WO2021233170A1 - 一种电源控制方法和电源系统 - Google Patents

一种电源控制方法和电源系统 Download PDF

Info

Publication number
WO2021233170A1
WO2021233170A1 PCT/CN2021/093215 CN2021093215W WO2021233170A1 WO 2021233170 A1 WO2021233170 A1 WO 2021233170A1 CN 2021093215 W CN2021093215 W CN 2021093215W WO 2021233170 A1 WO2021233170 A1 WO 2021233170A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
load
power
conversion unit
power supply
Prior art date
Application number
PCT/CN2021/093215
Other languages
English (en)
French (fr)
Inventor
冯金礼
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21808777.3A priority Critical patent/EP4145663A4/en
Priority to BR112022023191A priority patent/BR112022023191A2/pt
Publication of WO2021233170A1 publication Critical patent/WO2021233170A1/zh
Priority to US18/056,786 priority patent/US11894686B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/12Parallel operation of dc generators with converters, e.g. with mercury-arc rectifier
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J4/00Circuit arrangements for mains or distribution networks not specified as ac or dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/002Intermediate AC, e.g. DC supply with intermediated AC distribution
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/122Provisions for temporary connection of DC sources of essentially the same voltage, e.g. jumpstart cables
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/007Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • H02J3/0073Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources for providing alternative feeding paths between load and source when the main path fails, e.g. transformers, busbars
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/02Circuit arrangements for ac mains or ac distribution networks using a single network for simultaneous distribution of power at different frequencies; using a single network for simultaneous distribution of ac power and of dc power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/40Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • This application relates to the field of wireless communication, and in particular to a power control method and power system.
  • Some sites will deploy different network communication equipment and related equipment, such as indoor baseband unit (building base band unit, BBU), remote radio unit (RRU), base station controller (base station controller, BSC), base station Air conditioning, etc.
  • indoor baseband unit building base band unit
  • RRU remote radio unit
  • base station controller base station controller
  • BSC base station Air conditioning
  • multiple power supply systems can be used for power supply, such as solar power supply system, AC mains power supply system, high voltage DC power supply system, 48V DC power supply, etc.
  • a site has multiple input power sources, including mains power supply 101, solar power supply 104, high-voltage DC power supply 107 and 48V DC power supply 110.
  • the site is equipped with AC and DC power supply system 102, first DC equipment 103, and solar power.
  • the rated voltage of the first direct current device 103, the second direct current device 106 and the third direct current device 109 is 48V
  • the rated voltage of the AC device 112 is 220V.
  • Each input power supply needs to be configured with a corresponding power system for conversion.
  • the mains power supply 101 outputs 220V AC power
  • the AC DC power supply system 102 converts 220V AC power to 48V DC power, and then outputs the 48V DC power to the first DC device 103 .
  • the solar power supply 104 outputs 0-100V direct current
  • the solar direct current power supply system 105 converts the 0-100V direct current into 48V direct current, and then outputs the 48V direct current to the second direct current device 106.
  • the high-voltage DC power supply 107 outputs 400V DC power
  • the high-voltage DC-DC power supply system 102 converts 400V DC power into 48V DC power, and then outputs the 48V DC power to the third DC device 109.
  • the 48V DC power supply 110 outputs 48V DC power
  • the DC-AC power supply system 111 outputs 48V DC power.
  • the direct current is converted into 220V alternating current, and then the 220V alternating current is output to the AC device 112.
  • each power system is not compatible with each other, and management and maintenance are also more complicated. Moreover, the cost of deploying multiple power supply systems is more expensive.
  • the present application provides a power control method and power system that can support multiple power inputs and/or multiple power outputs, and can manage power input and output, which can improve power supply flexibility and power management efficient.
  • the first aspect provides a power control method applied to a power supply system.
  • voltage information of each input circuit is obtained; a first control signal is generated according to the voltage information and a bus voltage value; The voltage of the input circuit is converted into the bus voltage; the load information is obtained; the second control signal is generated according to the load information and the bus voltage value; the bus voltage is converted into the load voltage according to the second control signal; the load voltage is output.
  • the power system includes an input module, a power management unit, an output module, and a bus.
  • the bus is electrically connected to the input module, power management unit, and output module; the input module includes a power detection circuit and a conversion unit, and the output module includes a load detection circuit and
  • the conversion unit, the input module and/or the output module include a variety of conversion units, and the power management unit is respectively connected to the input module and the output module through a signal line.
  • the input circuit is the connection circuit between the input module and the power supply of the computer room.
  • the bus voltage can be 48V DC voltage or 57V DC voltage, or other DC voltages set according to actual conditions.
  • connection status and voltage information of each connection circuit can be monitored, so that one or more input voltages can be managed and can Provide output voltage for one or more loads. It can be understood that the current and/or power of each connected circuit can also be monitored and controlled.
  • generating the first control signal according to the voltage information of each input circuit and the bus voltage value includes: when the voltage information includes the voltage type and the voltage value, when the voltage type is a DC voltage and the DC voltage When the value changes in the solar voltage interval, a first control signal for controlling the solar DC conversion unit is generated.
  • the control signal can convert the input voltage of the solar power supply to the bus voltage.
  • the solar voltage range can be but not limited to 0-100V.
  • generating the first control signal according to the voltage information of each input circuit and the bus voltage value includes: when the voltage type is AC voltage and AC voltage When the voltage value changes in the mains voltage interval, a first control signal for controlling the first AC-DC conversion unit is generated.
  • the first AC-DC conversion unit is used to convert the mains power into the bus voltage.
  • the mains voltage range can be, but is not limited to, 90V to 290V.
  • the power supply in the computer room is a commercial power supply based on voltage fluctuations, generate a first control signal for controlling the AC-DC conversion unit, and output the first control signal to the AC-DC conversion unit.
  • the first AC-DC conversion unit is based on The first control signal can convert the mains voltage into the bus voltage.
  • generating the first control signal according to the voltage information of each input circuit and the bus voltage value includes: when the voltage type is AC voltage and AC voltage When the voltage value changes in the generating voltage interval of the diesel engine, a first control signal for controlling the second AC-DC conversion unit is generated.
  • the second AC-DC conversion unit is used to convert the AC voltage generated by the diesel engine power supply into the bus voltage.
  • the generator voltage range can be, but is not limited to, 176V ⁇ 240V.
  • generating the first control signal according to the voltage information of each input circuit and the bus voltage value includes: when the voltage type is a sine wave AC voltage, generating A first control signal for controlling the first AC-DC conversion unit; when the voltage type is a square wave AC voltage, a first control signal for controlling the second AC-DC conversion unit is generated.
  • the power source type can be identified without obtaining the voltage value.
  • generating the first control signal according to the voltage information of each input circuit and the bus voltage value includes: when the voltage information is a direct current voltage and the direct current When the voltage value changes in the high-voltage direct-current voltage interval, a first control signal for controlling the first direct-current conversion unit is generated.
  • the first DC conversion unit is used for converting the high-voltage DC voltage into the bus voltage.
  • the high-voltage DC voltage range can be, but is not limited to, 80V-400V.
  • a first control signal for controlling the first DC conversion unit is generated, and after the first control signal is output to the first DC conversion unit, the first control signal is output to the first DC conversion unit.
  • a DC conversion unit can convert the input voltage of the high-voltage DC power supply into the bus voltage according to the first control signal.
  • generating the second control signal according to the load information and the bus voltage value includes: when the load type is a DC load and the load voltage value is low
  • a second control signal for controlling the second direct current conversion unit is generated, and the second direct current conversion unit is used to convert the bus voltage into the load voltage corresponding to the aforementioned load voltage value.
  • the load voltage value can be but not limited to 12V, 24V, 48V or 72V.
  • a second control signal for controlling the second DC conversion unit is generated, and after the second control signal is output to the second DC conversion unit, the second DC conversion unit is controlled according to the second control signal.
  • the signal can reduce the bus voltage to the load voltage.
  • generating the second control signal according to the load information and the bus voltage value includes: when the load type is a high-voltage direct current load, generating a second control signal for controlling the third direct current conversion unit.
  • the third DC conversion unit is used to convert the bus voltage into a high-voltage DC voltage.
  • a second control signal for controlling the third DC conversion unit is generated, and after the second control signal is output to the third DC conversion unit, the third DC conversion unit is controlled according to the second control signal.
  • the signal can boost the bus voltage to a high-voltage DC voltage.
  • generating the second control signal according to the load information and the bus voltage value includes: generating the second control signal according to the load information and the bus voltage value includes: when the load type is an AC load, generating the second control signal for control The second control signal of the DC/AC conversion unit.
  • the above method further includes: when the load type is a DC load and the load voltage value is equal to the bus voltage value, generating a third control signal; and outputting the bus voltage to the branch circuit through the branch circuit according to the third control signal load.
  • the load type is a DC load and the load voltage value is equal to the bus voltage value, it indicates that the bus voltage can be directly used as the load voltage, so that the bus voltage can be output to the load through the branch circuit of the output module.
  • each input circuit before obtaining the voltage information of each input circuit, obtain the load power consumption; when the load power consumption is less than or equal to the first power, control the solar DC conversion unit to be connected to the solar power supply, and control The AC/DC conversion unit is connected to the mains power supply; when the load power consumption is greater than the first power and less than the second power, the solar DC conversion unit is controlled to be connected to the solar power supply, the AC/DC conversion unit is controlled to be connected to the mains power supply, and the DC conversion is controlled The unit is connected with a high-voltage DC power supply.
  • Each input circuit is connected to a computer room power supply.
  • the computer room power supply includes solar power, city power and high-voltage DC power.
  • the first power is equal to the sum of mains power and solar power; the second power is equal to the sum of mains, solar power and high-voltage DC power.
  • the power supply of the computer room can be flexibly selected according to the power consumption of the load, and a mixed power supply of a variety of computer room power sources can be realized.
  • the backup battery when the mains power supply is powered off, the backup battery is controlled to communicate with the bus.
  • the power supply of the computer room includes mains power and backup batteries. It is understandable that in a scenario where multiple computer room power supplies are mixed to supply power, when any one or more computer room power supplies are powered off, the backup battery can be controlled to be connected to the bus to keep the input voltage and output voltage stable.
  • the standby power supply when the mains power supply loses power, the standby power supply is controlled to communicate with the standby conversion unit.
  • the backup conversion unit is a conversion unit corresponding to the backup power supply.
  • the power supply of the computer room includes the mains power supply and the backup power supply.
  • the backup power source can be, but is not limited to, solar power, diesel engine power, or high-voltage DC power. It is understandable that in a scenario where multiple computer room power supplies are mixed to supply power, when any one or more computer room power supplies are powered off, the standby power supply can be controlled to communicate with the standby conversion unit to keep the input voltage and output voltage stable.
  • a second aspect discloses a power supply system including: an input module, a power management unit, an output module, and a bus, the bus is electrically connected to the input module, the power management unit, and the output module; the input module includes a power detection circuit and a conversion unit, and the output module It includes a load detection circuit and a conversion unit, the input module and/or output module includes a variety of conversion units, and the power management unit is connected to the input module and the output module through a signal line; the power detection circuit is used to obtain voltage information of each input circuit; The power management unit is used to generate the first control signal according to the voltage information and the bus voltage value; the conversion unit of the input module is used to convert the voltage of the input circuit into the bus voltage according to the first control signal; the load detection circuit is connected to one or more loads, Used to obtain load information; the power management unit is also used to generate a second control signal according to the load information and the bus voltage value; the conversion unit of the output module is used to convert the bus voltage to the load voltage according to the second control signal
  • the power management unit is specifically configured to generate a control unit for controlling solar energy when the voltage type is a direct current voltage and the direct current voltage value changes within the solar voltage range.
  • the first control signal of the DC conversion unit when the voltage type is an AC voltage and the AC voltage value changes in the mains voltage interval, a first control signal for controlling the first AC-DC conversion unit is generated; when the voltage type is an AC voltage and When the AC voltage value changes in the generator voltage interval, generate a first control signal for controlling the second AC-DC conversion unit; when the voltage information is a DC voltage and the DC voltage value changes in the high-voltage DC voltage interval, generate a first control signal for control
  • the first control signal of the first DC conversion unit, and the first DC conversion unit is used to convert the high-voltage DC voltage into the bus voltage.
  • the power management unit when the load information includes the load type and the load voltage value, is specifically configured to generate the power supply when the load type is a DC load and the load voltage value is lower than the high-voltage DC voltage value.
  • the second DC conversion unit In order to control the second control signal of the second DC conversion unit, the second DC conversion unit is used to convert the busbar voltage into the load voltage corresponding to the above-mentioned load voltage value; when the load type is a high-voltage DC load, generate a third DC for control The second control signal of the conversion unit, and the third DC conversion unit is used for converting the bus voltage into a high-voltage DC voltage; when the load type is an AC load, a second control signal for controlling the DC/AC conversion unit is generated.
