WO2021230089A1 - Electric circuit for integrated circuit power supply, capacitor, and electric circuit having integrated circuit - Google Patents

Electric circuit for integrated circuit power supply, capacitor, and electric circuit having integrated circuit Download PDF

Info

Publication number
WO2021230089A1
WO2021230089A1 PCT/JP2021/017083 JP2021017083W WO2021230089A1 WO 2021230089 A1 WO2021230089 A1 WO 2021230089A1 JP 2021017083 W JP2021017083 W JP 2021017083W WO 2021230089 A1 WO2021230089 A1 WO 2021230089A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
integrated circuit
electric circuit
external electrode
anode
Prior art date
Application number
PCT/JP2021/017083
Other languages
French (fr)
Japanese (ja)
Inventor
一明 青山
昭二 吉田
健司 倉貫
慎也 鈴木
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2021230089A1 publication Critical patent/WO2021230089A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/35Feed-through capacitors or anti-noise capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks

Definitions

  • the present disclosure generally relates to an electric circuit for power supply of an integrated circuit, a capacitor and an electric circuit with an integrated circuit, and more particularly, an electric circuit for power supply of an integrated circuit including a capacitor, a capacitor used in this electric circuit, and ,
  • the present invention relates to an electric circuit with an integrated circuit including this electric circuit.
  • the digital signal processing board described in Patent Document 1 includes an LSI to which an element for clock operation is connected, a power input line for supplying power to the LSI, and a decoupling capacitor connected between the power input line and ground. And have.
  • the decoupling capacitor a surface-mounted solid electrolytic capacitor having an ESR of 25 m ⁇ (100 kHz) or less and an ESL of 800 pH (500 MHz) or less is used.
  • the electric circuit for power supply of the integrated circuit includes an electric circuit and at least one predetermined capacitor.
  • the electric circuit supplies DC power from a power source to the integrated circuit.
  • the predetermined capacitor has predetermined characteristics.
  • the predetermined capacitor is electrically connected to the electric circuit and the ground.
  • the predetermined characteristic is a characteristic that the impedance is 10 [m ⁇ ] or less at least when the frequency is 5 [MHz] or more and 10 [MHz] or less.
  • the capacitor according to one aspect of the present disclosure is used as the predetermined capacitor in the electric circuit for supplying power to the integrated circuit.
  • the electric circuit with an integrated circuit includes an electric circuit for supplying power to the integrated circuit and the integrated circuit.
  • This disclosure has the advantage that the number of capacitors can be reduced.
  • FIG. 1 is a circuit diagram of an electric circuit with an integrated circuit according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of a main part of the electric circuit with an integrated circuit of FIG.
  • FIG. 3 is a schematic diagram of a main part of an electric circuit with an integrated circuit according to a comparative example.
  • FIG. 4 is a characteristic diagram of a capacitor according to an embodiment of the present disclosure.
  • FIG. 5 is a characteristic diagram of a capacitor according to a comparative example.
  • FIG. 6 is a characteristic diagram of a parallel circuit of a plurality of capacitors according to a comparative example.
  • FIG. 7 is a schematic cross-sectional view of the capacitor according to the embodiment of the present disclosure.
  • FIG. 8 is a schematic cross-sectional view of the capacitor element of the capacitor of FIG.
  • FIG. 9 is a schematic diagram of a main part of an electric circuit with an integrated circuit according to an embodiment (modification example 1) of the present disclosure.
  • the electric circuit 101 for power supply of the integrated circuit 41 of the present embodiment includes an electric circuit 30 and at least one predetermined capacitor 11.
  • the electric circuit 30 supplies DC power from the power supply PS1 to the integrated circuit 41.
  • the predetermined capacitor 11 has a predetermined characteristic.
  • the predetermined capacitor 11 is electrically connected to the electric circuit 30 and the ground.
  • the predetermined characteristic is that the impedance is 10 [m ⁇ ] or less at least when the frequency is 5 [MHz] or more and 10 [MHz] or less.
  • the number of capacitors used in the electric circuit 101 can be reduced. That is, the number of capacitors required to suppress the voltage fluctuation of the electric circuit 30 which is the power supply line to the integrated circuit 41 can be reduced.
  • the predetermined characteristic of the predetermined capacitor 11 is more preferably the characteristic that the impedance is 10 [m ⁇ ] or less when the frequency is 100 [kHz] or more and 10 [MHz] or less.
  • the self-resonant frequency of the predetermined capacitor 11 is preferably 300 [kHz] or more and 1 [GHz] or less. Further, the drive voltage of the predetermined capacitor 11 is preferably 3.3 [V] or less.
  • the capacitor 11 is used as the predetermined capacitor 11 in the electric circuit 101 for supplying power to the integrated circuit 41.
  • the capacitor 11 may be provided independently of the configuration of the electric circuit 101 other than the capacitor 11.
  • the electric circuit 100 with an integrated circuit includes an electric circuit 101 for supplying power to the integrated circuit 41 and an integrated circuit 41.
  • the integrated circuit 41 is, for example, a semiconductor integrated circuit (IC) or a large-scale integrated circuit (LSI).
  • the integrated circuit 41 is provided in, for example, a personal computer, a server computer, or a microcontroller.
  • the electric circuit 101 is, for example, a circuit of a printed wiring board.
