WO2021232498A1 - 摄像光学镜头 - Google Patents

摄像光学镜头 Download PDF

Info

Publication number
WO2021232498A1
WO2021232498A1 PCT/CN2020/094519 CN2020094519W WO2021232498A1 WO 2021232498 A1 WO2021232498 A1 WO 2021232498A1 CN 2020094519 W CN2020094519 W CN 2020094519W WO 2021232498 A1 WO2021232498 A1 WO 2021232498A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging optical
optical lens
ttl
focal length
Prior art date
Application number
PCT/CN2020/094519
Other languages
English (en)
French (fr)
Inventor
山崎郁
张磊
崔元善
Original Assignee
诚瑞光学(常州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(常州)股份有限公司 filed Critical 诚瑞光学(常州)股份有限公司
Publication of WO2021232498A1 publication Critical patent/WO2021232498A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Definitions

  • the present invention relates to the field of optical lenses, and in particular to an imaging optical lens suitable for portable terminal devices such as smart phones and digital cameras, as well as imaging devices such as monitors and PC lenses.
  • the photosensitive devices of general photographic lenses are nothing more than photosensitive coupled devices (CCD) or complementary metal oxide semiconductor devices (Complementary Metal).
  • CCD photosensitive coupled devices
  • CMOS Sensor complementary metal oxide semiconductor devices
  • the lenses traditionally mounted on mobile phone cameras often adopt three-element, four-element, or even five-element or six-element lens structures.
  • the seven-element lens structure gradually appears in the lens design.
  • the seven-element lens has good optical performance, its optical power, lens spacing and lens shape settings are still unreasonable, resulting in the lens structure having good optical performance, but cannot meet the requirements of large aperture, Design requirements for ultra-thin and wide-angle.
  • the focal length of the first lens is f1
  • the focal length of the second lens is f2
  • the focal length of the sixth lens is f6
  • the focal length of the seventh lens is f7
  • the image side of the second lens is
  • the on-axis distance of the object side surface of the third lens is d4
  • the on-axis distance between the image side surface of the third lens and the object side surface of the fourth lens is d6, and the following relationship is satisfied:
  • the object side surface of the first lens is convex at the paraxial position, and the image side surface of the first lens is concave at the paraxial position;
  • the focal length of the imaging optical lens is f
  • the curvature radius of the object side surface of the first lens is R1
  • the curvature radius of the image side surface of the first lens is R2
  • the axial thickness of the first lens is d1
  • the total optical length of the camera optical lens is TTL, and satisfies the following relationship:
  • the imaging optical lens satisfies the following relationship:
  • the object side surface of the second lens is convex at the paraxial position, and the image side surface of the second lens is concave at the paraxial position;
  • the imaging optical lens satisfies the following relationship:
  • the object side surface of the third lens is convex at the paraxial position, and the image side surface of the third lens is concave at the paraxial position;
  • the focal length of the imaging optical lens is f
  • the focal length of the third lens is f3
  • the radius of curvature of the object side of the third lens is R5
  • the radius of curvature of the image side of the third lens is R6, and the third lens has a focal length of f3.
  • the axial thickness of the lens is d5
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied:
  • the imaging optical lens satisfies the following relationship:
  • the image side surface of the fourth lens is convex at the paraxial position
  • the focal length of the imaging optical lens is f
  • the focal length of the fourth lens is f4
  • the radius of curvature of the object side of the fourth lens is R7
  • the radius of curvature of the image side of the fourth lens is R8, and the fourth lens has a radius of curvature of R8.
  • the axial thickness of the lens is d7
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied:
  • the imaging optical lens satisfies the following relationship:
  • the object side surface of the fifth lens is convex at the paraxial position, and the image side surface is concave at the paraxial position;
  • the focal length of the imaging optical lens is f
  • the focal length of the fifth lens is f5
  • the radius of curvature of the object side of the fifth lens is R9
  • the radius of curvature of the image side of the fifth lens is R10
  • the fifth lens has a focal length of f5.
  • the axial thickness of the lens is d9
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied:
  • the imaging optical lens satisfies the following relationship:
  • the object side surface of the sixth lens is convex at the paraxial position, and the image side surface of the sixth lens is concave at the paraxial position;
  • the focal length of the imaging optical lens is f
  • the focal length of the sixth lens is f6
  • the radius of curvature of the object side of the sixth lens is R11
  • the radius of curvature of the image side of the sixth lens is R12
  • the The on-axis thickness of the sixth lens is d11
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied:
  • the imaging optical lens satisfies the following relationship:
  • the object side of the seventh lens is concave at the paraxial position, and the image side of the seventh lens is concave at the paraxial position;
  • the focal length of the imaging optical lens is f
  • the focal length of the seventh lens is f7
  • the radius of curvature of the object side surface of the seventh lens is R13
  • the radius of curvature of the image side surface of the seventh lens is R14
  • the The axial thickness d13 of the seventh lens is TTL, and the following relationship is satisfied:
  • the imaging optical lens satisfies the following relationship:
  • the total optical length TTL of the imaging optical lens is less than or equal to 7.70 mm.
  • the aperture value FNO of the imaging optical lens is less than or equal to 1.65.
  • the aperture value FNO of the imaging optical lens is less than or equal to 1.62.
  • the imaging optical lens according to the present invention has good optical performance, and has the characteristics of large aperture, wide angle, and ultra-thinness, and is especially suitable for mobile phones composed of high-pixel CCD, CMOS and other imaging elements.
  • Camera lens assembly and WEB camera lens are examples of the imaging optical lens according to the present invention.
  • FIG. 1 is a schematic diagram of the structure of an imaging optical lens according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 1;
  • FIG. 3 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 1;
  • FIG. 4 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 1;
  • FIG. 5 is a schematic diagram of the structure of an imaging optical lens according to a second embodiment of the present invention.
  • FIG. 6 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 5;
  • FIG. 7 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 5;
  • FIG. 8 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 5;
  • FIG. 10 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 9;
  • FIG. 11 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 9;
  • FIG. 12 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 9.
  • the first lens L1 has positive refractive power
  • the second lens L2 has negative refractive power
  • the third lens L3 has negative refractive power
  • the fourth lens L4 has positive refractive power
  • the fifth lens L5 has negative refractive power
  • the sixth lens L6 has positive refractive power
  • the seventh lens L7 has negative refractive power.
  • the first lens L1 is made of plastic material
  • the second lens L2 is made of plastic material
  • the third lens L3 is made of plastic material
  • the fourth lens L4 is made of plastic material
  • the fifth lens L5 is made of plastic material
  • the sixth lens L6 is made of The seventh lens L7 is made of plastic material.
