WO2021230301A1 - アンテナ装置 - Google Patents

アンテナ装置 Download PDF

Info

Publication number
WO2021230301A1
WO2021230301A1 PCT/JP2021/018111 JP2021018111W WO2021230301A1 WO 2021230301 A1 WO2021230301 A1 WO 2021230301A1 JP 2021018111 W JP2021018111 W JP 2021018111W WO 2021230301 A1 WO2021230301 A1 WO 2021230301A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
antenna device
base station
elevation angle
antennas
Prior art date
Application number
PCT/JP2021/018111
Other languages
English (en)
French (fr)
Inventor
洋平 関谷
勇次 杉本
正和 池田
祐次 角谷
隆一 新井
士朗 小出
拓也 山下
博之 泉
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2021230301A1 publication Critical patent/WO2021230301A1/ja
Priority to US17/982,254 priority Critical patent/US20230066781A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3275Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle mounted on a horizontal surface of the vehicle, e.g. on roof, hood, trunk
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole

Definitions

  • the antenna device especially the antenna that transmits and receives cross-polarized light.
  • Patent Document 1 discloses an antenna configuration that realizes high-speed communication by using orthogonally polarized waves in the horizontal direction in a vehicle.
  • One antenna is an antenna that transmits and receives horizontally polarized waves
  • the other antenna is an antenna that transmits and receives vertically polarized waves.
  • the antenna for transmitting and receiving horizontally polarized waves is an inverted L antenna
  • the vertically polarized antenna is a monopole antenna.
  • the movement of the moving body may cause the base station to be located at a high elevation angle when viewed from the antenna device.
  • the antenna configuration disclosed in Patent Document 1 since the antenna for transmitting and receiving vertically polarized waves is a monopole antenna, the gain at a high elevation angle such as in the zenith direction is not sufficient. Therefore, in the antenna configuration disclosed in Patent Document 1, when the base station is located at a high elevation angle, there is a possibility that direct wave communication cannot be performed satisfactorily.
  • the antenna device is likely to be able to communicate with the base station at the high elevation angle even if the gain at the high elevation angle is not sufficient.
  • the frequency of the radio waves to be transmitted and received is in the millimeter wave band
  • the amount of attenuation according to the distance is large, so it becomes difficult to receive the reflected wave. Therefore, when the frequency band of the radio waves to be transmitted and received is in the millimeter wave band, there is a particularly high possibility that good communication cannot be performed when the base station is located at a high elevation angle.
  • the frequency of the radio waves transmitted and received is lower than the millimeter wave, it is the same as the millimeter wave in that the direct wave cannot be received. Therefore, even if the frequency of the radio waves transmitted and received is lower than the millimeter wave, if the base station is at a high elevation angle, good communication may not be possible.
  • the present disclosure is based on this circumstance, and an object thereof is to provide an antenna device capable of good communication regardless of whether the base station is in a low elevation angle or a high elevation angle. To do.
  • the first antenna whose low elevation directional gain is higher than the high elevation directional gain, It transmits and receives radio waves where the radio waves transmitted and received by the first antenna intersect with the vibration direction of the electric field, can communicate with the base station when the base station is at a low elevation angle, and has a higher elevation angle directivity than the first antenna.
  • the second antenna with high gain and It includes a third antenna in which the vibration directions of the electric field intersect with the radio waves transmitted and received by the second antenna and the directivity gain is higher than that of the first antenna.
  • the first antenna and the second antenna it is possible to increase the gain of communication due to cross-polarization between the base station at a low elevation angle. Further, by using the second antenna and the third antenna, it is possible to increase the gain of communication due to cross-polarization even between the base station at a high elevation angle. Therefore, even if the base station has a low elevation angle and a high elevation angle, good communication can be performed.
  • the figure which shows the concrete structure of the antenna 30, 40, 50 Section III-III sectional view of FIG. FIG. 2 is a sectional view taken along line IV-IV.
  • the figure explaining the directivity gain of the horizontally polarized antenna 30 The figure explaining the directivity gain of the vertically polarized wave antenna 40.
  • the figure explaining the directivity gain of the zenith antenna 50 The figure which shows the structure of the antenna of 2nd Embodiment
  • the figure which shows the structure of the antenna device 200 of 3rd Embodiment The figure which shows the structure of the antenna device 300 of 4th Embodiment
  • FIG. 1 is a diagram showing a configuration of the antenna device 10 of the present embodiment.
  • the antenna device 10 is mounted on the vehicle C.
  • the vehicle C is an example of a moving body.
  • the vehicle C travels on a road and is a four-wheeled passenger car in the present embodiment.
  • the antenna device 10 may be mounted on a vehicle C other than a four-wheeled passenger car, or may move together with a moving body other than the vehicle C.
  • the antenna device 10 is a device capable of communicating by a 5th generation mobile communication system (hereinafter, 5G).
  • the frequency band of the radio wave used by the antenna device 10 for communication includes a millimeter wave band, for example, a 28 GHz band.
  • the antenna device 10 includes a communication device 20, a horizontally polarized wave antenna 30, a vertically polarized wave antenna 40, and a zenith antenna 50.
  • the horizontally polarized antenna 30 corresponds to the second antenna
  • the vertically polarized antenna 40 corresponds to the first antenna
  • the zenith antenna 50 corresponds to the third antenna.
  • the communication device 20 transmits and receives signals by radio waves to and from the base station BS outside the vehicle C via the horizontally polarized wave antenna 30, the vertically polarized wave antenna 40, and the zenith antenna 50.
  • the base station BS is shown in FIG. 1 for convenience of illustration, there are a plurality of base station BSs.
  • the ground clearance in which a plurality of base station BSs are installed varies.
  • Specific operations of the communication device 20 include amplification and modulation of signals transmitted from the antennas 30, 40 and 50, demodulation and amplification of radio waves received by the antennas 30, 40 and 50.
  • the communication device 20 is capable of mutual communication by various control devices 3 mounted on the vehicle C and an in-vehicle LAN 4.
  • the horizontally polarized wave antenna 30 is an antenna that transmits and receives horizontally polarized waves.
  • Horizontally polarized waves are radio waves whose vibration direction is horizontal to the ground.
  • the vertically polarized wave antenna 40 is an antenna that transmits and receives vertically polarized waves.
  • Vertically polarized waves are radio waves whose vibration direction is perpendicular to the ground.
  • the zenith antenna 50 is an antenna having a high directional gain in the zenith direction.
  • FIG. 2 shows a specific configuration of the antennas 30, 40, and 50 included in the antenna device 10.
  • the horizontally polarized wave antenna 30, the vertically polarized wave antenna 40, and the zenith antenna 50 are arranged on one substrate 60.
  • the substrate 60 is made of a dielectric material such as glass epoxy resin.
  • the shape of the substrate 60 is a rectangular flat plate.
  • the installation position of the substrate 60 is on the roof of the vehicle C, and the board 60 is covered with a cover and installed on the roof. Further, a part of the roof may be recessed and the substrate 60 may be fitted therein.
  • the posture of the substrate 60 is a posture along the roof.
  • the substrate 60 is installed at a predetermined installation position such as a roof via the dielectric sheet 70.
  • the horizontally polarized antenna 30 is connected to the substrate 60 by a feeder line 31 extending from one side of the substrate 60, specifically, a side of the substrate 60 on the front side of the vehicle C.
  • the horizontally polarized antenna 30 is a dipole antenna and extends in the vehicle width direction.
  • a dipole antenna is an example of a rod-shaped antenna.
  • the horizontally polarized antenna 30 is a dipole antenna, the length is about ⁇ / 2 (that is, about half a wavelength). Note that ⁇ represents the wavelength of the radio wave to be transmitted and received. Further, two horizontally polarized antennas 30 having the same shape are arranged along the vehicle width direction. The number of horizontally polarized antennas 30 is an example. The number of horizontally polarized antennas 30 may be one or three or more.
  • Each vertically polarized wave antenna 40 includes a conductor plate 41 shown in FIG.
  • the plate includes a thin foil-like plate, and the conductor plate 41 is made of a conductor such as copper foil.
  • the shape of the conductor plate 41 is a flat plate, and the planar shape is a square.
  • the eight vertically polarized antennas 40 are arranged at equal intervals so as to form a square along the four sides of the substrate 60.
  • the zenith antenna 50 is arranged at a position surrounded by the eight vertically polarized antennas 40.
  • the zenith antenna 50 includes a conductor plate 51 shown in FIG.
  • FIG. 3 shows a sectional view taken along line III-III of FIG. Note that the dielectric sheet 70 is omitted in FIG.
  • the vertically polarized antenna 40 penetrates the conductor plate 41 arranged on the upper surface of the substrate 60, the ground 61 arranged on the back surface of the substrate 60, and the substrate 60 in the thickness direction, and passes the conductor plate 41 and the ground 61. It is configured to include a short-circuit pin 42 for electrically connecting.
  • the short-circuit pin 42 is connected to the conductor plate 41 at the center of the conductor plate 41.
  • the short-circuit pin 42 can be realized by a via provided on the substrate 60.
  • a feeder line 80 is connected to the conductor plate 41, and power is supplied from this feeder line 80.
  • the ground 61 is formed on the entire back surface of the substrate 60, and the ground 61 is common to all the vertically polarized antennas 40 and the zenith antenna 50.
  • FIG. 4 shows a sectional view taken along line IV-IV of FIG.
  • the dielectric sheet 70 is also omitted in FIG.
  • the zenith antenna 50 is a patch antenna, and the feeding line 80 is connected to the conductor plate 51.
  • the conductor plate 51 has a planar shape of a square shape having a side length of ⁇ / 2.
  • the position on the conductor plate 51 to which the feeder line 80 is connected is a position on the conductor plate 51 that is closer to the rear in the vehicle front-rear direction.
  • FIGS. 5, 6 and 7 show the directional gains of the horizontally polarized antenna 30, the vertically polarized antenna 40, and the zenith antenna 50, respectively.
  • the alternate long and short dash line indicates the directional gain.
  • the actual directivity gain shows a complicated shape due to the influence of surrounding objects and the like.
  • the directivity gains shown in FIGS. 5, 6 and 7 are conceptual.
  • the vehicle front-rear direction may be referred to as the X-axis direction
  • the vehicle width direction may be referred to as the Y-axis direction
  • the vertical direction may be referred to as the Z-axis direction.
  • Each of these axes is also shown in FIGS. 1-7.