  • the electric circuit 101 for power supply of the integrated circuit 41 (hereinafter, simply referred to as “electric circuit 101”) includes a first electric circuit 31 and a second electric circuit 32 as the electric circuit 30. Further, the electric circuit 101 includes capacitors 42 and 45 in addition to the capacitor 11. Each of the capacitors 11, 42 and 45 is an electrolytic capacitor. Further, the electric circuit 101 includes a DC / DC converter 43 and an inductor 44.
  • the electric circuit 101 is electrically connected to the power supply PS1.
  • the first end of the first electric line 31 is electrically connected to the power supply PS1.
  • the second end of the first electric circuit 31 is electrically connected to the DC / DC converter 43.
  • the power supply PS1 is a DC power supply.
  • the power source PS1 is, for example, a battery.
  • the power supply PS1 supplies DC power to the DC / DC converter 43.
  • the electric circuit 101 is electrically connected to the integrated circuit 41.
  • the first end of the second electric circuit 32 is electrically connected to the DC / DC converter 43.
  • the second end of the second electric circuit 32 is electrically connected to the integrated circuit 41.
  • the capacitor 11 is electrically connected between the second electric circuit 32 and the ground. More specifically, the first end of the capacitor 11 is electrically connected to the second electric circuit 32, and the second end is electrically connected to the ground.
  • the DC / DC converter 43 is electrically connected between the power supply PS1 and the capacitor 11 (predetermined capacitor).
  • the DC / DC converter 43 converts the DC power input from the power supply PS1 into DC power having a predetermined voltage and outputs the DC power to the second electric circuit 32.
  • the DC power output from the DC / DC converter 43 is input to the integrated circuit 41 (power supply pin) via the second electric path 32.
  • the switching frequency of the DC / DC converter 43 is 200 [kHz] or more and 10 [MHz] or less.
  • a capacitor 42 is electrically connected between the first electric circuit 31 and the ground.
  • a capacitor 45 is electrically connected between the second electric circuit 32 and the ground. That is, a capacitor 42 is provided in the input stage of the DC / DC converter 43, and a capacitor 45 is provided in the output stage.
  • the capacitor 42 smoothes the input voltage of the DC / DC converter 43.
  • the capacitor 45 smoothes the output voltage of the DC / DC converter 43.
  • the inductor 44 is electrically connected to the second electric circuit 32. More specifically, the inductor 44 is electrically connected between the DC / DC converter 43 and the capacitor 45. The inductor 44 constitutes a low-pass filter together with the capacitor 45.
  • a capacitor 11 is electrically connected between the second electric circuit 32 and the ground.
  • the connection point between the capacitor 11 and the second electric circuit 32 is located between the capacitor 45 and the integrated circuit 41.
  • FIG. 1 illustrates the parasitic resistance 46 and the parasitic inductance 47 of the second electric circuit 32.
  • the wiring impedance of the second electric circuit 32 is determined by the parasitic resistance 46 and the parasitic inductance 47.
  • the electric circuit length between the capacitor 11 and the integrated circuit 41 is shorter than the electric circuit length between the DC / DC converter 43 and the integrated circuit 41.
  • the wiring impedance between the capacitor 11 (predetermined capacitor) and the integrated circuit 41 is smaller than the wiring impedance between the DC / DC converter 43 and the integrated circuit 41.
  • FIG. 2 is a schematic diagram showing an example of the spatial arrangement of a part of the configuration of the electric circuit 100 with an integrated circuit.
  • conductor patterns 321 and 322 are provided as a part of the second electric circuit 32.
  • the conductor pattern 321 is electrically connected to the first end of the DC / DC converter 43 (see FIG. 1) and the inductor 44.
  • the conductor pattern 322 is electrically connected to the second end of the inductor 44 and the integrated circuit 41.
  • the conductor pattern 322 has a first pattern N1, a second pattern N2, and a third pattern P1.
  • the potentials of the first pattern N1 and the second pattern N2 are ground potentials.
  • the potential of the third pattern P1 is different from the ground potential.
  • the second end of the inductor 44 is electrically connected to the third pattern P1.
  • the capacitor 11 is provided with four external electrodes. More specifically, the capacitor 11 includes a first external electrode 21, a second external electrode 22, and two third external electrodes 23.
  • the first external electrode 21 and the second external electrode 22 are anode terminals.
  • the first external electrode 21 and the second external electrode 22 are electrically connected to the third pattern P1.
  • the two third external electrodes 23 are cathode terminals.
  • One of the two third external electrodes 23 is electrically connected to the first pattern N1 and the other is electrically connected to the second pattern N2.
  • the integrated circuit 41 is electrically connected to the third pattern P1. Further, the integrated circuit 41 is electrically connected to the ground pattern (first pattern N1 or second pattern N2).
  • the number of capacitors 11 is one. As described above, the number of capacitors 11 (predetermined capacitors) electrically connected to the electric circuit 30 may be one. Alternatively, the number of capacitors 11 (predetermined capacitors) electrically connected to the electric circuit 30 may be a plurality. It is preferable to reduce the cost, mounting area, etc. by reducing the number of capacitors 11 as much as possible within the range where the load line impedance of the integrated circuit 41 is equal to or less than the desired value required for the integrated circuit 41.
  • the load line impedance of the integrated circuit 41 is the total impedance of the entire power supply line as seen from the integrated circuit 41. That is, the load line impedance of the integrated circuit 41 is calculated from the impedance of the DC / DC converter 43, the wiring impedance of the electric circuit 30, and the impedance of each element such as the capacitor 11 electrically connected to the electric circuit 30.
  • the load line impedance of the integrated circuit 41 is, for example, 10 [m ⁇ ] or less at a frequency of 10 [MHz] or less.
