WO2021230377A1 - 生体用チューブおよび生体測定装置 - Google Patents

生体用チューブおよび生体測定装置 Download PDF

Info

Publication number
WO2021230377A1
WO2021230377A1 PCT/JP2021/018508 JP2021018508W WO2021230377A1 WO 2021230377 A1 WO2021230377 A1 WO 2021230377A1 JP 2021018508 W JP2021018508 W JP 2021018508W WO 2021230377 A1 WO2021230377 A1 WO 2021230377A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
ferrule
biological
living body
hole
Prior art date
Application number
PCT/JP2021/018508
Other languages
English (en)
French (fr)
Inventor
大輔 駒田
実 小山内
Original Assignee
京セラ株式会社
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社, 国立大学法人大阪大学 filed Critical 京セラ株式会社
Priority to CN202180034801.8A priority Critical patent/CN115551418A/zh
Priority to US17/925,123 priority patent/US20230181009A1/en
Priority to EP21802951.0A priority patent/EP4151158A4/en
Priority to JP2022522226A priority patent/JP7489072B2/ja
Publication of WO2021230377A1 publication Critical patent/WO2021230377A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00112Connection or coupling means
    • A61B1/00121Connectors, fasteners and adapters, e.g. on the endoscope handle
    • A61B1/00128Connectors, fasteners and adapters, e.g. on the endoscope handle mechanical, e.g. for tubes or pipes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/0011Manufacturing of endoscope parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00131Accessories for endoscopes
    • A61B1/00135Oversleeves mounted on the endoscope prior to insertion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00148Holding or positioning arrangements using anchoring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/042Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by a proximal camera, e.g. a CCD camera
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/40Animals

