WO2021232947A1 - 光学显示组件和智能穿戴设备 - Google Patents

光学显示组件和智能穿戴设备 Download PDF

Info

Publication number
WO2021232947A1
WO2021232947A1 PCT/CN2021/083742 CN2021083742W WO2021232947A1 WO 2021232947 A1 WO2021232947 A1 WO 2021232947A1 CN 2021083742 W CN2021083742 W CN 2021083742W WO 2021232947 A1 WO2021232947 A1 WO 2021232947A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
transmission element
module
display assembly
driving
Prior art date
Application number
PCT/CN2021/083742
Other languages
English (en)
French (fr)
Inventor
韩秉权
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2021232947A1 publication Critical patent/WO2021232947A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0176Head mounted characterised by mechanical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • This application relates to the field of optical imaging technology, and in particular to an optical display assembly and a smart wearable device.
  • the embodiments of the present application provide an optical display assembly and a smart wearable device.
  • the embodiment of the present application provides an optical display assembly.
  • the optical display assembly includes an optical transmission element, an opto-mechanical module, an angle deviation detection module, and a driving module.
  • the light transmission element includes a first surface, a second surface, and a third surface, the first surface is opposite to the second surface, and the third surface connects the first surface and the second surface.
  • the optomechanical module is opposite to the first surface and is located on both sides of the central axis of the optical transmission element with the third surface. The optomechanical module is used to emit light carrying image information and The light is projected toward the first surface, and the light transmission element is used to receive the light on the first surface.
  • the angular deviation detection module is arranged on the optical transmission element and the optical-mechanical module, and is used for detecting deflection information of the optical-mechanical module relative to a preset initial position.
  • the driving module is connected to the light transmission element, and when the light-mechanical module is deflected relative to the initial position, the driving module drives the light transmission element to rotate to adjust the display position of the image information .
  • the embodiments of the present application also provide a smart wearable device, which includes a spectacle frame, a temple, and the optical display assembly of any one of the foregoing embodiments.
  • the optical engine module is arranged in the temple, the light transmission element is arranged in the mirror frame, and the driving module is arranged on the mirror frame.
  • FIG. 1 is a schematic diagram of the structure of a smart wearable device according to some embodiments of the present application
  • FIG. 2 is a schematic diagram of the structure of an optical display assembly according to some embodiments of the present application.
  • FIG. 3 is a schematic diagram of the structure of an optical transmission element according to some embodiments of the present application.
  • FIG. 4 is a schematic structural diagram of an optical display assembly according to some embodiments of the present application.
  • FIG. 5 is a schematic structural diagram of an optical display assembly according to some embodiments of the present application.
  • FIG. 6 is a schematic diagram of the structure of an optical display assembly according to some embodiments of the present application.
  • FIG. 7 is a schematic structural diagram of an optical display assembly according to some embodiments of the present application.
  • FIG. 8 is a schematic diagram of the relationship between the driving voltage and the rotation angle in some embodiments of the present application.
  • FIG. 9 is a schematic diagram of a scene before the optical transmission element in the smart wearable device of some embodiments of the present application rotates.
  • FIG. 10 is a schematic diagram of a scene after the optical transmission element in the smart wearable device of some embodiments of the present application rotates;
  • FIG. 11 is a schematic structural diagram of an optical display assembly according to some embodiments of the present application.
  • FIG. 12 is a schematic structural diagram of an optical display assembly according to some embodiments of the present application.
  • FIG. 13 is a schematic diagram of a scene before the optical transmission element in the smart wearable device of some embodiments of the present application rotates;
  • FIG. 14 is a schematic diagram of a scene after the optical transmission element in the smart wearable device of some embodiments of the present application rotates;
  • 15 is a schematic diagram of the structure of an optical display assembly according to some embodiments of the present application.
  • FIG. 16 is a schematic structural diagram of an optical display assembly according to some embodiments of the present application.
  • FIG. 17 is a schematic diagram of a scene before the optical transmission element in the smart wearable device of some embodiments of the present application rotates;
  • FIG. 18 is a schematic diagram of a scene after the optical transmission element in the smart wearable device of some embodiments of the present application rotates.
  • the present application provides an optical display assembly 100.
  • the optical display assembly 100 includes: an optical transmission element 10, an optical-mechanical module 20, an angle deviation detection module 30 and a driving module 40.
  • the optical transmission element 10 includes a first surface 11, a second surface 13, and a third surface 15.
  • the first surface 11 and the second surface 13 are opposite to each other, and the third surface 15 connects the first surface 11 and the second surface 13;
  • the group 20 is opposite to the first surface 11 and is located on both sides of the central axis 17 of the optical transmission element 10 with the third surface 15.
  • the optical machine module 20 is used to emit light carrying image information and project the light toward the first surface 11.
  • the optical transmission element 10 is used to receive light on the first surface 11; the angular offset detection module 30 is arranged on the optical transmission element 10 and the optical machine module 20, and is used to detect the relative preset initial position of the optical machine module 20 And the drive module 40 is connected to the optical transmission element 10, when the optical-mechanical module 20 is deflected from the initial position, the drive module 40 drives the optical transmission element 10 to rotate to adjust the display position of the image information.
  • the angular offset detection module 30 includes a transmitter 33 and a receiver 34, and any one of the transmitter 33 and the receiver 34 is disposed on the side of the optical machine module 20 facing the first surface 11.
  • the other of the transmitter 33 and the receiver 34 is arranged on the first surface 11, the transmitter 33 is used to send a detection signal, and the receiver 34 is used to receive the detection signal and output deflection information according to the detection signal.
  • the angular offset detection module 30 includes a transceiving unit 31 and a reflector 32, and any one of the transceiving unit 31 and the reflector 32 is disposed on the side of the optical machine module 20 facing the first surface 11.
  • the other of the transceiver unit 31 and the reflector 32 is arranged on the first surface 11.
  • the transmitter 312 in the transceiver unit 31 sends a detection signal to the reflector 32, and the reflector 32 reflects the detection signal into the transmitting unit 31.
  • the receiver 314 in 31 receives the reflected detection signal and outputs deflection information according to the detection signal.
  • the transmitter (33 or 312) is used to transmit the detection signal; the receiver (34 or 314) is used to receive the detection signal, and output deflection information according to the received detection signal and the preset signal; preset The signal is generated when the receiver (34 or 314) receives the signal from the transmitter (33 or 312) when the optical machine module 20 is in the initial position.
  • the detection signal includes an optical signal or an acoustic signal.
  • the light projected by the optical-mechanical module 20 enters the optical transmission element 10 perpendicular to the first surface 11; and/or the transmitter 33 and the receiver 34 respectively When located on the first surface 11 and the optical-mechanical module 20, the detection signal is perpendicular to the light-receiving surface of the receiver 34; when the transceiver unit 31 and the reflector 32 are respectively located on the first surface 11 and the optical-mechanical module 20, the detection signal The reflecting surface of the vertical reflector 32.
  • the reflector 32 is embedded in the optical transmission element 10, and the reflective surface is flush with the first surface 11.
  • the reflector 32 is embedded in the optical transmission element 10, and the reflective surface is concave toward the first surface 11 toward the second surface 13, or toward the first surface 11 away from the second surface 13.
  • the direction is convex.
  • the optical driving module 40 includes a driving element 41 connected to the optical transmission element 10 and used for driving the optical transmission element 10 to rotate until the detection signal is the same as the preset signal.
  • the detection signal and the preset signal having the same size include: the same intensity of the optical signal, the same intensity of the acoustic signal, or the same size of the electrical signal.
  • the driving module 40 further includes a carrier 42.
  • the optical transmission element 10 is combined with the first surface 43 of the carrier 42, and the driving member 41 is disposed on the side where the second surface 44 of the carrier 42 is located.
  • the driving member 41 drives the carrier 42 to rotate to drive the light transmission element 10 to rotate.
  • the light transmission element 10 and the carrier 42 are bonded as a whole by glue.
  • the angular offset detection module 30 includes a camera and an identification element. Any one of the camera and the identification element is arranged on the side of the optical machine module 20 facing the first surface 11, and the camera and the identification element The other is arranged on the first surface 11, and the camera is used to obtain a photographed image containing the identification element, and output deflection information according to the photographed image.
  • the camera outputs deflection information according to the captured image and a preset image.