  • the load line impedance when the current consumption of the integrated circuit 41 is 200 [A] is 1.0 [m ⁇ ] or less.
  • the load line impedance when the current consumption of the integrated circuit 41 is 226 [A] is 0.9 [m ⁇ ] or less.
  • the load line impedance when the current consumption of the integrated circuit 41 is 117 [A] is 0.85 [m ⁇ ] or less.
  • the load line impedance when the current consumption of the integrated circuit 41 is 392 [A] is 0.6 [m ⁇ ] or less.
  • the load line impedance when the current consumption of the integrated circuit 41 is 490 [A] or more and 520 [A] or less is 0.5 [m ⁇ ] or less. ..
  • the capacitor 11 has an alternating laminated structure in which a first capacitor element 10a (see FIG. 7) facing in one direction and a second capacitor element 10b (see FIG. 7) facing in the opposite direction are alternately laminated. have.
  • the capacitor 11 has the above-mentioned predetermined characteristics.
  • Such a capacitor is referred to as an alternating laminated capacitor.
  • the predetermined characteristic is that the impedance is 10 [m ⁇ ] or less at least when the frequency is 5 [MHz] or more and 10 [MHz] or less.
  • the ESR (equivalent series resistance) of the capacitor 11 at the self-resonant frequency of the capacitor 11 is 2 [m ⁇ ] or less.
  • the ESL (equivalent series inductance) of the capacitor 11 at 500 [MHz] is 100 [pH] or less.
  • the voltage of the electric circuit 30 fluctuates due to the switching operation of the DC / DC converter 43, the fluctuation of the load current in the integrated circuit 41, and the like.
  • the capacitor 11 has the above-mentioned predetermined characteristics, the number of required capacitors can be reduced. That is, since the capacitor 11 has a low impedance in a relatively wide frequency band, the number of members of the capacitor 11 can be reduced.
  • a second capacitor having no predetermined characteristic may be electrically connected to the electric circuit 30, but also in this case, the number of capacitors 11 and the second capacitor 11 are used. The number of capacitors can be reduced.
  • the mounting area of the capacitor 11 and the second capacitor may be reduced.
  • FIG. 3 is a schematic diagram showing an example of the spatial arrangement of a part of the configuration of the electric circuit 100P with an integrated circuit according to the comparative example.
  • a capacitor 11P having a larger impedance than the capacitor 11 is used instead of the capacitor 11, a parallel circuit in which a plurality of such capacitors 11P (six in FIG. 3P) are connected in parallel. Therefore, the characteristics corresponding to a single capacitor 11 can be obtained, but a larger number of capacitors 11P are required.
  • the capacitor 11P is a ceramic capacitor.
  • FIG. 4 shows the characteristics of the capacitor 11 (alternate laminated capacitor) of the present embodiment.
  • FIG. 5 shows the characteristics of the capacitor 11P of the comparative example.
  • the capacitance of the capacitor 11P is 100 [ ⁇ F].
  • FIG. 6 shows the characteristics of a parallel circuit in which six capacitors 11P of the comparative example are connected in parallel.
  • the horizontal axis of FIGS. 4 to 6 represents frequency (unit: [MHz]), and the vertical axis represents impedance (unit: [ ⁇ ]). Impedance of the capacitor 11,11P, since the lower frequency band than the self-resonant frequency f 0 is a capacitance component is dominant, the impedance is smaller the larger the frequency.
  • the capacitor 11 has the above-mentioned predetermined characteristics.
  • the predetermined characteristic is that the impedance is 10 [m ⁇ ] or less at least when the frequency is 5 [MHz] or more and 10 [MHz] or less.
  • the predetermined characteristic is that the impedance is 10 [m ⁇ ] or less when the frequency is 100 [kHz] or more and 10 [MHz] or less. From FIG. 5, the capacitor 11P does not have a predetermined characteristic, and from FIG. 6, the parallel circuit of the six capacitors 11P has a predetermined characteristic.
  • the parallel circuit of the six capacitors 11P of the comparative example can be replaced with one capacitor 11, so that the number of capacitors can be reduced.
  • the capacitor 11 the load line impedance of the integrated circuit 41 can be reduced while reducing the number of members.
  • the self-resonant frequency f 0 of the capacitor 11 is 300 [kHz] or more and 1 [GHz] or less.
  • the capacitor 11 By adopting an alternating laminated capacitor as the capacitor 11, it is possible to reduce the characteristic change due to temperature, applied voltage, etc., as compared with the case of adopting a ceramic capacitor. Further, as compared with the case where a ceramic capacitor is adopted as the capacitor 11, the change in the capacitance of the capacitor 11 (AC bias characteristic) due to the AC component superimposed on the direct current supplied to the capacitor 11 is very small.
  • the electrolytic capacitor 11 includes an element laminate in which a plurality of capacitor elements 10 are laminated, an exterior body 14 for sealing the element laminate, a first external electrode 21, and a second. An external electrode 22 and a third external electrode 23 are provided.
  • the plurality of capacitor elements 10 each cover an anode 3 having a porous portion 5 on its surface, a dielectric layer formed on the surface of at least a part of the porous portion 5, and at least a part of the dielectric layer. It has a cathode portion 6.
  • the plurality of capacitor elements 10 have a first end portion 1a on which the anode body 3 is exposed and a second end portion 2a in which the anode body 3 is covered with the cathode portion 6, and at least the end surface of the first end portion 1a is an exterior. It is exposed from the body 14.