Definitions

  • This disclosure relates to a biological tube and a biological measuring device.
  • Patent Document 1 An example of the prior art is described in Patent Document 1.
  • the biological tube includes a tube and a first ferrule.
  • the tube is partially inserted into a living body and has a first end, a second end, a through hole, and a lens.
  • the through hole is located in the first direction from the second end to the first end.
  • the first ferrule covers the outer circumference of the tube along the first direction.
  • the lens is located in the through hole at a position including at least the first end.
  • the tube and the first ferrule are made of ceramic.
  • FIG. 2 is a plan view of the first ferrule in the biological tube shown in FIG. 2 from the y-axis direction.
  • FIG. 7 is a cross-sectional view taken along the x-axis direction of the first ferrule shown in FIG. 7.
  • FIG. 2 is a plan view of the second ferrule in the biological tube shown in FIG. 2 from the y-axis direction.
  • FIG. 8 is a cross-sectional view taken along the x-axis direction of the second ferrule shown in FIG. It is a perspective view of the sleeve in the biological tube shown in FIG. 2.
  • 11 is a cross-sectional view of the sleeve shown in FIG. 11 along the x-axis direction. It is a top view from the y-axis direction of the biological measuring apparatus which concerns on one Embodiment of this disclosure.
  • Bio tubes and biometric devices are used, for example, to record information on neural activity from the brains of rodents such as mice or rats and small animals such as marmosets over a period of time.
  • a basic configuration of the biological tube and the biological measuring device of the present disclosure for example, there is a structure in which a long insert such as a wire electrode is inserted and fixed to the brain of a small animal.
  • a linear wire electrode such as stainless steel or a stainless alloy having relatively high rigidity is directly embedded in the living body and fixed, or is fixed by a guide member such as a screw. Has been adopted.
  • the biological tube 1 in the present disclosure is used to obtain information such as neural activity from the brains of living organisms 60, such as small experimental animals such as rodents and marmosets, and experimental primates such as monkeys or chimpanzees. It is also used to obtain information on cell activity of organs and blood flow in blood vessels. It is also used for medical purposes such as treatment of the human body or animals.
  • the biological tube 1 in the present disclosure includes a tube 10 and a first ferrule 20. Further, like the biological tube 1 shown in FIG. 1, the tube 10, the first ferrule 20, the second ferrule 30, and the sleeve 40 may be provided. As shown in FIG. 2, the tube 10 has a first end 11, a second end 12, a through hole 13, and a lens 14 while a part of the tube 10 is inserted into the living body 60 as shown in FIG.
  • the through hole 13 is located in the first direction from the second end 12 to the first end 11.
  • the lens 14 is located in the through hole 13 at a position including at least the first end 11.
  • the first ferrule 20 covers the outer circumference of the tube 10 along the first direction. In the present specification, the first direction refers to the direction from the second end 12 to the first end 11.
  • the image fiber 70 is inserted in the through hole 13 of the tube 10 in the first direction.
  • the biological tube 1 is provided with the tube 10, the first ferrule 20, the second ferrule 30, and the sleeve 40 as in the biological tube 1 shown in FIG. 1, the biological tube 1 is provided with the biological tube 60 as follows. Connected to. First, the tube 10 in which the first ferrule 20 is located on the outer periphery is passed through the first end 11 of the living body 60, for example, an organ, the scalp, or the skull, and fixed. When the living body 60 is a small experimental animal or an experimental primate, the living body 60 may be bred with the first ferrule 20 and the tube 10 fixed.
  • the image fiber 70 connected to the through hole 31 of the second ferrule 30, in other words, the image fiber 70 located in the through hole 31, is inserted into the through hole 13 of the tube 10 at the time of an experiment or treatment for obtaining information such as nerve activity. do.
  • the outer circumferences of the first ferrule 20 and the second ferrule 30 are fixed by the sleeve 40.
  • Light passing through the lens 14 located in the tube 10 passes through the image fiber 70, and the optical information is processed by the image system 80 described later connected to the image fiber 70 to measure the neural activity of the living body 60 and the like. be able to.
  • the living body tube 1 invades the living body 60. Is reduced. Further, since the measurement can be performed at the same position of the living body 60, the reliability of the measurement result is high. In the work of fixing the biological tube 1 to the living body 60, the operator grasps the biological tube 1 with tweezers and attaches the biological tube 1 to an organ, a scalp, a skull, or the like to be measured.
  • the first end 11 of the tube 10 may protrude from the first ferrule 20. This makes it easier to insert the tube 10 into the living body 60, so that the living body tube 1 has high operability.
  • the outer diameter of the tube 10 may be narrowed toward the first end 11. This facilitates insertion into the living body 60 and reduces damage to the living body 60 during insertion. As a result, the biological tube 1 has less invasion to the living body 60.
  • the tube 10 is made of ceramic.
  • the living body 60 can reduce the onset of allergies such as metal allergies as compared with the case where the tube 10 is metallic.
  • the biological tube 1 has less invasion to the living body 60.
  • MRI magnetic resonance imaging
  • Ceramics used for the tube 10 include alumina (Al 2 O 3 ), zirconia (ZrO 2 ), aluminum titanate (AlN), silicon carbide (SiC), silicon carbide (Si 3 N 4 ), and forsterite (2 MgO ⁇ . It may be SiO 2 ), Sialon (SiAION), barium titanate (BaTIO 3 ), lead zirconate titanate (PZT), ferrite, mulite and the like.
  • the tube 10 is made of zirconia ceramic, the particles of zirconia are fine, so that the dimensional accuracy when producing the tube 10 can be improved.
  • an additive may be contained.
  • the additive may be a stabilizer such as, for example, yttria (Y 2 O 3). This makes it possible to improve the toughness of the tube 10.
  • the tube 10 may have a cylindrical shape, for example.
  • the first end 11 and the second end 12 may have a diameter of, for example, 0.5 mm to 3.0 mm.
  • the size in the z-axis direction may be 5 mm to 30 mm.
  • the diameter of the through hole 13 may be 0.3 mm to 2.0 mm.
  • the lens 14 is located in the through hole 13 of the tube 10, and may have the same shape as the through hole 13 of the tube 10. That is, the lens 14 may have a cylindrical shape.
  • the end portion located on the positive side in the z-axis direction may have a diameter of, for example, 0.3 mm to 2.0 mm.
  • the end portion located on the negative side in the z-axis direction may have a diameter of, for example, 0.3 mm to 2.0 mm.
  • the size in the z-axis direction may be 0.3 mm to 3.0 mm.
  • the lens 14 may be, for example, a rod lens or a green lens.
  • the lens 14 may protrude from the first end 11. As a result, the lens 14 comes into contact with the measurement site of the living body 60, so that the information collection accuracy is improved.
  • the biological tube 1 having such a lens 14 has high measurement accuracy.
  • the first ferrule 20 When the first end 11 penetrates the scalp and skull of the head of a small experimental animal, if the biological tube 1 has the first ferrule 20, the first ferrule 20 functions as a stopper. Since the first ferrule 20 functions as a stopper, when the biological tube 1 is connected to the living body 60, the work of fixing the biological tube 1 becomes easy, and the biological tube 1 is inserted into the living body 60 more than necessary. It is reduced. As a result, the biological tube 1 has high connection stability and less invasion to the biological body 60.
  • the first ferrule 20 is arranged so that the outer periphery of the tube 10 is fixed and the through hole 13 of the tube 10 and the through hole 22 of the first ferrule 20 are coaxial with each other.
  • the first ferrule 20 may have a recess 21 that opens on the outer periphery.
  • the holding member 50 which will be described later, may be located in the recess 21.
  • the surface of the recess 21 may be rough.
  • the rough surface is a state in which the surface roughness is larger than that of other parts.
  • the surface roughness can be measured and calculated by using the stylus method if it is a contact type, the optical interferometry method if it is a non-contact type, an image composition method by moving the focal point, a confocal method, or the like.
  • the measuring method may be appropriately selected according to the size and shape of the object.
  • the biological tube 1 may include a holding member 50 extending from the outer periphery of the first ferrule 20 to the living body 60 and connected to the living body 60. That is, the holding member 50 fixes the living body 60 and the first ferrule 20. As a result, the biological tube 1 can be firmly fixed to the biological body 60.
  • the holding member 50 may be located in the recess 21.
  • the contact area between the holding member 50 and the first ferrule 20 is increased, so that the connection strength between the living body 60 and the first ferrule is improved.
  • the rough surface of the concave portion 21 further improves the connection strength.
  • the first ferrule 20 is made of ceramic.
  • the living body 60 can reduce the onset of allergies such as metal allergies.
