WO2021232779A1 - 一种波分复用光通信装置 - Google Patents

一种波分复用光通信装置 Download PDF

Info

Publication number
WO2021232779A1
WO2021232779A1 PCT/CN2020/138231 CN2020138231W WO2021232779A1 WO 2021232779 A1 WO2021232779 A1 WO 2021232779A1 CN 2020138231 W CN2020138231 W CN 2020138231W WO 2021232779 A1 WO2021232779 A1 WO 2021232779A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
filters
division multiplexing
wavelength division
communication device
Prior art date
Application number
PCT/CN2020/138231
Other languages
English (en)
French (fr)
Inventor
黄君彬
付全飞
陈纪辉
杨勇
毕继承
Original Assignee
深圳市埃尔法光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市埃尔法光电科技有限公司 filed Critical 深圳市埃尔法光电科技有限公司
Publication of WO2021232779A1 publication Critical patent/WO2021232779A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/2931Diffractive element operating in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor

Definitions

  • the present invention relates to the technical field of wavelength division multiplexing, in particular to a wavelength division multiplexing optical communication device.
  • Wavelength Division Multiplexing combines two or more optical carrier signals with different wavelengths and carrying various information at the transmitting end through a multiplexer (also known as a multiplexer). And coupled to the same optical fiber for transmission technology; at the receiving end, the optical carrier of various wavelengths is separated by a demultiplexer (also known as a demultiplexer or demultiplexer), and then the optical carrier is The receiver performs further processing to restore the original signal.
  • This technology of simultaneously transmitting two or more optical signals of different wavelengths in the same optical fiber is called wavelength division multiplexing.
  • COB Chip On Board
  • parallel optical communication methods are used to achieve multi-path optical parallel communication, it can be in the same root
  • the WDM technology that simultaneously transmits two or more optical signals of different wavelengths in an optical fiber is widely used in COB.
  • the existing WDM optical communication devices applied to COB are divided into short wavelength wavelength division multiplexing optical communication devices and coarse wavelength wavelength division multiplexing optical communication devices.
  • the short wavelength wavelength division multiplexing optical communication devices draw lessons from the single-mode optical fiber WDM technology expands the wavelength range used in transmission, from 850nm used in traditional multimode fibers to 850nm-1000nm, and uses cost-effective short-wavelength vertical cavity surface emitting lasers (Vertical-Cavity Surface-Emitting Laser, referred to as VCSEL) and optimized wideband multimode fiber (WBMMF), support multiple wavelength transmission data on a multimode fiber, greatly reducing the number of fiber cores required, and improving the effectiveness of the fiber Mode bandwidth (Effective Modal Bandwidth, EMB for short) extends the transmission distance.
  • VCSEL Vertical-Cavity Surface-Emitting Laser
  • WBMMF wideband multimode fiber
  • EMB Effective Modal Bandwidth
  • the technical problem to be solved by the present invention is to provide a wavelength division multiplexing optical communication device, which aims to solve the problem that the existing wavelength division multiplexing optical communication device applied to COB cannot adjust the size of the output optical power.
  • the embodiment of the present invention provides a wavelength division multiplexing optical communication device, which includes:
  • a diffractive light component, an adjusting component, a receiving port, a plurality of optical lenses, and a plurality of filters with different wavelengths The diffractive optical component is provided with a plurality of mounting holes at intervals, and the optical lenses are arranged in the mounting holes.
  • the adjusting component is located in the diffractive light component and is rotatably connected with the diffractive light component, a plurality of the filters are obliquely arranged on the adjusting component, and each filter is arranged at a position corresponding to the optical lens to block the light incident through the optical lens.
  • the receiving port is arranged at one end of the diffractive light component and is located on the exit light path of the diffractive light component.
  • the light incident through the plurality of optical lenses can be reflected by a plurality of filters and then converged to the receiving port, and the adjusting component is used for
  • the multiple filters are driven to rotate synchronously with respect to the diffractive light component by a preset range of angles.
  • the adjusting component includes a plurality of rotating shafts, and the diffractive light component is provided with a plurality of placement grooves, and the plurality of placement grooves are located on both sides of the plurality of mounting holes. It is erected in any two opposite placing grooves and is rotatably connected with the diffractive light assembly.
  • the wavelength division multiplexing optical communication device further includes a display screen, a control component, a driving component, and at least one sensor.
  • the component and the driving component are arranged on the outer wall of the diffractive light component, the sensor is electrically connected to the display screen and the control component, the control component is electrically connected to the display screen and the driving component, and the driving component is drivingly connected to the rotating shaft.
  • the sensor is used to acquire and send the output optical power data to the control assembly and the display screen, and the control assembly is used to control the driving assembly to drive the rotation axis to rotate, so that the plurality of filters rotate synchronously with respect to the diffracted light assembly.
  • the driving component is a servo motor
  • the display screen is a touch display screen
  • a plurality of the filters form a first filter group
  • the wavelength division multiplexing optical communication device further includes: multiple groups of second filter groups, any one of the second filter groups It includes the same number of filters as the first filter group, and any of the filters in the second filter group and the filters in the first filter group have different wavelengths.
  • the filters in the first filter group and the filters in any second filter group are detachably connected to the rotating shaft.
  • the interval between any two of the filters is 1 mm.
  • the filter is any one of a dichroic mirror filter, a long-wave pass filter, a short-wave pass filter, and a cut-off filter.
  • the receiving port is any one of LC, FC, SC, and ST standard single-mode optical fiber interfaces.
  • the wavelength division multiplexing optical communication device further includes a plurality of lasers for emitting different wavelengths, and the plurality of lasers are located on the side of the optical lens away from the filter, and are arranged corresponding to the plurality of optical lenses. To emit light to a plurality of optical lenses respectively.