  • the plurality of capacitor elements 10 have a first end portion 1a facing the first surface 14a of the exterior body 14, and a second end portion 1a having a second surface 14b different from the first surface 14a of the exterior body 14. There is something that suits you. Of these, the one in which the first end portion 1a faces the first surface 14a of the exterior body 14 is different from the first capacitor element 10a, and the first end portion 1a is different from the first surface 14a of the exterior body 14. Those facing the surface 14b are referred to as a second capacitor element 10b.
  • the first end portion 1a of the first capacitor element 10a is electrically connected to the first external electrode 21.
  • the first end portion 1a of the second capacitor element 10b is electrically connected to the second external electrode 22.
  • the direction in which the current flows in the first capacitor element 10a and the second capacitor element 10b are different. Therefore, since the direction of the magnetic field generated by the current is different, the magnetic flux generated in the element stack is reduced. Therefore, ESL is reduced.
  • the first surface 14a and the second surface 14b may be surfaces of the exterior body 14 facing each other. Further, when the first capacitor element 10a and the second capacitor element 10b are alternately laminated, the magnetic flux generated in the element stacking body can be effectively reduced. Therefore, ESL can be effectively reduced.
  • the number of the first capacitor elements 10a and the number of the second capacitor elements 10b may be the same.
  • the magnetic field generated by the current flowing in the first capacitor element 10a and the magnetic field generated by the current flowing in the second capacitor element 10b are canceled out without excess or deficiency, and the magnetic flux generated in the element laminated body is reduced. Therefore, it is easy to reduce ESL.
  • the end surface of the first end portion 1a exposed from the exterior body 14 of each capacitor element 10 is connected to the external electrode (first external electrode 21 or the second external electrode 21). This can be done by electrically connecting to the electrode 22).
  • the electrical connection between the end face of the first end 1a and the external electrode is, for example, using an external electrode formed along the first surface 14a or the second surface 14b, or the first surface 14a or This can be done by electrically connecting an intermediate electrode (corresponding to the anode electrode layer 16 described later) formed along the second surface 14b to an external electrode.
  • the third external electrode 23 is electrically connected to the cathode portion 6 of the capacitor element 10.
  • the third external electrode 23 is electrically connected to the cathode portion 6 in, for example, the outermost layer (that is, the lowest layer or the uppermost layer) of the element laminate.
  • the cathode terminal can be provided on the bottom surface of the electrolytic capacitor 11.
  • the anode terminal can be provided on the bottom surface of the electrolytic capacitor 11. In this case, the current flowing through the extending portion of the first external electrode 21 or the second external electrode 22 flows in the direction opposite to the current flowing through the anode extraction portion.
  • the magnetic field generated by the current flowing in the anode extraction portion is canceled by the magnetic field generated by the current flowing in the extending portion of the first external electrode 21 or the second external electrode 22, and the ESL of the electrolytic capacitor 11 is further reduced. ..
  • the extending portion can reduce the distance between the cathode terminal and the first and / or second external electrode, thus improving ESL. Due to these synergistic effects, ESL is significantly reduced.
  • the first end portion 1a may be electrically connected to the first external electrode 21 or the second external electrode 22 via the contact layer 15.
  • the contact layer 15 may be selectively formed on, for example, the end face of the first end portion 1a of the plurality of capacitor elements 10.
  • the contact layer 15 includes an intermediate electrode (anode electrode layer 16) or an external electrode formed so as to cover each of the first end portions 1a of the plurality of capacitor elements 10 and the first surface 14a or the second surface 14b. Can be connected between. Through the contact layer 15, the electrical connection between the first end portion 1a and the external electrode can be ensured. Therefore, the reliability of the electrolytic capacitor 11 can be improved.
  • the first external electrode 21 and the second external electrode 22 may face each other in the longitudinal direction of the anode body 3 or may face each other in the lateral direction.
  • the first external electrode 21 and the second external electrode 22 may be arranged at the ends of one surface (for example, the bottom surface) of the exterior body 14 along the lateral direction, respectively, and may be arranged along the longitudinal direction. It may be arranged at the end.
  • the first external electrode 21 and the second external electrode 22 may face each other in the lateral direction of the anode body 3.
  • the bottom surface of the electrolytic capacitor 11 of the first external electrode 21 or the second external electrode 22 It is easy to lengthen the extension distance, it is easy to control the separation distance between the cathode terminal and the anode terminal, and it is easy to control the ESL to a desired value.
  • FIG. 7 is a cross-sectional view schematically showing the structure of the electrolytic capacitor 11 according to the embodiment of the present disclosure.
  • FIG. 8 is a cross-sectional view showing the structure of the capacitor element 10 constituting the electrolytic capacitor 11 of FIG. 7.
  • the electrolytic capacitor 11 according to the present disclosure is not limited to these.
  • the electrolytic capacitor 11 includes a plurality of capacitor elements 10 (10a, 10b).
  • the capacitor element 10 includes an anode body 3 and a cathode portion 6.
  • the anode body 3 is, for example, a foil (anode foil).
  • the anode body 3 has a porous portion 5 on the surface thereof, and a dielectric layer (not shown) is formed on the surface of at least a part of the porous portion 5.
  • the cathode portion 6 covers at least a part of the dielectric layer.
  • the anode body 3 is exposed at one end (first end) 1a without being covered by the cathode portion 6, while the anode of the other end (second end) 2a.
  • the body 3 is covered with the cathode portion 6.
  • the portion of the anode 3 not covered by the cathode portion 6 will be referred to as the first portion 1
  • the portion of the anode 3 covered with the cathode portion 6 will be referred to as the second portion 2.
