WO2021233573A1 - Luftfahrzeug mit mantelpropeller in der tragfläche - Google Patents

Luftfahrzeug mit mantelpropeller in der tragfläche Download PDF

Info

Publication number
WO2021233573A1
WO2021233573A1 PCT/EP2021/025147 EP2021025147W WO2021233573A1 WO 2021233573 A1 WO2021233573 A1 WO 2021233573A1 EP 2021025147 W EP2021025147 W EP 2021025147W WO 2021233573 A1 WO2021233573 A1 WO 2021233573A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
wing
following feature
ducted propeller
aircraft according
Prior art date
Application number
PCT/EP2021/025147
Other languages
English (en)
French (fr)
Inventor
Guan Chew
Michael Fürstner
Stefan Bender
Mikel Fauri
Malte ROTERMUND
Original Assignee
Dr. Ing. H.C. F. Porsche Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr. Ing. H.C. F. Porsche Aktiengesellschaft filed Critical Dr. Ing. H.C. F. Porsche Aktiengesellschaft
Priority to CN202180034629.6A priority Critical patent/CN115605397A/zh
Priority to US17/920,875 priority patent/US20230257104A1/en
Priority to EP21721833.8A priority patent/EP4153477A1/de
Publication of WO2021233573A1 publication Critical patent/WO2021233573A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/32Wings specially adapted for mounting power plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/001Shrouded propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • B64C29/0025Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being fixed relative to the fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/10Shape of wings
    • B64C3/14Aerofoil profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/10All-wing aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/13Propulsion using external fans or propellers
    • B64U50/14Propulsion using external fans or propellers ducted or shrouded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/10Shape of wings
    • B64C3/14Aerofoil profile
    • B64C2003/143Aerofoil profile comprising interior channels