  • the present invention has the following beneficial effects:
  • multiple lights with different wavelengths are collimated by multiple optical lenses, they are first irradiated on multiple filters, and then multiple lights with different wavelengths are reflected by multiple filters into parallel lights before reaching the receiving port to converge into one Beam of light.
  • the multiple filters can be rotated by a preset range of angles relative to the diffractive light assembly through the adjustment assembly, the multiple filters can be rotated synchronously with respect to the diffracted light assembly, so that the multiple filters and the diffracted light can be rotated synchronously.
  • the angle of the side of the component with the mounting hole can be adjusted in real time, achieving the purpose of real-time adjustment of the output optical power.
  • FIG. 1 is a schematic diagram of a first structure of a wavelength division multiplexing optical communication device provided by a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of the structure of the receiving port provided by the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a second structure of a wavelength division multiplexing optical communication device provided by the first embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a diffractive optical component provided by a second embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a second filter set provided by the second embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a first structure of a wavelength division multiplexing optical communication device provided by a first embodiment of the present invention
  • FIG. 2 is a structure of a receiving port provided by the first embodiment of the present invention
  • Schematic diagram FIG. 3 is a schematic diagram of a second structure of a wavelength division multiplexing optical communication device provided by the first embodiment of the present invention.
  • the wavelength division multiplexing optical communication device provided by the first embodiment of the present invention includes a diffractive optical component 1, an adjusting component (not shown in the figure), a receiving port 2, and a plurality of optical components.
  • the lens 3 and a plurality of filters 4 with different wavelengths wherein the diffractive light assembly 1 is provided with a plurality of mounting holes 5 spaced apart, the optical lens 3 is arranged in the mounting hole 5, and the adjusting assembly is located in the diffractive light assembly 1 and is in contact with the diffractive light assembly 1.
  • the optical component 1 is rotatably connected, a plurality of filters 4 are obliquely arranged on the adjusting component, and each filter 4 is arranged corresponding to the position of the optical lens 3 to block the light incident through the optical lens 3, and the receiving port 2 is provided in the diffractive optical component 1
  • One end is located on the exit light path of the diffractive optical component 1, the light incident through the multiple optical lenses 3 can be reflected by the multiple filters 4 and then converged to the receiving port 2, and the adjustment component is used to drive the multiple filters 4 to face each other.
  • the diffractive optical component 1 is rotated synchronously by a predetermined range of angles.
  • a plurality of lights with different wavelengths are collimated by a plurality of optical lenses 3, they are first irradiated on a plurality of filters 4, and then a plurality of lights with different wavelengths are combined by the plurality of filters 4 Reflected into parallel light, it reaches the receiving port 2 and converges into a beam of light to realize the combination of wavelength division multiplexing.
  • the filter 4 can be rotated in a preset range relative to the diffractive optical component 1 through the adjustment component. Angle.
  • the wavelength division multiplexing optical communication device provided in this embodiment can be applied to both short wavelength wavelength division multiplexing and coarse wavelength division multiplexing.
  • the light having different wavelengths and concentrated on one optical fiber is collimated by the receiving port 2 and then irradiated on the multiple filters 4 in sequence, and then is reflected by the multiple filters 4 at most.
  • the optical lens 3 is used to realize the demultiplexing of wavelength division multiplexing.
  • a plurality of filters 4 are arranged between the plurality of optical lenses 3 and the receiving port 2, so the synthesis and decomposition of wavelength division multiplexing can not only be performed separately, that is, in Among the multiple optical lenses 3, a part of the optical lens 3 can be used as the light of different wavelengths entering the diffractive optical component 1 during WDM synthesis, while the other part of the optical lens 3 can be used as the light of different wavelengths during WDM decomposition.
  • the diffracted light component 1 is used, and the receiving port 2 can also be provided with multiple correspondingly.
  • the wavelength division multiplexing optical communication device provided by the first embodiment of the present invention, in the first aspect, after a plurality of lights with different wavelengths are collimated by a plurality of optical lenses, they are first irradiated on a plurality of filters correspondingly, and then by a plurality of filters.
  • the sheet reflects multiple lights with different wavelengths into parallel lights and then reaches the receiving port to converge into a beam of light.
  • the multiple filters can be rotated by a preset range of angles relative to the diffractive light assembly through the adjustment assembly, the multiple filters can be rotated synchronously with respect to the diffracted light assembly, so that the multiple filters and the diffracted light can be rotated synchronously.
  • the angle of the side of the component with the mounting hole can be adjusted in real time, achieving the purpose of real-time adjustment of the output optical power.
  • a part of the optical lens can be used as the light of different wavelengths in the WDM synthesis to enter the diffractive optical component, while the other part of the optical lens can be used as the light of different wavelengths in the WDM decomposition.
  • the diffractive optical component is used through out, and at the same time, multiple receiving ports can be correspondingly provided, so that the optical communication device can adapt to a variety of working conditions, and the application scenarios of the optical communication device are increased.
  • FIG. 4 is a schematic structural diagram of a diffractive optical component provided by a second embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a second filter set provided by the second embodiment of the present invention.
  • the adjusting assembly includes a plurality of rotating shafts (not shown in the figure), a plurality of placement grooves 6 are provided in the diffractive light assembly 1, and the plurality of placement grooves 6 are located at two positions of the plurality of mounting holes 5.
