づき演算を行う。演算部57が行う演算についての詳細な内容は後述する。 The calculation unit 57 performs a calculation based on the result of the processing performed by the analysis unit 56. The detailed contents of the calculation performed by the calculation unit 57 will be described later.
 サーバー側送信部58は、演算部57の演算結果のデータを信号に変換し、空気調和装置1へ送信する。 The server-side transmission unit 58 converts the calculation result data of the calculation unit 57 into a signal and transmits it to the air conditioner 1.
 サーバー側受信部54とサーバー側送信部58とはそれぞれハードウェアインターフェース53で実現される。サーバー側記憶部55はメモリ52で実現される。解析部56と演算部57はプロセッサ51がメモリ52に記憶されたプログラムに従って処理を実行することで実現される。 The server-side receiving unit 54 and the server-side transmitting unit 58 are each realized by the hardware interface 53. The server-side storage unit 55 is realized by the memory 52. The analysis unit 56 and the calculation unit 57 are realized by the processor 51 executing processing according to a program stored in the memory 52.
 次に空気調和システム1の制御内容について説明する。空気調和システム1は運転データ蓄積制御と運転データ解析制御を行う。 Next, the control contents of the air conditioning system 1 will be described. The air conditioning system 1 performs operation data storage control and operation data analysis control.
 図5は実施の形態に係る空気調和システムの運転データ蓄積制御のシーケンス図である。次に図5を用いて空気調和システム100の運転データ蓄積制御について説明する。運転データ蓄積制御では、サーバー5が空気調和装置1aから1dのそれぞれの運転データを収集し、収集した運転データをサーバー側記憶部55に蓄積させる。また、運転データ蓄積制御は、ユーザーより入力部39に空気調和装置1を運転させる操作が入力された場合または時刻が予め設定された運転開始時刻に達した場合など空気調和装置1の運転を開始する時に実行される。また、運転データ蓄積制御が実行される場合において、空気調和装置側記憶部38には設定温度Tsと空気調和装置1が冷房運転モードで運転を行うか暖房運転モードで運転を行うかを示すモードデータとが記憶されている。 FIG. 5 is a sequence diagram of operation data accumulation control of the air conditioning system according to the embodiment. Next, the operation data storage control of the air conditioning system 100 will be described with reference to FIG. In the operation data storage control, the server 5 collects the operation data of each of the air conditioners 1a to 1d, and stores the collected operation data in the server-side storage unit 55. Further, the operation data storage control starts the operation of the air conditioner 1 when the user inputs an operation to operate the air conditioner 1 to the input unit 39 or when the time reaches a preset operation start time. It is executed when you do. Further, when the operation data storage control is executed, the storage unit 38 on the air conditioner side indicates the set temperature Ts and the mode indicating whether the air conditioner 1 operates in the cooling operation mode or the heating operation mode. The data is stored.
 空気調和システム100が運転データ蓄積制御を開始すると、まず空気調和装置1がステップS101の処理を行う。ステップS101では、温度取得部37は空気調和装置1が運転を開始する前の室内の空気の温度である運転開始前室内温度Trbと室外の空気の温度である室外温度Toを取得する。実施の形態では、ステップS101の時点における室内温度センサ19が計測した温度を運転開始前室内温度Trbとし、室外温度センサ18が計測した温度を室外温度Toとする。 When the air conditioning system 100 starts the operation data storage control, the air conditioning device 1 first performs the process of step S101. In step S101, the temperature acquisition unit 37 acquires the pre-operation indoor temperature Trb, which is the temperature of the indoor air before the air conditioner 1 starts operation, and the outdoor temperature To, which is the temperature of the outdoor air. In the embodiment, the temperature measured by the indoor temperature sensor 19 at the time of step S101 is defined as the indoor temperature Trb before the start of operation, and the temperature measured by the outdoor temperature sensor 18 is defined as the outdoor temperature To.
 ステップS101の処理の終了後、空気調和装置1はステップS102の処理を行う。ステップS102では、ステップS101で取得した運転開始前室内温度Trbと室外温度Toを空気調和装置側記憶部38が記憶する。 After the processing in step S101 is completed, the air conditioner 1 performs the processing in step S102. In step S102, the air conditioner side storage unit 38 stores the pre-operation indoor temperature Trb and the outdoor temperature To acquired in step S101.
 ステップS102の処理の終了後、空気調和装置1はステップS103の処理を行う。ステップS103では、指令部41は空気調和装置1の運転を開始する指令信号を空気調和部42に送信し、空気調和装置1の運転を開始する。実施の形態では、指令部41は四方弁14をモードデータに記憶されている運転に対応する流路に変更する指令信号と、膨張弁12の開度を所定の開度にする指令信号と、圧縮機10の運転を開始する指令信号と、室内送風機16の運転を開始する指令信号と、室外送風機16の運転を開始する指令信号とを空気調和部42に送信する。各種指令信号を受信した空気調和部42は運転を開始し、空気調和装置1は室内の空気の調和を開始する。 After the processing of step S102 is completed, the air conditioner 1 performs the processing of step S103. In step S103, the command unit 41 transmits a command signal to start the operation of the air conditioning device 1 to the air conditioning unit 42, and starts the operation of the air conditioning device 1. In the embodiment, the command unit 41 includes a command signal for changing the four-way valve 14 to a flow path corresponding to the operation stored in the mode data, a command signal for setting the opening degree of the expansion valve 12 to a predetermined opening degree, and a command signal. A command signal for starting the operation of the compressor 10, a command signal for starting the operation of the indoor blower 16, and a command signal for starting the operation of the outdoor blower 16 are transmitted to the air conditioning unit 42. The air-conditioning unit 42 that has received various command signals starts operation, and the air-conditioning device 1 starts the air-conditioning in the room.
 ステップS103の処理の終了後、空気調和装置1はステップS104の処理を行う。ステップS104では空気調和装置1は待機処理を行う。待機処理とは、空気調和装置1が室内の空気調和を開始してから室内の空気の温度が後述する到達判定温度Tacに到達するまで待機する処理である。 After the processing of step S103 is completed, the air conditioner 1 performs the processing of step S104. In step S104, the air conditioner 1 performs a standby process. The standby process is a process of waiting until the temperature of the air in the room reaches the arrival determination temperature Tac, which will be described later, after the air conditioning device 1 starts air conditioning in the room.
 図6は実施の形態に係る空気調和装置の待機処理のフローチャートである。ここで図6を用いて待機処理について詳細を説明する。 FIG. 6 is a flowchart of the standby process of the air conditioner according to the embodiment. Here, the standby process will be described in detail with reference to FIG.
 待機処理を開始すると、空気調和装置1はステップS201の処理を行う。ステップS201では、タイマー部36は到達時間tachの計測を開始する。なお、タイマー部36が到達時間tachの計測を開始する際に、タイマー部36は到達時間tachをリセットし0から時間の計測を行う。 When the standby process is started, the air conditioner 1 performs the process of step S201. In step S201, the timer unit 36 starts measuring the arrival time touch. When the timer unit 36 starts measuring the arrival time touch, the timer unit 36 resets the arrival time touch and measures the time from 0.
 ステップS201の処理の終了後、空気調和装置1はステップS202の処理を行う。ステップS202では、温度取得部37は待機時室内温度Trsを取得する。待機時室内温度Trsとは待機処理を行っている間の室内の空気の温度である。実施の形態では、ステップS202の時点において室内温度センサ19が計測した温度を待機時室内温度Trsとする。 After the processing of step S201 is completed, the air conditioner 1 performs the processing of step S202. In step S202, the temperature acquisition unit 37 acquires the standby room temperature Trs. The standby room temperature Trs is the temperature of the air in the room during the standby process. In the embodiment, the temperature measured by the indoor temperature sensor 19 at the time of step S202 is defined as the standby indoor temperature Trs.
 ステップS202の処理の終了後、空気調和装置1はステップS203の処理を行う。ステップS203では、第一の判断部40は空気調和装置1が冷房運転モードで運転を行っているか否かを判断する。実施の形態では、第一の判断部40は、空気調和装置側記憶部38に記憶されているモードデータを取得し、モードデータが冷房運転モードで運転を行うことを示すデータである場合は空気調和装置1が冷房運転モードで運転を行っていると判断し、モードデータが暖房運転モードで運転を行うことを示すデータである場合は空気調和装置1が暖房運転モードで運転を行っていると判断する。 After the processing of step S202 is completed, the air conditioner 1 performs the processing of step S203. In step S203, the first determination unit 40 determines whether or not the air conditioner 1 is operating in the cooling operation mode. In the embodiment, the first determination unit 40 acquires the mode data stored in the air conditioner side storage unit 38, and when the mode data is data indicating that the operation is performed in the cooling operation mode, air is used. If it is determined that the air conditioner 1 is operating in the cooling operation mode and the mode data is data indicating that the operation is performed in the heating operation mode, it is assumed that the air conditioner 1 is operating in the heating operation mode. to decide.
 ステップS203の処理において、空気調和装置1が冷房運転モードで運転を行っていると第一の判断部40が判断した場合(ステップS203,YES)には、空気調和装置1はステップS204の処理を行う。ステップS204では、第一の判断部40がステップS202で取得した待機時室内温度Trsが冷房運転モードにおける到達判定温度Tac以下であるか否かを判断する。つまり、ステップS204において第一の判断部40はTrs≦Tacの条件を満たすか否かを判断する。なお、冷房運転モードにおける到達判定温度Tacとは設定温度Tsに対して予め0以上の値に定められた許容差異温度ΔTsを加算した値である。設定温度Ts及び許容差異温度ΔTsは予め定められた値であるため、冷房運転モードにおける到達判定温度Tacも予め定められた値である。 In the process of step S203, when the first determination unit 40 determines that the air conditioner 1 is operating in the cooling operation mode (steps S203, YES), the air conditioner 1 performs the process of step S204. conduct. In step S204, the first determination unit 40 determines whether or not the standby room temperature Trs acquired in step S202 is equal to or lower than the arrival determination temperature Tac in the cooling operation mode. That is, in step S204, the first determination unit 40 determines whether or not the condition of Trs ≦ Tac is satisfied. The arrival determination temperature Tac in the cooling operation mode is a value obtained by adding the permissible difference temperature ΔTs, which is predetermined to a value of 0 or more, to the set temperature Ts. Since the set temperature Ts and the permissible difference temperature ΔTs are predetermined values, the arrival determination temperature Tac in the cooling operation mode is also a predetermined value.
 ステップS204の処理において、待機時室内温度Trsが到達判定温度Tac以下であると第一の判断部40が判断した場合(ステップS204,YES)には、空気調和装置1はステップS205の処理を行う。ステップS205では、タイマー部36は到達時間tachの計測を終了する。つまり、到達時間tachはステップS201の処理を開始してからステップS205の処理を開始するまでの時間を計測している。換言すると、空気調和装置1が冷房運転モードで運転をしている場合では、到達時間tachは空気調和装置1が冷房運転モードで運転を開始してから室内の空気の温度が到達判定温度Tac以下になるまでの時間を計測している。 In the process of step S204, when the first determination unit 40 determines that the standby room temperature Trs is equal to or lower than the arrival determination temperature Tac (step S204, YES), the air conditioner 1 performs the process of step S205. .. In step S205, the timer unit 36 ends the measurement of the arrival time touch. That is, the arrival time touch measures the time from the start of the process of step S201 to the start of the process of step S205. In other words, when the air conditioner 1 is operating in the cooling operation mode, the arrival time tack is such that the temperature of the air in the room is equal to or less than the arrival determination temperature Tac after the air conditioner 1 starts the operation in the cooling operation mode. I am measuring the time until it becomes.
 ステップS205の処理の終了後、空気調和装置1はステップS206の処理を行う。ステップS206ではステップS205で計測を終了した到達時間tachを空気調和装置側記憶部38が記憶する。 After the processing of step S205 is completed, the air conditioner 1 performs the processing of step S206. In step S206, the air conditioner side storage unit 38 stores the arrival time touch for which the measurement was completed in step S205.
 ステップS206の処理の終了後、空気調和装置1は待機処理を終了する。 After the processing in step S206 is completed, the air conditioner 1 ends the standby processing.
 ステップS204の処理において、待機時室内温度Trsが到達判定温度Tacより大きいと第一の判断部40が判断した場合(ステップS204,NO)には、空気調和装置1はステップS202の処理に戻り、温度取得部37は待機時室内温度Trsを取得する。 In the process of step S204, when the first determination unit 40 determines that the standby room temperature Trs is larger than the arrival determination temperature Tac (step S204, NO), the air conditioner 1 returns to the process of step S202 and returns to the process of step S202. The temperature acquisition unit 37 acquires the standby room temperature Trs.
 ステップS203の処理において、空気調和装置1が冷房運転モードで運転を行っていないと第一の判断部40が判断した場合(ステップS203,NO)には、空気調和装置1はステップS207の処理を行う。ステップS207では、第一の判断部40がステップS202で取得した待機時室内温度Trsが暖房運転モードにおける到達判定温度Tah以上であるか否かを判断する。つまり、ステップS207において第一の判断部40はTrs≧Tahの条件を満たすか否かを判断する。なお、暖房運転モードにおける到達判定温度Tahとは設定温度Tsに対して予め0以上の値に定められた許容差異温度ΔTsを減算した値である。設定温度Ts及び許容差異温度ΔTsは予め定められた値であるため、暖房運転モードにおける到達判定温度Tahも予め定められた値である。 In the process of step S203, when the first determination unit 40 determines that the air conditioner 1 is not operating in the cooling operation mode (steps S203, NO), the air conditioner 1 performs the process of step S207. conduct. In step S207, the first determination unit 40 determines whether or not the standby room temperature Trs acquired in step S202 is equal to or higher than the arrival determination temperature Tah in the heating operation mode. That is, in step S207, the first determination unit 40 determines whether or not the condition of Trs ≧ Tah is satisfied. The arrival determination temperature Tah in the heating operation mode is a value obtained by subtracting the permissible difference temperature ΔTs, which is set to a value of 0 or more in advance, with respect to the set temperature Ts. Since the set temperature Ts and the permissible difference temperature ΔTs are predetermined values, the arrival determination temperature Tah in the heating operation mode is also a predetermined value.
 ステップS207の処理において、待機時室内温度Trsが到達判定温度Tah以上であると第一の判断部40が判断した場合(ステップS207,YES)には、空気調和装置1はステップS205の処理を行い、到達時間tachの計測を終了する。つまり、空気調和装置1が暖房運転モードで運転をしている場合では、到達時間tachは空気調和装置1が暖房運転モードで運転を開始してから室内の空気の温度が到達判定温度Tah以上になるまでの時間を計測している。ステップS205の処理の終了後、空気調和装置1はステップS206の処理を行い、到達時間tachを空気調和装置側記憶部38が記憶する。ステップS206の処理の終了後、空気調和装置1は待機処理を終了する。 In the process of step S207, when the first determination unit 40 determines that the standby indoor temperature Trs is equal to or higher than the arrival determination temperature Tah (steps S207, YES), the air conditioner 1 performs the process of step S205. , The measurement of the arrival time touch is completed. That is, when the air conditioner 1 is operating in the heating operation mode, the arrival time touch is such that the temperature of the air in the room becomes equal to or higher than the arrival determination temperature Tah after the air conditioner 1 starts operation in the heating operation mode. I am measuring the time until it becomes. After the process of step S205 is completed, the air conditioner 1 performs the process of step S206, and the air conditioner side storage unit 38 stores the arrival time touch. After the processing in step S206 is completed, the air conditioner 1 ends the standby processing.
 ステップS207の処理において、待機時室内温度Trsが到達判定温度Tahより小さいと第一の判断部40が判断した場合(ステップS207,NO)には、空気調和装置1はステップS202の処理に戻り、温度取得部37は待機時室内温度Trsを取得する。 In the process of step S207, when the first determination unit 40 determines that the standby room temperature Trs is smaller than the arrival determination temperature Tah (steps S207, NO), the air conditioner 1 returns to the process of step S202. The temperature acquisition unit 37 acquires the standby room temperature Trs.
 図5を用いてステップS104の待機処理を終了した後の運転データ蓄積制御について説明する。ステップS104の処理の終了後、空気調和装置1はステップS105の処理を行う。ステップS105ではデータ生成部43は運転データ群と到達時間データ群の生成を行う。運転データ群は空気調和装置1がどのような状況で運転を行っているかを示すデータ群であり、複数のデータから構成されている。運転データ群には少なくとも運転開始前室内温度Trbと機種データが含まれる。また、実施の形態では運転データ群には運転開始前室内温度Trbと機種データの他にも、室外温度Toと設定温度Tsと設置日が含まれる。到達時間データ群は空気調和装置1の運転開始から到達判定温度に達するまでの時間に関するデータ群であり、単一または複数のデータから構成されている。到達時間データ群には少なくとも到達時間tachが含まれる。実施の形態では到達時間データ群には到達時間tachのみが含まれる。なお、以降の説明で運転データ群と到達データ群の両方を指す場合には単にデータ群と称する。 The operation data storage control after the standby process in step S104 is completed will be described with reference to FIG. After the processing of step S104 is completed, the air conditioner 1 performs the processing of step S105. In step S105, the data generation unit 43 generates an operation data group and an arrival time data group. The operation data group is a data group indicating under what circumstances the air conditioner 1 is operating, and is composed of a plurality of data. The operation data group includes at least the room temperature Trb before the start of operation and model data. Further, in the embodiment, the operation data group includes the outdoor temperature To, the set temperature Ts, and the installation date in addition to the indoor temperature Trb before the start of operation and the model data. The arrival time data group is a data group relating to the time from the start of operation of the air conditioner 1 to the arrival determination temperature, and is composed of a single data or a plurality of data. The arrival time data group includes at least the arrival time touch. In the embodiment, the arrival time data group includes only the arrival time touch. In the following description, when both the operation data group and the arrival data group are referred to, they are simply referred to as a data group.