  • the focal length of the first lens L1 is f1
  • the focal length of the sixth lens L6 is defined as f6
  • the focal length of the seventh lens L7 is defined as f7, and the following relationship is satisfied: 3.00 ⁇ f1/(f6+f7) ⁇ 4.50.
  • the object side surface of the first lens L1 is convex at the paraxial position, and the image side surface is concave at the paraxial position.
  • the focal length of the first lens L1 is f1
  • the focal length of the overall imaging optical lens 10 is defined as f, which satisfies the following relationship: 0.45 ⁇ f1/f ⁇ 1.61.
  • This relational expression specifies the ratio of the focal length of the first lens L1 to the total focal length f of the system.
  • the first lens L1 has an appropriate positive refractive power, which is beneficial to reduce system aberrations and at the same time facilitate lens orientation.
  • 0.72 ⁇ f1/f ⁇ 1.29 is satisfied.
  • the on-axis thickness of the first lens L1 as d1
  • TTL total optical length of the imaging optical lens 10
  • 0.07 ⁇ d1/TTL ⁇ 0.23 Within the range of the relational formula, it is beneficial to achieve ultra-thinness. Preferably, 0.11 ⁇ d1/TTL ⁇ 0.18 is satisfied.
  • the object side surface of the second lens L2 is convex at the paraxial position, and the image side surface is concave at the paraxial position.
  • the overall focal length of the imaging optical lens 10 is f
  • the focal length of the second lens L2 is defined as f2, which satisfies the following relationship: -8.44 ⁇ f2/f ⁇ -1.23, which specifies the focal length f2 of the second lens L2 and the total focal length f of the system
  • the ratio by controlling the negative refractive power of the second lens L2 in a reasonable range, is beneficial to correct the aberration of the optical system.
  • the curvature radius of the object side surface of the second lens L2 as R3, and the curvature radius of the image side surface of the second lens L2 as R4, which satisfies the following relationship: 1.19 ⁇ (R3+R4)/(R3-R4) ⁇ 8.87, which specifies The shape of the second lens L2, as the lens becomes ultra-thin and wide-angle, is beneficial to correct the problem of axial chromatic aberration.
  • 1.91 ⁇ (R3+R4)/(R3-R4) ⁇ 7.10 is satisfied.
  • the total optical length of the imaging optical lens 10 is TTL, and the on-axis thickness of the second lens L2 is defined as d3, which satisfies the following relationship: 0.02 ⁇ d3/TTL ⁇ 0.06. Within the range of the relationship, it is beneficial to realize ultra-thinness. Preferably, 0.03 ⁇ d3/TTL ⁇ 0.05 is satisfied.
  • the object side surface of the third lens L3 is convex at the paraxial position, and the image side surface of the third lens L3 is concave at the paraxial position.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the third lens L3 is defined as f3, which satisfies the following relationship: -72.29 ⁇ f3/f ⁇ 272.97.
  • the system has better imaging quality And lower sensitivity.
  • -45.18 ⁇ f3/f ⁇ 218.37 is satisfied.
  • the total optical length of the camera optical lens 10 is TTL, and the on-axis thickness of the third lens L3 is defined as d5, which satisfies the following relationship: 0.02 ⁇ d5/TTL ⁇ 0.08. Within the range of the relationship, it is beneficial to realize ultra-thinness. . Preferably, 0.04 ⁇ d5/TTL ⁇ 0.06 is satisfied.
  • the object side surface of the fourth lens L4 is concave at the paraxial position, and its image side surface is convex at the paraxial position.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the fourth lens L4 is defined as f4, which satisfies the following relationship: -240.99 ⁇ f4/f ⁇ 5.58, which specifies the ratio of the focal length f4 of the fourth lens L4 to the total focal length f,
  • the system has better imaging quality and lower sensitivity.
  • -150.62 ⁇ f4/f ⁇ 4.47 is preferred.
  • the total optical length of the imaging optical lens 10 is TTL, and the on-axis thickness of the fourth lens L4 is defined as d7, which satisfies the following relationship: 0.04 ⁇ d7/TTL ⁇ 0.15. Within the range of the relationship, it is beneficial to achieve ultra-thinness. Preferably, 0.07 ⁇ d7/TTL ⁇ 0.12 is satisfied.
  • the object side surface of the fifth lens L5 is convex at the paraxial position, and the image side surface is concave at the paraxial position.
  • the overall focal length of the imaging optical lens 10 is f
  • the focal length of the fifth lens L5 is defined as f5, which satisfies the following relationship: -11.73 ⁇ f5/f ⁇ 78.10.
  • the limitation of the fifth lens L5 can effectively make the light angle of the camera lens smooth and reduce the tolerance sensitivity.
  • the total optical length of the imaging optical lens 10 is TTL, and the on-axis thickness of the fifth lens L5 is defined as d9, which satisfies the following relationship: 0.03 ⁇ d9/TTL ⁇ 0.12. Within the range of the relationship, it is beneficial to realize ultra-thinness. Preferably, 0.04 ⁇ d9/TTL ⁇ 0.09 is satisfied.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the sixth lens L6 is f6, which satisfies the following relationship: 0.49 ⁇ f6/f ⁇ 1.56.
  • the system has better imaging quality and comparison.
  • Low sensitivity Preferably, 0.78 ⁇ f6/f ⁇ 1.25 is satisfied.
  • the curvature radius of the object side surface of the sixth lens L6 is R11, and the curvature radius of the image side surface of the sixth lens L6 is R12, which satisfies the following relationship: -4.32 ⁇ (R11+R12)/(R11-R12) ⁇ -0.84, which is specified
  • the shape of the sixth lens L6 is within the range, with the development of ultra-thin and wide-angle, it is beneficial to correct the aberration of the off-axis angle of view.
  • it satisfies -2.70 ⁇ (R11+R12)/(R11-R12) ⁇ -1.05.
  • the total optical length of the imaging optical lens 10 is TTL, and the on-axis thickness of the sixth lens L6 is defined as d11, which satisfies the following relationship: 0.03 ⁇ d11/TTL ⁇ 0.11, which is beneficial to realize ultra-thinness.
  • 0.05 ⁇ d11/TTL ⁇ 0.09 is satisfied.
  • the object side surface of the seventh lens L7 is concave at the paraxial position, and the image side surface is concave at the paraxial position.
  • the focal length of the imaging optical lens 10 is f
  • the focal length of the seventh lens L7 is f7, which satisfies the following relationship: -1.55 ⁇ f7/f ⁇ -0.48.
  • the system has Better imaging quality and lower sensitivity.
  • -0.97 ⁇ f7/f ⁇ -0.60 is satisfied.
  • the radius of curvature of the object side surface of the seventh lens L7 as R13
  • the radius of curvature of the image side surface of the seventh lens L7 as R14
  • 0.39 ⁇ (R13+R14)/(R13-R14) ⁇ 1.24 which specifies
  • 0.62 ⁇ (R13+R14)/(R13-R14) ⁇ 0.99 is satisfied.
  • the total optical length of the imaging optical lens 10 is TTL, and the on-axis thickness of the seventh lens L7 is defined as d13, which satisfies the following relational expression 0.03 ⁇ d13/TTL ⁇ 0.13. Within the range of the relational expression, it is beneficial to realize ultra-thinness. Preferably, 0.05 ⁇ d13/TTL ⁇ 0.11 is satisfied.
  • the total optical length TTL of the imaging optical lens 10 is less than or equal to 7.70 mm, which is beneficial to realize ultra-thinness.
  • the total optical length TTL of the imaging optical lens 10 is less than or equal to 7.35 mm.
  • the aperture value FNO of the imaging optical lens 10 is less than or equal to 1.65. Large aperture, good imaging performance. Preferably, the aperture value FNO of the imaging optical lens 10 is less than or equal to 1.62.
  • the overall optical length TTL of the overall imaging optical lens 10 can be shortened as much as possible, and the characteristics of miniaturization can be maintained.
  • the imaging optical lens 10 can be made to have good optical performance, and at the same time, it can satisfy the requirements of large aperture, wide-angle, and ultra-thinness.
  • the imaging optical lens 10 of the present invention will be described below with an example.
  • the symbols described in each example are as follows.
  • the unit of focal length, distance on axis, radius of curvature, thickness on axis, position of inflection point, and position of stagnation point is mm.