Definitions

  • the present invention relates to an aircraft, in particular a fully electric, vertical take-off and landing (VTOL) aircraft.
  • VTOL vertical take-off and landing
  • VTOL is any type of aircraft, drone or rocket which is able to take off and touch down essentially vertically and without a runway.
  • This collective term is used in a broad sense below, which includes not only fixed-wing aircraft with wings, but also rotary-wing aircraft such as helicopters, gyroscopes, aircraft helicopters and hybrids such as composite helicopters or combination helicopters as well
  • Aircraft with the ability to take off and land on particularly short routes (short take-off and landing, STOL), take off on short routes but land vertically (short take-off and vertical landing, STOVL) are also included. or to take off vertically but land horizontally (vertical take-off and horizontal landing, VTHL).
  • DE 10 2009 048 201 A1 discloses an aircraft capable of taking off and landing vertically, which has a vertically aligned ducted propeller integrated into the fuselage with thrust vector blades on the outlet side.
  • the outlet opening of the lifting propeller in turn, has pivotable slats directed transversely to the longitudinal axis of the aircraft in order to influence the direction of the exiting exhaust gas jet.
  • This thrust vector control makes it possible to control movements around the pitch axis.
  • WO 2016/066848 A1 relates to a flying car with two stationary impellers and louvre blades that are rolled up between the impeller shafts during flight operations.
  • the propulsion force is achieved by adjusting the slats.
  • GB 2 146 298 B describes a nozzle channel, the walls of which consist of lamellae articulated to one another, which are guided in guides and moved with cables in order to be able to assume different positions along the guides.
  • the invention provides an aircraft, in particular a fully electric aircraft capable of taking off and landing vertically in the above sense, according to independent claim 1.
  • the approach according to the invention is based on the insight that a VTOL aircraft intended for lift and cruise flight requires drive units that are able to cope with every flight phase (take-off, transition, cruise and landing).
  • a ducted fan integrated into the wing is provided, as is known from aeronautical engineering, for example, from hovercraft or swamp boats.
  • the cylindrical housing surrounding the propeller is able to considerably reduce the thrust losses due to turbulence at the blade tips.
  • a variant of the invention is also based on the knowledge that a ducted propeller for VTOL aircraft capable of lifting and cruising should not only be closed under cruising conditions, but should also be aerodynamically sealed. Against this background, one possibility of producing an even closing profile during the transition is to cover the ducted propeller with louvers at the inlet and outlet, especially in horizontal flight.
  • Another advantage of this solution in addition to the improved performance, is the attractive appearance of the aircraft, since it does not allow a view of the open rotors when cruising.
  • On the suction side of the ducted propeller it is particularly important to ensure an optimized air flow and at the same time to create the possibility of opening and closing the integrated blades with a suitable kinematic system.
  • An embodiment of the invention therefore opens up the possibility of actuating the integrated inlet lamellae while maintaining the base area of the round flow channel of the ducted propeller, which is essential for its flow guidance and deflection function (into the flow channel).
  • webs are used that can be aerodynamically optimized.
  • the ducted propeller according to the invention to seal the upper wing surface from the lower wing surface in order to avoid pressure equalization during cruise.
  • the advantage of a corresponding embodiment accordingly lies in the sealing of the upper side of the wing from the underside of the wing with minimal impairment of the outer formwork in order to impair the performance of the blade-integrated ducted propeller as little as possible.
  • Another embodiment takes into account the fact that such a blade-integrated ducted propeller should be equally suitable for the operating conditions of the hover flight, the transition and the cruise flight.
  • the air is deflected twice at an angle of about 90 °: first by 90 ° into the duct that runs through the wing, in order to accelerate the flow with the embedded ducted propeller, which is done through the top Flow guide fins can be supported, and finally 90 ° out of the wing duct to generate forward thrust.
  • the ducted propeller in the wing benefits from the compression in the wing channel, which gives the aircraft according to the invention an additional overall lift.
  • the possible channel enlargement thus supports the total stroke during the hovering and transition.
  • Another embodiment is based on the knowledge that during the acceleration in transitional operation the flow (due to the increasing free jet speed around the aircraft) is not accelerated uniformly along the inlet lip into the channel. Therefore, the flow initially separates at the bow-side edge of the ducted propeller.
  • the advantage of a corresponding configuration lies in the improved compression in the ducted propeller during the transition to cruise flight. It also reduces the proportion of turbulent air that is sucked in by the ducted propeller during this transition. Finally, the flow separation at the inlet lip on the bow side is shifted in the stern direction.