 ステップS105の処理の終了後、空気調和装置1はステップS106の処理を行う。ステップS106では空気調和装置側送信部44がステップS105で生成されたデータ群を信号に変換し、変換された信号をサーバー5に送信する。ここで、ステップS106で空気調和装置1から送信される信号を蓄積送り信号と称する。 After the processing of step S105 is completed, the air conditioner 1 performs the processing of step S106. In step S106, the air conditioner side transmission unit 44 converts the data group generated in step S105 into a signal, and transmits the converted signal to the server 5. Here, the signal transmitted from the air conditioner 1 in step S106 is referred to as a storage feed signal.
 ステップS106の処理の終了後、サーバー5はステップS107の処理を行う。ステップS107ではサーバー側受信部54はステップS106で空気調和装置1から送信された蓄積送り信号を受信する。また、ステップS107において、サーバー側受信部54はサーバー側記憶部55がデータ群を記憶できる形式に蓄積送り信号を変換する。 After the processing of step S106 is completed, the server 5 performs the processing of step S107. In step S107, the server-side receiving unit 54 receives the stored feed signal transmitted from the air conditioner 1 in step S106. Further, in step S107, the server-side receiving unit 54 converts the stored feed signal into a format in which the server-side storage unit 55 can store the data group.
 ステップS107の処理の終了後、サーバー5はステップS108の処理を行う。ステップS108ではサーバー側記憶部55はデータ群に含まれるデータを関連付けして記憶する。つまり、ステップS108においてサーバー側記憶部55は少なくとも運転開始前室内温度Trbと機種データと到達時間tachとを関連付けして記憶する。また、実施の形態では、サーバー側記憶部55は運転開始前室内温度Trbと設定温度Tsと到達時間tachと室外温度Toと機種データと設置日とを関連付けして記憶する。また、以降の説明では、サーバー側記憶部55に記憶された運転データ群と到達時間データ群とを記憶運転データ群と記憶到達時間データ群とそれぞれ称する。また、記憶運転データ群と記憶到達時間データ群の両方を指す場合には記憶データ群と称する。さらに、サーバー側記憶部55に記憶された運転開始前室内温度Trbと設定温度Tsと室外温度Toと機種データと設置日と到達時間をそれぞれ記憶運転開始前室内温度と記憶設定温度と記憶室外温度と記憶機種データと記憶設置日と記憶到達時間とそれぞれ称する。 After the processing of step S107 is completed, the server 5 performs the processing of step S108. In step S108, the server-side storage unit 55 associates and stores the data included in the data group. That is, in step S108, the server-side storage unit 55 stores at least the room temperature Trb before the start of operation, the model data, and the arrival time touch in association with each other. Further, in the embodiment, the server-side storage unit 55 stores the indoor temperature Trb before the start of operation, the set temperature Ts, the arrival time touch, the outdoor temperature To, the model data, and the installation date in association with each other. Further, in the following description, the operation data group and the arrival time data group stored in the server-side storage unit 55 will be referred to as a storage operation data group and a storage arrival time data group, respectively. Further, when it refers to both the storage operation data group and the storage arrival time data group, it is referred to as a storage data group. Further, the indoor temperature Trb before the start of operation, the set temperature Ts, the outdoor temperature To, the model data, the installation date, and the arrival time stored in the storage unit 55 on the server side are stored. And the memory model data, the memory installation date, and the memory arrival time, respectively.
 図7は実施の形態の空気調和システムに係るサーバー側記憶部に蓄積されるデータを説明するための図である。図7に示すようにサーバー側記憶部55では同じ蓄積送り信号に含まれる運転開始前室内温度Trbと設定温度Tsと到達時間tachと室外温度Toと機種データと設置日とに同じID(Identification)を付することで関連付けて記憶している。例えば、IDが0001を付されているMSZ-AXXXの記憶機種データと、2010年2月14日の記憶設置日と、28.0℃の記憶空気調和前室内温度と、30.0℃の記憶室外温度と、24.0℃の記憶設定温度と、730secの記憶到着時間は、元は同じ蓄積送り信号に含まれていたデータである。 FIG. 7 is a diagram for explaining data stored in the server-side storage unit according to the air conditioning system of the embodiment. As shown in FIG. 7, in the server-side storage unit 55, the same ID (Identification) includes the pre-operation indoor temperature Trb, the set temperature Ts, the arrival time touch, the outdoor temperature To, the model data, and the installation date included in the same storage feed signal. It is associated and memorized by adding. For example, the storage model data of MSZ-AXXX with ID 0001, the storage installation date of February 14, 2010, the storage temperature of 28.0 ° C before air conditioning, and the storage of 30.0 ° C. The outdoor temperature, the storage set temperature of 24.0 ° C., and the storage arrival time of 730 sec are the data originally included in the same storage feed signal.
 図5を用いてステップS108の処理を終了した後の運転データ蓄積制御について説明する。ステップS108の処理の終了後、サーバー5はステップS109の処理を行う。ステップS109ではサーバー側送信部58は蓄積送り信号を送信した空気調和装置1へ蓄積戻り信号を送信する。蓄積戻り信号には、サーバー側記憶部55に運転データ群および到達時間データ群に含まれるデータを記憶したことを通知するデータが含まれている。 The operation data storage control after the processing of step S108 is completed will be described with reference to FIG. After the processing of step S108 is completed, the server 5 performs the processing of step S109. In step S109, the server-side transmission unit 58 transmits the storage return signal to the air conditioner 1 that has transmitted the storage feed signal. The storage return signal includes data for notifying that the data included in the operation data group and the arrival time data group is stored in the server-side storage unit 55.
 ステップS109の処理の終了後、サーバー5は運転データ蓄積制御を終了する。また、ステップS109の処理の終了後、空気調和装置1はステップS110の処理を行う。ステップS110では空気調和装置側受信部45はステップS109でサーバー5から送信された蓄積戻り信号を受信する。ステップS110の処理の終了後、空気調和装置1は運転データ蓄積制御を終了する。 After the processing in step S109 is completed, the server 5 ends the operation data storage control. Further, after the processing in step S109 is completed, the air conditioner 1 performs the processing in step S110. In step S110, the air conditioner side receiving unit 45 receives the accumulated return signal transmitted from the server 5 in step S109. After the processing of step S110 is completed, the air conditioner 1 ends the operation data storage control.
 空気調和システム100は運転データ蓄積制御を行う。このことによって、サーバー5とデータの送信または受信が可能となるように接続されている空気調和装置1が生成した運転データ群と到達時間データ群に含まれるデータをサーバー5は蓄積する。例えば、図1では空気調和装置1aから1dの四台の空気調和装置1が生成した運転データ群と到達時間データ群に含まれるデータをサーバー5は蓄積する。 The air conditioning system 100 controls the accumulation of operation data. As a result, the server 5 accumulates the data included in the operation data group and the arrival time data group generated by the air conditioner 1 connected to the server 5 so as to be able to transmit or receive the data. For example, in FIG. 1, the server 5 stores the data included in the operation data group and the arrival time data group generated by the four air conditioner 1s 1a to 1d.
 また、空気調和システム100が運転データ蓄積制御のステップS101からステップS105の処理を行っている間に設定温度Tsが変更された場合、空気調和システム100は設定温度Tsが変更される前に行っていた運転データ蓄積制御を終了し新たに運転データ蓄積制御を開始する。 Further, when the set temperature Ts is changed while the air conditioning system 100 is processing the operation data accumulation control from step S101 to step S105, the air conditioning system 100 performs the operation before the set temperature Ts is changed. The operation data storage control is terminated and the operation data storage control is newly started.
 図8は実施の形態に係る空気調和システムの運転データ解析制御のシーケンス図である。次に図8を用いて空気調和システム100の運転データ解析制御について説明する。運転データ解析制御では、運転データ解析制御時点の空気調和装置1の運転データ群とサーバー5に蓄積された記憶データ群と基づいて解析が行われ、空気調和装置1の能力が低下しているか否かを判断する制御である。また、運転データ解析制御は、ユーザーより入力部39に空気調和装置1を運転させる操作が入力された場合または時刻が予め設定された運転開始時刻に達した場合など空気調和装置1の運転を開始する時に実行される。つまり、実施の形態において運転データ解析制御は運転データ蓄積制御と同じタイミングで開始される。また、運転データ解析制御が実行される場合において、空気調和装置側記憶部38には設定温度Tsと空気調和装置1が冷房運転モードで運転を行うか暖房運転モードで運転を行うかを決定するモードデータと解析補正値Tdが記憶されている。なお、解析補正値Tdは運転データ解析制御において、空気調和装置1の能力が低下しているか否かを判断する際に用いられる値であり、0以上の任意の値に予め定められている。 FIG. 8 is a sequence diagram of operation data analysis control of the air conditioning system according to the embodiment. Next, the operation data analysis control of the air conditioning system 100 will be described with reference to FIG. In the operation data analysis control, analysis is performed based on the operation data group of the air conditioner 1 at the time of the operation data analysis control and the storage data group stored in the server 5, and whether or not the capacity of the air conditioner 1 is deteriorated. It is a control to judge whether or not. Further, the operation data analysis control starts the operation of the air conditioner 1 when the user inputs an operation to operate the air conditioner 1 to the input unit 39 or when the time reaches a preset operation start time. It is executed when you do. That is, in the embodiment, the operation data analysis control is started at the same timing as the operation data accumulation control. Further, when the operation data analysis control is executed, the storage unit 38 on the air conditioner side determines the set temperature Ts and whether the air conditioner 1 operates in the cooling operation mode or the heating operation mode. The mode data and the analysis correction value Td are stored. The analysis correction value Td is a value used in determining whether or not the capacity of the air conditioner 1 is deteriorated in the operation data analysis control, and is predetermined to be an arbitrary value of 0 or more.
 空気調和システム100が運転データ解析制御を開始すると、まずは空気調和装置1がステップS301の処理を行う。ステップS301では、ステップS101と同様に温度取得部37は空気調和装置1が運転を開始する前の室内の空気の温度である運転開始前室内温度Trbと室外の空気の温度である室外温度Toを取得する。なお、ステップS301の処理は前述したステップS101の処理と同様であることと、運転データ解析制御と運転データ蓄積制御は同じタイミングで開始されることから、ステップS101とステップS301とを同じ一つの処理としても良い。 When the air conditioning system 100 starts the operation data analysis control, the air conditioning device 1 first performs the process of step S301. In step S301, as in step S101, the temperature acquisition unit 37 sets the pre-operation indoor temperature Trb, which is the temperature of the indoor air before the air conditioner 1 starts operation, and the outdoor temperature To, which is the temperature of the outdoor air. get. Since the process of step S301 is the same as the process of step S101 described above and the operation data analysis control and the operation data storage control are started at the same timing, the process of step S101 and step S301 is the same one process. It may be.
 ステップS301の処理の終了後、空気調和装置1はステップS302の処理を行う。ステップS302では、ステップS102と同様にステップS301で取得した運転開始前室内温度Trbと室外温度Toを空気調和装置側記憶部38は記憶する。ステップS301と同様の理由で、ステップS102とステップS302とを同じ一つの処理としても良い。 After the processing of step S301 is completed, the air conditioner 1 performs the processing of step S302. In step S302, the air conditioner side storage unit 38 stores the pre-operation indoor temperature Trb and the outdoor temperature To acquired in step S301 in the same manner as in step S102. For the same reason as in step S301, step S102 and step S302 may be treated as the same process.
 ステップS302の処理の終了後、空気調和装置1はステップS303の処理を行う。ステップS303では、データ生成部43は運転データ群の生成を行う。ステップS303で生成される運転データ群はステップS105の処理で説明した運転データ群と同じである。なお、ステップS303の処理よりも先にステップS105の処理が行われた場合、ステップS303で運転データ群を生成せずにステップS105で生成された運転データ群を運転データ解析制御における運転データ群として用いても構わない。また、ステップS105の処理よりも先にステップS303の処理が行われた場合、ステップS105で運転データ群を生成せずにステップS303で生成された運転データ群を運転データ蓄積制御における運転データ群として用いても構わない。 After the processing of step S302 is completed, the air conditioner 1 performs the processing of step S303. In step S303, the data generation unit 43 generates an operation data group. The operation data group generated in step S303 is the same as the operation data group described in the process of step S105. When the processing of step S105 is performed before the processing of step S303, the operation data group generated in step S105 is used as the operation data group in the operation data analysis control without generating the operation data group in step S303. You may use it. Further, when the processing of step S303 is performed before the processing of step S105, the operation data group generated in step S303 is used as the operation data group in the operation data storage control without generating the operation data group in step S105. You may use it.
 ステップS303の処理の終了後、空気調和装置1はステップS304の処理を行う。ステップS304では空気調和装置側送信部44がステップS303で生成された運転データ群を信号に変換し、変換された信号をサーバー5に送信する。ここで、ステップS304で空気調和装置1から送信される信号を解析送り信号と称する。 After the processing of step S303 is completed, the air conditioner 1 performs the processing of step S304. In step S304, the air conditioner side transmission unit 44 converts the operation data group generated in step S303 into a signal, and transmits the converted signal to the server 5. Here, the signal transmitted from the air conditioner 1 in step S304 is referred to as an analysis feed signal.
 ステップS304の処理の終了後、空気調和装置1はステップS305の処理を行う。ステップS305では、ステップS103と同様に指令部41は空気調和装置1の運転を開始する指令信号を空気調和部42に送信し、空気調和装置1の運転を開始する。なお、ステップS305の処理を開始する時点で既にステップS103の処理が行われ空気調和装置1が運転している場合には、ステップS305は省略され、ステップS305の処理は終了したものとして扱われる。 After the process of step S304 is completed, the air conditioner 1 performs the process of step S305. In step S305, similarly to step S103, the command unit 41 transmits a command signal to start the operation of the air conditioning device 1 to the air conditioning unit 42, and starts the operation of the air conditioning device 1. If the process of step S103 has already been performed and the air conditioner 1 is operating at the time when the process of step S305 is started, the process of step S305 is omitted and the process of step S305 is treated as completed.
 ステップS304の処理の終了後、サーバー5はステップS306の処理を行う。ステップS306ではサーバー側受信部54はステップS304で空気調和装置1から送信された解析送り信号を受信する。また、ステップS306において、サーバー側受信部54は解析送り信号を解析部56が運転データ群のデータを取得できる形式に変換する。 After the process of step S304 is completed, the server 5 performs the process of step S306. In step S306, the server-side receiving unit 54 receives the analysis feed signal transmitted from the air conditioner 1 in step S304. Further, in step S306, the server-side receiving unit 54 converts the analysis feed signal into a format in which the analysis unit 56 can acquire the data of the operation data group.
 ステップS306の処理の終了後、サーバー5はステップS307の処理を行う。ステップS307では解析部56は解析送り信号に含まれる運転データ群のデータに関係する記憶運転データ群と関連付けられた記憶到達時間をサーバー側記憶部55から抽出する。実施の形態では、解析送り信号に含まれる運転開始前室内温度Trbと設定温度Tsと室外温度Toと機種データと設置日とにそれぞれ関係する記憶運転開始前室内温度と記憶設定温度と記憶室外温度と記憶機種データと記憶設置日と関連付けられた記憶到達時間を抽出する。より具体的には、関連付けられている記憶運転開始前室内温度と記憶設定温度Tsと記憶室外温度Toと記憶機種データとがステップS306で解析送り信号に含まれる運転開始前室内温度Trbと設定温度Tsと室外温度Toと機種データと一致しており、関連付けられている記憶設置日が解析送り信号に含まれる設置日よりも後の記憶到達時間が抽出される。 After the process of step S306 is completed, the server 5 performs the process of step S307. In step S307, the analysis unit 56 extracts from the server-side storage unit 55 the storage arrival time associated with the storage operation data group related to the data of the operation data group included in the analysis feed signal. In the embodiment, the pre-operation indoor temperature Trb, the set temperature Ts, the outdoor temperature To, the model data, and the storage date, which are included in the analysis feed signal, are related to the pre-operation indoor temperature, the storage set temperature, and the storage outdoor temperature, respectively. And the storage arrival time associated with the storage model data and the storage installation date is extracted. More specifically, the associated storage pre-start indoor temperature, storage set temperature Ts, storage outdoor temperature To, and storage model data are analyzed in step S306. The pre-operation indoor temperature Trb and the set temperature are included in the feed signal. The Ts, the outdoor temperature To, and the model data match, and the storage arrival time after the installation date in which the associated storage installation date is included in the analysis feed signal is extracted.
 図7を用いてステップS307の処理について詳細を説明する。例えば、ステップS306で受信した解析送り信号に含まれる運転データ群のデータが、機種データがMSZ-AXXXであり、設置日が2010年1月30日であり、空気調和前室内温度Trbが28.0℃であり、室外温度Toが30.0℃であり、設定温度Tsが24.0℃であるとする。この場合、ステップS307の処理で抽出される記憶到着時間はID0001が付された730secと、ID0007が付された710secと、ID0008が付された720secである。なお、ID0002に関しては記憶機種データが解析送り信号に含まれる機種データと異なるため、ID0003に関しては記憶室外温度が解析送り信号に含まれる室外温度Toと異なるため、ID0004に関しては記憶空気調和前室内温度が解析送り信号に含まれる空気調和前室内温度Trbと異なるため、ID0005に関しては記憶設定温度が解析送り信号に含まれる設定温度Tsと異なるため、ID0006に関しては記憶設置日が解析送り信号に含まれる設置日よりも前であるため、それぞれのIDが付された到着時間tachは抽出されない。 The process of step S307 will be described in detail with reference to FIG. 7. For example, the data of the operation data group included in the analysis feed signal received in step S306 is that the model data is MSZ-AXXXX, the installation date is January 30, 2010, and the room temperature Trb before air conditioning is 28. It is assumed that the temperature is 0 ° C., the outdoor temperature To is 30.0 ° C., and the set temperature Ts is 24.0 ° C. In this case, the storage arrival time extracted by the process of step S307 is 730 sec with ID 0001, 710 sec with ID 0007, and 720 sec with ID 0008. As for ID0002, the storage model data is different from the model data included in the analysis feed signal. Therefore, for ID0003, the storage outdoor temperature is different from the outdoor temperature To included in the analysis feed signal. Is different from the air conditioning pre-chamber temperature Trb included in the analysis feed signal, so the storage set temperature is different from the set temperature Ts included in the analysis feed signal for ID0005, so the storage installation date is included in the analysis feed signal for ID0006. Since it is before the installation date, the arrival time data with each ID is not extracted.