  • the power management unit when the load information includes the load type and the load voltage value, is further configured to generate the third control when the load type is a DC load and the load voltage value is equal to the bus voltage value. Signal; the output module is also used to output the bus voltage to the load through the branch circuit according to the third control signal.
  • each input circuit is connected to a computer room power supply.
  • the computer room power supply includes solar power, commercial power and high-voltage DC power; the load detection unit is also used to obtain load power consumption; the power management unit is also used to When the load power consumption is less than or equal to the solar power supply power, the solar DC conversion unit is controlled to be connected to the solar power supply; when the load power consumption is greater than the solar power supply power and the load power consumption is less than or equal to the mains power, the AC/DC conversion unit and the mains power supply are controlled Connected; when the load power consumption is greater than the mains power consumption and the load power consumption is less than or equal to the first power, the solar DC conversion unit is controlled to be connected to the solar power supply, and the AC/DC conversion unit is controlled to be connected to the mains power supply; when the load power consumption is greater than When the first power is less than the second power, the solar DC conversion unit is controlled to be connected to the solar power source, the AC/DC conversion unit is controlled to be connected to the mains power source, and
  • the power management unit is also used to control the backup battery to be connected to the bus when the power supply of the computer room includes a mains power supply and a backup battery, and the mains power supply loses power.
  • the power management unit is also used to control the standby power supply to be connected to the standby conversion unit when the computer room power supply includes the mains power supply and the backup power supply and the mains power supply fails.
  • the corresponding conversion unit is also used to control the standby power supply to be connected to the standby conversion unit when the computer room power supply includes the mains power supply and the backup power supply and the mains power supply fails.
  • the conversion unit includes an identification part, and the identification part is connected to the power management unit; the power management unit is further configured to determine the type of the conversion unit according to the identification part.
  • the power supply system further includes a back plate, and the identification part is inserted into the identification hole of the back plate.
  • the power supply system further includes a power plug frame, and the power plug frame includes a plurality of slots of the same size, and the slots are used for placing the conversion unit.
  • a third aspect provides a computer-readable storage medium, in which instructions are stored, which when run on a computer, cause the computer to execute the method of the first aspect.
  • the fourth aspect provides a computer program product containing instructions, which when run on a computer, causes the computer to execute the method of the first aspect.
  • a fifth aspect provides a chip system including a processor for supporting the power supply system to implement the functions involved in the above aspects, for example, sending or processing the control signals and/or information involved in the above power control method.
  • the chip system further includes a memory, and the memory is used to store program instructions and data necessary for the power control method.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • Figure 1 is a schematic diagram of an existing site power supply scenario
  • Figure 2 is a schematic diagram of a site power supply scenario in this application.
  • FIG. 3 is a schematic structural diagram of the power supply system in this application.
  • FIG. 4 is a schematic flow chart of the power control method in this application.
  • FIG. 5 is another schematic diagram of the structure of the power supply system in this application.
  • Fig. 6 is a schematic diagram of the identification part of the AC-DC conversion unit in this application.
  • FIG. 7 is a schematic diagram of the identification part of the high-voltage DC-DC conversion unit in this application.
  • FIG. 8 is a schematic diagram of the identification part of the solar DC conversion unit in this application.
  • the power control method of this application can be applied to wireless communication sites.
  • the power supply of the computer room includes a commercial power supply 21, a solar power supply 22, a 48V DC power supply 23 and a high-voltage DC power supply 24.
  • the load includes indoor BBU 26, RRU 27, and active antenna processing unit (AAU) 28.
  • the mains power supply 21, the solar power supply 22, the 48V DC power supply 23, and the high-voltage DC power supply 24 are respectively connected to the power supply system 25, and the power supply system 25 is respectively connected to the BBU 26, RRU 27 and AAU 28.
  • the city power source 21 is used to provide the city power supply voltage. According to the power supply standards of different cities, the city power supply voltage can be 220V AC voltage, 110V AC voltage, etc., and V is volts.
  • the solar power source 22 is used to provide 0-100V direct current.
  • the 48V DC power supply 23 is used to provide 48V DC power.
  • the high-voltage direct current power supply 24 is used to provide direct current of 80V to 400V.
  • the type of power supply in the computer room and the number of power supplies in the computer room are not limited to the above examples.
  • the power supply in the computer room may also include a backup battery, and the backup battery may be a lead-acid rechargeable battery or a lithium battery.
  • the power supply in the machine room may also include a diesel engine power supply, which can provide alternating current.
  • the type of load and the number of loads are not limited to the above examples.
  • the power supply system 25 converts the input voltages of the mains power supply 21, the solar power supply 22, the 48V DC power supply 23 and the high voltage DC power supply 24 into the bus voltage, and then converts the bus voltage into the load voltage, and outputs the load voltage to the BBU26, RRU27 and AAU28 .
  • a power supply system 25 includes a power management unit (power management units, PMU) 301, a first power detection circuit 302, a second power detection circuit 303, a third power detection circuit 304, a fourth power detection circuit 305, AC/DC conversion unit 306, solar DC conversion unit 307, 48V DC-57V DC conversion unit 308, high voltage direct current transmission (HVDC)-57V DC conversion unit 309, bus 310, 57V-48V DC conversion unit 311, The DC/AC conversion unit 312, the 57V DC-HVDC conversion unit 313, and the load detection circuit 314.
  • PMU power management unit
  • the PMU301 is connected to the first power detection circuit 302, the second power detection circuit 303, the third power detection circuit 304, the fourth power detection circuit 305, the AC-DC conversion unit 306, and the solar-DC conversion unit through signal lines.
  • the first power detection circuit 302 can be connected to the mains power supply 21, the second power detection circuit 303 can be connected to the solar power supply 22, the third power detection circuit 304 can be connected to the 48V DC power supply 23, and the fourth power detection circuit 305 It can be connected to a high-voltage DC power supply 24, and the above-mentioned connection circuits all belong to the input circuit of the power supply system 25.
  • the load detection circuit 314 may be connected to the BBU 26, the RRU 27 and the AAU 28.
  • the AC-DC double converter is an AC-DC double converter, which can convert an AC voltage into a DC voltage, and can also convert a DC voltage into an AC voltage. Therefore, the AC-DC conversion unit 306 and the DC-AC conversion unit 312 can realize their functions through AC-DC dual converters, and the high-voltage DC-57V DC conversion unit 309 and 57V DC-high-voltage DC conversion unit 313 can use HVDC-DC bidirectional converters. Realize its function.
  • the PMU301 may include a processor and a memory.
  • the processor can be a central processing unit (CPU), other general-purpose processors, digital signal processors (digital signal processors, DSP), application specific integrated circuits (ASICs), ready-made programmable Field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read only memory (ROM), programmable read only memory (programmable ROM, PROM), erasable programmable read only memory (erasable PROM, EPROM), and electrically erasable Except for programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory Enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory synchronous connection dynamic random access memory (synchlink DRAM, SLDRAM)
  • direct memory bus random access memory direct rambus RAM, DRRAM).
  • the memory is used to store data and program instructions.
  • the data can be input voltage value, input voltage type, input current value, input power, load voltage type, load voltage value, etc.
  • the processor can execute the steps executed by the power management unit in the following embodiments.
  • the power supply system 25 shown in FIG. 3 includes a plurality of conversion units for converting an input voltage into a bus voltage, and a plurality of conversion units for converting a bus voltage into a load voltage, that is, the power supply system 25 is a multiple-input multiple-output power source system. It should be noted that the power supply system of the present application may also be a multiple-input single-output power supply system or a single-input multiple-output power supply system.
  • the multiple-input single-output power supply system includes multiple conversion units for converting input voltage to bus voltage, and A conversion unit that converts bus voltage to load voltage.
  • the single-input multiple-output power supply system includes a conversion unit for converting an input voltage into a bus voltage, and a plurality of conversion units for converting the bus voltage into a load voltage.
  • this application provides a power control method applied to the power supply system. It will be described in detail below:
  • an embodiment of the power control method in this application includes:
  • Step 401 Obtain voltage information of each input circuit.
  • the voltage information may include voltage type and voltage value.
  • Step 402 Generate a first control signal according to the voltage information and the bus voltage value.
  • the first control signal is used to control the conversion unit to perform voltage conversion.
  • Step 403 Convert the voltage of each input circuit into a bus voltage according to the first control signal.
  • Step 404 Obtain load information.
  • the load information may include load voltage type, load voltage value, and load power consumption.
  • step 404 may not have a fixed sequence with step 401.
  • Step 404 may be executed before step 401, may also be executed between step 401 to step 403, or step 404 and step 401 may be executed at the same time.
  • Step 405 Generate a second control signal according to the load information and the bus voltage value.
  • the second control signal is used to control the conversion unit in the output module to perform voltage conversion.
  • Step 406 Convert the bus voltage to the load voltage according to the second control signal.
  • Step 407 Output the load voltage.
  • connection status and voltage information of each connection circuit can be monitored, so that one or more input voltages can be monitored.
  • Perform management and conversion and can provide output voltage for one or more loads.
  • the input and output have a loosely coupled relationship, which can not only improve the flexibility of power supply, but also improve the efficiency of power management.
  • generating the first control signal according to the voltage information and the bus voltage value includes: when the voltage type is a DC voltage and the DC voltage value changes within the solar voltage interval At the time, a first control signal for controlling the solar DC conversion unit is generated.
  • the solar DC conversion unit can be selected from the input modules, and the second solar DC conversion unit can be generated.
  • a control signal, and the solar DC conversion unit can convert the input voltage of the solar power supply into a bus voltage according to the first control signal.
  • generating the first control signal according to the voltage information and the bus voltage value includes: when the voltage type is an AC voltage and the AC voltage value is at the mains voltage When the interval changes, a first control signal for controlling the first AC-DC conversion unit is generated.
  • the mains voltage range can be, but is not limited to, 90V to 290V.
  • the voltage type is AC voltage and the AC voltage value changes within the mains voltage range
  • the first AC-DC conversion unit can be selected from the input module
  • the first AC-DC conversion unit can be selected from the input module
  • the first The first control signal of the AC-DC conversion unit, and the first AC-DC conversion unit can convert the mains voltage into the bus voltage according to the first control signal.
  • generating the first control signal according to the voltage information and the bus voltage value includes: when the voltage type is an AC voltage and the AC voltage value is generated by the diesel engine When the voltage interval changes, a first control signal for controlling the second AC-DC conversion unit is generated.
  • the generator voltage range can be, but is not limited to, 176V ⁇ 240V.
  • the voltage type is AC voltage and the AC voltage value changes in the generator voltage range of the diesel generator, it indicates that the input circuit is connected to the diesel generator power supply.
  • the second AC-DC conversion unit can be selected from the input module, and the second AC-DC conversion unit can be selected from the input module, and the second AC-DC conversion unit can be generated for controlling the The first control signal of the second AC-DC conversion unit, and the second AC-DC conversion unit can convert the voltage output by the diesel engine power supply into the bus voltage according to the first control signal.
  • generating the first control signal according to the voltage information and the bus voltage value includes: when the voltage information is a direct current voltage and the direct current voltage value is at a high voltage direct current voltage When the interval changes, a first control signal for controlling the first DC conversion unit is generated, and the first DC conversion unit is used for converting the high-voltage DC voltage into the bus voltage.
  • the voltage information is a DC voltage and the DC voltage value changes within the high-voltage DC voltage range, it indicates that the input circuit is connected to the high-voltage DC power supply, and the first DC conversion unit can be selected from the input module, and the The first control signal of the DC conversion unit, and the first DC conversion unit can convert the input voltage of the high-voltage DC power supply into the bus voltage according to the first control signal.
  • the type of power supply in the computer room can be automatically identified according to the voltage type and voltage fluctuation, and then the corresponding conversion unit is selected from the input module for voltage conversion, so that the computer room power supply and the conversion unit can be automatically matched without manual matching.
  • generating the second control signal according to the load information and the bus voltage value includes:
  • a second control signal for controlling the second direct current conversion unit is generated.
  • the second DC conversion unit is used to convert the bus voltage into the load voltage corresponding to the above-mentioned load voltage value.
  • the load voltage value may be higher than the bus voltage value, or may be lower than the bus voltage value, and the specific value may be, but not limited to, 12V, 24V, 48V or 72V.
  • a second control signal for controlling the second DC conversion unit is generated, and after the second control signal is output to the second DC conversion unit , The second DC conversion unit can convert the bus voltage into the load voltage according to the second control signal.
  • generating the second control signal according to the load information and the bus voltage value includes: when the load type is a high-voltage DC load, generating A second control signal for controlling the third DC conversion unit.
  • the third DC conversion unit is used to convert the bus voltage into a high-voltage DC voltage. It should be noted that when the load voltage is higher than the high-voltage DC voltage, the application may also be equipped with a conversion unit corresponding to the load voltage, and the bus voltage can be converted into the above-mentioned load voltage through the corresponding second control signal.
  • generating the second control signal according to the load information and the bus voltage value includes: when the load type is an AC load, generating the second control signal for control The second control signal of the DC/AC conversion unit.
  • the DC/AC conversion unit can convert the bus voltage into AC voltage.
  • the load voltage of the AC load can be, but is not limited to, 220V or 100V.