  • the rotating shaft is erected in any two opposing placement grooves 6 and is rotatably connected with the diffractive light assembly 1.
  • the filter 4 can abut on the placement groove 6 respectively.
  • the filter 4 may be arranged on the rotating shaft, and the rotating shaft is directly connected to the diffractive light assembly 1 in the diffractive light assembly 1 rotatably, that is, it is not limited to using the placement groove 6 as an intermediate carrier.
  • the wavelength division multiplexing optical communication device provided by this embodiment further includes a display screen 7, a control component 8, a driving component 9 and at least one sensor (not shown in the figure), wherein the sensor is arranged On the exit light path of the diffractive light assembly 1, the display screen 7, the control assembly 8 and the drive assembly 9 are arranged on the outer wall of the diffracted light assembly 1, the sensor is electrically connected to the display screen 7 and the control assembly 8, and the control assembly 8 is respectively connected to the display screen. 7 and the driving assembly 9 are electrically connected, and the driving assembly 9 drives the rotating shaft connected between the filter 4 and the placing slot 6.
  • the driving component 9 is a servo motor
  • the display screen 7 is a touch display screen.
  • the preset value of the output optical power of the wavelength division multiplexing optical communication device is set through the touch screen 7 and sent to the control component 8, and the sensor acquires and sends the actual value of the output optical power to
  • the control component 8 and the touch screen 7 displays the actual value of the current output optical power of the wavelength division multiplexing optical communication device in real time, and the control component 8 according to the actual value of the output optical power and the preset output optical power
  • the setting control drive assembly 9 drives the rotation axis between the filter 4 and the placement slot 6 to rotate, so that the multiple filters 4 rotate synchronously with respect to the diffractive optical assembly 1 to adjust the output optical power until the output optical power
  • the actual value of is equal to the preset value of output optical power.
  • the angle between the filter 4 and the diffracted light assembly 1 on which the mounting hole 5 is provided is adjustable between 30° and 60°.
  • the display screen 7 may not use a touch screen, and multiple buttons (not shown in the figure) may be provided on the diffractive light assembly 1 and electrically connected to the display screen 7. In this case, Press the button to set the preset value of the output optical power of the wavelength division multiplexing optical communication device.
  • a plurality of filters 4 form a first filter group (not shown in the figure), and the wavelength division multiplexing optical communication device provided in this embodiment further includes multiple sets of second filter groups 10.
  • Any second filter group 10 includes the same number of filters as the first filter group, and there is a difference between the filters in any second filter group 10 and the filters in the first filter group ⁇ wavelength.
  • the filters in the first filter group and the filters in any second filter group 10 are detachably connected to the rotating shaft.
  • the first filter group composed of multiple filters 4 Replaced from the diffractive light assembly 1.
  • the interval between any two filters 4 is 1 mm.
  • the interval between any two filters 4 is not limited to 1 mm, and the interval between any two filters 4 can be adjusted according to actual usage.
  • the filter 4 is a dichroic mirror filter.
  • the filter 4 may be any one of a long-wave pass filter, a short-wave pass filter, a cut-off filter, and the like.
  • the receiving port 2 is an LC standard single-mode optical fiber interface.
  • the receiving port 2 may be any one of standard single-mode optical fiber interfaces such as FC, SC, and ST.
  • the wavelength division multiplexing optical communication device provided in this embodiment further includes a plurality of lasers (not shown in the figure) for emitting different wavelengths, and the plurality of lasers are located on the side of the optical lens 3 away from the filter 4 and respectively Corresponding to the plurality of optical lenses 3 are provided to respectively emit light to the plurality of optical lenses 3.
  • multiple lasers respectively emit lights with different wavelengths;
  • multiple lights with different wavelengths are collimated by multiple optical lenses 3, and then irradiated on multiple filters 4 in sequence ;
  • a plurality of lights with different wavelengths are reflected by a plurality of filters 4 into parallel light after arriving at the receiving port 2 to converge into a beam of light.
  • the laser is a VCSEL.
  • the filter and the placement slot are coordinated with the rotating shaft, the sensor, the display screen, the control component, and the drive component to make the The wavelength division multiplexing optical communication device realizes the intelligent and automatic adjustment of the output optical power.
  • the filter can be detachably arranged on the rotating shaft to facilitate cleaning and replacement of the filter.
  • multiple second filter groups are also provided. In this case, according to the specific application scenario of the wavelength division multiplexing optical communication device, according to the filter in the second filter group The first filter group composed of multiple filters is replaced from the diffractive optical component, which increases the application range of the wavelength division multiplexing optical communication device.
  • the interval between any two filters is 1mm, so that the wavelength division multiplexing optical communication device can realize multiple wavelength division multiplexing in a small area, greatly reducing the wavelength division multiplexing.
  • the transmission rate density is increased.
  • the receiving port adopts any one of LC, FC, SC and ST standard single-mode optical fiber interfaces, which can facilitate the external optical path.
  • multiple lasers for emitting different wavelengths are provided to provide multiple different wavelengths of light, and the light of different wavelengths emitted by the multiple lasers can realize the combination of wavelength division multiplexing through the wavelength division multiplexing optical communication device.
  • the filter when the rotating shaft drives the filter to rotate forward or backward, the filter can be abutted on the placement slot respectively, which has a good limiting effect on the rotation of the filter, and effectively avoids filtering.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种波分复用光通信装置,包括衍射光组件(1)、调节组件、接收口(2)、多个光透镜(3)及具有不同波长的多个滤波片(4)。其中,衍射光组件(1)上间隔开设有多个安装孔(5),光透镜(3)设置在安装孔(5)内,调节组件位于衍射光组件(1)内且与衍射光组件(1)转动连接,多个滤波片(4)倾斜设于调节组件上,且每一滤波片(4)对应光透镜(3)的位置设置以遮挡经由光透镜(3)入射的光,接收口(2)设于衍射光组件(1)的一段,且位于衍射光组件(1)的出射光路上,经多个光透镜(3)入射的光分别由多个滤波片(4)反射后汇聚至接收口(2),调节组件用于带动多个滤波片(4)相对于衍射光组件(1)同步旋转预设范围的角度,从而实现对输出光功率大小的调节。