 図8を用いてステップS307の処理を終了した後の運転データ解析制御について説明する。ステップS307の処理の終了後、サーバーはステップS308の処理を行う。ステップS308では演算部57はステップS307で抽出した記憶到達時間に基づいて閾時間ttを算出する。記憶到達時間に基づいて閾時間ttの算出する方法としては、例えば、ステップS307で抽出した記憶到達時間の平均値を閾時間ttとする方法、ステップS307で抽出した記憶到達時間に室内空間が広いほどかける重みを大きくした室内空間の広さなどを考慮した加重平均値を閾時間ttとする方法、ステップS307で抽出した記憶到達時間の中央値を閾時間ttとする方法、またはステップS307で抽出した記憶到達時間の最頻値を閾時間ttとする方法などが挙げられる。実施の形態では、ステップS307で抽出した記憶到達時間の平均値を閾時間ttとする。 The operation data analysis control after the processing of step S307 is completed will be described with reference to FIG. After the processing of step S307 is completed, the server performs the processing of step S308. In step S308, the calculation unit 57 calculates the threshold time tt based on the memory arrival time extracted in step S307. As a method of calculating the threshold time tt based on the memory arrival time, for example, a method in which the average value of the memory arrival time extracted in step S307 is set as the threshold time tt, and a method in which the storage arrival time extracted in step S307 has a large indoor space. The method of setting the weighted average value in consideration of the size of the indoor space with the increased weight to be applied as the threshold time tt, the method of setting the median value of the storage arrival time extracted in step S307 as the threshold time tt, or the method of extracting in step S307. Examples thereof include a method in which the most frequent value of the stored memory arrival time is set as the threshold time tt. In the embodiment, the average value of the memory arrival time extracted in step S307 is defined as the threshold time tt.
 ステップS308の処理について具体例を説明する。例えばステップS307で抽出された記憶到着時間が730secと710secと720secであるとする。この場合、実施の形態ではステップS307で抽出された記憶到着時間の平均値を閾時間ttとするため、閾時間ttは720secとなる。 A specific example of the processing in step S308 will be described. For example, it is assumed that the memory arrival times extracted in step S307 are 730 sec, 710 sec, and 720 sec. In this case, in the embodiment, the average value of the storage arrival times extracted in step S307 is set as the threshold time tt, so that the threshold time tt is 720 sec.
 ステップS308の処理の終了後、サーバー5はステップS309の処理を行う。ステップS309ではサーバー側送信部58は解析送り信号を送信した空気調和装置1へ解析戻り信号を送信する。解析戻り信号には、ステップS308で導出した閾時間ttが含まれる。つまり、ステップS309においてサーバー5は空気調和装置1に閾時間ttを提供する。 After the process of step S308 is completed, the server 5 performs the process of step S309. In step S309, the server-side transmission unit 58 transmits the analysis return signal to the air conditioner 1 that has transmitted the analysis transmission signal. The analysis return signal includes the threshold time tt derived in step S308. That is, in step S309, the server 5 provides the air conditioner 1 with the threshold time tt.
 ステップS309の処理の終了後、サーバー5は運転データ解析制御を終了する。また、ステップS305およびステップS309の処理の終了後、空気調和装置1はステップS310の処理を行う。ステップS310では空気調和装置側受信部45はステップS309でサーバー5から送信された解析戻り信号を受信する。また、ステップS310において、空気調和装置側受信部45は解析戻り信号を第二の判断部46が閾時間ttを取得できる形式に変換する。 After the processing in step S309 is completed, the server 5 ends the operation data analysis control. Further, after the processing of step S305 and step S309 is completed, the air conditioner 1 performs the processing of step S310. In step S310, the air conditioner side receiving unit 45 receives the analysis return signal transmitted from the server 5 in step S309. Further, in step S310, the receiving unit 45 on the air conditioner side converts the analysis return signal into a format in which the second determination unit 46 can acquire the threshold time tt.
 ステップS310の処理の終了後、空気調和装置1はステップ311の処理を行う。ステップS311では空気調和装置1は能力低下判定処理を行う。能力低下判定処理とは、空気調和装置1の能力が低下しているか否かを判定する処理である。 After the processing of step S310 is completed, the air conditioner 1 performs the processing of step 311. In step S311, the air conditioner 1 performs a capacity reduction determination process. The capacity reduction determination process is a process for determining whether or not the capacity of the air conditioner 1 is reduced.
 図9は実施の形態に係る空気調和装置の能力低下判定処理のフローチャートである。ここで図9を用いて能力低下判定処理について詳細を説明する。 FIG. 9 is a flowchart of the capacity reduction determination process of the air conditioner according to the embodiment. Here, the capacity reduction determination process will be described in detail with reference to FIG.
 能力低下判定処理を開始すると、空気調和装置1はステップS401の処理を行う。ステップS401では、タイマー部36は経過時間tの計測を開始する。なお、タイマー部36が経過時間tの計測を開始する際に、タイマー部36は経過時間tをリセットし0から時間の計測を行う。 When the capacity reduction determination process is started, the air conditioner 1 performs the process of step S401. In step S401, the timer unit 36 starts measuring the elapsed time t. When the timer unit 36 starts measuring the elapsed time t, the timer unit 36 resets the elapsed time t and measures the time from 0.
 ステップS401の処理の終了後、空気調和装置1はステップS402の処理を行う。ステップS402では、経過時間tがステップS310で受信した解析戻り信号に含まれる閾時間ttを経過したか否かを第二の判断部46が判断する。つまり、ステップS402において第二の判断部46はt≧ttの条件を満たすか否かを判断する。 After the processing of step S401 is completed, the air conditioner 1 performs the processing of step S402. In step S402, the second determination unit 46 determines whether or not the elapsed time t has elapsed the threshold time tt included in the analysis return signal received in step S310. That is, in step S402, the second determination unit 46 determines whether or not the condition of t ≧ tt is satisfied.
 ステップS402の処理において、経過時間tが閾時間ttを経過していないと第二の判断部46が判断した場合(ステップS402,NO)には、空気調和装置1は再度ステップS402の処理を行う。 In the process of step S402, when the second determination unit 46 determines that the elapsed time t has not elapsed the threshold time tt (steps S402, NO), the air conditioner 1 performs the process of step S402 again. ..
 ステップS402の処理において、経過時間tが閾時間ttを経過したと第二の判断部46が判断した場合(ステップS402,YES)には、空気調和装置1はステップS403の処理を行う。ステップS403では、温度取得部37は閾時間ttを経過した後の室内の空気の温度である閾時間後室内温度Traを取得する。実施の形態では、ステップS403の時点における室内温度センサ19が計測した温度を閾時間後室内温度Traとする。 In the process of step S402, when the second determination unit 46 determines that the elapsed time t has passed the threshold time tt (step S402, YES), the air conditioner 1 performs the process of step S403. In step S403, the temperature acquisition unit 37 acquires the indoor temperature Tra after the threshold time, which is the temperature of the air in the room after the threshold time tt has elapsed. In the embodiment, the temperature measured by the indoor temperature sensor 19 at the time of step S403 is defined as the indoor temperature Tra after the threshold time.
 ステップS403の処理の終了後、空気調和装置1はステップS404の処理を行う。ステップS404では、第二の判断部46は空気調和装置1が冷房運転モードで運転を行っているか否かを判断する。実施の形態では、第二の判断部46は、ステップS203と同様に空気調和装置側記憶部38に記憶されているモードデータを取得し、モードデータが冷房運転モードで運転を行うことを示すデータである場合は空気調和装置1が冷房運転モードで運転を行っていると判断し、モードデータが暖房運転モードで運転を行うことを示すデータである場合は空気調和装置1が暖房運転モードで運転を行っていると判断する。 After the processing of step S403 is completed, the air conditioner 1 performs the processing of step S404. In step S404, the second determination unit 46 determines whether or not the air conditioner 1 is operating in the cooling operation mode. In the embodiment, the second determination unit 46 acquires the mode data stored in the air conditioner side storage unit 38 as in step S203, and the mode data indicates that the operation is performed in the cooling operation mode. If, it is determined that the air conditioner 1 is operating in the cooling operation mode, and if the mode data is data indicating that the operation is performed in the heating operation mode, the air conditioner 1 is operated in the heating operation mode. Judge that you are doing.
 ステップS404の処理において、空気調和装置1が冷房運転モードで運転を行っていると第二の判断部46が判断した場合(ステップS404,YES)には、空気調和装置1はステップS405の処理を行う。ステップS405では、第二の判断部46がステップS403で取得した閾時間後室内温度Traと設定温度Tsと解析補正値Tdに基づき空気調和装置1の能力が低下しているか否かを判断する。実施の形態ではステップS405において第二の判断部46は閾時間後室内温度Traが設定温度Tsと解析補正値Tdとの和より大きいか否かを判断する。つまり、ステップS405において第二の判断部46はTra>Ts+Tdの条件を満たすか否かを判断する。また、実施の形態の第二の判断部46はTra>Ts+Tdの条件を満たす場合は空気調和装置1の能力が低下していると判断し、Tra>Ts+Tdの条件を満たしていない場合は空気調和装置1の能力が低下していないと判断する。 In the process of step S404, when the second determination unit 46 determines that the air conditioner 1 is operating in the cooling operation mode (steps S404, YES), the air conditioner 1 performs the process of step S405. conduct. In step S405, the second determination unit 46 determines whether or not the capacity of the air conditioner 1 is reduced based on the room temperature Tra after the threshold time, the set temperature Ts, and the analysis correction value Td acquired in step S403. In the embodiment, in step S405, the second determination unit 46 determines whether or not the room temperature Tra after the threshold time is larger than the sum of the set temperature Ts and the analysis correction value Td. That is, in step S405, the second determination unit 46 determines whether or not the condition of Tra> Ts + Td is satisfied. Further, the second determination unit 46 of the embodiment determines that the capacity of the air conditioner 1 is reduced when the condition of Tra> Ts + Td is satisfied, and when the condition of Tra> Ts + Td is not satisfied, the air conditioner is harmonized. It is determined that the capacity of the device 1 has not deteriorated.
 図10は、実施の形態に係る空気調和装置の第二の判断部が冷房運転モード時に空気調和装置の能力が低下していないと判断する場合における室内の空気の温度と空気調和装置の運転開始からの経過時間との関係を表すグラフの一例である。図11は、実施の形態に係る空気調和装置の第二の判断部が冷房運転モード時に空気調和装置の能力が低下していると判断する場合における室内の空気の温度と空気調和装置の運転開始からの経過時間との関係を表すグラフの一例である。図10および図11を用いて閾時間後室内温度Traと設定温度Tsと解析補正値Tdに基づき空気調和装置1の能力が低下しているか否かを判断できる理由について説明する。なお、図10および図11では、ステップS305の空気調和装置1の運転を開始する処理と、ステップS401の経過時間tの計測を開始する処理はほぼ同じタイミングで開始されたと仮定して説明する。 FIG. 10 shows the temperature of the air in the room and the start of operation of the air conditioner when the second determination unit of the air conditioner according to the embodiment determines that the capacity of the air conditioner has not deteriorated in the cooling operation mode. This is an example of a graph showing the relationship with the elapsed time from. FIG. 11 shows the temperature of the air in the room and the start of operation of the air conditioner when the second determination unit of the air conditioner according to the embodiment determines that the capacity of the air conditioner is reduced in the cooling operation mode. This is an example of a graph showing the relationship with the elapsed time from. The reason why it is possible to determine whether or not the capacity of the air conditioner 1 is reduced based on the room temperature Tra after the threshold time, the set temperature Ts, and the analysis correction value Td will be described with reference to FIGS. 10 and 11. In FIGS. 10 and 11, it is assumed that the process of starting the operation of the air conditioner 1 in step S305 and the process of starting the measurement of the elapsed time t in step S401 are started at substantially the same timing.
 空気調和装置1は冷房運転モードで運転しているため、図10と図11の両方ともに空気調和装置の運転開始からの経過時間が増加するほど室内の空気の温度は低下する。しかしながら、経過時間当たりの室内の空気の温度の低下量は図10と比較して図11の方が小さい。したがって、経過時間が閾時間ttとなった場合の室内の空気の温度である閾時間後室内温度Traとすると、図10における閾時間後室内温度Traと比較して図11における閾時間後室内温度Traの方が高い。 Since the air conditioner 1 is operated in the cooling operation mode, the temperature of the air in the room decreases as the elapsed time from the start of operation of the air conditioner increases in both FIGS. 10 and 11. However, the amount of decrease in the temperature of the indoor air per elapsed time is smaller in FIG. 11 than in FIG. Therefore, assuming that the room temperature after the threshold time is Tra, which is the temperature of the air in the room when the elapsed time reaches the threshold time tt, the room temperature after the threshold time in FIG. 11 is compared with the room temperature Tra after the threshold time in FIG. Tra is higher.
 図10における閾時間後室内温度Traは、設定温度Tsと解析補正値Tdとの和よりも小さい。このため、図10ではTra>Ts+Tdの条件を満たしていない。 The room temperature Tra after the threshold time in FIG. 10 is smaller than the sum of the set temperature Ts and the analysis correction value Td. Therefore, in FIG. 10, the condition of Tra> Ts + Td is not satisfied.
 図11における閾時間後室内温度Traは、設定温度Tsと解析補正値Tdとの和よりも大きい。このため、図11ではTra>Ts+Tdの条件を満たしている。 The room temperature Tra after the threshold time in FIG. 11 is larger than the sum of the set temperature Ts and the analysis correction value Td. Therefore, in FIG. 11, the condition of Tra> Ts + Td is satisfied.
 また、実施の形態において閾時間ttは、運転データ解析制御を行っている空気調和装置1の運転開始前室内温度Trbと設定温度Tsと室外温度Toと機種データとが一致し、設置日が運転データ解析制御を行っている空気調和装置1よりも後の空気調和装置1の記憶到達時間の平均値を用いている。このため、Tra>Ts+Tdの条件を満たさないということは、同様の環境下に設置された同じ機種の空気調和装置1の冷房能力の平均と比較して、冷房能力が高いまたは同等と言える。また、Tra>Ts+Tdの条件を満たすということは、同様の環境下に設置された同じ機種の空気調和装置1の冷房能力の平均と比較して、冷房能力が低いといえる。また、冷房能力は冷房運転モードにおける空気調和装置1の能力に該当する。したがって、閾時間後室内温度Traと設定温度Tsと解析補正値Tdに基づき空気調和装置1の能力が低下しているか否かを判断できる。 Further, in the embodiment, the threshold time tt matches the indoor temperature Trb before the start of operation, the set temperature Ts, the outdoor temperature To, and the model data of the air conditioner 1 that controls the operation data analysis, and the installation date is the operation. The average value of the storage arrival time of the air conditioner 1 after the air conditioner 1 that controls the data analysis is used. Therefore, the fact that the condition of Tra> Ts + Td is not satisfied can be said to be higher or equivalent to the average cooling capacity of the air conditioner 1 of the same model installed under the same environment. Further, satisfying the condition of Tra> Ts + Td means that the cooling capacity is lower than the average cooling capacity of the air conditioner 1 of the same model installed under the same environment. Further, the cooling capacity corresponds to the capacity of the air conditioner 1 in the cooling operation mode. Therefore, it can be determined whether or not the capacity of the air conditioner 1 is reduced based on the room temperature Tra after the threshold time, the set temperature Ts, and the analysis correction value Td.
 図9を用いてステップS405の処理を終了した後の能力低下判定処理について説明する。ステップS405の処理において、空気調和装置1の能力が低下していると第二の判断部46が判断した場合(ステップS405,YES)には、空気調和装置1はステップS406の処理を行う。ステップS406では、報知制御部47は報知部48が空気調和装置1の能力が低下していることをユーザーに報知するように報知部48を制御する。実施の形態では、ステップS406において、報知制御部47は報知部48であるディスプレイに表示する表示データを生成し、ディスプレイは生成した表示データを表示する。 The capacity reduction determination process after the process of step S405 is completed will be described with reference to FIG. When the second determination unit 46 determines that the capacity of the air conditioner 1 is reduced in the process of step S405 (steps S405 and YES), the air conditioner 1 performs the process of step S406. In step S406, the notification control unit 47 controls the notification unit 48 so that the notification unit 48 notifies the user that the capacity of the air conditioner 1 is reduced. In the embodiment, in step S406, the notification control unit 47 generates display data to be displayed on the display, which is the notification unit 48, and the display displays the generated display data.
 図12は、実施の形態に係る空気調和装置の報知部に表示される表示内容の例を示す図である。実施の形態ではステップS407において報知部48には図12に示す表示内容が表示される。表示内容には図柄情報48aと文字情報48bとが含まれる。図柄情報48aは空気調和装置1の能力が低下していることを図柄を用いて報知している。図柄情報48aは例えば室内の空気の温度と時間との関係を表すグラフである。文字情報48bは空気調和装置1の能力が低下していることを文字を用いて報知している。文字情報18aは例えば「冷房能力が低下しています」の文章である。また、実施の形態の文字情報18aは「同機種別個体の運転データとこのエアコンの運転データとを解析した結果、冷房能力が低下しているため、エアコンの新規購入をお勧めいたします」の文章が表示され、当該文章は空気調和装置1の新規購入を促す文章である。 FIG. 12 is a diagram showing an example of display contents displayed on the notification unit of the air conditioner according to the embodiment. In the embodiment, the display content shown in FIG. 12 is displayed on the notification unit 48 in step S407. The display contents include the symbol information 48a and the character information 48b. The symbol information 48a uses a symbol to notify that the capacity of the air conditioner 1 is reduced. The symbol information 48a is, for example, a graph showing the relationship between the temperature of the air in the room and the time. The character information 48b uses characters to notify that the capacity of the air conditioner 1 is reduced. The character information 18a is, for example, a sentence of "the cooling capacity is reduced". In addition, the text information 18a of the embodiment is a sentence of "As a result of analyzing the operation data of the same model and the operation data of this air conditioner, the cooling capacity is reduced, so it is recommended to purchase a new air conditioner." Is displayed, and the text is a text prompting a new purchase of the air conditioner 1.
 図9を用いてステップS406の処理を終了した後の能力低下判定処理について説明する。ステップS406の終了後、空気調和装置1は能力低下判定処理を終了する。 The capacity reduction determination process after the process of step S406 is completed will be described with reference to FIG. After the end of step S406, the air conditioner 1 ends the capacity reduction determination process.
