WO2015157990A1 - NxN并行收发光模块 - Google Patents
NxN并行收发光模块 Download PDFInfo
- Publication number
- WO2015157990A1 WO2015157990A1 PCT/CN2014/075689 CN2014075689W WO2015157990A1 WO 2015157990 A1 WO2015157990 A1 WO 2015157990A1 CN 2014075689 W CN2014075689 W CN 2014075689W WO 2015157990 A1 WO2015157990 A1 WO 2015157990A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- chip
- self
- filter
- array
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4246—Bidirectionally operating package structures
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/12004—Combinations of two or more optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/32—Optical coupling means having lens focusing means positioned between opposed fibre ends
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
- G02B6/4206—Optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
- G02B6/4215—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4249—Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
- G02B6/425—Optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4274—Electrical aspects
- G02B6/4279—Radio frequency signal propagation aspects of the electrical connection, high frequency adaptations
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4274—Electrical aspects
- G02B6/428—Electrical aspects containing printed circuit boards [PCB]
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4292—Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/43—Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/40—Transceivers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12083—Constructional arrangements
- G02B2006/12121—Laser
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12083—Constructional arrangements
- G02B2006/12123—Diode
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
- G02B6/4207—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback
Definitions
- the present invention relates to the field of optical fiber communication, and particularly relates to a parallel optical transceiver module, a parallel optical transceiver module, and a parallel optical transceiver module.
- Parallel optical transmission and reception technology as one of the implementations of high-speed and large-capacity optical transmission, has considerable advantages in technology and cost. It utilizes medium and high speed optoelectronic technology and relies on the repetition of channels to achieve high-speed, high-capacity transmission.
- parallel optical communication technology shows more advantages: such as fast transmission speed and small size. Light weight, low crosstalk, etc. Driven by services such as wireless communications, video, and voice, higher speed, larger capacity, longer distance communication solutions are required.
- the existing parallel optical module uses a VCSEL laser (Vertical Cavity Surface Emitting Laser) as a light source.
- VCSEL laser Very Cavity Surface Emitting Laser
- This type of light source is currently only used in the 850 nm band due to limitations in materials and production processes.
- the optical fiber has a large loss in transmission, which determines that this type of optical module is only suitable for short-distance transmission.
- the optical module with VCSEL has a transmission distance of about 300 to 500 meters, which is far from meeting data transmission and PON (Passive Optical Network). Application of passive optical networks).
- the patent document CN1665086A is designed with a self-focusing lens array in the coupling of the VCSEL laser array and the fiber array. It can realize the smooth and continuous convergence of the outgoing light to the access point of the fiber array, but the file uses a self-focusing lens array.
- the design is more complicated, and the designed parallel optical module is only the transmitting end, and can only be applied to short-distance transmission within 300 meters.
- Patent document EP1253450A2 has three optical fibers and optical parts, and the optical part specifically includes self-polymerization.
- the book focus lens 1 + filter + self-focusing lens 2 its specific application is the multiplexing of light waves, and does not achieve parallel light, and the design and application of this optical link is narrow. Summary of the invention
- the object of the present invention is to solve the problem that the conventional parallel optical module has a short transmission distance and narrow application, and the present invention provides the following technical solutions:
- An NxN parallel receiving and emitting module the optical module comprises: a high frequency circuit printed board, a laser driving control chip, a laser chip, two self-focusing lenses, a filter, a multimode fiber array, and a PD (photo diode) chip array;
- a high-frequency circuit printed circuit board is used as a base, and a signal input interface is formed at one end thereof, and the interface adopts a gold finger structure;
- Driving a control chip which controls the laser chip and directly integrated on the high-frequency circuit printed board; two self-focusing lenses are respectively located on both sides of the filter, and are fixed on the printed circuit board after being actively aligned;
- the laser chip is flip-chip mounted on the printed circuit board after active alignment, and simultaneously emits laser light of the same wavelength, converges through the first self-focusing lens Grin 1 , and transmits the filter wave plate.
- the filter exhibits a bandpass for the wavelength emitted by the laser, and the N-beam laser is again focused by the second self-focusing lens Grin 2, and is respectively incident into the N channels of the multimode fiber array;
- N beams of the same wavelength are incident from four channels in the multimode fiber array, are concentrated by the self-focusing lens Grin 2, are reflected on the surface of the filter, and the filter pair is incident from the fiber array.
- the wavelength of the band appears as a band stop, and the reflected N beam of laser light is again concentrated by the focusing lens 2 and finally incident into the PD chip array.
- the laser chip is a DFB or FP laser chip.
- the laser chip is 0. 1mm, the numerical aperture is 0. 4um, the laser core 5 ⁇ 0 The distance from the first self-focusing lens is 0. 5mm 0
- the self-focusing lens is a cylindrical optical lens with a refractive index that gradually converges, and can smoothly focus the light emitted by the laser into the multimode fiber array.