  • the aircraft can be equipped with angled or even optionally angled wings.
  • a corresponding variant increases the wing area effective in level flight, but without expanding the standing area of the aircraft.
  • the aircraft may have a battery system that can be charged quickly, which provides the drive energy for vertical take-off and landing as well as level flight and enables the aircraft to be charged at short notice when the vehicle is stationary.
  • the granting of manual control to the human pilot comes into consideration, which gives the device according to the invention the greatest possible flexibility in handling.
  • Figure 1 shows the cross section of a wing.
  • FIG. 2 shows a first detail 15 of the illustration according to FIG. 1.
  • FIG. 3 shows a second detail 16 of the illustration according to FIG. 1.
  • Figure 4 shows levitation and transition.
  • Figure 5 shows the cross section of the wing in a different representation.
  • FIG. 6 shows a first detail 22 of the illustration according to FIG. 5.
  • Figure 7 shows the cross section of an inlet lamella of the wing.
  • FIG. 8 shows a second detail 23 of the illustration according to FIG. 5.
  • FIG. 9 shows the cross section of a further wing, the inlet and outlet lamellae of which are in the open position.
  • FIG. 10 shows a first detail 25 of the illustration according to FIG. 9.
  • FIG. 11 shows a second detail 26 of the illustration according to FIG. 9.
  • FIG. 12 shows the cross section of the wing, the inlet and outlet lamellae being in the closed position here.
  • FIG. 13 shows a first detail 29 of the illustration according to FIG. 12.
  • FIG. 14 shows a second detail 30 of the illustration according to FIG. 12.
  • FIG. 15 shows a plan view of the ducted propeller of the wing.
  • FIG. 16 illustrates an example of an actuation concept with a rotary drive.
  • Figure 1 shows the wing (10) of the aircraft in profile.
  • the wing (10) is traversed vertically by a ducted propeller (20), which has inlet lamellas (13) on its upper side, as shown in the illustration, and outlet lamellas (14) for flow guidance on its underside.
  • the outlet lamellas (14) can also be used for thrust vector control and thus navigation of the aircraft and are also able to completely close the underside of the ducted propeller (20).
  • the inlet lamellas (13) thus serve as flow guide vanes which, in their open position (17), guide the air flow into the ducted propeller (20). (It goes without saying that other locking mechanisms are possible, especially on the inlet side, without departing from the scope of the invention.)
  • outlet lamellas (14), which can be seen better in FIG. 3, serve in a corresponding manner as thrust vector blades for controlling the aircraft and as
  • FIG. 5 shows an alternative representation of the wing (10) which draws the viewer's attention to two details to be explained below (22 - FIG. 6, 23 - FIG. 7).
  • Figure 6 illustrates the seal between the inlet lamellae (13) and the inlet lip of the propeller jacket. This has an inlet lip that at least partially encircles the ducted propeller (20) and has a flexible zone (24) in such a way that the closed inlet lamellas (13) seal the wing (10) by pressing against this zone (24).
  • FIGS. 7 and 8 illustrate the seal between the leading or leading edges and trailing or trailing edges of the inlet lamellas (13).
  • the latter accordingly have a flexible zone (24) at their trailing edge in such a way that the closed inlet lamellas (13) seal the wing (10) by bending the trailing edge under the leading edge of the inlet lamella (13) following downstream.
  • FIG. 9 shows an embodiment of the wing (10), the inlet lip of which surrounds the ducted propeller (20) on the upper side is aerodynamically optimized: As the detailed illustrations in FIGS. 10 and 11 clearly show in comparison, the said inlet lip here has a flat curvature (27) on the bow and a significantly stronger curvature (28) at the rear.
  • FIG. 12 shows the same wing (10), the inlet lamellae (13) on the top and the outlet lamellae (14) on the underside now being in the completely closed position.
  • pressure equalization between the negative pressure (11) above the wing (10) and the positive pressure (12) below the wing (10) is largely avoided through the ducted propeller (20).
  • the inlet lamellas (13) thus serve as flow guide vanes which, in their open position (17), guide the air flow into the ducted propeller (20).
  • two webs (21) spanning the ducted propeller in parallel serve as the adjusting mechanism of at least the inlet lamellas (13).
  • these webs (21) are driven by a rotary actuator (33) offset by 90 °, which is arranged outside the airfoil channel between the webs (31).
  • two planetary gears (35) which act on a continuous shaft of the rotary actuator (33) on both sides are used for translation.
  • Each web (21) is assigned a radial lever (34) which converts the rotational movement translated by the gear (35) into a translational movement which - in the present case via an intermediate piece - drives a push rod (32).
  • This in turn carries several lamellar levers (31), each of which is assigned one of the lamellas (13).
  • both levers (34) are preferably in a self-locking position so that they do not exert any forces on the rotary actuator (33).