  • the horizontally polarized antenna 30 is a dipole antenna and the antenna element extends in the Y-axis direction, the linearly polarized light radiated by the horizontally polarized antenna 30 vibrates in the horizontal plane in the Y-axis direction. Further, since the horizontally polarized antenna 30 is a dipole antenna, the directivity around the axis of the antenna is isotropically high. Therefore, as shown in FIG. 5, the directivity gain in the X-axis direction is also high. Therefore, the horizontally polarized antenna 30 is an antenna that can communicate with the base station BS when the base station BS is at a low elevation angle.
  • the horizontally polarized antenna 30 since the horizontally polarized antenna 30 has high directivity around the axis of the antenna, the directivity gain in the Z-axis direction is also high. Therefore, the horizontally polarized antenna 30 can communicate with the base station BS even if the base station BS is at a high elevation angle. However, the directional gain in the Y-axis direction in which the horizontally polarized antenna 30 extends is low.
  • the vertically polarized wave antenna 40 is a 0th order resonance antenna.
  • the principle that the vertically polarized wave antenna 40 operates as an antenna by the 0th order resonance will be outlined.
  • the area of the conductor plate 41 is an area that forms a capacitance that resonates in parallel with the inductance of the short-circuit pin 42 and the frequency of radio waves transmitted and received by the vertically polarized antenna 40 (hereinafter, operating frequency). Therefore, in the operating frequency and its vicinity, parallel resonance (so-called LC parallel resonance) occurs due to energy exchange between the inductance and the capacitance.
  • an electric field perpendicular to the ground 61 and the conductor plate 41 (hereinafter referred to as a vertical electric field) is generated between the ground 61 and the conductor plate 41.
  • the operating frequency may be adjusted by using a matching element.
  • This vertical electric field propagates from the short-circuit pin 42 toward the edge of the conductor plate 41, and at the edge of the conductor plate 41, it becomes polarized light perpendicular to the conductor plate 41 (hence, vertically polarized wave). Propagate through space. Since the radio waves transmitted and received by the vertically polarized antenna 40 are vertically polarized and the radio waves transmitted and received by the horizontally polarized antenna 30 are horizontally polarized, the electric field of the radio waves transmitted and received by the horizontally polarized antenna 30 and the vertically polarized antenna 40. The vibration directions of are intersecting, more specifically orthogonal.
  • the radiation direction of the vertically polarized antenna 40 is , X-axis direction and Y-axis direction as shown in FIG.
  • the propagation direction of the vertical electric field is symmetrical with respect to the short-circuit pin 42. Therefore, the radiation characteristic in the direction parallel to the ground 61 is omnidirectional (in other words, omnidirectional). Therefore, the vertically polarized antenna 40 can satisfactorily communicate with the base station BS regardless of the orientation of the base station BS when the base station BS is at a low elevation angle.
  • the low elevation angle means an elevation angle that is so low that the directivity gain of the zenith antenna 50 described below becomes low.
  • the short-circuit pin 42 is arranged at the center of the conductor plate 41, the current flowing through the conductor plate 41 is symmetrical with respect to the short-circuit pin 42. Therefore, the radio wave in the antenna height direction generated by the current flowing in a certain direction from the center of the conductor plate 41 is canceled by the radio wave generated by the current flowing in the opposite direction. That is, the current excited by the conductor plate 41 does not contribute to the radiation of radio waves. Therefore, the vertically polarized wave antenna 40 does not radiate radio waves in the direction perpendicular to the conductor plate 41, that is, in the zenith direction.
  • the zenith antenna 50 Since the zenith antenna 50 is a patch antenna, it radiates radio waves in the Z-axis direction, that is, in the zenith direction, as shown in FIG. Further, in the zenith antenna 50, since the feeder line 80 is connected to the conductor plate 51 at a position deviated from the center in the X-axis direction, the linearly polarized light radiated by the zenith antenna 50 vibrates in the X-axis direction. do.
  • the vibration direction of the electric field of the radio wave transmitted and received by the horizontally polarized antenna 30 is the Y-axis direction in the XY plane, whereas the vibration direction of the electric field of the radio wave transmitted and received by the zenith antenna 50 is the X axis in the XZ plane.
  • the horizontally polarized antenna 30 and the vertically polarized antenna 40 can communicate with the base station BS at a low elevation angle, and are vertically biased with the horizontally polarized antenna 30.
  • the vibration directions of the electric waves of the radio waves transmitted and received by the wave antenna 40 intersect each other. Therefore, the antenna device 10 can communicate with the base station BS at a low elevation angle by two polarized waves intersecting each other.
  • the horizontally polarized wave antenna 30 has a high directional gain at a high elevation angle
  • the antenna device 10 includes a zenith antenna 50 having a high directional gain at a high elevation angle.
  • the vibration directions of the electric fields of the radio waves transmitted and received by the horizontally polarized antenna 30 and the zenith antenna 50 are orthogonal to each other. Therefore, even when the base station BS is at a high elevation angle, the antenna device 10 can communicate well with the base station BS by a direct wave with two polarized waves intersecting each other. Since the communication is by direct wave, it is possible to satisfactorily communicate with the base station BS even in 5G communication using the millimeter wave band.
  • the vertically polarized antenna 40 which is a 0th-order resonance antenna and the zenith antenna 50 which is a patch antenna are arranged on the same substrate 60. That is, the vertically polarized wave antenna 40 and the zenith antenna 50 are arranged on the same layer. Since the vertically polarized antenna 40 and the zenith antenna 50 are arranged on the same layer, the side lobes of the radio waves emitted by the zenith antenna 50 are reflected by the vertically polarized antenna 40. As a result, the zenith antenna 50 reduces radiation in unnecessary directions, so that the directivity gain in the zenith direction is improved.
  • the zenith antenna 50 is arranged in the same layer as the vertically polarized antenna 40, but also the zenith antenna 50 is sandwiched between the vertically polarized antennas 40 on the same substrate 60. With such an arrangement, the zenith antenna 50 can further suppress side lobes, so that the directivity gain in the zenith direction is further improved. Note that being sandwiched means that the zenith antenna 50 is on a line segment connecting the two vertically polarized antennas 40.
  • the horizontally polarized wave antenna 30, the vertically polarized wave antenna 40, and the zenith antenna 50 are arranged on the same substrate 60. Since the vibration directions of the electric fields of these three antennas 30, 40, and 50 intersect each other, even if these antennas 30, 40, and 50 are arranged on the same substrate 60, the interference of radio waves can be suppressed. Therefore, it is possible to suppress deterioration of communication performance while reducing the size of the antenna device 10.
  • FIG. 8 shows the configuration of the antenna of the second embodiment.
  • the second embodiment includes the same horizontally polarized wave antenna 30 and vertically polarized wave antenna 40 as in the first embodiment.
  • the zenith antenna 50 is not provided, and instead, two horizontally polarized antennas 150 are provided as the third antenna.
  • the number of horizontally polarized antennas 150 is an example, and may be one or a plurality of three or more.
  • the horizontally polarized antenna 150 is connected to the substrate 60 by a feeder line 151.
  • the horizontally polarized wave antenna 150 is a dipole antenna having the same shape as the horizontally polarized wave antenna 30. However, the arranged position and orientation are different from those of the horizontally polarized antenna 30.
  • the position where the horizontally polarized wave antenna 150 is arranged is a side orthogonal to the side to which the horizontally polarized wave antenna 30 is connected on the substrate 60.
  • the horizontally polarized antenna 150 is arranged parallel to this side. Therefore, the horizontally polarized wave antenna 150 is orthogonal to the horizontally polarized wave antenna 30 in the same plane.
  • the vibration direction of the electric field of the radio waves transmitted and received by the horizontally polarized antenna 150 is the X-axis direction in the XY plane.
  • the directivity gain of the horizontally polarized wave antenna 150 has a high directivity gain in the Z-axis direction. Therefore, when the base station BS is at a high elevation angle, the horizontally polarized antenna 150 can communicate with the base station BS. Further, the horizontally polarized wave antenna 150 has a high directional gain in the Y-axis direction.
  • the base station BS has a low elevation angle in the Y-axis direction, good communication can be performed using the horizontally polarized antenna 150.
  • the Y direction is not the traveling direction of the vehicle C. Therefore, when there is a base station BS at a low elevation angle in front of the vehicle C, which is highly necessary to communicate when the vehicle C is traveling, and the base station BS communicates with the base station BS by cross-polarization, the horizontal polarization It is preferable to use the antenna 30 and the vertically polarized antenna 40.
  • the base station BS in front of the vehicle C is installed at a high position from the road, the base station BS may be located at a high elevation angle when viewed from the vehicle C as the vehicle C approaches the base station BS. be.
  • the vibration direction of the electric field of the radio wave transmitted and received by the horizontally polarized antenna 30 and the vibration direction of the electric field of the radio wave transmitted and received by the horizontally polarized antenna 150 are common in that they are in the XY plane. Therefore, when the base station BS exists in the horizontal direction with respect to the vehicle C, the radio waves transmitted and received by these two antennas 30 and 150 cannot be regarded as cross-polarized wave.
  • the vibration direction of the electric field of the radio wave transmitted and received by the horizontally polarized antenna 30 is in the Y-axis direction
  • the vibration direction of the electric field of the radio wave transmitted and received by the horizontally polarized antenna 150 is in the X-axis direction.
  • the direction in which the base station BS and the antenna device 10 transmit and receive radio waves is a direction intersecting the horizontal plane.
  • the radio waves transmitted and received by the horizontally polarized wave antenna 30 and the radio waves transmitted and received by the horizontally polarized wave antenna 150 can be regarded as cross-polarized waves. Therefore, in the second embodiment, the horizontally polarized wave antenna 30 and the horizontally polarized wave antenna 150 can be used when communicating with the base station BS at a high elevation angle by cross-polarization.
  • FIG. 10 shows the configuration of the antenna device 200 of the third embodiment.
  • the antenna device 200 includes the same communication device 20, a horizontally polarized wave antenna 30, a vertically polarized wave antenna 40, and a zenith antenna 50 as in the first embodiment.
  • the number and position of the horizontally polarized antennas 30 are different from those of the antenna device 10 of the first embodiment.
  • the vehicle C includes an in-vehicle LAN 4 and a control device 3, but these are not shown.
  • the antenna device 200 includes horizontally polarized antennas 30a, 30b, 30c, and 30d as the horizontally polarized antenna 30.
  • Each of these horizontally polarized antennas 30a, 30b, 30c, and 30d may be a single dipole antenna or an array antenna including a plurality of dipole antennas.