  • the foregoing power control method further includes: when the load type is a DC load and the load voltage value is equal to the bus voltage value, generating a third control signal; and passing the bus voltage through the branch circuit according to the third control signal Output to the load.
  • the load type is a DC load and the load voltage value is equal to the bus voltage value, it indicates that the bus voltage can be directly used as the load voltage, so that the bus voltage can be output to the load through the branch circuit of the output module.
  • Each input circuit is connected to a computer room power supply.
  • the computer room power supply includes solar power, city power and high-voltage DC power.
  • the above power control method further includes: obtaining load power consumption; when the load power consumption is less than or equal to the solar power supply power, controlling the solar DC conversion unit to be connected to the solar power supply; when the load power consumption is greater than the solar power supply power and the load power consumption is less than or equal to the city
  • the AC/DC conversion unit is controlled to be connected to the mains power supply; when the load power consumption is greater than the mains power and the load power consumption is less than or equal to the first power, the solar DC conversion unit is controlled to communicate with the solar power supply, and the AC/DC conversion unit is controlled to communicate with the mains.
  • the electrical power source is connected, and the first power is equal to the sum of the mains power and the solar power; when the load power consumption is greater than the first power and less than the second power, the solar DC conversion unit is controlled to be connected to the solar power source, and the AC-DC conversion unit is controlled to the mains
  • the power supply is connected and the DC conversion unit is controlled to be connected with the high-voltage DC power supply, and the second power is equal to the sum of the mains power, the solar power supply power and the high-voltage DC power supply.
  • the battery management unit adjusts the output voltage of the solar DC conversion unit to be higher than the bus voltage to realize solar power supply.
  • the output voltage of the solar DC conversion unit is 49V
  • the bus voltage is 48V.
  • the voltage value of the output voltage of the solar DC conversion unit can be set according to the actual situation.
  • the way that the battery management unit controls other power sources is similar to the way of controlling solar power, and will not be repeated here.
  • the power supply of the computer room can be flexibly selected according to the interval where the load power consumption is located, and a mixed power supply of multiple computer room power sources can be realized.
  • the output power can be adjusted in real time to ensure the normal operation of the load.
  • the above-mentioned hybrid power supply method can make full use of solar power for power supply and reduce power supply from city power.
  • the computer room power supply includes a mains power supply and a backup battery; the above power control method further includes: when the mains power supply is powered off, controlling the backup battery to be connected to the bus.
  • the mains power supply in a normal power supply state, is connected to the AC-DC conversion unit, and the backup battery and the bus are turned off.
  • the backup battery is controlled to be connected to the bus, which can maintain the stability of the input voltage and output voltage, and prevent the problem that the load supplied by the power supply cannot work normally when the power supply fails.
  • the computer room power supply includes a mains power supply and a backup power supply; the above power control method further includes: when the mains power supply is powered off, controlling the backup power supply to communicate with the backup conversion unit, and the backup conversion unit is connected to the backup power supply. The corresponding conversion unit.
  • the mains power supply in the normal power supply state, is connected to the AC-DC conversion unit, and the backup power supply and the backup conversion unit are turned off.
  • the backup power source can be a solar power source, a diesel engine power source, or a high-voltage DC power source.
  • the standby power supply is controlled to be connected with the standby conversion unit, so that the input voltage and output voltage can be kept stable, so that the load can work normally.
  • a power supply system 500 includes:
  • Input module 501 power management unit 502, bus 503, and output module 504.
  • Bus 503 is electrically connected to input module 501, power management unit 502, and output module 504, respectively;
  • input module 501 includes power detection circuit 5011 and conversion unit 5012, which output
  • the module 504 includes a load detection circuit 5041 and a conversion unit 5042.
  • the input module 501 and/or the output module 504 includes a variety of conversion units.
  • the power management unit 502 is connected to the input module 501 and the output module 504 through signal lines, respectively;
  • the power detection circuit 5011 is used to obtain voltage information of the input circuit
  • the power management unit 502 is configured to generate a first control signal according to the voltage information and the bus voltage value
  • the conversion unit 5012 is configured to convert the voltage of the input circuit into the bus voltage according to the first control signal
  • Load detection circuit 5041 used to obtain load information
  • the power management unit 502 is further configured to generate a second control signal according to the load information and the bus voltage value;
  • the conversion unit 5042 is configured to convert the bus voltage into a load voltage according to the second control signal, and output the load voltage.
  • the power detection circuit 5011 is electrically connected to the conversion unit 5012.
  • the bus bar 503 is electrically connected to the conversion unit 5012 and the conversion unit 5042 through branch circuits, respectively.
  • the power management unit 502 is respectively connected to the power detection circuit 5011, the conversion unit 5012, the load detection circuit 5041, and the conversion unit 5042 through signal lines.
  • the signal lines are represented by double arrow lines.
  • the load detection circuit 5041 may be connected to one or more loads.
  • the load information may include, but is not limited to, one or more of the following information: load voltage, load current, and load power. Load power is also called load power consumption.
  • the power management unit 502 can collect information such as voltage, current, and connection status of all circuits, calculate power and efficiency, etc., and can also implement functions such as control and alarm for each unit and/or circuit.
  • the voltage information includes voltage type and voltage value
  • the power management unit 502 is specifically configured to generate a first control signal for controlling the solar DC conversion unit when the voltage type is a DC voltage and the DC voltage value changes within the solar voltage range; when the voltage type is an AC voltage and the AC voltage value is at When the mains voltage interval changes, generate a first control signal for controlling the first AC-DC conversion unit; when the voltage type is AC voltage and the AC voltage value changes in the generator voltage interval, generate a second AC-DC control signal
  • the first control signal of the conversion unit when the voltage information is a DC voltage and the DC voltage value changes in the high-voltage DC voltage interval, a first control signal for controlling the first DC conversion unit is generated, and the first DC conversion unit is used for Convert high voltage DC voltage to bus voltage.
  • the load information includes load type and load voltage value
  • the power management unit 502 is specifically configured to generate a second control signal for controlling the second DC conversion unit when the load type is a DC load and the load voltage value is lower than the high voltage DC voltage value.
  • the voltage is converted into the load voltage corresponding to the above-mentioned load voltage value; when the load type is a high-voltage DC load, a second control signal for controlling the third DC conversion unit is generated, and the third DC conversion unit is used to convert the bus voltage into a high-voltage DC Voltage; when the load type is an AC load, a second control signal for controlling the DC/AC conversion unit is generated.
  • the load information includes load type and load voltage value
  • the power management unit 502 is further configured to generate a third control signal when the load type is a DC load and the load voltage value is equal to the bus voltage value;
  • the output module 504 is further configured to output the bus voltage to the load through the branch circuit according to the third control signal.
  • the power supply for the computer room includes a solar power supply, a mains power supply, and a high-voltage DC power supply;
  • the load detection unit 5041 is also used to obtain load power consumption
  • the power management unit 502 is also used to control the solar DC conversion unit to connect to the solar power when the load power consumption is less than or equal to the solar power; when the load power consumption is greater than the solar power power and the load power consumption is less than or equal to the mains power, control The AC/DC conversion unit is connected to the mains power supply; when the load power consumption is greater than the mains power consumption and the load power consumption is less than or equal to the first power, the solar DC conversion unit is controlled to be connected to the solar power supply, and the AC/DC conversion unit is controlled with the mains Power connection; when the load power consumption is greater than the first power and less than the second power, the solar DC conversion unit is controlled to be connected to the solar power source, the AC/DC conversion unit is controlled to be connected to the mains power source, and the DC conversion unit is controlled to be connected to the high-voltage DC power source;
  • the first power is equal to the sum of mains power and solar power
  • the second power is equal to the sum of mains, solar power and high-voltage DC power.
  • the power management unit 502 is also used for controlling the connection of the backup battery with the bus when the power supply of the computer room includes a mains power supply and a backup battery and the mains power supply is powered off.
  • the power management unit 502 is also used for controlling the connection between the backup power supply and the backup conversion unit when the computer room power supply includes a mains power supply and a backup power supply and the mains power supply is powered off.
  • the backup conversion unit is a conversion unit corresponding to the backup power supply.
  • both the conversion unit 5012 and the conversion unit 5042 include an identification part, and the identification part is connected to the power management unit 502;
  • the power management unit 502 is also used to determine the type of the conversion unit according to the identification part.
  • the identification part may be realized by hardware pins, or may be realized by a DIP switch or software identification.
  • 001 indicates an AC-DC conversion unit
  • 002 indicates a HVDC-DC conversion unit
  • 003 indicates a PV-DC conversion unit
  • an AC-DC conversion unit is an AC/DC conversion unit
  • a PV-DC conversion unit is a solar DC conversion unit.
  • the above-mentioned corresponding relationship between the identification number and the conversion unit is illustrative, and the conversion unit may also be represented by other identification numbers, which is not limited in this application.
  • the power supply system further includes a power plug frame.
  • the power plug frame includes a plurality of slots of the same size, and the slots are used to place the conversion unit 5012 or the conversion unit 5042.
  • the configuration cost of the power supply system of this application is about 0.57 of the cost of 3 independent power supplies, so the configuration cost can be saved.
  • the power subrack includes a back plate, and the identification part is inserted into the identification hole of the back plate.
  • the AC-DC conversion unit 601 is provided with an identification terminal 602, an AC terminal 603, and a DC terminal 604.
  • the AC terminal 603 is used to connect to an AC power source, and the DC terminal 604 is used to connect to a bus.
  • the AC-DC conversion unit 601 can be inserted into the hole of the back plate through the identification terminal 602, the AC terminal 603 and the DC terminal 604.
  • the marker terminal 602 may be composed of a plurality of pins.
  • the high-voltage DC-DC conversion unit 701 is provided with an identification terminal 702, a high-voltage DC terminal 703, and a DC terminal 704.
  • the high-voltage DC terminal 703 is used to connect to a high-voltage DC power supply, and the DC terminal 704 is used to connect to a bus.
  • the high-voltage DC-DC conversion unit 701 can be inserted into the hole of the back plate through the identification part terminal 702 and the DC terminal terminal 704.
  • the marker terminal 702 may be composed of a plurality of pins.
  • the solar DC conversion unit 801 is provided with an identification terminal 802, a solar terminal 803 and a DC terminal 804, the solar terminal 803 is used to connect to a solar power source, and the DC terminal 804 is used to connect to a bus.
  • the solar DC conversion unit 801 can be inserted into the hole of the back plate through the identification terminal 802 and the DC terminal 804.
  • the marker terminal 802 may be composed of a plurality of pins.
  • the identification part can work when the terminal of the conversion unit is inserted into the back plate.
  • AB conversion is used to indicate the conversion of a type A voltage to a type B voltage.
  • a and B can be different types of voltages, for example, A is an AC voltage and B is a DC voltage; or, A and B can be the same type Voltages of different voltage values, for example, A is 57V direct current and B is 48V direct current.
  • A-B conversion is AB conversion.
  • connection relationships between the units indicate that there are communication connections between them, which may be specifically implemented as one or more communication buses or signal lines. Other connection relationships between the units represent electrical connections between them, which can be specifically implemented as one or more circuits.
  • the present application provides a computer storage medium, including instructions, which when run on a computer, cause the computer to execute the steps performed by the power supply system in the embodiment shown in FIG. 4.
  • the PMU in this application may specifically be a chip in the PMU, and the chip includes: a processing unit and a communication unit.
  • the processing unit may be a processor, and the communication unit may be, for example, an input/output interface, a pin, or a circuit.
  • the processing unit can execute the computer instructions stored in the storage unit, so that the power supply system executes the power control method in the embodiment shown in FIG. 4 or the alternative embodiment.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the wireless access device, such as a ROM. Or can store static information and other types of static storage devices, such as RAM.
  • the processor mentioned in any of the foregoing may be a general-purpose central processing unit, a microprocessor, an ASIC, or one or more integrated circuits for controlling the execution of the program of the method in the first aspect.
  • this application can be implemented by means of software plus necessary general hardware. Of course, it can also be implemented by dedicated hardware including dedicated integrated circuits, dedicated CPUs, dedicated memory, Dedicated components and so on to achieve. Under normal circumstances, all functions completed by computer programs can be easily implemented with corresponding hardware. Moreover, the specific hardware structure used to achieve the same function can also be diverse, such as analog circuits, digital circuits or special-purpose circuits. Circuit etc. However, for this application, software program implementation is a better implementation in more cases. Based on this understanding, the technical solution of this application essentially or the part that contributes to the prior art can be embodied in the form of a software product.
  • the computer software product is stored in a readable storage medium, such as a computer floppy disk. , U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk, etc., including several instructions to make a computer device (which can be a personal computer, server, or network device, etc.) execute the methods described in each embodiment of this application .
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL) or wireless (such as infrared, wireless, microwave, etc.)).
  • the readable storage medium can be any usable medium that can be stored by a computer or a data storage device such as a server or data center integrated with one or more usable media.
  • the usable medium can be a magnetic medium, (for example, a floppy disk, a hard disk, and a magnetic tape) , Optical media (such as DVD), or semiconductor media (such as solid state disk (SSD)), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