Description

一种波分复用光通信装置 技术领域
本发明涉及波分复用技术领域,尤其是指一种波分复用光通信装置。
背景技术
波分复用(Wavelength Division Multiplexing,简称WDM)是将两种或多种不同波长且携带各种信息的光载波信号在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个及以上不同波长光信号的技术,称为波分复用。
近几年来,由于传统的板载芯片封装技术(Chip On Board,简称COB)所采用的激光多为850nm的多模激光,且用并行光通信方法实现多路光并行通信,所以可在同一根光纤中同时传输两个及以上不同波长光信号的WDM技术被广泛应用于COB。目前,现有的应用于COB的WDM光通信装置分为短波长波分复用光通信装置和粗波长波分复用光通信装置,其中,短波长波分复用光通信装置借鉴了单模光纤的WDM技术,扩展了传输时所用的波长范围,从传统多模光纤所用的850nm扩展至850nm-1000nm,并利用性价比高的短波长的垂直腔面发射激光器(Vertical-Cavity Surface-Emitting Laser,简称VCSEL)和优化的宽带多模光纤(WBMMF),在一根多模光纤上支持多个波长传输数据,大大降低了所需要的光纤芯数,同时又提高了光纤的有效模式带宽(Effective Modal Bandwidth,简称EMB),延长了传输距离。然而,不管是短波长波分复用光通信装置,还是粗波长波分复用光通信装置,均不能对输出光功率的大小进行调节,大大限制了这些光通信装置的应用场景和范围。
因此,有必要对上述应用于COB的波分复用光通信装置进行改进。
技术问题
本发明所要解决的技术问题是:提供一种波分复用光通信装置,旨在解决现有的应用于COB的波分复用光通信装置不能对输出光功率的大小进行调节的问题。
技术解决方案
为了解决上述技术问题,本发明采用的技术方案为:
本发明实施例提供了一种波分复用光通信装置,其包括:
衍射光组件、调节组件、接收口、多个光透镜及具有不同波长的多个滤波片,所述衍射光组件上间隔开设有多个安装孔,所述光透镜设置在安装孔内,所述调节组件位于衍射光组件内且与衍射光组件转动连接,多个所述滤波片倾斜设于调节组件上,且每一滤波片对应光透镜的位置设置以遮挡经由光透镜入射的光,所述接收口设于衍射光组件一端,且位于衍射光组件的出射光路上,经多个所述光透镜入射的光可分别由多个滤波片反射后汇聚至接收口,且所述调节组件用于带动多个滤波片相对于衍射光组件同步旋转预设范围的角度。
在一些具体的实施方案中,所述调节组件包括多个旋转轴,所述衍射光组件内设有多个放置槽,且多个所述放置槽位于多个安装孔两侧,所述旋转轴架设在任意两个相对的放置槽内并与衍射光组件转动连接。
在一些具体的实施方案中,该波分复用光通信装置还包括显示屏、控制组件、驱动组件及至少一传感器,所述传感器设置在衍射光组件的出射光路上,所述显示屏、控制组件及驱动组件设置在衍射光组件外壁上,所述传感器分别与显示屏及控制组件电连接,所述控制组件分别与显示屏及驱动组件电连接,所述驱动组件驱动连接于旋转轴,所述传感器用于获取并发送输出的光功率数据至控制组件及显示屏,所述控制组件用于控制驱动组件带动旋转轴旋转,使得多个所述滤波片相对于衍射光组件同步旋转。
在一些具体的实施方案中,所述驱动组件为伺服电动机,所述显示屏为触控显示屏。
在一些具体的实施方案中,多个所述滤波片组成第一滤波片组,且该波分复用光通信装置还包括:多组第二滤波片组,任一所述第二滤波片组包括与第一滤波片组相同数量的滤波片,且任一所述第二滤波片组中的滤波片与第一滤波片组中的滤波片之间具有不同的波长。
在一些具体的实施方案中,所述第一滤波片组中的滤波片及任一第二滤波片组中的滤波片均与旋转轴可拆卸连接。
在一些具体的实施方案中,任意两个所述滤波片之间的间隔为1mm。
在一些具体的实施方案中,所述滤波片为二向色镜滤波片、长波通滤波片、短波通滤波片及截止滤波片中的任一种。
在一些具体的实施方案中,所述接收口为LC、FC、SC及ST标准单模光纤接口中的任意一个。
在一些具体的实施方案中,该波分复用光通信装置还包括多个用于发射不同波长的激光器,多个所述激光器位于光透镜远离滤波片一侧,且分别对应多个光透镜设置以分别向多个光透镜发射光。
有益效果