  • the preset image is an image containing the identification element captured by the camera when the optical engine module 20 is in the initial position.
  • the driving module 40 includes a driving member 41, which is connected to the light transmission element 10, and is used to drive the light transmission element 10 to rotate until the position of the identification element in the captured image and the identification element in the preset image The location is the same.
  • the driving module 40 further includes a carrier 42.
  • the optical transmission element 10 is combined with the first surface of the carrier.
  • the driving member 41 is disposed on the side where the second surface 43 of the carrier 42 is located. 41 drives the carrier 42 to rotate to drive the light transmission element 10 to rotate.
  • the driving voltage of the driving element 41 includes a forward voltage and a reverse voltage.
  • the driving element 41 drives the optical transmission element 10 to deflect forward; when the driving voltage is a reverse voltage At this time, the driving member 41 drives the light transmission element 10 to deflect in the reverse direction, wherein the forward deflection and the reverse deflection refer to two deflection directions opposite to each other.
  • the driving voltage is a pulse voltage, and one pulse voltage corresponds to a predetermined rotation angle.
  • the smart wearable device 1000 includes an optical display assembly 100, a spectacle frame 200, and a temple 300.
  • the optical machine module 20 is arranged in the temple 300, the light transmission element 10 is arranged in the mirror frame 200, and the driving module 40 is arranged on the mirror frame 200.
  • the number of the optical display assembly 100 is two, the two optical-mechanical modules 20 are respectively disposed in the two temples 300, the two light transmission elements 10 are respectively disposed in the two spectacle frames 200, The two driving modules 40 are respectively arranged on the two mirror frames 200.
  • an embodiment of the present application provides a smart wearable device 1000.
  • the smart wearable device 1000 may be smart AR glasses, smart AR goggles, smart AR helmets, smart AR headbands, smart VR glasses, smart VR goggles, smart VR helmets, or smart VR headbands.
  • the smart wearable device 1000 is a smart AR glasses as an example for description.
  • the smart wearable device 1000 includes an optical display assembly 100, a spectacle frame 200, and a temple 300.
  • there are two mirror frames 200 and two mirror legs 300 the two mirror frames 200 correspond to the two mirror legs 300 one-to-one, and each mirror leg 300 is connected to the outer side of the corresponding mirror frame 200.
  • the optical display assembly 100 includes an optical transmission element 10, an optical-mechanical module 20, an angle deviation detection module 30 and a driving module 40.
  • the optical machine module 20 is arranged in the temple 300, the light transmission element 10 is arranged in the mirror frame 200, and the driving module 40 is arranged on the mirror frame 200.
  • the optical transmission element 10 includes a first surface 11, a second surface 13, and a third surface 15, the first surface 11 and the second surface 13 are opposite to each other, and the third surface 15 connects the first surface 11 and the second surface 13.
  • the optomechanical module 20 is opposite to the first surface 11 and is located on both sides of the central axis 17 of the optical transmission element 10 with the third surface 15.
  • the surface 11 projects, and the light transmission element 10 is used to receive light on the first surface 11.
  • the angular deviation detection module 30 is disposed on the optical transmission element 10 and the optical machine module 20, and is used for detecting the deflection information of the optical machine module 20 relative to the preset initial position.
  • the driving module 40 is connected to the light transmission element 10, and when the deflection information display optical machine module 20 is deflected from the initial position, the driving module 40 is used to drive the light transmission element 10 to rotate to adjust the display position of the image information.
  • the drive module 40 can also be connected to the angle offset module 30, so that the drive module 40 can receive the deflection information of the optomechanical module 20 detected by the angle offset detection module 30 in time, and the drive module 40 can The corresponding driving action is made quickly and accurately, and the light transmission element 10 is driven to rotate to adjust the display position of the image information, so that the driving module 40 responds more quickly and improves the driving efficiency.
  • the number of the optical display assembly 100 may be one or two.
  • the optical machine module 20 is arranged in one of the temples 300, and the light transmission element 10 is arranged in the temple 300.
  • the driving module 40 is disposed on the mirror frame 200 corresponding to the temple 300.
  • the smart wearable device 1000 can provide a virtual image or an augmented reality image for one side of the user's vision, and the image projected by the opto-mechanical module 20 will not enter the user's other side of vision, so as to avoid affecting the user's vision on specific occasions.
  • a specific occasion may be when the user is driving a vehicle or flying an airplane, and the user does not want the virtual image to be blocked in front of one side of the field of vision.
  • the smart wearable device 1000 can provide virtual images or augmented reality images for both sides of the user's vision, so as to improve the user's immersion in a specific use scene, such as a game.
  • the light transmission element 10 is used to emit the light carrying image information emitted from the optical machine module 20 from the exit position of the light transmission element 10 after being totally reflected inside the light transmission element 10.
  • the optical transmission element 10 includes an optical waveguide, such as a waveguide sheet, an optical fiber, etc., and the optical waveguide may be made of glass or plastic.
  • the optical transmission element 10 is a waveguide sheet, and the light carrying image information emitted from the optical machine module 20 directly enters the interior of the optical transmission element 10 (waveguide sheet) through the first surface 11.
  • the optical transmission element 10 (waveguide sheet) is light and thin and has high permeability to external light
  • the light entering the interior of the optical transmission element 10 from the first surface 11 is imaged in the optical waveguide.
  • the light transmission element 10 transmits light to the front of the human eye and then releases it from the first surface 11 through the principle of “total reflection”.
  • the optical transmission element 10 is only responsible for transmitting the image projected by the optical-mechanical module 20, and the virtual image projected by the optical-mechanical module 20 can be seen at the position of the human eye.
  • the optical transmission element 10 because of the high penetration of the optical transmission element 10 The user can also see the real world, so as to realize the augmented reality effect.
  • the opto-mechanical module 20 can be placed away from the mirror frame 200, for example, on the side of the smart wearable device 1000, that is, on the temple 300. This greatly reduces the obstruction of the opto-mechanical module 20 to the outside sight, and makes the weight distribution more ergonomic, thereby improving the wearing experience of the smart wearable device 1000.
  • the optical transmission element 10 includes a waveguide sheet 12 and a lens 14.
  • the waveguide sheet 12 may be disposed inside the lens 14, for example, embedded in a lens 14; in another
  • the waveguide sheet 12 may also be interspersed in the upper and lower lenses 14.
  • the two sides of the waveguide sheet 12 are provided with lenses 14 respectively.
  • the number of lenses 14 is two, one lens 14 is provided on the first surface 122 of the waveguide sheet 12, and one lens 14 is provided on the second surface 122 of the waveguide sheet 12. Face 124 on.
  • the light carrying image information emitted from the optical machine module 20 first passes through the lens 14 provided on the first surface 122, and then enters the inside of the waveguide sheet 12 from the first surface 122, and finally enters the waveguide sheet 12 from the first surface 122. After being totally reflected inside 12, it is emitted from the first surface 11 of the optical transmission element 10. Since the two sides of the optical transmission element 10 are respectively provided with lenses 14, the lenses 14 can protect the waveguide sheet 12 from water, dust, drop, impurities, etc., and can ensure the light transmission performance of the waveguide sheet 12.
  • the opto-mechanical module 20 includes a structural component 21, a display screen 22, and a lens 23.
  • the display screen 21 and the lens 23 are both arranged in the structural component 21, and the structural component 21 is used for the display screen 22 and the lens 23.
  • the display screen 21 is used to display images, and the display screen 21 may be any one of a Micro LED display screen, an LED display screen, or a liquid crystal display screen.
  • the lens 23 is arranged in front of the display screen 21 for converging or diffusing the light emitted from the display screen 22, and the lens 23 may be one or more pieces.
  • the optical engine module 20 is used for projecting light carrying image information. Specifically, the optical engine module 20 is used for amplifying and outputting an image displayed on the display screen 21.
  • the angular deviation detection module 30 is disposed on the optical transmission element 10 and the optical machine module 20, and is used to detect the deflection information of the optical machine module 20 relative to the preset initial position.
  • the angular deviation detection module 30 is disposed on the first surface 11 of the waveguide sheet and the surface of the structural component 21 facing the first surface 11.
  • the angular deviation detection module 30 is disposed on the lens 14 on the first surface 11 and on the surface of the structural component 21 facing the first surface 11.
  • the deflection information may include whether the optical-mechanical module 20 is deflection relative to the initial position, the deflection angle, and the like.
  • the angular deviation detection module 30 includes a transceiver unit 31 and a reflector 32.
  • any one of the transceiver unit 31 and the reflector 32 is disposed on the side of the optical machine module 20 facing the first surface 11, and the other of the transceiver unit 31 and the reflector 32 is disposed on the first surface 11.