一种电源控制方法包括:获取每个输入电路的电压信息;根据电压信息和母线电压值生成第一控制信号;根据第一控制信号将每个输入电路的电压转换为母线电压;获取负载信息;根据负载信息和母线电压值生成第二控制信号;根据第二控制信号将母线电压转换为负载电压;输出负载电压。这样能够支持多输入电压和/或多输出电压,通过统一管理能够提高供电灵活性,还可以提高电源管理效率。本申请还提供一种可以实施上述电源控制方法的电源系统。

Description

一种电源控制方法和电源系统
本申请要求于2020年05月20日提交中国国家知识产权局、申请号为202010429941.2、申请名称为“一种电源控制方法和电源系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,尤其涉及一种电源控制方法和电源系统。
背景技术
一些站点会部署不同网络的通信设备以及相关设备,例如室内基带单元(building base band unite,BBU),射频拉远单元(remote radio unit,RRU),基站控制器(base station controller,BSC),基站空调等。对于站点设备,可以采用多种供电系统供电,例如太阳能供电系统,交流市电供电系统,高压直流供电系统,48V直流电源等。
对于多种电源需求,站点可以同时部署不同类型的电源。参阅图1,一个站点具有多个输入电源,分别是市电电源101,太阳能电源104,高压直流电源107和48V直流电源110,站点内配置交流直流电源系统102、第一直流设备103,太阳能直流电源系统105,第二直流设备106,高压直流-直流电源系统108,第三直流设备109,直流交流电源系统111和交流设备112。第一直流设备103,第二直流设备106和第三直流设备109的额定电压为48V,交流设备112的额定电压为220V。
每种输入电源都需要配置一个对应的电源系统进行转换,例如,市电电源101输出220V交流电,交流直流电源系统102将220V交流电转换为48V直流电,然后将48V直流电输出至第一直流设备103。太阳能电源104输出0~100V直流电,太阳能直流电源系统105将0~100V直流电转换为48V直流电,然后将48V直流电输出至第二直流设备106。高压直流电源107输出400V直流电,高压直流-直流电源系统102将400V直流电转换为48V直流电,然后将48V直流电输出至第三直流设备109。48V直流电源110输出48V直流电,直流交流电源系统111将48V直流电转换为220V交流电,然后将220V交流电输出至交流设备112。
在实际应用中,每种电源系统互不兼容,管理和维护起来也比较复杂。并且,部署多个电源系统的成本较贵。
发明内容
有鉴于此,本申请提供一种电源控制方法以及电源系统,能够支持多种电源输入和/或多种电源输出,以及对电源输入和输出能够进行管理,这样能够提高供电灵活性,提高电源管理效率。
第一方面提供一种应用于电源系统的电源控制方法,在该方法中,获取每个输入电路的电压信息;根据电压信息和母线电压值生成第一控制信号;根据第一控制信号将每个输入电路的电压转换为母线电压;获取负载信息;根据负载信息和母线电压值生成第二控制信号;根据第二控制信号将母线电压转换为负载电压;输出负载电压。
其中,电源系统包括输入模块、电源管理单元、输出模块和母线,母线分别与输入模块、电源管理单元和输出模块电性连接;输入模块包括电源检测电路和转换单元,输出模块包括负载检测电路和转换单元,输入模块和/或输出模块包括多种转换单元,电源管理单元通过信号线分别与输入模块和输出模块连接。输入电路是输入模块与机房电源的连接电路。母线电压可以是48V直流电压或者57V直流电压,还可以是根据实际情况设置的其他直流电压。
对于每个机房电源与转换单元的连接电路以及每个负载与转换单元的连接电路,可以监控每个连接电路的连通状态和电压信息,这样对一种或多种输入电压可以进行管理,并且能够为一个或多个负载提供输出电压。可以理解的是,还可以监测和控制每个连接电路的电流和/或功率。
在一种可能的实现方式中,根据每个输入电路的电压信息和母线电压值生成第一控制信号包括:在电压信息包括电压类型和电压值的情况下,当电压类型为直流电压且直流电压值在太阳能电压区间变化时,生成用于控制太阳能直流转换单元的第一控制信号。这样能够根据电压波动自动识别出机房电源是太阳能电源,生成用于控制太阳能直流转换单元的第一控制信号,将该第一控制信号输出至太阳能直流转换单元之后,太阳能直流转换单元根据该第一控制信号能够将太阳能电源输入电压转换为母线电压。太阳能电压区间可以是但不限于0~100V。
在另一种可能的实现方式中,在电压信息包括电压类型和电压值的情况下,根据每个输入电路的电压信息和母线电压值生成第一控制信号包括:当电压类型为交流电压且交流电压值在市电电压区间变化时,生成用于控制第一交流直流转换单元的第一控制信号。第一交流直流转换单元用于将市电转换为母线电压。市电电压区间可以是但不限于90V~290V。
这样能够根据电压波动自动识别出机房电源是市电电源,生成用于控制交流直流转换单元的第一控制信号,将该第一控制信号输出至交流直流转换单元之后,第一交流直流转换单元根据该第一控制信号能够将市电电压转换为母线电压。
在另一种可能的实现方式中,在电压信息包括电压类型和电压值的情况下,根据每个输入电路的电压信息和母线电压值生成第一控制信号包括:当电压类型为交流电压且交流电压值在油机发电电压区间变化时,生成用于控制第二交流直流转换单元的第一控制信号。第二交流直流转换单元用于将油机电源产生的交流电压转换为母线电压。油机发电电压区间可以是但不限于176V~240V。
在另一种可能的实现方式中,在电压信息包括电压类型的情况下,根据每个输入电路的电压信息和母线电压值生成第一控制信号包括:当电压类型为正弦波交流电压时,生成用于控制第一交流直流转换单元的第一控制信号;当电压类型为方波交流电压时,生成用于控制第二交流直流转换单元的第一控制信号。
当电压类型为正弦波交流电压时,确定机房电源为市电电源。当电压类型为方波交流电压时,确定机房电源为油机电源。对于输入的交流电压,无需获取电压值也能识别其电源类型。
在另一种可能的实现方式中,在电压信息包括电压类型和电压值的情况下,根据每个 输入电路的电压信息和母线电压值生成第一控制信号包括:当电压信息为直流电压且直流电压值在高压直流电压区间变化时,生成用于控制第一直流转换单元的第一控制信号。第一直流转换单元用于将高压直流电压转换为母线电压。高压直流电压区间可以是但不限于80V~400V。
这样能够根据电压波动自动识别出机房电源是高压直流电源,此时生成用于控制第一直流转换单元的第一控制信号,将该第一控制信号输出至第一直流转换单元之后,第一直流转换单元根据该第一控制信号能够将高压直流电源输入电压转换为母线电压。
在另一种可能的实现方式中,在负载信息包括负载电压类型和负载电压值的情况下,根据负载信息和母线电压值生成第二控制信号包括:当负载类型为直流负载且负载电压值低于高压直流电压值时,生成用于控制第二直流转换单元的第二控制信号,第二直流转换单元用于将母线电压转换为上述负载电压值对应的负载电压。其中,负载电压值可以是但不限于12V,24V,48V或72V。
这样能够自动识别出直流负载,此时生成用于控制第二直流转换单元的第二控制信号,将该第二控制信号输出至第二直流转换单元之后,第二直流转换单元根据该第二控制信号能够将母线电压降低为负载电压。
在另一种可能的实现方式中,根据负载信息和母线电压值生成第二控制信号包括:当负载类型为高压直流负载时,生成用于控制第三直流转换单元的第二控制信号。第三直流转换单元用于将母线电压转换为高压直流电压。
这样能够自动识别高压直流负载,此时生成用于控制第三直流转换单元的第二控制信号,将该第二控制信号输出至第三直流转换单元之后,第三直流转换单元根据该第二控制信号能够将母线电压提升为高压直流电压。
在另一种可能的实现方式中,根据负载信息和母线电压值生成第二控制信号包括:根据负载信息和母线电压值生成第二控制信号包括:当负载类型为交流负载时,生成用于控制直流交流转换单元的第二控制信号。
这样能够自动识别交流负载,生成用于控制直流交流转换单元的第二控制信号,将该第二控制信号输出至直流交流转换单元之后,直流交流转换单元根据该第二控制信号能够将母线电压转换为交流电压。
在另一种可能的实现方式中,上述方法还包括:当负载类型为直流负载且负载电压值等于母线电压值时,生成第三控制信号;根据第三控制信号将母线电压通过分支电路输出至负载。当负载类型为直流负载且负载电压值等于母线电压值时,表明可以直接将母线电压作为负载电压,这样可以通过输出模块的分支电路将母线电压输出至负载。
在另一种可能的实现方式中,在获取每个输入电路的电压信息之前,获取负载功耗;当负载功耗小于或等于第一功率时,控制太阳能直流转换单元与太阳能电源连通,以及控制交流直流转换单元与市电电源连通;当负载功耗大于第一功率且小于第二功率时,控制太阳能直流转换单元与太阳能电源连通,控制交流直流转换单元与市电电源连通,以及控制直流转换单元与高压直流电源连通。每个输入电路连接一个机房电源,机房电源包括太阳能电源、市电电源和高压直流电源。第一功率等于市电功率与太阳能电源功率之和;第 二功率等于市电功率、太阳能电源功率与高压直流供电功率之和。这样可以根据负载功耗灵活选择机房电源,并且能够实现多种机房电源混合供电。
在另一种可能的实现方式中,当市电电源掉电时,控制备用电池与母线连通。机房电源包括市电电源和备用电池。可以理解的是,在多个机房电源混合供电的场景中,任意一个或多个机房电源掉电时,都可以控制备用电池与母线连通,以保持输入电压和输出电压的稳定。
在另一种可能的实现方式中,当市电电源掉电时,控制备用电源与备用转换单元连通。备用转换单元是与备用电源对应的转换单元。机房电源包括市电电源和备用电源。备用电源可以是但不限于太阳能电源、油机电源或高压直流电源。可以理解的是,在多个机房电源混合供电的场景中,任意一个或多个机房电源掉电时,都可以控制备用电源与备用转换单元连通,以保持输入电压和输出电压的稳定。
第二方面公开一种电源系统包括:输入模块、电源管理单元、输出模块和母线,母线分别与输入模块、电源管理单元和输出模块电性连接;输入模块包括电源检测电路和转换单元,输出模块包括负载检测电路和转换单元,输入模块和/或输出模块包括多种转换单元,电源管理单元通过信号线分别与输入模块和输出模块连接;电源检测电路用于获取每个输入电路的电压信息;电源管理单元用于根据电压信息和母线电压值生成第一控制信号;输入模块的转换单元用于根据第一控制信号将输入电路的电压转换为母线电压;负载检测电路连接一个或多个负载,用于获取负载信息;电源管理单元还用于根据负载信息和母线电压值生成第二控制信号;输出模块的转换单元用于根据第二控制信号将母线电压转换为负载电压,输出负载电压。当输入模块包括多种转换单元时,在输入模块中每个转换单元都有一个与其连接的电源检测电路。
在一种可能的实现方式中,在电压信息包括电压类型和电压值的情况下,电源管理单元具体用于当电压类型为直流电压且直流电压值在太阳能电压区间变化时,生成用于控制太阳能直流转换单元的第一控制信号;当电压类型为交流电压且交流电压值在市电电压区间变化时,生成用于控制第一交流直流转换单元的第一控制信号;当电压类型为交流电压且交流电压值在油机发电电压区间变化时,生成用于控制第二交流直流转换单元的第一控制信号;当电压信息为直流电压且直流电压值在高压直流电压区间变化时,生成用于控制第一直流转换单元的第一控制信号,第一直流转换单元用于将高压直流电压转换为母线电压。
在另一种可能的实现方式中,在负载信息包括负载类型和负载电压值的情况下,电源管理单元具体用于当负载类型为直流负载且负载电压值低于高压直流电压值时,生成用于控制第二直流转换单元的第二控制信号,第二直流转换单元用于将母线电压转换为上述负载电压值对应的负载电压;当负载类型为高压直流负载时,生成用于控制第三直流转换单元的第二控制信号,第三直流转换单元用于将母线电压转换为高压直流电压;当负载类型为交流负载时,生成用于控制直流交流转换单元的第二控制信号。
在另一种可能的实现方式中,在负载信息包括负载类型和负载电压值的情况下,电源管理单元还用于当负载类型为直流负载且负载电压值等于母线电压值时,生成第三控制信 号;输出模块还用于根据第三控制信号将母线电压通过分支电路输出至负载。