- the size structure of the multimode fiber array is compatible with the MTP/MP0 standard connector interface.
- the PD chip array is a 1x4 linear array, and the PD coupling difficulty is lower than that of the LD, so the array form is used.
- the distance between the PD array and the array of the optical fiber array is 0. 7mm
- the invention also discloses an NxN parallel light receiving module, the optical module comprising: a high frequency circuit printed board, a driving control chip, a self-focusing lens 2, a filter, an optical fiber array and a PD chip array;
- a high-frequency circuit printed circuit board is used as a base, and a signal input interface is formed at one end thereof, and the interface adopts a gold finger structure;
- a self-focusing lens and a filter are actively aligned and fixed on the printed circuit board; N beams of the same wavelength are incident from N channels in the multimode fiber array, and are concentrated by the self-focusing lens 2, Reflected on the surface of the filter, the filter exhibits a band stop on the wavelength incident from the fiber array, and the reflected N-beam laser is again concentrated by the autofocus lens 2 and finally incident on the PD chip array.
- the invention also discloses an NxN parallel optical transceiver module, which comprises: a high frequency circuit printed board, a driving control chip, an N-chip laser chip, two self-focusing lenses, a filter, and an optical fiber array;
- a high-frequency circuit printed circuit board is used as a base, and a signal input interface is formed at one end thereof, and the interface adopts a gold finger structure;
- a self-focusing lens and a filter are fixedly aligned on the printed circuit board after being actively aligned;
- the N-chip laser chip After being actively aligned, the N-chip laser chip is flip-chip mounted on the printed circuit board, and simultaneously emits laser light of the same wavelength, converges through the first self-focusing lens 1, and transmits the filter wave plate, and the filter transmits to the laser.
- the wavelength of the book appears as bandpass, and the N-beam laser is again focused by the second self-focusing lens 2 and incident on the N channels of the fiber array.
- the beneficial effects of the present invention are as follows: The present invention realizes multi-channel long-distance parallel transmission and reception function by using a DFB or FP laser chip and a self-focusing lens, and realizes miniaturization and integration of the device.
- FIG. 1 Schematic diagram of the structure of the NxN parallel receiving and emitting module.
- FIG. 1 Schematic diagram of the optical link of the NxN parallel receiving and emitting module.
- FIG. 1 Schematic diagram of the optical link of the NxN parallel optical transceiver module.
- Figure 4 Schematic diagram of the optical link of the NxN parallel optical transceiver module.
- BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be further described in detail in conjunction with the test examples and specific embodiments. However, the scope of the above-mentioned subject matter of the present invention should not be construed as being limited to the following embodiments, and the technology that is implemented based on the present invention is within the scope of the present invention.
- the NxN parallel light-receiving module in the present invention takes a design scheme of a 4x4 parallel light-emitting module as an example.
- the 4x4 parallel light-emitting module consists of a high-frequency printed circuit board, a laser-driven control chip, four DFB laser chips, two Grin lenses, a filter, a multimode fiber array, and a 1x4 PD chip array.
- the optical module can be used in applications with 2.5 Git/s, lOGbit/s and higher transmission rates.
- the high-frequency printed circuit board is used as a substrate for carrying components such as a driving chip, a laser chip, and a self-focusing lens.
- the position of each component is precisely fixed to achieve a well-designed optical path.
- One end of the high-frequency printed circuit board forms a signal input interface, and the interface is changed to a gold finger structure.
- DFB laser chip DFB (Distributed Feedback Laser), which is a distributed feedback laser, has a built-in Bragg Grating, which is a side-emitting semiconductor laser.
- DFB lasers mainly use semiconductor materials as a medium. The spectral characteristics of the DFB laser are very good, which can avoid the influence of dispersion in length transmission, so it is widely used in long-distance, high-rate applications.
- the FP cavity is a resonant cavity, and a semi-conductor light-emitting device that emits multiple longitudinal modes of coherent light.
- This type of device Large output optical power, small divergence angle, narrow spectrum, high modulation rate, suitable for long-distance communication.
- the divergence angle is 25x30 °.
- the four laser chips are precisely fixed on the high-frequency printed circuit board.
- the self-focusing lens is a cylindrical optical lens with a refractive index that varies with the radial direction, and can smoothly focus the light from the laser into the multimode fiber array.
- the present invention employs two sets of self-focusing lenses, which are respectively located on both sides of the filter, and are fixed on the printed circuit board after being actively aligned.
- the size of the self-focusing lens 1 is 6 mm X 4 mm X 4 mm, and the size of the self-focusing lens 2 is 3 4 mm with X 4 .
