WO2021233393A1 - 一种自供能皮带输送机的皮带状态监测装置和方法 - Google Patents

一种自供能皮带输送机的皮带状态监测装置和方法 Download PDF

Info

Publication number
WO2021233393A1
WO2021233393A1 PCT/CN2021/094968 CN2021094968W WO2021233393A1 WO 2021233393 A1 WO2021233393 A1 WO 2021233393A1 CN 2021094968 W CN2021094968 W CN 2021094968W WO 2021233393 A1 WO2021233393 A1 WO 2021233393A1
Authority
WO
WIPO (PCT)
Prior art keywords
belt
sensor
power generation
impact
monitoring
Prior art date
Application number
PCT/CN2021/094968
Other languages
English (en)
French (fr)
Inventor
王洪磊
王海军
杨晓辉
赵建
刘少权
Original Assignee
煤炭科学研究总院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 煤炭科学研究总院 filed Critical 煤炭科学研究总院
Priority to AU2021277427A priority Critical patent/AU2021277427B2/en
Publication of WO2021233393A1 publication Critical patent/WO2021233393A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • G01M13/023Power-transmitting endless elements, e.g. belts or chains
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • G01N3/303Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight generated only by free-falling weight
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/001Impulsive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0688Time or frequency

Definitions

  • the present disclosure relates to a belt state monitoring device of a self-powered belt conveyor, which is an online detection device and a safety detection device used to detect the belt quality of the belt conveyor to ensure safe production.
  • the belt conveyor is one of the throat equipment for underground coal transportation.
  • the quality of the belt surface (such as bulging, tearing, damage) is not only related to the safe and reliable operation of the belt, but also directly affects the belt conveyor. Energy consumption.
  • Existing belt surface state detection methods mostly adopt no-load and load separation detection, that is, stand-alone shutdown to detect the belt surface state when no-load, and separate detection of changes in coal flow under load. Two sets of systems are required to complete. Separate power supply is required, which is very inconvenient to install and use, and the effect of on-site use in application scenarios is not good.
  • the present disclosure proposes a belt condition monitoring device for a self-powered belt conveyor.
  • the device and method can sense the movement status of the belt and monitor the belt in real time by installing a power generation sensor on the belt conveyor.
  • the quality of the belt conveyor can be used to generate electricity for the instrument itself, which improves the safety of the belt conveyor.
  • a belt state monitoring device for a self-powered belt conveyor includes: impact power generation sensors installed on a plurality of buffer rollers in the receiving section of the belt conveyor. At least two conventional rollers are provided with a rotating power generation sensor and a weighing sensor; the impact power generation sensor, the rotating power generation sensor, and the weighing sensor are electrically connected to the signal acquisition and processing unit, and the signal acquisition and processing unit is connected to the central The processing unit is electrically connected, and the central processing unit is electrically connected to the database and the interactive unit; the impulse power generation sensor and the rotation power generation sensor are electrically connected to the confluence power supply unit.
  • the signal collection and processing unit is also electrically connected with the binocular video sensor and the lidar sensor.
  • the impact power generation sensor includes: a stator fixedly installed on the belt frame and a mover capable of moving up and down together with the buffer roller.
  • stator is an electromagnetic coil winding
  • mover is a permanent magnet
  • the impulse power sensor is a piezoelectric sheet.
  • the rotating power generation sensor is a generator.
  • bus power supply unit is provided with a storage battery.
  • a method for monitoring the belt status of a self-powered belt conveyor using the above monitoring device includes:
  • the binocular video sensor collects real-time video images of the belt surface, and compares the currently collected video image of the belt surface with the previously collected video image of the belt surface to determine whether the belt surface is damaged or torn If the defects are cracked or bulging, if any defects are found, they will report to the police and shut down for maintenance;
  • the monitoring process during routine work includes the following steps:
  • Step 1 Collect impact information: When the material falls from the host computer to impact the buffer roller, the impact power sensor records the impact intensity and frequency of the belt;
  • Step 2 Collect load-bearing information: When the material moves with the belt, the load and movement conditions of the belt are monitored by rotating power sensors at different intervals, as well as the load of the corresponding idler;
  • Step 3 Separate storage: After the signal acquisition and processing unit collects the received impact intensity, the impact intensity is divided into multiple intensity levels and stored separately. The frequency density of the received impact frequency is analyzed, and the frequency density of different stages is stored separately ;
  • Step 4 analysis and comparison: the central unit analyzes the belt's impact strength and frequency and the load of the belt to analyze the tension of the belt, and stores the analysis result with synchronized data. At the same time, it compares the current data with the previous data. Determine the quality of the belt;
  • Step 5 Upload and display: upload the analysis results to the upper computer of the transportation chain or the monitoring center of downhole equipment through wireless communication, and display it on the monitoring terminal in the form of a table or a coordinate map;
  • the electric energy generated by the rotating power generation sensor is transmitted to the confluence power supply unit, and the confluence power supply unit collects and rectifies the collected electric energy, and converts the electric energy into a stable power supply for each unit to use. Store the excess electric energy in the battery;
  • the electric energy generated by the impulse power generation sensor and the rotating power generation sensor is transmitted to the confluence power supply unit.
  • the confluence power supply unit collects and rectifies the collected electric energy into a stable power supply for each unit to use.
  • the excess electric energy is stored in the battery.
  • steps 1-2 also include turning on the binocular video sensor to detect the volume of the material flow in real time, and turning on the lidar sensor to monitor the material flow velocity;
  • Step 3 also includes: material flow volume and material flow velocity combined with material bulk density are converted into material flow information, the material flow information is analyzed, and the size and weight of the material flow are stored separately;
  • Step 4 also includes: analyzing the quality status of the belt in combination with the impact strength and frequency, as well as the belt load and material flow information.
  • the present disclosure utilizes the impact of the blanking material and the rotation of the belt idler to form a set of devices that can generate information and generate electricity, and complete the two functions of belt surface state detection and material flow detection.
  • real-time detection of material flow volume combined with belt speed and material bulk density, converted into material flow, to achieve real-time collection of material flow information
  • real-time collection of belt surface video under belt no-load conditions and belt surface damage , Tearing, bulging and other defects can promptly report to the police and shut down for maintenance.
  • the power supply of the device utilizes the electric energy generated by the sensor without external power supply, which saves energy and makes installation and use more flexible and convenient.
  • Fig. 1 is a schematic diagram of the structure of the devices described in the first and second embodiments of the present disclosure installed on a belt conveyor;
  • Fig. 2 is a system block diagram of the device according to the first embodiment of the present disclosure
  • Fig. 3 is a system block diagram of the device according to the second embodiment of the present disclosure.
  • This embodiment is a belt state monitoring device for a self-powered belt conveyor, as shown in Figs.