  • the horizontally polarized antenna 30a is arranged in the center of the front part of the vehicle C in the vehicle width direction.
  • the horizontally polarized antenna 30b is arranged at the center of the vehicle C in the front-rear direction at the right end of the vehicle C.
  • the horizontally polarized antenna 30c is arranged at the rear of the vehicle C at the center in the vehicle width direction.
  • the horizontally polarized antenna 30d is arranged at the center of the left end of the vehicle in the front-rear direction of the vehicle.
  • the vertically polarized wave antenna 40 and the zenith antenna 50 are arranged at the center in the vehicle width direction on the roof of the vehicle C.
  • the horizontally polarized antenna 30a and the horizontally polarized antenna 30c are separated by ⁇ / 2 or more in the front-rear direction of the vehicle C, and the horizontally polarized antenna 30b and the horizontally polarized antenna 30d are separated from each other by ⁇ / 2 or more. , ⁇ / 2 or more apart in the width direction of the vehicle C.
  • the horizontally polarized antennas 30a, 30b, 30c, and 30d are distributed and arranged in this way. Therefore, it is suppressed that the radio wave transmitted by any of the horizontally polarized antennas 30a, 30b, 30c, and 30d interferes with the radio waves transmitted and received by the other horizontally polarized antennas 30a, 30b, 30c, and 30d. ..
  • FIG. 11 shows the configuration of the antenna device 300 of the fourth embodiment. Also in FIG. 11, the in-vehicle LAN 4 and the control device 3 are not shown.
  • the antenna device 300 includes the same horizontally polarized wave antenna 30, vertically polarized wave antenna 40, and zenith antenna 50 as in the first embodiment.
  • the communication device 320 includes a wireless circuit 321, a current position acquisition unit 322, and a radio wave direction estimation unit 323.
  • the radio circuit 321 has the same function as the communication device 20 of the first embodiment, and is connected to the base station BS outside the vehicle C via the horizontally polarized wave antenna 30, the vertically polarized wave antenna 40, and the zenith antenna 50. Sends and receives signals by radio waves between them.
  • the current position acquisition unit 322 acquires the current position of the antenna device 300.
  • the current position of the vehicle C can be used for this current position.
  • the current position acquisition unit 322 acquires the current position from the device.
  • the current position acquisition unit 322 may include a GNSS receiver, and the current position acquisition unit 322 may determine the current position.
  • the current position acquisition unit 322 acquires the current position in the form of three-dimensional coordinates.
  • the radio wave direction estimation unit 323 estimates whether the elevation angle at which the radio wave from the base station BS arrives is in the low elevation angle range or the high elevation angle range.
  • the elevation range larger than the boundary elevation angle determined in advance is defined as the high elevation range, and the elevation range below the boundary elevation angle is defined as the low elevation range.
  • the boundary elevation angle is the lower limit of the angle range in which the gain is higher when the zenith antenna 50 is used for communication than when the vertically polarized wave antenna 40 is used.
  • the radio wave direction estimation unit 323 may estimate the azimuth angle in addition to the elevation angle.
  • the radio wave direction estimation unit 323 can be realized, for example, by a computer equipped with a processor executing a program created for radio wave direction estimation. This program is stored in a non-volatile memory provided in the computer.
  • the radio wave direction estimation unit 323 will explain a method of estimating the elevation angle at which the radio wave arrives.
  • the base station BS includes a signal indicating a position where the base station BS is installed (hereinafter referred to as a base station position) in the radio wave to be transmitted.
  • the base station position is expressed in three-dimensional coordinates.
  • the base station position is stored in a storage device provided in the base station BS when the base station BS is installed.
  • the radio wave direction estimation unit 323 uses the three-dimensional coordinates of the current position acquired by the current position acquisition unit 322 and the three-dimensional coordinates of the base station position included in the radio wave transmitted by the base station BS to indicate the base station at the current position. Determine the elevation angle of the BS.
  • the antenna device 300 includes an antenna switching unit 390.
  • the antenna switching unit 390 switches between a state in which the antenna used for communication is a horizontally polarized antenna 30 and a vertically polarized antenna 40, and a state in which the antenna used for communication is a horizontally polarized antenna 30 and a zenith antenna 50.
  • the antenna switching unit 390 has, for example, a configuration including a relay, in which the horizontally polarized antenna 30 and the vertically polarized antenna 40 are connected to the wireless circuit 321 and the horizontally polarized antenna 30 and the zenith antenna 50 are wireless.
  • the state is switched between the state connected to the circuit 321 and the state connected to the circuit 321.
  • the antenna switching unit 390 can be controlled by the wireless circuit 321.
  • the antenna switching unit 390 sets the antennas used for communication to the horizontally polarized antenna 30 and the vertically polarized antenna 40.
  • the antennas used for communication are the horizontally polarized antenna 30 and the zenith antenna 50.
  • Modification 1 is a modification of the fourth embodiment.
  • the antenna switching unit 390 also has a function of operating the vertically polarized wave antenna 40 as an array antenna and scanning the beam direction.
  • the radio wave direction estimation unit 323 estimates the distance between the base station BS and the vehicle C, and based on this distance, the elevation angle at which the radio wave from the base station BS arrives is in the low elevation range or the high elevation range. Estimate if it is in. Specifically, if the estimated distance is longer than the preset long-distance threshold, it is estimated to be in the low elevation range, and if the estimated distance is less than or equal to the long-distance threshold, it is estimated to be in the high elevation range. ..
  • the distance is estimated based on the received power received by the radio waves transmitted by the base station BS. Since the frequency of radio waves transmitted and received is high, most of the radio waves that can be received are direct waves. Therefore, the distance can be estimated accurately based on the received power.
  • the directivity gain for each azimuth angle is measured and determined in advance, and stored in a predetermined storage unit. Further, the azimuth angle at which the radio wave arrives is determined by an arrival direction estimation method such as the MUSIC method, the ESPRESS method, and the beamformer method.
  • the azimuth angle means the direction of arrival of radio waves in the XY plane.
  • the directivity gain of the azimuth in which the base station BS exists is determined from the determined azimuth and the directional gain of each azimuth stored in the predetermined storage unit.
  • the distance from the vehicle C to the base station BS is different even with the same received power.
  • the relationship between the distance and the received power is determined based on the directivity gain of the azimuth angle in which the base station BS exists. For example, the relationship between the distance and the received power is set in advance for each directional gain, and the direction determined this time is based on the relationship between the distance and the received power for each directional gain set in advance from the directional gain determined this time. Select the relationship that corresponds to the sex gain. Alternatively, the relationship between the distance and the received power is set in advance with respect to the reference directivity gain. Then, based on the directional gain determined this time, the relationship between the distance set for the reference directional gain and the received power may be corrected.
  • the directivity gain changes not only with the azimuth but also with the elevation angle.
  • the base station BS needs to communicate with a moving body moving on the ground surface such as a road surface by horizontally polarized waves and vertically polarized waves, the installation height range of the base station BS is limited to some extent. Therefore, when the distance to the base station BS is long, it can be said that the elevation angle of the base station BS seen from the vehicle C is in the low elevation range. In the low elevation range, the change in directivity gain due to the change in elevation is small. Therefore, the relationship between the distance and the received power is determined only by the azimuth angle.
  • the distance between the vehicle C and the base station BS is estimated from the relationship and the received power of the radio waves received from the base station BS.
  • the base station BS is installed at various heights, even if the fluctuation range of the installation height of the base station BS is taken into consideration, if the distance to the base station BS is long, the base station BS is in the low elevation range. Can be considered to be. Therefore, if the distance between the vehicle C and the base station BS is equal to or greater than a preset long-distance threshold value, the elevation angle at which the radio wave from the base station BS arrives is set to the low elevation angle range. On the other hand, if the distance is shorter than the long-distance threshold value, the elevation angle at which the radio wave from the base station BS arrives is within the high elevation angle range.
  • Modification 2 is also a modification of the fourth embodiment.
  • the radio wave direction estimation unit 323 may estimate the azimuth angle and elevation angle of the base station BS based on the amount of change of the received power of the radio wave received from the base station BS that is sequentially received with respect to the moving distance. Directivity gain depends on azimuth and elevation. This means that the amount of change in the received power with respect to the travel distance differs depending on the azimuth and elevation angles in which the base station BS is present. Therefore, the azimuth angle and elevation angle of the base station BS can be estimated from the amount of change of the received power of the radio wave from the base station BS with respect to the moving distance.
  • the base station BS transmits a signal including the position where the base station BS is installed.
  • the antenna device 300 acquires the database storing the coordinates of the base station BS from the server or the like, and also acquires the ID of the base station BS acquired in the communication with the base station BS. Then, based on the ID of the base station BS, the coordinates of the base station BS stored in the server or the like are acquired.
  • the substrate 60 is installed on the roof of the vehicle C.
  • the substrate 60 may be attached to the windshield together with the cover.
  • a plurality of vertically polarized antennas 40 which are 0th-order resonant antennas, are provided, and the distance between the plurality of vertically polarized antennas 40 is shorter than ⁇ / 2.
  • the distance between the plurality of vertically polarized antennas 40 may be ⁇ / 2 or more.
  • the zenith antenna 50 was a patch antenna.
  • the zenith antenna 50 such as a horn antenna, may be another type of antenna.
  • orthogonally polarized waves are shown as cross-polarized waves.
  • cross-polarized waves that intersect at angles other than orthogonal may be used.
  • Modification 9> In the fourth embodiment, Modifications 1, 2 and 3, a horizontally polarized wave antenna 150 may be used instead of the zenith antenna 50.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