 ステップS405の処理において、空気調和装置1の能力は低下していないと第二の判断部46が判断した場合(ステップS405,NO)には、空気調和装置1は能力低下判定処理を終了する。 When the second determination unit 46 determines that the capacity of the air conditioner 1 has not decreased in the process of step S405 (steps S405 and NO), the air conditioner 1 ends the capacity decrease determination process.
 ステップS404の処理において、空気調和装置1が冷房運転モードで運転を行っていないと第二の判断部46が判断した場合(ステップS404,NO)には、空気調和装置1はステップS407の処理を行う。ステップS407では、第二の判断部46がステップS403で取得した閾時間後室内温度Traと設定温度Tsと解析補正値Tdに基づき空気調和装置1の能力が低下しているか否かを判断する。実施の形態では空気調和装置1は暖房運転モードで運転している。このため、実施の形態ではステップS407において第二の判断部46は閾時間後室内温度Traが設定温度Tsと解析補正値Tdとの差より小さいか否かを判断する。つまり、ステップS405において第二の判断部46はTra<Ts-Tdの条件を満たすか否かを判断する。また、実施の形態の第二の判断部46はTra<Ts-Tdの条件を満たす場合は空気調和装置1の能力が低下していると判断し、Tra<Ts-Tdの条件を満たしていない場合は空気調和装置1の能力が低下していないと判断する。 When the second determination unit 46 determines that the air conditioner 1 is not operating in the cooling operation mode in the process of step S404 (step S404, NO), the air conditioner 1 performs the process of step S407. conduct. In step S407, the second determination unit 46 determines whether or not the capacity of the air conditioner 1 is reduced based on the room temperature Tra after the threshold time, the set temperature Ts, and the analysis correction value Td acquired in step S403. In the embodiment, the air conditioner 1 is operated in the heating operation mode. Therefore, in the embodiment, in step S407, the second determination unit 46 determines whether or not the room temperature Tra after the threshold time is smaller than the difference between the set temperature Ts and the analysis correction value Td. That is, in step S405, the second determination unit 46 determines whether or not the condition of Tra <Ts-Td is satisfied. Further, the second determination unit 46 of the embodiment determines that the capacity of the air conditioner 1 is reduced when the condition of Tra <Ts-Td is satisfied, and does not satisfy the condition of Tra <Ts-Td. In that case, it is determined that the capacity of the air conditioner 1 has not deteriorated.
 ステップS405で説明したように、実施の形態において閾時間ttは、運転データ解析制御を行っている空気調和装置1の運転開始前室内温度Trbと設定温度Tsと室外温度Toと機種データとが一致し、設置日が運転データ解析制御を行っている空気調和装置1よりも後の空気調和装置1の過去到達時間の平均値を用いている。このため、Tra<Ts-Tdの条件を満たさないということは、同様の環境下に設置された同じ機種の空気調和装置1の暖房能力の平均と比較して、暖房能力が高いまたは同等と言える。また、Tra<Ts-Tdの条件を満たすということは、同様の環境下に設置された同じ機種の空気調和装置1の暖房能力の平均と比較して、暖房能力が低いといえる。また、暖房能力は暖房運転モードにおける空気調和装置1の能力に該当する。したがって、閾時間後室内温度Traと設定温度Tsと解析補正値Tdに基づき空気調和装置1の能力が低下しているか否かを判断できる。 As described in step S405, in the embodiment, the threshold time tt is a combination of the indoor temperature Trb before the start of operation of the air conditioner 1 performing operation data analysis control, the set temperature Ts, the outdoor temperature To, and the model data. However, the average value of the past arrival times of the air conditioner 1 after the installation date of the air conditioner 1 whose operation data analysis control is performed is used. Therefore, the fact that the condition of Tra <Ts-Td is not satisfied can be said to be higher or equivalent to the average heating capacity of the air conditioner 1 of the same model installed under the same environment. .. Further, satisfying the condition of Tra <Ts-Td means that the heating capacity is lower than the average heating capacity of the air conditioner 1 of the same model installed under the same environment. Further, the heating capacity corresponds to the capacity of the air conditioner 1 in the heating operation mode. Therefore, it can be determined whether or not the capacity of the air conditioner 1 is reduced based on the room temperature Tra after the threshold time, the set temperature Ts, and the analysis correction value Td.
 空気調和装置1の能力が低下していると第二の判断部46が判断した場合(ステップS407,YES)には、空気調和装置1はステップS406の処理の処理を行い、その後に空気調和装置1は能力低下判定処理を終了する。なお、ステップS406の処理については前述した処理と同様であるため説明を省略する。 When the second determination unit 46 determines that the capacity of the air conditioner 1 is reduced (step S407, YES), the air conditioner 1 performs the processing of step S406, and then the air conditioner 1. 1 ends the capacity reduction determination process. Since the process of step S406 is the same as the process described above, the description thereof will be omitted.
 ステップS407の処理において、空気調和装置1の能力は低下していないと第二の判断部46が判断した場合(ステップS407,NO)には、空気調和装置1は能力低下判定処理を終了する。 When the second determination unit 46 determines that the capacity of the air conditioner 1 has not decreased in the process of step S407 (step S407, NO), the air conditioner 1 ends the capacity decrease determination process.
 図8を用いてステップS311の能力低下判定処理を終了した後の運転データ解析制御について説明する。ステップS311の処理の終了後、空気調和装置1は運転データ解析制御を終了する。 The operation data analysis control after the capacity reduction determination process in step S311 is completed will be described with reference to FIG. After the processing of step S311 is completed, the air conditioner 1 ends the operation data analysis control.
 空気調和システム100は運転データ解析制御を行う。このことによって、サーバー5に蓄積された記憶運転データ群と記憶到達時間に基づいて空気調和装置1の能力が低下しているか否かを判断することができる。換言すると、図1に示すような場合では、現在の空気調和装置1aの能力が低下しているか否かを、空気調和装置1aが調和する空気調和対象空間とは異なる空気調和対象空間の空気を調和する空気調和装置1bから1dが過去に生成した運転データ群と到達時間データ群に基づいて判断することができる。 The air conditioning system 100 performs operation data analysis control. This makes it possible to determine whether or not the capacity of the air conditioner 1 is reduced based on the storage operation data group stored in the server 5 and the storage arrival time. In other words, in the case shown in FIG. 1, whether or not the capacity of the current air-conditioning device 1a is reduced is determined by checking the air in the air-conditioning target space different from the air-conditioning target space in which the air-conditioning device 1a is harmonized. It is possible to make a judgment based on the operation data group and the arrival time data group generated in the past by the harmonizing air conditioning devices 1b to 1d.
 また、空気調和システム100が運転データ解析制御の処理を行っている間に設定温度Tsが変更された場合、空気調和システム100は設定温度Tsが変更される前に行っていた運転データ解析制御を終了し新たに運転データ解析制御を開始する。 Further, when the set temperature Ts is changed while the air conditioning system 100 is processing the operation data analysis control, the air conditioning system 100 performs the operation data analysis control performed before the set temperature Ts is changed. It ends and starts new operation data analysis control.
 以上のように実施の形態に係る空気調和システム100の構成は、空気調和対象空間の空気(室内の空気が該当)の温度を予め定められた設定温度に調和する空気調和装置1aと、空気調和装置1aが調和を行う前の空気調和対象空間の空気の温度である運転開始前温度(運転開始前室内温度Trbが該当)を取得し、空気調和装置1aが調和を開始してから閾時間ttを経過した時点の空気調和対象空間の空気の温度である閾時間後温度(閾時間後室内温度Traが該当)を取得する温度取得部37と、閾時間ttを計時するタイマー部36と、空気調和対象空間と異なる他の空気調和対象空間の空気を調和する他の空気調和装置(空気調和装置1bから1dの少なくともいずれか一つが該当)に設定された他の空気調和装置の種類を示す記憶機種データを複数記憶し他の空気調和装置が調和を開始する前の他の空気調和対象空間の温度である記憶運転開始前温度を複数記憶し他の空気調和装置が調和を開始してから他の空気調和対象空間の温度が他の空気調和装置に設定された到達判定温度に達するまでの時間である記憶到達時間を複数記憶し記憶機種データと記憶運転開始前温度と記憶到達時間をそれぞれ関連付けて記憶する記憶部(サーバ側記憶部55が該当)と、運転開始前温度に関係する記憶運転開始前温度と空気調和装置1aの種類を示す機種データに関係する記憶機種データとに関連付けられた記憶到達時間を記憶部から複数抽出する解析部56と、解析部56が抽出した複数の記憶到達時間に基づき閾時間ttを演算する演算部57と、閾時間後温度と設定温度に基づき空気調和装置1aの能力が低下しているか否かを判断する判断部(第二の判断部46が該当)と、判断部が空気調和装置1aの能力が低下していると判断した場合に報知部48に対して空気調和装置1aの能力が低下していることを報知させる制御を行う報知制御部47と、を備える。当該構成の内、運転開始前温度に関係する記憶運転開始前温度と機種データに関係する記憶機種データとに関連付けられた記憶到達時間を記憶部から複数抽出する解析部56と、解析部56が抽出した複数の記憶到達時間に基づき閾時間ttを演算する演算部57と、を備えることによって、実施の形態の空気調和システムは適切な閾時間を設定しユーザーの利便性の低下を抑制することができる効果を奏する。 As described above, the configuration of the air conditioning system 100 according to the embodiment includes an air conditioning device 1a that harmonizes the temperature of the air in the air conditioning target space (corresponding to indoor air) with a predetermined set temperature, and air conditioning. The pre-operation temperature (corresponding to the room temperature Trb before the start of operation), which is the temperature of the air in the air conditioning target space before the device 1a performs harmonization, is acquired, and the threshold time tt after the air-conditioning device 1a starts the harmonization. The temperature acquisition unit 37 that acquires the temperature after the threshold time (corresponding to the room temperature Tra after the threshold time), which is the temperature of the air in the air conditioning target space at the time when the air conditioning target space has passed, the timer unit 36 that measures the threshold time tt, and the air. Other air conditioners different from the harmonization target space A memory indicating the type of other air conditioner set in another air conditioner (corresponding to at least one of air conditioners 1b to 1d) that harmonizes the air in the target space. Stores multiple model data and stores the temperature of the other air-conditioning target space before the other air-conditioning device starts harmony. Stores multiple pre-operation temperatures and waits for the other air-conditioning device to start harmonization. The storage arrival time, which is the time until the temperature of the air-conditioning target space in the air conditioner reaches the arrival determination temperature set in the other air-conditioning device, is stored and the storage model data is associated with the storage pre-start temperature and the storage arrival time. The storage unit (corresponding to the server-side storage unit 55) and the storage model data related to the storage model data indicating the pre-operation temperature related to the storage operation start temperature and the type of the air conditioner 1a are associated with each other. An analysis unit 56 that extracts a plurality of storage arrival times from the storage unit, a calculation unit 57 that calculates a threshold time tt based on a plurality of storage arrival times extracted by the analysis unit 56, and air conditioning based on the temperature after the threshold time and the set temperature. A judgment unit (corresponding to the second judgment unit 46) for determining whether or not the capacity of the device 1a is reduced, and a notification unit 48 when the judgment unit determines that the capacity of the air conditioning device 1a is reduced. A notification control unit 47 that controls to notify that the capacity of the air conditioner 1a is reduced is provided. Among the configurations, the analysis unit 56 and the analysis unit 56 extract a plurality of storage arrival times associated with the storage pre-operation temperature related to the pre-operation temperature and the storage model data related to the model data from the storage unit. By providing the calculation unit 57 that calculates the threshold time tt based on the plurality of extracted memory arrival times, the air conditioning system of the embodiment sets an appropriate threshold time and suppresses the deterioration of user convenience. Has the effect of being able to.
 また、実施の形態に係る空気調和システム100は、付加的な構成として、記憶部は複数の記憶機種データと複数の記憶運転開始前温度と複数の記憶到達時間とを記憶しており、解析部は複数の記憶到達時間を抽出する構成を有する。当該付加的な構成によって、実施の形態に係る空気調和システム100は記憶部に記憶されている記憶機種データと記憶到達時間が一つの場合と比較して、より適切な閾時間を設定することができる効果を奏する。 Further, in the air conditioning system 100 according to the embodiment, as an additional configuration, the storage unit stores a plurality of storage model data, a plurality of storage operation pre-start temperatures, and a plurality of storage arrival times, and the analysis unit. Has a configuration for extracting a plurality of memory arrival times. With the additional configuration, the air conditioning system 100 according to the embodiment can set a more appropriate threshold time as compared with the case where the storage model data stored in the storage unit and the storage arrival time are one. It has the effect that can be achieved.
 また、実施の形態に係る空気調和システム100は、付加的な構成として、運転開始前温度に関係する記憶運転開始前温度とは運転開始前温度と一致する記憶運転開始前温度であり、機種データに関係する記憶機種データとは機種データと一致する記憶機種データである構成を有する。当該付加的な構成によって、実施の形態に係る空気調和システム100は後述する理由で示すように、より適切な閾時間を設定することができる効果を奏する。 Further, as an additional configuration, the air conditioning system 100 according to the embodiment has a storage pre-start temperature related to the pre-operation temperature, which is a storage pre-start temperature that matches the pre-operation temperature, and is model data. The storage model data related to the above has a configuration in which the storage model data matches the model data. With the additional configuration, the air conditioning system 100 according to the embodiment has the effect of being able to set a more appropriate threshold time, as will be shown later.
 また、実施の形態に係る空気調和システム100は、付加的な構成として、空気調和装置1aは空気調和対象空間の空気の温度を低下させる冷房運転モードで運転することができ、判断部は空気調和装置1aが冷房運転モードである時に閾時間後温度が設定温度と予め定められた解析補正値との和よりも大きい場合に空気調和装置1aの能力が低下していると判断する構成を有する。当該付加的な構成によって、実施の形態に係る空気調和システム100は空気調和装置1aが冷房運転モードである場合において空気調和装置1aの能力が低下しているか否かを正確に判断することができる効果を奏する。 Further, in the air conditioning system 100 according to the embodiment, as an additional configuration, the air conditioning device 1a can be operated in a cooling operation mode in which the temperature of the air in the air conditioning target space is lowered, and the determination unit is in air conditioning. When the device 1a is in the cooling operation mode and the temperature after the threshold time is larger than the sum of the set temperature and the predetermined analysis correction value, it has a configuration for determining that the capacity of the air conditioning device 1a is reduced. With the additional configuration, the air conditioning system 100 according to the embodiment can accurately determine whether or not the capacity of the air conditioning device 1a is reduced when the air conditioning device 1a is in the cooling operation mode. It works.
 また、実施の形態に係る空気調和システム100は、付加的な構成として、空気調和装置1aは空気調和対象空間の空気の温度を上昇させる暖房運転モードで運転することができ、判断部は空気調和装置1aが暖房運転モードである時に閾時間後温度が設定温度と予め定められた解析補正値との差よりも小さい場合に空気調和装置1aの能力が低下していると判断する構成を有する。当該付加的な構成によって、実施の形態に係る空気調和システム100は空気調和装置1aが暖房運転モードである場合において空気調和装置1aの能力が低下しているか否かを正確に判断することができる効果を奏する。 Further, in the air conditioning system 100 according to the embodiment, as an additional configuration, the air conditioning device 1a can be operated in a heating operation mode in which the temperature of the air in the air conditioning target space is raised, and the determination unit is in air conditioning. When the device 1a is in the heating operation mode and the temperature after the threshold time is smaller than the difference between the set temperature and the predetermined analysis correction value, it has a configuration for determining that the capacity of the air conditioning device 1a is reduced. With the additional configuration, the air conditioning system 100 according to the embodiment can accurately determine whether or not the capacity of the air conditioning device 1a is reduced when the air conditioning device 1a is in the heating operation mode. It works.
 また、実施の形態に係る空気調和システム100は、付加的な構成として、記憶部は他の空気調和装置に設定された設定温度である記憶設定温度を複数記憶し記憶設定温度と記憶機種データと記憶運転開始前温度と記憶到達時間をそれぞれ関連付けて記憶し、解析部56は運転開始前温度に関係する記憶運転開始前温度と機種データに関係する記憶機種データと設定温度に関係する記憶設定温度とに関連付けられた記憶到達時間を記憶部から複数抽出する構成を有する。当該付加的な構成によって、実施の形態に係る空気調和システム100は後述する理由で示すように、より適切な閾時間を設定することができる効果を奏する。 Further, in the air conditioning system 100 according to the embodiment, as an additional configuration, the storage unit stores a plurality of storage set temperatures which are set temperatures set in other air harmonizing devices, and stores the storage set temperature and the storage model data. Storage The temperature before the start of operation and the arrival time of storage are stored in association with each other, and the analysis unit 56 stores the temperature before the start of operation, the temperature before the start of operation, the storage model data, and the set temperature. It has a configuration in which a plurality of memory arrival times associated with and are extracted from the storage unit. With the additional configuration, the air conditioning system 100 according to the embodiment has the effect of being able to set a more appropriate threshold time, as will be shown later.
 また、実施の形態に係る空気調和システム100は、付加的な構成として、設定温度に関係する記憶設定温度とは設定温度と一致する記憶設定温度である構成を有する。当該付加的な構成によって、実施の形態に係る空気調和システム100は後述する理由で示すように、より適切な閾時間を設定することができる効果を奏する。 Further, the air conditioning system 100 according to the embodiment has, as an additional configuration, a configuration in which the storage set temperature related to the set temperature is a storage set temperature that matches the set temperature. With the additional configuration, the air conditioning system 100 according to the embodiment has the effect of being able to set a more appropriate threshold time, as will be shown later.