  • the transceiver unit 31 is disposed on the first surface 11, and the reflector 32 is disposed on the side of the optical machine module 20 facing the first surface 11.
  • the reflector 32 is disposed on the structural component 21. ⁇ on the surface facing the first face 11.
  • the reflector 32 is arranged on the first surface 11, and the transceiver unit 31 is arranged on the side of the optical machine module 20 facing the first surface 11. More specifically, the transceiver unit 31 is arranged On the surface of the structural component 21 facing the first surface 11.
  • the transceiver unit 31 includes a transmitter 312 and a receiver 314.
  • the transmitter 312 of the transceiver unit 31 is used to send detection signals
  • the reflector 32 is used to reflect the detection signals back to the transmitting unit 31
  • the receiver 314 in the transceiver unit 31 is used to receive Reflect the detection signal and output deflection information according to the received detection signal. More specifically, the receiver 314 receives the detection signal, and outputs deflection information according to the received detection signal and the preset signal.
  • the detection signal can be an optical signal or an acoustic signal.
  • the optical signal may be an infrared light signal, an ultraviolet light signal, a visible light signal, or other wavelength optical signals.
  • the transceiver unit 31 may be an infrared light transceiver device, the transmitter 312 in the transceiver unit 31 is an infrared light transmitter, the receiver 314 in the transceiver unit 31 is an infrared light receiver, and the reflector 32 It can be an infrared light reflector; when the light signal is an ultraviolet light signal, the transceiver unit 31 can be an ultraviolet light transceiver device, the transmitter 312 in the transceiver unit 31 is an ultraviolet light transmitter, and the receiver 314 in the transceiver unit 31 is For an ultraviolet light receiver, the reflector 32 may be an ultraviolet light reflector; when the optical signal is a visible light signal, the transceiver unit 31 may be a visible light
  • the transceiving unit 31 may be a sound wave transceiving device, such as an ultrasonic reflection device.
  • the transmitter 312 in the transceiving unit 31 is an ultrasonic transmitter
  • the receiver 314 in the transceiving unit 31 is an ultrasonic receiver
  • the reflector 32 may be an acoustic wave reflector, such as an ultrasonic reflector.
  • infrared light, ultraviolet light, and sound waves are basically imperceptible to the human eye, when the transceiver unit 31 is an infrared light transceiver device, an ultraviolet light transceiver device, and a sound wave transceiver device, it can prevent the user from facing the user while watching the projected image. Vision causes interference and enhances user experience.
  • the preset signal is generated when the receiver 312 receives the signal sent by the transmitter 314 when the optical-mechanical module 20 is in the initial position.
  • the light projected by the optical-mechanical module 20 enters the light transmission element 10 perpendicular to the first surface 11; and/or, the detection signal is perpendicular to the reflecting surface 321 of the reflector 32.
  • the reflector 32 is embedded in the light transmission element 10, and the reflective surface 321 is exposed to the air.
  • the reflective surface 321 may be parallel to the first surface 11 or non-parallel.
  • the reflective surface 321 may be flush with the first surface 11, or may be concave relative to the first surface 11 in a direction approaching the second surface 13, or convex relative to the first surface 11 in a direction away from the second surface 13.
  • the reflective surface 321 is flush with the first surface 11 or is concave relative to the first surface 11 in a direction approaching the second surface 13, the combination of the reflector 32 and the light transmission element 10 can be made more compact.
  • the driving module 40 includes a driving member 41 connected to the light transmission element 10 and used to drive the light transmission element 10 to rotate until the detection signal is the same as the preset signal. Since the detection signal and the preset signal can be optical signals, acoustic signals or electrical signals, the magnitude of the detection signal and the preset signal can be the same as the intensity of the optical signal, or the intensity of the acoustic signal is the same, or it can be electrical. The signal (voltage, current) is the same size.
  • the driving member 41 may be a driving motor, such as a micro-motor system.
  • the driving member 41 may also be other types of actuators, such as electrostatic actuators, electromagnetic actuators, magnetostrictive actuators, piezoelectric actuators, piezoelectric motors, stepping motors, or electroactive polymer actuators. Actuators and so on.
  • the driver 41 of the present application is a micro-motor system.
  • the driving module 40 may further include a carrier 42.
  • the optical transmission element 10 is combined with the first surface 43 of the carrier 42, and the driving member 41 is disposed on the second surface 44 of the carrier 42.
  • the driving member 41 drives the carrier 42 to rotate to drive the light transmission element 10 to rotate.
  • the carrier 42 may include a mechanical turntable, a tray, and the like. It should be noted that the rotation of the optical transmission element 10 may be rotation around an axis OO1 parallel to the first surface 11, and the axis OO1 may be the centerline of the optical transmission element 10 or an axis deviating from the centerline.
  • the optical transmission element 10 is combined with the first surface 43 of the carrier 42, that is, the optical transmission element 10 and the carrier 42 can be glued into one body, and the two can be close to each other, which can make smart wearable
  • the internal layout of the device 1000 is more compact and smaller, which is conducive to the lightness of the smart wearable device 1000.
  • the combination of the optical transmission element 10 and the first surface 43 of the carrier 42 can also be detachable through threaded connection, snapping, etc. Connection method.
  • the driving voltage of the driving element 41 may be a pulse voltage, and one pulse voltage corresponds to a predetermined angle.
  • the predetermined angle can be any value between (0°, 3°), such as 0.1°, 0.2°, 0.3°, 0.4°, 0.5°, 0.6°, 0.7°, 0.8°, 0.9°, 1°, 1.1 °, 1.5°, 2.3°, 2.4°, 2.5°, 2.6°, 0.8°, 3.0°, etc.
  • the predetermined angle can be any value between (0°, 1°), so that the rotation can be improved The accuracy can improve the efficiency of driving the optical transmission element 10 to rotate to the position where the detection signal is the same as the preset signal.
  • the driving member 41 if the predetermined angle is 0.2°, every time a pulse voltage is provided to the driving member 41, the driving member 41 It will drive the optical transmission element 10 to rotate by 0.2°; if the predetermined angle is 0.5°, every time a pulse voltage is provided to the driving member 41, the driving member 41 will drive the optical transmission element 10 to rotate by 0.5°; if the predetermined angle is 1° , Each time a pulse voltage is provided to the driving member 41, the driving member 41 will drive the optical transmission element 10 to rotate by 1°.
  • the driving element 41 drives the light transmission element 10 to forward deflection (for example, counterclockwise deflection or clockwise deflection). If the driving voltage of the driving element 41 is a reverse voltage, the driving element 41 is 41 drives the light transmission element 10 to reverse deflection (for example, clockwise deflection or counterclockwise deflection).
  • the optical machine module 20 When the optical machine module 20 is in the initial position, the light projected by the optical machine module 20 enters the optical transmission element 10 perpendicular to the first surface 11, and the transmitter of the transceiver unit 31 312 sends out a detection signal, the detection signal is perpendicular to the reflecting surface 321 of the reflector 32, and the light emitted from the first surface 11 is basically facing into the human eye (shown in Figure 4), the reflector 32 reflects the detection signal back to the transmitting unit 31
  • the receiver 314 in the transceiver unit 31 receives the reflected detection signal and outputs a first feedback value.
  • the magnitude of the first feedback value can be characterized by a voltage value or a current value. As shown in FIG.
  • the temple 300 is stretched by the head and turned outwards, causing the light projected by the opto-mechanical module 20 to tilt relative to the first surface 11 (not Vertical) enters the light transmission element 10, the light emitted from the first surface 11 deviates from the human eye, and the image I seen by the human eye will also be shifted. It is necessary for the human eye to turn the eyeball to observe the image I, which is healthy for the human eye. Very unfavorable.
  • the detection signal has also shifted.
  • the receiver 314 in the transceiver unit 31 receives the reflected detection signal and outputs a second feedback value.
  • the magnitude of the second feedback value can also be characterized by a voltage value or a current value.
  • the second feedback value is less than the first feedback value, and the receiver 314 can determine that the optical machine module 20 is deflected relative to the initial position according to the first feedback value and the second feedback value. As shown in FIG.
  • the driving member 41 is applied with a driving voltage to drive the optical transmission element 10 to rotate a predetermined angle, and the applied driving voltage is a pulse voltage
  • the driver 41 will drive the optical transmission element 10 to rotate a predetermined angle
  • the receiver 314 in the transceiver unit 31 will receive the reflected detection signal and output a new feedback value until the new The feedback value of is equal to the first feedback value
  • the driving member 41 stops driving the optical transmission element 10 to rotate.
  • the light emitted from the surface 11 is basically facing and entering the human eye, that is, the deviation of the image I is kept within a predetermined range, for example, the image I is directly facing the human eye.
  • the optical display assembly 100 and the smart wearable device 1000 of the present application use the transceiver unit 31 and the reflector 32 in the angular offset detection module 30 to detect the deflection information of the optical engine module 20 relative to the preset initial position, and determine the optical engine
  • the driving member 41 is used to drive the light transmission element 10 to rotate to adjust the display position of the image.