移動体で用いられるアンテナ装置であって、低仰角の指向性利得が高仰角の指向性利得よりも高い垂直偏波アンテナ(40)と、垂直偏波アンテナ(40)が送受信する電波と電界の振動方向が交差する電波を送受信し、基地局が低仰角にあるときに基地局との間で通信でき、かつ、垂直偏波アンテナ(40)よりも高仰角の指向性利得が高い水平偏波アンテナ(30)と、水平偏波アンテナ(30)が送受信する電波と電界の振動方向が交差し、かつ、垂直偏波アンテナ(40)よりも高仰角の指向性利得が高い天頂用アンテナ(50)とを備える。

Description

アンテナ装置 関連出願の相互参照
 この出願は、2020年5月15日に日本に出願された特許出願第2020-86016号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。
 アンテナ装置に関し、特に、交差偏波を送受信するアンテナに関する。
 交差偏波を送受信するアンテナ装置が知られている。特許文献1には、車両において水平方向への直交偏波を用いて高速通信を実現するアンテナ構成が開示されている。1つのアンテナは水平偏波を送受信するアンテナであり、もう一つのアンテナは垂直偏波を送受信するアンテナである。水平偏波を送受信するアンテナは逆Lアンテナであり、垂直偏波アンテナはモノポールアンテナである。
特開2017-22497号公報
 移動体にアンテナ装置が搭載される場合、移動体が移動することにより、アンテナ装置から見ると、基地局が高仰角に位置する場合も生じ得る。特許文献1に開示されたアンテナ構成は、垂直偏波を送受信するアンテナがモノポールアンテナであるため、天頂方向など、高仰角の利得が十分でない。したがって、特許文献1に開示されたアンテナ構成では、基地局が高仰角に位置する場合、直接波による通信を良好に行うことができない恐れがある。
 基地局が高仰角にあっても、種々の物体で反射して生じる反射波の中には、低仰角から到来する反射波も生じる可能性が十分にある。したがって、反射波が受信できれば、高仰角の利得が十分でなくても、アンテナ装置は、高仰角にある基地局と通信できる可能性が高くなる。
 しかし、送受信する電波の周波数がミリ波帯になると、距離に応じた減衰量が大きいので、反射波は受信しにくくなる。したがって、送受信する電波の周波数帯がミリ波帯になると、基地局が高仰角に位置する場合に通信を良好に行うことができない可能性が特に高くなる。
 また、送受信する電波の周波数がミリ波よりも低い周波数であっても、直接波が受信できない点ではミリ波と同じである。したがって、送受信する電波の周波数がミリ波よりも低い周波数であっても、基地局が高仰角にあると、良好に通信できない恐れがある。
 本開示は、この事情に基づいて成されたものであり、その目的とするところは、基地局が低仰角にあっても高仰角にあっても、良好に通信することができるアンテナ装置を提供することにある。
 上記目的は独立請求項に記載の特徴の組み合わせにより達成され、また、下位請求項は更なる有利な具体例を規定する。請求の範囲に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、開示した技術的範囲を限定するものではない。
 上記目的を達成するための1つの開示は、
 移動体で用いられるアンテナ装置であって、
 低仰角の指向性利得が高仰角の指向性利得よりも高い第1アンテナと、
 第1アンテナが送受信する電波と電界の振動方向が交差する電波を送受信し、基地局が低仰角にあるときに基地局との間で通信でき、かつ、第1アンテナよりも高仰角の指向性利得が高い第2アンテナと、
 第2アンテナが送受信する電波と電界の振動方向が交差し、かつ、第1アンテナよりも高仰角の指向性利得が高い第3アンテナと、を備える。
 第1アンテナと第2アンテナとを使うことにより、低仰角にある基地局との間で交差偏波による通信の利得を高くすることができる。また、第2アンテナと第3アンテナとを使うことにより、高仰角にある基地局との間でも交差偏波による通信の利得を高くすることができる。よって、基地局が低仰角にあっても、また、高仰角にあっても、良好に通信することができる。
アンテナ装置10の構成を示す図 アンテナ30、40、50の具体的構成を示す図 図2のIII-III線断面図 図2のIV-IV線断面図 水平偏波アンテナ30の指向性利得を説明する図 垂直偏波アンテナ40の指向性利得を説明する図 天頂用アンテナ50の指向性利得を説明する図 第2実施形態のアンテナの構成を示す図 水平偏波アンテナ150の指向性利得を示す図 第3実施形態のアンテナ装置200の構成を示す図 第4実施形態のアンテナ装置300の構成を示す図
 <第1実施形態>
 以下、実施形態を図面に基づいて説明する。図1は、本実施形態のアンテナ装置10の構成を示す図である。アンテナ装置10は、車両Cに搭載されている。車両Cは、移動体の一例である。車両Cは、道路を走行するものであり、本実施形態では4輪の乗用車である。ただし、アンテナ装置10は、4輪の乗用車以外の車両Cに搭載されてもよいし、また、車両C以外の移動体とともに移動するものであってもよい。
 アンテナ装置10は、第5世代移動通信システム(以下、5G)により通信できる装置である。アンテナ装置10が通信に用いる電波の周波数帯には、ミリ波帯、たとえば、28GHz帯が含まれる。アンテナ装置10の構成は、通信機20と、水平偏波アンテナ30と、垂直偏波アンテナ40と、天頂用アンテナ50とを備えている。なお、水平偏波アンテナ30は第2アンテナに相当し、垂直偏波アンテナ40は第1アンテナに相当し、天頂用アンテナ50は第3アンテナに相当する。
 通信機20は、水平偏波アンテナ30、垂直偏波アンテナ40、天頂用アンテナ50を介して、車両Cの外部にある基地局BSとの間で電波により信号を送受信する。基地局BSは、図示の便宜上、図1には1つしか示していないが、複数存在する。複数存在する基地局BSが設置される地上高は様々である。
 通信機20の具体的な作動は、上記アンテナ30、40、50から送信する信号の増幅、変調、上記アンテナ30、40、50が受信した電波の復調、増幅などである。通信機20は、車両Cに搭載された種々の制御装置3と車内LAN4により相互通信が可能となっている。
 水平偏波アンテナ30は、水平偏波を送受信するアンテナである。水平偏波は電波の振動方向が大地に対して水平となる電波である。垂直偏波アンテナ40は、垂直偏波を送受信するアンテナである。垂直偏波は、電波の振動方向が大地に対して垂直方向となる電波である。天頂用アンテナ50は、天頂方向に指向性利得が高いアンテナである。
 図2に、アンテナ装置10が備えるアンテナ30、40、50の具体的構成を示す。本実施形態では、水平偏波アンテナ30、垂直偏波アンテナ40、天頂用アンテナ50は、1つの基板60に配置される。基板60はガラスエポキシ樹脂などの誘電体材料製である。基板60の形状は本実施形態では、矩形平板状である。この基板60の設置位置は、車両Cの屋根上であり、カバーに覆われて屋根上に設置される。また、屋根の一部を凹ませて、そこに基板60を嵌め入れてもよい。基板60の姿勢は、屋根に沿った姿勢である。基板60は誘電体シート70を介して、屋根などの所定の設置位置に設置される。
 水平偏波アンテナ30は、基板60の1辺、具体的には、基板60において車両Cの前側となる辺から延びる給電線31により基板60に接続されている。水平偏波アンテナ30はダイポールアンテナであり、車幅方向に延びている。ダイポールアンテナは棒状アンテナの一例である。