 また、実施の形態に係る空気調和システム100は、付加的な構成として、温度取得部37は、空気調和対象空間とは異なる空間である室外空間の空気の温度である室外温度Toを取得し、記憶部は他の空気調和対象空間とは異なる空間である室外空間の過去の空気の温度である記憶室外温度を複数記憶し記憶室外温度と記憶機種データと記憶運転開始前温度と記憶到達時間をそれぞれ関連付けて記憶し、解析部56は運転開始前温度に関係する記憶運転開始前温度と機種データに関係する記憶機種データと室外温度Toに関係する記憶室外温度とに関連付けられた記憶到達時間を記憶部から複数抽出する構成を有する。当該付加的な構成によって、実施の形態に係る空気調和システム100は後述する理由で示すように、より適切な閾時間を設定することができる効果を奏する。 Further, in the air conditioning system 100 according to the embodiment, as an additional configuration, the temperature acquisition unit 37 acquires the outdoor temperature To, which is the temperature of the air in the outdoor space, which is a space different from the air conditioning target space. The storage unit stores multiple storage outdoor temperatures, which are past air temperatures in the outdoor space, which is a space different from other air harmonization target spaces, and stores the storage outdoor temperature, storage model data, storage operation start temperature, and storage arrival time. The analysis unit 56 stores the storage before the start of operation, the storage model data related to the model data, and the storage arrival time related to the outdoor temperature To. It has a configuration for extracting a plurality from the storage unit. With the additional configuration, the air conditioning system 100 according to the embodiment has the effect of being able to set a more appropriate threshold time, as will be shown later.
 また、実施の形態に係る空気調和システム100は、付加的な構成として、室外温度Toに関係する記憶室外温度とは室外温度Toと一致する記憶室外温度である構成を有する。当該付加的な構成によって、実施の形態に係る空気調和システム100は後述する理由で示すように、より適切な閾時間を設定することができる効果を奏する。 Further, the air conditioning system 100 according to the embodiment has, as an additional configuration, a configuration in which the storage outdoor temperature related to the outdoor temperature To is a storage outdoor temperature that coincides with the outdoor temperature To. With the additional configuration, the air conditioning system 100 according to the embodiment has the effect of being able to set a more appropriate threshold time, as will be shown later.
 また、実施の形態に係る空気調和システム100は、付加的な構成として、記憶部は他の空気調和対象空間に他の空気調和装置が設置された日付である記憶設置日を複数記憶し記憶設置日と記憶機種データと記憶運転開始前温度と記憶到達時間をそれぞれ関連付けて記憶し、解析部56は運転開始前温度に関係する記憶運転開始前温度と機種データに関係する記憶機種データと空気調和装置が空気調和対象空間に設置された日である設置日に関係する記憶設置日とに関連付けられた記憶到達時間を記憶部から複数抽出する構成を有する。当該付加的な構成によって、実施の形態に係る空気調和システム100は後述する理由で示すように、より適切な閾時間を設定することができる効果を奏する。 Further, in the air conditioning system 100 according to the embodiment, as an additional configuration, the storage unit stores and stores a plurality of storage installation dates, which are the dates when the other air conditioning devices are installed in the other air conditioning target spaces. Day and storage Model data and storage The temperature before the start of operation and the arrival time of storage are stored in association with each other, and the analysis unit 56 stores the temperature related to the temperature before the start of operation and the storage model data related to the model data and air harmony. It has a configuration in which a plurality of memory arrival times associated with a memory installation date related to the installation date, which is the date when the device is installed in the air harmonized target space, are extracted from the storage unit. With the additional configuration, the air conditioning system 100 according to the embodiment has the effect of being able to set a more appropriate threshold time, as will be shown later.
 また、実施の形態に係る空気調和システム100は、付加的な構成として、設置日に関係する記憶設置日とは設置日よりも後の日付の記憶設置日である構成を有する。当該付加的な構成によって、実施の形態に係る空気調和システム100は後述する理由で示すように、より適切な閾時間を設定することができる効果を奏する。 Further, as an additional configuration, the air conditioning system 100 according to the embodiment has a configuration in which the storage installation date related to the installation date is a storage installation date of a date after the installation date. With the additional configuration, the air conditioning system 100 according to the embodiment has the effect of being able to set a more appropriate threshold time, as will be shown later.
 また、実施の形態に係る空気調和システム100は、付加的な構成として、温度取得部37は空気調和対象空間の空気の温度を取得し、タイマー29は空気調和装置が調和を開始してから温度取得部37が取得した空気調和対象空間の空気の温度が到達判定温度となるまでの時間である到達時間を測定し、記憶部は運転開始前温度と機種データと達成時間をそれぞれ記憶運転開始前温度と記憶機種データと記憶到達時間として関連付けて記憶する構成を有する。当該付加的な構成によって、実施の形態に係る空気調和システム100は空気調和装置1aの運転データ群を収集し、収集した運転データ群を他の空気調和装置1bから1dの能力低下の判断する際に用いることができる効果を奏する。 Further, in the air conditioning system 100 according to the embodiment, as an additional configuration, the temperature acquisition unit 37 acquires the temperature of the air in the air conditioning target space, and the timer 29 is the temperature after the air conditioning device starts harmonization. The acquisition unit 37 measures the arrival time, which is the time until the temperature of the air in the air harmonization target space acquired reaches the arrival determination temperature, and the storage unit stores the pre-operation temperature, model data, and achievement time, respectively, before the start of operation. It has a configuration in which the temperature and the storage model data are associated with the storage arrival time and stored. With the additional configuration, the air conditioning system 100 according to the embodiment collects the operation data group of the air conditioning device 1a, and when the collected operation data group is determined to reduce the capacity of the other air conditioning devices 1b to 1d. It has an effect that can be used for.
 さらに実施の形態に係るデータ提供方法は、ネットワークを介して複数の空気調和装置(空気調和装置1aから1dが該当)からデータを収集し収集したデータを記憶データ群として記憶し記憶データ群を用いて閾時間を演算し演算した閾時間を用いて複数の空気調和装置のいずれか一つの空気調和装置(空気調和装置1aが該当)の能力が低下しているか否かを判断する空気調和システムに用いられるコンピュータ(サーバー5が該当)が実行するデータ提供方法であり、記憶データ群は、複数の空気調和装置のそれぞれの種類を示す記憶機種データと複数の空気調和装置のそれぞれが調和を行う前の空気調和対象空間の温度である記憶運転開始前温度と複数の空気調和装置のそれぞれが調和を開始してから複数の空気調和装置のそれぞれに設定された到達判定温度に達するまでの時間である記憶到達温度とを関連付けて記憶されたデータ群であり、ネットワークを介し空気調和装置1aから空気調和装置1aの種類を示す機種データと空気調和装置1aが調和を行う前の空気調和対象空間の空気の温度である運転開始前温度とを含む現在の運転データ群を取得する第一のステップ(ステップS306が該当)と、機種データに関係する記憶機種データと運転開始前温度に関係する記憶運転開始前温度とに関連する記憶到達時間を記憶データ群より抽出する第二のステップ(ステップS307が該当)と、第二のステップで抽出した記憶到達時間に基づき閾時間を演算する第三のステップ(ステップS308が該当)と、第三のステップで演算した閾時間を第一のステップで運転データ群を取得した空気調和装置1aに提供する第四のステップ(ステップS309が該当)と、を備えた構成である。当該構成のうち、第二のステップと第三のステップを備えることによって、実施の形態のデータ提供方法は適切な閾時間を設定しユーザーの利便性の低下を抑制することができる効果を奏する。 Further, in the data providing method according to the embodiment, data is collected from a plurality of air conditioners (corresponding to air conditioners 1a to 1d) via a network, the collected data is stored as a storage data group, and the storage data group is used. For an air conditioning system that calculates the threshold time and uses the calculated threshold time to determine whether or not the capacity of any one of the air conditioning devices (corresponding to the air conditioning device 1a) is reduced. It is a data provision method executed by the computer used (corresponding to server 5), and the storage data group is the storage model data indicating each type of a plurality of air conditioners and before each of the plurality of air conditioners perform harmonization. It is the time from the start of harmonization between the storage pre-start temperature and each of the plurality of air harmonizers, which is the temperature of the air harmonization target space, to the arrival determination temperature set for each of the plurality of air harmonizers. It is a data group stored in association with the storage arrival temperature, and the model data indicating the type of the air conditioner 1a to the air conditioner 1a via the network and the air in the air adjustment target space before the air conditioner 1a is harmonized. The first step (corresponding to step S306) to acquire the current operation data group including the temperature before the start of operation, which is the temperature of, and the storage model data related to the model data and the storage operation start related to the temperature before the start of operation. The second step (corresponding to step S307) for extracting the storage arrival time related to the previous temperature from the stored data group, and the third step (step S307) for calculating the threshold time based on the storage arrival time extracted in the second step. Step S308 is applicable), and a fourth step (corresponding to step S309) of providing the threshold time calculated in the third step to the air conditioner 1a for which the operation data group is acquired in the first step is provided. It is a composition. By providing the second step and the third step in the configuration, the data providing method of the embodiment has an effect that an appropriate threshold time can be set and the deterioration of user convenience can be suppressed.
 また、実施の形態に係るデータ提供方法は、付加的な構成として、二のステップにおいて複数の記憶到達時間を抽出する構成を有する。当該付加的な構成によって、実施の形態に係るデータ提供方法は、一つの記憶到達時間を抽出する場合と比較してより適切な閾時間を設定することができる効果を奏する。 Further, the data providing method according to the embodiment has a configuration for extracting a plurality of storage arrival times in the second step as an additional configuration. With the additional configuration, the data providing method according to the embodiment has an effect that a more appropriate threshold time can be set as compared with the case where one storage arrival time is extracted.
 また、実施の形態に係るデータ提供方法は、付加的な構成として、第二のステップにおいて運転開始前温度に関係する記憶運転開始前温度とは運転開始前温度と一致する記憶運転開始前温度であり、機種データに関係する記憶機種データとは機種データと一致する記憶機種データである構成を有する。当該付加的な構成によって、実施の形態に係るデータ提供方法は後述する理由で示すように、より適切な閾時間を設定することができる効果を奏する。 Further, as an additional configuration, the data providing method according to the embodiment has a storage pre-start temperature that coincides with the pre-operation temperature with the pre-operation temperature related to the pre-operation temperature in the second step. Yes, the storage model data related to the model data has a configuration in which the storage model data matches the model data. With the additional configuration, the data providing method according to the embodiment has an effect that a more appropriate threshold time can be set as shown for the reason described later.
 また、実施の形態に係るデータ提供方法は、付加的な構成として、記憶データ群は、記憶機種データと記憶運転開始前温度と複数の空気調和装置のそれぞれに予め設定された記憶設定温度と記憶到達時間をそれぞれ関連付けて記憶され、第一のステップで取得した運転データ群には空気調和装置1aに予め設定された設定温度が含まれ、第二のステップにおいて機種データに関係する記憶機種データと運転開始前温度に関係する記憶開始前温度と設定温度に関係する記憶設定温度とに関連する記憶到達時間を記憶データ群より複数抽出する構成を備える。当該付加的な構成によって、実施の形態に係るデータ提供方法は後述する理由で示すように、より適切な閾時間を設定することができる効果を奏する。 Further, as an additional configuration of the data providing method according to the embodiment, the stored data group includes the storage model data, the temperature before the start of the storage operation, and the storage set temperature and storage preset for each of the plurality of air conditioners. The operation data group acquired in the first step is stored in association with each arrival time, and includes the set temperature preset in the air conditioner 1a, and is stored in the second step with the stored model data related to the model data. It is provided with a configuration for extracting a plurality of storage arrival times related to the storage pre-start temperature related to the operation start temperature and the storage set temperature related to the set temperature from the storage data group. With the additional configuration, the data providing method according to the embodiment has an effect that a more appropriate threshold time can be set as shown for the reason described later.
 また、実施の形態に係るデータ提供方法は、付加的な構成として、第二のステップにおいて設定温度に関係する記憶設定温度とは設定温度と一致する記憶設定温度である構成を有する。当該付加的な構成によって、実施の形態に係るデータ提供方法は後述する理由で示すように、より適切な閾時間を設定することができる効果を奏する。 Further, the data providing method according to the embodiment has, as an additional configuration, a configuration in which the storage set temperature related to the set temperature in the second step is a storage set temperature that matches the set temperature. With the additional configuration, the data providing method according to the embodiment has an effect that a more appropriate threshold time can be set as shown for the reason described later.
 また、実施の形態に係るデータ提供方法は、付加的な構成として、記憶データ群は、複数の空気調和装置のそれぞれの空気調和対象空間とは異なる室外空間の過去の空気の温度である記憶室外温度と記憶機種データと記憶運転開始前温度と記憶到達時間をそれぞれ関連付けて記憶され、第一のステップで取得した運転データ群には空気調和装置1aの空気調和対象空間とは異なる室外空間の温度である室外温度が含まれ、第二のステップにおいて機種データに関係する記憶機種データと運転開始前温度に関係する記憶運転開始前温度と室外温度に関係する記憶室外温度とに関連する記憶到達時間を記憶データ群より複数抽出する構成を備える。当該付加的な構成によって、実施の形態に係るデータ提供方法は後述する理由で示すように、より適切な閾時間を設定することができる効果を奏する。 Further, as an additional configuration of the data providing method according to the embodiment, the storage data group is the temperature of the past air in the outdoor space different from the air harmonization target space of each of the plurality of air harmonizers. Temperature and storage Model data and storage The temperature before the start of operation and the storage arrival time are stored in association with each other, and the operation data group acquired in the first step contains the temperature of the outdoor space different from the air harmonization target space of the air conditioner 1a. In the second step, the storage model data related to the model data and the storage related to the temperature before the start of operation The storage arrival time related to the temperature before the start of operation and the storage outdoor temperature related to the outdoor temperature are included. It is provided with a configuration for extracting a plurality of temperatures from a stored data group. With the additional configuration, the data providing method according to the embodiment has an effect that a more appropriate threshold time can be set as shown for the reason described later.
 また、実施の形態に係るデータ提供方法は、付加的な構成として、第二のステップにおいて室外温度に関係する記憶室外温度とは室外温度と一致する記憶室外温度である構成を有する。当該付加的な構成によって、実施の形態に係るデータ提供方法は後述する理由で示すように、より適切な閾時間を設定することができる効果を奏する。 Further, the data providing method according to the embodiment has, as an additional configuration, a configuration in which the storage outdoor temperature related to the outdoor temperature in the second step is a storage outdoor temperature that matches the outdoor temperature. With the additional configuration, the data providing method according to the embodiment has an effect that a more appropriate threshold time can be set as shown for the reason described later.
 また、実施の形態に係るデータ提供方法は、付加的な構成として、記憶データ群は、複数の空気調和装置のそれぞれが空気調和対象空間に設置された日付である記憶設置日と記憶機種データと記憶運転開始前温度と記憶到達時間をそれぞれ関連付けて記憶され、第一のステップで取得した運転データ群には空気調和装置1aが空気調和対象空間に設置された日付である設置日が含まれ、第二のステップにおいて機種データに関係する記憶機種データと運転開始前温度に関係する記憶運転開始前温度と設置日に関係する記憶設置日とに関連する記憶到達時間を記憶データ群より複数抽出する構成を備える。当該付加的な構成によって、実施の形態に係るデータ提供方法は後述する理由で示すように、より適切な閾時間を設定することができる効果を奏する。 Further, as an additional configuration of the data providing method according to the embodiment, the storage data group includes the storage installation date and the storage model data, which are the dates when each of the plurality of air harmonizers is installed in the air harmonization target space. The operation data group acquired in the first step includes the installation date, which is the date when the air conditioner 1a is installed in the air adjustment target space. In the second step, storage model data related to model data and storage related to pre-operation temperature Storage related to pre-operation start temperature and installation date Multiple storage arrival times related to installation date are extracted from the storage data group. It has a configuration. With the additional configuration, the data providing method according to the embodiment has an effect that a more appropriate threshold time can be set as shown for the reason described later.
 また、実施の形態に係るデータ提供方法は、付加的な構成として、第二のステップにおいて設置日に関係する記憶設置日とは設置日よりも後の日付の記憶設置日である構成を有する。当該付加的な構成によって、実施の形態に係るデータ提供方法は後述する理由で示すように、より適切な閾時間を設定することができる効果を奏する。 Further, as an additional configuration, the data providing method according to the embodiment has a configuration in which the storage installation date related to the installation date in the second step is a storage installation date of a date after the installation date. With the additional configuration, the data providing method according to the embodiment has an effect that a more appropriate threshold time can be set as shown for the reason described later.
 実施の形態の変形例について説明する。 An example of modification of the embodiment will be described.