- the filter is a wavelength division filter, which exhibits a band pass to the laser at the transmitting end, and a band stop for the laser injected into the fiber array. That is, the laser light emitted by the DFB laser is recorded by the focusing lens 1 and then directly filtered. The wave plate, and the laser light incident on the fiber array is concentrated by the autofocus lens 2 and reflected on the surface of the filter again through the autofocus lens 2.
- Multimode fiber array the size structure of the fiber array is compatible with the MTP/MP0 standard connector interface.
- the PD chip array is a 1x4 linear array, and the PD coupling difficulty is lower than that of the LD, so the array form is selected.
- Two self-focusing lenses are respectively located on both sides of the filter, and are fixed on the printed circuit board after being actively aligned;
- Transmitter optical link 4 DFB laser chips are flip-chip bonded to the printed circuit board after active alignment.
- the distance between the DFB lasers is 0. 1mm
- the numerical aperture is 0. 4um
- the distance from the laser to the first self-focusing lens is 0. 5mm 0 4 laser chips simultaneously emit laser light of the same wavelength ⁇
- the first block The focusing lens Grin 1 converges and transmits the filter wave plate.
- the filter exhibits a bandpass for the wavelength emitted by the laser, and its transmittance is higher than 95%.
- the four laser beams are again focused by the second self-focusing lens Grin 2 and are incident respectively. Into the 4 channels of the fiber array.
- Parallel light-emitting module 4 DFB laser chips simultaneously emit laser light of the same wavelength, which is concentrated by the first self-focusing lens 1 and transmitted through the wavelength band-pass filter, and the four laser beams are again focused by the second self-focusing lens 2. Opposed into the 4 channels of the fiber array
- Parallel light receiving module Four laser beams of the same wavelength are emitted from four channels in the optical fiber array, are concentrated by the self-focusing lens 2, and are reflected on the surface of the wavelength band-stop filter, and the four laser beams that are reflected are again used by the self-focusing lens 2 Convergence, eventually incident on the PD chip array.
- the embodiment of the FP laser chip in the present invention only converts the DFB laser chip into a FP laser chip, and the related content will not be described again.
- the invention is not limited to the specific embodiments described above.