 水平偏波アンテナ30はダイポールアンテナであるから、長さは約λ/2(すなわち約半波長)である。なお、λは、送受信する電波の波長を表す。また、水平偏波アンテナ30は、互いに同一の形状のものが、車幅方向に沿って2つ配置されている。水平偏波アンテナ30の数は一例である。水平偏波アンテナ30の数は1つでも、また3つ以上でもよい。
 垂直偏波アンテナ40は、互いに同じ形状のものが、基板60に8つ備えられている。各垂直偏波アンテナ40は、図2に図示されている導体板41を備える。本実施形態において、板には箔状の薄いものも含まれ、導体板41は銅箔などの導電体製である。導体板41の形状は、平板状であって、平面形状は正方形である。8つの垂直偏波アンテナ40は、基板60の4つの辺に沿う正方形を形成するように等間隔で配置されている。この8つの垂直偏波アンテナ40に囲まれる位置に、天頂用アンテナ50が配置されている。天頂用アンテナ50は、図2に示されている導体板51を備える。
 図3に図2のIII-III線断面図を示す。なお、図3では誘電体シート70は省略している。垂直偏波アンテナ40は、基板60の上面に配置された導体板41と、基板60の裏面に配置されたグランド61と、基板60を厚さ方向に貫通し、導体板41とグランド61とを電気的に接続する短絡ピン42とを備えた構成である。短絡ピン42は、導体板41の中心において導体板41に接続されている。短絡ピン42は、基板60に設けられたビアにより実現することができる。
 導体板41には給電線80が接続されており、この給電線80から給電される。グランド61は基板60の裏面の全面に形成されており、グランド61は全部の垂直偏波アンテナ40および天頂用アンテナ50に共通である。
 図4に図2のIV-IV線断面図を示す。なお、図4でも誘電体シート70は省略している。天頂用アンテナ50は、パッチアンテナであり、導体板51に給電線80が接続されている。導体板51は、平面形状が、一辺の長さがλ/2の正方形状である。導体板51において給電線80が接続される位置は、導体板51において車両前後方向の後ろ寄りの位置である。
 図5、図6、図7には、水平偏波アンテナ30、垂直偏波アンテナ40、天頂用アンテナ50の指向性利得をそれぞれ示している。図5、図6、図7において、一点鎖線が指向性利得を示している。実際の指向性利得は、周囲に存在する物体の影響を受ける等の理由により複雑な形状を示す。図5、図6、図7に示す指向性利得は概念的なものである。以下の説明では、車両前後方向をX軸方向、車幅方向をY軸方向、鉛直方向をZ軸方向ということもある。これらの各軸は、図1-図7にも示している。
 水平偏波アンテナ30は、ダイポールアンテナであってY軸方向にアンテナ素子が延びるので、水平偏波アンテナ30が放射する直線偏波は水平面内においてY軸方向に振動する。また、水平偏波アンテナ30は、ダイポールアンテナであることから、アンテナの軸周りの指向性が等方的に高い。よって、図5に示すように、X軸方向の指向性利得も高い。したがって、水平偏波アンテナ30は、基地局BSが低仰角にあるときに基地局BSと通信できるアンテナである。また、水平偏波アンテナ30はアンテナの軸周りの指向性が等方的に高いのでZ軸方向の指向性利得も高い。よって、水平偏波アンテナ30は、基地局BSが高仰角にあっても、基地局BSと通信できる。ただし、水平偏波アンテナ30が延びるY軸方向の指向性利得は低い。
 垂直偏波アンテナ40は、0次共振アンテナである。垂直偏波アンテナ40が0次共振によりアンテナとして動作する原理を概説する。導体板41の面積は、短絡ピン42が備えるインダクタンスと、垂直偏波アンテナ40が送受信する電波の周波数(以下、動作周波数)において並列共振する静電容量を形成する面積となっている。このため、動作周波数およびその近傍においては、インダクタンスと静電容量との間のエネルギー交換によって並列共振(いわゆるLC並列共振)が生じる。この並列共振により、グランド61と導体板41との間には、グランド61および導体板41に対して垂直な電界(以下、垂直電界)が発生する。なお、動作周波数は整合素子を用いて調整されてもよい。
 この垂直電界は、短絡ピン42から導体板41の縁部に向かって伝搬していき、導体板41の縁部において、導体板41に対して垂直な偏波(したがって垂直偏波)となって空間を伝搬していく。垂直偏波アンテナ40が送受信する電波が垂直偏波であり、水平偏波アンテナ30が送受信する電波が水平偏波であるので、水平偏波アンテナ30と垂直偏波アンテナ40が送受信する電波の電界の振動方向は、交差、より詳しくは直交する。
 垂直偏波アンテナ40から放射される電波は、導体板41の各縁部から空間へ放射されるので、グランド61が水平となるように配置されている場合、垂直偏波アンテナ40の放射方向は、図6に示すようにX軸方向およびY軸方向になる。垂直電界の伝搬方向は、短絡ピン42を中心として対称である。そのため、グランド61に平行な方向に対する放射特性は無指向性(換言すれば全方向性)となる。したがって、垂直偏波アンテナ40は、基地局BSが低仰角にあるときには、基地局BSの方位によらず良好に基地局BSと通信することができる。なお、低仰角は、次に説明する天頂用アンテナ50の指向性利得が低くなるほどに低い仰角を意味する。
 ただし、短絡ピン42は導体板41の中心に配置されているため、導体板41に流れる電流は、短絡ピン42を中心として対称となる。そのため、導体板41において中心から或る方向に流れる電流が発するアンテナ高さ方向の電波は、逆向きに流れる電流が発する電波によって相殺される。つまり、導体板41に励起される電流は、電波の放射に寄与しない。故に、垂直偏波アンテナ40は導体板41に対して垂直方向、すなわち天頂方向には電波を放射しない。
 天頂用アンテナ50は、パッチアンテナであるので、図7に示すように、Z軸方向すなわち天頂方向に電波を放射する。また、天頂用アンテナ50は、給電線80が導体板51において、その中心からX軸方向のずれた位置に接続されているので、天頂用アンテナ50が放射する直線偏波はX軸方向に振動する。
 水平偏波アンテナ30が送受信する電波の電界の振動方向がXY平面内においてY軸方向であるのに対して、天頂用アンテナ50が送受信する電波の電界の振動方向は、XZ平面内においてX軸方向である。したがって、天頂用アンテナ50が送受信する電波の電界の振動方向は、水平偏波アンテナ30が送受信する電波の電界の振動方向と、交差、より詳しくは直交する。
 〔第1実施形態のまとめ〕
 この第1実施形態のアンテナ装置10によれば、水平偏波アンテナ30と垂直偏波アンテナ40は低仰角にある基地局BSとの通信が可能であり、かつ、水平偏波アンテナ30と垂直偏波アンテナ40が送受信する電波の電界の振動方向は互いに交差する。したがって、アンテナ装置10は低仰角にある基地局BSとの間で、互いに交差する2つの偏波で通信をすることができる。
 さらに、水平偏波アンテナ30は高仰角の指向性利得も高く、また、アンテナ装置10は、高仰角の指向性利得が高い天頂用アンテナ50を備える。そして、これら水平偏波アンテナ30と天頂用アンテナ50が送受信する電波の電界の振動方向は互いに直交する。したがって、アンテナ装置10は基地局BSが高仰角にあるときにも、互いに交差する2つの偏波で直接波により基地局BSと良好に通信することができる。直接波による通信であることから、ミリ波帯を用いている5G通信でも、良好に基地局BSと通信をすることができる。
 また、本実施形態では、0次共振アンテナである垂直偏波アンテナ40と、パッチアンテナである天頂用アンテナ50が同じ基板60に配置されている。すなわち、垂直偏波アンテナ40と天頂用アンテナ50が同一層に配置されている。垂直偏波アンテナ40と天頂用アンテナ50が同一層に配置されていることで、天頂用アンテナ50が放射する電波のサイドローブが垂直偏波アンテナ40により反射される。これにより、天頂用アンテナ50は、不要な方向への放射が減少するので、天頂方向への指向性利得が向上する。