  • TTL total optical length (the on-axis distance from the object side of the first lens L1 to the imaging surface), the unit is mm;
  • Aperture value FNO refers to the ratio of the effective focal length of the imaging optical lens to the entrance pupil diameter.
  • the object side and/or the image side of the lens can also be provided with inflection points and/or stagnation points to meet high-quality imaging requirements.
  • inflection points and/or stagnation points for specific implementations, refer to the following.
  • Table 1 shows design data of the imaging optical lens 10 according to the first embodiment of the present invention.
  • R the radius of curvature at the center of the lens
  • R1 the radius of curvature of the object side surface of the first lens L1;
  • R2 the radius of curvature of the image side surface of the first lens L1;
  • R3 the radius of curvature of the object side surface of the second lens L2;
  • R4 the radius of curvature of the image side surface of the second lens L2;
  • R5 the radius of curvature of the object side surface of the third lens L3;
  • R6 the radius of curvature of the image side surface of the third lens L3;
  • R7 the radius of curvature of the object side of the fourth lens L4;
  • R8 the radius of curvature of the image side surface of the fourth lens L4;
  • R9 the radius of curvature of the object side surface of the fifth lens L5;
  • R10 the radius of curvature of the image side surface of the fifth lens L5;
  • R11 the radius of curvature of the object side surface of the sixth lens L6;
  • R12 the radius of curvature of the image side surface of the sixth lens L6;
  • R14 the radius of curvature of the image side surface of the seventh lens L7;
  • R15 the radius of curvature of the object side of the optical filter GF
  • R16 the radius of curvature of the image side surface of the optical filter GF
  • d0 the on-axis distance from the aperture S1 to the object side of the first lens L1;
  • d2 the on-axis distance from the image side surface of the first lens L1 to the object side surface of the second lens L2;
  • d4 the on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3;
  • d6 the on-axis distance from the image side surface of the third lens L3 to the object side surface of the fourth lens L4;
  • d10 the on-axis distance from the image side surface of the fifth lens L5 to the object side surface of the sixth lens L6;
  • d11 the on-axis thickness of the sixth lens L6;
  • d14 the on-axis distance from the image side surface of the seventh lens L7 to the object side surface of the optical filter GF;
  • d15 the axial thickness of the optical filter GF
  • d16 the on-axis distance from the image side surface of the optical filter GF to the image surface
  • nd3 the refractive index of the d-line of the third lens L3;
  • nd5 the refractive index of the d-line of the fifth lens L5;
  • nd6 the refractive index of the d-line of the sixth lens L6;
  • ndg the refractive index of the d-line of the optical filter GF
  • Table 2 shows the aspheric surface data of each lens in the imaging optical lens 10 according to the first embodiment of the present invention.
  • k is the conic coefficient
  • A4, A6, A8, A10, A12, A14, A16, A18, A20 are aspherical coefficients.
  • x is the vertical distance between the point on the aspherical curve and the optical axis
  • y is the depth of the aspherical surface (the point on the aspherical surface from the optical axis is x, and the vertical distance between the tangent plane tangent to the vertex on the aspherical optical axis ).
  • the aspheric surface of each lens surface uses the aspheric surface shown in the above formula (1).
  • the present invention is not limited to the aspheric polynomial form represented by the formula (1).
  • P4R1, P4R2 represent the object side and image side of the fourth lens L4
  • P5R1, P5R2 represent the object side and image side of the fifth lens L5
  • P6R1, P6R2 represent the object side and image side of the sixth lens L6,
  • P7R1 P7R2 represents the object side and image side of the seventh lens L7, respectively.
  • the corresponding data in the “reflection point position” column is the vertical distance from the reflex point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • the data corresponding to the “stationary point position” column is the vertical distance from the stationary point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • Table 13 shows the values corresponding to the various values in each of Examples 1, 2, and 3 and the parameters that have been specified in the relational expressions.
  • the entrance pupil diameter ENPD of the imaging optical lens 10 is 3.450 mm
  • the full-field image height IH is 4.595 mm
  • the diagonal field angle FOV is 78.69°
  • the imaging optical lens 10 satisfies a large
  • the design requirements of aperture, wide-angle, and ultra-thin, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • FIG. 5 is a schematic diagram of the structure of the imaging optical lens 20 in the second embodiment.
  • the second embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • the third lens L3 has positive refractive power
  • the fourth lens L4 has negative refractive power
  • the fifth lens L5 has positive refractive power
  • Table 5 shows design data of the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 6 shows the aspheric surface data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 7 and Table 8 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • P4R2 2 1.645 2.145 / / P5R1 2 1.105 2.665 / / P5R2 4 0.415 1.935 2.515 2.945 P6R1 2 0.975 2.305 / / P6R2 2 1.225 3.185 / / P7R1 2 1.645 4.025 / / P7R2 3 0.805 3.105 4.205 /
  • FIG. 6 and 7 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light having wavelengths of 486 nm, 588 nm, and 656 nm pass through the imaging optical lens 20 of the second embodiment.
  • FIG. 8 shows a schematic diagram of field curvature and distortion after light with a wavelength of 588 nm passes through the imaging optical lens 20 of the second embodiment.
  • the second embodiment satisfies various relational expressions.
  • the entrance pupil diameter ENPD of the imaging optical lens 20 is 3.435 mm
  • the full-field image height IH is 4.595 mm
  • the diagonal field angle FOV is 78.80°.
  • the imaging optical lens 20 satisfies a large The design requirements of aperture, wide-angle, and ultra-thin, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • FIG. 9 is a schematic diagram of the structure of the imaging optical lens 30 in the third embodiment.
  • the third embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • the object side surface of the fourth lens L4 is convex at the paraxial position.
  • Table 9 shows design data of the imaging optical lens 30 of the third embodiment of the present invention.
  • Table 10 shows the aspheric surface data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 11 and Table 12 show the inflection point and stagnation point design data of each lens in the imaging optical lens 30 of the third embodiment of the present invention.
  • FIG. 10 and 11 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light having wavelengths of 486 nm, 588 nm, and 656 nm pass through the imaging optical lens 30 of the third embodiment.
  • FIG. 12 shows a schematic diagram of field curvature and distortion of light with a wavelength of 588 nm after passing through the imaging optical lens 30 of the third embodiment.
  • the entrance pupil diameter ENPD of the imaging optical lens 30 is 3.380 mm
  • the full-field image height IH is 4.595 mm
  • the diagonal field angle FOV is 79.64°.
  • the imaging optical lens 30 satisfies a large
  • the aperture design requires wide-angle, ultra-thin, and its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • Example 1 Example 2
  • Example 3 f 5.520 5.495 5.408 f1 4.949 5.304 5.821 f2 -10.171 -14.335 -22.813 f3 -199.530 1000.000 -24.363 f4 20.541 -662.149 18.514 f5 -31.149 286.126 -31.730 f6 5.748 5.338 5.495 f7 -4.124 -3.927 -4.186
  • FNO 1.60 1.60 1.60 f1/f2 -0.49 -0.37 -0.26 f1/(f6+f7) 3.05 3.76 4.45 d4/d6 2.05 6.00 10.00 TTL 6.768 7.001 6.673 FOV 78.69 78.80 79.64 IH 4.595 4.595 4.595 4.595 4.595 4.595