  • the biological tube 1 has less invasion to the living body 60.
  • the first ferrule 20 is made of ceramic, MRI measurement of the living body 60 and the like can be easily performed.
  • the ceramics used in the first ferrule 20 include alumina (Al 2 O 3 ), zirconia (ZrO 2 ), aluminum titanate (AlN), silicon carbide (SiC), silicon titanate (Si 3 N 4 ), and forsterite (Si 3 N 4). 2MgO ⁇ SiO 2 ), Sialon (SiAION), barium titanate (BaTIO 3 ), lead zirconate titanate (PZT), ferrite, mulite and the like may be used.
  • the first ferrule 20 is made of zirconia ceramic, the dimensional accuracy when manufacturing the first ferrule 20 can be improved.
  • an additive may be contained.
  • the additive may be a stabilizer such as, for example, yttria (Y 2 O 3). Thereby, the toughness of the first ferrule 20 can be improved.
  • the entire outer circumference of the first ferrule 20 may have a rough surface. As a result, the gripping force of the tweezers is increased, so that there is little misalignment when connecting to the living body 60. As a result, the biological tube 1 has high connection reliability.
  • the first ferrule 20 shown in FIGS. 7 and 8 may have a cylindrical shape, for example.
  • the end portion located on the positive side in the z-axis direction may have a diameter of, for example, 1.0 mm to 5.0 mm.
  • the end portion located on the negative side in the z-axis direction may have a diameter of, for example, 1.0 mm to 5.0 mm.
  • the size in the z-axis direction may be 5 mm to 30 mm.
  • the diameter of the through hole 22 may be 0.5 mm to 3.0 mm.
  • the holding member 50 may be made of a resin such as epoxy. Since the holding member 50 is made of resin, quick-drying property can be improved, so that the load on the living body 60 can be reduced. As a result, the biological tube 1 has less invasion to the living body 60.
  • the biological tube 1 may have a second ferrule 30 that fixes the outer circumference of the image fiber 70.
  • the image fiber 70 can be accurately connected to the first ferrule 20, and at the same time, the image fiber 70 can reduce damage due to impact or the like.
  • the image fiber 70 is fixed by the tube 10 by being inserted into the through hole 13 of the tube 10. At that time, the through hole 31 of the second ferrule 30, the through hole 13 of the tube 10, and the through hole 22 of the first ferrule 20 are arranged so as to be coaxial with each other.
  • the second ferrule 30 may be made of ceramic.
  • the living body 60 can reduce the onset of allergies such as metal allergies.
  • the first ferrule 20 is made of ceramic
  • the first ferrule 20 and the second ferrule 30 can be connected with high accuracy.
  • the second ferrule 30 is made of ceramic, MRI measurement of the living body 60 and the like can be easily performed.
  • Ceramics used for the second ferrule 30 include alumina (Al 2 O 3 ), zirconia (ZrO 2 ), aluminum titanate (AlN), silicon carbide (SiC), silicon titanate (Si 3 N 4 ), and forsterite (Si 3 N 4). 2MgO ⁇ SiO 2 ), Sialon (SiAION), barium titanate (BaTIO 3 ), lead zirconate titanate (PZT), ferrite, mulite and the like may be used.
  • the second ferrule 30 is made of zirconia ceramic, the dimensional accuracy when manufacturing the second ferrule 30 can be improved.
  • an additive may be contained.
  • the additive may be a stabilizer such as, for example, yttria (Y 2 O 3). Thereby, the toughness of the second ferrule 30 can be improved.
  • the entire outer peripheral surface of the second ferrule 30 may be rough. As a result, the gripping force of the tweezers is increased, so that there is little misalignment when connecting to the living body 60. As a result, the biological tube 1 has high connection reliability.
  • the second ferrule 30 shown in FIGS. 9 and 10 may have a cylindrical shape, for example.
  • the end portion located on the positive side in the z-axis direction may have a diameter of, for example, 1.0 mm to 5.0 mm.
  • the end portion located on the negative side in the z-axis direction may have a diameter of, for example, 1.0 mm to 5.0 mm.
  • the size in the z-axis direction may be 5 mm to 30 mm.
  • the diameter of the through hole 31 may be 0.5 mm to 3.0 mm.
  • the biological tube 1 may have a sleeve 40 that fixes the outer circumferences of the first ferrule 20 and the second ferrule 30.
  • the through hole 41 of the sleeve 40, the through hole 13 of the tube 10, the through hole 22 of the first ferrule 20, and the second ferrule 30 It is arranged so as to be coaxial with the through hole 31.
  • the sleeve 40 may be made of ceramic. As a result, when the first ferrule 20 and the second ferrule 30 are made of ceramic, they can be accurately connected to the first ferrule 20 and the second ferrule 30. Further, since the sleeve 40 is made of ceramic, MRI measurement of the living body 60 can be easily performed.
  • Ceramics used for the sleeve 40 include alumina (Al 2 O 3 ), zirconia (ZrO 2 ), aluminum titanate (AlN), silicon carbide (SiC), silicon carbide (Si 3 N 4 ), and forsterite (2 MgO ⁇ . It may be SiO 2 ), Sialon (SiAION), barium titanate (BaTIO 3 ), lead zirconate titanate (PZT), ferrite, mulite and the like.
  • the sleeve 40 is made of zirconia ceramic, the dimensional accuracy when manufacturing the sleeve 40 can be improved.
  • an additive may be contained.
  • the additive may be a stabilizer such as, for example, yttria (Y 2 O 3). This makes it possible to improve the toughness of the sleeve 40.
  • the sleeve 40 may be a split sleeve. Further, the sleeve 40 may be a precision sleeve. When the sleeve 40 is a split sleeve, since it has elasticity, the first ferrule 20 and the second ferrule 30 can be firmly fixed. The biological tube 1 having such a sleeve 40 has high connection reliability. As shown in FIG. 11, the split sleeve refers to a sleeve having a crack in the z-axis direction. The precision sleeve refers to a sleeve that does not have a crack in the z-axis direction, such as a split sleeve.
  • the entire outer circumference of the sleeve 40 may have a rough surface. As a result, the gripping force of the tweezers is increased, so that there is little misalignment when connecting to the living body 60. As a result, the biological tube 1 has high connection reliability.
  • the sleeve 40 shown in FIGS. 11 and 12 may have a cylindrical shape, for example.
  • the end located on the positive side in the z-axis direction may have a diameter of, for example, 1.5 mm to 8.0 mm.
  • the end portion located on the negative side in the z-axis direction may have a diameter of, for example, 1.5 mm to 8.0 mm.
  • the size in the z-axis direction may be 5 mm to 30 mm.
  • the diameter of the through hole 41 may be 1.0 mm to 5.0 mm.
  • each configuration of the biological tube 1 are not limited to those described above, and appropriate dimensions can be adopted according to the type of measurement target, the measurement target site, and the like.
  • the image fiber 70 may be, for example, an optical fiber made of quartz glass.
  • the end face of the image fiber 70 may be connected to the lens 14.
  • the biological measuring device 100 shown in FIG. 13 includes the biological tube 1 described above and an image system 80 connected to the image fiber 70.
  • the image system 80 may be, for example, an endoscope system.
  • the tube 10 and the first ferrule 20 constituting the biological tube 1 can be produced, for example, by the following steps. First, a powder of a ceramic raw material such as zirconia is kneaded together with a thermoplastic binder to prepare a mixed material. Next, this mixed material is pressure-molded using a mold having a predetermined shape to produce a product. Then, this formed form is calcined at a temperature of about 1300 to 1600 ° C. Through the above steps, the ceramic tube 10 containing zirconia and the first ferrule 20 can be produced. Further, the second ferrule 30 and the sleeve 40 can also be manufactured by the above-mentioned manufacturing method of the tube 10 and the first ferrule 20.
  • the recess 21 is provided with a mold used for manufacturing the first ferrule 20 so as to form the recess 21. Can be formed. Further, when the tube 10 is manufactured so that the tip of the tube 10 is narrowed toward the first end 11, the shape of the mold used at the time of manufacturing the tube 10 is processed so as to be narrowed toward the tip. can.
  • the first ferrule 20, the second ferrule 30, and the sleeve 40 of the first ferrule 20 may be roughened by using a blast method of spraying an abrasive. Further, the portion to be roughened may be immersed in an etching solution and chemically eroded to form a rough surface. Further, the portion corresponding to the outer periphery of the generated form to be the first ferrule 20, the second ferrule 30, and the sleeve 40 is subjected to a roughening treatment in which a member such as a resin material having a rough surface is pressed against the surface, and then fired and roughened. A surface may be formed.
  • the biological tube includes a tube and a first ferrule.
  • the tube is partially inserted into a living body and has a first end, a second end, a through hole, and a lens.
  • the through hole is located in the first direction from the second end to the first end.
  • the first ferrule covers the outer circumference of the tube along the first direction.
  • the lens is located in the through hole at a position including at least the first end.
  • the tube and the first ferrule are made of ceramic.
  • the biological tube according to the embodiment of the present disclosure has little follow-up to the living body.
  • Biological tube 10 Tube 11: First end 12: Second end 13: Through hole 14: Lens 20: First ferrule 21: Recessed portion 22: Through hole 30: Second ferrule 31: Through hole 40: Sleeve 50 : Holding member 60: Living body 70: Image fiber 80: Image system 100: Biological measuring device