Abstract

Die Erfindung stellt ein Luftfahrzeug mit den folgenden Merkmalen bereit: Das Luftfahrzeug weist eine Tragfläche (10) mit einem integrierten Mantelpropeller (20) auf; der Mantelpropeller (20) wird zumindest abschnittsweise von einer Zulauflippe umlaufen; und die Zulauflippe weist bugseitig eine flache Krümmung und heckseitig eine vergleichsweise starke Krümmung auf.

Description

LUFTFAHRZEUG MIT MANTELPROPELLER IN DER TRAGFLÄCHE
Die vorliegende Erfindung betrifft ein Luftfahrzeug, insbesondere ein vollelektrisches, senkrecht Start- und landefähiges ( vertical take-off and landing, VTOL) Luftfahrzeug.
Stand der Technik Als VTOL wird in der Luft- und Raumfahrttechnik sprachübergreifend jedwede Art von Flugzeug, Drohne oder Rakete bezeichnet, welche die Fähigkeit besitzt, im Wesentlichen senkrecht und ohne Start- und Landebahn abzuheben und wieder aufzusetzen. Dieser Sammelbegriff wird nachfolgend in einem weiten Sinne verwendet, der nicht nur Starrflügelflugzeuge mit Tragflächen, sondern ebenso Drehflügler wie Hub-, Trag-, Flugschrauber und Hybride wie Verbundhub- oder Kombinationsschrauber sowie
Wandelflugzeuge einschließt. Erfasst seien des Weiteren Luftfahrzeuge mit der Fähigkeit, auf besonders kurzen Strecken zu starten und zu landen ( short take-off and landing, STOL), auf kurzen Strecken zu starten, aber senkrecht zu landen ( short take-off and vertical landing, STOVL) oder senkrecht zu starten, aber horizontal zu landen ( vertical take-off and horizontal landing, VTHL).
DE 10 2009 048 201 Al offenbart ein senkrecht Start- und landefähiges Luftfahrzeug, welches einen in den Rumpf integrierten, vertikal ausgerichteten Mantelpropeller mit Schubvektorschaufeln auf der Auslassseite aufweist. Die Austrittsöffnung des Hubpropellers wiederum weist quer zur Längsachse des Luftfahrzeuges gerichtete schwenkbare Lamellen auf, um die Richtung des austretenden Abgasstrahls zu beeinflussen. Diese Schubvektor-Steuerung ermöglicht es, Bewegungen um die Nickachse zu steuern.
WO 2016/066848 Al betrifft ein Flugauto mit zwei ortsfesten Impellern und Jalousielamellen, die im Flugbetrieb zwischen den Impellerschächten zusammengerollt werden. Die Vortriebskraft wird durch die Verstellung der Lamellen erreicht. GB 2 146 298 B beschreibt einen Düsenkanal, dessen Wände aus aneinander gelenkten Lamellen bestehen, die in Führungen geführt mit Seilzügen bewegt werden, um verschiedene Positionen längs der Führungen einnehmen zu können.
Offenbarung der Erfindung Die Erfindung stellt ein Luftfahrzeug, insbesondere ein vollelektrisches, im obigen Sinne senkrecht Start- und landefähiges Luftfahrzeug gemäß dem unabhängigen Anspruch 1 bereit.
Dem erfindungsgemäßen Ansatz liegt hierbei die Einsicht zugrunde, dass ein für Hub- und Reiseflug vorgesehenes VTOL-Luftfahrzeug Antriebseinheiten benötigt, die in der Lage sind, jede Flugphase (Start, Übergang, Reiseflug und Landung) zu bewältigen.
Zum Antrieb des Luftfahrzeuges ist daher anstelle eines freifahrenden Rotors ein die Tragfläche integrierter Mantelpropeller ( ducted fan) vorgesehen, wie er abseits der Luftfahrttechnik etwa von Luftkissenfahrzeugen oder Sumpfbooten bekannt ist. Das den Propeller umgebende zylindrische Gehäuse vermag hierbei die Schubverluste infolge von Verwirbelungen an den Blattspitzen beträchtlich zu reduzieren.
Einer Variante der Erfindung liegt ferner die Erkenntnis zugrunde, dass ein Mantelpropeller für hub- und reiseflugfähige VTOL-Luftfahrzeuge bei Reiseflugbedingungen nicht nur geschlossen, sondern aerodynamisch abgedichtet sein sollte. Eine Möglichkeit, ein ebenmäßiges Schließprofil während des Übergangs herzustellen, besteht vor diesem Hintergrund darin, den Mantelpropeller insbesondere im Horizontalflug durch Lamellen ( louvers ) an Ein- und Auslauf abzudecken.
Ein weiterer Vorzug dieser Lösung neben der verbesserten Leistung liegt in einer ansprechenden Optik des Luftfahrzeuges, da dieses im Reiseflug keinen Blick auf die geöffneten Rotoren zulässt. Auf der Saugseite des Mantelpropellers ist es besonders wichtig, einen optimierten Luftstrom zu gewährleisten und gleichzeitig die Möglichkeit zu schaffen, die integrierten Lamellen mit einem geeigneten kinematischen System zu öffnen und zu schließen.
Eine Ausgestaltung der Erfindung eröffnet daher die Möglichkeit zur Betätigung der integrierten Einlauflamellen unter Beibehaltung der Grundfläche des runden Strömungskanals des Mantelpropellers, was für dessen Strömungsführungs und -Umlenkfunktion (in den Strömungskanal) unerlässlich ist. Hierzu werden Stege genutzt, die sich aerodynamisch optimieren lassen.
Eine weitere Ausführungsform fußt ferner auf der Erkenntnis, dass das Tragflächenprofil im Reiseflug einen beträchtlichen Unterdrück oberhalb der Tragfläche und einen