Abstract

一种摄像光学镜头(10),摄像光学镜头(10)自物侧至像侧依序包含:具有正屈折力的第一透镜(L1)、具有负屈折力的第二透镜(L2)、第三透镜(L3)、第四透镜(L4)、第五透镜(L5)、具有正屈折力的第六透镜(L6)以及具有负屈折力的第七透镜(L7);第一透镜(L1)的焦距为f1,第二透镜(L2)的焦距为f2,第六透镜(L6)的焦距为f6,第七透镜(L7)的焦距为f7,第二透镜(L2)的像侧面至第三透镜(L3)的物侧面的轴上距离为d4,第三透镜(L3)的像侧面到第四透镜(L4)的物侧面的轴上距离为d6,且满足下列关系式:-0.49≤f1/f2≤-0.25;3.00≤f1/(f6+f7)≤4.50;2.00≤d4/d6≤10.00。摄像光学镜头(10)具有大光圈、广角化和超薄等良好的光学性能。

Description

摄像光学镜头 技术领域
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
背景技术
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。
为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式、四片式甚至是五片式、六片式透镜结构。然而,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,七片式透镜结构逐渐出现在镜头设计当中,常见的七片式透镜虽然已经具有较好的光学性能,但是其光焦度、透镜间距和透镜形状设置仍然具有一定的不合理性,导致透镜结构在具有良好光学性能的同时,无法满足大光圈、超薄化、广角化的设计要求。
发明内容
针对上述问题,本发明的目的在于提供一种摄像光学镜头,能在获得高成像性能的同时,满足大光圈、超薄化和广角化的要求。
为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,所述摄像光学镜头,自物侧至像侧依序包含:具有正屈折力的第一透镜、具有负屈折力的第二透镜、第三透镜、第四透镜、第五透镜、具有正屈折力的第六透镜以及具有负屈折力的第七透镜;
所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第六透镜的焦距为f6,所述第七透镜的焦距为f7,所述第二透镜的像侧面至的所述第三透镜的物侧面的轴上距离为d4,所述第三透镜的像侧面到所述第四透镜的物侧面的轴上距离为d6,且满足下列关系式:
-0.49≤f1/f2≤-0.25;
3.00≤f1/(f6+f7)≤4.50;
2.00≤d4/d6≤10.00。
优选地,所述第一透镜的物侧面于近轴处为凸面,其像侧面于近轴处为凹面;
所述摄像光学镜头的焦距为f,所述第一透镜的物侧面的曲率半径为R1,所述第一透镜的像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.45≤f1/f≤1.61;
-3.87≤(R1+R2)/(R1-R2)≤-0.88;
0.07≤d1/TTL≤0.23。
优选地,所述摄像光学镜头满足下列关系式:
0.72≤f1/f≤1.29;
-2.42≤(R1+R2)/(R1-R2)≤-1.10;
0.11≤d1/TTL≤0.18。
优选地,所述第二透镜的物侧面于近轴处为凸面,其像侧面于近轴处为凹面;
所述摄像光学镜头的焦距为f,所述第二透镜的物侧面的曲率半径为R3,所述第二透镜的像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-8.44≤f2/f≤-1.23;
1.19≤(R3+R4)/(R3-R4)≤8.87;
0.02≤d3/TTL≤0.06。
优选地,所述摄像光学镜头满足下列关系式:
-5.27≤f2/f≤-1.54;
1.91≤(R3+R4)/(R3-R4)≤7.10;
0.03≤d3/TTL≤0.05。
优选地,所述第三透镜的物侧面于近轴处为凸面,其像侧面于近轴处为凹面;
所述摄像光学镜头的焦距为f,所述第三透镜的焦距为f3,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为 R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-72.29≤f3/f≤272.97;
-88.88≤(R5+R6)/(R5-R6)≤35.53;
0.02≤d5/TTL≤0.08。
优选地,所述摄像光学镜头满足下列关系式:
-45.18≤f3/f≤218.37;
-55.55≤(R5+R6)/(R5-R6)≤28.42;
0.04≤d5/TTL≤0.06。
优选地,所述第四透镜的像侧面于近轴处为凸面;
所述摄像光学镜头的焦距为f,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-240.99≤f4/f≤5.58;
-83.74≤(R7+R8)/(R7-R8)≤2.00;
0.04≤d7/TTL≤0.15。
优选地,所述摄像光学镜头满足下列关系式:
-150.62≤f4/f≤4.47;
-52.34≤(R7+R8)/(R7-R8)≤1.60;
0.07≤d7/TTL≤0.12。
优选地,所述第五透镜的物侧面于近轴处为凸面,其像侧面于近轴处为凹面;
所述摄像光学镜头的焦距为f,所述第五透镜的焦距为f5,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-11.73≤f5/f≤78.10;
-103.49≤(R9+R10)/(R9-R10)≤4.84;
0.03≤d9/TTL≤0.12。
优选地,所述摄像光学镜头满足下列关系式:
-7.33≤f5/f≤62.48;
-64.68≤(R9+R10)/(R9-R10)≤3.87;
0.04≤d9/TTL≤0.09。
优选地,所述第六透镜的物侧面于近轴处为凸面,所述第六透镜的像侧面于近轴处为凹面;
所述摄像光学镜头的焦距为f,所述第六透镜的焦距为f6,所述第六透镜的物侧面的曲率半径为R11,所述第六透镜的像侧面的曲率半径为R12,所述第六透镜的轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.49≤f6/f≤1.56;
-4.32≤(R11+R12)/(R11-R12)≤-0.84;
0.03≤d11/TTL≤0.11。
优选地,所述摄像光学镜头满足下列关系式:
0.78≤f6/f≤1.25;
-2.70≤(R11+R12)/(R11-R12)≤-1.05;
0.05≤d11/TTL≤0.09。
优选地,所述第七透镜的物侧面于近轴处为凹面,其像侧面于近轴处为凹面;
所述摄像光学镜头的焦距为f,所述第七透镜的焦距为f7,所述第七透镜的物侧面的曲率半径为R13,所述第七透镜的像侧面的曲率半径为R14,所述第七透镜的轴上厚度d13,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-1.55≤f7/f≤-0.48;
0.39≤(R13+R14)/(R13-R14)≤1.24;
0.03≤d13/TTL≤0.13。
优选地,所述摄像光学镜头满足下列关系式:
-0.97≤f7/f≤-0.60;
0.62≤(R13+R14)/(R13-R14)≤0.99;
0.05≤d13/TTL≤0.11。
优选地,所述摄像光学镜头的光学总长TTL小于或等于7.70毫米。
优选地,所述摄像光学镜头的光学总长TTL小于或等于7.35毫米。
优选地,所述摄像光学镜头的光圈值FNO小于或等于1.65。
优选地,所述摄像光学镜头的光圈值FNO小于或等于1.62。
本发明的有益效果在于:根据本发明的摄像光学镜头具有良好光学性能,且具有大光圈、广角化、超薄化的特性,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是本发明第一实施方式的摄像光学镜头的结构示意图;
图2是图1所示摄像光学镜头的轴向像差示意图;
图3是图1所示摄像光学镜头的倍率色差示意图;
图4是图1所示摄像光学镜头的场曲及畸变示意图;
图5是本发明第二实施方式的摄像光学镜头的结构示意图;
图6是图5所示摄像光学镜头的轴向像差示意图;
图7是图5所示摄像光学镜头的倍率色差示意图;
图8是图5所示摄像光学镜头的场曲及畸变示意图;
图9是本发明第三实施方式的摄像光学镜头的结构示意图;
图10是图9所示摄像光学镜头的轴向像差示意图;
图11是图9所示摄像光学镜头的倍率色差示意图;
图12是图9所示摄像光学镜头的场曲及畸变示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10,该摄像光学镜头10包括七个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:光圈 S1、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7,第七透镜L7和像面Si之间可设置有光学过滤片(filter)GF等光学元件。
本实施方式中,第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有负屈折力,第四透镜L4具有正屈折力,第五透镜L5具有负屈折力,第六透镜L6具有正屈折力,第七透镜L7具有负屈折力。
本实施方式中,第一透镜L1为塑料材质,第二透镜L2为塑料材质,第三透镜L3为塑料材质,第四透镜L4为塑料材质,第五透镜L5为塑料材质,第六透镜L6为塑料材质,第七透镜L7为塑料材质。
定义第一透镜L1的焦距为f1,第二透镜L2的焦距为f2,满足下列关系式:-0.49≤f1/f2≤-0.25。规定了第一透镜L1的焦距f1与第二透镜L2的焦距f2的比值,可有效降低摄像用光学透镜组的敏感度,进一步提升成像质量。
第一透镜L1的焦距为f1,定义第六透镜L6的焦距为f6,第七透镜L7的焦距为f7,满足下列关系式:3.00≤f1/(f6+f7)≤4.50。通过适当配置第一透镜L1、第六透镜L6及第七透镜L7的焦距,对光学系统的像差进行校正,进而提升成像品质。
定义第二透镜L2的像侧面至的第三透镜L3的物侧面的轴上距离为d4,第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离为d6,满足下列关系式:2.00≤d4/d6≤10.00。该关系式规定了第二第三透镜间的空气间隔与第三第四透镜间的空气间隔的比值,在关系式范围内有利于镜头向广角化发展。