与现有技术相比,本发明的有益效果在于:
多个具有不同波长的光被多个光透镜准直后,先对应照射到多个滤波片上,再由多个滤波片将多个具有不同波长的光反射成平行的光后到达接收口汇聚成一束光。在此过程中,由于多个滤波片通过调节组件可相对于衍射光组件同步旋转预设范围的角度,所以可通过相对于衍射光组件同步旋转多个滤波片,使得多个滤波片与衍射光组件开设有安装孔一面的角度实时可调,达到了对输出光功率的大小进行实时调节的目的。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明第一实施例提供的波分复用光通信装置的第一结构示意图;
图2为本发明第一实施例提供的接收口的结构示意图;
图3为本发明第一实施例提供的波分复用光通信装置的第二结构示意图;
图4为本发明第二实施例提供的衍射光组件的结构示意图;
图5为本发明第二实施例提供的第二滤波片组的结构示意图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明的各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
请参阅图1、图2以及图3,图1为本发明第一实施例提供的波分复用光通信装置的第一结构示意图,图2为本发明第一实施例提供的接收口的结构示意图,图3为本发明第一实施例提供的波分复用光通信装置的第二结构示意图。
如图1、图2以及图3所示,本发明第一实施例提供的波分复用光通信装置包括衍射光组件1、调节组件(图中未示出)、接收口2、多个光透镜3及具有不同波长的多个滤波片4,其中,衍射光组件1上间隔开设有多个安装孔5,光透镜3设置在安装孔5内,调节组件位于衍射光组件1内且与衍射光组件1转动连接,多个滤波片4倾斜设于调节组件上,且每一滤波片4对应光透镜3的位置设置以遮挡经由光透镜3入射的光,接收口2设于衍射光组件1一端,且位于衍射光组件1的出射光路上,经多个光透镜3入射的光可分别由多个滤波片4反射后汇聚至接收口2,且调节组件用于带动多个滤波片4相对于衍射光组件1同步旋转预设范围的角度。
具体的,于实际工作过程中,多个具有不同波长的光被多个光透镜3准直后,先对应照射到多个滤波片4上,再由多个滤波片4将多个具有不同波长的光反射成平行的光后到达接收口2汇聚成一束光,以实现波分复用的合成,且在此过程中,滤波片4通过调节组件可相对于衍射光组件1同步旋转预设范围的角度。
具体的,本实施例提供的波分复用光通信装置既可以应用于短波长波分复用中,同时也可以应用于粗波分复用中。
需要说明的是,于其他实施例中,具有不同波长且集中在一根光纤上的光通过接收口2准直后依次照射在多个滤波片4上,再由多个滤波片4对应反射至多个光透镜3上,以此实现波分复用的解复用。
还需要说明的是,于其他实施例中,多个滤波片4是设置在多个光透镜3与接收口2之间的,故波分复用的合成和分解不是只能单独进行,即在多个光透镜3中,一部分光透镜3可作为波分复用合成时不同波长的光进入衍射光组件1使用,而另一部分光透镜3同时可作为波分复用分解时不同波长的光穿出衍射光组件1使用,同时接收口2亦可对应设置有多个。
本发明第一实施例提供的波分复用光通信装置,第一方面,多个具有不同波长的光被多个光透镜准直后,先对应照射到多个滤波片上,再由多个滤波片将多个具有不同波长的光反射成平行的光后到达接收口汇聚成一束光。在此过程中,由于多个滤波片通过调节组件可相对于衍射光组件同步旋转预设范围的角度,所以可通过相对于衍射光组件同步旋转多个滤波片,使得多个滤波片与衍射光组件开设有安装孔一面的角度实时可调,达到了对输出光功率的大小进行实时调节的目的。第二方面,在多个光透镜中,一部分光透镜可作为波分复用合成时不同波长的光进入衍射光组件使用,而另一部分光透镜同时可作为波分复用分解时不同波长的光穿出衍射光组件使用,同时接收口也可以对应设置有多个,使得该光通信装置可以适应多种工作情况,增大了该光通信装置的应用场景。
请参阅图4以及图5,图4为本发明第二实施例提供的衍射光组件的结构示意图,图5为本发明第二实施例提供的第二滤波片组的结构示意图。
以本发明第一实施例提供的波分复用光通信装置为基础,在本发明第二实施例中:
进一步地,如图4所示,调节组件包括多个旋转轴(图中未示出),衍射光组件1内设有多个放置槽6,且多个放置槽6位于多个安装孔5两侧,旋转轴架设在任意两个相对的放置槽6内并与衍射光组件1转动连接。