Überdruck unterhalb der Tragfläche erzeugt. Für den erfindungsgemäßen Mantelpropeller ist es daher zielführend, die obere Flügeloberfläche gegenüber der unteren Flügeloberfläche abzudichten, um einen Druckausgleich während des Reisefluges zu vermeiden. Der Vorzug einer entsprechenden Ausführungsform liegt dementsprechend in der erreichten Abdichtung der Flügeloberseite von der Flügelunterseite bei minimaler Beeinträchtigung der äußeren Schalung, um die Leistung des flügelintegrierten Mantelpropellers geringstmöglich zu beeinträchtigen.
Eine weitere Ausführungsform trägt dem Umstand Rechnung, dass solch ein flügelintegrierter Mantelpropeller für die Betriebsbedingungen des Schwebefluges, der Überleitung und des Reisefluges gleichermaßen tauglich sein sollte. Während der Überleitungsphase ist es wichtig, dass die Einheit gleichzeitig Auftrieb und Schub erzeugt. Dazu wird die Luft zweimal in einem Winkel von etwa 90° umgelenkt: zunächst um 90° in den die Tragfläche durchziehenden Kanal, um die Strömung mit dem eingebetteten Mantelpropeller zu beschleunigen, was durch die oberseitigen Strömungsführungslamellen unterstützt werden kann, und schließlich um 90° aus dem Tragflächenkanal heraus, um Vorwärtsschub zu erzeugen.
Letztere Umlenkung kann im Wege der Schubvektorisierung durch die Auslauflamellen begünstigt werden. Gleichzeitig profitiert der Mantelpropeller in der Tragfläche von der Verdichtung im Tragflächenkanal, die dem erfindungsgemäßen Luftfahrzeug einen zusätzlichen Gesamtauftrieb verleiht. Die mögliche Kanalvergrößerung unterstützt somit den Gesamthub während des Schwebens und Überganges.
Einer weiteren Ausführungsform liegt die Erkenntnis zugrunde, dass während der Beschleunigung im Übergangsbetrieb die Strömung (aufgrund der zunehmenden Freistrahlgeschwindigkeit um das Luftfahrzeug herum) nicht gleichmäßig entlang der Zulauflippe in den Kanal beschleunigt wird. Daher löst sich die Strömung zunächst am bugseitigen Rand des Mantelpropellers ab.
Der Vorzug einer entsprechenden Ausgestaltung liegt vor diesem Hintergrund in der verbesserten Verdichtung im Mantelpropeller während des Übergangs in den Reiseflug. Ferner verringert sie den Anteil turbulenter Luft, die während dieses Überganges vom Mantelpropeller angesaugt wird. Schließlich wird die Strömungsablösung an der bugseitigen Zulauflippe in Heckrichtung verlagert.
Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Patentansprüchen angegeben. So kann das Luftfahrzeug etwa mit abgeknickten oder gar wahlweise abknickbaren Tragflächen ausgestattet sein. Eine entsprechende Variante vergrößert die im Horizontalflug wirksame Flügelfläche, ohne aber die Standfläche des Luftfahrzeuges auszudehnen.
Ferner mag das Luftfahrzeug über ein schnell ladbares Batteriesystem verfügen, welches die Antriebsenergie für Senkrechtstart und -landung sowie Horizontalflug bereitstellt und eine kurzfristige Aufladung des Luftfahrzeuges im Stand ermöglicht. Schließlich kommt - neben einem vorzugsweise vollautonomen Betrieb des Luftfahrzeuges - bei hinreichender Qualifikation auch die Einräumung einer manuellen Kontrolle an den menschlichen Piloten in Betracht, was der erfindungsgemäßen Vorrichtung eine größtmögliche Flexibilität in der Handhabung verleiht. Kurze Beschreibung der Zeichnungen
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden im Folgenden näher beschrieben.
Figur 1 zeigt den Querschnitt einer Tragfläche.
Figur 2 zeigt eine erste Einzelheit 15 der Darstellung gemäß Figur 1. Figur 3 zeigt eine zweite Einzelheit 16 der Darstellung gemäß Figur 1.
Figur 4 zeigt Schweben und Übergang.
Figur 5 zeigt den Querschnitt der Tragfläche in einer abweichenden Darstellung.
Figur 6 zeigt eine erste Einzelheit 22 der Darstellung gemäß Figur 5.
Figur 7 zeigt den Querschnitt einer Einlauflamelle der Tragfläche. Figur 8 zeigt eine zweite Einzelheit 23 der Darstellung gemäß Figur 5.
Figur 9 zeigt den Querschnitt einer weiteren Tragfläche, deren Einlauf- und Auslauflamellen sich in geöffneter Stellung befinden.
Figur 10 zeigt eine erste Einzelheit 25 der Darstellung gemäß Figur 9.
Figur 11 zeigt eine zweite Einzelheit 26 der Darstellung gemäß Figur 9. Figur 12 zeigt den Querschnitt der Tragfläche, wobei Einlauf- und Auslauflamellen sich hier in geschlossener Stellung befinden.
Figur 13 zeigt eine erste Einzelheit 29 der Darstellung gemäß Figur 12.
Figur 14 zeigt eine zweite Einzelheit 30 der Darstellung gemäß Figur 12. Figur 15 zeigt eine Draufsicht des Mantelpropellers der Tragfläche.
Figur 16 verdeutlicht exemplarisch ein Betätigungskonzept mit Drehantrieb. Ausführungsformen der Erfindung