  • the user can watch with the best viewing angle
  • the image I projected by the optical engine module 20, and on the other hand, the deviation of the image I can be kept within a predetermined range, so as to avoid distortion or incompleteness of the image I viewed by people.
  • the structure of the angle deviation detection module 30 is simple, which facilitates the installation and disassembly of the angle deviation detection module 30.
  • the angular deviation detection module 30 includes a transmitter 33 and a receiver 34.
  • the transmitter 33 and the receiver 34 correspond one-to-one, wherein any one of the transmitter 33 and the receiver 34 is arranged on the side of the optomechanical module 20 facing the first surface 11.
  • the other of the transmitter 33 and the receiver 34 is arranged on the first surface 11.
  • the transmitter 33 is disposed on the first surface 11
  • the receiver 34 is disposed on the side of the optical machine module 20 facing the first surface 11.
  • the receiver 34 is disposed on the structural component 21. ⁇ on the surface facing the first face 11.
  • the receiver 34 is disposed on the first surface 11, and the transmitter 33 is disposed on the side of the optical machine module 20 facing the first surface 11. More specifically, the transmitter 33 is disposed On the surface of the structural component 21 facing the first surface 11.
  • the transmitter 33 is used for transmitting the detection signal
  • the receiver 34 is used for receiving the reflected detection signal and outputting deflection information according to the received detection signal and the preset signal.
  • the detection signal, deflection information, and preset signal here have the same meanings as those described above, and will not be repeated here.
  • FIGS. 12, 13 and 14 Please refer to FIGS. 12, 13 and 14 together.
  • the optical machine module 20 When the optical machine module 20 is in the initial position, the light projected by the optical machine module 20 enters the optical transmission element 10 perpendicular to the first surface 11, and the emitter 33 sends out a detection signal ,
  • the detection signal is perpendicular to the receiver 34, and the light emitted from the first surface 11 is basically facing the human eye (shown in Figure 12).
  • the receiver 34 receives the detection signal and outputs a first feedback value.
  • the size is characterized by the voltage value or the current value. Please refer to FIG.
  • the temple 300 is stretched by the head and turned outwards, causing the light projected by the opto-mechanical module 20 to be inclined relative to the first surface 11 (non-vertical) )
  • the light emitted from the first surface 11 deviates from the human eye, and the image I seen by the human eye will also be shifted. It requires the human eye to turn the eyeball to observe the image I, which is very healthy for the human eye. unfavorable.
  • the detection signal has also shifted.
  • the receiver 34 receives the detection signal and outputs a second feedback value.
  • the magnitude of the second feedback value is also characterized by a voltage value or a current value, and the second feedback value is smaller than the first feedback value. According to the first feedback value and the second feedback value, the receiver 34 can determine that the opto-mechanical module 20 has deflected relative to the initial position. As shown in FIG.
  • the driving member 41 when the deflection information indicates that the optical-mechanical module 20 is deflected from the initial position, the driving member 41 is applied with a driving voltage to drive the optical transmission element 10 to rotate a predetermined angle, and the applied driving voltage is a pulse voltage Each time a pulse voltage is provided to the driving element 41, the driving element 41 will drive the optical transmission element 10 to rotate a predetermined angle, and the receiver 34 will receive the detection signal and output a new feedback value until the new feedback value is equal to the first feedback value , The driver 41 stops driving the light transmission element 10 to rotate.
  • the light projected by the optical machine module 20 is not perpendicular to the first surface 11 and enters the light transmission element 10, the light emitted from the first surface 11 is basically directly opposite When entering the human eye, that is, the deviation of the image I is kept within a predetermined range, for example, the image I is directly facing the human eye.
  • the optical display assembly 100 and the smart wearable device 1000 of the present application use the transmitter 33 and the receiver 34 in the angular deviation detection module 30 to detect the deflection information of the optical machine module 20 relative to the preset initial position, and determine the deflection information of the optical machine module 20 relative to the preset initial position.
  • the driving member 41 is used to drive the light transmission element 10 to rotate to adjust the display position of the image.
  • the user can watch with the best viewing angle
  • the image I projected by the optical engine module 20, and on the other hand, the deviation of the image I can be kept within a predetermined range, so as to avoid distortion or incompleteness of the image I viewed by people.
  • the structure of the angle deviation detection module 30 is simple, which facilitates the installation and disassembly of the angle deviation detection module 30.
  • the angular deviation detection module 30 includes a camera 35 and an identification element 36.
  • any one of the camera 35 and the identification element 36 is arranged on the side of the optical machine module 20 facing the first surface 11, and the other of the camera 35 and the identification element 36 is arranged on the first surface 11.
  • the camera 35 is arranged on the first surface 11, and the identification element 36 is arranged on the side of the optical machine module 20 facing the first surface 11.
  • the identification element 36 is arranged on the structural component 21 On the surface facing the first face 11.
  • the identification element 36 is disposed on the first surface 11, and the camera 35 is disposed on the side of the optical engine module 20 facing the first surface 11.
  • the camera 35 is disposed on the structure
  • the component 21 is on the surface facing the first surface 11.
  • the camera 35 is used to obtain a photographed image containing the identification element 36 and output deflection information according to the photographed image. More specifically, the camera 35 outputs deflection information according to the captured image and the preset image.
  • the deflection information here has the same meaning as that described above, and will not be repeated here.
  • the preset image is the image containing the identification element 36 taken by the camera 35 when the optical machine module 20 is in the initial position
  • the identification element 36 can be any element, and the element and its carrier have a clear boundary so that it can be distinguished in the captured image.
  • the identification element 36 can be a special pattern, such as a triangle, a five-pointed star, a circle, and so on.
  • the identification element 36 may be a sticker, label, or the like.
  • the identification element 36 may also be a groove or a protrusion, etc., which is not limited herein.
  • the optical machine module 20 When the optical machine module 20 is in the initial position, the light projected by the optical machine module 20 enters the optical transmission element 10 perpendicularly to the first surface 11 and enters the optical transmission element 10 from the first surface 11 The emitted light is basically facing the human eye.
  • the camera 35 is used to obtain a preset image containing the identification element 36 (shown in FIG. 16). As shown in FIG.
  • the temple 300 is stretched by the head and turned outwards, causing the light projected by the opto-mechanical module 20 to tilt relative to the first surface 11 (not Vertical) enters the light transmission element 10, the light emitted from the first surface 11 deviates from the human eye, and the image I seen by the human eye will also be shifted. It is necessary for the human eye to turn the eyeball to observe the image I, which is healthy for the human eye. It is very unfavorable.
  • the camera 35 acquires a photographed image, and by comparing the photographed image with the preset image, it can be determined that the optical engine module 20 has deflected relative to the initial position. As shown in FIG.
  • a driving voltage is applied to the driving member 41 to drive the optical transmission element 10 to rotate a predetermined angle, and the applied driving voltage is a pulse voltage
  • the driving part 41 will drive the light transmission element 10 to rotate a predetermined angle
  • the camera 35 will acquire a new photographed image containing the marking element 36 until the marking element 36 is in the new photographed image Is the same as the position of the identification element 36 in the preset image
  • the driving member 41 stops driving the light transmission element 10 to rotate.
  • the light rays emitted from the first surface 11 are basically facing into the human eye, that is, the deviation of the image I is kept within a predetermined range, for example, the image I is directly facing the human eye.
  • the position of the identification element 36 in the new captured image is the same as the position of the identification element 36 in the preset image means: establishing a coordinate system in the captured image and mapping the coordinate system to the preset image , Respectively obtain the coordinates of the identification element 36 in the coordinate system. If the two coordinates are the same, it indicates that the positions of the two are the same.
  • the optical display assembly 100 and the smart wearable device 1000 of the present application use the camera 35 and the identification element 36 in the angle deviation detection module 30 to detect the deflection information of the optical machine module 20 relative to the preset initial position, and determine the optical machine module
  • the driving member 41 is used to drive the light transmission element 10 to rotate to adjust the display position of the image.
  • the user can view the light with the best viewing angle.
  • the image I projected by the camera module 20, and on the other hand, the offset of the image I can be kept within a predetermined range to avoid distortion or incompleteness of the image I viewed by people.
  • the structure of the angle deviation detection module 30 is simple, which facilitates the installation and disassembly of the angle deviation detection module 30.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Eyeglasses (AREA)