  • the end of the first portion 1 is the first end 1a
  • the end of the second portion 2 is the second end 2a.
  • the dielectric layer is formed on the surface of the porous portion 5 formed at least in the second portion 2.
  • the first portion 1 of the anode body 3 is also referred to as an anode extraction portion.
  • the second portion 2 of the anode body 3 is also referred to as a cathode forming portion.
  • the second portion 2 has a core portion 4 and a porous portion (porous body) 5 formed on the surface of the core portion 4 by roughening (etching or the like) or the like.
  • the first portion 1 may or may not have the porous portion 5 on the surface.
  • the dielectric layer is formed along the surface of the porous portion 5. At least a part of the dielectric layer covers the inner wall surface of the hole of the porous portion 5 and is formed along the inner wall surface thereof.
  • the cathode portion 6 includes a solid electrolyte layer 7 that covers at least a part of the dielectric layer, and a cathode extraction layer that covers at least a part of the solid electrolyte layer 7.
  • the surface of the dielectric layer is formed with an uneven shape corresponding to the shape of the surface of the anode body 3.
  • the solid electrolyte layer 7 may be formed so as to fill the unevenness of such a dielectric layer.
  • the cathode extraction layer includes, for example, a carbon layer 8 that covers at least a part of the solid electrolyte layer 7, and a silver paste layer 9 that covers the carbon layer 8.
  • the portion of the anode 3 in which the solid electrolyte layer 7 is formed on the anode 3 via the dielectric layer (porous portion 5) is the second portion 2, and the dielectric layer (peripheral portion 5) is placed on the anode 3.
  • the portion of the anode 3 in which the solid electrolyte layer 7 is not formed via the porous portion 5) is the first portion 1.
  • An insulating separation layer (or insulating member) 12 may be formed so as to cover the surface of the anode body 3 in at least a portion adjacent to the cathode portion 6 in the region of the anode body 3 that does not face the cathode portion 6. As a result, the contact between the cathode portion 6 and the exposed portion (first portion 1) of the anode body 3 is restricted.
  • the separation layer 12 is, for example, an insulating resin layer.
  • capacitor elements 10 10a, 10b
  • the cathode portions 6 second portion 2
  • the first capacitor element 10a the first portion 1 of the anode body 3 faces in one direction (to the right in the figure) with respect to the second portion 2.
  • the second capacitor element 10b the first portion 1 of the anode body 3 faces the second portion 2 in the direction opposite to the direction in which the first portion 1 of the first capacitor element 10a faces (in the figure). (To the left).
  • the first capacitor element 10a and the second capacitor element 10b are alternately laminated to form an element laminate.
  • the cathode portions 6 adjacent to each other in the stacking direction are electrically connected via the adhesive layer 13 having conductivity.
  • a conductive adhesive is used to form the adhesive layer 13.
  • the adhesive layer 13 contains, for example, silver.
  • the electrolytic capacitor 11 includes the above-mentioned element laminate in which a plurality of capacitor elements 10 (10a, 10b) are laminated, an exterior body 14 that seals the element laminate, a first external electrode 21, and a second outside. An electrode 22 and a third external electrode 23 are provided. In the element laminated body, the end surface of the first end portion 1a is exposed from the exterior body 14.
  • the exterior body 14 has a substantially rectangular parallelepiped outer shape, and the electrolytic capacitor 11 also has a substantially rectangular parallelepiped outer shape.
  • the exterior body 14 has a first surface 14a and a second surface 14b opposite to the first surface 14a.
  • the first end portion 1a of the first capacitor element 10a faces the first surface 14a (that is, the first end portion 1a is closer to the first surface 14a than the second end portion 2a).
  • the first end 1a of the second capacitor element 10b faces the second surface 14b (that is, the first end 1a is closer to the second surface 14b than the second end 2a). ..
  • each of the plurality of first end portions 1a (first portion 1) exposed from the exterior body 14 is a first external electrode 21 or a second surface extending along the first surface 14a. It is electrically connected to a second external electrode 22 extending along 14b.
  • first external electrode 21 or a second surface extending along the first surface 14a. It is electrically connected to a second external electrode 22 extending along 14b.
  • the ratio of the first portion 1 to the anode body 3 can be reduced to increase the capacity.
  • the contribution of ESL by the first portion 1 is reduced.
  • the separation distance between the third external electrode 23 and the first external electrode 21 and / or the second external electrode 22 can be shortened, the ESL is improved.
  • each of the end faces of the plurality of first end portions 1a exposed from the exterior body 14 is covered with the contact layer 15.
  • the anode electrode layer 16 covers the first surface 14a and the second surface 14b of the contact layer 15 and the exterior body 14.
  • the first external electrode 21 and the second external electrode 22 cover the anode electrode layer 16, whereby the plurality of first end portions 1a (first portion 1) are the first external electrode 21 or the second external electrode 21. It is electrically connected to the external electrode 22.
  • the anode electrode layer 16 covering the first surface 14a of the exterior body 14 is interposed between the contact layer 15 and the first external electrode 21, and the contact layer 15 and the second external electrode 22 are interposed.
  • An anode electrode layer 16 covering the second surface 14b of the exterior body 14 is interposed between the two.
  • the element laminate is supported by the substrate 17.
  • the substrate 17 is, for example, a laminated substrate in which conductive wiring patterns are formed on the front surface and the back surface thereof, and the wiring pattern on the front surface and the wiring pattern on the back surface are electrically connected by through holes.