  • This embodiment includes: impact power generation sensors 2 installed on a plurality of buffer rollers 1 in the material receiving section of the belt conveyor. At least two conventional rollers 3 of the belt conveyor are provided with rotating power generation sensors 4 and scales. Heavy sensor 5;
  • the impact power generation sensor, the rotation power generation sensor, the weighing sensor are electrically connected to the signal acquisition and processing unit, the signal acquisition and processing unit is electrically connected to the central processing unit, and the central processing unit is electrically connected to the database
  • the interaction unit is electrically connected; the impulse power generation sensor and the rotation power generation sensor are electrically connected to the confluence power supply unit.
  • the main idea of this embodiment is to record the impact and frequency of the received belt and the stretching during the movement of the belt by monitoring the buffer roller receiving the blanking and the rotation of the conventional idler roller. And use the method of big data analysis to monitor the quality of the belt. When the data is accumulated to a certain extent, the quality of the belt can be diagnosed. The internal qualitative change will inevitably occur when it is stretched. According to the size of the qualitative change, it can be determined whether the belt needs to be maintained or replaced. According to this idea, this embodiment is provided with an impact sensor and a rotation sensor, and the two sensors and the matching load cell are used to monitor and accumulate data, and finally achieve the purpose of evaluating the quality of the belt.
  • the impact sensor and the rotation sensor are designed as sensors with generating capacity.
  • the signal output by the sensor is a weak electrical signal, as long as it can transmit information.
  • the energy generated by the buffer roller is relatively large, and a relatively large sensor must be used. This energy is discarded after detection, which is a pity. Therefore, in this embodiment, this energy is collected as the energy source of the instrument, which not only obtains necessary information but also saves energy.
  • this embodiment uses a rotating power sensor when detecting the belt movement state, converts the belt's translational movement into the rotation movement of the idler, and uses the rotation generated by the friction between the belt and the idler, combined with the weighing sensor. Based on the current weight of the belt, estimate the tension of the belt and analyze it through big data to get an assessment of the quality of the belt.
  • the rotation power generation sensor there is a one-to-one correspondence between the rotation power generation sensor and the load cell. That is, if the conventional idler is equipped with a rotation power generation sensor, the load cell will be installed together.
  • the belt conveyor described in this embodiment is provided with an anti-impact section, that is, some buffer rollers that can bounce up and down are specially set on the head of the belt conveyor or at a position close to the head.
  • these buffer rollers of the impact-resistant section of the belt conveyor are arranged below the discharge port of the upper conveyor 6 (see Figure 1), and specifically accept the materials input by the upper computer.
  • these buffer rollers can move downward under the impact of the material to play a buffering role, and automatically return to the original position when the material is not impacted. Therefore, this embodiment uses this up and down Movement, the ability to move up and down is collected, which is used as sensor output signal and as energy output.
  • those belt conveyor other rollers without impact resistance are called conventional rollers, or simply rollers.
  • this embodiment can also add a sensor for detecting the shape of material accumulation on the belt and a sensor for material movement speed.
  • the former can be a binocular video sensor or a 3D camera, the latter It can be a lidar or sonar sensor, and the two sensors can also be used interchangeably. That is, the video sensor can also measure the speed of the material flow, and the lidar or sonar can also measure the shape of the material pair.
  • the shape of the material pile and the movement speed of the material pair are also one of the important factors to judge the quality of the belt.
  • the distribution and weight of the material can be obtained. It is very important to judge the unevenness of the belt force.
  • the shape of the material pile and the load cell can be used to determine the density of the material, and then calculate the dryness and wetness of the material. Parameters such as degree and accumulation angle, these parameters are very important information for the later transportation process.
  • the signal collection and analysis unit, central processing unit, database, interaction unit, etc. described in this embodiment can be integrated in an industrial PC, or integrated in other devices with electronic digital storage, computing and display functions, such as embedded
  • the system, enhanced electronic devices such as single-chip microcomputers can even be integrated into the centralized control computer system of the entire belt transportation system, and conduct centralized data sharing and big data analysis with other belt transportation equipment.
  • This embodiment is an improvement of the above embodiment, and is a refinement of the signal collection and analysis unit in the above embodiment.
  • the signal collection and processing unit described in this embodiment is also electrically connected to the binocular video sensor 7 and the lidar sensor 8, as shown in FIG. 1, and the principle block diagram of the electrical connection is shown in FIG. 3.
  • the binocular video sensor and the lidar sensor are installed above the belt conveyor, and can be installed on a door-shaped bracket. As shown in Figure 1, this bracket straddles the belt conveyor, and the two sensors look down on the belt and the belt passing through. On the material.
  • the binocular video sensor is a 3D stereo camera device that can calculate the size and distance of the observed object through the parallax between two cameras. This embodiment uses this characteristic of the binocular video sensor to calculate the volume and shape of the material pair.
  • the lidar sensor is a sensor that can measure the speed of an object through the Doppler effect. At the same time, the shape of the object can also be measured through the Doppler effect. For this embodiment, it is the shape of the material pile, but the accuracy is relatively binocular.
  • the video sensor should be lower.
  • the impact power generation sensor in this embodiment includes: a stator fixedly installed on the belt frame and a mover capable of moving up and down together with the buffer roller.
  • the impact power generation sensor described in this embodiment is a device that uses up and down movement to generate power.
  • the process of generating electrical energy can be either by using electromagnetic field to generate power, or by a piezoelectric sheet that generates piezoelectric effect to generate power when impacted.
  • This embodiment is a refinement of the above embodiment, and is a refinement of the above embodiment regarding the impulse power generation sensor.
  • the stator described in this embodiment is an electromagnetic coil winding, and the mover is a permanent magnet.
  • the permanent magnet of the mover moves up and down along with the buffer, an induced current is generated in the electromagnetic coil of the stator to form a power generation output. Moreover, the induced current has a certain damping effect, which is equivalent to setting a damper on the buffer roller, which reduces the ineffective vibration of the buffer roller.
  • This embodiment is a refinement of the above embodiment, and is a refinement of the above embodiment regarding the impulse power generation sensor.
  • the impulse power sensor described in this embodiment is a piezoelectric sheet.
  • the piezoelectric sheet is set on the stator, and the mover is just a simple impact surface, which generates an impact on the piezoelectric sheet and causes the piezoelectric sheet to generate electric energy.
  • This impact method must be equipped with a buffer device, that is, at the position where the piezoelectric sheet is installed. Set up a set of buffer devices to prevent the piezoelectric from being damaged by impact.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • This embodiment is a refinement of the foregoing embodiment, and is a refinement of the foregoing embodiment regarding the rotation power generation sensor.
  • the rotating power generation sensor described in this embodiment is a generator.