在另一种可能的实现方式中,每个输入电路连接一个机房电源,机房电源包括太阳能电源、市电电源和高压直流电源;负载检测单元还用于获取负载功耗;电源管理单元还用于当负载功耗小于或等于太阳能电源功率时,控制太阳能直流转换单元与太阳能电源连通;当负载功耗大于太阳能电源功率且负载功耗小于或等于市电功率时,控制交流直流转换单元与市电电源连通;当负载功耗大于市电功耗且负载功耗小于或等于第一功率时,控制太阳能直流转换单元与太阳能电源连通,以及控制交流直流转换单元与市电电源连通;当负载功耗大于第一功率且小于第二功率时,控制太阳能直流转换单元与太阳能电源连通,控制交流直流转换单元与市电电源连通,以及控制直流转换单元与高压直流电源连通。第一功率等于市电功率与太阳能电源功率之和,第二功率等于市电功率、太阳能电源功率与高压直流供电功率之和。
在另一种可能的实现方式中,电源管理单元还用于当机房电源包括市电电源和备用电池且市电电源掉电时,控制备用电池与母线连通。
在另一种可能的实现方式中,电源管理单元还用于当机房电源包括市电电源和备用电源且市电电源掉电时,控制备用电源与备用转换单元连通,备用转换单元是与备用电源对应的转换单元。
在另一种可能的实现方式中,转换单元包括标识部,标识部与电源管理单元连接;电源管理单元还用于根据标识部确定转换单元的类型。
在另一种可能的实现方式中,电源系统还包括背板,标识部插入背板的标识孔中。
在另一种可能的实现方式中,电源系统还包括电源插框,电源插框包括多个相同大小的槽位,槽位用于放置转换单元。
对于第二方面的电源系统执行的步骤和有益效果均可以参考第一方面以及第一方面中各种可能的实现方式中的描述,此处不再一一赘述。
第三方面提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行第一方面的方法。
第四方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第一方面的方法。
第五方面提供一种芯片系统,该芯片系统包括处理器,用于支持电源系统实现上述方面中涉及的功能,例如,发送或处理上述电源控制方法中涉及的控制信号和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器用于保存电源控制方法必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1为现有站点供电场景的一个示意图;
图2为本申请中站点供电场景的一个示意图;
图3为本申请中电源系统的一个结构示意图;
图4为本申请中电源控制方法的一个流程示意图;
图5为本申请中电源系统的另一个结构示意图;
图6为本申请中交流直流转换单元的标识部的一个示意图;
图7为本申请中高压直流-直流转换单元的标识部的一个示意图;
图8为本申请中太阳能直流转换单元的标识部的一个示意图。
具体实施方式
本申请的电源控制方法可以应用于无线通信站点。在图2所示的站点供电场景中,机房电源包括市电电源21、太阳能电源22、48V直流电源23和高压直流电源24。负载包括室内BBU26、RRU27和有源天线处理单元(active antenna unit,AAU)28。市电电源21、太阳能电源22、48V直流电源23和高压直流电源24分别与电源系统25连接,电源系统25分别连接BBU26、RRU27和AAU28。
市电电源21用于提供城市供电电压。根据不同城市的供电标准,城市供电电压可以是220V交流电压,110V交流电压等,V是伏特。太阳能电源22用于提供0~100V的直流电。48V直流电源23用于提供48V直流电。高压直流电源24用于提供80V~400V的直流电。
机房电源的类型和机房电源的数量不限于以上举例,例如,机房电源还可以包括备用电池,备用电池可以是铅酸充电电池或者锂电池。机房电源还可以包括油机电源,油机电源可以提供交流电。负载类型和负载数量不限于以上举例。
电源系统25将市电电源21、太阳能电源22、48V直流电源23和高压直流电源24的输入电压转换为母线电压后,然后将母线电压转换为负载电压,将负载电压输出至BBU26、RRU27和AAU28。
为便于理解,下面对电源系统进行详细介绍:
参阅图3,一种电源系统25包括电源管理单元(power management units,PMU)301、第一电源检测电路302、第二电源检测电路303、第三电源检测电路304、第四电源检测电路305、交流直流转换单元306、太阳能直流转换单元307、48V直流-57V直流转换单元308、高压直流(high voltage direct current transmission,HVDC)-57V直流转换单元309、母线310、57V-48V直流转换单元311、直流交流转换单元312、57V直流-HVDC转换单元313、负载检测电路314。
在电源系统25中,PMU301通过信号线分别与第一电源检测电路302,第二电源检测电路303,第三电源检测电路304,第四电源检测电路305,交流直流转换单元306,太阳能直流转换单元307,48V直流-57V直流转换单元308,高压直流-57V直流转换单元309,母线310,57V直流-48V直流转换单元311,直流交流转换单元312,57V直流-高压直流转换单元313,负载检测电路314连接。
具体的,第一电源检测电路302可以与市电电源21连接,第二电源检测电路303可以与太阳能电源22连接,第三电源检测电路304可以与48V直流电源23连接,第四电源检测电路305可以与高压直流电源24连接,上述连接电路均属于电源系统25的输入电路。负载检测电路314可以连接BBU26,RRU27和AAU28。
在实际应用中,一些设备可以进行双向转换,例如AC-DC双变换器,HVDC-DC双向变 换器等。AC-DC双变换器即交流直流双变换器,可以将交流电压转换为直流电压,也可以将直流电压转换为交流电压。因此,交流直流转换单元306和直流交流转换单元312可以通过AC-DC双变换器实现其功能,高压直流-57V直流转换单元309和57V直流-高压直流转换单元313可以通过HVDC-DC双向变换器实现其功能。
其中,PMU301可以包括处理器和存储器。
处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DRRAM)。
存储器用于存储数据和程序指令。数据可以是输入电压值、输入电压类型、输入电流值、输入功率、负载电压类型、负载电压值等。通过调用存储器存储的程序指令,处理器可以执行以下实施例中由电源管理单元执行的步骤。
图3所示的电源系统25包括多个用于将输入电压转换为母线电压的转换单元,以及多个用于将母线电压转换为负载电压的转换单元,即电源系统25为多输入多输出电源系统。需要说明的是,本申请的电源系统还可以是多输入单输出电源系统或者单输入多输出电源系统,多输入单输出电源系统包括多个用于将输入电压转换为母线电压的转换单元,以及一个将母线电压转换为负载电压的转换单元。单输入多输出电源系统包括一个用于将输入电压转换为母线电压的转换单元,以及多个将母线电压转换为负载电压的转换单元。
对于本申请中的电源系统,本申请提供一种应用于该电源系统的电源控制方法。下面对其进行详细介绍:
参阅图4,本申请中电源控制方法的一个实施例包括:
步骤401、获取每个输入电路的电压信息。电压信息可以包括电压类型和电压值。
步骤402、根据电压信息和母线电压值生成第一控制信号。第一控制信号用于控制转换单元进行电压转换。
步骤403、根据第一控制信号将每个输入电路的电压转换为母线电压。
步骤404、获取负载信息。
负载信息可以包括负载电压类型、负载电压值和负载功耗等。
需要说明的是,步骤404可以和步骤401并无固定先后顺序。步骤404可以在步骤401之前执行,也可以在步骤401至步骤403之间执行或者步骤404与步骤401同时执行。
步骤405、根据负载信息和母线电压值生成第二控制信号。第二控制信号用于控制输出模块中的转换单元进行电压转换。
步骤406、根据第二控制信号将母线电压转换为负载电压。
步骤407、输出负载电压。
本实施例中,对于每个机房电源与转换单元的连接电路以及每个负载与转换单元的连接电路,可以监控每个连接电路的连通状态和电压信息,这样对一种或多种输入电压可以进行管理和转换,并且能够为一个或多个负载提供输出电压。基于该电源控制方法,输入和输出具有松耦合关系,这样既能够提高供电灵活性,又能够提高电源管理效率。
在一个可选实施例中,在电压信息包括电压类型和电压值的情况下,根据电压信息和母线电压值生成第一控制信号包括:当电压类型为直流电压且直流电压值在太阳能电压区间变化时,生成用于控制太阳能直流转换单元的第一控制信号。
具体的,当电压类型为直流电压且直流电压值在太阳能电压区间变化时,表明输入电路与太阳能电源连接,可以从输入模块中选择太阳能直流转换单元,以及生成用于控制太阳能直流转换单元的第一控制信号,太阳能直流转换单元根据该第一控制信号能够将太阳能电源输入电压转换为母线电压。
在另一个可选实施例中,在电压信息包括电压类型和电压值的情况下,根据电压信息和母线电压值生成第一控制信号包括:当电压类型为交流电压且交流电压值在市电电压区间变化时,生成用于控制第一交流直流转换单元的第一控制信号。市电电压区间可以是但不限于90V~290V。
具体的,当电压类型为交流电压且交流电压值在市电电压区间变化时,表明输入电路与市电电源连接,可以从输入模块中选择第一交流直流转换单元,以及生成用于控制第一交流直流转换单元的第一控制信号,第一交流直流转换单元根据该第一控制信号能够将市电电压转换为母线电压。
在另一个可选实施例中,在电压信息包括电压类型和电压值的情况下,根据电压信息和母线电压值生成第一控制信号包括:当电压类型为交流电压且交流电压值在油机发电电压区间变化时,生成用于控制第二交流直流转换单元的第一控制信号。油机发电电压区间可以是但不限于176V~240V。
具体的,当电压类型为交流电压且交流电压值在油机发电电压区间变化时,表明输入电路与油机电源连接,可以从输入模块中选择第二交流直流转换单元,以及生成用于控制第二交流直流转换单元的第一控制信号,第二交流直流转换单元根据该第一控制信号能够将油机电源输出的电压转换为母线电压。
在另一个可选实施例中,在电压信息包括电压类型和电压值的情况下,根据电压信息和母线电压值生成第一控制信号包括:当电压信息为直流电压且直流电压值在高压直流电压区间变化时,生成用于控制第一直流转换单元的第一控制信号,第一直流转换单元用于 将高压直流电压转换为母线电压。
具体的,当电压信息为直流电压且直流电压值在高压直流电压区间变化时,表明输入电路与高压直流电源连接,可以从输入模块中选择第一直流转换单元,以及生成用于控制第一直流转换单元的第一控制信号,第一直流转换单元根据该第一控制信号能够将高压直流电源输入电压转换为母线电压。
按照以上方法实施,根据电压类型和电压波动可以自动识别出机房电源的类型,然后从输入模块中选择对应的转换单元进行电压转换,这样可以将机房电源与转换单元自动匹配,无需人工匹配,具有方便高效的优点。
在另一个可选实施例中,在负载信息包括负载类型和负载电压值的情况下,根据负载信息和母线电压值生成第二控制信号包括:
当负载类型为直流负载且负载电压值低于高压直流电压值时,生成用于控制第二直流转换单元的第二控制信号。第二直流转换单元用于将母线电压转换为上述负载电压值对应的负载电压。负载电压值可以高于母线电压值,也可以低于母线电压值,具体取值可以是但不限于12V、24V、48V或72V。
具体的,当负载类型为直流负载且负载电压值低于高压直流电压值时,生成用于控制第二直流转换单元的第二控制信号,将该第二控制信号输出至第二直流转换单元之后,第二直流转换单元根据该第二控制信号能够将母线电压转换为负载电压。
在另一个可选实施例中,在负载的信息包括负载类型和负载电压值的情况下,根据负载信息和母线电压值生成第二控制信号包括:当负载类型为高压直流负载时,生成用于控制第三直流转换单元的第二控制信号。第三直流转换单元用于将母线电压转换为高压直流电压。需要说明的是,在负载电压高于高压直流电压的情况下,本申请也可以配置与该负载电压对应的转换单元,通过相应的第二控制信号可以将母线电压进行转换为上述负载电压。