Figur 1 zeigt die Tragfläche (10) des Luftfahrzeuges im Profil. Wie die Abbildung erkennen lässt, wird die Tragfläche (10) senkrecht von einem Mantelpropeller (20) durchzogen, der an seiner abbildungsgemäßen Oberseite Einlauflamellen (13) und an seiner Unterseite Auslauflamellen (14) zur Strömungsführung aufweist. Die Auslauflamellen (14) lassen sich zusätzlich zur Schubvektorsteuerung und somit Navigation des Luftfahrzeuges einsetzen und sind darüber hinaus in der Lage, die Unterseite des Mantelpropellers (20) vollständig zu schließen. Wie Figur 2 verdeutlicht, dienen die Einlauflamellen (13) somit als Strömungsleitschaufeln, die in ihrer geöffneten Stellung (17) den Luftstrom in den Mantelpropeller (20) leiten. (Es versteht sich, dass insbesondere auf der Einlaufseite andere Schließmechanismen möglich sind, ohne den Rahmen der Erfindung zu verlassen.)
Die in Figur 3 besser erkennbaren Auslauflamellen (14) dienen in entsprechender Weise als Schubvektorschaufeln zur Steuerung des Luftfahrzeugs und als
Strömungsleitschaufeln, um die Strömung nach hinten abzulenken und beim Übergang von der Start- in die Reiseflugphase (vergleiche Figur 4) einen zunehmenden horizontalen Schub zu erzeugen. Figur 5 zeigt eine alternative Darstellung der Tragfläche (10), welche die Aufmerksamkeit des Betrachters auf zwei nachfolgend zu erläuternde Einzelheiten (22 - Figur 6, 23 - Figur 7) lenkt.
Figur 6 veranschaulicht die Abdichtung zwischen den Einlauflamellen (13) und der Zulauflippe des Propellermantels. Ebendiese weist hierzu eine den Mantelpropeller (20) zumindest teilweise umlaufende Zulauflippe mit einer biegsamen Zone (24) dergestalt auf, dass die geschlossenen Einlauflamellen (13) die Tragfläche (10) durch Andrücken an diese Zone (24) abdichten.
Die Figuren 7 und 8 verdeutlichen in ihrer Zusammenschau die Abdichtung zwischen den Vorder- oder Anströmkanten und Hinter- oder Abströmkanten der Einlauflamellen (13). Letztere weisen demnach jeweils an ihrer Abströmkante eine biegsame Zone (24) dergestalt auf, dass die geschlossenen Einlauflamellen (13) die Tragfläche (10) abdichten, indem sie die Abströmkante unter die Anströmkante der jeweils stromabwärts nachfolgenden Einlauflamelle (13) biegen. Figur 9 zeigt eine Ausführungsform der Tragfläche (10), deren den Mantelpropeller (20) oberseitig umlaufende Zulauflippe aerodynamisch optimiert ist: Wie die Detaildarstellungen der Figuren 10 und 11 im Vergleich deutlich erkennen lassen, weist die besagte Zulauflippe hier bugseitig eine flache Krümmung (27) und heckseitig eine deutlich stärkere Krümmung (28) auf. Figur 12 zeigt dieselbe Tragfläche (10), wobei die oberseitigen Einlauflamellen (13) und unterseitigen Auslauflamellen (14) sich nunmehr in vollständig geschlossener Stellung befinden. In der Reiseflugphase des Luftfahrzeuges wird auf diesem Wege ein Druckausgleich zwischen dem oberhalb der Tragfläche (10) herrschenden Unterdrück (11) und dem unterhalb der Tragfläche (10) herrschenden Überdruck (12) durch den Mantelpropeller (20) hindurch weitestgehend vermieden. Wie Figur 13 verdeutlicht, dienen die Einlauflamellen (13) somit als Strömungsleitschaufeln, die in ihrer geöffneten Stellung (17) den Luftstrom in den Mantelpropeller (20) leiten. (Es versteht sich, dass insbesondere auf der Einlaufseite andere Schließmechanismen möglich sind, ohne den Rahmen der Erfindung zu verlassen.)
Die in Figur 14 besser erkennbaren Auslauflamellen (14) dienen in entsprechender Weise als Schubvektorschaufeln zur Steuerung des Luftfahrzeugs und als Strömungsleitschaufeln, um die Strömung nach hinten abzulenken und beim Übergang von der Start- in die Reiseflugphase einen zunehmenden horizontalen Schub zu erzeugen. Als Stellmechanismus zumindest der Einlauflamellen (13) dienen hierbei in der vorliegenden Ausführungsform zwei den Mantelpropeller parallel überspannende Stege (21), deren Konfiguration in den Figuren 15 und 16 beleuchtet wird. Wie letztere Figur erkennen lässt, werden diese Stege (21) durch einen um 90° versetzten Rotationsaktuator (33) angetrieben, der außerhalb des Tragflächenkanales zwischen den Stegen (31) angeordnet ist. Zur Übersetzung dienen in der vorliegenden Ausführungsform zwei Planetengetriebe (35), die beidseitig an einer durchgehenden Welle des Rotationsaktuator (33) angreifen.
Jedem Steg (21) ist ein radialer Hebel (34) zugeordnet, welcher die vom Getriebe (35) übersetzte Rotationsbewegung in eine Translationsbewegung überführt, die - vorliegend über ein Zwischenstück - eine Schubstange (32) antreibt. Diese wiederum trägt mehrere Lamellenhebel (31), denen jeweils eine der Lamellen (13) zugeordnet ist.
Beide Hebel (34) befinden sich im geschlossenen Zustand der Lamellen (13) vorzugsweise in einer selbsthemmenden Stellung, um ihrerseits keine Kräfte auf den Rotationsaktuator (33) auszuüben.