  • Rotary power generation is a very mature power generation method with high efficiency.
  • the disadvantage is that it is equivalent to damping the rotation of the idler. Therefore, the power of the generator selected by the rotating power generation sensor cannot be too large to avoid the movement of the belt. Interference, but due to the high power generation efficiency, even small power generators can increase enough energy for each processing unit and other sensors.
  • This embodiment is a refinement of the above embodiment, and is a refinement of the above embodiment regarding the bus power supply unit.
  • the bus power supply unit described in this embodiment is provided with a storage battery.
  • the impact power sensor can increase the very powerful electric energy, but because the impact is an intermittent motion and is very unstable, it needs a large capacitor for stability. Basically, using the battery to store energy when it emits too much power The effect is better. Due to the rapid development of modern power batteries, it is a very good choice to use storage batteries to store excess energy, which can completely separate the entire equipment from the mains power supply and form a completely independent system.
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • This embodiment is a method for monitoring the belt status of a self-powered belt conveyor using the above-mentioned monitoring device.
  • the basic idea of this embodiment is: to record the strength and frequency of the impact of the belt by the material, and the tension that the belt bears when carrying the material, to accumulate these data to form an expert system, and the on-site monitoring is to use the past data. Analyze, compare and judge to realize the quality assessment of the belt to avoid safety accidents such as belt breakage.
  • This embodiment includes three processes: the process of no-load monitoring, that is, the optical observation of the belt surface when there is no material on the belt, the other process is the monitoring when the belt conveyor is carrying out transportation operations, and the third process is the power generation process. .
  • the binocular video sensor collects real-time video images of the belt surface, and compares the currently collected video image of the belt surface with the previously collected video image of the belt surface to determine whether the belt surface is damaged or torn If the defects are cracked or bulging, if any defects are found, an alarm will be sent and the machine will be shut down for maintenance.
  • the surface of the conventional belt is usually observed by the naked eye.
  • this embodiment adopts the method of video image analysis. Due to the rapid development of modern video image analysis technology, the comparative analysis of video images has been very mature. Therefore, it is only necessary to record the belt surface image when the quality is intact and compare it with the current belt surface to evaluate the current belt condition, and even It is possible to compare videos of multiple periods to compare the subtle changes on the surface of the belt, so as to monitor the possible fault points of the belt and realize early warning. This observation process in this embodiment is completely automated by the video image analysis software. Complete without any labor.
  • Step 1 Collect impact information: When the material falls from the host computer to impact the buffer roller, the impact power sensor records the impact intensity and frequency of the belt.
  • Step 2 Collect load-bearing information: When the material moves with the belt, the load and movement conditions of the belt are monitored by rotating power sensors at different intervals, as well as the load of the corresponding idler roller.
  • the collection of load-bearing information is jointly completed by the rotating power sensor and the load cell.
  • the friction force of the belt to the idler is also small, coupled with the damping effect of the generator itself, so that the rotating power generation sensor does not rotate sufficiently, after comparing with the real speed of the belt, and comparing
  • the adjacent data from the rotating power sensor and the load cell can determine the current tension on the belt.
  • Step 3 Separate storage: After the signal acquisition and processing unit collects the received impact intensity, the impact intensity is divided into multiple intensity levels and stored separately. The frequency density of the received impact frequency is analyzed, and the frequency density of different stages is stored separately .
  • Storage of data is a very important step, because only the correct storage of data can play the role of big data analysis.
  • various data are screened and graded, and different grades are stored separately for application.
  • the impact strength is usually divided into seven levels: weak, medium weak, medium, medium strong, strong, extra strong, and extremely strong.
  • the seven grades are compared and analyzed separately to get the correct conclusion. And storage can quickly extract these data, reducing the waste of resources and time.
  • Step 4 analysis and comparison: the central unit analyzes the belt's impact strength and frequency and the load of the belt to analyze the tension of the belt, and stores the analysis result with synchronized data. At the same time, it compares the current data with the previous data. Determine the quality of the belt.
  • the key to this embodiment lies in the analysis of past data and the comparison between past data and current data. Therefore, the storage and analysis of past data is a very important process. Without the support of past data, current judgments cannot be applied. Effect.
  • Step 5 Upload and display: Upload the analysis results to the upper computer of the transportation chain or the monitoring center of downhole equipment through wireless communication, and display it on the monitoring terminal in the form of a table or a coordinate map.
  • the analysis results can be uploaded to the transportation chain control center or the underground equipment monitoring center through 4g or 5g or underground ultra-wideband wifi6 wireless transmission, and displayed on the screen in the form of electronic display.
  • the analysis results can be made into a table, a histogram, or a coordinate graph, and the necessary information can be conveyed in a direct visual way, including: the current surface quality of the belt, the amount of extension and other information.
  • the electric energy generated by the rotating power generation sensor is transmitted to the confluence power supply unit, and the confluence power supply unit collects and rectifies the collected electric energy, and converts the electric energy into a stable power supply for each unit to use. Store the excess electric energy in the battery;
  • the electric energy generated by the impulse power generation sensor and the rotating power generation sensor is transmitted to the confluence power supply unit.
  • the confluence power supply unit collects and rectifies the collected electric energy into a stable power supply for each unit to use.
  • the excess electric energy is stored in the battery.
  • the collected electrical energy is unstable energy, it needs to be rectified, and a larger capacitor is used to stabilize the current, or other electronic devices are used to stabilize the current, so that the power supply can adapt to the requirements of electronic circuits.
  • Steps 1-2 described in this embodiment also include turning on the binocular video sensor to detect the volume of the material flow in real time, and turning on the lidar sensor to monitor the material flow speed; the material speed detected by the lidar sensor is the actual movement speed of the material flow.
  • the rotating power sensor detects the rotation speed of the idler roller caused by the belt friction. Therefore, the material flow speed detected by the lidar sensor is not equal to the material flow speed measured by the rotation of the idler.
  • This embodiment uses the difference between these two speeds to evaluate the quality of the belt to monitor the belt. The current quality status.
  • Step 3 also includes: material flow volume and material flow velocity combined with material bulk density are converted into material flow information, the material flow information is analyzed, and the size and weight of the material flow are stored separately.
  • Step 4 also includes the analysis of the quality status of the belt in combination with the impact strength and frequency, as well as the belt load and material flow information.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Control Of Conveyors (AREA)