在另一个可选实施例中,在负载的信息包括负载类型和负载电压值的情况下,根据负载信息和母线电压值生成第二控制信号包括:当负载类型为交流负载时,生成用于控制直流交流转换单元的第二控制信号。直流交流转换单元可以将母线电压转换为交流电压。交流负载的负载电压可以是但不限于220V或者100V。
这样能够自动识别出负载类型,然后根据负载类型选择对应的转换单元将母线电压转换为相应的负载电压。
在另一种可能的实现方式中,上述电源控制方法还包括:当负载类型为直流负载且负载电压值等于母线电压值时,生成第三控制信号;根据第三控制信号将母线电压通过分支电路输出至负载。
当负载类型为直流负载且负载电压值等于母线电压值时,表明可以直接将母线电压作为负载电压,这样可以通过输出模块的分支电路将母线电压输出至负载。
在另一种可能的实现方式中,
每个输入电路连接一个机房电源,机房电源包括太阳能电源、市电电源和高压直流电源,
上述电源控制方法还包括:获取负载功耗;当负载功耗小于或等于太阳能电源功率时,控制太阳能直流转换单元与太阳能电源连通;当负载功耗大于太阳能电源功率且负载功耗小于或等于市电功率时,控制交流直流转换单元与市电电源连通;当负载功耗大于市电功率且负载功耗小于或等于第一功率时,控制太阳能直流转换单元与太阳能电源连通以及控制交流直流转换单元与市电电源连通,第一功率等于市电功率与太阳能电源功率之和;当负载功耗大于第一功率且小于第二功率时,控制太阳能直流转换单元与太阳能电源连通,控制交流直流转换单元与市电电源连通以及控制直流转换单元与高压直流电源连通,第二功率等于市电功率、太阳能电源功率与高压直流供电功率之和。
在太阳能直流转换单元与太阳能电源连通的情况下,电池管理单元调整太阳能直流转换单元输出的电压高于母线电压,以实现太阳能供电。例如太阳能直流转换单元输出的电压为49V,母线电压为48V。太阳能直流转换单元输出电压的电压值可以根据实际情况进行设置。电池管理单元控制其他电源供电的方式与控制太阳能供电的方式相似,此处不再赘述。
这样可以根据负载功耗所在的区间灵活选择机房电源,并且能够实现多种机房电源混合供电。在混合供电时,可以实时调整输出功率,从而保障负载正常工作。上述混合供电方法可以更加充分利用太阳能电源供能,减少市电供能。
在另一个可选实施例中,机房电源包括市电电源和备用电池;上述电源控制方法还包括:当市电电源掉电时,控制备用电池与母线连通。
本实施例中,在正常供电状态下,市电电源与交流直流转换单元连通,备用电池与母线关断。当市电电源掉电时,控制备用电池与母线连通,这样能够保持输入电压和输出电压的稳定,防止一个电源掉电时由其供电的负载无法正常工作的问题。
在另一个可选实施例中,机房电源包括市电电源和备用电源;上述电源控制方法还包括:当市电电源掉电时,控制备用电源与备用转换单元连通,备用转换单元是与备用电源对应的转换单元。
本实施例中,在正常供电状态下,市电电源与交流直流转换单元连通,备用电源与备用转换单元关断。备用电源可以是太阳能电源、油机电源或高压直流电源。当市电电源掉电时,控制备用电源与备用转换单元连通,这样能够保持输入电压和输出电压的稳定,使得负载能够正常工作。
以上对电源控制方法进行了介绍,下面对能够实现图4所示的电源控制方法的电源系统进行介绍。参阅图5,一种电源系统500包括:
输入模块501、电源管理单元502、母线503和输出模块504,母线503分别与输入模块501、电源管理单元502和输出模块504电性连接;输入模块501包括电源检测电路5011和转换单元5012,输出模块504包括负载检测电路5041和转换单元5042,输入模块501和/或输出模块504包括多种转换单元,电源管理单元502通过信号线分别与输入模块501和输出模块504连接;
电源检测电路5011,用于获取输入电路的电压信息;
电源管理单元502,用于根据电压信息和母线电压值生成第一控制信号;
转换单元5012,用于根据第一控制信号将输入电路的电压转换为母线电压;
负载检测电路5041,用于获取负载信息;
电源管理单元502,还用于根据负载信息和母线电压值生成第二控制信号;
转换单元5042,用于根据第二控制信号将母线电压转换为负载电压,输出负载电压。
本实施例中,电源检测电路5011与转换单元5012电性连接。具体的,母线503通过分支电路分别与转换单元5012、转换单元5042电性连接。具体的,电源管理单元502通过信号线分别与电源检测电路5011,转换单元5012,负载检测电路5041和转换单元5042连接,在图5中信号线采用双箭头线进行表示。负载检测电路5041可以连接一个或多个负载。负载信息可以包括但不限于以下信息中的一项或多项:负载电压、负载电流和负载功率,负载功率也称为负载功耗。
电源管理单元502可以采集所有电路的电压,电流,连通状态等信息,计算功率和效率等,还可以对每个单元和/或电路实现控制,告警等功能。
在一个可选实施例中,电压信息包括电压类型和电压值;
电源管理单元502,具体用于当电压类型为直流电压且直流电压值在太阳能电压区间变化时,生成用于控制太阳能直流转换单元的第一控制信号;当电压类型为交流电压且交流电压值在市电电压区间变化时,生成用于控制第一交流直流转换单元的第一控制信号;当电压类型为交流电压且交流电压值在油机发电电压区间变化时,生成用于控制第二交流直流转换单元的第一控制信号;当电压信息为直流电压且直流电压值在高压直流电压区间变化时,生成用于控制第一直流转换单元的第一控制信号,第一直流转换单元用于将高压直流电压转换为母线电压。
在另一个可选实施例中,负载信息包括负载类型和负载电压值;
电源管理单元502,具体用于当负载类型为直流负载且负载电压值低于高压直流电压值时,生成用于控制第二直流转换单元的第二控制信号,第二直流转换单元用于将母线电压转换为上述负载电压值对应的负载电压;当负载类型为高压直流负载时,生成用于控制第三直流转换单元的第二控制信号,第三直流转换单元用于将母线电压转换为高压直流电压;当负载类型为交流负载时,生成用于控制直流交流转换单元的第二控制信号。
在另一个可选实施例中,负载信息包括负载类型和负载电压值;
电源管理单元502,还用于当负载类型为直流负载且负载电压值等于母线电压值时,生成第三控制信号;
输出模块504,还用于根据第三控制信号将母线电压通过分支电路输出至负载。
在另一个可选实施例中,机房电源包括太阳能电源、市电电源和高压直流电源;
负载检测单元5041,还用于获取负载功耗;
电源管理单元502,还用于当负载功耗小于或等于太阳能电源功率时,控制太阳能直流转换单元与太阳能电源连通;当负载功耗大于太阳能电源功率且负载功耗小于或等于市电功率时,控制交流直流转换单元与市电电源连通;当负载功耗大于市电功耗且负载功耗小于或等于第一功率时,控制太阳能直流转换单元与太阳能电源连通,以及控制交流直流转换单元与市电电源连通;当负载功耗大于第一功率且小于第二功率时,控制太阳能直流 转换单元与太阳能电源连通,控制交流直流转换单元与市电电源连通,以及控制直流转换单元与高压直流电源连通;
第一功率等于市电功率与太阳能电源功率之和,第二功率等于市电功率、太阳能电源功率与高压直流供电功率之和。
在另一个可选实施例中,
电源管理单元502,还用于当机房电源包括市电电源和备用电池且市电电源掉电时,控制备用电池与母线连通。
在另一个可选实施例中,
电源管理单元502,还用于当机房电源包括市电电源和备用电源且市电电源掉电时,控制备用电源与备用转换单元连通,备用转换单元是与备用电源对应的转换单元。
在另一个可选实施例中,转换单元5012和转换单元5042均包括标识部,标识部与电源管理单元502连接;
电源管理单元502,还用于根据标识部确定转换单元的类型。
本实施例中,标识部可以通过硬件插针实现,也可以通过拨码开关或者软件标识实现。例如,001标识AC-DC转换单元,002标识HVDC-DC转换单元,003标识PV-DC转换单元,AC-DC转换单元即交流直流转换单元,PV-DC转换单元即太阳能直流转换单元。标识数字与转换单元的上述对应关系是示意性的,转换单元还可以采用其他标识数字进行表示,本申请不作限定。
在另一个可选实施例中,电源系统还包括电源插框,电源插框包括多个相同大小的槽位,槽位用于放置转换单元5012或转换单元5042。对于3输入3输出的电源,本申请的电源系统的配置费用大概是3个独立电源费用的0.57,因此可以节省配置费用。
可以理解的是,对于不同尺寸的转换单元,也可以配置相应的槽位,本申请不作限定。
在另一个可选实施例中,电源插框包括背板,标识部插入背板的标识孔中。
参阅图6,交流直流转换单元601设置有标识部端子602,交流端子603和直流端子604,交流端子603用于连接交流电源,直流端子604用于连接母线。交流直流转换单元601通过标识部端子602,交流端子603和直流端子604可以插入背板的孔中。标识部端子602可以由多个插针构成。
参阅图7,高压直流-直流转换单元701设置有标识部端子702,高压直流端子703和直流端子704,高压直流端子703用于连接高压直流电源,直流端子704用于连接母线。高压直流-直流转换单元701通过标识部端子702和直流端子端子704可以插入背板的孔中。标识部端子702可以由多个插针构成。
参阅图8,太阳能直流转换单元801设置有标识部端子802,太阳能端子803和直流端子804,太阳能端子803用于连接太阳能电源,直流端子804用于连接母线。太阳能直流转换单元801通过标识部端子802和直流端子804可以插入背板的孔中。标识部端子802可以由多个插针构成。
在以上转换单元中,标识部可以在转换单元的端子插入背板时工作。
在本申请中,A-B转换用于表示将A类电压转换为B类电压,A和B可以是不同类型的 电压,例如A为交流电压,B为直流电压;或者,A和B可以是相同类型不同电压值的电压,例如A为57V直流电,B为48V直流电。A-B转换即AB转换。
需要说明的是,上述装置各模块/单元之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其带来的技术效果与本申请方法实施例相同,具体内容可参见本申请前述所示的方法实施例中的叙述,此处不再赘述。
另外需说明的是,以上所描述的装置实施例是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的。可以根据实际的需要选择其中的部分或者全部模块来实现本申请中方案的目的。另外,本申请的装置实施例的附图中,单元之间的一些连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。单元之间的另一些连接关系表示它们之间电性连接,具体可以实现为一条或多条电路。
本申请提供一种计算机存储介质,包括指令,当其在计算机上运行时,使得计算机执行图4所示实施例中由电源系统执行的步骤。
本申请中的PMU具体可以为PMU中的芯片,芯片包括:处理单元和通信单元。处理单元可以是处理器,通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机指令,使得电源系统执行图4所示实施例或可选实施例中的电源控制方法。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述无线接入设备端内的位于所述芯片外部的存储单元,如ROM或可存储静态信息和其他类型的静态存储设备,如RAM等。上述任一处提到的处理器,可以是一个通用中央处理器,微处理器,ASIC或一个或多个用于控制上述第一方面方法的程序执行的集成电路。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本申请而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘、U盘、移动硬盘、ROM、RAM、磁碟或者光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例 如同轴电缆、光纤、数字用户线(digital subscriber line,DSL)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如软盘、硬盘、磁带)、光介质(例如DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (19)