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Endoscopes (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本開示の一実施形態に係る生体用チューブは、チューブと、第1フェルールと、を備える。チューブは、生体に一部が挿入され、第1端と、第2端と、貫通孔と、レンズと、を有する。貫通孔は、第2端から第1端に向かう第1方向に亘って位置する。第1フェルールは、チューブの外周を第1方向に沿って覆う。レンズは、貫通孔内のうち、少なくとも前記第1端を含む位置に位置する。チューブおよび第1フェルールは、セラミック製である。

Description

生体用チューブおよび生体測定装置
 本開示は、生体用チューブおよび生体測定装置に関する。
 従来技術の一例は、特許文献1に記載されている。
国際公開第2011/132756号明細書 国際公開第2012/017950号明細書 特表2010-540202号公報 特許第5224482号公報
 本開示の一実施形態に係る生体用チューブは、チューブと、第1フェルールと、を備える。チューブは、生体に一部が挿入され、第1端と、第2端と、貫通孔と、レンズと、を有する。貫通孔は、第2端から第1端に向かう第1方向に亘って位置する。第1フェルールは、チューブの外周を第1方向に沿って覆う。レンズは、貫通孔内のうち、少なくとも前記第1端を含む位置に位置する。チューブおよび第1フェルールは、セラミック製である。
 本開示の目的、特色、および利点は、下記の詳細な説明と図面とからより明確になるであろう。
本開示の一実施形態に係る生体用チューブのy軸方向からの平面図である。 本開示の一実施形態に係る生体用チューブのy軸方向からの展開平面図である。 図2に示す生体用チューブにおけるチューブの斜視図である。 図3に示すチューブのx軸方向に沿った断面図である。 図4に示すチューブのVにおける拡大図である。 他の実施形態に係る生体用チューブのy軸方向からの平面図である。 図2に示す生体用チューブにおける第1フェルールのy軸方向からの平面図である。 図7に示す第1フェルールのx軸方向に沿った断面図である。 図2に示す生体用チューブにおける第2フェルールのy軸方向からの平面図である。 図8に示す第2フェルールのx軸方向に沿った断面図である。 図2に示す生体用チューブにおけるスリーブの斜視図である。 図11に示すスリーブのx軸方向に沿った断面図である。 本開示の一実施形態に係る生体測定装置のy軸方向からの平面図である。
 生体用チューブおよび生体測定装置は、たとえば、マウスあるいはラットなどの齧(げっ)歯類およびマーモセットなどの小動物の脳から神経活動の情報を一定期間にわたって記録するために用いられる。本開示の生体用チューブおよび生体測定装置の基礎となる構成として、たとえば、小動物の脳にワイヤ電極などの長尺の被挿入物を刺入して固定するものがある。ワイヤ電極の生体への固定は、たとえば、比較的剛性が高いステンレス鋼またはステンレス合金などの線状のワイヤ電極を直接、生体に埋設して固定するか、あるいはねじなどのガイド部材によって固定する手法が採用されている。
 以下、本開示の実施形態に係る生体用チューブ1および生体測定装置100ついて、図面を参照しながら説明する。本明細書において、便宜的に、直交座標系xyzを用いて説明する場合がある。
  <生体用チューブ1の構成>
 本開示における生体用チューブ1は、生体60である、例えば齧歯類そしてマーモセットなどの実験用小動物そしてサルあるいはチンパンジーなどの実験用霊長類の脳から神経活動などの情報を得るために用いられる。また、臓器などの細胞活動の情報あるいは血管内の血流情報を得るために用いられる。また、人体あるいは動物の治療などの医療用としても用いられる。
 本開示における生体用チューブ1は、チューブ10と、第1フェルール20と、を備える。また、図1に示す生体用チューブ1のように、チューブ10と、第1フェルール20と、第2フェルール30と、スリーブ40と、を備えていてもよい。チューブ10は、図2に示すように生体60に対し、チューブ10の一部が挿入されるとともに、第1端11と、第2端12と、貫通孔13と、レンズ14と、を有する。貫通孔13は、第2端12から第1端11に向かう第1方向に亘って位置する。レンズ14は、貫通孔13内のうち、少なくとも第1端11を含む位置に位置する。第1フェルール20は、チューブ10の外周を第1方向に沿って覆う。なお、本明細書において、第1方向とは、第2端12から第1端11に向かう方向を指す。チューブ10の貫通孔13には、イメージファイバ70が第1方向に挿入される。
 図1に示す生体用チューブ1のように、チューブ10と、第1フェルール20と、第2フェルール30と、スリーブ40と、を備えていているとき、生体用チューブ1は以下のように生体60に接続される。まず、あらかじめ外周に第1フェルール20が位置するチューブ10を、生体60の、例えば臓器、頭皮、あるいは頭骨などに第1端11を貫通させ、固定する。生体60は、生体60が実験用小動物あるいは実験用霊長類である場合、第1フェルール20およびチューブ10が固定された状態で飼育されてよい。そして、神経活動などの情報を得るための実験時あるいは治療時などに第2フェルール30の貫通孔31に繋がる、言い換えると貫通孔31に位置するイメージファイバ70を、チューブ10の貫通孔13に挿入する。次に、第1フェルール20および第2フェルール30の外周をスリーブ40によって固定する。チューブ10に位置するレンズ14を通った光がイメージファイバ70を通過し、イメージファイバ70と接続されている後述のイメージシステム80で光情報を処理することで、生体60の神経活動などを測定することができる。常に生体60に第1フェルール20およびチューブ10が固定されているため、実験毎に生体60内に被挿入物を何度も抜き差しする必要がなくなるため、生体用チューブ1は、生体60への侵襲が少なくなる。また、生体60の同じ位置での計測が可能になるため、計測結果の信頼性が高い。なお、生体用チューブ1の生体60への固定作業は、術者がピンセットを用いて生体用チューブ1を把持し、臓器、頭皮、あるいは頭骨などの測定対象部位に装着される。
 図1に示すように、チューブ10における第1端11は、第1フェルール20から突出していてもよい。これによって、生体60に、チューブ10を挿入しやすくなるので、生体用チューブ1は操作性が高い。
 図6に示すように、チューブ10は、チューブ10の外径が、第1端11にかけて狭くなっていてもよい。これによって、生体60への挿入が容易になることに加え、挿入の際に生体60の損傷が低減される。その結果、生体用チューブ1は生体60への侵襲が少ない。
 チューブ10は、セラミック製である。これによって、例えばチューブ10が金属性である場合に比較して、生体60が金属アレルギーなどのアレルギーの発症を低減できる。その結果、生体用チューブ1は生体60への侵襲が少ない。また、チューブ10が、セラミック製であることにより、生体60のMRI(magnetic resonance imaging)測定などを容易に実施することができる。