  • the wiring pattern on the front surface is electrically connected to the cathode portion 6 of the capacitor element 10 laminated on the lowermost layer, and the wiring pattern on the back surface is electrically connected to the third external electrode 23. Therefore, the third external electrode 23 and the cathode portion 6 of each capacitor element 10 of the element laminate are electrically connected via the substrate 17.
  • the number, shape, and arrangement of the third external electrodes 23 can be arbitrarily set depending on the wiring pattern on the back surface.
  • the third external electrode 23 is formed on the substrate 17 by, for example, a plating process, and the substrate 17 on which the third external electrode 23 is formed can be treated as one member.
  • the third external electrode 23 is exposed on the bottom surface of the electrolytic capacitor 11.
  • the exposed portion on the bottom surface of the third external electrode 23 constitutes the cathode terminal of the electrolytic capacitor 11.
  • two third external electrodes 23 are provided apart from each other, and the third external electrode 23 is exposed in a plurality of regions.
  • a part of the first external electrode 21 is bent along the bottom surface of the exterior body 14 and is exposed on the bottom surface of the electrolytic capacitor 11.
  • a part of the second external electrode 22 is bent along the bottom surface of the exterior body 14 so as to face the bent portion of the first external electrode 21, and is exposed on the bottom surface of the electrolytic capacitor 11.
  • the exposed portion on the bottom surface of the first external electrode 21 and the second external electrode 22 constitutes the anode terminal of the electrolytic capacitor 11. That is, in the present embodiment, the electrolytic capacitor 11 has two anode terminals separated from each other. A cathode terminal may be present so as to be sandwiched between two separated anode terminals.
  • ESL of the electrolytic capacitor 11 the distance between the first distance L 1 of the outer electrode 21 and the third external electrodes 23, and, a second external electrode 22 in the bottom third of the external electrode 23 on the bottom surface It depends on L 2.
  • the shorter the separation distances L 1 and L 2 the smaller the ESL tends to be.
  • a plurality of third external electrodes 23 may be arranged on the bottom surface. In this case, one of the plurality of third external electrodes 23 is arranged close to the first external electrode 21, and the other one of the plurality of third external electrodes 23 is close to the second external electrode 22. Can be placed. This can effectively reduce ESL.
  • the separation distances L 1 and L 2 may be, for example, 0.4 mm to 1.1 mm.
  • “having a plurality of third external electrodes 23” means that the third external electrode 23 is exposed in a plurality of separated regions, and the plurality of third external electrodes 23 are separated from each other. Not limited to the case. Two or more of the plurality of third external electrodes 23 may be continuously formed in the exterior body 14 and electrically connected to each other. The plurality of third external electrodes 23 may be provided on different surfaces of the exterior body 14, such as one provided on the upper surface and the other provided on the bottom surface.
  • the direction of the current flowing through the first capacitor element 10a is opposite to the direction of the current flowing through the second capacitor element 10b. Therefore, the magnetic field generated by the current flowing in the first capacitor element 10a and the magnetic field generated by the current flowing in the second capacitor element 10b cancel each other out, and the magnetic flux generated in the electrolytic capacitor 11 is reduced. As a result, ESL is reduced.
  • the effect of canceling the magnetic field does not occur.
  • the electrolytic capacitor 11 of the present embodiment it is easy to shorten the length of the first portion 1. Therefore, the contribution of ESL caused by this portion is reduced. Further, since the first external electrode 21 and the second external electrode 22 extend along the bottom surface of the exterior body 14, the contribution of ESL caused by this portion can be further reduced. Due to these effects, the ESL of the electrolytic capacitor 11 can be significantly improved.
  • the anode body 3 can include a valve acting metal, an alloy containing a valve acting metal, a compound containing a valve acting metal (intermetallic compound, etc.) and the like. These materials can be used alone or in combination of two or more.
  • As the valve acting metal aluminum, tantalum, niobium, titanium and the like can be used.
  • the anode 3 may be a valve-acting metal, an alloy containing a valve-acting metal, or a foil of a compound containing a valve-acting metal, and is a valve-acting metal, an alloy containing a valve-acting metal, or a compound containing a valve-acting metal. It may be a porous sintered body.
  • a porous portion 5 is usually formed on the surface of at least the second portion 2 of the anode foil in order to increase the surface area.
  • the second portion 2 has a core portion 4 and a porous portion 5 formed on the surface of the core portion 4.
  • the porous portion 5 may be formed by roughening the surface of at least the second portion 2 of the anode foil by etching or the like. After arranging a predetermined masking member on the surface of the first portion 1, it is also possible to perform a roughening treatment such as an etching treatment. On the other hand, it is also possible to roughen the entire surface of the surface of the anode foil by etching or the like.
  • an anode foil having no porous portion 5 on the surface of the first portion 1 and having the porous portion 5 on the surface of the second portion 2 can be obtained.
  • the porous portion 5 is formed on the surface of the first portion 1 in addition to the surface of the second portion 2.
  • a known method may be used, and examples thereof include electrolytic etching.
  • the masking member is not particularly limited, but an insulator such as a resin is preferable. The masking member is removed before the formation of the solid electrolyte layer 7, but may be a conductor containing a conductive material.
  • the surface of the first portion 1 has a porous portion 5. Therefore, the adhesion between the porous portion 5 and the exterior body 14 is not sufficient, and air (specifically, oxygen and moisture) invades the inside of the electrolytic capacitor 11 through the contact portion between the porous portion 5 and the exterior body 14. May be done.