Abstract

一种自供能皮带输送机的皮带状态监测装置和方法,包括:安装在缓冲托辊(1)上的冲击发电传感器(2)、安装在常规托辊(3)上的旋转发电传感器(4)和称重传感器(5);冲击发电传感器(2)、旋转发电传感器(4)、称重传感器(5)、信号采集和处理单元、中央处理单元、数据库、交互单元之间电连接;冲击发电传感器(2)和旋转发电传感器(4)与汇流供电单元电连接。利用落料冲击和皮带托辊的转动形成一套既可以生成信息又能够产生电能的装置,完成带面状态检测及物料流量检测两个功能。在皮带负载条件下,实时检测物料流体积,实现对物料流信息的实时采集,在皮带空载条件下实时采集皮带带面视频进行监测。

Description

一种自供能皮带输送机的皮带状态监测装置和方法
相关申请的交叉引用
本公开要求申请号为202010434648.5、申请日为2020年05月21日的中国专利申请的优先权和权益,上述中国专利申请的全部内容在此通过引用并入本公开。
技术领域
本公开涉及一种自供能皮带输送机的皮带状态监测装置,是一种在线检测设备,是一种用于检测皮带输送机的皮带质量以保证安全生产的安全检测设备。
背景技术
带式输送机是井下煤炭输送的咽喉设备之一,其带面状态的好坏(如鼓包、撕裂、破损)不仅关系到皮带的安全可靠运行,带面煤流量的变化还直接影响皮带机的能量消耗。现有皮带带面状态检测方式多采用空载和负载分离式检测,即单独停机检测空载时皮带带面状态,负载状态下单独检测煤流量的变化,需要安装两套系统来完成,而且系统需要单独供电,安装和使用都十分不方便,应用场景现场使用效果不佳。
发明内容
为了克服现有技术的问题,本公开提出了一种自供能皮带输送机的皮带状态监测装置,所述的装置和方法通过在皮带机安装发电传感器,既能够感知皮带的运动状态,实时监测皮带的质量,又能够发电供给仪器本身使用,提高了皮带机的安全性。
本公开的目的是这样实现的:一种自供能皮带输送机的皮带状态监测装置,包括:安装在皮带输送机受料段多个缓冲托辊上的冲击发电传感器,所述的皮带输送机的至少两个常规托辊上设有旋转发电传感器和称重传感器;所述的冲击发电传感器、旋转发电传感器、称重传感器与信号采集和处理单元电连接,所述的信号采集和处理单元与中央处理单元电连接,所述的中央处理单元与数据库、交互单元电连接;所述的冲击发电传感器和旋转发电传感器与汇流供电单元电连接。
进一步的,所述的信号收集和处理单元还与双目视频传感器和激光雷达传感器电连接。
进一步的,所述的冲击发电传感器包括:固定安装在皮带机架上的定子和能够与缓冲托辊一同上下移动的动子。
进一步的,所述的定子是电磁线圈绕组,所述的动子是永磁体。
进一步的,所述的冲击发电传感器是压电片。
进一步的,所述的旋转发电传感器是发电机。
进一步的,所述的汇流供电单元设有蓄电池。
一种使用上述监测装置的自供能皮带输送机的皮带状态监测方法,所述的方法包括:
空载监测的过程:
皮带空载运动条件下双目视频传感器实时采集皮带带面视频图像,用当前采集的皮带带面视频图像与以往采集的皮带带面视频图像进行比较,以判断皮带表面是否出现带面破损、撕裂、鼓包的缺陷,如果发现缺陷则报警并进行停机检修;
常规工作时的监测过程,包括如下步骤:
步骤1,收集冲击信息:当物料从上位机中落下冲击缓冲托辊时,冲击发电传感器记录皮带所受到的冲击强度和频次;
步骤2,收集承载信息:物料随皮带运动时通过不同间距的旋转发电传感器监测皮带的承载和运动状况,以及相应托辊的载荷;
步骤3,分别存储:信号采集和处理单元收集收到冲击的强度后将冲击强度分为多个强度等级,并分别存储,收到冲击频次对频次密度进行分析,对不同阶段的频次密度分别储存;
步骤4,分析比较:中央单元对皮带冲击强度和频次以及皮带的承载,以分析皮带所受到的拉伸,并将分析结果与同步的数据储存,同时将当前数据与以往的数据进行比较,以确定皮带的质量状况;
步骤5,上传和显示:将分析结果通过无线通讯的方式上传至运输链上位机或井下设备监控中心,以表格或坐标图的形式在监控终端上显示;
发电过程:
在进行空载监测的过程中,旋转发电传感器所产生的电能输送到汇流供电单元中,汇流供电单元收集和整流所采集到的电能,并将这些电能转换为稳定电源,供给各个单元使用,并将多余的电能存储在蓄电池中;
在进行常规工作时的监测过程中,冲击发电传感器和旋转发电传感器所产生的电能输送到汇流供电单元中,汇流供电单元通过收集和整流使采集到的电能成为稳定电源供给各个单元使用,并将多余的电能存储在蓄电池中。
进一步的,所述的步骤1-2的同时还包括开启双目视频传感器实时检测物料流体积,开启激光雷达传感器监测物料流速度;
步骤3还包括:物料流体积和物料流速度结合物料堆密度换算成物料流量信息,对物料流量信息进行分析,将物料流的大小和重量分级分别储存;
步骤4还包括:冲击强度和频次以及皮带的承载与物料流量信息结合分析皮带的质量状态。
本公开的优点和有益效果是:本公开利用落料冲击和皮带托辊的转动形成一套即可以 生成信息又能够产生电能的装置,完成带面状态检测及物料流量检测两个功能。在皮带负载条件下,实时检测物料流体积,结合皮带速度及物料堆密度换算成物料流量,实现对物料流量信息的实时采集,在皮带空载条件下实时采集皮带带面视频,出现带面破损、撕裂、鼓包等缺陷时可以及时报警并进行停机检修。装置的供电利用传感器所发出的电能,无需外接电源,节约了能源,并使安装和使用更加灵活方便。
附图说明
图1是本公开实施例一、二所述装置安装在皮带机上的结构示意图;
图2是本公开实施例一所述装置的系统框图;
图3是本公开实施例二所述装置的系统框图。
具体实施方式
实施例一:
本实施例是一种自供能皮带输送机的皮带状态监测装置,如图1、2所示,其中图1是所述监测装置在皮带机上安装示意图,图2的结构原理框图。本实施例包括:安装在皮带输送机受料段的多个缓冲托辊1上的冲击发电传感器2,所述的皮带输送机的至少两个常规托辊3上设有旋转发电传感器4和称重传感器5;所述的冲击发电传感器、旋转发电传感器、称重传感器与信号采集和处理单元电连接,所述的信号采集和处理单元与中央处理单元电连接,所述的中央处理单元与数据库、交互单元电连接;所述的冲击发电传感器和旋转发电传感器与汇流供电单元电连接。
本实施例的主要思路是通过对接受落料的缓冲辊的监测和对常规托辊的旋转监测,对收到的皮带所受到的冲击和频次,以及皮带的运动过程中的拉伸情况进行记录并利用大数据分析的方法,对皮带的质量进行监控,当数据积累到一定程度时,可以实现对皮带质量的诊断,也就是说当皮带受到一定数量的较大冲击,以及受到一定数量较大拉伸时其内部必然产生质变,根据质变的大小就可以确定是否需要维护或更换皮带。根据这一思路,本实施例设置了冲击传感器和旋转传感器,利用这两个传感器以及相配合的称重传感器进行数据监测和积累,最终达到评估皮带质量的目的。
在本实施例中将冲击传感器和旋转传感器设计为具有发电能力的传感器。在一般情况下,传感器所输出的信号都是微弱的电信号,只要能够传递信息即可。但在本实施例中缓冲托辊所产生的能量较大,必须使用较大的传感器。这些能量在检测之后就被丢弃了,十分可惜,因此,本实施例将这能量收集起来作为仪器的能源,这样既获得了必要的信息又节约了能量。
同理,本实施例在检测皮带运动状态时使用了旋转发电传感器,将皮带的平移运动转换为托辊的旋转运动,利用皮带与托辊之间的摩擦产生的旋转,结合称重传感器所称量的 当前皮带所承载的重量,估算皮带所承受的拉力,并通过大数据进行分析,以得出对皮带质量的评估。本实施例中旋转发电传感器和称重传感器是一一对应的,即那个常规托辊安装了旋转发电传感器,就会一同安装称重传感器。
应当说明的是本实施例所述的皮带机设有抗冲击段,即在皮带机的头部或接近头部的位置专门设置一些能够上下弹动的缓冲托辊。工作时皮带机的抗冲击段的这些缓冲托辊设置在上位输送机6(见图1)的出料口下方,专门接受上位机输入的物料。这些缓冲托辊在物料下落到皮带上的时候,能在物料冲击下,向下运动,起到缓冲的作用,在没有承受冲击时则自动恢复到原来的位置,因此,本实施例利用这个上下运动,将上下运动的能力收集起来,即作为传感器输出信号,又作为能量输出。相对于缓冲托辊,那些没有抗冲击能力的皮带机其他托辊称为常规托辊,或简称托辊。
为分析更多的数据,提高分析和诊断的能力,本实施例还可以增加检测物料在皮带上堆积形状的传感器和物料运动速度的传感器,前者可以是双目视频传感器或3D摄像机等,后者可以是激光雷达或声呐传感器,同时这两种传感器也可以互相通用,即视频传感器也能够测量物料流的运动速度,而激光雷达或声呐也可以测量物料对的形状。
物料堆的形状和物料对的运动速度也是判断皮带质量的重要因素之一。通过对物料堆的形状进行判断能够得到物料的分布和重量对于皮带受力不均匀度的判断十分重要,物料堆的形状和称重传感器配合能够判断出物料的密度,进而计算出物料的干湿程度和堆积角等参数,这些参数都是对后期运输过程十分重要的信息。
本实施例所述的信号收集和分析单元、中央处理单元、数据库、交互单元等可以集成在一台工业PC中,或者集成在其他具有电子数字存储、运算和显示功能的设备中,如嵌入式系统,经过加强的单片机等电子装置中,甚至可以集成到整个皮带运输系统的集中控制计算机系统中,与其他皮带运输设备进行集中数据分享和大数据分析。
实施例二:
本实施例是上述实施例的改进,是上述实施例关于信号收集和分析单元的细化。本实施例所述的信号收集和处理单元还与双目视频传感器7和激光雷达传感器8电连接,如图1所示,电连接原理框图见图3。
双目视频传感器和激光雷达传感器安装在皮带机的上方,可以安装在一个门型的支架上,如图1所示,这个支架跨在皮带机上,两个传感器向下俯视穿过的皮带和皮带上的物料。
双目视频传感器是一种3D立体摄影设备,能够通过两个摄像头之间的视差计算出被观察物体的大小和距离。本实施例利用双目视频传感器的这个特性计算出物料对的体积和形状。
激光雷达传感器是一种通过多普勒效应,能够测量物体运动速度的传感器,同时通过多普勒效应也可以测量出物体的外形,对本实施例来说就是物料堆的形状,但精度相对双 目视频传感器要低一些。
实施例三:
本实施例是上述实施例的细化,是上实施例关于冲击发电传感器的细化。本实施例所述的冲击发电传感器包括:固定安装在皮带机架上的定子和能够与缓冲托辊一同上下位移的动子。
本实施例所述的冲击发电传感器是一种利用上下运动发电的装置,产生电能的过程可以是利用电磁场发电,也可以是压电片在冲击时产生压电效应发电。
实施例四:
本实施例是上述实施例的细化,是上实施例关于冲击发电传感器的细化。本实施例所述的定子是电磁线圈绕组,所述的动子是永磁体。
当动子的永磁体随缓冲通过上下运动时,在定子的电磁线圈中产生感生电流,形成发电输出。而且感生电流的产生还有一定的阻尼效应,相当于在缓冲托辊上设置了阻尼器,减轻了缓冲托辊的无效震动。
实施例五:
本实施例是上述实施例的细化,是上实施例关于冲击发电传感器的细化。本实施例所述的冲击发电传感器是压电片。
压电片设置在定子上,而动子只是简单的一个冲击面,对压电片产生冲击,使压电片产生电能,这种冲击方式必须带有缓冲装置,即在安装压电片的位置再设置一套缓冲装置,以避免压电被冲击损坏。
实施例六:
本实施例是上述实施例的细化,是上实施例关于旋转发电传感器的细化。本实施例所述的旋转发电传感器是发电机。
旋转发电是一种十分成熟的发电方式,效率很高,缺点是相当于对托辊的转动产生阻尼,因此,旋转发电传感器所选取的发电机的功率不能太大,以避免对皮带的运动产生干涉,但由于发电效率很高,所以即便功率不大的微小型发电机也能够提高足够的能量供各个处理单元和其他传感器使用。
实施例七:
本实施例是上述实施例的细化,是上实施例关于汇流供电单元的细化。本实施例所述的汇流供电单元设有蓄电池。