 さらに、天頂用アンテナ50は、垂直偏波アンテナ40と同一層に配置されているだけでなく、天頂用アンテナ50は同一の基板60上で垂直偏波アンテナ40に挟まれている。このような配置にすることで、天頂用アンテナ50は、よりサイドローブを抑制できるので、天頂方向の指向性利得がより向上する。なお、挟まれているとは、2つの垂直偏波アンテナ40を結ぶ線分上に天頂用アンテナ50があることを意味する。
 また、本実施形態では、水平偏波アンテナ30と垂直偏波アンテナ40と天頂用アンテナ50を、同一の基板60に配置している。これら3つのアンテナ30、40、50は、電界の振動方向が相互に交差するので、同一の基板60にこれらのアンテナ30、40、50を配置しても、電波の干渉を抑制できる。したがって、アンテナ装置10を小型にしつつ、通信性能の低下も抑制できる。
 <第2実施形態>
 次に、第2実施形態を説明する。この第2実施形態以下の説明において、それまでに使用した符号と同一番号の符号を有する要素は、特に言及する場合を除き、それ以前の実施形態における同一符号の要素と同一である。また、構成の一部のみを説明している場合、構成の他の部分については先に説明した実施形態を適用できる。
 図8に、第2実施形態のアンテナの構成を示す。第2実施形態では、第1実施形態と同じ水平偏波アンテナ30、垂直偏波アンテナ40を備える。一方、天頂用アンテナ50は備えられておらず、代わりに、第3アンテナとして2つの水平偏波アンテナ150を備える。水平偏波アンテナ150の数は、一例であり、1つでも、また、3つ以上の複数でもよい。
 水平偏波アンテナ150は、給電線151により基板60に接続されている。水平偏波アンテナ150は、水平偏波アンテナ30と同じ形状のダイポールアンテナである。ただし、配置されている位置と向きは水平偏波アンテナ30とは異なる。
 水平偏波アンテナ150が配置されている位置は、基板60において水平偏波アンテナ30が接続されている辺と直交する辺である。この辺に平行に水平偏波アンテナ150は配置されている。したがって、水平偏波アンテナ150は、水平偏波アンテナ30と同一平面内において直交する。
 このような配置となっているので、水平偏波アンテナ150が送受信する電波の電界の振動方向は、XY平面内でX軸方向である。また、水平偏波アンテナ150の指向性利得は、図9に示すように、Z軸方向の指向性利得が高い。したがって、基地局BSが高仰角にあるとき、水平偏波アンテナ150は基地局BSと通信できる。また、水平偏波アンテナ150はY軸方向の指向性利得も高い。
 基地局BSがY軸方向において低仰角にあれば、水平偏波アンテナ150を用いて良好に通信ができる。ただし、Y方向は車両Cの進行方向ではない。したがって、車両Cが走行しているときに通信する必要性が高い、車両Cの前方の低仰角に基地局BSがあり、その基地局BSと交差偏波により通信する場合には、水平偏波アンテナ30と垂直偏波アンテナ40を用いることが好ましい。
 車両Cの前方にある基地局BSが道路から高い位置に設置されている場合、車両Cが基地局BSに近づいていくと、基地局BSは車両Cから見て高仰角に位置する可能性がある。水平偏波アンテナ30が送受信する電波の電界の振動方向と、水平偏波アンテナ150が送受信する電波の電界の振動方向は、XY平面内である点では共通する。したがって、車両Cに対して水平方向に基地局BSが存在する場合には、これらの2つのアンテナ30、150が送受信する電波は交差偏波とはみなせない。
 しかし、水平偏波アンテナ30が送受信する電波の電界の振動方向はY軸方向であるのに対して、水平偏波アンテナ150が送受信する電波の電界の振動方向はX軸方向である。高仰角にある基地局BSと通信する場合には、基地局BSとアンテナ装置10が電波を送受信する方向は、水平面に交差する方向である。この方向においては、水平偏波アンテナ30が送受信する電波と水平偏波アンテナ150が送受信する電波は、交差偏波とみなすことができる。したがって、第2実施形態では、高仰角にある基地局BSと交差偏波により通信する場合には、水平偏波アンテナ30と水平偏波アンテナ150とを使うことができる。
 <第3実施形態>
 図10に、第3実施形態のアンテナ装置200の構成を示す。アンテナ装置200は、第1実施形態と同じ通信機20、水平偏波アンテナ30、垂直偏波アンテナ40、天頂用アンテナ50を備えている。ただし、水平偏波アンテナ30の数および位置は第1実施形態のアンテナ装置10とは相違する。なお、第1実施形態と同様、車両Cは車内LAN4、制御装置3を備えているが、これらは図示を省略している。
 アンテナ装置200は、水平偏波アンテナ30として、水平偏波アンテナ30a、30b、30c、30dを備えている。これら各水平偏波アンテナ30a、30b、30c、30dは、1つのダイポールアンテナでもよいし、複数のダイポールアンテナを備えたアレーアンテナでもよい。
 水平偏波アンテナ30aは、車両Cの前部において車幅方向中央に配置されている。水平偏波アンテナ30bは、車両Cの右端部において車両前後方向中央に配置されている。水平偏波アンテナ30cは、車両Cの後部において車幅方向中央に配置されている。水平偏波アンテナ30dは、車両の左端部において車両前後方向中央に配置されている。垂直偏波アンテナ40と天頂用アンテナ50は、車両Cの屋根上において車幅方向の中央に配置されている。このような配置であるため、当然に、水平偏波アンテナ30aと水平偏波アンテナ30cは、車両Cの前後方向においてλ/2以上離れており、水平偏波アンテナ30bと水平偏波アンテナ30dは、車両Cの幅方向においてλ/2以上離れている。
 水平偏波アンテナ30a、30b、30c、30dはこのように分散して配置されている。そのため、水平偏波アンテナ30a、30b、30c、30dのいずれかが送信する電波が、他の水平偏波アンテナ30a、30b、30c、30dが送受信する電波に干渉してしまうことが抑制されている。
 <第4実施形態>
 図11に第4実施形態のアンテナ装置300の構成を示す。なお、図11でも、車内LAN4、制御装置3は図示を省略している。アンテナ装置300は、第1実施形態と同じ水平偏波アンテナ30、垂直偏波アンテナ40、天頂用アンテナ50を備える。
 通信機320は、無線回路321と、現在位置取得部322と、電波方向推定部323を備える。無線回路321は、第1実施形態の通信機20と同じ機能であり、水平偏波アンテナ30、垂直偏波アンテナ40、天頂用アンテナ50を介して、車両Cの外部にある基地局BSとの間で電波により信号を送受信する。
 現在位置取得部322は、アンテナ装置300の現在位置を取得する。この現在位置に車両Cの現在位置を用いることができる。車両Cに搭載された他の装置が現在位置を逐次決定している場合、現在位置取得部322はその装置から現在位置を取得する。また、現在位置取得部322は、GNSS受信器を備え、現在位置取得部322が現在位置を決定してもよい。現在位置取得部322は三次元座標の形式で現在位置を取得する。
 電波方向推定部323は、基地局BSからの電波が到来する仰角が低仰角範囲であるか、高仰角範囲であるかを推定する。事前に決定した境界仰角よりも大きい仰角範囲を高仰角範囲とし、境界仰角以下の仰角範囲を低仰角範囲とする。境界仰角は、垂直偏波アンテナ40よりも天頂用アンテナ50を用いて通信したほうが高利得となる角度範囲の下限値である。なお、電波方向推定部323は、仰角に加えて方位角も推定してもよい。