- the present invention extends to any new feature or any new combination disclosed in this specification, as well as any novel method or process steps or any new combination disclosed, all of which are based on the teachings of the present invention. The scope of the invention.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optical Couplings Of Light Guides (AREA)
- Semiconductor Lasers (AREA)
Abstract
一种NxN并行光模块,该光模块包括:高频电路印制板、激光器驱动控制芯片、激光器芯片、2块自聚焦透镜、滤波片、多模光纤阵列以及PD芯片阵列;在发射端光学链路中,激光器芯片同时发出相同波长的激光,经自聚焦透镜(1)会聚,透射过波长带通滤波片,激光经过自聚焦透镜(2)再次聚焦,分别入射到多模光纤阵列的通道中;在接收端光学链路中,从多模光纤阵列中的通道射出相同波长的激光,经过自聚焦透镜(2)会聚,在波长带阻滤波片表面反射,被反射的激光再次被自聚焦透镜(2)会聚,最终入射到PD芯片阵列中。利用DFB或FP激光器芯片及自聚焦透镜实现了多通道长距离并行收发,实现了器件小型化,集成化。
Description
说 明 书
NxN并行收发光模块 技术领域 本发明属于光纤通信领域, 尤其涉及并行光收发模块, 并行光发模块, 并 行光收模块。 背景技术 并行光发射和接收技术作为高速大容量光传输的实现方案之一, 在技术和 成本上占有相当的优势。 它利用中高速光电技术, 依靠信道的重复来取得高速 率、 大容量的传输。 特别是在短距离的通讯, 如大型通讯系统中背板与背板间 的互联以及局域网内的数据传输等场合, 并行光通讯技术体现出更多的优点: 如传输速度快, 体积小。 重量轻, 串扰小等。 在无线通信、 视频、 语音等服务 的推动下, 要求更加高速, 更大容量, 更长距离的通信解决方案。
现有的并行光模块采用的 VCSEL 激光器 (Vertical Cavity Surface Emitting Laser , 垂直腔面发射激光器) 作为光源, 这种类型的光源由于材料 和生产工艺的限制目前只用于 850nm波段, 这一波段在标准光纤中传输时具有 很大的损耗, 决定了这类光模块只适用于短距离传输, 一般的采用 VCSEL 的光 模块传输距离约为 300至 500米,远不能满足数据传输和 PON (Passive Optical Network无源光纤网络) 的应用。
专利文件 CN1665086A在 VCSEL激光器阵列与光纤阵列耦合中设计加入了自 聚焦透镜阵列, 能够实现出射光线被平滑且连续的会聚到光纤阵列的接入点, 但文件中使用了自聚焦透镜阵列, 该种设计比较复杂, 且所设计的并行光模块 只是发射端, 最终只能应用到 300米以内的短距离传输。
专利文件 EP1253450A2 中有三根光纤和光学部分, 光学部分具体包括自聚
说 明 书 焦透镜 1+滤波片 +自聚焦透镜 2, 其具体应用为光波的复用, 并没有实现光的并 行, 并且这种光学链路的设计应用较窄。 发明内容
本发明的目的在于解决传统并行光模块传输距离短, 应用窄问题, 本发明 提供了以下的技术方案:
一种 NxN并行收发光模块, 该光模块包括: 高频电路印制板、激光器驱动 控制芯片、激光器芯片、 2块自聚焦透镜、滤波片、多模光纤阵列以及 PD (photo diode) 芯片阵列;
一块高频电路印制板作为基底, 并在其一端形成信号输入接口, 接口采用 金手指结构;
驱动控制芯片, 其控制激光器芯片, 并直接集成在高频电路印制板上; 将 2块自聚焦透镜分别位于滤波片的两侧, 经有源对准后固定在印制电路 板上;
在发射端光学链路中, 激光器芯片经有源对准后倒装悍接在印制电路板上, 同时发出相同波长的激光, 经第一块自聚焦透镜 Grin 1会聚, 透射过滤波片, 此滤波片对激光器发射出的波长表现为带通, N束激光经过第二块自聚焦透镜 Grin 2再次聚焦, 分别入射到多模光纤阵列的 N个通道中;
在接收端光学链路中, 从多模光纤阵列中的四个通道入射出 N束相同波长 的激光, 经过自聚焦透镜 Grin 2会聚, 在滤波片表面反射, 滤波片对从光纤阵 列中入射出的波长表现为带阻, 被反射的 N束激光再次被自聚焦透镜 2会聚, 最终入射到 PD芯片阵列中。
进一歩的, 激光器芯片为 DFB或 FP激光器芯片。
进一歩的, 激光器芯片之间的间隔为 0. 1mm, 数值孔径为 0. 4um, 激光器芯
说 明 书 片距离第一块自聚焦透镜的距离为 0. 5mm 0
进一歩的, 自聚焦透镜为折射率随径向渐变的柱状光学透镜, 能将激光器 发出的光线平滑的聚焦到多模光纤阵列中。
进一歩的, 多模光纤阵列的尺寸结构与 MTP/MP0标准连接器接口兼容。 进一歩的, PD芯片阵列为 1x4线性阵列, PD的耦合难度相对于 LD较低, 所以选用阵列的形式。
进一歩的, PD阵列中 PD芯片彼此之间间距为 0. 15mm, PD阵列与光纤阵 列的中心间距为 0. 7mm
本发明还公开了一种 NxN 并行光收模块,该光模块包括:高频电路印制板、 驱动控制芯片、 1个自聚焦透镜 2、 滤波片、 光纤阵列以及 PD芯片阵列;
一块高频电路印制板作为基底, 并在其一端形成信号输入接口, 接口采用 金手指结构;
将 1个自聚焦透镜和滤波片, 经有源对准后固定在印制电路板上; 从多模光纤阵列中的 N个通道入射出 N束相同波长的激光, 经过自聚焦透 镜 2会聚, 在滤波片表面反射, 滤波片对从光纤阵列中入射出的波长表现为带 阻, 被反射的 N束激光再次被自聚焦透镜 2会聚, 最终入射到 PD芯片阵列中。