Abstract

一种光学显示组件100和智能穿戴设备1000。光学显示组件100包括光传输元件10、光机模组20、角度偏移检测模组30和驱动模组40。光传输元件10包括第一面11、第二面13及第三面15,第一面11与第二面13相背,第三面15连接第一面11与第二面13。光机模组20用于发射携带图像信息的光线并将光线朝第一面11投射。角度偏移检测模组30设置在光传输元件10及光机模组20上,用于检测光机模组20相对预设的初始位置的偏转信息。在光机模组20相对初始位置发生偏转时,驱动模组40驱动光传输元件10转动以调整图像信息的显示位置。

Description

光学显示组件和智能穿戴设备
优先权信息
本申请请求2020年05月22日向中国国家知识产权局提交的、专利申请号为202010439256.8的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及光学成像技术领域,特别涉及一种光学显示组件和智能穿戴设备。
背景技术
随着科技的发展,智能穿戴设备,例如AR眼镜或VR眼镜,逐渐进入人们的生活,人们通常头戴智能穿戴设备来观看由两侧的光机投射形成的画面来实现虚拟现实或增强现实。
发明内容
本申请实施方式提供一种光学显示组件和智能穿戴设备。
本申请实施方式提供一种光学显示组件。所述光学显示组件包括光传输元件、光机模组、角度偏移检测模组和驱动模组。所述光传输元件包括第一面、第二面及第三面,所述第一面与所述第二面相背,所述第三面连接所述第一面与所述第二面。所述光机模组与所述第一面相对并与所述第三面分别位于所述光传输元件的中心轴的两侧,所述光机模组用于发射携带图像信息的光线并将所述光线朝所述第一面投射,所述光传输元件用于在第一面接收所述光线。所述角度偏移检测模组设置在所述光传输元件及所述光机模组上,用于检测所述光机模组相对预设的初始位置的偏转信息。所述驱动模组与所述光传输元件连接,在所述光机模组相对所述初始位置发生偏转时,所述驱动模组驱动所述光传输元件转动以调整所述图像信息的显示位置。
本申请实施方式还提供一种智能穿戴设备,所述智能穿戴设备包括镜框、镜腿、及上述任一实施方式的所述的光学显示组件。所述光机模组设置在所述镜腿内,所述光传输元件设置在所述镜框内,所述驱动模组设置在所述镜框上。
本申请实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点可以从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请某些实施方式的智能穿戴设备的结构示意图;
图2是本申请某些实施方式的光学显示组件的结构示意图;
图3是本申请某些实施方式的光传输元件的结构示意图;
图4是本申请某些实施方式的光学显示组件的结构示意图;
图5是本申请某些实施方式的光学显示组件的结构示意图;
图6是本申请某些实施方式的光学显示组件的结构示意图;
图7是本申请某些实施方式的光学显示组件的结构示意图;
图8是本申请某些实施方式的驱动电压与旋转角度的关系示意图;
图9是本申请某些实施方式的智能穿戴设备中光传输元件转动前的场景示意图;
图10是本申请某些实施方式的智能穿戴设备中光传输元件转动后的场景示意图;
图11是本申请某些实施方式的光学显示组件的结构示意图;
图12是本申请某些实施方式的光学显示组件的结构示意图;
图13是本申请某些实施方式的智能穿戴设备中光传输元件转动前的场景示意图;
图14是本申请某些实施方式的智能穿戴设备中光传输元件转动后的场景示意图;
图15是本申请某些实施方式的光学显示组件的结构示意图;
图16是本申请某些实施方式的光学显示组件的结构示意图;
图17是本申请某些实施方式的智能穿戴设备中光传输元件转动前的场景示意图;
图18是本申请某些实施方式的智能穿戴设备中光传输元件转动后的场景示意图。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中,相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请的实施方式,而不能理解为对本申请的实施方式的限制。
当用户的头围较大时,人们戴上智能眼镜会使镜腿出现外翻,虚拟图像发生偏移,人们观看虚拟图像由正视变成斜视,使得观看体验感不佳。此外,虚拟图像偏移太多,会造成人们观看到的图像出现失真或残缺。
请参阅图2,本申请提供一种光学显示组件100。光学显示组件100包括:光传输元件10、光机模组20、角度偏移检测模组30和驱动模组40。光传输元件10包括第一面11、第二面13及第三面15,第一面11与第二面13相背,第三面15连接第一面11与第二面13;光机模组20与第一面11相对并与第三面15分别位于光传输元件10的中心轴17的两侧,光机模组20用于发射携带图像信息的光线并将光线朝第一面11投射,光传输元件10用于在第一面11接收光线;角度偏移检测模组30设置在光传输元件10及光机模组20上,用于检测光机模组20相对预设的初始位置的偏转信息;及驱动模组40与光传输元件10连接,在光机模组20相对初始位置发生偏转时,驱动模组40驱动光传输元件10转动以调整图像信息的显示位置。
在某些实施例中,角度偏移检测模组30包括发射器33及接收器34,发射器33及接收器34中的任意一个设置在光机模组20朝向第一面11的一侧,发射器33及接收器34中的另一个设置在第 一面11上,发射器33用于发出检测信号,接收器34用于接收检测信号并根据检测信号输出偏转信息。
在某些实施例中,角度偏移检测模组30包括收发单元31和反射器32,收发单元31及反射器32中的任意一个设置在光机模组20朝向第一面11的一侧,收发单元31及反射器32中的另一个设置在第一面11上,收发单元31中的发射器312朝反射器32发出检测信号,反射器32将检测信号反射回收发单元31中,收发单元31中的接收器314接收反射回的检测信号并根据检测信号输出偏转信息。
在某些实施例中,发射器(33或312)用于发射检测信号;接收器(34或314)用于接收检测信号,并根据接收到的检测信号及预设信号输出偏转信息;预设信号是光机模组20处于初始位置时,接收器(34或314)接收发射器(33或312)发出的信号而产生的。
在某些实施例中,检测信号包括光信号或声波信号。
在某些实施例中,在光机模组20处于初始位置时,光机模组20投射的光线垂直第一面11进入光传输元件10内;和/或在发射器33和接收器34分别位于第一面11及光机模组20上时,检测信号垂直接收器34的收光面;在收发单元31和反射器32分别位于第一面11及光机模组20上时,检测信号垂直反射器32的反射面。
在某些实施例中,反射器32嵌设在光传输元件10内,反射面与第一面11齐平。
在某些实施例中,反射器32嵌设在光传输元件10内,反射面相对第一面11朝接近第二面13的方向内凹,或相对第一面11朝远离第二面13的方向外凸。
在某些实施例中,光驱动模组40包括驱动件41,驱动件41与光传输元件10连接,并用于驱动光传输元件10转动直至检测信号与预设信号大小相同。
在某些实施例中,检测信号与预设信号大小相同包括:光信号的强度大小相同、声波信号的强度大小相同或电信号的大小相同。
在某些实施例中,驱动模组40还包括承载件42,光传输元件10与承载件42的第一表面43结合,驱动件41设置在承载件42的第二表面44所在的一侧,驱动件41驱动承载件42转动以带动光传输元件10转动。
在某些实施例中,光传输元件10与承载件42通过胶水粘结为一体。
在某些实施例中,角度偏移检测模组30包括摄像头及标识元件,摄像头及标识元件中的任意一个设置在光机模组20朝向第一面11的一侧,摄像头及标识元件中的另一个设置在第一面11上,摄像头用于获取含有标识元件的拍摄图像,并根据拍摄图像输出偏转信息。
在某些实施例中,摄像头根据拍摄图像与预设图像输出偏转信息,预设图像是光机模组20处于初始位置时,摄像头拍摄的含有标识元件的图像。
在某些实施例中,驱动模组40包括驱动件41,驱动件与光传输元件10连接,并用于驱动光传输元件10转动直至标识元件在拍摄图像中的位置与标识元件在预设图像中的位置相同。
在某些实施例中,驱动模组40还包括承载件42,光传输元件10与承载件的第一表面结合,驱 动件41设置在承载件42的第二表面43所在的一侧,驱动件41驱动承载件42转动以带动光传输元件10转动。
在某些实施例中,驱动件41的驱动电压包括正向电压和反向电压,当驱动电压为正向电压时,驱动件41驱动光传输元件10正向偏转;当驱动电压为反向电压时,驱动件41驱动光传输元件10反向偏转,其中,正向偏转与反向偏转指的是两个偏转方向相反的方向。
在某些实施例中,驱动电压为脉冲电压,一个脉冲电压对应一个预定旋转角度。
请参阅图1,本申请还提供一种智能穿戴设备1000。智能穿戴设备1000包括光学显示组件100、镜框200和镜腿300。光机模组20设置在镜腿300内,光传输元件10设置在镜框200内,驱动模组40设置在镜框200上。
在某些实施例中,光学显示组件100的数量为两个,两个光机模组20分别设置在两个镜腿300内,两个光传输元件10分别设置在两个镜框200内,两个驱动模组40分别设置在两个镜框200上。
请参阅图1,本申请实施方式提供一种智能穿戴设备1000。该智能穿戴设备1000可以是智能AR眼镜、智能AR眼罩、智能AR头盔、智能AR头环、智能VR眼镜、智能VR眼罩、智能VR头盔、或智能VR头环等。本申请实施例以智能穿戴设备1000为智能AR眼镜为例进行说明。
具体地,智能穿戴设备1000包括光学显示组件100、镜框200和镜腿300。在一个实施方式中,镜框200与镜腿300的数量均为两个,两个镜框200与两个镜腿300一一对应,每个镜腿300与对应的镜框200的外侧连接。