 チューブ10に用いるセラミックとしては、アルミナ(Al)、ジルコニア(ZrO)、チッ化アルミ(AlN)、炭化ケイ素(SiC)、チッ化ケイ素(Si)、フォルステライト(2MgO・SiO)、サイアロン(SiAION)、チタン酸バリウム(BaTiO)、チタン酸ジルコン酸鉛(PZT)、フェライトおよびムライトなどであってもよい。チューブ10が、ジルコニアセラミック製であるとき、ジルコニアは粒子が細かいため、チューブ10を作製する際の寸法精度を向上させることができる。また、チューブ10がジルコニアセラミック製であるときに、添加剤を含んでいてもよい。添加剤としては、たとえばイットリア(Y)などの安定化剤であってもよい。これによって、チューブ10の靭性を向上させることができる。
 図3に示すように、チューブ10は、例えば円筒形状であってもよい。チューブ10が円筒形状であるとき、第1端11および第2端12は、例えば直径が0.5mm~3.0mmであってもよい。また、z軸方向の大きさが5mm~30mmであってもよい。貫通孔13の直径は0.3mm~2.0mmであってもよい。
 レンズ14は、チューブ10の貫通孔13に位置しており、チューブ10の貫通孔13の形状と同じであってもよい。つまり、レンズ14は、円柱形状であってもよい。レンズ14が円柱形状であるとき、z軸方向の正側に位置する端部は、例えば直径が0.3mm~2.0mmであってもよい。また、z軸方向の負側に位置する端部は、例えば直径が0.3mm~2.0mmであってもよい。また、z軸方向の大きさが0.3mm~3.0mmであってもよい。
 レンズ14は、例えばロッドレンズあるいはグリンレンズであってもよい。
 図4の拡大図である図5に示すように、レンズ14は、第1端11から突出していてもよい。これによって、レンズ14が生体60の測定部位に接触するため、情報取集精度が向上する。このようなレンズ14を有する生体用チューブ1は、測定精度が高い。
 実験用小動物の頭部の頭皮および頭骨などを第1端11が貫通するとき、生体用チューブ1が第1フェルール20を有している場合、第1フェルール20がストッパーとして機能する。第1フェルール20がストッパーとして機能することで、生体用チューブ1を生体60に接続する際、生体用チューブ1の固定作業が容易になるとともに、生体用チューブ1を生体60へ必要以上に挿入してしまうことが低減される。その結果、生体用チューブ1は、接続安定性が高く、かつ、生体60への侵襲が少ない。なお、第1フェルール20は、チューブ10の外周を固定しているとともに、チューブ10の貫通孔13と、第1フェルール20の貫通孔22とが同軸となるように配置される。
 第1フェルール20は、外周に開口する凹部21を有していてもよい。凹部21は、後述する保持部材50が位置していてもよい。また、凹部21の表面は、粗面状であってもよい。粗面状とは、他の箇所よりも表面粗さが大きい状態のことをいう。表面粗さは、接触式であれば触針法、非接触式であれば、光干渉法、焦点移動による画像合成法またはコンフォーカル法等を用いて測定および算出できる。測定方法は、対象物の大きさおよび形状等に応じて適宜選択すればよい。
 図2に示すように、生体用チューブ1は、第1フェルール20の外周から生体60に亘って延び、生体60に繋がる保持部材50を備えていてもよい。つまり、保持部材50は、生体60と第1フェルール20を固定する。これによって、生体用チューブ1は、生体60に強固に固定することができる。
 第1フェルール20が凹部21を有しているとき、保持部材50は、凹部21に位置していてもよい。これによって、保持部材50と第1フェルール20の接触面積が増加するため、生体60と第1フェルールの接続強度が向上する。また、凹部21の表面が粗面状であることによって、さらに接続強度が向上する。
 第1フェルール20は、セラミック製である。これによって、生体60が金属アレルギーなどのアレルギーの発症を低減できる。その結果、生体用チューブ1は生体60への侵襲が少ない。また、第1フェルール20は、セラミック製であることで、生体60のMRI測定などを容易に実施することができる。
 第1フェルール20に用いるセラミックとしては、アルミナ(Al)、ジルコニア(ZrO)、チッ化アルミ(AlN)、炭化ケイ素(SiC)、チッ化ケイ素(Si)、フォルステライト(2MgO・SiO)、サイアロン(SiAION)、チタン酸バリウム(BaTiO)、チタン酸ジルコン酸鉛(PZT)、フェライトおよびムライトなどであってもよい。第1フェルール20が、ジルコニアセラミック製であるとき、第1フェルール20を作製する際の寸法精度を向上させることができる。また、第1フェルール20がジルコニアセラミック製であるときに、添加剤を含んでいてもよい。添加剤としては、たとえばイットリア(Y)などの安定化剤であってもよい。これによって、第1フェルール20の靭性を向上させることができる、
 第1フェルール20の外周の全面が粗面状であってもよい。これによって、ピンセットによる把持力が高まるため、生体60に接続する際の位置ずれが少ない。その結果、生体用チューブ1は、接続信頼性が高い。
 図7および図8に示す第1フェルール20は、例えば円筒形状であってもよい。第1フェルール20が円筒形状であるとき、z軸方向の正側に位置する端部は、例えば直径が1.0mm~5.0mmであってもよい。また、z軸方向の負側に位置する端部は、例えば直径が1.0mm~5.0mmであってもよい。また、z軸方向の大きさが5mm~30mmであってもよい。貫通孔22の直径は0.5mm~3.0mmであってもよい。
 保持部材50はエポキシなどの樹脂製であってもよい。保持部材50が樹脂製であることで、速乾性を向上させることができるため、生体60への負荷を低減させることができる。その結果、生体用チューブ1は、生体60への侵襲が少ない。
 生体用チューブ1は、イメージファイバ70の外周を固定している第2フェルール30を有していてもよい。これによって、イメージファイバ70を第1フェルール20に精度よく接続できると同時に、イメージファイバ70が衝撃などによる破損を低減できる。イメージファイバ70は、チューブ10の貫通孔13に挿入されることで、チューブ10によって固定される。そのとき、第2フェルール30の貫通孔31と、チューブ10の貫通孔13と、第1フェルール20の貫通孔22とが同軸となるように配置される。
 第2フェルール30は、セラミック製であってもよい。これによって、生体60が金属アレルギーなどのアレルギーの発症を低減できる。これによって、第1フェルール20がセラミック製である場合、第1フェルール20と第2フェルール30とを精度よく接続することができる。また、第2フェルール30が、セラミック製であることにより、生体60のMRI測定などを容易に実施することができる。
 第2フェルール30に用いるセラミックとしては、アルミナ(Al)、ジルコニア(ZrO)、チッ化アルミ(AlN)、炭化ケイ素(SiC)、チッ化ケイ素(Si)、フォルステライト(2MgO・SiO)、サイアロン(SiAION)、チタン酸バリウム(BaTiO)、チタン酸ジルコン酸鉛(PZT)、フェライトおよびムライトなどであってもよい。第2フェルール30が、ジルコニアセラミック製であるとき、第2フェルール30を作製する際の寸法精度を向上させることができる。また、第2フェルール30がジルコニアセラミック製であるときに、添加剤を含んでいてもよい。添加剤としては、たとえばイットリア(Y)などの安定化剤であってもよい。これによって、第2フェルール30の靭性を向上させることができる。