具体的,在旋转轴带动滤波片4向前或向后转动的过程中,滤波片4可分别抵接在放置槽6上。
可选的,于其他实施例中,可将滤波片4设置在旋转轴上,而旋转轴直接在衍射光组件1内与衍射光组件1转动连接,即不限于以放置槽6为中间载体。
进一步地,如图4所示,本实施例提供的波分复用光通信装置还包括显示屏7、控制组件8、驱动组件9及至少一传感器(图中未示出),其中,传感器设置在衍射光组件1的出射光路上,显示屏7、控制组件8及驱动组件9设置在衍射光组件1外壁上,传感器分别与显示屏7及控制组件8电连接,控制组件8分别与显示屏7及驱动组件9电连接,驱动组件9驱动连接于滤波片4与放置槽6之间的旋转轴。
进一步地,驱动组件9为伺服电动机,显示屏7为触控显示屏。
具体的,于实际工作过程中,通过触控显示屏7设置该波分复用光通信装置的输出光功率的预设值并发送给控制组件8,传感器获取并发送输出光功率的实际值至控制组件8及触控显示屏7,触控显示屏7实时显示该波分复用光通信装置当前的输出光功率的实际值,控制组件8根据输出光功率的实际值与输出光功率的预设值控制驱动组件9带动滤波片4与放置槽6之间的旋转轴旋转,使得多个滤波片4相对于衍射光组件1同步旋转,以对输出光功率的大小进行调节,直至输出光功率的实际值与输出光功率的预设值相等为止。
需要了解的是,控制组件8控制驱动组件9带动旋转轴旋转时,使得滤波片4与衍射光组件1开设有安装孔5一面的夹角在30°至60°之间可调。
可选的,于其他实施例中,显示屏7可不采用触控显示屏,可在衍射光组件1上设置多个按键(图中未示出)并与显示屏7电连接,此时,需要按动按键以设置该波分复用光通信装置的输出光功率的预设值。
进一步地,如图5所示,多个滤波片4组成第一滤波片组(图中未示出),且本实施例提供的波分复用光通信装置还包括多组第二滤波片组10,任一第二滤波片组10包括与第一滤波片组相同数量的滤波片,且任一第二滤波片组10中的滤波片与第一滤波片组中的滤波片之间具有不同的波长。
进一步地,第一滤波片组中的滤波片及任一第二滤波片组10中的滤波片均与旋转轴可拆卸连接。
具体的,于实际工作过程中,可根据该波分复用光通信装置的具体应用场景,根据第二滤波片组10内滤波片的波长,将多个滤波片4组成的第一滤波片组从衍射光组件1上替换下来。
进一步地,任意两个滤波片4之间的间隔为1mm。
可选的,于其他实施例中,任意两个滤波片4之间的间隔也不限于1mm,即可根据实际使用情况,调整任意两个滤波片4之间的间隔。
于本实施例中,滤波片4为二向色镜滤波片。
可选的,于其他实施例中滤波片4可为长波通滤波片、短波通滤波片、截止滤波片等滤波片中的任一种。
于本实施例中,接收口2为LC标准单模光纤接口。
可选的,于其他实施例中,接收口2可为FC、SC、ST等标准单模光纤接口中的任意一个。
进一步地,本实施例提供的波分复用光通信装置还包括多个用于发射不同波长的激光器(图中未示出),多个激光器位于光透镜3远离滤波片4一侧,且分别对应多个光透镜3设置以分别向多个光透镜3发射光。
具体的,于实际工作过程中,首先,多个激光器分别发出具有不同波长的光;其次,多个具有不同波长的光分别被多个光透镜3准直后,依次照射至多个滤波片4上;最后,多个具有不同波长的光分别经多个滤波片4反射成平行的光后到达接收口2汇聚成一束光。
于本实施例中,激光器为VCSEL。
本发明第二实施例提供的波分复用光通信装置,第一方面,通过滤波片与放置槽之间的旋转轴、传感器、显示屏、控制组件及驱动组件之间的相互配合,使得该波分复用光通信装置实现了对输出光功率的大小的智能化、自动化调整。第二方面,滤波片可拆卸设置在旋转轴上,方便对滤波片进行清洁、替换。第三方面,除第一滤波片组之外,还设置多个第二滤波片组,此时,可根据该波分复用光通信装置的具体应用场景,根据第二滤波片组内滤波片的波长,将多个滤波片组成的第一滤波片组从衍射光组件上替换下来,增大了该波分复用光通信装置的应用范围。第四方面,任意两个滤波片之间的间隔为1mm,使得该波分复用光通信装置在很小的范围区域内,实现多种波长的波分复用,大大减小了波分复用光通信装置的尺寸,提高了传输速率密度。第五方面,接收口采用LC、FC、SC及ST标准单模光纤接口中任一个,可以方便外接光路。第六方面,设置多个用于发射不同波长的激光器以提供多个不同波长的光,多个激光器发出的不同波长的光通过该波分复用光通信装置可实现波分复用的合成。第七方面,在旋转轴带动滤波片向前或向后转动的过程中,滤波片可分别抵接在放置槽上,对滤波片的旋转起到了很好的限位作用,有效地避免了滤波片与衍射光组件开设有安装孔一面的角度调节过大而引起的该波分复用光通信装置功能丧失的问题。