本实施方式中,第一透镜L1的物侧面于近轴处为凸面,其像侧面于近轴处为凹面。
第一透镜L1的焦距为f1,定义整体摄像光学镜头10的焦距为f,满足下列关系式:0.45≤f1/f≤1.61。该关系式规定了第一透镜L1的焦距与系统总焦距f的比值,在规定的范围内时,第一透镜L1具有适当的正屈折力,有利于减小系统像差,同时有利于镜头向超薄化、广角化发展。优选地,满足0.72≤f1/f≤1.29。
定义第一透镜L1的物侧面的曲率半径为R1,第一透镜L1的像侧面的曲率半径为R2,满足下列关系式:-3.87≤(R1+R2)/(R1-R2)≤-0.88。通过合理控制第一透镜L1的形状,使得第一透镜L1能够有效地校正系统球差。优选地,满足-2.42≤(R1+R2)/(R1-R2)≤-1.10。
定义第一透镜L1的轴上厚度为d1,摄像光学镜头10的光学总长为TTL,满足下列关系式:0.07≤d1/TTL≤0.23。在关系式范围内,有 利于实现超薄化。优选地,满足0.11≤d1/TTL≤0.18。
本实施方式中,第二透镜L2的物侧面于近轴处为凸面,其像侧面于近轴处为凹面。
摄像光学镜头10整体的焦距为f,定义第二透镜L2的焦距为f2,满足下列关系式:-8.44≤f2/f≤-1.23,规定了第二透镜L2的焦距f2与系统总焦距f的比值,通过将第二透镜L2的负光焦度控制在合理范围,有利于矫正光学系统的像差。优选地,-5.27≤f2/f≤-1.54。
定义第二透镜L2的物侧面的曲率半径为R3,第二透镜L2的像侧面的曲率半径为R4,满足下列关系式:1.19≤(R3+R4)/(R3-R4)≤8.87,规定了第二透镜L2的形状,随着镜头向超薄广角化发展,有利于补正轴上色像差问题。优选地,满足1.91≤(R3+R4)/(R3-R4)≤7.10。
摄像光学镜头10的光学总长为TTL,定义第二透镜L2的轴上厚度为d3,满足下列关系式:0.02≤d3/TTL≤0.06,在关系式范围内,有利于实现超薄化。优选地,满足0.03≤d3/TTL≤0.05。
本实施方式中,第三透镜L3的物侧面于近轴处为凸面,第三透镜L3的像侧面于近轴处为凹面。
整体摄像光学镜头10的焦距为f,定义第三透镜L3的焦距为f3,满足下列关系式:-72.29≤f3/f≤272.97,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-45.18≤f3/f≤218.37。
定义第三透镜L3的物侧面的曲率半径R5,第三透镜L3的像侧面的曲率半径R6,满足下列关系式:-88.88≤(R5+R6)/(R5-R6)≤35.53,规定了第三透镜L3的形状,有利于第三透镜L3成型,并避免因第三透镜L3的表面曲率过大而导致成型不良与应力产生。优选地,满足-55.55≤(R5+R6)/(R5-R6)≤28.42。
摄像光学镜头10的光学总长为TTL,定义第三透镜L3的轴上厚度为d5,所述,满足下列关系式:0.02≤d5/TTL≤0.08,在关系式范围内,有利于实现超薄化。优选地,满足0.04≤d5/TTL≤0.06。
本实施方式中,第四透镜L4的物侧面于近轴处为凹面,其像侧面于近轴处为凸面。
整体摄像光学镜头10的焦距为f,定义第四透镜L4的焦距为f4,满足下列关系式:-240.99≤f4/f≤5.58,规定了第四透镜L4的焦距f4与总焦距f的比值,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,-150.62≤f4/f≤4.47。
定义第四透镜L4的物侧面的曲率半径为R7,第四透镜L4的像侧 面的曲率半径为R8,满足下列关系式:-83.74≤(R7+R8)/(R7-R8)≤2.00,规定了第四透镜L4的形状,在范围内时,随着超薄广角化的发展,有利于补正轴外画角的像差等问题。优选地,满足-52.34≤(R7+R8)/(R7-R8)≤1.60。
摄像光学镜头10的光学总长为TTL,定义第四透镜L4的轴上厚度为d7,满足下列关系式:0.04≤d7/TTL≤0.15,在关系式范围内,有利于实现超薄化。优选地,满足0.07≤d7/TTL≤0.12。
本实施方式中,第五透镜L5的物侧面于近轴处为凸面,其像侧面于近轴处为凹面。
摄像光学镜头10整体的焦距为f,定义第五透镜L5的焦距为f5,满足下列关系式:-11.73≤f5/f≤78.10。对第五透镜L5的限定可有效的使得摄像镜头的光线角度平缓,降低公差敏感度。优选地,-7.33≤f5/f≤62.48。
定义第五透镜L5的物侧面的曲率半径R9,第五透镜L5的像侧面的曲率半径R10,满足下列关系式:-103.49≤(R9+R10)/(R9-R10)≤4.84,规定的是第五透镜L5的形状,在条件范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选地,满足-64.68≤(R9+R10)/(R9-R10)≤3.87。
摄像光学镜头10的光学总长为TTL,定义第五透镜L5的轴上厚度为d9,满足下列关系式:0.03≤d9/TTL≤0.12,在关系式范围内,有利于实现超薄化。优选地,满足0.04≤d9/TTL≤0.09。
本实施方式中,第六透镜L6的物侧面于近轴处为凸面,其像侧面于近轴处为凹面。
整体摄像光学镜头10的焦距为f,第六透镜L6的焦距为f6,满足下列关系式:0.49≤f6/f≤1.56,通过正光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足0.78≤f6/f≤1.25。
第六透镜L6的物侧面的曲率半径为R11,第六透镜L6的像侧面的曲率半径为R12,满足下列关系式:-4.32≤(R11+R12)/(R11-R12)≤-0.84,规定了第六透镜L6的形状,在范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选地,满足-2.70≤(R11+R12)/(R11-R12)≤-1.05。
摄像光学镜头10的光学总长为TTL,定义第六透镜L6的轴上厚度为d11,满足下列关系式:0.03≤d11/TTL≤0.11,有利于实现超薄化。优选地,满足0.05≤d11/TTL≤0.09。
本实施方式中,第七透镜L7的物侧面于近轴处为凹面,其像侧面 于近轴处为凹面。
摄像光学镜头10的焦距为f,第七透镜L7的焦距为f7,满足下列关系式:-1.55≤f7/f≤-0.48,在关系式范围内,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-0.97≤f7/f≤-0.60。
定义第七透镜L7的物侧面的曲率半径为R13,第七透镜L7的像侧面的曲率半径为R14,满足下列关系式:0.39≤(R13+R14)/(R13-R14)≤1.24,规定了第七透镜L7的形状,在条件范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选地,满足0.62≤(R13+R14)/(R13-R14)≤0.99。
摄像光学镜头10的光学总长为TTL,定义第七透镜L7的轴上厚度为d13,满足下列关系式0.03≤d13/TTL≤0.13,在关系式范围内,有利于实现超薄化。优选地,满足0.05≤d13/TTL≤0.11。
本实施方式中,摄像光学镜头10的光学总长TTL小于或等于7.70毫米,有利于实现超薄化。优选地,摄像光学镜头10的光学总长TTL小于或等于7.35毫米。
本实施方式中,摄像光学镜头10的光圈值FNO小于或等于1.65。大光圈,成像性能好。优选地,摄像光学镜头10的光圈值FNO小于或等于1.62。
如此设计,能够使得整体摄像光学镜头10的光学总长TTL尽量变短,维持小型化的特性。
当本发明所述摄像光学镜头10的焦距、各透镜的焦距和曲率半径满足上述关系式时,可以使摄像光学镜头10具有良好光学性能,同时能够满足了大光圈、广角化、超薄化的设计要求;根据该光学镜头10的特性,该光学镜头10尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、曲率半径、轴上厚度、反曲点位置、驻点位置的单位为mm。
TTL:光学总长(第一透镜L1的物侧面到成像面的轴上距离),单位为mm;
光圈值FNO:是指摄像光学镜头的有效焦距和入瞳直径的比值。
优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
表1示出本发明第一实施方式的摄像光学镜头10的设计数据。
【表1】
Figure PCTCN2020094519-appb-000001
其中,各符号的含义如下。
S1:光圈;
R:透镜中心处的曲率半径;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:第五透镜L5的物侧面的曲率半径;
R10:第五透镜L5的像侧面的曲率半径;
R11:第六透镜L6的物侧面的曲率半径;
R12:第六透镜L6的像侧面的曲率半径;
R13:第七透镜L7的物侧面的曲率半径;
R14:第七透镜L7的像侧面的曲率半径;
R15:光学过滤片GF的物侧面的曲率半径;
R16:光学过滤片GF的像侧面的曲率半径;
d:透镜的轴上厚度、透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离;
d11:第六透镜L6的轴上厚度;
d12:第六透镜L6的像侧面到第七透镜L7的物侧面的轴上距离;
d13:第七透镜L7的轴上厚度;
d14:第七透镜L7的像侧面到光学过滤片GF的物侧面的轴上距离;
d15:光学过滤片GF的轴上厚度;
d16:光学过滤片GF的像侧面到像面的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
nd6:第六透镜L6的d线的折射率;
nd7:第七透镜L7的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
v6:第六透镜L6的阿贝数;
v7:第七透镜L7的阿贝数;
vg:光学过滤片GF的阿贝数。
表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。
【表2】
Figure PCTCN2020094519-appb-000002
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数。