请参阅图2,光学显示组件100包括光传输元件10、光机模组20、角度偏移检测模组30和驱动模组40。光机模组20设置在镜腿300内,光传输元件10设置在镜框200内,驱动模组40设置在镜框200上。光传输元件10包括第一面11、第二面13及第三面15,第一面11与第二面13相背,第三面15连接第一面11与第二面13。光机模组20与第一面11相对并与第三面15分别位于光传输元件10的中心轴17的两侧,光机模组20用于发射携带图像信息的光线并将光线朝第一面11投射,光传输元件10用于在第一面11接收光线。角度偏移检测模组30设置在光传输元件10及光机模组20上,用于检测光机模组20相对预设的初始位置的偏转信息。驱动模组40与光传输元件10连接,在偏转信息显示光机模组20相对初始位置发生偏转时,驱动模组40用于驱动光传输元件10转动以调整图像信息的显示位置。进一步地,驱动模组40也可以与角度偏移模组30连接,便于驱动模组40及时接收到角度偏移检测模组30检测到的光机模组20的偏转信息,驱动模组40能够快速精准地做出相应的驱动动作,驱动光传输元件10转动以调整图像信息的显示位置,使得驱动模组40反应更加快捷,提高驱动效率。
其中,光学显示组件100的数量可以是一个或两个,当光学显示组件100的数量是一个时,光机模组20设置在其中一个镜腿300内,光传输元件10设置在与该镜腿300对应的镜框200内,驱动模组40设置在与该镜腿300对应的镜框200上。此时的智能穿戴设备1000可为用户的一侧视觉提供虚拟图像或增强现实图像,光机模组20投射的图像不会进入用户的另一侧视觉范围,避免在特定场合对用户视觉造成影响。例如,特定场合可以是用户在开车或驾驶飞机等交通工具时,用户 不希望虚拟图像阻挡在一侧视野的前方。
当光学显示组件100的数量是两个时,两个光机模组20分别设置在两个镜腿300内,两个光传输元件10分别设置在两个镜框200内,两个驱动模组40分别在两个镜框上。此时的智能穿戴设备1000可为用户的两侧视觉提供虚拟图像或增强现实图像,提高用户在特定使用场景,例如游戏中的沉浸感。
具体地,光传输元件10用于将从光机模组20中发射出来的携带有图像信息的光线在光传输元件10内部经过全反射后从光传输元件10的出射位置射出。如图1所示,光传输元件10包括光波导,例如波导片、光纤等,光波导可以由玻璃或塑料制成。本实施方式中,光传输元件10为波导片,从光机模组20中发射出来的携带有图像信息的光线直接穿过第一面11进入光传输元件10(波导片)的内部。
在本申请实施方式的智能穿戴设备1000中,由于光传输元件10(波导片)轻薄而且对外界光线有高穿透性,从第一面11进入光传输元件10内部的光线在光波导中像只游蛇一样通过来回反射前进而并不会透射出来,光传输元件10通过“全反射”原理将光传输到人眼的前方再从第一面11释放出来。在整个传输的过程中,光传输元件10只负责传输光机模组20投射的图像,在人眼位置可以看到光机模组20投射的虚拟图像,同时因为光传输元件10的高穿透性,用户还可以看到真实的世界,从而能够实现现实增强效果。本申请实施方式的智能穿戴设备1000因为有了光传输元件10这个元件,可以将光机模组20远离镜框200设置,例如设置在智能穿戴设备1000的侧面,即设置在镜腿300上,这极大降低了光机模组20对外界视线的阻挡,并且使得重量分布更符合人体工程学,从而改善了智能穿戴设备1000的佩戴体验。
在某些实施例中,请参阅图3,光传输元件10包括波导片12及镜片14,在一个例子中,波导片12可设置在镜片14的内部,例如嵌入一片镜片14中;在另一个例子中,波导片12也可以是穿插在上下两片镜片14中。换言之,波导片12的两侧分别设置有镜片14,当镜片14的数量为两片时,一片镜片14设置在波导片12的第一面122上,一片镜片14设置在波导片12的第二面124上。此时,从光机模组20中发射出来的携带有图像信息的光线先穿过设置第一面122上的镜片14之后,再从第一面122进入波导片12的内部,最后在波导片12内部经过全反射后从光传输元件10的第一面11射出。由于光传输元件10的两侧分别设置有镜片14,镜片14对波导片12起到防水、防尘、防摔、防杂质等保护作用,可以保证波导片12的光传导性能。
请再参阅图2,光机模组20包括结构组件21、显示屏22、和镜片23,显示屏21与镜片23均设置在结构组件21内,结构组件21用于为显示屏22与镜片23提供保护,例如防尘、防水、防摔保护等。显示屏21用于显示图像,显示屏21可以是Micro LED显示屏、LED显示屏、或液晶显示屏中的任意一种。镜片23设置在显示屏21前方以用于汇聚或扩散从显示屏22出射的光线,镜片23可以是一片或多片。光机模组20用于投射携带图像信息的光线,具体地,光机模组20用于将显示屏21显示的图像放大输出。
请参阅图2及图3,角度偏移检测模组30设置在光传输元件10及光机模组20上,用于检测光 机模组20相对预设的初始位置的偏转信息。其中,当光传输元件10为波导片时,角度偏移检测模组30设置在波导片的第一面11及结构组件21的朝向第一面11的表面。当光传输元件10包括波导片12及镜片14时,角度偏移检测模组30设置在位于第一面11的镜片14上及结构组件21的朝向第一面11的表面上。偏转信息可以包括光机模组20相对于初始位置是否发生偏转、偏转角度等。
请参阅图4,在一个实施例中,角度偏移检测模组30包括收发单元31及反射器32。其中,收发单元31及反射器32中的任意一个设置在光机模组20朝向第一面11的一侧,收发单元31及反射器32中的另一个设置在第一面11上。具体地,在一个例子中,收发单元31设置在第一面11上,反射器32设置在光机模组20朝向第一面11的一侧,更具体地,反射器32设置在结构组件21的朝向第一面11的表面上。在另一个例子中,如图5所示,反射器32设置在第一面11上,收发单元31设置在光机模组20朝向第一面11的一侧,更具体地,收发单元31设置在结构组件21的朝向第一面11的表面上。收发单元31包括发射器312及接收器314,收发单元31的发射器312用于发出检测信号,反射器32用于将检测信号反射回收发单元31,收发单元31中的接收器314用于接收反射回的检测信号并根据接收的检测信号输出偏转信息。更具体地,接收器314接收检测信号,并根据接收到的检测信号及预设信号输出偏转信息。
其中,检测信号可以是光信号或声波信号等。当检测信号是光信号时,光信号可以是红外光信号、紫外光信号、可见光信号或者其他波段的光信号。当光信号为红外光信号时,收发单元31可以是红外光收发装置,收发单元31中的发射器312为红外光发射器,收发单元31中的接收器314为红外光接收器,反射器32可以是红外光反射器;当光信号为紫外光信号时,收发单元31则可以是紫外光收发装置,收发单元31中的发射器312为紫外光发射器,收发单元31中的接收器314为紫外光接收器,反射器32可以是紫外光反射器;当光信号为可见光信号时,收发单元31则可以是可见光收发装置,收发单元31中的发射器312为可见光发射器,收发单元31中的接收器314为可见光接收器,反射器32可以是可见光反射器。当检测信号是声波信号时,收发单元31可以是声波收发装置,例如超声波反射装置,此时,收发单元31中的发射器312为超声波发射器,收发单元31中的接收器314为超声波接收器,反射器32可以是声波反射器,例如超声波反射器。一般地,由于红外光、紫外光、及声波人眼基本感知不到,因此,收发单元31为红外光收发装置、紫外光收发装置、及声波收发装置时能够避免用户在观看投影图像时对用户视觉造成干扰,提升用户体验。
预设信号是光机模组20处于初始位置时,接收器312接收发射器314发出的信号而产生的。在光机模组20处于初始位置时,光机模组20投射的光线垂直第一面11进入光传输元件10内;和/或,检测信号垂直反射器32的反射面321。在一个实施方式中,反射器32嵌设在光传输元件10内,且反射面321暴露在空气中。反射面321可以与第一面11平行,也可以不平行。反射面321可以与第一面11齐平,也可以相对第一面11朝接近第二面13的方向内凹,还可以相对第一面11朝远离第二面13的方向外凸。当反射面321与第一面11齐平或相对第一面11朝接近第二面13的方向内凹,能使得反射器32与光传输元件10的结合更加紧凑。
请参阅图6,在一些实施例中,驱动模组40包括驱动件41,驱动件41与光传输元件10连接, 并用于驱动光传输元件10转动直至检测信号与预设信号大小相同。由于检测信号和预设信号可以是光信号、声波信号也可以是电信号,检测信号与预设信号的大小相同可以是光信号的强度大小相同,或声波信号的强度大小相同,也可以是电信号(电压、电流)大小相同。驱动件41可以为驱动电机,例如微电机系统。驱动件41也可以是其他类型的致动器,例如静电致动器、电磁致动器、磁致伸缩致动器、压电致动器、压电马达、步进马达或者电活性聚合物致动器等。本申请驱动件41为微电机系统。
请参阅图7,在一些实施方式中,驱动模组40还可包括承载件42,光传输元件10与承载件42的第一表面43结合,驱动件41设置在承载件42的第二表面44所在的一侧,驱动件41驱动承载件42转动以带动光传输元件10转动。承载件42可以包括机械转盘、托盘等。需要说明的是,光传输元件10的转动可以是绕着平行与第一面11的轴线OO1旋转,轴线OO1可以是光传输元件10的中心线,也可以偏离中心线的轴线。
更具体地,光传输元件10与承载件42的第一表面43结合,即光传输元件10可以与承载件42通过胶水粘结为一体,二者可以是相互贴紧的,如此可以使得智能穿戴设备1000的内部布局更加紧凑,体积更小,有利于智能穿戴设备1000的轻便化,此外,光传输元件10与承载件42的第一表面43结合还可以是通过螺纹连接、卡合等可拆卸的连接方式。