需要说明的是,本发明内容中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
还需要说明的是,在本发明内容中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明内容。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本发明内容中所定义的一般原理可以在不脱离本发明内容的精神或范围的情况下,在其它实施例中实现。因此,本发明内容将不会被限制于本发明内容所示的这些实施例,而是要符合与本发明内容所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种波分复用光通信装置,其特征在于,包括:衍射光组件、调节组件、接收口、多个光透镜及具有不同波长的多个滤波片,所述衍射光组件上间隔开设有多个安装孔,所述光透镜设置在安装孔内,所述调节组件位于衍射光组件内且与衍射光组件转动连接,多个所述滤波片倾斜设于调节组件上,且每一滤波片对应光透镜的位置设置以遮挡经由光透镜入射的光,所述接收口设于衍射光组件一端,且位于衍射光组件的出射光路上,经多个所述光透镜入射的光可分别由多个滤波片反射后汇聚至接收口,且所述调节组件用于带动多个滤波片相对于衍射光组件同步旋转预设范围的角度。
  2. 如权利要求1所述的波分复用光通信装置,其特征在于:所述调节组件包括多个旋转轴,所述衍射光组件内设有多个放置槽,且多个所述放置槽位于多个安装孔两侧,所述旋转轴架设在任意两个相对的放置槽内并与衍射光组件转动连接。
  3. 如权利要求2所述的波分复用光通信装置,其特征在于,还包括:显示屏、控制组件、驱动组件及至少一传感器,所述传感器设置在衍射光组件的出射光路上,所述显示屏、控制组件及驱动组件设置在衍射光组件外壁上,所述传感器分别与显示屏及控制组件电连接,所述控制组件分别与显示屏及驱动组件电连接,所述驱动组件驱动连接于旋转轴,所述传感器用于获取并发送输出的光功率数据至控制组件及显示屏,所述控制组件用于控制驱动组件带动旋转轴旋转,使得多个所述滤波片相对于衍射光组件同步旋转。
  4. 如权利要求3所述的波分复用光通信装置,其特征在于:所述驱动组件为伺服电动机,所述显示屏为触控显示屏。
  5. 如权利要求2所述的波分复用光通信装置,其特征在于,多个所述滤波片组成第一滤波片组,且该波分复用光通信装置还包括:多组第二滤波片组,任一所述第二滤波片组包括与第一滤波片组相同数量的滤波片,且任一所述第二滤波片组中的滤波片与第一滤波片组中的滤波片之间具有不同的波长。
  6. 如权利要求5所述的波分复用光通信装置,其特征在于:所述第一滤波片组中的滤波片及任一第二滤波片组中的滤波片均与旋转轴可拆卸连接。
  7. 如权利要求1所述的波分复用光通信装置,其特征在于:任意两个所述滤波片之间的间隔为1mm。
  8. 如权利要求1所述的波分复用光通信装置,其特征在于:所述滤波片为二向色镜滤波片、长波通滤波片、短波通滤波片及截止滤波片中的任一种。
  9. 如权利要求1所述的波分复用光通信装置,其特征在于:所述接收口为LC、FC、SC及ST标准单模光纤接口中的任意一个。
  10. 如权利要求1所述的波分复用光通信装置,其特征在于,还包括:多个用于发射不同波长的激光器,多个所述激光器位于光透镜远离滤波片一侧,且分别对应多个光透镜设置以分别向多个光透镜发射光。
PCT/CN2020/138231 2020-05-18 2020-12-22 一种波分复用光通信装置 WO2021232779A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010419779.6 2020-05-18
CN202010419779.6A CN111443432A (zh) 2020-05-18 2020-05-18 一种波分复用光通信装置