y=(x 2/R)/{1+[1-(k+1)(x 2/R 2)] 1/2}+A4x 4+A6x 6+A8x 8+A10x 10+A12x 12+A14x 14+A16x 16+A18x 18+A20x 20      (1)
其中,x是非球面曲线上的点与光轴的垂直距离,y是非球面深度 (非球面上距离光轴为x的点,与相切于非球面光轴上顶点的切面两者间的垂直距离)。
为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本发明不限于该公式(1)表示的非球面多项式形式。
表3、表4示出本发明第一实施方式的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面,P6R1、P6R2分别代表第六透镜L6的物侧面和像侧面,P7R1、P7R2分别代表第七透镜L7的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3 反曲点位置4
P1R1 0 / / / /
P1R2 1 1.405 / / /
P2R1 0 / / / /
P2R2 0 / / / /
P3R1 1 0.465 / / /
P3R2 2 0.525 1.555 / /
P4R1 2 1.455 2.035 / /
P4R2 2 1.635 2.145 / /
P5R1 2 0.935 2.305 / /
P5R2 4 0.345 2.095 2.415 2.735
P6R1 2 0.905 2.395 / /
P6R2 2 1.165 3.285 / /
P7R1 1 1.655 / / /
P7R2 3 0.705 2.835 4.305 /
【表4】
  驻点个数 驻点位置1 驻点位置2
P1R1 0 / /
P1R2 0 / /
P2R1 0 / /
P2R2 0 / /
P3R1 1 0.785 /
P3R2 1 0.875 /
P4R1 1 1.785 /
P4R2 1 2.025 /
P5R1 1 1.285 /
P5R2 1 0.655 /
P6R1 1 1.505 /
P6R2 1 1.935 /
P7R1 1 3.025 /
P7R2 2 1.645 3.615
图2、图3分别示出了波长为486nm、588nm和656nm的光经过第一实施方式的摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了,波长为588nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图,图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
后出现的表13示出各实例1、2、3中各种数值与关系式中已规定的参数所对应的值。
如表13所示,第一实施方式满足各关系式。
在本实施方式中,摄像光学镜头10的入瞳直径ENPD为3.450mm,全视场像高IH为4.595mm,对角线方向的视场角FOV为78.69°,所述摄像光学镜头10满足大光圈、广角、超薄的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第二实施方式)
图5是第二实施方式中摄像光学镜头20的结构示意图,第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
本实施方式中,第三透镜L3具有正屈折力,第四透镜L4具有负屈折力,第五透镜L5具有正屈折力。
表5示出本发明第二实施方式的摄像光学镜头20的设计数据。
【表5】
Figure PCTCN2020094519-appb-000003
Figure PCTCN2020094519-appb-000004
表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表6】
Figure PCTCN2020094519-appb-000005
表7、表8示出本发明第二实施方式的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。
【表7】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3 反曲点位置4
P1R1 1 1.625 / / /
P1R2 1 1.025 / / /
P2R1 0 / / / /
P2R2 0 / / / /
P3R1 1 0.295 / / /
P3R2 2 0.475 1.545 / /
P4R1 2 1.325 2.005 / /
P4R2 2 1.645 2.145 / /
P5R1 2 1.105 2.665 / /
P5R2 4 0.415 1.935 2.515 2.945
P6R1 2 0.975 2.305 / /
P6R2 2 1.225 3.185 / /
P7R1 2 1.645 4.025 / /
P7R2 3 0.805 3.105 4.205 /
【表8】
  驻点个数 驻点位置1 驻点位置2
P1R1 0 / /
P1R2 1 1.485 /
P2R1 0 / /
P2R2 0 / /
P3R1 1 0.485 /
P3R2 2 0.705 1.755
P4R1 1 1.715 /
P4R2 1 2.045 /
P5R1 1 1.705 /
P5R2 2 0.785 2.995
P6R1 2 1.565 3.165
P6R2 1 1.845 /
P7R1 1 2.795 /
P7R2 1 2.015 /
图6、图7分别示出了波长为486nm、588nm和656nm的光经过第二实施方式的摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了,波长为588nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图。
如表13所示,第二实施方式满足各关系式。
在本实施方式中,摄像光学镜头20的入瞳直径ENPD为3.435mm,全视场像高IH为4.595mm,对角线方向的视场角FOV为78.80°,所述摄像光学镜头20满足大光圈、广角、超薄的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第三实施方式)
图9是第三实施方式中摄像光学镜头30的结构示意图,第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
本实施方式中,第四透镜L4的物侧面于近轴处为凸面。
表9示出本发明第三实施方式的摄像光学镜头30的设计数据。
【表9】
Figure PCTCN2020094519-appb-000006
表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表10】
Figure PCTCN2020094519-appb-000007
Figure PCTCN2020094519-appb-000008
表11、表12示出本发明第三实施方式的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。
【表11】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3 反曲点位置4
P1R1 1 1.685 / / /
P1R2 1 1.255 / / /
P2R1 0 / / / /
P2R2 0 / / / /
P3R1 1 0.305 / / /
P3R2 2 0.485 1.525 / /
P4R1 2 0.405 1.375 / /
P4R2 1 1.705 / / /
P5R1 2 0.925 2.265 / /
P5R2 4 0.345 1.995 2.425 2.735
P6R1 3 0.865 2.225 3.015 /
P6R2 2 1.135 3.165 / /
P7R1 4 1.435 2.225 2.535 4.055
P7R2 3 0.625 2.975 4.075 /
【表12】
  驻点个数 驻点位置1 驻点位置2
P1R1 0 / /
P1R2 0 / /
P2R1 0 / /
P2R2 0 / /
P3R1 1 0.505 /
P3R2 1 0.805 /
P4R1 2 0.635 1.675
P4R2 1 1.985 /
P5R1 1 1.325 /
P5R2 1 0.635 /
P6R1 1 1.435 /
P6R2 1 1.975 /
P7R1 1 3.275 /
P7R2 2 1.475 3.775
图10、图11分别示出了波长为486nm、588nm和656nm的光经过第三实施方式的摄像光学镜头30后的轴向像差以及倍率色差示意图。 图12则示出了,波长为588nm的光经过第三实施方式的摄像光学镜头30后的场曲及畸变示意图。
以下表13按照上述关系式列出了本实施方式中对应各关系式的数值。显然,本实施方式的摄像光学系统满足上述的关系式。
在本实施方式中,摄像光学镜头30的入瞳直径ENPD为3.380mm,全视场像高IH为4.595mm,对角线方向的视场角FOV为79.64°,所述摄像光学镜头30满足大光圈的设计要求、广角、超薄,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
【表13】
参数及关系式 实施例1 实施例2 实施例3
f 5.520 5.495 5.408
f1 4.949 5.304 5.821
f2 -10.171 -14.335 -22.813
f3 -199.530 1000.000 -24.363
f4 20.541 -662.149 18.514
f5 -31.149 286.126 -31.730
f6 5.748 5.338 5.495
f7 -4.124 -3.927 -4.186
FNO 1.60 1.60 1.60
f1/f2 -0.49 -0.37 -0.26
f1/(f6+f7) 3.05 3.76 4.45
d4/d6 2.05 6.00 10.00
TTL 6.768 7.001 6.673
FOV 78.69 78.80 79.64
IH 4.595 4.595 4.595
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (19)