本发明还公开了一种 NxN 并行光发模块,该光模块包括:高频电路印制板、 驱动控制芯片、 N片激光器芯片、 2个自聚焦透镜、 滤波片、 光纤阵列;
一块高频电路印制板作为基底, 并在其一端形成信号输入接口, 接口采用 金手指结构;
将 1个自聚焦透镜和滤波片, 经有源对准后固定在印制电路板上;
N片激光器芯片经有源对准后倒装悍接在印制电路板上,同时发出相同波长 的激光, 经第一块自聚焦透镜 1会聚, 透射过滤波片, 此滤波片对激光器发射
说 明 书 出的波长表现为带通, N束激光经过第二块自聚焦透镜 2再次聚焦, 分别入射 到光纤阵列的 N个通道中。 与现有技术相比, 本发明的有益效果为: 本发明利用 DFB或 FP激光器芯片及自聚焦透镜实现了多通道长距离并行收 发功能, 并实现了器件的小型化和集成化。 附图说明
图 1 NxN 并行收发光模块结构示意图。
图 2 NxN 并行收发光模块光学链路示意图。
图 3 NxN 并行光收模块光学链路示意图。
图 4 NxN 并行光发模块光学链路示意图。 具体实施方式 下面结合试验例及具体实施方式对本发明作进一步的详细描述。 但不应将 此理解为本发明上述主题的范围仅限于以下的实施例, 凡基于本发明内容所实 现的技术均属于本发明的范围。
本发明中的 NxN 并行收发光模块,以 4x4并行收发光模块的设计方案为例。 该 4x4并行收发光模块由高频印制电路板、激光器驱动控制芯片, 4片 DFB激光 器芯片、 2块自聚焦透镜 (Grin lens) 、 滤波片、 多模光纤阵列以及 1x4 PD芯 片阵列组成。 该光模块可应用在 2. 5Git/s, lOGbit/s以及更高传输速率的应用 中。
高频印制电路板为基底用于承载驱动芯片, 激光器芯片, 自聚焦透镜等元 件。 各个元件的位置是精确固定了, 以实现设计好的光路。 高频印制电路板的 一端形成一个信号输入接口, 改接口采用金手指结构。
说 明 书
DFB激光器芯片, DFB ( Distributed Feedback Laser), 即分布式反馈激光 器, 其不同之处是内置了布拉格光栅 (Bragg Grating) , 属于侧面发射的半导 体激光器。 目前, DFB激光器主要以半导体材料为介质。 DFB激光器光谱特性非 常好, 可以避免长度传输中色散的影响, 所以, 广泛的使用在长距离、 高速率 的应用场合。
FP (Fabry-Perot)激光器芯片, FP腔为谐振腔, 发出多纵模相干光的半导 体发光器件。 这类器件的特点: 输出光功率大、 发散角较小、 光谱较窄、 调制 速率高, 适合于较长距离通信。
此设计中有 4片激光器芯片, 这 4片芯片所激射出的激光为同一波长
( 1310nm ),发散角为 25x30 ° 这四片激光器芯片精确的固定在高频印制电路板 上。
自聚焦透镜为折射率随径向渐变的柱状光学透镜, 能将激光器发出的光线 平滑的聚焦到多模光纤阵列中。 本发明采用两组自聚焦透镜, 分别位于滤波片 的两侧, 经有源对准后固定在印制电路板上。 自聚焦透镜 1尺寸为 6mm X 4mm X 4mm,自聚焦透镜 2的尺寸为 3隨 X 4讓 X 4mm。
滤波片为波分滤波片, 其对发射端激光表现为带通, 对于射入光纤阵列中 的激光表现为带阻, 也就是说, DFB激光器发射的激光记过自聚焦透镜 1会聚后 直接透过滤波片, 而射入光纤阵列的激光经自聚焦透镜 2会聚后在滤波片表面 反射再次经过自聚焦透镜 2。
多模光纤阵列, 该光纤阵列的尺寸结构与 MTP/MP0标准连接器接口兼容。
PD芯片阵列为 1x4线性阵列, PD的耦合难度相对于 LD较低, 所以选用阵 列的形式。
本方案中并行收发光模块实施请结合图 1。
说 明 书 实施例 1
本方案中并行收发光模块的具体光学链路原理请结合图 2:
在发射端光学链路中, 4片 DFB激光器芯片同时发出相同波长 的激光, 经 第一块自聚焦透镜 1会聚,透射过波长带通滤波片, 4束激光经过第二块自聚焦 透镜 2再次聚焦, 分别入射到光纤阵列的 4个通道中。
在接收端光学链路中, 从光纤阵列中的四个通道射出 4束相同波长为 ^的 激光, 经过自聚焦透镜 2会聚, 在波长带阻滤波片表面反射, 被反射的 4束激 光再次被自聚焦透镜 2会聚, 最终入射到 PD芯片阵列中。
1.选取一块高频电路印制板作为基底, 并在其一端形成信号输入接口, 接 口采用金手指结构;
2.将两块自聚焦透镜分别位于滤波片的两侧, 经有源对准后固定在印制电 路板上;
3.发射端光学链路中; 4片 DFB激光器芯片经有源对准后倒装焊接在印制 电路板上。 DFB激光器之间的间隔为 0. 1mm, 数值孔径为 0. 4um, 激光器距离第 一块自聚焦透镜的距离为 0. 5mm 0 4片激光器芯片同时发出相同波长 ^的激光, 经第一块自聚焦透镜 Grin 1会聚, 透射过滤波片, 此滤波片对激光器发射出的 波长表现为带通, 其透射率高于 95%, 4束激光经过第二块自聚焦透镜 Grin 2 再次聚焦, 分别入射到光纤阵列的 4个通道中。
4. 在接收端光学链路中, 从光纤阵列中的四个通道入射出 4束相同波长 A2 的激光, 经过 Grin 2会聚, 在滤波片表面反射, 滤波片对从光纤阵列中入射出 的波长表现为带阻, 被反射的 4束激光再次被 Grin 2会聚, 最终入射到 PD阵 列中。 PD阵列中 PD芯片彼此之间间距为 0. 15mm, PD阵列与光纤阵列的中心间 距为 0. 7mm
说 明 书 实施例 2
本方案中并行光收模块的具体光学链路原理请结合图 3:
并行光发模块: 4片 DFB激光器芯片同时发出相同波长 ^的激光, 经第一 块自聚焦透镜 1会聚, 透射过波长带通滤波片, 4束激光经过第二块自聚焦透 镜 2再次聚焦, 分别入射到光纤阵列的 4个通道中
实施例 3
本方案中并行光发模块的具体光学链路原理请结合图 4:
并行光收模块: 从光纤阵列中的四个通道射出 4束相同波长为 的激光, 经过自聚焦透镜 2会聚, 在波长带阻滤波片表面反射, 被反射的 4束激光再次 被自聚焦透镜 2会聚, 最终入射到 PD芯片阵列中。