 実施の形態では、記憶運転開始前室内温度が運転開始前室内温度Trbと一致する場合に記憶運転開始前室内温度は運転開始前室内温度Trbと関係するとしているが、これに限らず運転開始前室内温度Trbが入るような温度範囲の中に記憶運転開始前室内温度が入る場合に記憶運転開始前室内温度は運転開始前室内温度Trbと関係するとしても良い。例えば、記憶運転開始前室内温度が、運転開始前室内温度Trbよりも所定の温度だけ低い下限運転開始前室内温度Trbl以上であり運転開始前室内温度Trbよりも所定の温度だけ高い上限運転開始前室内温度Trbh以下の範囲に入っていれば運転開始前室内温度Trbと関係するとしてもよい。より具体的には、運転開始前室内温度Trbが30.0℃であった時、運転開始前室内温度Trbよりも0.5℃低い29.5℃を下限運転開始前室内温度Trblとし、運転開始前室内温度Trbよりも0.5℃高い30.5℃を上限運転開始前室内温度Trbhとし、記憶運転開始前室内温度が29.5℃から30.5℃の温度範囲の中に入る場合を記憶運転開始前室内温度は運転開始前室内温度Trbと関係するとしても良い。なお、同様に記憶設定温度についても、設定温度Tsが入るような温度範囲の中に記憶設定温度が入る場合に記憶設定温度は設定温度Tsと関係するとしても良い。また、同様に記憶室外温度についても、室外温度Toが入るような温度範囲の中に記憶室外温度が入る場合に記憶室外温度は室外温度Toと関係するとしても良い。 In the embodiment, when the indoor temperature before the start of the storage operation matches the indoor temperature Trb before the start of the operation, the indoor temperature before the start of the storage operation is related to the indoor temperature Trb before the start of the operation, but the present invention is not limited to this. When the room temperature before the start of the storage operation is within the temperature range in which the room temperature Trb is contained, the room temperature before the start of the storage operation may be related to the room temperature Trb before the start of the operation. For example, the indoor temperature before the start of the storage operation is lower than the indoor temperature Trb before the start of operation by a predetermined temperature, which is equal to or higher than the indoor temperature Trbl before the start of operation, and is higher than the indoor temperature Trb before the start of operation by a predetermined temperature. If it is within the range of the room temperature Trbh or less, it may be related to the room temperature Trb before the start of operation. More specifically, when the indoor temperature Trb before the start of operation is 30.0 ° C., 29.5 ° C., which is 0.5 ° C. lower than the indoor temperature Trb before the start of operation, is set as the lower limit indoor temperature Trbl before the start of operation. When the upper limit pre-start room temperature Trbh is 30.5 ° C, which is 0.5 ° C higher than the pre-start room temperature Trb, and the pre-start room temperature falls within the temperature range of 29.5 ° C to 30.5 ° C. The room temperature before the start of operation may be related to the room temperature Trb before the start of operation. Similarly, regarding the storage set temperature, when the storage set temperature is within the temperature range in which the set temperature Ts is entered, the storage set temperature may be related to the set temperature Ts. Similarly, regarding the storage outdoor temperature, when the storage outdoor temperature falls within the temperature range in which the outdoor temperature To enters, the storage outdoor temperature may be related to the outdoor temperature To.
 ただし、記憶運転開始前室内温度が運転開始前室内温度Trbと一致する場合に記憶運転開始前室内温度は運転開始前室内温度Trbと関係するとした場合は、運転開始前室内温度Trbが入るような温度範囲の中に記憶運転開始前室内温度が入る場合に記憶運転開始前室内温度は運転開始前室内温度Trbと関係するとした場合と比較して、より適切な閾時間ttを導き出すことができる。これは、後者の場合は、例えば関係するとした記憶運転開始前室内温度の過半数が運転開始前室内温度Trbよりも高い記憶運転開始前室内温度である時など、記憶運転開始前室内温度が運転開始前室内温度Trbと一致する場合に記憶運転開始前室内温度は運転開始前室内温度Trbと関係するとした場合の方が明らかに適切な閾時間ttが設定される場合を含むからである。したがって、記憶運転開始前室内温度が運転開始前室内温度Trbと一致する場合に記憶運転開始前室内温度は運転開始前室内温度Trbと関係するとした方が望ましい。なお、これは記憶設定温度および記憶室外温度の場合も同様である。 However, if the room temperature before the start of the memory operation matches the room temperature Trb before the start of the operation and the room temperature before the start of the memory operation is related to the room temperature Trb before the start of the operation, the room temperature Trb before the start of the operation is entered. When the room temperature before the start of the storage operation is within the temperature range, the room temperature before the start of the storage operation can derive a more appropriate threshold time tt as compared with the case where the room temperature before the start of the operation is related to the room temperature Trb. In the latter case, for example, when the majority of the room temperature before the start of the memory operation is higher than the room temperature Trb before the start of the memory operation, the room temperature before the start of the memory operation is the room temperature before the start of the memory operation. This is because the case where the temperature in the room before the start of the memory operation is related to the temperature Trb in the room before the start of the operation when it matches the temperature in the front room Trb includes a case where a clearly appropriate threshold time tt is set. Therefore, when the indoor temperature before the start of the memory operation matches the indoor temperature Trb before the start of the operation, it is desirable that the indoor temperature before the start of the memory operation is related to the indoor temperature Trb before the start of the operation. This also applies to the storage set temperature and the storage outdoor temperature.
 実施の形態では、記憶機種データが機種データと一致する場合に記憶機種データは機種データと関係するとしているが、これに限らず、記憶機種データと機種データが厳密に一致しない場合であっても記憶機種データと機種データが関係するとしても良い。例えば、機種データがMSZ-AXXXという空気調和装置がモデルチェンジによって機種データがMSZ-AZZZという空気調和装置に置き変わる時において、機種データがMSZ-AXXXである場合に記憶機種データがMSZ-AZZZのデータも関係するとしても良い。 In the embodiment, when the storage model data matches the model data, the storage model data is related to the model data, but the present invention is not limited to this, and even if the storage model data and the model data do not exactly match. The storage model data and the model data may be related. For example, when the air conditioner whose model data is MSZ-AXXX is replaced by the air conditioner whose model data is MSZ-AZZZ due to a model change, when the model data is MSZ-AXXX, the stored model data is MSZ-AZZZ. Data may also be relevant.
 ただし、記憶運転開始前室内温度の場合と同様に、記憶機種データが機種データと一致する場合に記憶機種データは機種データと関係するとした場合は、記憶機種データと機種データが厳密に一致しない場合であっても記憶機種データと機種データが関係するとした場合と比較して、より適切な閾時間ttを導き出すことができる。したがって、記憶機種データが機種データと一致する場合に記憶機種データは機種データと関係するとした方が望ましい。 However, as in the case of the room temperature before the start of storage operation, if the storage model data matches the model data and the storage model data is related to the model data, the storage model data and the model data do not exactly match. Even so, a more appropriate threshold time tt can be derived as compared with the case where the storage model data and the model data are related. Therefore, when the stored model data matches the model data, it is desirable that the stored model data is related to the model data.
 実施の形態では、記憶設置日が設置日よりも後の日付である場合に記憶設置日は設置日と関係するとしているが、これに限らず、記憶設置日が設置日よりも前の日付であってもが記憶機種データと機種データが関係するとしても良い。 In the embodiment, when the memory installation date is a date after the installation date, the memory installation date is related to the installation date, but the present invention is not limited to this, and the memory installation date is a date before the installation date. Even if there is, it may be said that the storage model data and the model data are related.
 ただし、記憶設置日が設置日よりも後の日付である場合に記憶機種データは機種データと関係するとした場合は、記憶設置日が設置日よりも前の日付であってもが記憶機種データと機種データが関係するとした場合と比較して、より適切な閾時間ttを導き出すことができる。これは、記憶設置日が設置日よりも前の日付である場合は、当該記憶設置日に関係付けられた記憶運転データは設置日を取得した空気調和装置よりも古い空気調和装置に関する記憶運転データであり、記憶設置日が設置日よりも後の日付である場合と比較して能力が低下した場合の記憶運転データである可能性が高いからである。能力が低下した場合の記憶運転データがより少ない方がより適切な閾時間ttが設定されることは明らかである。したがって、記憶設置日が設置日よりも後の日付である場合に記憶機種データは機種データと関係するとした場合の方が望ましい。 However, if the storage installation date is later than the installation date and the storage model data is related to the model data, even if the storage installation date is earlier than the installation date, it will be the storage model data. A more appropriate threshold time tt can be derived as compared with the case where the model data is involved. This means that if the storage installation date is earlier than the installation date, the storage operation data associated with the storage installation date is the storage operation data for the air conditioner older than the air conditioner for which the installation date was acquired. This is because there is a high possibility that the data is stored operation data when the capacity is lowered as compared with the case where the storage installation date is a date after the installation date. It is clear that a more appropriate threshold time tt is set when the storage operation data is smaller when the capacity is reduced. Therefore, it is preferable that the storage model data is related to the model data when the storage installation date is later than the installation date.
 また、実施の形態では、運転開始前室内温度Trbと設定温度Tsと室外温度Toと機種データと設置日とにそれぞれ関係する記憶運転開始前室内温度と記憶設定温度と記憶室外温度と記憶機種データと記憶設置日と関連付けられた記憶到達時間を抽出するが、これに限らない。少なくとも運転開始前室内温度Trbと機種データとにそれぞれ関係する記憶運転開始前室内温度と記憶機種データと関連付けられた記憶到達時間を抽出すればよい。ただし、設定温度Tsと室外温度Toと設置日を用いて特定した方がより適切な閾時間ttが設定される。また、運転開始前室内温度Trbと設定温度Tsと室外温度Toと機種データと設置日以外のデータを用い、当該データに関係する記憶データと関連付けられた記憶到達時間を抽出してもよい。 Further, in the embodiment, the indoor temperature before the start of operation Trb, the set temperature Ts, the outdoor temperature To, the model data, and the storage date related to the installation date are stored. And the memory arrival time associated with the memory installation date is extracted, but not limited to this. At least the storage arrival time associated with the storage pre-start indoor temperature and the storage model data related to the pre-operation start room temperature Trb and the model data may be extracted. However, a more appropriate threshold time tt is set by specifying using the set temperature Ts, the outdoor temperature To, and the installation date. Further, the storage arrival time associated with the storage data related to the data may be extracted by using the indoor temperature Trb before the start of operation, the set temperature Ts, the outdoor temperature To, the model data, and the data other than the installation date.
 また、実施の形態では、演算部57はサーバー5に備えられているが、これに限らず、空気調和装置1に備えられていても構わない。この場合、演算部57はプロセッサ26、30又は33がメモリ27、31又は34に記憶されたプログラムに従って処理を実行することで実現される。また、この場合、運転データ解析処理においてステップS307の処理の終了後、サーバーはステップS309の処理を行う。このステップS309で送信される解析戻り信号にはステップS307で抽出した記憶到達時間が含まれる。そしてステップS309の処理の終了後に空気調和装置1はステップS308の処理を行い、閾時間ttを導出する。 Further, in the embodiment, the calculation unit 57 is provided in the server 5, but the present invention is not limited to this, and the calculation unit 57 may be provided in the air conditioner 1. In this case, the arithmetic unit 57 is realized by the processor 26, 30 or 33 executing the process according to the program stored in the memory 27, 31 or 34. Further, in this case, after the processing of step S307 is completed in the operation data analysis processing, the server performs the processing of step S309. The analysis return signal transmitted in step S309 includes the storage arrival time extracted in step S307. Then, after the processing of step S309 is completed, the air conditioner 1 performs the processing of step S308 to derive the threshold time tt.
 図13は実施の形態の変形例に係る空気調和システムの概略図である。図14は実施の形態の変形例に係る報知機器に表示される表示内容の例を示す図である。実施の形態では、リモコン4の報知端末24より空気調和装置1の能力が低下していることをユーザーに報知したが、これに限らず、空気調和システム1に含まれない報知機器400にデータを送ることで空気調和装置1の能力が低下していることをユーザーに報知しても構わない。 FIG. 13 is a schematic diagram of an air conditioning system according to a modified example of the embodiment. FIG. 14 is a diagram showing an example of display contents displayed on the notification device according to the modified example of the embodiment. In the embodiment, the user is notified that the capacity of the air conditioning device 1 is lower than that of the notification terminal 24 of the remote controller 4, but the data is not limited to this and the data is transmitted to the notification device 400 not included in the air conditioning system 1. By sending the data, the user may be notified that the capacity of the air conditioner 1 is reduced.
 報知機器400はユーザーにデータを表記または音声で報知する機器である。報知機器400としては例えばパーソナルコンピュータ、テレビ、スマートフォンまたはタブレット端末などが挙げられる。また、報知機器400は空気調和装置1とデータの送信または受信が可能となるように接続されている。なお、図13に示すように実施の形態の変形例では空気調和装置1と報知機器400は直接的にデータの送信または受信が可能な構成であるが、これに限らず、例えばネットワーク300を介するなど間接的にデータの送信または受信が可能な構成であっても構わない。また、実施の形態の変形例では報知部48は、報知機器400で実現され、空気調和システム1には含まれない。 The notification device 400 is a device that notifies the user of data by notation or voice. Examples of the notification device 400 include a personal computer, a television, a smartphone, a tablet terminal, and the like. Further, the notification device 400 is connected to the air conditioner 1 so as to be able to transmit or receive data. As shown in FIG. 13, in the modified example of the embodiment, the air conditioner 1 and the notification device 400 are configured to be able to directly transmit or receive data, but the configuration is not limited to this, and the air conditioner 1 and the notification device 400 are not limited to this, for example, via a network 300. The configuration may be such that data can be indirectly transmitted or received. Further, in the modified example of the embodiment, the notification unit 48 is realized by the notification device 400 and is not included in the air conditioning system 1.
 図14は実施の形態の変形例に係る報知機器に表示される表示内容の例を示す図である。実施の形態の変形例ではステップS407において報知機器400には図14に示す表示内容が表示される。表示内容には図柄情報400eと文字情報400fとが含まれる。なお、図柄情報400eは実施の形態で説明した図柄情報48aと同様であるため、説明を省略する。文字情報400fは、空気調和装置のオンラインショップのURL(Uniform Resouce Locator)を表示する以外は実施の形態で説明した文字情報48bと同様であるため説明を省略する。ユーザーはURLを選択することによって、空気調和装置のオンラインショップで買い物を行うことができる。なお、図柄情報400aに空気調和装置のオンラインショップのハイパーリンクが設定されたアイコンを表示しても構わない。実施の形態の変形例に係る空気調和システムは、付加的な構成として、判断部が空気調和装置の能力が低下していると判断した場合に、報知制御部47は報知部(報知機器400が該当)に空気調和装置のオンラインショップのハイパーリンクを表示させる構成を有する。当該付加的な構成によって、ユーザーに対して性能が低下した空気調和装置を買い替える購買意欲を促進させる効果が生じる。 FIG. 14 is a diagram showing an example of display contents displayed on the notification device according to the modified example of the embodiment. In the modified example of the embodiment, the display content shown in FIG. 14 is displayed on the notification device 400 in step S407. The display contents include the symbol information 400e and the character information 400f. Since the symbol information 400e is the same as the symbol information 48a described in the embodiment, the description thereof will be omitted. Since the character information 400f is the same as the character information 48b described in the embodiment except that the URL (Uniform Resource Locator) of the online shop of the air conditioner is displayed, the description thereof will be omitted. By selecting the URL, the user can shop at the online shop of the air conditioner. In addition, an icon in which the hyperlink of the online shop of the air conditioner is set may be displayed in the symbol information 400a. In the air conditioning system according to the modified example of the embodiment, as an additional configuration, when the determination unit determines that the capacity of the air conditioning device is reduced, the notification control unit 47 is notified by the notification unit (notification device 400). Applicable) has a configuration to display the hyperlink of the online shop of the air conditioner. The additional configuration has the effect of encouraging users to purchase a replacement air conditioner with reduced performance.
1 空気調和装置、1a~1d 空気調和装置、2 室内機、2a~2d 室内機、3 室外機、3a~3d 室外機、4 リモコン、4a~4d リモコン、5 サーバー10 圧縮機、11 室外熱交換器、12 膨張弁、13 室内熱交換器、14 四方弁、15 冷媒配管、16 室外送風機、17 室内送風機、18 室外温度センサ、19 室内温度センサ、20 室内機制御装置、21 室外機制御装置、22 第一の信号線、23 第二の信号線、24 報知端末、25 入力端末、26 プロセッサ、27 メモリ、28 ハードウェアインターフェース、29 タイマー30 プロセッサ、31 メモリ、32 ハードウェアインターフェース、33 プロセッサ、34 メモリ、35 ハードウェアインターフェース、36 タイマー部、37 温度取得部、38 空気調和装置側記憶部、39 入力部、40 第一の判断部、41 指令部、42 空気調和部、43 データ作成部、44 空気調和装置側送信部、45 空気調和装置側受信部、46 第二の判断部、47 報知制御部、48 報知部、48a 図柄情報、48b 文字情報、51 プロセッサ、52 メモリ、53 ハードウェアインターフェース、54 サーバー側受信部、55 サーバー側記憶部、56 解析部、57 演算部、58 サーバー側送信部、100 空気調和システム200 建築物200a~200d 建築物、300 ネットワーク、400 報知機器、400a~400d 報知機器、400e 図柄情報、400f 文字情報。 1 air conditioner, 1a to 1d air conditioner, 2 indoor unit, 2a to 2d indoor unit, 3 outdoor unit, 3a to 3d outdoor unit, 4 remote control, 4a to 4d remote control, 5 server 10 compressor, 11 outdoor heat exchange Instrument, 12 expansion valve, 13 indoor heat exchanger, 14 four-way valve, 15 refrigerant piping, 16 outdoor blower, 17 indoor blower, 18 outdoor temperature sensor, 19 indoor temperature sensor, 20 indoor unit control device, 21 outdoor unit control device, 22 1st signal line, 23 2nd signal line, 24 notification terminal, 25 input terminal, 26 processor, 27 memory, 28 hardware interface, 29 timer 30 processor, 31 memory, 32 hardware interface, 33 processor, 34 Memory, 35 hardware interface, 36 timer unit, 37 temperature acquisition unit, 38 air conditioner side storage unit, 39 input unit, 40 first judgment unit, 41 command unit, 42 air conditioner unit, 43 data creation unit, 44 Air conditioner side transmitter unit, 45 air conditioner side receiver unit, 46 second judgment unit, 47 notification control unit, 48 notification unit, 48a design information, 48b character information, 51 processor, 52 memory, 53 hardware interface, 54 server side receiving unit, 55 server side storage unit, 56 analysis unit, 57 calculation unit, 58 server side transmitting unit, 100 air conditioning system 200 building 200a-200d building, 300 network, 400 notification device, 400a-400d notification Equipment, 400e design information, 400f character information.