请结合图8,驱动件41的驱动电压可以为脉冲电压,一个脉冲电压对应一个预定角度。例如预定角度可以为(0°,3°]之间的任意值,例如0.1°、0.2°、0.3°、0.4°、0.5°、0.6°、0.7°、0.8°、0.9°、1°、1.1°、1.5°、2.3°、2.4°、2.5°、2.6°、0.8°、3.0°等,较佳地,预定角度可以为(0°,1°]之间的任意值,如此,能够提升转动精度以能够提高驱动光传输元件10转动至检测信号与预设信号相同的位置的效率。在一个例子中,若预定角度为0.2°,则每提供一个脉冲电压给驱动件41时,驱动件41就会带动光传输元件10转动0.2°;若预定角度为0.5°,则每提供一个脉冲电压给驱动件41时,驱动件41就会带动光传输元件10转动0.5°;若预定角度为1°,则每提供一个脉冲电压给驱动件41时,驱动件41就会带动光传输元件10转动1°。
此外,驱动件41的驱动电压若是正向电压,则驱动件41驱动光传输元件10正向偏转(例如逆时针偏转或顺时针偏转),驱动件41的驱动电压若是反向电压,则驱动件41驱动光传输元件10反向偏转(例如顺时针偏转或逆时针偏转)。
请一并参阅图4、图9及图10,在光机模组20处于初始位置时,光机模组20投射的光线垂直第一面11进入光传输元件10内,收发单元31的发射器312发出检测信号,检测信号垂直反射器32的反射面321,且从第一面11出射的光线基本正对着进入人眼(图4所示),反射器32将检测信号反射回收发单元31,收发单元31中的接收器314接收反射回的检测信号并输出第一反馈值,该第一反馈值的大小可通过电压值或电流值表征。如图9所示,当佩戴上智能穿戴设备1000的用户的头围较大,镜腿300被头部撑开发生外翻,导致光机模组20投射的光线相对第一面11倾斜(非垂直)进入光传输元件10内,从第一面11出射的光线偏离了人眼,人眼看到的图像I也会发生偏移,需要人眼转动眼球才能观察到图像I,如此对人眼健康非常不利。同时,检测信号也发生了偏 移,此时,收发单元31中的接收器314接收反射回的检测信号并输出第二反馈值,该第二反馈值的大小也可通过电压值或电流值表征,第二反馈值小于第一反馈值,接收器314根据第一反馈值与第二反馈值可判断出光机模组20相对于初始位置发生了偏转。如图10所示,在偏转信息表明光机模组20相对于初始位置发生了偏转的情况下,驱动件41被施加驱动电压,驱动光传输元件10转动预定角度,施加的驱动电压为脉冲电压,每提供一个脉冲电压给驱动件41,驱动件41就会驱动光传输元件10转动预定角度,收发单元31中的接收器314就会接收反射回的检测信号并输出新的反馈值,直至新的反馈值等于第一反馈值,驱动件41才停止驱动光传输元件10转动,此时,光机模组20投射的光线虽然不是垂直第一面11进入光传输元件10内,但从第一面11出射的光线基本正对着进入人眼,即,图像I的偏移保持在预定范围内,例如图像I与人眼正对。
本申请的光学显示组件100及智能穿戴设备1000利用角度偏移检测模组30中的收发单元31和反射器32检测光机模组20相对预设的初始位置的偏转信息,并在判断出光机模组20发生偏转的情况下(若第二反馈值与第一反馈值不同),利用驱动件41驱动光传输元件10转动以调整图像的显示位置,一方面能够使得用户能以最佳视角观看光机模组20投影的图像I,另一方面图像I的偏移能够保持在预定范围内,避免人们观看到的图像I出现失真或残缺。另外,角度偏移检测模组30的结构简单,有利于角度偏移检测模组30的安装和拆卸。
请参阅图11,在一个实施例中,角度偏移检测模组30包括发射器33及接收器34。此时光机模组20处于初始位置时,发射器33与接收器34一一对应,其中,发射器33及接收器34中的任意一个设置在光机模组20朝向第一面11的一侧,发射器33及接收器34中的另一个设置在第一面11上。具体地,在一个例子中,发射器33设置在第一面11上,接收器34设置在光机模组20朝向第一面11的一侧,更具体地,接收器34设置在结构组件21的朝向第一面11的表面上。在另一个例子中,如图12所示,接收器34设置在第一面11上,发射器33设置在光机模组20朝向第一面11的一侧,更具体地,发射器33设置在结构组件21的朝向第一面11的表面上。发射器33用于发射检测信号,接收器34用于接收反射回的检测信号并根据接收的检测信号及预设信号输出偏转信息。此处的检测信号、偏转信息和预设信号与前文所述含义相同,在此不再赘述。
请一并参阅图12、图13及图14,在光机模组20处于初始位置时,光机模组20投射的光线垂直第一面11进入光传输元件10内,发射器33发出检测信号,检测信号垂直接收器34,且从第一面11出射的光线基本正对着进入人眼(图12所示),接收器34接收检测信号并输出第一反馈值,该第一反馈值的大小通过电压值或电流值表征。请参阅图13,当佩戴上智能穿戴设备1000的用户的头围较大,镜腿300被头部撑开发生外翻,导致光机模组20投射的光线相对第一面11倾斜(非垂直)进入光传输元件10内,从第一面11出射的光线偏离了人眼,人眼看到的图像I也会发生偏移,需要人眼转动眼球才能观察到图像I,如此对人眼健康非常不利。同时,检测信号也发生了偏移,此时,接收器34接收检测信号并输出第二反馈值,该第二反馈值的大小也通过电压值或电流值表征,第二反馈值小于第一反馈值,接收器34根据第一反馈值与第二反馈值可判断出光机模组20相对于初始位置发生了偏转。如图14所示,在偏转信息表明光机模组20相对于初始位置发生了 偏转的情况下,驱动件41被施加驱动电压,驱动光传输元件10转动预定角度,施加的驱动电压为脉冲电压,每提供一个脉冲电压给驱动件41,驱动件41就会驱动光传输元件10转动预定角度,接收器34就会接收检测信号并输出新的反馈值,直至新的反馈值等于第一反馈值,驱动件41才停止驱动光传输元件10转动,此时,光机模组20投射的光线虽然不是垂直第一面11进入光传输元件10内,但从第一面11出射的光线基本正对着进入人眼,即,图像I的偏移保持在预定范围内,例如图像I与人眼正对。
本申请的光学显示组件100及智能穿戴设备1000利用角度偏移检测模组30中的发射器33和接收器34检测光机模组20相对预设的初始位置的偏转信息,并在判断出光机模组20发生偏转的情况下(若第二反馈值与第一反馈值不同),利用驱动件41驱动光传输元件10转动以调整图像的显示位置,一方面能够使得用户能以最佳视角观看光机模组20投影的图像I,另一方面图像I的偏移能够保持在预定范围内,避免人们观看到的图像I出现失真或残缺。另外,角度偏移检测模组30的结构简单,有利于角度偏移检测模组30的安装和拆卸。
请参阅图15,在另一个实施例中,角度偏移检测模组30包括摄像头35及标识元件36。其中,摄像头35及标识元件36中的任意一个设置在光机模组20朝向第一面11的一侧,摄像头35及标识元件36中的另一个设置在第一面11上。具体地,在一个例子中,摄像头35设置在第一面11上,标识元件36设置在光机模组20朝向第一面11的一侧,更具体地,标识元件36设置在结构组件21的朝向第一面11的表面上。在另一个例子中,如图16所示,标识元件36设置在第一面11上,摄像头35设置在光机模组20朝向第一面11的一侧,更具体地,摄像头35设置在结构组件21的朝向第一面11的表面上。摄像头35用于获取含有标识元件36的拍摄图像,并根据拍摄图像输出偏转信息。更具体地,摄像头35根据拍摄图像与预设图像输出偏转信息。此处的偏转信息与前文所述含义相同,在此不再赘述。预设图像是光机模组20处于初始位置时,摄像头35拍摄的含有标识元件36的图像
其中,标识元件36可以是任意的元件,该元件与其载体有清楚的界限,以能在拍摄图像中被分辨出来。在一个例子中,标识元件36可以特殊的图案,例如三角形、五角星、圆形等等。在另一个例子中,标识元件36可以贴纸、标签等。在又一个例子中,标识元件36还可以凹槽或凸起等等,在此不作限制。
请一并参阅图16、图17及图18,在光机模组20处于初始位置时,光机模组20投射的光线垂直第一面11进入光传输元件10内,且从第一面11出射的光线基本正对着进入人眼,此时,摄像头35用于获取含有标识元件36的预设图像(图16所示)。如图17所示,当佩戴上智能穿戴设备1000的用户的头围较大,镜腿300被头部撑开发生外翻,导致光机模组20投射的光线相对第一面11倾斜(非垂直)进入光传输元件10内,从第一面11出射的光线偏离了人眼,人眼看到的图像I也会发生偏移,需要人眼转动眼球才能观察到图像I,如此对人眼健康非常不利,此时,摄像头35获取一张拍摄图像,通过比对拍摄图像与预设图像即可判断出光机模组20相对于初始位置发生了偏转。如图14所示,在偏转信息表明光机模组20相对于初始位置发生了偏转的情况下,驱动件41 被施加驱动电压,驱动光传输元件10转动预定角度,施加的驱动电压为脉冲电压,每提供一个脉冲电压给驱动件41,驱动件41就会驱动光传输元件10转动预定角度,摄像头35就会获取含有标识元件36的新的拍摄图像,直至标识元件36在新的拍摄图像中的位置与标识元件36在预设图像中的位置相同,驱动件41才停止驱动光传输元件10转动,此时,光机模组20投射的光线虽然不是垂直第一面11进入光传输元件10内,但从第一面11出射的光线基本正对着进入人眼,即,图像I的偏移保持在预定范围内,例如图像I与人眼正对。
需要说明的是,标识元件36在新的拍摄图像中的位置与标识元件36在预设图像中的位置相同是指:在拍摄图像中建立一个坐标系,并将该坐标系映射到预设图像中,分别获取标识元件36在坐标系中的坐标,如果两个坐标相同,则表明二者位置相同。
本申请的光学显示组件100及智能穿戴设备1000利用角度偏移检测模组30中的摄像头35和标识元件36检测光机模组20相对预设的初始位置的偏转信息,并在判断出光机模组20发生偏转的情况下(若第二反馈值与第一反馈值不同),利用驱动件41驱动光传输元件10转动以调整图像的显示位置,一方面能够使得用户能以最佳视角观看光机模组20投影的图像I,另一方面图像I的偏移能够保持在预定范围内,避免人们观看到的图像I出现失真或残缺。另外,角度偏移检测模组30的结构简单,有利于角度偏移检测模组30的安装和拆卸。