  1. 一种应用于电源系统的电源控制方法,其特征在于,所述电源系统包括输入模块、电源管理单元、输出模块和母线,所述母线分别与所述输入模块、所述电源管理单元和所述输出模块电性连接,所述输入模块和/或所述输出模块包括多种转换单元;所述输入模块包括电源检测电路和转换单元,所述输出模块包括负载检测电路和转换单元,所述电源管理单元通过信号线分别与所述输入模块和所述输出模块连接,所述电源控制方法包括:
    获取每个输入电路的电压信息;
    根据所述电压信息和母线电压值生成第一控制信号;
    根据所述第一控制信号将每个所述输入电路的电压转换为母线电压;
    获取负载信息;
    根据所述负载信息和所述母线电压值生成第二控制信号;
    根据所述第二控制信号将所述母线电压转换为负载电压;
    输出所述负载电压。
  2. 根据权利要求1所述的方法,其特征在于,所述电压信息包括电压类型和电压值;
    所述根据所述电压信息和母线电压值生成第一控制信号包括:
    当所述电压类型为直流电压且直流电压值在太阳能电压区间变化时,生成用于控制太阳能直流转换单元的第一控制信号;
    当所述电压类型为交流电压且交流电压值在市电电压区间变化时,生成用于控制第一交流直流转换单元的第一控制信号;
    当所述电压类型为交流电压且交流电压值在油机发电电压区间变化时,生成用于控制第二交流直流转换单元的第一控制信号;
    当所述电压信息为直流电压且直流电压值在高压直流电压区间变化时,生成用于控制第一直流转换单元的第一控制信号,所述第一直流转换单元用于将高压直流电压转换为母线电压。
  3. 根据权利要求1所述的方法,其特征在于,所述负载的信息包括负载类型和负载电压值;
    所述根据所述负载信息和所述母线电压值生成第二控制信号包括:
    当所述负载类型为直流负载且所述负载电压值低于高压直流电压值时,生成用于控制第二直流转换单元的第二控制信号,所述第二直流转换单元用于将所述母线电压转换为所述负载电压值对应的负载电压;
    当所述负载类型为高压直流负载时,生成用于控制第三直流转换单元的第二控制信号,所述第三直流转换单元用于将所述母线电压转换为高压直流电压;
    当所述负载类型为交流负载时,生成用于控制直流交流转换单元的第二控制信号。
  4. 根据权利要求1所述的方法,其特征在于,所述负载的信息包括负载类型和负载电压值;
    所述方法还包括:
    当所述负载类型为直流负载且所述负载电压值等于母线电压值时,生成第三控制信号;
    根据所述第三控制信号将所述母线电压通过分支电路输出至负载。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    获取负载功耗;
    当所述负载功耗小于或等于太阳能电源功率时,控制太阳能直流转换单元与太阳能电源连通;
    当所述负载功耗大于太阳能电源功率且所述负载功耗小于或等于市电功率时,控制交流直流转换单元与所述市电电源连通;
    当所述负载功耗大于市电功率且所述负载功耗小于或等于第一功率时,控制太阳能直流转换单元与所述太阳能电源连通以及控制交流直流转换单元与所述市电电源连通,所述第一功率等于所述市电功率与所述太阳能电源功率之和;
    当所述负载功耗大于所述第一功率且小于第二功率时,控制所述太阳能直流转换单元与所述太阳能电源连通,控制交流直流转换单元与所述市电电源连通以及控制直流转换单元与所述高压直流电源连通,所述第二功率等于所述市电功率、所述太阳能电源功率与所述高压直流供电功率之和。
  6. 根据权利要求1至4中任一项所述的方法,其特征在于,
    所述机房电源包括市电电源和备用电池;
    所述方法还包括:当所述市电电源掉电时,控制备用电池与所述母线连通。
  7. 根据权利要求1至4中任一项所述的方法,其特征在于,
    所述机房电源包括市电电源和备用电源;
    所述方法还包括:当所述市电电源掉电时,控制所述备用电源与备用转换单元连通,所述备用转换单元是与所述备用电源对应的转换单元。
  8. 一种电源系统,其特征在于,包括:
    输入模块、电源管理单元、输出模块和母线,所述母线分别与所述输入模块、电源管理单元和所述输出模块电性连接;所述输入模块包括电源检测电路和转换单元,所述输出模块包括负载检测电路和转换单元,所述输入模块和/或所述输出模块包括多种转换单元;所述电源管理单元通过信号线分别与所述输入模块和所述输出模块连接;
    所述电源检测电路,用于获取每个输入电路的电压信息;
    所述电源管理单元,用于根据所述电压信息和母线电压值生成第一控制信号;
    所述输入模块的转换单元,用于根据所述第一控制信号将所述输入电路的电压转换为母线电压;
    所述负载检测电路,用于获取负载信息;
    所述电源管理单元,还用于根据所述负载信息和所述母线电压值生成第二控制信号;
    所述输出模块的转换单元,用于根据所述第二控制信号将所述母线电压转换为负载电压,输出所述负载电压。
  9. 根据权利要求8所述的电源系统,其特征在于,所述电压信息包括电压类型和电压值;
    所述电源管理单元,具体用于当所述电压类型为直流电压且直流电压值在太阳能电压 区间变化时,生成用于控制太阳能直流转换单元的第一控制信号;当所述电压类型为交流电压且交流电压值在市电电压区间变化时,生成用于控制第一交流直流转换单元的第一控制信号;当所述电压类型为交流电压且交流电压值在油机发电电压区间变化时,生成用于控制第二交流直流转换单元的第一控制信号;当所述电压信息为直流电压且直流电压值在高压直流电压区间变化时,生成用于控制第一直流转换单元的第一控制信号,所述第一直流转换单元用于将高压直流电压转换为母线电压。
  10. 根据权利要求8所述的电源系统,其特征在于,所述负载信息包括负载类型和负载电压值;
    所述电源管理单元,具体用于当所述负载类型为直流负载且所述负载电压值低于高压直流电压值时,生成用于控制第二直流转换单元的第二控制信号,所述第二直流转换单元用于将所述母线电压转换为所述负载电压值对应的负载电压;当所述负载类型为高压直流负载时,生成用于控制第三直流转换单元的第二控制信号,所述第三直流转换单元用于将所述母线电压转换为高压直流电压;当所述负载类型为交流负载时,生成用于控制直流交流转换单元的第二控制信号。
  11. 根据权利要求8所述的电源系统,其特征在于,所述负载信息包括负载类型和负载电压值;
    所述电源管理单元,还用于当所述负载类型为直流负载且所述负载电压值等于所述母线电压值时,生成第三控制信号;
    所述输出模块,还用于根据所述第三控制信号将所述母线电压通过分支电路输出至负载。
  12. 根据权利要求8至11中任一项所述的电源系统,其特征在于,
    所述负载检测单元,还用于获取负载功耗;
    所述电源管理单元,还用于当所述负载功耗小于或等于太阳能电源功率时,控制太阳能直流转换单元与太阳能电源连通;当所述负载功耗大于太阳能电源功率且所述负载功耗小于或等于市电功率时,控制交流直流转换单元与所述市电电源连通;当所述负载功耗大于市电功耗且所述负载功耗小于或等于第一功率时,控制太阳能直流转换单元与太阳能电源连通,以及控制交流直流转换单元与市电电源连通;当负载功耗大于所述第一功率且小于第二功率时,控制所述太阳能直流转换单元与太阳能电源连通,控制交流直流转换单元与市电电源连通,以及控制所述直流转换单元与高压直流电源连通;
    所述第一功率等于所述市电功率与所述太阳能电源功率之和,所述第二功率等于所述市电功率、所述太阳能电源功率与所述高压直流供电功率之和。
  13. 根据权利要求8至11中任一项所述的电源系统,其特征在于,
    所述电源管理单元,还用于当所述机房电源包括市电电源和备用电池且所述市电电源掉电时,控制所述备用电池与所述母线连通。
  14. 根据权利要求8至11中任一项所述的电源系统,其特征在于,
    所述电源管理单元,还用于当所述机房电源包括市电电源和备用电源且所述市电电源掉电时,控制所述备用电源与备用转换单元连通,所述备用转换单元是与所述备用电源对 应的转换单元。
  15. 根据权利要求8至11中任一项所述的电源系统,其特征在于,所述输入模块的转换单元和所述输出模块的转换单元均包括标识部,所述标识部与所述电源管理单元通过信号线连接;
    所述电源管理单元,还用于根据所述标识部确定所述转换单元的类型。
  16. 根据权利要求8至11中任一项所述的电源系统,其特征在于,所述电源系统还包括电源插框,所述电源插框包括多个相同大小的槽位,所述槽位用于放置所述输入模块的转换单元或者所示输出模块的转换单元。
  17. 一种计算机存储介质,包括指令,其特征在于,当指令在计算机上运行时,使得计算机执行如权利要求1至7中任一项所述的方法。
  18. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求1至7中任一项所述的方法。
  19. 一种芯片系统,包括处理器,所述处理器用于读取并运行存储器中存储的计算机程序,以执行如权利要求1至7中任一项所述的方法。
PCT/CN2021/093215 2020-05-20 2021-05-12 一种电源控制方法和电源系统 WO2021233170A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21808777.3A EP4145663A4 (en) 2020-05-20 2021-05-12 POWER SOURCE CONTROL METHOD AND POWER SOURCE SYSTEM
BR112022023191A BR112022023191A2 (pt) 2020-05-20 2021-05-12 Método de controle de alimentação e sistema de alimentação
US18/056,786 US11894686B2 (en) 2020-05-20 2022-11-18 Power control method and power system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010429941.2 2020-05-20
CN202010429941.2A CN113708424A (zh) 2020-05-20 2020-05-20 一种电源控制方法和电源系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/056,786 Continuation US11894686B2 (en) 2020-05-20 2022-11-18 Power control method and power system