 第2フェルール30の外周面は全面が粗面状であってもよい。これによって、ピンセットによる把持力が高まるため、生体60に接続する際の位置ずれが少ない。その結果、生体用チューブ1は、接続信頼性が高い。
 図9および図10に示す第2フェルール30は、例えば円筒形状であってもよい。第2フェルール30が円筒形状であるとき、z軸方向の正側に位置する端部は、例えば直径が1.0mm~5.0mmであってもよい。また、z軸方向の負側に位置する端部は、例えば直径が1.0mm~5.0mmであってもよい。また、z軸方向の大きさが5mm~30mmであってもよい。貫通孔31の直径は0.5mm~3.0mmであってもよい。
 生体用チューブ1は、第1フェルール20および第2フェルール30の外周を固定しているスリーブ40を有していてもよい。第1フェルール20および第2フェルール30の外周を固定していることで、スリーブ40の貫通孔41と、チューブ10の貫通孔13と、第1フェルール20の貫通孔22と、第2フェルール30の貫通孔31とが同軸となるように配置される。
 スリーブ40は、セラミック製であってもよい。これによって、第1フェルール20および第2フェルール30がセラミック製である場合、第1フェルール20および第2フェルール30と精度よく接続することができる。また、スリーブ40が、セラミック製であることにより、生体60のMRI測定などを容易に実施することができる。
 スリーブ40に用いるセラミックとしては、アルミナ(Al)、ジルコニア(ZrO)、チッ化アルミ(AlN)、炭化ケイ素(SiC)、チッ化ケイ素(Si)、フォルステライト(2MgO・SiO)、サイアロン(SiAION)、チタン酸バリウム(BaTiO)、チタン酸ジルコン酸鉛(PZT)、フェライトおよびムライトなどであってもよい。スリーブ40が、ジルコニアセラミック製であるとき、スリーブ40を作製する際の寸法精度を向上させることができる。また、スリーブ40がジルコニアセラミック製であるときに、添加剤を含んでいてもよい。添加剤としては、たとえばイットリア(Y)などの安定化剤であってもよい。これによって、スリーブ40の靭性を向上させることができる。
 スリーブ40は、割スリーブであってもよい。また、スリーブ40は、精密スリーブであってもよい。スリーブ40が割スリーブの場合、弾性を有するため、第1フェルール20および第2フェルール30を強固に固定することができる。そのようなスリーブ40を有する生体用チューブ1は、接続信頼性が高い。なお、割スリーブとは、図11に示すように、z軸方向に割れ目を有するスリーブを指す。精密スリーブとは、割スリーブのようなz軸方向の割れ目を有さないスリーブを指す。
 スリーブ40の外周は全面が粗面状であってもよい。これによって、ピンセットによる把持力が高まるため、生体60に接続する際の位置ずれが少ない。その結果、生体用チューブ1は、接続信頼性が高い。
 図11および図12に示すスリーブ40は、例えば円筒形状であってもよい。スリーブ40が円筒形状であるとき、z軸方向の正側に位置する端部は、例えば直径が1.5mm~8.0mmであってもよい。また、z軸方向の負側に位置する端部は、例えば直径が1.5mm~8.0mmであってもよい。また、z軸方向の大きさが5mm~30mmであってもよい。貫通孔41の直径は1.0mm~5.0mmであってもよい。
 生体用チューブ1の各構成における寸法は、上述したものに限るものではなく、計測対象の種類、測定対象部位などに応じて適切な寸法を採用し得る。
 イメージファイバ70は、例えば石英ガラスの光ファイバであってもよい。
 イメージファイバ70は、チューブ10の貫通孔13に挿入されるとき、イメージファイバ70の端面がレンズ14と繋がっていてもよい。
  <生体測定装置100の構成>
 図13に示す生体測定装置100は、上述してきた生体用チューブ1と、イメージファイバ70に接続しているイメージシステム80と、を備える。
 イメージシステム80は、例えば内視鏡システムであってもよい。
  <生体用チューブ1の製造方法>
 生体用チューブ1を構成するチューブ10および第1フェルール20は、たとえば以下の各工程により作製することができる。まず、ジルコニアなどのセラミック原料の粉末を熱可塑性バインダとともに混練して混合材料を作製する。次に、この混合材料を、所定形状の金型を用いて加圧成形し、生成形体を作製する。その後、この生成形体を約1300~1600℃の温度で焼成する。以上の工程で、ジルコニアを含むセラミック製のチューブ10および第1フェルール20を作製することができる。また、第2フェルール30およびスリーブ40についても、上述したチューブ10および第1フェルール20の作製方法で作製することができる。
 図7に示すように、第1フェルール20が凹部21を有する場合、凹部21は、第1フェルール20の作製時に使用する金型を、凹部21を形成するように突起を有するものとしておくことで形成できる。また、チューブ10の先端が第1端11にかけて狭くなるようチューブ10を作製する場合も、チューブ10の作成時に使用する金型の形状を、先端にかけて狭くなるように加工したものを用いることで作製できる。
 第1フェルール20の凹部21、第1フェルール20、第2フェルール30そしてスリーブ40の外周が粗面状である場合、研磨剤を吹付けるブラスト法を用いて粗面状としてもよい。また、粗面状としたい部分をエッチング液で浸漬し、化学的に侵食して粗面状に形成しもよい。また、第1フェルール20、第2フェルール30そしてスリーブ40になる生成形体の外周に対応した部分に、表面が粗い樹脂材などの部材を押し当てる粗面化処理を施した後に、焼成し、粗面状を形成してもよい。
 本開示は次の実施の形態が可能である。
 本開示の一実施形態に係る生体用チューブは、チューブと、第1フェルールと、を備える。チューブは、生体に一部が挿入され、第1端と、第2端と、貫通孔と、レンズと、を有する。貫通孔は、第2端から第1端に向かう第1方向に亘って位置する。第1フェルールは、チューブの外周を第1方向に沿って覆う。レンズは、貫通孔内のうち、少なくとも前記第1端を含む位置に位置する。チューブおよび第1フェルールは、セラミック製である。
 本開示の一実施形態に係る生体用チューブは、生体への踏襲が少ない。
 なお、本開示は上述の実施形態の例に限定されるものではない。また、各構成は、数値などの種々の変形が可能である。なお、本開示の一実施形態の種々の組み合わせは上述の実施形態の例に限定されるものでない。
1:生体用チューブ
10:チューブ
11:第1端
12:第2端
13:貫通孔
14:レンズ
20:第1フェルール
21:凹部
22:貫通孔
30:第2フェルール
31:貫通孔
40:スリーブ
50:保持部材
60:生体
70:イメージファイバ
80:イメージシステム
100:生体測定装置