  1. 一种摄像光学镜头,其特征在于,所述摄像光学镜头,自物侧至像侧依序包含:具有正屈折力的第一透镜、具有负屈折力的第二透镜、第三透镜、第四透镜、第五透镜、具有正屈折力的第六透镜以及具有负屈折力的第七透镜;
    所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第六透镜的焦距为f6,所述第七透镜的焦距为f7,所述第二透镜的像侧面至的所述第三透镜的物侧面的轴上距离为d4,所述第三透镜的像侧面到所述第四透镜的物侧面的轴上距离为d6,且满足下列关系式:
    -0.49≤f1/f2≤-0.25;
    3.00≤f1/(f6+f7)≤4.50;
    2.00≤d4/d6≤10.00。
  2. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜的物侧面于近轴处为凸面,其像侧面于近轴处为凹面;
    所述摄像光学镜头的焦距为f,所述第一透镜的物侧面的曲率半径为R1,所述第一透镜的像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.45≤f1/f≤1.61;
    -3.87≤(R1+R2)/(R1-R2)≤-0.88;
    0.07≤d1/TTL≤0.23。
  3. 根据权利要求2所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    0.72≤f1/f≤1.29;
    -2.42≤(R1+R2)/(R1-R2)≤-1.10;
    0.11≤d1/TTL≤0.18。
  4. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜的物侧面于近轴处为凸面,其像侧面于近轴处为凹面;
    所述摄像光学镜头的焦距为f,所述第二透镜的物侧面的曲率半径为R3,所述第二透镜的像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -8.44≤f2/f≤-1.23;
    1.19≤(R3+R4)/(R3-R4)≤8.87;
    0.02≤d3/TTL≤0.06。
  5. 根据权利要求4所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    -5.27≤f2/f≤-1.54;
    1.91≤(R3+R4)/(R3-R4)≤7.10;
    0.03≤d3/TTL≤0.05。
  6. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的物侧面于近轴处为凸面,其像侧面于近轴处为凹面;
    所述摄像光学镜头的焦距为f,所述第三透镜的焦距为f3,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -72.29≤f3/f≤272.97;
    -88.88≤(R5+R6)/(R5-R6)≤35.53;
    0.02≤d5/TTL≤0.08。
  7. 根据权利要求6所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    -45.18≤f3/f≤218.37;
    -55.55≤(R5+R6)/(R5-R6)≤28.42;
    0.04≤d5/TTL≤0.06。
  8. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜的像侧面于近轴处为凸面;
    所述摄像光学镜头的焦距为f,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -240.99≤f4/f≤5.58;
    -83.74≤(R7+R8)/(R7-R8)≤2.00;
    0.04≤d7/TTL≤0.15。
  9. 根据权利要求8所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    -150.62≤f4/f≤4.47;
    -52.34≤(R7+R8)/(R7-R8)≤1.60;
    0.07≤d7/TTL≤0.12。
  10. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜的物侧面于近轴处为凸面,其像侧面于近轴处为凹面;
    所述摄像光学镜头的焦距为f,所述第五透镜的焦距为f5,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -11.73≤f5/f≤78.10;
    -103.49≤(R9+R10)/(R9-R10)≤4.84;
    0.03≤d9/TTL≤0.12。
  11. 根据权利要求10所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    -7.33≤f5/f≤62.48;
    -64.68≤(R9+R10)/(R9-R10)≤3.87;
    0.04≤d9/TTL≤0.09。
  12. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第六透镜的物侧面于近轴处为凸面,所述第六透镜的像侧面于近轴处为凹面;
    所述摄像光学镜头的焦距为f,所述第六透镜的焦距为f6,所述第六透镜的物侧面的曲率半径为R11,所述第六透镜的像侧面的曲率半径为R12,所述第六透镜的轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.49≤f6/f≤1.56;
    -4.32≤(R11+R12)/(R11-R12)≤-0.84;
    0.03≤d11/TTL≤0.11。
  13. 根据权利要求12所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    0.78≤f6/f≤1.25;
    -2.70≤(R11+R12)/(R11-R12)≤-1.05;
    0.05≤d11/TTL≤0.09。
  14. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第七透镜的物侧面于近轴处为凹面,其像侧面于近轴处为凹面;
    所述摄像光学镜头的焦距为f,所述第七透镜的焦距为f7,所述第七透镜的物侧面的曲率半径为R13,所述第七透镜的像侧面的曲率半径为 R14,所述第七透镜的轴上厚度d13,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -1.55≤f7/f≤-0.48;
    0.39≤(R13+R14)/(R13-R14)≤1.24;
    0.03≤d13/TTL≤0.13。
  15. 根据权利要求14所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    -0.97≤f7/f≤-0.60;
    0.62≤(R13+R14)/(R13-R14)≤0.99;
    0.05≤d13/TTL≤0.11。
  16. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长TTL小于或等于7.70毫米。
  17. 根据权利要求16所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长TTL小于或等于7.35毫米。
  18. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光圈值FNO小于或等于1.65。
  19. 根据权利要求18所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光圈值FNO小于或等于1.62。
PCT/CN2020/094519 2020-05-20 2020-06-05 摄像光学镜头 WO2021232498A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010432805.9 2020-05-20
CN202010432805.9A CN111552063B (zh) 2020-05-20 2020-05-20 摄像光学镜头