本发明中有关 FP激光器芯片的实施例, 如以上实施例所示, 只是将 DFB激 光器芯片变换为 FP激光器芯片, 有关内容不再赘述。 本发明并不局限于前述的具体实施方式。 本发明扩展到任何在本说明书中 披露的新特征或任何新的组合, 以及披露的任一新的方法或过程的歩骤或任何 新的组合, 凡基于本发明内容所实现的技术均属于本发明的范围。
Claims
1. NxN并行收发光模块, 其特征在于, 该光模块包括: 高频电路印制板、 激光器驱动控制芯片、 激光器芯片、 2块自聚焦透镜、 滤波片、 多模光纤阵列以 及 PD芯片阵列;
一块高频电路印制板作为基底, 并在其一端形成信号输入接口, 接口采用 金手指结构;
驱动控制芯片, 其控制激光器芯片, 并直接集成在高频电路印制板上; 将 2块自聚焦透镜分别位于滤波片的两侧, 经有源对准后固定在印制电路 板上;
在发射端光学链路中, 激光器芯片经有源对准后倒装焊接在印制电路板上, 同时发出相同波长的激光, 经第一块自聚焦透镜 Grin 1会聚, 透射过滤波片, 此滤波片对激光器发射出的波长表现为带通, N束激光经过第二块自聚焦透镜 Grin 2再次聚焦, 分别入射到多模光纤阵列的 N个通道中;
在接收端光学链路中, 从多模光纤阵列中的四个通道入射出 N束相同波长 的激光, 经过自聚焦透镜 Grin 2会聚, 在滤波片表面反射, 滤波片对从光纤阵 列中入射出的波长表现为带阻, 被反射的 N束激光再次被自聚焦透镜 2会聚, 最终入射到 PD芯片阵列中。
2.根据权利要求 1所述的 NxN并行收发光模块, 其特征在于, 所述激光器 芯片为 DFB或 FP激光器芯片。
3.根据权利要求 1所述的 NxN并行收发光模块, 其特征在于, 所述激光器 芯片之间的间隔为 0. 1mm, 数值孔径为 0. 4um, 激光器芯片距离第一块自聚焦透 镜的距离为 0. 5mm。
4.根据权利要求 1所述的 NxN并行收发光模块, 其特征在于, 所述自聚焦 透镜为折射率随径向渐变的柱状光学透镜, 能将激光器发出的光线平滑的聚焦
权 利 要 求 书 到多模光纤阵列中。
5.根据权利要求 1所述的 NxN 并行收发光模块, 其特征在于, 所述多模光 纤阵列的尺寸结构与 MTP/MP0标准连接器接口兼容。
6.根据权利要求 1所述的 NxN 并行收发光模块, 其特征在于, 所述 PD芯 片阵列为 IxN线性阵列, TO的耦合难度相对于 LD较低, 所以选用阵列的形式。
7.根据权利要求 6所述的 NxN 并行收发光模块, 其特征在于, 所述 PD阵 列中 PD芯片彼此之间间距为 0. 15匪, PD阵列与光纤阵列的中心间距为 0. 7mm。
8. NxN 并行光收模块, 其特征在于, 该光模块包括: 高频电路印制板、 驱 动控制芯片、 1个自聚焦透镜 2、 滤波片、 光纤阵列以及 PD芯片阵列;
一块高频电路印制板作为基底, 并在其一端形成信号输入接口, 接口采用 金手指结构;
将 1个自聚焦透镜和滤波片, 经有源对准后固定在印制电路板上; 从多模光纤阵列中的 N个通道入射出 N束相同波长的激光, 经过自聚焦透 镜 2会聚, 在滤波片表面反射, 滤波片对从光纤阵列中入射出的波长表现为带 阻, 被反射的 N束激光再次被自聚焦透镜 2会聚, 最终入射到 PD芯片阵列中。
9. NxN 并行光发模块, 其特征在于, 该光模块包括: 高频电路印制板、 驱 动控制芯片、 N片激光器芯片、 2个自聚焦透镜、 滤波片、 光纤阵列;
一块高频电路印制板作为基底, 并在其一端形成信号输入接口, 接口采用 金手指结构;
将 1个自聚焦透镜和滤波片, 经有源对准后固定在印制电路板上;
N片激光器芯片经有源对准后倒装悍接在印制电路板上,同时发出相同波长 的激光, 经第一块自聚焦透镜 1会聚, 透射过滤波片, 此滤波片对激光器发射 出的波长表现为带通, N束激光经过第二块自聚焦透镜 2再次聚焦, 分别入射
权 利 要 求 书 到光纤阵列的 N个通道中。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/383,883 US9709759B2 (en) | 2014-04-18 | 2014-04-18 | NxN parallel optical transceiver |
CN201480000771.9A CN104169769B (zh) | 2014-04-18 | 2014-04-18 | NxN并行收发光模块 |
PCT/CN2014/075689 WO2015157990A1 (zh) | 2014-04-18 | 2014-04-18 | NxN并行收发光模块 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2014/075689 WO2015157990A1 (zh) | 2014-04-18 | 2014-04-18 | NxN并行收发光模块 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015157990A1 true WO2015157990A1 (zh) | 2015-10-22 |
Family
ID=51912336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/075689 WO2015157990A1 (zh) | 2014-04-18 | 2014-04-18 | NxN并行收发光模块 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9709759B2 (zh) |
CN (1) | CN104169769B (zh) |
WO (1) | WO2015157990A1 (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104516070B (zh) * | 2014-12-05 | 2016-06-29 | 武汉电信器件有限公司 | 高可靠性非气密封装并行收发组件 |