  • the first portion 1 formed in the porous portion may be compressed in advance to close the pores of the porous portion 5. As a result, it is possible to suppress the intrusion of air from the first end portion 1a exposed from the exterior body 14 into the inside of the electrolytic capacitor 11 through the porous portion 5 and the deterioration of the reliability of the electrolytic capacitor 11 due to the intrusion of the air.
  • the dielectric layer is formed, for example, by anodizing the valve acting metal on the surface of at least the second portion 2 of the anode body 3 by chemical conversion treatment or the like.
  • the dielectric layer contains an oxide of the valve acting metal.
  • the dielectric layer contains aluminum oxide.
  • the dielectric layer is formed along at least the surface of the second portion 2 (including the inner wall surface of the hole of the porous portion 5) in which the porous portion 5 is formed.
  • the method for forming the dielectric layer is not limited to this, and it is sufficient that an insulating layer that functions as a dielectric can be formed on the surface of the second portion 2.
  • the dielectric layer may also be formed on the surface of the first portion 1 (for example, on the porous portion 5 on the surface of the first portion 1).
  • the cathode portion 6 includes a solid electrolyte layer 7 that covers at least a part of the dielectric layer, and a cathode extraction layer that covers at least a part of the solid electrolyte layer 7.
  • the solid electrolyte layer 7 contains, for example, a conductive polymer.
  • a conductive polymer for example, polypyrrole, polythiophene, polyaniline and derivatives thereof can be used.
  • the solid electrolyte layer 7 can be formed, for example, by chemically polymerizing and / or electrolytically polymerizing the raw material monomer on the dielectric layer. Alternatively, it can be formed by applying a solution in which the conductive polymer is dissolved or a dispersion in which the conductive polymer is dispersed to the dielectric layer.
  • the solid electrolyte layer 7 may contain a manganese compound.
  • the cathode extraction layer includes, for example, a carbon layer 8 and a silver paste layer 9.
  • the carbon layer 8 may be conductive as long as it has conductivity, and can be formed by using a conductive carbon material such as graphite.
  • the carbon layer 8 is formed by applying, for example, carbon paste to at least a part of the surface of the solid electrolyte layer 7.
  • a composition containing silver powder and a binder resin epoxy resin or the like
  • the silver paste layer 9 is formed by, for example, applying a silver paste to the surface of the carbon layer 8.
  • the configuration of the cathode extraction layer is not limited to this, and may be any configuration having a current collecting function.
  • an insulating separation layer 12 may be provided in order to electrically separate the first portion 1 and the cathode portion 6, an insulating separation layer 12 may be provided.
  • the separation layer 12 may be provided in close proximity to the cathode portion 6 so as to cover at least a part of the surface of the first portion 1.
  • the separation layer 12 is preferably in close contact with the first portion 1 and the exterior body 14. As a result, it is possible to suppress the intrusion of air into the electrolytic capacitor 11 described above.
  • the separation layer 12 may be arranged on the first portion 1 via a dielectric layer.
  • the separation layer 12 contains, for example, a resin, and an example of the exterior body 14 described later can be used. Insulation may be imparted by compressing and densifying the dielectric layer formed in the porous portion 5 of the first portion 1.
  • the separation layer 12 that is in close contact with the first portion 1 can be obtained, for example, by attaching a sheet-shaped insulating member (resin tape or the like) to the first portion 1.
  • a sheet-shaped insulating member resin tape or the like
  • the porous portion 5 of the first portion 1 may be compressed and flattened, and then the insulating member may be brought into close contact with the first portion 1.
  • the sheet-shaped insulating member preferably has an adhesive layer on the surface on the side to be attached to the first portion 1.
  • the liquid resin may be applied or impregnated into the first portion 1 to form an insulating member in close contact with the first portion 1.
  • the insulating member is formed so as to fill the unevenness of the surface of the porous portion 5 of the first portion 1.
  • the liquid resin easily enters the recesses on the surface of the porous portion 5, and the insulating member can be easily formed in the recesses as well.
  • the curable resin composition exemplified in the fourth step described later can be used as the liquid resin.
  • the exterior body 14 preferably contains, for example, a cured product of a curable resin composition, and may contain a thermoplastic resin or a composition containing the same.
  • the exterior body 14 can be formed by using a molding technique such as injection molding, for example.
  • the exterior body 14 can be formed by filling a predetermined portion with a curable resin composition or a thermoplastic resin (composition) so as to cover the capacitor element 10, for example, using a predetermined mold.
  • the curable resin composition may contain a filler, a curing agent, a polymerization initiator, and / or a catalyst in addition to the curable resin.
  • the curable resin include thermosetting resins.
  • the curing agent, polymerization initiator, catalyst and the like are appropriately selected depending on the type of the curable resin.
  • curable resin composition and the thermoplastic resin (composition) those exemplified in the third step described later can be used.
  • the insulating member and the exterior body 14 each contain a resin.
  • the exterior body 14 is more likely to adhere to the insulating member containing the resin than the first portion 1 containing the valve acting metal or the dielectric layer containing the oxide of the valve acting metal.
  • the separation layer 12 and the exterior body 14 contain the same resin as each other. In this case, the adhesion between the separation layer 12 and the exterior body 14 is further improved, whereby the intrusion of air into the electrolytic capacitor 11 is further suppressed.
  • the same resin contained in the separation layer 12 and the exterior body 14 include an epoxy resin.
  • the exterior body 14 contains a filler.
  • the separation layer 12 preferably contains a filler having a smaller particle size than the exterior body 14, and more preferably does not contain the filler.