Publications (1)

Publication Number Publication Date
WO2021233170A1 true WO2021233170A1 (zh) 2021-11-25

Family

ID=78645505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093215 WO2021233170A1 (zh) 2020-05-20 2021-05-12 一种电源控制方法和电源系统

Country Status (5)

Country Link
US (1) US11894686B2 (zh)
EP (1) EP4145663A4 (zh)
CN (1) CN113708424A (zh)
BR (1) BR112022023191A2 (zh)
WO (1) WO2021233170A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104734140A (zh) * 2013-12-24 2015-06-24 珠海格力电器股份有限公司 多输入直流模块化电气系统及其控制方法
CN106374452A (zh) * 2016-09-30 2017-02-01 浙江大学 一种直流微电网变流器的反馈无源化控制方法
CN107154620A (zh) * 2017-05-16 2017-09-12 珠海格力电器股份有限公司 基于公共母线的电气系统及其控制方法
CN109861303A (zh) * 2018-12-24 2019-06-07 浙江工业大学 一种含母线电压补偿和负荷功率动态分配的直流微电网协调控制方法
CN110289621A (zh) * 2019-07-18 2019-09-27 华北电力大学 一种含分布式电源接入的交直流电能路由器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7274116B2 (en) * 2003-08-05 2007-09-25 Matsushita Electric Industrial Co., Ltd. direct-current power supply and battery-powered electronic apparatus equipped with the power supply
KR101390641B1 (ko) * 2012-05-07 2014-04-30 한국에너지기술연구원 전력변환 시스템 및 전력변환 방법과, 그 시스템을 제어하는 장치 및 방법
CN104124748B (zh) * 2013-04-27 2016-04-20 广州邦讯信息系统有限公司 一种清洁能源补偿的公交站智能供电电源系统
CN204669309U (zh) 2015-04-24 2015-09-23 吴凯锋 一种太阳能光伏直流电站
US9800051B2 (en) * 2015-09-03 2017-10-24 Ensync, Inc. Method and apparatus for controlling energy flow between dissimilar energy storage devices
RU2692083C1 (ru) * 2018-05-24 2019-06-21 Михаил Валерьевич Ероховец Устройство управления энергоснабжением для жилых домов, коммерческих и промышленных объектов с использованием сетевых, вспомогательных и возобновляемых источников электрической энергии и их комбинаций и способ интеллектуального управления подключением источников электроэнергии

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104734140A (zh) * 2013-12-24 2015-06-24 珠海格力电器股份有限公司 多输入直流模块化电气系统及其控制方法
CN106374452A (zh) * 2016-09-30 2017-02-01 浙江大学 一种直流微电网变流器的反馈无源化控制方法
CN107154620A (zh) * 2017-05-16 2017-09-12 珠海格力电器股份有限公司 基于公共母线的电气系统及其控制方法
CN109861303A (zh) * 2018-12-24 2019-06-07 浙江工业大学 一种含母线电压补偿和负荷功率动态分配的直流微电网协调控制方法
CN110289621A (zh) * 2019-07-18 2019-09-27 华北电力大学 一种含分布式电源接入的交直流电能路由器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4145663A4

Also Published As

Publication number Publication date
EP4145663A4 (en) 2024-01-03
EP4145663A1 (en) 2023-03-08
US20230082340A1 (en) 2023-03-16
CN113708424A (zh) 2021-11-26
BR112022023191A2 (pt) 2022-12-20
US11894686B2 (en) 2024-02-06

Similar Documents

Publication Publication Date Title
US20130088084A1 (en) Networklized DC Power System
Madduri et al. Design and verification of smart and scalable DC microgrids for emerging regions
WO2023029335A1 (zh) 一种光储充系统的参数配置方法及终端
CN207819447U (zh) 一种直流电力系统
CN109768554B (zh) 交直流混合的分布式能源系统测试平台场景控制切换方法
CN104362693A (zh) 一种电池组之间相互充放电的方法和装置
WO2021082927A1 (zh) 一种电源模组及整机柜
US11955802B2 (en) Power supply device and control method
US9837819B2 (en) Power network system, power control method, power router, control apparatus, and storage medium
WO2021233170A1 (zh) 一种电源控制方法和电源系统
Qi et al. Comparative analysis on different architectures of power supply system for data center and telecom center
Oliver et al. High-voltage DC distribution is key to increased system efficiency and renewable-energy opportunities
Kumar et al. A Low cost distributed solar DC nanogrid: Design and deployment with remote monitoring unit
Nakamura et al. Bi-directional multiport converter for utilizing green base stations as virtual power plant
CN207926217U (zh) 充电电路及其电子装置
CN207074414U (zh) 一种服务器供电电源系统
Yu et al. Analysis of DC distribution efficiency based on metered data in a typical Hong Kong office building
TWM585368U (zh) 資料中心的供電裝置、供電系統及伺服器架構
CN109758171A (zh) 供电单元、射线影像设备及电源控制方法
CN110994783B (zh) 一种不间断电源及其控制方法
CN220368477U (zh) 一种电气配电集装箱
CN212162827U (zh) 插框电源
CN217741314U (zh) 一种适用于边缘数据中心的一体化电源系统
US20230088380A1 (en) Electrical Systems and Methods Using High Capacity Local Bus Supported by Energy Storage
CN211266588U (zh) 通讯基站供电装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808777

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022023191

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021808777

Country of ref document: EP

Effective date: 20221201

ENP Entry into the national phase

Ref document number: 112022023191

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221114

NENP Non-entry into the national phase

Ref country code: DE