Claims (20)

  1. 一种光学显示组件,其特征在于,包括:
    光传输元件,所述光传输元件包括第一面、第二面及第三面,所述第一面与所述第二面相背,所述第三面连接所述第一面与所述第二面;
    光机模组,所述光机模组与所述第一面相对并与所述第三面分别位于所述光传输元件的中心轴的两侧,所述光机模组用于发射携带图像信息的光线并将所述光线朝所述第一面投射,所述光传输元件用于在第一面接收所述光线;
    角度偏移检测模组,所述角度偏移检测模组设置在所述光传输元件及所述光机模组上,用于检测所述光机模组相对预设的初始位置的偏转信息;及
    驱动模组,所述驱动模组与所述光传输元件连接,在所述光机模组相对所述初始位置发生偏转时,所述驱动模组驱动所述光传输元件转动以调整所述图像信息的显示位置。
  2. 根据权利要求1所述的光学显示组件,其特征在于,所述角度偏移检测模组包括发射器及接收器,所述发射器及所述接收器中的任意一个设置在所述光机模组朝向所述第一面的一侧,所述发射器及所述接收器中的另一个设置在所述第一面上,所述发射器用于发出检测信号,所述接收器用于接收所述检测信号并根据所述检测信号输出所述偏转信息。
  3. 根据权利要求1所述的光学显示组件,其特征在于,所述角度偏移检测模组包括收发单元和反射器,所述收发单元及所述反射器中的任意一个设置在所述光机模组朝向所述第一面的一侧,所述收发单元及所述反射器中的另一个设置在所述第一面上,所述收发单元中的发射器朝所述反射器发出检测信号,所述反射器将所述检测信号反射回所述收发单元中,所述收发单元中的接收器接收反射回的所述检测信号并根据所述检测信号输出所述偏转信息。
  4. 根据权利要求2或3所述的光学显示组件,其特征在于,
    所述发射器用于发射检测信号;
    所述接收器用于接收所述检测信号,并根据接收到的检测信号及预设信号输出所述偏转信息;所述预设信号是所述光机模组处于所述初始位置时,所述接收器接收所述发射器发出的信号而产生的。
  5. 根据权利要求4所述的光学显示组件,其特征在于,所述检测信号包括光信号或声波信号。
  6. 根据权利要求4所述的光学显示组件,其特征在于,在所述光机模组处于所述初始位置时,
    所述光机模组投射的所述光线垂直所述第一面进入所述光传输元件内;和/或
    在所述发射器和所述接收器分别位于所述第一面及所述光机模组上时,所述检测信号垂直所 述接收器的收光面;
    在所述收发单元和所述反射器分别位于所述第一面及所述光机模组上时,所述检测信号垂直所述反射器的反射面。
  7. 根据权利要求6所述的光学显示组件,其特征在于,所述反射器嵌设在所述光传输元件内,所述反射面与所述第一面齐平。
  8. 根据权利要求6所述的光学显示组件,其特征在于,所述反射器嵌设在所述光传输元件内,所述反射面相对所述第一面朝接近所述第二面的方向内凹,或相对所述第一面朝远离所述第二面的方向外凸。
  9. 根据权利要求4所述的光学显示组件,其特征在于,所述光驱动模组包括:
    驱动件,所述驱动件与所述光传输元件连接,并用于驱动所述光传输元件转动直至所述检测信号与所述预设信号大小相同。
  10. 根据权利要求9所述的光学显示组件,其特征在于,所述检测信号与所述预设信号大小相同包括:光信号的强度大小相同、声波信号的强度大小相同或电信号的大小相同。
  11. 根据权利要求9所述的光学显示组件,其特征在于,所述驱动模组还包括:
    承载件,所述光传输元件与所述承载件的第一表面结合,所述驱动件设置在所述承载件的第二表面所在的一侧,所述驱动件驱动所述承载件转动以带动所述光传输元件转动。
  12. 根据权利要求11所述的光学显示组件,其特征在于,所述光传输元件与承载件通过胶水粘结为一体。
  13. 根据权利要求1所述的光学显示组件,其特征在于,所述角度偏移检测模组包括摄像头及标识元件,所述摄像头及所述标识元件中的任意一个设置在所述光机模组朝向所述第一面的一侧,所述摄像头及所述标识元件中的另一个设置在所述第一面上,所述摄像头用于获取含有所述标识元件的拍摄图像,并根据所述拍摄图像输出所述偏转信息。
  14. 根据权利要求13所述的光学显示组件,其特征在于,
    所述摄像头根据所述拍摄图像与预设图像输出所述偏转信息,所述预设图像是所述光机模组处于所述初始位置时,所述摄像头拍摄的含有所述标识元件的图像。
  15. 根据权利要求14所述的光学显示组件,其特征在于,所述驱动模组包括:
    驱动件,所述驱动件与所述光传输元件连接,并用于驱动所述光传输元件转动直至所述标识元件在所述拍摄图像中的位置与所述标识元件在所述预设图像中的位置相同。
  16. 根据权利要求15所述的光学显示组件,其特征在于,所述驱动模组还包括:
    承载件,所述光传输元件与所述承载件的第一表面结合,所述驱动件设置在所述承载件的第二表面所在的一侧,所述驱动件驱动所述承载件转动以带动所述光传输元件转动。
  17. 根据权利要求16所述的光学显示组件,其特征在于,所述驱动件的驱动电压包括正向电压和反向电压,当所述驱动电压为所述正向电压时,所述驱动件驱动所述光传输元件正向偏转;当所述驱动电压为所述反向电压时,所述驱动件驱动所述光传输元件反向偏转,其中,所述正向偏转与所述反向偏转指的是两个偏转方向相反的方向。
  18. 根据权利要求16所述的光学显示组件,其特征在于,所述驱动电压为脉冲电压,一个所述脉冲电压对应一个预定旋转角度。
  19. 一种智能穿戴设备,其特征在于,包括:
    镜框;
    镜腿;及
    权利要求1-18任意一项所述的光学显示组件,所述光机模组设置在所述镜腿内,所述光传输元件设置在所述镜框内,所述驱动模组设置在所述镜框上。
  20. 根据权利要求19所述的智能穿戴设备,其特征在于,所述光学显示组件的数量为两个,两个所述光机模组分别设置在两个所述镜腿内,两个所述光传输元件分别设置在两个所述镜框内,两个驱动模组分别设置在两个所述镜框上。
PCT/CN2021/083742 2020-05-22 2021-03-30 光学显示组件和智能穿戴设备 WO2021232947A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010439256.8 2020-05-22
CN202010439256.8A CN111505827B (zh) 2020-05-22 2020-05-22 光学显示组件和智能穿戴设备

Publications (1)

Publication Number Publication Date
WO2021232947A1 true WO2021232947A1 (zh) 2021-11-25

Family

ID=71878578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083742 WO2021232947A1 (zh) 2020-05-22 2021-03-30 光学显示组件和智能穿戴设备

Country Status (2)

Country Link
CN (1) CN111505827B (zh)
WO (1) WO2021232947A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110955050A (zh) * 2019-12-05 2020-04-03 张炎召 一种近眼显示装置
CN111505827B (zh) * 2020-05-22 2022-07-12 Oppo广东移动通信有限公司 光学显示组件和智能穿戴设备
CN112285934B (zh) * 2020-11-09 2022-10-21 Oppo广东移动通信有限公司 图像显示装置及可穿戴设备
WO2022095594A1 (zh) * 2020-11-09 2022-05-12 Oppo广东移动通信有限公司 图像显示装置及可穿戴设备
CN114280777B (zh) * 2021-11-23 2023-06-13 歌尔光学科技有限公司 Ar显示装置
CN114280795A (zh) * 2021-12-30 2022-04-05 歌尔股份有限公司 一种增强现实显示设备
CN115561911B (zh) * 2022-11-16 2023-05-09 杭州光粒科技有限公司 一种ar显示设备及ar头戴设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105452936A (zh) * 2013-06-24 2016-03-30 微软技术许可有限责任公司 用于hmd的最优眼部拟合的系统
CN105683810A (zh) * 2013-06-24 2016-06-15 微软技术许可有限责任公司 用于近眼显示器的光学系统
CN106353885A (zh) * 2015-07-16 2017-01-25 精工爱普生株式会社 图像显示装置
JP2018010323A (ja) * 2017-10-10 2018-01-18 パイオニア株式会社 ヘッドアップディスプレイ
CN111505827A (zh) * 2020-05-22 2020-08-07 Oppo广东移动通信有限公司 光学显示组件和智能穿戴设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5499985B2 (ja) * 2010-08-09 2014-05-21 ソニー株式会社 表示装置組立体
CN106664400B (zh) * 2014-05-30 2020-08-04 奇跃公司 用于显示虚拟和增强现实的立体视觉的方法和系统
US9965030B2 (en) * 2014-07-31 2018-05-08 Samsung Electronics Co., Ltd. Wearable glasses and method of displaying image via the wearable glasses
CN105260708B (zh) * 2015-09-25 2020-07-24 联想(北京)有限公司 一种检测装置,电子设备及信息处理方法
CN108427193A (zh) * 2017-02-14 2018-08-21 深圳梦境视觉智能科技有限公司 增强现实显示系统
CN207440408U (zh) * 2017-11-07 2018-06-01 歌尔智能科技有限公司 一种增强现实眼镜
EP3511767A1 (en) * 2018-01-16 2019-07-17 BAE SYSTEMS plc Wearable devices
JP2019159336A (ja) * 2019-06-03 2019-09-19 パイオニア株式会社 ヘッドアップディスプレイ
CN110244466B (zh) * 2019-07-11 2021-09-07 Oppo广东移动通信有限公司 增强现实眼镜及调节方法
CN110879469A (zh) * 2019-10-31 2020-03-13 华为技术有限公司 一种头戴式显示设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105452936A (zh) * 2013-06-24 2016-03-30 微软技术许可有限责任公司 用于hmd的最优眼部拟合的系统
CN105683810A (zh) * 2013-06-24 2016-06-15 微软技术许可有限责任公司 用于近眼显示器的光学系统
CN106353885A (zh) * 2015-07-16 2017-01-25 精工爱普生株式会社 图像显示装置
JP2018010323A (ja) * 2017-10-10 2018-01-18 パイオニア株式会社 ヘッドアップディスプレイ
CN111505827A (zh) * 2020-05-22 2020-08-07 Oppo广东移动通信有限公司 光学显示组件和智能穿戴设备

Also Published As

Publication number Publication date
CN111505827A (zh) 2020-08-07
CN111505827B (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
WO2021232947A1 (zh) 光学显示组件和智能穿戴设备
US9594249B2 (en) Image display device
US10310284B1 (en) Apparatus and method for projecting three-dimensional holographic images
JP2003329972A (ja) 立体観察装置
US11841502B2 (en) Reflective polarizer for augmented reality and virtual reality display
CN111766702A (zh) 眼球追踪的近眼显示光学系统
CN111552085B (zh) 抬头显示装置及其制程
US10048502B2 (en) Head mount display
WO2020124627A1 (zh) 一种近眼显示系统及眼镜式虚拟显示器
CN108132538A (zh) Ar光学系统以及ar显示设备
TWI775240B (zh) 智慧型虛擬顯示裝置
CN102794022A (zh) 一种基于lcos微显示技术的互动玩具
CN109946834B (zh) 投影装置
CN109946835B (zh) 投影装置
US10545398B2 (en) Projection device with adjusting structure for moving directions of projection image
CN219960670U (zh) 近眼显示设备
WO2021232967A1 (zh) 光学显示组件和智能穿戴设备
WO2019136601A1 (zh) Ar光学系统以及ar显示设备
JPH11249588A (ja) 頭部装着型表示装置
CN211928311U (zh) 显示光学系统及头戴设备
US20050012683A1 (en) Spectacle with data receiving and projecting device
EP3690501A1 (en) Lens for eye-tracking applications and head-worn device
KR20070057142A (ko) 사용자의 동공 간격에 맞추는 조절장치를 포함하는 안과디스플레이 장치
WO2019184322A1 (zh) 光学组件及虚拟现实vr设备
CN111913305A (zh) 发射模组及深度传感器、电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21807994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21807994

Country of ref document: EP

Kind code of ref document: A1