Claims

Patentansprüche
1. Luftfahrzeug, gekennzeichnet durch folgende Merkmale:
- das Luftfahrzeug weist eine Tragfläche (10) mit einem integrierten Mantelpropeller (20) auf,
- der Mantelpropeller (20) wird zumindest abschnittsweise von einer Zulauflippe umlaufen und
- die Zulauflippe weist bugseitig eine flache Krümmung (27) und heckseitig eine vergleichsweise starke Krümmung (28) auf.
2. Luftfahrzeug nach Anspruch 1, gekennzeichnet durch folgendes Merkmal:
- der Mantelpropeller (20) ist wahlweise mit einstellbaren Einlauflamellen (13) versehen.
3. Luftfahrzeug nach Anspruch 1 oder 2, gekennzeichnet durch folgendes Merkmal:
- der Mantelpropeller (20) ist mit einstellbaren Auslauflamellen (14) versehen.
4. Luftfahrzeug nach einem der Ansprüche 1 bis 3, gekennzeichnet durch folgendes Merkmal:
- das Luftfahrzeug weist einen vollelektrischen Antrieb auf.
5. Luftfahrzeug nach einem der Ansprüche 1 bis 4, gekennzeichnet durch folgendes Merkmal:
- das Luftfahrzeug umfasst ein schnell ladbares Batteriesystem.
6. Luftfahrzeug nach einem der Ansprüche 1 bis 5, gekennzeichnet durch folgendes Merkmal:
- der Mantelpropeller (20) ist im Wesentlichen waagerecht.
7. Luftfahrzeug nach einem der Ansprüche 1 bis 6, gekennzeichnet durch folgendes Merkmal:
- das Luftfahrzeug umfasst im Wesentlichen senkrechte Propeller zum Erzeugen eines Vortriebes.
8. Luftfahrzeug nach einem der Ansprüche 1 bis 7, gekennzeichnet durch folgendes Merkmal:
- die senkrechten Propeller sind weitere Mantelpropeller.
9. Luftfahrzeug nach einem der Ansprüche 1 bis 8, gekennzeichnet durch folgendes Merkmal:
- die Lamellen sind dazu eingerichtet, in einer Reiseflugphase des Luftfahrzeuges einen Druckausgleich zwischen einem oberhalb der Tragfläche (10) herrschenden Unterdrück und einem unterhalb der Tragfläche (10) herrschenden Überdruck durch den Mantelpropeller (20) hindurch zu vermeiden.
10. Luftfahrzeug nach einem der Ansprüche 1 bis 9, gekennzeichnet durch folgendes Merkmal:
- das Luftfahrzeug ist wahlweise vollautonom steuerbar.
PCT/EP2021/025147 2020-05-19 2021-04-21 Luftfahrzeug mit mantelpropeller in der tragfläche WO2021233573A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180034629.6A CN115605397A (zh) 2020-05-19 2021-04-21 在机翼上具有涵道风扇的飞行器
US17/920,875 US20230257104A1 (en) 2020-05-19 2021-04-21 Aircraft having a ducted fan in the airfoil
EP21721833.8A EP4153477A1 (de) 2020-05-19 2021-04-21 Luftfahrzeug mit mantelpropeller in der tragfläche

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020113490.8A DE102020113490B4 (de) 2020-05-19 2020-05-19 Luftfahrzeug
DE102020113490.8 2020-05-19

Publications (1)

Publication Number Publication Date
WO2021233573A1 true WO2021233573A1 (de) 2021-11-25

Family

ID=75690235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/025147 WO2021233573A1 (de) 2020-05-19 2021-04-21 Luftfahrzeug mit mantelpropeller in der tragfläche

Country Status (5)

Country Link
US (1) US20230257104A1 (de)
EP (1) EP4153477A1 (de)
CN (1) CN115605397A (de)
DE (1) DE102020113490B4 (de)
WO (1) WO2021233573A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023056093A1 (en) * 2021-10-01 2023-04-06 Cleo Robotics Inc. Systems and methods for aerial vehicle (av) flight control

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11926429B2 (en) * 2018-07-04 2024-03-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Aircraft having cooling system for distributing heat transfer liquid to different regions of aircraft

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2146298B (en) 1978-10-02 1985-12-18 Rolls Royce Apparatus for varying the configuration of the exhaust discharge opening of a gas turbine jet propulsion engine
DE102009048201A1 (de) 2009-10-05 2011-04-28 Eads Deutschland Gmbh Antriebseinheit für ein senkrecht startbares Luftfahrzeug und Verfahren zur Erhöhung der Triebwerksleistung eines Strahltriebwerks in einem senkrecht startbaren Luftfahrzeug sowie Luftfahrzeug mit einer solchen Antriebseinheit
WO2016066848A1 (de) 2014-10-31 2016-05-06 Schwöller Johann Antriebsmodul für ein kraftfahrzeug und kraftfahrzeug mit einem solchen antriebsmodul
KR20180069594A (ko) * 2016-12-15 2018-06-25 한국항공우주연구원 비행체
US10246184B2 (en) * 2015-12-02 2019-04-02 Jon M. Ragland Aircraft with internally housed propellor units
US20200010185A1 (en) * 2018-07-04 2020-01-09 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Aircraft