由于冲击发电传感器虽然能够提高十分强大的电能,但由于冲击是一种间歇运动,并且十分不稳定,因此需要有很大的电容器进行稳定,基本如此,在发出过多电量时使用蓄电池储存能量则效果更佳。由于现代动力电池的发展神速,因此采用蓄电池存储多余的能量是一种非常好的选择,可以使整个设备完全脱离市电供电,形成一个完全独立的系统。
实施例八:
本实施例是一种使用上述监测装置的自供能皮带输送机的皮带状态监测方法。本实施例的基本思路是:利用记录皮带被物料冲击的强度和频次,以及皮带在承载物料时所承受的拉力,将这些数据进行积累,形成专家系统,在现场进行监测是利用以往的数据进行分析对比判断实现对皮带的质量评估,以避免出现皮带断裂等安全事故。
所述方法的具体过程和步骤包括:
本实施例包括三个过程:空载监测的过程,即在皮带没有物料时,对皮带表面进行光学观察,另一个过程是在皮带机进行运输作业时进行的监控,第三个过程是发电过程。
一、空载监测的过程:
皮带空载运动条件下双目视频传感器实时采集皮带带面视频图像,用当前采集的皮带带面视频图像与以往采集的皮带带面视频图像进行比较,以判断皮带表面是否出现带面破损、撕裂、鼓包的缺陷,如果发现缺陷则报警并进行停机检修。
常规的皮带表面通常是人员用肉眼进行观察。而本实施例采用的是视频图像分析的方法。由于现代视频图像分析技术的飞速发展,对视频图像的对比分析已经十分成熟,因此只需要记录质量完好时的皮带表面图像,并与当前皮带表面进行对比,就可以评估当前皮带的状况,甚至还可以用多个时段的视频进行比较,对比出皮带表面出现的细微变化,从而形成对皮带可能发生的故障点进行监控,实现预警,本实施例中的这一观察过程完全由视频图像分析软件自动完成,无需任何人工。
二、常规工作时的监测过程步骤如下:
步骤1,收集冲击信息:当物料从上位机中落下冲击缓冲托辊时,冲击发电传感器记录皮带所受到的冲击强度和频次。
由于受到传感器本身精度的限制,冲击强度的记录有一定的阈值,较小的冲击无法记录,而这一点并不影响记录的准确性,因为能够对皮带形成冲击而造成对皮带表面影响的必然是较大的冲击,因此,对于较小的冲击完全可以忽略不计。
步骤2,收集承载信息:物料随皮带运动时通过不同间距的旋转发电传感器监测皮带的承载和运动状况,以及相应托辊的载荷。
承载信息的收集由旋转发电传感器和称重传感器共同完全。当皮带承载较小时,皮带对托辊的摩擦力也较小,再加上发电机本身所具有的阻尼效应,使旋转发电传感器旋转得不太充分,经过与皮带的真实运动速度的比较,以及比较相邻带有旋转发电传感器和称重传感器的数据,就能够判断出当前皮带所受到的拉力。
步骤3,分别存储:信号采集和处理单元收集收到冲击的强度后将冲击强度分为多个强度等级,并分别存储,收到冲击频次对频次密度进行分析,对不同阶段的频次密度分别储存。
存储数据是一个十分重要的步骤,因为只有正确的存储数据才能起到大数据分析的功效。本实施例中将各种数据均进行甄别和分级,对不同的分级进行分别存储,以便应用。 例如冲击强度通常分为:弱、中弱、中、中强,强、特强、极强等七个等级。在分析时对七个等级进行分别对比分析,才能得到正确的结论。而存储可以将这些数据快速的提取,减少资源的浪费和时间的浪费。
步骤4,分析比较:中央单元对皮带冲击强度和频次以及皮带的承载,以分析皮带所受到的拉伸,并将分析结果与同步的数据储存,同时将当前数据与以往的数据进行比较,以确定皮带的质量状况。
本实施例的关键在于对以往数据的分析和对以往数据和当前数据的对比,因此,以往数据的存储和分析是一个十分重要的过程,如果没有以往数据的支持,当前的判断也不能达到应用的效果。
步骤5,上传和显示:将分析结果通过无线通讯的方式上传至运输链上位机或井下设备监控中心,以表格或坐标图的形式在监控终端上显示。
分析的结果可以通过4g或5g或井下超宽带wifi6等形式的无线传输方式上传至运输链控制中心或井下设备监控中心,以电子显示的方式,显示在屏幕上。分析结果可以做成表格,也可以做成直方图,或者坐标图的形式,用直接的视觉方式传达必要的信息,包括:皮带的当前表面质量,延伸量等信息。
发电过程:
在进行空载监测的过程中,旋转发电传感器所产生的电能输送到汇流供电单元中,汇流供电单元收集和整流所采集到的电能,并将这些电能转换为稳定电源,供给各个单元使用,并将多余的电能存储在蓄电池中;
在进行常规工作时的监测过程中,冲击发电传感器和旋转发电传感器所产生的电能输送到汇流供电单元中,汇流供电单元通过收集和整流使采集到的电能成为稳定电源供给各个单元使用,并将多余的电能存储在蓄电池中。
由于收集到的电能都是一些不稳定的能量,需要进行整流,并使用较大的电容器进行稳流,或者使用其他电子器件进行稳流,使电源适应电子线路的要求。
实施例九:
本实施例是实施例八的改进,是实施例八关于监测数据的细化。本实施例所述的步骤1-2的同时还包括开启双目视频传感器实时检测物料流体积,开启激光雷达传感器监测物料流速度;激光雷达传感器所检测的物料速度是物料流的实际运动速度,而旋转发电传感器所检测的是皮带摩擦托辊所产生的托辊旋转速度。因此,激光雷达传感器所检测的物料流速度与托辊旋转所测出的物料流速度并不相等,本实施例正是利用了这两个速度的差距对皮带的质量进行评估,以此监测皮带当前的质量状态。
步骤3还包括:物料流体积和物料流速度结合物料堆密度换算成物料流量信息,对物料流量信息进行分析,将物料流的大小和重量分级分别储存。
步骤4还包括:冲击强度和频次以及皮带的承载与物料流量信息结合分析皮带的质量 状态。
增加两个数据源能够使分析更加精确,判断更加准确。
最后应说明的是,以上仅用以说明本公开的技术方案而非限制,尽管参照较佳布置方案对本公开进行了详细说明,本领域的普通技术人员应当理解,可以对本公开的技术方案(比如皮带输送机的形式和结构、所使用的传感器的形式和结构、处理单元的形式和结构等)进行修改或者等同替换,而不脱离本公开技术方案的精神和范围。