Publications (1)

Publication Number Publication Date
WO2021232498A1 true WO2021232498A1 (zh) 2021-11-25

Family

ID=72005007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094519 WO2021232498A1 (zh) 2020-05-20 2020-06-05 摄像光学镜头

Country Status (4)

Country Link
US (1) US11287616B2 (zh)
JP (1) JP6973980B1 (zh)
CN (1) CN111552063B (zh)
WO (1) WO2021232498A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022056868A1 (zh) * 2020-09-18 2022-03-24 欧菲光集团股份有限公司 光学成像系统、取像模组、电子装置和移动装置
JP6894037B1 (ja) * 2020-09-18 2021-06-23 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド 撮像レンズ
CN114137704B (zh) * 2021-12-08 2023-05-30 玉晶光电(厦门)有限公司 光学成像镜头
CN114706188A (zh) * 2021-12-08 2022-07-05 玉晶光电(厦门)有限公司 光学成像镜头
WO2024054067A1 (ko) * 2022-09-07 2024-03-14 삼성전자 주식회사 렌즈 어셈블리 및 그를 포함하는 전자 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106547071A (zh) * 2015-09-17 2017-03-29 先进光电科技股份有限公司 光学成像系统
CN106855653A (zh) * 2015-12-09 2017-06-16 先进光电科技股份有限公司 光学成像系统
CN109061855A (zh) * 2015-07-01 2018-12-21 大立光电股份有限公司 光学摄像镜头组及取像装置
CN110687663A (zh) * 2019-10-14 2020-01-14 浙江舜宇光学有限公司 光学成像系统
CN110764229A (zh) * 2019-11-14 2020-02-07 玉晶光电(厦门)有限公司 光学成像镜头
WO2020090368A1 (ja) * 2018-10-29 2020-05-07 ソニー株式会社 撮像レンズおよび撮像装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6226296B2 (ja) * 2014-01-10 2017-11-08 株式会社オプトロジック 撮像レンズ
TWI534467B (zh) * 2015-02-17 2016-05-21 大立光電股份有限公司 攝影系統、取像裝置及電子裝置
US10491825B2 (en) * 2015-04-15 2019-11-26 Sony Corporation Imaging unit and imaging apparatus with rotatable lens group for optical vibration isolation
TWI536040B (zh) * 2015-04-16 2016-06-01 大立光電股份有限公司 光學鏡頭組、取像裝置及電子裝置
TWI601997B (zh) * 2015-08-28 2017-10-11 先進光電科技股份有限公司 光學成像系統(二)
TWI596371B (zh) * 2015-12-09 2017-08-21 先進光電科技股份有限公司 光學成像系統(二)
TWI631382B (zh) * 2017-07-19 2018-08-01 大立光電股份有限公司 攝像系統透鏡組、取像裝置及電子裝置
JP6363783B1 (ja) * 2017-10-19 2018-07-25 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像光学レンズ
JP6363782B1 (ja) * 2017-10-19 2018-07-25 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像光学レンズ
JP6377234B1 (ja) * 2017-10-19 2018-08-22 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像光学レンズ
JP6366151B1 (ja) * 2017-10-19 2018-08-01 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像光学レンズ
CN110542984B (zh) * 2018-05-29 2022-10-18 三星电机株式会社 光学成像系统
CN108535848B (zh) * 2018-07-05 2021-02-26 浙江舜宇光学有限公司 光学成像镜片组
CN108732724B (zh) * 2018-08-22 2023-06-30 浙江舜宇光学有限公司 光学成像系统
CN110346919B (zh) * 2019-08-14 2024-04-19 浙江舜宇光学有限公司 光学成像镜头
KR102416100B1 (ko) * 2019-10-15 2022-07-04 삼성전기주식회사 촬상 광학계

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109061855A (zh) * 2015-07-01 2018-12-21 大立光电股份有限公司 光学摄像镜头组及取像装置
CN106547071A (zh) * 2015-09-17 2017-03-29 先进光电科技股份有限公司 光学成像系统
CN106855653A (zh) * 2015-12-09 2017-06-16 先进光电科技股份有限公司 光学成像系统
WO2020090368A1 (ja) * 2018-10-29 2020-05-07 ソニー株式会社 撮像レンズおよび撮像装置
CN110687663A (zh) * 2019-10-14 2020-01-14 浙江舜宇光学有限公司 光学成像系统
CN110764229A (zh) * 2019-11-14 2020-02-07 玉晶光电(厦门)有限公司 光学成像镜头

Also Published As

Publication number Publication date
CN111552063B (zh) 2021-07-30
JP2021184073A (ja) 2021-12-02
JP6973980B1 (ja) 2021-12-01
US11287616B2 (en) 2022-03-29
CN111552063A (zh) 2020-08-18
US20210364741A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
WO2022047989A1 (zh) 摄像光学镜头
WO2021168910A1 (zh) 摄像光学镜头
WO2021232498A1 (zh) 摄像光学镜头
WO2021168905A1 (zh) 摄像光学镜头
WO2021253517A1 (zh) 摄像光学镜头
WO2021196257A1 (zh) 摄像光学镜头
WO2021253515A1 (zh) 摄像光学镜头
WO2021248577A1 (zh) 摄像光学镜头
WO2021248576A1 (zh) 摄像光学镜头
WO2022021512A1 (zh) 摄像光学镜头
WO2021232497A1 (zh) 摄像光学镜头
WO2022011740A1 (zh) 摄像光学镜头
WO2021253554A1 (zh) 摄像光学镜头
WO2021168889A1 (zh) 摄像光学镜头
WO2021253518A1 (zh) 摄像光学镜头
WO2021168890A1 (zh) 摄像光学镜头
WO2021127827A1 (zh) 摄像光学镜头
WO2021109078A1 (zh) 摄像光学镜头
WO2021127895A1 (zh) 摄像光学镜头
WO2021114235A1 (zh) 摄像光学镜头
WO2021031286A1 (zh) 摄像光学镜头
WO2021237779A1 (zh) 摄像光学镜头
WO2021253555A1 (zh) 摄像光学镜头
WO2022047996A1 (zh) 摄像光学镜头
WO2021168880A1 (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20936115

Country of ref document: EP

Kind code of ref document: A1