Claims (12)

  1.  生体に一部が挿入されるチューブであり、
     第1端と、第2端と、該第2端から前記第1端に向かう第1方向に亘って位置する貫通孔と、を有するチューブと、
     該チューブの外周を前記第1方向に沿って覆う第1フェルールと、を備え、
     前記チューブは、
     前記貫通孔内のうち、少なくとも前記第1端を含む位置にレンズを有し、
     前記チューブおよび前記第1フェルールは、
     セラミック製である、生体用チューブ。
  2.  前記第1端は、
     前記第1フェルールから突出している、請求項1記載の生体用チューブ。
  3.  前記チューブは、
     前記チューブの外径が、前記第1端にかけて狭くなっている、請求項1または請求項2記載の生体用チューブ。
  4.  前記レンズは、
     前記第1端から突出している、請求項1~請求項3のいずれか1つに記載の生体用チューブ。
  5.  前記第1フェルールの外周から延び前記生体に繋がる保持部材を備える、請求項1~請求項4のいずれか1つに記載の生体用チューブ。
  6.  前記第1フェルールは、
     前記第1フェルールの外周に開口する凹部を有し、
     前記保持部材は、
     前記凹部に位置する、請求項5記載の生体用チューブ。
  7.  前記保持部材は、
     樹脂製である、請求項5または請求項6記載の生体用チューブ。
  8.  前記チューブは、
     ジルコニアセラミック製である、請求項1~請求項7のいずれか1つに記載の生体用チューブ。
  9.  前記貫通孔内に位置する前記レンズに繋がるイメージファイバを備える、請求項1~請求項8のいずれか1つに記載の生体用チューブ。
  10.  前記イメージファイバの外周を固定しているセラミック製の第2フェルールと、
     前記第1フェルールおよび前記第2フェルールのそれぞれの外周を固定しているセラミック製のスリーブと、を備える、請求項9記載の生体用チューブ。
  11.  前記スリーブは、
     割スリーブである、請求項10記載の生体用チューブ。
  12.  請求項9~請求項11のいずれか1つに記載の生体用チューブと、
     前記イメージファイバに接続しているイメージシステムと、を備える、生体測定装置。
PCT/JP2021/018508 2020-05-15 2021-05-14 生体用チューブおよび生体測定装置 WO2021230377A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180034801.8A CN115551418A (zh) 2020-05-15 2021-05-14 生物体用管以及生物体测定装置
US17/925,123 US20230181009A1 (en) 2020-05-15 2021-05-14 Tube assembly for living organism and measurement apparatus for living organism
EP21802951.0A EP4151158A4 (en) 2020-05-15 2021-05-14 BIOMEDICAL TUBE AND BIOMETRIC DEVICE
JP2022522226A JP7489072B2 (ja) 2020-05-15 2021-05-14 生体用チューブおよび生体測定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020086095 2020-05-15
JP2020-086095 2020-05-15

Publications (1)

Publication Number Publication Date
WO2021230377A1 true WO2021230377A1 (ja) 2021-11-18

Family

ID=78525191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018508 WO2021230377A1 (ja) 2020-05-15 2021-05-14 生体用チューブおよび生体測定装置

Country Status (5)