Claims (9)

  1. 一种自供能皮带输送机的皮带状态监测装置,其特征在于,包括:安装在皮带输送机受料段多个缓冲托辊上的冲击发电传感器,所述的皮带输送机的至少两个常规托辊上设有旋转发电传感器和称重传感器;所述的冲击发电传感器、旋转发电传感器、称重传感器与信号采集和处理单元电连接,所述的信号采集和处理单元与中央处理单元电连接,所述的中央处理单元与数据库、交互单元电连接;所述的冲击发电传感器和旋转发电传感器与汇流供电单元电连接。
  2. 根据权利要求1所述的监测装置,其特征在于,所述的信号收集和处理单元还与双目视频传感器和激光雷达传感器电连接。
  3. 根据权利要求2所述的监测装置,其特征在于,所述的冲击发电传感器包括:固定安装在皮带机架上的定子和能够与缓冲托辊一同上下位移的动子。
  4. 根据权利要求3所述的监测装置,其特征在于,所述的定子是电磁线圈绕组,所述的动子是永磁体。
  5. 根据权利要求2-3之一所述的监测装置,其特征在于,所述的冲击发电传感器是压电片。
  6. 根据权利要求1-5之一的监测装置,其特征在于,所述的旋转发电传感器是发电机。
  7. 根据权利要求6所述的监测装置,其特征在于,所述的汇流供电单元设有蓄电池。
  8. 一种使用权利要求7所述监测装置的自供能皮带输送机的皮带状态监测方法,其特征在于,所述的方法包括:
    空载监测的过程:
    皮带空载运动条件下双目视频传感器实时采集皮带带面视频图像,用当前采集的皮带带面视频图像与以往采集的皮带带面视频图像进行比较,以判断皮带表面是否出现带面破损、撕裂、鼓包的缺陷,如果发现缺陷则报警并进行停机检修;
    常规工作时的监测过程,包括如下步骤:
    步骤1,收集冲击信息:当物料从上位机中落下冲击缓冲托辊时,冲击发电传感器记录皮带所受到的冲击强度和频次;
    步骤2,收集承载信息:物料随皮带运动时通过不同间距的旋转发电传感器监测皮带的承载和运动状况,以及相应托辊的载荷;
    步骤3,分别存储:信号采集和处理单元收集收到冲击的强度后将冲击强度分为多个强度等级,并分别存储,收到冲击频次对频次密度进行分析,对不同阶段的频次密度分别储存;
    步骤4,分析比较:中央单元对皮带冲击强度和频次以及皮带的承载,以分析皮带所受到的拉伸,并将分析结果与同步的数据储存,同时将当前数据与以往的数据进行比较, 以确定皮带的质量状况;
    步骤5,上传和显示:将分析结果通过无线通讯的方式上传至运输链上位机或井下设备监控中心,以表格或坐标图的形式在监控终端上显示;
    发电过程:
    在进行空载监测的过程中,旋转发电传感器所产生的电能输送到汇流供电单元中,汇流供电单元收集和整流所采集到的电能,并将这些电能转换为稳定电源,供给各个单元使用,并将多余的电能存储在蓄电池中;
    在进行常规工作时的监测过程中,冲击发电传感器和旋转发电传感器所产生的电能输送到汇流供电单元中,汇流供电单元通过收集和整流使采集到的电能成为稳定电源供给各个单元使用,并将多余的电能存储在蓄电池中。
  9. 根据权利要求8所述的监测方法,其特征在于,所述的步骤1-2的同时还包括开启双目视频传感器实时检测物料流体积,开启激光雷达传感器监测物料流速度;
    步骤3还包括:物料流体积和物料流速度结合物料堆密度换算成物料流量信息,对物料流量信息进行分析,将物料流的大小和重量分级分别储存;
    步骤4还包括:冲击强度和频次以及皮带的承载与物料流量信息结合分析皮带的质量状态。
PCT/CN2021/094968 2020-05-21 2021-05-20 一种自供能皮带输送机的皮带状态监测装置和方法 WO2021233393A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2021277427A AU2021277427B2 (en) 2020-05-21 2021-05-20 Belt state monitoring apparatus and method for self-powered belt conveyor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010434648.5 2020-05-21
CN202010434648.5A CN111537225A (zh) 2020-05-21 2020-05-21 一种自供能皮带输送机的皮带状态监测装置和方法

Publications (1)

Publication Number Publication Date
WO2021233393A1 true WO2021233393A1 (zh) 2021-11-25

Family

ID=71976081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094968 WO2021233393A1 (zh) 2020-05-21 2021-05-20 一种自供能皮带输送机的皮带状态监测装置和方法

Country Status (3)