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB905911A (en) 1957-11-19 1962-09-12 Maurice Louis Hurel Improvements in aircraft having a lift producing rotor disposed in a supporting surface
US2988301A (en) 1958-10-28 1961-06-13 Charles J Fletcher Ducted fan aircraft
US3028121A (en) 1959-11-27 1962-04-03 Gen Electric Thrust augmenting means for aircraft
US3110456A (en) 1961-08-08 1963-11-12 English Electric Co Ltd Vertical take-off aircraft
US3700189A (en) * 1970-07-02 1972-10-24 Gen Electric Vtol propulsion system
US4828203A (en) 1986-12-16 1989-05-09 Vulcan Aircraft Corporation Vertical/short take-off and landing aircraft
US5454531A (en) 1993-04-19 1995-10-03 Melkuti; Attila Ducted propeller aircraft (V/STOL)
US6848649B2 (en) 2000-10-03 2005-02-01 Charles Gilpin Churchman V/STOL biplane aircraft
US6561456B1 (en) 2001-12-06 2003-05-13 Michael Thomas Devine Vertical/short take-off and landing aircraft
WO2007098634A1 (de) 2006-03-03 2007-09-07 David Posva Flugzeug mit der eigenschaft zu schwebeflug, schnellem vorwärtsflug, gleitflug, kurzstart, kurzlandung, senkrechtstart und senkrechtlandung
US11485486B2 (en) 2016-05-18 2022-11-01 The University Of Toledo Active flow control for ducted fans and fan-in-wing configurations
US20180208297A1 (en) 2017-01-20 2018-07-26 General Electric Company Nacelle for an aircraft aft fan
GB2555440A (en) 2016-10-27 2018-05-02 Mono Aerospace Ip Ltd Vertical take off and landing aircraft
DE102019112132A1 (de) * 2019-05-09 2020-11-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Luftfahrzeug

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2146298B (en) 1978-10-02 1985-12-18 Rolls Royce Apparatus for varying the configuration of the exhaust discharge opening of a gas turbine jet propulsion engine
DE102009048201A1 (de) 2009-10-05 2011-04-28 Eads Deutschland Gmbh Antriebseinheit für ein senkrecht startbares Luftfahrzeug und Verfahren zur Erhöhung der Triebwerksleistung eines Strahltriebwerks in einem senkrecht startbaren Luftfahrzeug sowie Luftfahrzeug mit einer solchen Antriebseinheit
WO2016066848A1 (de) 2014-10-31 2016-05-06 Schwöller Johann Antriebsmodul für ein kraftfahrzeug und kraftfahrzeug mit einem solchen antriebsmodul
US10246184B2 (en) * 2015-12-02 2019-04-02 Jon M. Ragland Aircraft with internally housed propellor units
KR20180069594A (ko) * 2016-12-15 2018-06-25 한국항공우주연구원 비행체
US20200010185A1 (en) * 2018-07-04 2020-01-09 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Aircraft

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023056093A1 (en) * 2021-10-01 2023-04-06 Cleo Robotics Inc. Systems and methods for aerial vehicle (av) flight control

Also Published As

Publication number Publication date
EP4153477A1 (de) 2023-03-29
CN115605397A (zh) 2023-01-13
DE102020113490A1 (de) 2021-11-25
US20230257104A1 (en) 2023-08-17
DE102020113490B4 (de) 2022-08-11

Similar Documents

Publication Publication Date Title
DE867497C (de) Reaktionsantriebsvorrichtung
DE102019112132A1 (de) Luftfahrzeug
WO2021233573A1 (de) Luftfahrzeug mit mantelpropeller in der tragfläche
EP4153476A1 (de) Luftfahrzeug
DE1481653A1 (de) Vertikal- oder Kurzstartflugzeug hoher Vorwaertsgeschwindigkeit
DE102019118023B3 (de) Luftfahrzeug
DE102018123470B4 (de) Luftfahrzeug
AT510341B1 (de) Drehflügelflugzeug
EP4153478A1 (de) Luftfahrzeug
EP2310268A1 (de) Flugzeug mit zumindest zwei in spannweitenrichtung der flügel voneinander beabstandeten propeller-antrieben
DE102020113488B4 (de) Luftfahrzeug
DE4237873C2 (de) Senkrechtstartflugzeug mit aktiver Auftriebserzeugung und aktiver Steuermomenterzeugung
DE102021124502A1 (de) Flugzeug zum vertikalen starten und landen sowie flügelvorrichtung
DE102019101359B4 (de) Luftfahrzeug
DE102019118024B4 (de) Luftfahrzeug
DE112020007562T5 (de) Flügelkonsole eines vertikal startenden und landenden Flugzeugs sowie Flugzeug mit einem solchen Flügel
DE102018116154B4 (de) Luftfahrzeug
DE102020120266B4 (de) Luftfahrzeug
DE102018116150B4 (de) Luftfahrzeug
DE102020112654B3 (de) Luftfahrzeug
WO2022148749A1 (de) Tragschrauber und geeigneter start- und landeplatz für denselben
WO2024037875A1 (de) Schwenkflügel als teilprofil-schwenkflügel mit schwenkbaren teilprofilen
DE2735652A1 (de) Flugzeug
DE3921171A1 (de) Verwandlungsfahrzeug, geeignet fuer bodenfahrt und flug
DE2549956A1 (de) Motorsegelflugzeug mit einfahrbarer rumpfnase und mit ineinanderkaemmenden doppelblaeserpropellern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21721833

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021721833

Country of ref document: EP

Effective date: 20221219