Country Link
US (1) US20230181009A1 (ja)
EP (1) EP4151158A4 (ja)
JP (1) JP7489072B2 (ja)
CN (1) CN115551418A (ja)
WO (1) WO2021230377A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005533533A (ja) * 2001-10-24 2005-11-10 シメッド ライフ システムズ インコーポレイテッド 光カテーテルコネクタ
WO2011132756A1 (ja) 2010-04-21 2011-10-27 国立大学法人東北大学 小動物用の脳測定用電極ユニットとそれを用いた測定システム
WO2012017950A1 (ja) 2010-08-03 2012-02-09 学校法人 久留米大学 実験用小動物の脳波測定用電極装置及び脳波測定方法
US20120281218A1 (en) * 2005-01-24 2012-11-08 The Board Of Trustees Of The Leland Stanford Junior University Optical analysis system and approach therefor
JP2012239669A (ja) * 2011-05-20 2012-12-10 Konica Minolta Advanced Layers Inc プローブ及び診断システム
JP2013500109A (ja) * 2009-07-29 2013-01-07 マウナ ケア テクノロジーズ 脳のファイババンドル顕微鏡法のための装置及び方法
JP5224482B2 (ja) 2008-09-30 2013-07-03 国立大学法人 奈良先端科学技術大学院大学 脳内情報計測装置
WO2017170662A1 (ja) * 2016-03-31 2017-10-05 国立大学法人東北大学 光学イメージング装置
US20180228375A1 (en) * 2015-11-18 2018-08-16 The Board Of Trustees Of The Leland Stanford Junior University Method and Systems for Measuring Neural Activity

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10314491B2 (en) * 2017-02-11 2019-06-11 The General Hospital Corporation Optics for apodizing an optical imaging probe beam
WO2020045669A1 (ja) * 2018-08-31 2020-03-05 京セラ株式会社 光コネクタ用フェルール、光コネクタおよび複合ファイバ接続構造体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005533533A (ja) * 2001-10-24 2005-11-10 シメッド ライフ システムズ インコーポレイテッド 光カテーテルコネクタ
US20120281218A1 (en) * 2005-01-24 2012-11-08 The Board Of Trustees Of The Leland Stanford Junior University Optical analysis system and approach therefor
JP5224482B2 (ja) 2008-09-30 2013-07-03 国立大学法人 奈良先端科学技術大学院大学 脳内情報計測装置
JP2013500109A (ja) * 2009-07-29 2013-01-07 マウナ ケア テクノロジーズ 脳のファイババンドル顕微鏡法のための装置及び方法
WO2011132756A1 (ja) 2010-04-21 2011-10-27 国立大学法人東北大学 小動物用の脳測定用電極ユニットとそれを用いた測定システム
WO2012017950A1 (ja) 2010-08-03 2012-02-09 学校法人 久留米大学 実験用小動物の脳波測定用電極装置及び脳波測定方法
JP2012239669A (ja) * 2011-05-20 2012-12-10 Konica Minolta Advanced Layers Inc プローブ及び診断システム
US20180228375A1 (en) * 2015-11-18 2018-08-16 The Board Of Trustees Of The Leland Stanford Junior University Method and Systems for Measuring Neural Activity
WO2017170662A1 (ja) * 2016-03-31 2017-10-05 国立大学法人東北大学 光学イメージング装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IKEDA, NAOTO; LU, WENGUANG; MATSUNAGA, TADAO; TSURUOKA, NORIKO: "31pm2-PS-154 Thin tube-shaped neural electrodes with endoscopic observation function", PROCEEDINGS OF THE 35TH SENSOR MICROMACHINES AND APPLIED SYSTEMS SYMPOSIUM, vol. 35, 23 October 2018 (2018-10-23), Japan, pages 1 - 4, XP009541018 *
IKEDA, NAOTO; LU, WENGUANG; MATSUNAGA, TADAO; TSURUOKA, NORIKO; MUSHIAKE, HAJIME; OSANAI, MAKOTO; OSHIRO, TOMOKAZU; HAGA, YOICHI: "Fabrication and electrical characterization of a thin tube-shaped neural electrodes with endoscopic observation function", INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN MATERIALS MICROMACHINE AND SENSOR SYSTEM STUDY GROUP, no. MSS-18-9, 12 July 2018 (2018-07-12), JP, pages 11 - 14, XP009541019 *
See also references of EP4151158A4

Also Published As

Publication number Publication date
JPWO2021230377A1 (ja) 2021-11-18
JP7489072B2 (ja) 2024-05-23
CN115551418A (zh) 2022-12-30
EP4151158A4 (en) 2024-05-29
US20230181009A1 (en) 2023-06-15
EP4151158A1 (en) 2023-03-22

Similar Documents

Publication Publication Date Title
WO2021230377A1 (ja) 生体用チューブおよび生体測定装置
US11485686B2 (en) Ceramic, probe guiding member, probe card, and socket for package inspection
TW201429600A (zh) 銲針
KR20150110468A (ko) 본딩 캐필러리
JP7032712B2 (ja) セラミックガイド、セラミックガイド装置およびセラミックガイドモジュール
JPH11276504A (ja) 歯列矯正用ブラケットおよびその製造方法
US6721588B2 (en) MR scanner with a setting mechanism for patient-dependent control of the radio-frequency fields and magnetic fields
US11675141B2 (en) Optical connector ferrule, optical connector, and composite fiber connecting assembly
JP3540912B2 (ja) 釣糸用ガイド部材
JP2007061200A (ja) 皮内針
JP2005211101A (ja) 歯列矯正用ブラケット
JPH11135544A (ja) ワイヤボンディングツール
JPWO2016075997A1 (ja) 走査型内視鏡
You et al. Surface property changes observed in zirconia during etching with high-concentration hydrofluoric acid over various immersion times
JP2009086168A (ja) 割スリーブならびにこれを用いた光レセプタクル及び光アダプタ
JP2020183988A (ja) 微小検体ピッキングシステム及び微小検体ピッキングプログラム
CN115955987A (zh) 导丝
JP2003183078A (ja) ガイドレール
JP2003066279A (ja) 多芯光コネクタ
JPH08319184A (ja) イオン照射セラミック製ペン先
JP2003307647A (ja) 光ファイバ用フェルールとその加工方法及びこれを用いた光モジュール用ピグテイル
JP2013134402A (ja) 光ファイバピグテール、光コネクタおよび光ファイバ保持用部品
JP2013033200A (ja) フェルール、光ファイバ保持用部品、光ファイバピグテールおよび光レセプタクル
Mieller Influence of surface treatment on the strength of a dental zirconia for implants
JP2013076804A (ja) 光ファイバ保持用部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21802951

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022522226

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021802951

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021802951

Country of ref document: EP

Effective date: 20221215

NENP Non-entry into the national phase

Ref country code: DE