 電波方向推定部323は、たとえば、プロセッサを備えたコンピュータが、電波方向推定のために作られたプログラムを実行することで実現できる。このプログラムはコンピュータが備える不揮発性メモリなどに記憶される。
 次に、電波方向推定部323が、電波が到来する仰角を推定する方法を説明する。本実施形態では、基地局BSは、送信する電波に基地局BSが設置されている位置(以下、基地局位置)を示す信号を含ませる。基地局位置は、三次元座標で表現されている。基地局位置は、基地局BSの設置時などに、基地局BSが備える記憶装置に記憶させておく。
 電波方向推定部323は、現在位置取得部322が取得した現在位置の三次元座標と、基地局BSが送信した電波に含まれている基地局位置の三次元座標とから、現在位置における基地局BSの仰角を決定する。
 アンテナ装置300はアンテナ切り替え部390を備える。アンテナ切り替え部390は、通信に用いるアンテナを、水平偏波アンテナ30と垂直偏波アンテナ40とする状態と、通信に用いるアンテナを、水平偏波アンテナ30と天頂用アンテナ50とする状態に切り替える。
 アンテナ切り替え部390は、たとえば、リレーを備えた構成であり、水平偏波アンテナ30と垂直偏波アンテナ40が無線回路321に接続された状態と、水平偏波アンテナ30と天頂用アンテナ50が無線回路321に接続された状態との間で状態を切り替える。アンテナ切り替え部390の制御は無線回路321が行う構成とすることができる。
 アンテナ切り替え部390は、電波方向推定部323が、電波が到来する仰角が低仰角範囲であると推定した場合には、通信に用いるアンテナを水平偏波アンテナ30と垂直偏波アンテナ40とする。一方、電波方向推定部323が、電波が到来する仰角が高仰角範囲であると推定した場合には、通信に用いるアンテナを、水平偏波アンテナ30と天頂用アンテナ50とする。
 このように、通信に用いるアンテナを切り替えることで、常に3種類のアンテナを使うよりも、不要なアンテナで電波を受信することに伴う通信品質の低下を抑制でき、また、消費電力も低減できる。
 以上、実施形態を説明したが、開示した技術は上述の実施形態に限定されるものではなく、次の変形例も開示した範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施できる。
 <変形例1>
 変形例1は、第4実施形態の変形例である。アンテナ切り替え部390は、垂直偏波アンテナ40をアレーアンテナとして動作させてビーム方向を走査する機能も備える。
 変形例1では、電波方向推定部323は、基地局BSと車両Cとの距離を推定し、この距離に基づいて基地局BSからの電波が到来する仰角が低仰角範囲にあるか高仰角範囲にあるかを推定する。具体的には、推定した距離が事前に設定した遠距離閾値よりも長い場合、低仰角範囲であると推定し、推定した距離が遠距離閾値以下である場合、高仰角範囲であると推定する。
 距離は、基地局BSが送信する電波を受信した受信電力をもとに推定する。送受信する電波の周波数が高いので、受信できる電波はほとんど直接波である。したがって、受信電力をもとに精度良く距離を推定することができる。
 受信電力から距離を推定するために、方位角別の指向性利得を事前に測定等して決定し、所定の記憶部に記憶しておく。また、MUSIC法、ESPRST法、ビームフォーマ法などの到来方向推定手法により電波が到来する方位角を決定する。方位角はXY平面内における、電波到来方向を意味する。
 決定した方位角と、所定の記憶部に記憶した方位角別の指向性利得とから、基地局BSが存在する方位角の指向性利得を決定する。指向性利得が高い方位角と、指向性利得が低い方位角とを比較した場合、同じ受信電力でも、車両Cから基地局BSまでの距離は異なる。
 そこで、基地局BSが存在する方位角の指向性利得をもとに、距離と受信電力の関係を決定する。たとえば、指向性利得別に、距離と受信電力の関係を事前に設定しておき、今回決定した指向性利得から、事前に設定した指向性利得別の距離と受信電力の関係から、今回決定した指向性利得に対応する関係を選択する。あるいは、基準となる指向性利得に対して事前に距離と受信電力の関係を設定しておく。そして、今回決定した指向性利得に基づいて、基準となる指向性利得に対して設定した距離と受信電力の関係を補正してもよい。
 なお、指向性利得は、方位角のみではなく仰角によっても変化する。しかし、基地局BSは、路面など地表面を移動する移動体に対して、水平偏波と垂直偏波で通信する必要があるので、基地局BSの設置高さ範囲は、ある程度限定される。そのため、基地局BSまでの距離が遠い場合には、車両Cから見た基地局BSの仰角は低仰角範囲にあると言える。そして、低仰角範囲では、仰角の変化による指向性利得の変化は少ない。従って、方位角のみにより、距離と受信電力の関係を決定する。
 距離と受信電力の関係を決定した後、その関係、および、基地局BSから受信した電波の受信電力から、車両Cと基地局BSとの距離を推定する。基地局BSは種々の高さに設置されるけれども、基地局BSの設置高さの変動範囲を考慮しても、基地局BSまでの距離が遠い場合には、基地局BSは低仰角範囲にあるとみなすことができる。そこで、車両Cと基地局BSとの距離が事前に設定した遠距離閾値以上であれば、基地局BSからの電波が到来する仰角が低仰角範囲とする。一方、その距離が遠距離閾値よりも短ければ、基地局BSからの電波が到来する仰角が高仰角範囲とする。
 <変形例2>
 変形例2も、第4実施形態の変形例である。電波方向推定部323は、逐次受信する基地局BSからの電波の受信電力の移動距離に対する変化量をもとに、基地局BSの方位角と仰角を推定してもよい。指向性利得は方位角および仰角により異なる。これは、移動距離に対する受信電力の変化量が、基地局BSが存在する方位角および仰角により異なることを意味する。したがって、基地局BSからの電波の受信電力の移動距離に対する変化量から、基地局BSの方位角と仰角を推定できる。
 <変形例3>
 第4実施形態では、基地局BSが、基地局BSが設置されている位置を含む信号を送信していた。それに対して、この変形例3では、アンテナ装置300が基地局BSの座標を記憶したデータベースをサーバ等から取得し、また、基地局BSとの通信において取得した基地局BSのIDを取得する。そして、基地局BSのIDをもとに、サーバ等に記憶されている基地局BSの座標を取得する。
 <変形例4>
 実施形態では、基板60は車両Cの屋根上に設置されていた。しかし、基板60は、カバーとともにフロントガラスに貼り付けられてもよい。
 <変形例5>
 実施形態では、0次共振アンテナである垂直偏波アンテナ40を複数備えており、その複数の垂直偏波アンテナ40間の距離はλ/2よりも短かった。しかし、複数の垂直偏波アンテナ40の間の距離をλ/2以上としてもよい。
 <変形例6>
 複数の水平偏波アンテナ30が車両Cにおいて分散して配置されている場合、各水平偏波アンテナ30として、他の水平偏波アンテナ30が存在している方位の指向性利得を低くし、他の水平偏波アンテナ30が存在していない方位の指向性利得を高くしたアンテナを用いてもよい。
 <変形例7>
 実施形態では、天頂用アンテナ50はパッチアンテナであった。しかし、ホーンアンテナなど、天頂用アンテナ50は他の種類のアンテナであってもよい。
 <変形例8>
 実施形態では、交差偏波として直交偏波を示した。しかし、直交以外の角度で交差する交差偏波を用いてもよい。
 <変形例9>
 第4実施形態、変形例1、2、3において、天頂用アンテナ50に代えて、水平偏波アンテナ150を用いてもよい。