Country Link
CN (1) CN111537225A (zh)
AU (1) AU2021277427B2 (zh)
WO (1) WO2021233393A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113589070A (zh) * 2021-07-09 2021-11-02 西安交通大学 一种自供能自传感一体的旋转部件健康监测装置
CN114593796A (zh) * 2022-02-22 2022-06-07 中国恩菲工程技术有限公司 皮带式计量秤控制系统
CN115848935A (zh) * 2022-12-19 2023-03-28 中交机电工程局有限公司 伸缩悬皮式自动卸料系统
CN116135744A (zh) * 2023-03-20 2023-05-19 北京众驰自动化设备有限公司 带式输送机输送带磨损的检测方法及装置
CN116142723A (zh) * 2023-03-20 2023-05-23 淮南市万维机电有限公司 一种基于芯片智能控制的皮带机智能保护预警系统
CN116513747A (zh) * 2023-05-29 2023-08-01 厦门力祺环境工程有限公司 一种基于三维仿真模型的智能一体化安全管控方法
CN117509071A (zh) * 2024-01-05 2024-02-06 苏州纽酷输送机械有限公司 用于气垫输送机的运输监测系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111537225A (zh) * 2020-05-21 2020-08-14 煤炭科学研究总院 一种自供能皮带输送机的皮带状态监测装置和方法
CN113184483B (zh) * 2021-04-22 2023-06-23 武汉菲舍控制技术有限公司 一种输送带防撕裂系统及预警方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202328319U (zh) * 2011-11-30 2012-07-11 潍坊三诺机电设备制造有限公司 称重式给煤机
CN103281515A (zh) * 2013-05-10 2013-09-04 山东华辉自动化设备有限公司 一种可调控巡检式运输皮带无线视频监控系统
CN103950702A (zh) * 2014-03-24 2014-07-30 山东理工大学 矿料传送带重力势能回收发电装置的控制方法
CN204475770U (zh) * 2014-12-04 2015-07-15 安徽理工大学 一种基于切割磁感线的踩踏式发电地板
PL223027B1 (pl) * 2011-11-24 2016-09-30 Akademia Górniczo Hutnicza Im Stanisława Staszica W Krakowie Układ monitorowania pracy łożysk krążników przenośnika taśmowego
CN106870306A (zh) * 2015-12-12 2017-06-20 重庆市巨泓粮油发展有限公司 筒仓粮油发电装置
CN107176432A (zh) * 2017-06-15 2017-09-19 西安科技大学 一种基于机器视觉的锚杆异物及皮带撕裂检测系统
US20180118470A1 (en) * 2016-10-28 2018-05-03 Embraer S.A. Continuous belt conveyor monitoring systems and methods
CN210120425U (zh) * 2019-07-23 2020-02-28 华电重工股份有限公司 一种发电托辊及托辊式输送线
CN111537225A (zh) * 2020-05-21 2020-08-14 煤炭科学研究总院 一种自供能皮带输送机的皮带状态监测装置和方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL223027B1 (pl) * 2011-11-24 2016-09-30 Akademia Górniczo Hutnicza Im Stanisława Staszica W Krakowie Układ monitorowania pracy łożysk krążników przenośnika taśmowego
CN202328319U (zh) * 2011-11-30 2012-07-11 潍坊三诺机电设备制造有限公司 称重式给煤机
CN103281515A (zh) * 2013-05-10 2013-09-04 山东华辉自动化设备有限公司 一种可调控巡检式运输皮带无线视频监控系统
CN103950702A (zh) * 2014-03-24 2014-07-30 山东理工大学 矿料传送带重力势能回收发电装置的控制方法
CN204475770U (zh) * 2014-12-04 2015-07-15 安徽理工大学 一种基于切割磁感线的踩踏式发电地板
CN106870306A (zh) * 2015-12-12 2017-06-20 重庆市巨泓粮油发展有限公司 筒仓粮油发电装置
US20180118470A1 (en) * 2016-10-28 2018-05-03 Embraer S.A. Continuous belt conveyor monitoring systems and methods
CN107176432A (zh) * 2017-06-15 2017-09-19 西安科技大学 一种基于机器视觉的锚杆异物及皮带撕裂检测系统
CN210120425U (zh) * 2019-07-23 2020-02-28 华电重工股份有限公司 一种发电托辊及托辊式输送线
CN111537225A (zh) * 2020-05-21 2020-08-14 煤炭科学研究总院 一种自供能皮带输送机的皮带状态监测装置和方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113589070A (zh) * 2021-07-09 2021-11-02 西安交通大学 一种自供能自传感一体的旋转部件健康监测装置
CN114593796A (zh) * 2022-02-22 2022-06-07 中国恩菲工程技术有限公司 皮带式计量秤控制系统
CN115848935A (zh) * 2022-12-19 2023-03-28 中交机电工程局有限公司 伸缩悬皮式自动卸料系统
CN116135744A (zh) * 2023-03-20 2023-05-19 北京众驰自动化设备有限公司 带式输送机输送带磨损的检测方法及装置
CN116142723A (zh) * 2023-03-20 2023-05-23 淮南市万维机电有限公司 一种基于芯片智能控制的皮带机智能保护预警系统
CN116142723B (zh) * 2023-03-20 2023-08-08 淮南市万维机电有限公司 一种基于芯片智能控制的皮带机智能保护预警系统
CN116135744B (zh) * 2023-03-20 2023-12-15 北京众驰自动化设备有限公司 带式输送机输送带磨损的检测方法及装置
CN116513747A (zh) * 2023-05-29 2023-08-01 厦门力祺环境工程有限公司 一种基于三维仿真模型的智能一体化安全管控方法
CN116513747B (zh) * 2023-05-29 2023-10-03 厦门力祺环境工程有限公司 一种基于三维仿真模型的智能一体化安全管控方法
CN117509071A (zh) * 2024-01-05 2024-02-06 苏州纽酷输送机械有限公司 用于气垫输送机的运输监测系统
CN117509071B (zh) * 2024-01-05 2024-03-15 苏州纽酷输送机械有限公司 用于气垫输送机的运输监测系统

Also Published As

Publication number Publication date
AU2021277427B2 (en) 2022-12-22
CN111537225A (zh) 2020-08-14
AU2021277427A1 (en) 2022-02-17

Similar Documents

Publication Publication Date Title
WO2021233393A1 (zh) 一种自供能皮带输送机的皮带状态监测装置和方法
CN111486893A (zh) 一种桥梁结构健康监测与预警系统及预警方法
CN202793389U (zh) 一种高铁接触网在线巡检装置
CN109941783A (zh) 胶带机智能转载系统
CN106891914A (zh) 轨道扣件系统工作状态实时监测装置、系统和方法
CN111965246A (zh) 一种基于多信息融合的刮板机故障检测方法及其检测系统
CN211978320U (zh) 一种自供能皮带输送机的皮带状态监测装置
CN107843285A (zh) 一种输电塔线的风致动力效应远程监测系统及应用
CN104973479B (zh) 一种施工立井吊桶运动状态监测系统及方法
CN103537436B (zh) 三维建模中煤块粒度分析的动筛故障诊断方法
CN104512773A (zh) 电梯远程监控系统
CN110146520A (zh) 一种印制线路板的检测设备及其检测方法
CN111046761A (zh) 基于多传感信息融合的皮带载荷分布检测系统及检测方法
CN110540042A (zh) 一种基于三维图像及视频技术的皮带机物料堆积检测系统
CN207133370U (zh) 一种新型电力检测仪
CN104568118B (zh) 一种可视化的机械振动检测系统
CN111565024A (zh) 一种太阳能电池板故障检测与运行效率预测装置和方法
CN104326360B (zh) 门座式起重机全息检测方法
CN206475888U (zh) 轨道扣件系统工作状态实时监测装置和系统
CN113483815A (zh) 一种基于工业大数据的机械故障监控系统
CN210884127U (zh) 一种基于三维图像及视频技术的皮带机物料堆积检测系统
CN204359419U (zh) 一种车辆应变称重系统
CN104501929B (zh) 车辆应变称重系统
CN211392659U (zh) 一种基于三维图像及智能视频技术的皮带机异物检测系统
CN115035087A (zh) 一种新型铁路线路图像检测方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808318

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021277427

Country of ref document: AU

Date of ref document: 20210520

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21808318

Country of ref document: EP

Kind code of ref document: A1