CN106483609A (zh) * | 2015-08-25 | 2017-03-08 | 青岛海信宽带多媒体技术有限公司 | 一种光模块 |
CN106130649A (zh) * | 2016-07-12 | 2016-11-16 | 武汉电信器件有限公司 | 一种qsfp+光模块组件 |
CN107171176B (zh) * | 2017-07-05 | 2019-08-23 | 辽宁优迅科技有限公司 | 一种fp滤波器的光器件光路耦合方法 |
EP3694119B1 (en) * | 2018-03-29 | 2022-03-02 | Hisense Broadband Multimedia Technologies Co., Ltd. | Optical module |
CN108957649B (zh) * | 2018-10-17 | 2023-08-22 | 四川光恒通信技术有限公司 | 一种平行光结构双收双发盒型密封封装光器件 |
US10996138B2 (en) * | 2019-08-30 | 2021-05-04 | Viavi Solutions Inc. | Parallel optics based optical time domain reflectometer acquisition |
CN112615675B (zh) * | 2020-12-14 | 2022-07-29 | 中航光电科技股份有限公司 | 一种垂直底面发射的并行无线光模块 |
CN113917614A (zh) * | 2021-09-15 | 2022-01-11 | 武汉光迅科技股份有限公司 | 一种光模块 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1665086A (zh) * | 2004-03-05 | 2005-09-07 | 中国科学院半导体研究所 | 应用自聚焦透镜阵列的并行光发射模块及制作方法 |
US6999663B2 (en) * | 2001-10-31 | 2006-02-14 | Adc Telecommunications, Inc. | Fiber optic tap |
EP2365654A2 (en) * | 2010-03-10 | 2011-09-14 | Ofs Fitel Llc, A Delaware Limited Liability Company | Multicore fiber transmission systems and methods |
CN202794615U (zh) * | 2012-06-26 | 2013-03-13 | 一诺仪器(威海)有限公司 | 一种光收发一体组件 |
JP5335613B2 (ja) * | 2009-08-21 | 2013-11-06 | 株式会社フジクラ | レーザ装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4960315A (en) * | 1989-05-19 | 1990-10-02 | At&T Bell Laboratories | Atmosphric optical communication link |
US6399397B1 (en) * | 1992-09-14 | 2002-06-04 | Sri International | Up-converting reporters for biological and other assays using laser excitation techniques |
CA2217688C (en) * | 1997-10-07 | 2006-12-05 | Gary Duck | Coupling of light into a monolithic waveguide device |
US6937809B1 (en) * | 2002-03-18 | 2005-08-30 | Alliance Fiber Optic Products, Inc. | Variable attenuator optical add/drop devices |
JP4022498B2 (ja) * | 2003-04-18 | 2007-12-19 | インターナショナル・ビジネス・マシーンズ・コーポレーション | 光リンク・モジュール、光接続方法、該光リンク・モジュールを含む情報処理装置、信号転送方法、プリズム、およびその製造方法 |
CN202083817U (zh) * | 2011-05-03 | 2011-12-21 | 苏州旭创科技有限公司 | 用于高速传输的并行光收发组件 |
CN102162885A (zh) * | 2011-05-03 | 2011-08-24 | 苏州旭创科技有限公司 | 用于高速传输的并行光收发组件 |
US8929738B2 (en) * | 2012-05-30 | 2015-01-06 | Telefonaktiebolaget L M Ericsson (Publ) | Resilience in an access subnetwork ring |
CN202837617U (zh) * | 2012-08-27 | 2013-03-27 | 苏州旭创科技有限公司 | 用于宽带高速传输的并行光收发组件 |
CN203259694U (zh) * | 2013-05-07 | 2013-10-30 | 苏州旭创科技有限公司 | 一种用于宽带高速传输的并行光收发组件 |
-
2014
- 2014-04-18 CN CN201480000771.9A patent/CN104169769B/zh active Active
- 2014-04-18 WO PCT/CN2014/075689 patent/WO2015157990A1/zh active Application Filing