Claims (13)

  1.  空気調和対象空間の空気の温度を予め定められた設定温度に調和する空気調和装置と、
     前記空気調和装置が調和を行う前の前記空気調和対象空間の空気の温度である運転開始前温度を取得し、前記空気調和装置が調和を開始してから閾時間を経過した時点の前記空気調和対象空間の空気の温度である閾時間後温度を取得する温度取得部と、
     前記閾時間を計時するタイマー部と、
     前記空気調和対象空間と異なる他の空気調和対象空間の空気を調和する他の空気調和装置に設定された前記他の空気調和装置の種類を示す記憶機種データを記憶し、前記他の空気調和装置が調和を開始する前の前記他の空気調和対象空間の温度である記憶運転開始前温度を記憶し、前記他の空気調和装置が調和を開始してから前記他の空気調和対象空間の温度が前記他の空気調和装置に設定された到達判定温度に達するまでの時間である記憶到達時間を記憶し、前記記憶機種データと前記記憶運転開始前温度と前記記憶到達時間をそれぞれ関連付けて記憶する記憶部と、
     前記運転開始前温度に関係する前記記憶運転開始前温度と前記空気調和装置の種類を示す機種データに関係する前記記憶機種データとに関連付けられた前記記憶到達時間を前記記憶部から抽出する解析部と、
     前記解析部が抽出した前記記憶到達時間に基づき前記閾時間を演算する演算部と、
     前記閾時間後温度と前記設定温度に基づき、前記空気調和装置の能力が低下しているか否かを判断する判断部と、
     前記判断部が前記空気調和装置の能力が低下していると判断した場合に、報知部に対して前記空気調和装置の能力が低下していることを報知させる制御を行う報知制御部と、
    を備える空気調和システム。
    Air conditioning A device that harmonizes the temperature of the air in the target space with a predetermined set temperature,
    The pre-operation temperature, which is the temperature of the air in the air conditioning target space before the air conditioning device performs harmonization, is acquired, and the air conditioning at the time when the threshold time elapses after the air conditioning device starts the harmonization. A temperature acquisition unit that acquires the temperature after the threshold time, which is the temperature of the air in the target space,
    A timer unit that measures the threshold time and
    The storage model data indicating the type of the other air conditioned device set in the other air conditioned device that harmonizes the air in the other air conditioned space different from the air conditioned target space is stored, and the other air conditioned device is stored. Stores the temperature before the start of the storage operation, which is the temperature of the other air-conditioning target space before the start of the harmonization, and the temperature of the other air-conditioning target space after the other air-conditioning device starts the harmony. Storage that stores the storage arrival time, which is the time until the arrival determination temperature set in the other air conditioner is reached, and stores the storage model data, the temperature before the start of the storage operation, and the storage arrival time in association with each other. Department and
    An analysis unit that extracts from the storage unit the storage arrival time associated with the storage model data related to the storage model data indicating the pre-operation temperature related to the pre-operation temperature and the model data indicating the type of the air conditioner. When,
    An arithmetic unit that calculates the threshold time based on the memory arrival time extracted by the analysis unit, and
    A determination unit for determining whether or not the capacity of the air conditioner is reduced based on the temperature after the threshold time and the set temperature.
    A notification control unit that controls the notification unit to notify that the capacity of the air conditioner is reduced when the determination unit determines that the capacity of the air conditioner is reduced.
    Air conditioning system with.
  2.  前記記憶部は、複数の前記記憶機種データと複数の前記記憶運転開始前温度と複数の前記記憶到達時間とを記憶しており、
     前記解析部は、複数の前記記憶到達時間を抽出する請求項1に記載の空気調和システム。
    The storage unit stores a plurality of the storage model data, a plurality of temperatures before the start of the storage operation, and a plurality of the storage arrival times.
    The air conditioning system according to claim 1, wherein the analysis unit extracts a plurality of the storage arrival times.
  3.  前記運転開始前温度に関係する前記記憶運転開始前温度とは、前記運転開始前温度と一致する前記記憶運転開始前温度であり、
     前記機種データに関係する前記記憶機種データとは、前記機種データと一致する前記記憶機種データである請求項1または2に記載の空気調和システム。
    The pre-memory operation temperature related to the pre-operation temperature is the pre-storage temperature that coincides with the pre-operation temperature.
    The air conditioning system according to claim 1 or 2, wherein the storage model data related to the model data is the storage model data that matches the model data.
  4.  前記空気調和装置は前記空気調和対象空間の空気の温度を低下させる冷房運転モードで運転することができ、
     前記判断部は、前記空気調和装置が冷房運転モードである時に、前記閾時間後温度が前記設定温度と予め定められた解析補正値との和よりも大きい場合に、前記空気調和装置の能力が低下していると判断する請求項1から3のいずれか一項に記載の空気調和システム。
    The air conditioner can be operated in a cooling operation mode in which the temperature of the air in the air conditioner target space is lowered.
    The determination unit has the ability of the air conditioner when the temperature after the threshold time is larger than the sum of the set temperature and the predetermined analysis correction value when the air conditioner is in the cooling operation mode. The air conditioning system according to any one of claims 1 to 3, which is determined to be deteriorated.
  5.  前記空気調和装置は前記空気調和対象空間の空気の温度を上昇させる暖房運転モードで運転することができ、
     前記判断部は、前記空気調和装置が暖房運転モードである時に、前記閾時間後温度が前記設定温度と予め定められた解析補正値との差よりも小さい場合に、前記空気調和装置の能力が低下していると判断する請求項1から4のいずれか一項に記載の空気調和システム。
    The air conditioner can be operated in a heating operation mode in which the temperature of the air in the air conditioner target space is raised.
    The determination unit determines that when the air conditioner is in the heating operation mode, the temperature after the threshold time is smaller than the difference between the set temperature and the predetermined analysis correction value, the ability of the air conditioner is increased. The air conditioning system according to any one of claims 1 to 4, which is determined to be deteriorated.
  6.  前記記憶部は、前記他の空気調和装置に設定された設定温度である記憶設定温度を複数記憶し、前記記憶設定温度と前記記憶機種データと前記記憶運転開始前温度と前記記憶到達時間をそれぞれ関連付けて記憶し、
     前記解析部は、前記運転開始前温度に関係する前記記憶運転開始前温度と前記機種データに関係する前記記憶機種データと前記設定温度に関係する前記記憶設定温度とに関連付けられた前記記憶到達時間を前記記憶部から複数抽出する請求項2から5のいずれか一項に記載の空気調和システム。
    The storage unit stores a plurality of storage set temperatures, which are set temperatures set in the other air conditioner, and stores the storage set temperature, the storage model data, the temperature before the start of the storage operation, and the storage arrival time, respectively. Associate and remember,
    The analysis unit has the storage arrival time associated with the storage pre-start temperature related to the pre-operation temperature, the storage model data related to the model data, and the storage set temperature related to the set temperature. The air conditioning system according to any one of claims 2 to 5, wherein a plurality of temperatures are extracted from the storage unit.
  7.  前記設定温度に関係する前記記憶設定温度とは、前記設定温度と一致する前記記憶設定温度である請求項6に記載の空気調和システム。 The air conditioning system according to claim 6, wherein the storage set temperature related to the set temperature is the storage set temperature that matches the set temperature.
  8.  前記温度取得部は、前記空気調和対象空間とは異なる空間である室外空間の空気の温度である室外温度を取得し、
     前記記憶部は、前記他の空気調和対象空間とは異なる空間である過去の室外空間の空気の温度である記憶室外温度を複数記憶し、前記記憶室外温度と前記記憶機種データと前記記憶運転開始前温度と前記記憶到達時間をそれぞれ関連付けて記憶し、
     前記解析部は、前記運転開始前温度に関係する前記記憶運転開始前温度と前記機種データに関係する前記記憶機種データと前記室外温度に関係する前記記憶室外温度とに関連付けられた前記記憶到達時間を前記記憶部から複数抽出する請求項2から7のいずれか一項に記載の空気調和システム。
    The temperature acquisition unit acquires the outdoor temperature, which is the temperature of the air in the outdoor space, which is a space different from the air conditioning target space.
    The storage unit stores a plurality of storage outdoor temperatures, which are the temperatures of air in the past outdoor space, which is a space different from the other air harmonization target spaces, and stores the storage outdoor temperature, the storage model data, and the storage operation start. The pre-temperature and the memory arrival time are associated with each other and stored.
    The analysis unit has the storage arrival time associated with the storage pre-start temperature related to the pre-operation temperature, the storage model data related to the model data, and the storage outdoor temperature related to the outdoor temperature. The air conditioning system according to any one of claims 2 to 7, wherein a plurality of temperatures are extracted from the storage unit.
  9.  前記室外温度に関係する前記記憶室外温度とは、前記室外温度と一致する前記記憶室外温度である請求項8に記載の空気調和システム。 The air conditioning system according to claim 8, wherein the storage outdoor temperature related to the outdoor temperature is the storage outdoor temperature that coincides with the outdoor temperature.
  10.  前記記憶部は、前記他の空気調和対象空間に前記他の空気調和装置が設置された日付である記憶設置日を複数記憶し、前記記憶設置日と前記記憶機種データと前記記憶運転開始前温度と前記記憶到達時間をそれぞれ関連付けて記憶し、
     前記解析部は、前記運転開始前温度に関係する前記記憶運転開始前温度と前記機種データに関係する前記記憶機種データと前記空気調和装置が前記空気調和対象空間に設置された日である設置日に関係する前記記憶設置日とに関連付けられた前記記憶到達時間を前記記憶部から複数抽出する請求項2から9のいずれか一項に記載の空気調和システム。
    The storage unit stores a plurality of storage installation dates, which are dates when the other air conditioning devices are installed in the other air conditioning target space, and stores the storage installation date, the storage model data, and the temperature before the start of the storage operation. And the above-mentioned memory arrival time are associated with each other and memorized.
    The analysis unit is the date on which the storage model data related to the storage operation start temperature related to the operation start temperature, the storage model data related to the model data, and the air conditioner are installed in the air conditioner target space. The air conditioning system according to any one of claims 2 to 9, wherein a plurality of the memory arrival times associated with the memory installation date related to the storage unit are extracted from the storage unit.
  11.  前記設置日に関係する前記記憶設置日とは、前記設置日よりも後の日付の前記記憶設置日である請求項10に記載の空気調和システム。 The air conditioning system according to claim 10, wherein the storage installation date related to the installation date is the storage installation date on a date after the installation date.
  12.  前記温度取得部は、前記空気調和対象空間の空気の温度を取得し、
     前記タイマーは、前記空気調和装置が調和を開始してから前記温度取得部が取得した前記空気調和対象空間の空気の温度が前記到達判定温度となるまでの時間である到達時間を測定し、
     前記記憶部は、前記運転開始前温度と前記機種データと前記到達時間をそれぞれ前記記憶運転開始前温度と前記記憶機種データと前記記憶到達時間として関連付けて記憶する請求項1から11のいずれか一項に記載の空気調和システム。
    The temperature acquisition unit acquires the temperature of the air in the air conditioning target space, and obtains the temperature.
    The timer measures the arrival time, which is the time from when the air conditioning device starts harmonization until the temperature of the air in the air conditioning target space acquired by the temperature acquisition unit reaches the arrival determination temperature.
    One of claims 1 to 11, wherein the storage unit stores the pre-operation temperature, the model data, and the arrival time in association with the storage operation start temperature, the storage model data, and the storage arrival time, respectively. The air conditioning system described in section.
  13.  ネットワークを介して複数の空気調和装置からデータを収集し、収集したデータを過去データ群として記憶し、前記過去データ群を用いて閾時間を演算し、演算した閾時間を用いて前記複数の空気調和装置のいずれか一つの空気調和装置の能力が低下しているか否かを判断する空気調和システムに用いられるコンピュータが実行するデータ提供方法であり、
     前記過去データ群は、前記複数の空気調和装置のそれぞれの種類を示す記憶機種データと、前記複数の空気調和装置のそれぞれが調和を行う前の空気調和対象空間の温度である記憶運転開始前温度と、前記空気調和装置のそれぞれが調和を開始してから前記空気調和装置のそれぞれに設定された到達判定温度に達するまでの時間である記憶到達温度と、を関連付けて記憶されたデータ群であり、
     前記ネットワークを介し前記空気調和装置から当該空気調和装置の種類を示す機種データと当該空気調和装置が調和を行う前の空気調和対象空間の空気の温度である運転開始前温度とを含む現在の運転データ群を取得する第1のステップと、
     前記機種データに関係する前記記憶機種データと前記運転開始前温度に関係する前記記憶運転開始温度とに関連する記憶到達時間を前記過去データ群より抽出する第二のステップと、
     前記第二のステップで抽出した前記記憶到達時間に基づき閾時間を演算する第三のステップと、
     前記第三のステップで演算した閾時間を前記第一のステップで前記運転データ群を取得した前記空気調和装置に提供する第四のステップと、
    を備えたデータ提供方法。
    Data is collected from a plurality of air conditioners via a network, the collected data is stored as a past data group, a threshold time is calculated using the past data group, and the calculated threshold time is used to calculate the plurality of air. It is a data provision method executed by a computer used in an air conditioning system to determine whether or not the capacity of any one of the air conditioning devices is reduced.
    The past data group includes storage model data indicating each type of the plurality of air conditioners and a temperature before the start of storage operation, which is the temperature of the air conditioning target space before each of the plurality of air conditioners performs harmonization. It is a data group stored in association with the storage arrival temperature, which is the time from the start of harmonization of each of the air conditioners to the arrival of the arrival determination temperature set for each of the air conditioners. ,
    Current operation including model data indicating the type of the air conditioner from the air conditioner via the network and the temperature before the start of operation, which is the temperature of the air in the air conditioning target space before the air conditioner performs harmonization. The first step to get the data set and
    The second step of extracting the storage arrival time related to the storage model data related to the model data and the storage operation start temperature related to the operation start temperature from the past data group, and
    The third step of calculating the threshold time based on the memory arrival time extracted in the second step, and
    The fourth step of providing the threshold time calculated in the third step to the air conditioner for which the operation data group was acquired in the first step, and the fourth step.
    Data provision method with.
PCT/JP2020/019743 2020-05-19 2020-05-19 Air conditioning system and data provision method WO2021234810A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022523787A JP7343049B2 (en) 2020-05-19 2020-05-19 Air conditioning system and data provision method
PCT/JP2020/019743 WO2021234810A1 (en) 2020-05-19 2020-05-19 Air conditioning system and data provision method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/019743 WO2021234810A1 (en) 2020-05-19 2020-05-19 Air conditioning system and data provision method