Publications (1)

Publication Number Publication Date
WO2021232779A1 true WO2021232779A1 (zh) 2021-11-25

Family

ID=71652140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138231 WO2021232779A1 (zh) 2020-05-18 2020-12-22 一种波分复用光通信装置

Country Status (2)

Country Link
CN (1) CN111443432A (zh)
WO (1) WO2021232779A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111443432A (zh) * 2020-05-18 2020-07-24 深圳市埃尔法光电科技有限公司 一种波分复用光通信装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140960A (ja) * 2003-11-06 2005-06-02 Fujikura Ltd 光デバイス
US20130108262A1 (en) * 2011-10-26 2013-05-02 Electronics And Telecommunications Research Institute Multi-channel optical module
CN104597575A (zh) * 2014-12-25 2015-05-06 武汉电信器件有限公司 一种多波长复用/解复用的并行光收发组件
CN204405900U (zh) * 2014-12-25 2015-06-17 武汉电信器件有限公司 一种多波长复用/解复用的并行光收发组件
CN207752189U (zh) * 2018-02-05 2018-08-21 深圳市飞宇光纤系统有限公司 一种低损耗紧凑型光无源模块
CN208110107U (zh) * 2017-11-14 2018-11-16 嘉兴卓尔光电科技有限公司 一种基于wdm的多波段激光光学组件
CN110308564A (zh) * 2015-03-05 2019-10-08 三菱电机株式会社 光合波器的制造装置
CN110646893A (zh) * 2019-10-25 2020-01-03 深圳市埃尔法光电科技有限公司 一种基于vcsel的cwdm光器件
CN111443432A (zh) * 2020-05-18 2020-07-24 深圳市埃尔法光电科技有限公司 一种波分复用光通信装置
CN212111867U (zh) * 2020-05-18 2020-12-08 深圳市埃尔法光电科技有限公司 一种波分复用光通信系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140960A (ja) * 2003-11-06 2005-06-02 Fujikura Ltd 光デバイス
US20130108262A1 (en) * 2011-10-26 2013-05-02 Electronics And Telecommunications Research Institute Multi-channel optical module
CN104597575A (zh) * 2014-12-25 2015-05-06 武汉电信器件有限公司 一种多波长复用/解复用的并行光收发组件
CN204405900U (zh) * 2014-12-25 2015-06-17 武汉电信器件有限公司 一种多波长复用/解复用的并行光收发组件
CN110308564A (zh) * 2015-03-05 2019-10-08 三菱电机株式会社 光合波器的制造装置
CN208110107U (zh) * 2017-11-14 2018-11-16 嘉兴卓尔光电科技有限公司 一种基于wdm的多波段激光光学组件
CN207752189U (zh) * 2018-02-05 2018-08-21 深圳市飞宇光纤系统有限公司 一种低损耗紧凑型光无源模块
CN110646893A (zh) * 2019-10-25 2020-01-03 深圳市埃尔法光电科技有限公司 一种基于vcsel的cwdm光器件
CN111443432A (zh) * 2020-05-18 2020-07-24 深圳市埃尔法光电科技有限公司 一种波分复用光通信装置
CN212111867U (zh) * 2020-05-18 2020-12-08 深圳市埃尔法光电科技有限公司 一种波分复用光通信系统

Also Published As

Publication number Publication date
CN111443432A (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
WO2017118271A1 (zh) 一种用于双链路传输的并行收发光模块和制作方法
US7024074B2 (en) System and method for packaging a monitor photodiode with a laser in an optical subassembly
JP7040548B2 (ja) 多チャネル発光モジュールの製造方法、及び多チャネル発光モジュール
CN111308619B (zh) 一种发射光器件及其耦合方法
EP1207599A3 (en) Micro-lens built-in vertical cavity surface emitting laser
JP2005508015A5 (zh)
CN105388571A (zh) 具有多个信号通道的光发射器模块
WO2015157990A1 (zh) NxN并行收发光模块
WO2018098858A1 (zh) 一种用于高速光模块的光分波合波器光口装置
US20200014484A1 (en) Transceiver with multi-wavelength coexistence
CN106908912A (zh) 用于高速收发系统的单纤双向bosa光学结构
TW201044804A (en) Light transmission/reception module
CN212111867U (zh) 一种波分复用光通信系统
CN106324771A (zh) 光学组件和光模块
WO2021232779A1 (zh) 一种波分复用光通信装置
CN110967794B (zh) 多光束合束组件、发射光组件及光模块
CN109884753A (zh) 一种光接收组件以及组装方法
WO2021095702A1 (ja) 光モジュール、調整装置および調整方法
CN107505676A (zh) 一种多路光纤同步自动耦合装置
CN208506305U (zh) 一种多波长合波光学模块
JP2003344709A (ja) ファイバ型光モジュール
KR20050037072A (ko) 광감쇠기 일체형 파장분할다중화장치
CN212111868U (zh) 一种波分复用光通信装置
US6836590B2 (en) Optical subassembly with port configuration
JP2016038558A (ja) 4波長多重光送信器の構成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31.03.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20936727

Country of ref document: EP

Kind code of ref document: A1