Claims (13)

  1.  移動体(C)で用いられるアンテナ装置(10、200、300)であって、
     低仰角の指向性利得が高仰角の指向性利得よりも高い第1アンテナ(40)と、
     前記第1アンテナが送受信する電波と電界の振動方向が交差する電波を送受信し、基地局が低仰角にあるときに前記基地局との間で通信でき、かつ、前記第1アンテナよりも高仰角の指向性利得が高い第2アンテナ(30)と、
     前記第2アンテナが送受信する電波と電界の振動方向が交差し、かつ、前記第1アンテナよりも高仰角の指向性利得が高い第3アンテナ(50、150)と、
     を備えたアンテナ装置。
  2.  請求項1に記載のアンテナ装置であって、
     前記第1アンテナは、垂直偏波を送受信し、水平方向に対して垂直方向の指向性利得が低いアンテナであり、
     前記第3アンテナ(50)は、パッチアンテナである、アンテナ装置。
  3.  請求項2に記載のアンテナ装置であって、
     前記第1アンテナは、平板状の導体板(41)と、前記導体板と平行なグランド(61)と、前記導体板と前記グランドとを接続する短絡ピン(42)とを備えた0次共振アンテナである、アンテナ装置。
  4.  請求項3に記載のアンテナ装置であって、
     前記0次共振アンテナが前記パッチアンテナと同一層に配置されている、アンテナ装置。
  5.  請求項4に記載のアンテナ装置であって、
     前記0次共振アンテナを複数備え、
     前記パッチアンテナは、複数の前記0次共振アンテナと同じ基板に配置され、かつ、複数の前記0次共振アンテナに挟まれる位置に配置されている、アンテナ装置。
  6.  請求項1に記載のアンテナ装置であって、
     前記第1アンテナは、垂直偏波を送受信し、水平方向に対して垂直方向の指向性利得が低いアンテナであり、
     前記第2アンテナは、水平偏波を送受信する棒状アンテナであり、
     前記第3アンテナ(150)は、水平偏波を送受信する棒状アンテナであって、前記第2アンテナとは異なる向きに配置されている、アンテナ装置。
  7.  請求項6に記載のアンテナ装置であって、
     前記第1アンテナは、平板状の導体板(41)と、前記導体板と平行なグランド(61)と、前記導体板と前記グランドとを接続する短絡ピン(42)とを備えた0次共振アンテナである、アンテナ装置。
  8.  請求項1~7のいずれか1項に記載のアンテナ装置であって、
     前記アンテナ装置は車両に搭載され、
     前記第2アンテナを複数備え、
     複数の前記第2アンテナのうちの少なくとも2つは、前記車両の前後方向において、前記第2アンテナが送受信する電波の半波長以上離れている、アンテナ装置。
  9.  請求項1~7のいずれか1項に記載のアンテナ装置であって、
     前記アンテナ装置は車両に搭載され、
     前記第2アンテナを複数備え、
     複数の前記第2アンテナのうちの少なくとも2つは、前記車両の幅方向において、前記第2アンテナが送受信する電波の半波長以上離れている、アンテナ装置。
  10.  請求項1~7のいずれか1項に記載のアンテナ装置であって、
     前記第1アンテナ、前記第2アンテナ、前記第3アンテナが、同じ基板に配置されている、アンテナ装置。
  11.  請求項1~10のいずれか1項に記載のアンテナ装置であって、
     前記基地局が送信した電波が到来する仰角が低仰角範囲であるか高仰角範囲であるかを推定する電波方向推定部(323)と、
     前記電波方向推定部が、前記電波が到来する仰角が前記低仰角範囲であると推定した場合には、通信に用いるアンテナを前記第1アンテナと前記第2アンテナとし、前記電波方向推定部が、前記電波が到来する仰角が前記高仰角範囲であると推定した場合には、通信に用いるアンテナを前記第2アンテナと前記第3アンテナとするアンテナ切り替え部(390)と、
     を備えるアンテナ装置。
  12.  請求項11に記載のアンテナ装置であって、
     前記電波方向推定部は、前記基地局の座標と、前記移動体の現在位置を示す座標とに基づいて、前記基地局からの電波が到来する仰角を推定する、アンテナ装置。
  13.  請求項11に記載のアンテナ装置であって、
     前記電波方向推定部は、前記基地局と前記移動体との距離を推定し、前記距離が事前に設定した遠距離閾値よりも長い場合、前記低仰角範囲であると推定する、アンテナ装置。
PCT/JP2021/018111 2020-05-15 2021-05-12 アンテナ装置 WO2021230301A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/982,254 US20230066781A1 (en) 2020-05-15 2022-11-07 Antenna device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020086016A JP7180635B2 (ja) 2020-05-15 2020-05-15 アンテナ装置
JP2020-086016 2020-05-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/982,254 Continuation US20230066781A1 (en) 2020-05-15 2022-11-07 Antenna device

Publications (1)

Publication Number Publication Date
WO2021230301A1 true WO2021230301A1 (ja) 2021-11-18

Family

ID=78510553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018111 WO2021230301A1 (ja) 2020-05-15 2021-05-12 アンテナ装置

Country Status (3)

Country Link
US (1) US20230066781A1 (ja)
JP (1) JP7180635B2 (ja)
WO (1) WO2021230301A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024003695A1 (en) * 2022-06-27 2024-01-04 The Secretary Of State For Defence Omnidirectional vehicle antenna apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0537431A (ja) * 1991-07-26 1993-02-12 Toshiba Corp 衛星通信用アンテナダイバーシテイ装置
JP2008079345A (ja) * 2007-11-28 2008-04-03 Kyocera Corp 移動局、通信制御方法
JP2009124577A (ja) * 2007-11-16 2009-06-04 Furukawa Electric Co Ltd:The 複合アンテナ
WO2019160346A1 (ko) * 2018-02-14 2019-08-22 삼성전자 주식회사 다중 급전을 이용한 안테나 및 그것을 포함하는 전자 장치
WO2020009114A1 (ja) * 2018-07-05 2020-01-09 株式会社デンソー アンテナ装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140191914A1 (en) * 2013-01-07 2014-07-10 Electronics And Telecommunications Research Institute Multi-channel antenna device
WO2016063758A1 (ja) * 2014-10-20 2016-04-28 株式会社村田製作所 アンテナモジュール
JP2017005663A (ja) * 2015-06-16 2017-01-05 株式会社日本自動車部品総合研究所 平面アンテナ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0537431A (ja) * 1991-07-26 1993-02-12 Toshiba Corp 衛星通信用アンテナダイバーシテイ装置
JP2009124577A (ja) * 2007-11-16 2009-06-04 Furukawa Electric Co Ltd:The 複合アンテナ
JP2008079345A (ja) * 2007-11-28 2008-04-03 Kyocera Corp 移動局、通信制御方法
WO2019160346A1 (ko) * 2018-02-14 2019-08-22 삼성전자 주식회사 다중 급전을 이용한 안테나 및 그것을 포함하는 전자 장치
WO2020009114A1 (ja) * 2018-07-05 2020-01-09 株式会社デンソー アンテナ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024003695A1 (en) * 2022-06-27 2024-01-04 The Secretary Of State For Defence Omnidirectional vehicle antenna apparatus

Also Published As

Publication number Publication date
JP7180635B2 (ja) 2022-11-30
US20230066781A1 (en) 2023-03-02
JP2021180452A (ja) 2021-11-18

Similar Documents

Publication Publication Date Title
CN105762489B (zh) 具有全景检测的雷达天线组件
US9323877B2 (en) Beam-steered wide bandwidth electromagnetic band gap antenna
EP2369677B1 (en) Planar bi-directional radiation antenna
US10116066B2 (en) Antenna array for transmitting and/or for receiving radio frequency signals, access network node and vehicle thereof
JP5353135B2 (ja) アンテナ装置
US7595756B2 (en) Methods and apparatus for improving wireless communication by antenna polarization position
KR100641636B1 (ko) 이중편파 안테나 및 rfid 리더기
US7501992B2 (en) Planar antenna
JP5524714B2 (ja) ダイバーシティアンテナ
JPH10126146A (ja) ミリ波平面アンテナ
JP6923490B2 (ja) アンテナ装置
BR102016028582A2 (pt) Multiband monopoly antenna assembly
US11239544B2 (en) Base station antenna and multiband base station antenna
US20230066781A1 (en) Antenna device
WO2019065531A1 (ja) パッチアンテナ及びアンテナ装置
WO2019208453A1 (ja) 車両用アンテナ、車両用アンテナ付き窓ガラス及びアンテナシステム
KR102346201B1 (ko) 레이더 모듈 및 이를 포함하는 차량용 레이더 장치
US9831545B2 (en) Antenna device
KR101985686B1 (ko) 수직 편파 안테나
JP2007064730A (ja) 車載用レーダー装置
Arumugam et al. A Comprehensive Review on Automotive Antennas for Short Range Radar Communications
EP1686654B1 (en) Parasitic element antenna for vehicles and windscreen including said antenna
CN101299487B (zh) 具有辐射场型调节构件的天线
US20230420851A1 (en) Antenna device and communication device
CN220474892U (zh) 圆极化微波探测天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803658

Country of ref document: EP

Kind code of ref document: A1