Publications (1)

Publication Number Publication Date
WO2021234810A1 true WO2021234810A1 (en) 2021-11-25

Family

ID=78708564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019743 WO2021234810A1 (en) 2020-05-19 2020-05-19 Air conditioning system and data provision method

Country Status (2)

Country Link
JP (1) JP7343049B2 (en)
WO (1) WO2021234810A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023135703A1 (en) * 2022-01-13 2023-07-20 三菱電機株式会社 Device management system and notification method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006064307A (en) * 2004-08-27 2006-03-09 Hitachi Ltd Appliance diagnosis device, operation program therefor and appliance diagnosis method
JP2008241165A (en) * 2007-03-28 2008-10-09 Sanyo Electric Co Ltd Remote monitoring system
WO2014171118A1 (en) * 2013-04-18 2014-10-23 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Data provision method using air conditioner log information

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006064307A (en) * 2004-08-27 2006-03-09 Hitachi Ltd Appliance diagnosis device, operation program therefor and appliance diagnosis method
JP2008241165A (en) * 2007-03-28 2008-10-09 Sanyo Electric Co Ltd Remote monitoring system
WO2014171118A1 (en) * 2013-04-18 2014-10-23 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Data provision method using air conditioner log information

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023135703A1 (en) * 2022-01-13 2023-07-20 三菱電機株式会社 Device management system and notification method

Also Published As

Publication number Publication date
JP7343049B2 (en) 2023-09-12
JPWO2021234810A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
JP5084502B2 (en) Air conditioning system
JP6537719B2 (en) Air conditioning control device, air conditioner, and air conditioning system
JP5030640B2 (en) Air conditioning system
JP2008232531A (en) Remote performance monitoring device and method
JP6739671B1 (en) Information processing equipment
JP6504956B2 (en) Air conditioning equipment selection support system
EP3182027B1 (en) Control method for air conditioner, terminal device, and operation control system
JP6009586B2 (en) Air conditioning control system
WO2021234810A1 (en) Air conditioning system and data provision method
JP2016053452A (en) Air conditioner
CN106895561B (en) It is a kind of detection air-conditioner coolant leakage method, air conditioner control device and air conditioner
JP6733704B2 (en) Air conditioning management system and communication control device
EP2354691B1 (en) Air conditioner
JP5473619B2 (en) Air conditioner control device
KR102509992B1 (en) Air-conditioner and the controlling method for the same
KR102344944B1 (en) HEAT SOURCE DEVICE, INFORMATION TERMINAL, AND CONTROL PROGRAM
EP3064846A1 (en) Air-conditioning system
JP2019211108A (en) Air-conditioning management system and communication control device
CN112762585A (en) Air conditioning system and control method
JP7469682B2 (en) Device registration support system
KR102485728B1 (en) Air-conditioner and Method thereof
JP2020133966A (en) Information processing device, information processing device control method, control program and recording medium
JP2019120422A (en) Air-conditioning management system
EP3943841A1 (en) Air-conditioning system
US20220390159A1 (en) Air-conditioning management system and refrigerant recovery management apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936262

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022523787

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20936262

Country of ref document: EP

Kind code of ref document: A1