- 2014-04-18 US US14/383,883 patent/US9709759B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6999663B2 (en) * | 2001-10-31 | 2006-02-14 | Adc Telecommunications, Inc. | Fiber optic tap |
CN1665086A (zh) * | 2004-03-05 | 2005-09-07 | 中国科学院半导体研究所 | 应用自聚焦透镜阵列的并行光发射模块及制作方法 |
JP5335613B2 (ja) * | 2009-08-21 | 2013-11-06 | 株式会社フジクラ | レーザ装置 |
EP2365654A2 (en) * | 2010-03-10 | 2011-09-14 | Ofs Fitel Llc, A Delaware Limited Liability Company | Multicore fiber transmission systems and methods |
CN202794615U (zh) * | 2012-06-26 | 2013-03-13 | 一诺仪器(威海)有限公司 | 一种光收发一体组件 |
Also Published As
Publication number | Publication date |
---|---|
CN104169769B (zh) | 2016-05-25 |
CN104169769A (zh) | 2014-11-26 |
US20170023750A1 (en) | 2017-01-26 |
US9709759B2 (en) | 2017-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015157990A1 (zh) | NxN并行收发光模块 | |
JP5723028B2 (ja) | マルチレーザ送信機光学サブアセンブリ及び光電送受信機モジュール | |
US9379276B2 (en) | Optical interconnection module and optical-electrical hybrid board | |
US8265486B2 (en) | Optical communication module | |
WO2017118271A1 (zh) | 一种用于双链路传输的并行收发光模块和制作方法 | |
US9110260B2 (en) | Hybrid optical coupling module having an alignment mark formed on an optical transmission means and an array lens and manufacturing method thereof | |
US6951426B2 (en) | Pad architecture for backwards compatibility for bi-directional transceiver module | |
CN108139556A (zh) | 具有提供偏心光纤的光耦合插座的多信道光发射次模块(tosa) | |
CN109061814B (zh) | 一种基于环形器的单纤双向收发器 | |
US8995845B2 (en) | Multi-laser transmitter optical subassembly for optoelectronic modules | |
CN106896447B (zh) | 具有高密度光学互连模块的波分复用的光学部件 | |
CN109100838B (zh) | 一种可控温的集成单纤双向器件 | |
JP2017161820A (ja) | 光受信器及び光トランシーバ | |
CN112444926B (zh) | 具有倾斜的输出界面以增加耦合效率的光转向镜及使用其的多频道光次组件 | |
US12074642B2 (en) | Optical module | |
US20230418006A1 (en) | Optical module | |
US10714890B1 (en) | Transmitter optical subassembly arrangement with vertically-mounted monitor photodiodes | |
KR102252682B1 (ko) | 다채널 광모듈 장치 및 그것의 제조 방법 | |
KR101378297B1 (ko) | 냉각기를 구비하는 광 송신 장치 | |
CN112585828B (zh) | 包含倾斜或分级通带滤波器的光发射器,及其制造和使用方法 | |
US11474311B1 (en) | Parabolic lens device for use in optical subassembly modules | |
WO2021241247A1 (ja) | 光トランシーバ | |
JP2016038558A (ja) | 4波長多重光送信器の構成方法 | |
US20150286018A1 (en) | Cost-effective optical coupling module | |
Saeki et al. | Compact optical transmitter module with integrated optical multiplexer for 100 Gbit/s |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 14383883 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14889240 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14889240 Country of ref document: EP Kind code of ref document: A1 |