  • the liquid resin preferably contains a filler having a smaller particle size than the exterior body 14, and more preferably does not contain the filler. In this case, it is easy to impregnate the liquid resin deep into the recesses on the surface of the porous portion 5 of the first portion 1, and it is easy to form the separation layer 12. Further, it is easy to form a separation layer 12 having a small thickness so that a plurality of capacitor elements 10 can be laminated.
  • the contact layer 15 may be formed so as to cover the end surface of the first end portion 1a of the anode body 3.
  • the contact layer 15 can be formed so as not to cover the surface of the exterior body 14 (and the separation layer 12) which is a resin material as much as possible, but to cover only the surface of the first end portion 1a exposed from the exterior body 14. ..
  • the contact layer 15 may contain a metal having a lower ionization tendency than the metal constituting the anode 3.
  • a metal having a lower ionization tendency than the metal constituting the anode 3.
  • the anode 3 is an aluminum (Al) foil
  • a material containing, for example, Zn, Ni, Sn, Cu, and Ag can be used as the contact layer 15.
  • the electrical connection is improved as compared with the case where the exposed portion of the anode 3 at the first end portion 1a is directly connected to the external electrode. You can be sure.
  • An alloy layer may be formed at the interface between the contact layer 15 and the anode body 3.
  • the anode 3 is an aluminum (Al) foil, Cu, Zn, or Ag has an interatomic distance close to that of Al, so that an alloy layer due to an intermetal bond with Al can be formed at the interface. Thereby, the bonding strength with the anode body 3 can be further strengthened.
  • the contact layer 15 may be made of a single element metal of the above element, may be made of an alloy such as bronze or brass, or may be a laminated metal layer of a plurality of different single elements (for example,). It may be a laminated structure of a Cu layer and an Ag layer).
  • the exterior body 14 does not contain a filler, or when the exterior body 14 contains a filler, the Young's modulus of the filler is smaller than the Young's modulus of the contact layer 15. As a result, the formation of the contact layer 15 on the surface of the exterior body 14 is suppressed, and the contact layer 15 can be selectively formed on the end surface of the first end portion 1a.
  • the contact layer 15 can be formed by, for example, a cold spray method, thermal spraying, plating, vapor deposition, or the like.
  • the cold spray method for example, solid metal particles are made to collide with the surface (first surface 14a and / or second surface 14b) of the exterior body 14 including the exposed surface of the first end portion 1a.
  • the metal particles are fixed to the surface by plastic deformation to form a contact layer 15 containing a metal constituting the metal particles on the end face of the first end portion 1a.
  • the Young's modulus of the metal particles is larger than the Young's modulus of the constituent member (for example, filler) of the exterior body 14, the metal particles colliding with the surface of the exterior body 14 are plastically deformed on the surface of the exterior body 14.
  • the contact layer 15 is selectively formed on the end surface of the first end portion 1a of the anode body 3, and the surface (first surface 14a and / or the second surface 14b) of the exterior body 14 is roughened. Can be done.
  • the anode electrode layer 16 may be interposed between the contact layer 15 and the external electrode (first external electrode 21 or second external electrode 22).
  • the anode electrode layer 16 covers the first surface 14a or the second surface 14b of the exterior body 14 and, if necessary, via the contact layer 15 with the first end portion 1a of the (plural) capacitor elements 10. Can be electrically connected.
  • the anode electrode layer 16 may include a conductive resin layer mixed with conductive particles.
  • the conductive resin layer can be formed by applying and drying a conductive paste containing conductive particles and a resin material on the first surface 14a or the second surface 14b of the exterior body 14.
  • the resin material is suitable for adhesion to the material constituting the exterior body 14 and the anode body 3 (contact layer 15), and the bonding strength can be increased by a chemical bond (for example, a hydrogen bond).
  • the conductive particles for example, metal particles such as silver and copper, and particles of a conductive inorganic material such as carbon can be used.
  • the anode electrode layer 16 may be a metal layer.
  • the anode electrode layer 16 may be formed by using an electrolytic plating method, a non-electrolytic plating method, a sputtering method, a vacuum vapor deposition method, a chemical vapor deposition (CVD) method, a cold spray method, or a thermal spraying method.
  • the anode electrode layer 16 may cover a part of a surface (for example, an upper surface or a bottom surface) orthogonal to the first surface 14a and the second surface 14b of the exterior body 14.
  • the roughness Ra of the surface of the exterior body 14 covered with the anode electrode layer 16 may be 5 micrometers or more. In this case, the contact area between the anode electrode layer 16 and the exterior body 14 is increased, and the adhesion between the anode electrode layer 16 and the exterior body 14 is improved by the anchor effect, and the reliability can be further improved.
  • the first to third external electrodes 21 to 23 are preferably a metal layer.
  • the metal layer is, for example, a plating layer.
  • the metal layer contains, for example, at least one selected from the group consisting of nickel (Ni), copper (Cu), zinc (Zn), tin (Sn), silver (Ag), and gold (Au).
  • film forming techniques such as electrolytic plating method, electroless plating method, sputtering method, vacuum vapor deposition method, chemical vapor deposition (CVD) method, cold spray method, and thermal spraying method are used. You may.
  • the first to third external electrodes 21 to 23 may have, for example, a laminated structure of a Ni layer and a tin layer.
  • the first to third external electrodes 21 to 23 may be made of a metal having at least an outer surface thereof having excellent wettability with solder. Examples of such a metal include Sn, Au, Ag, Pd and the like.
  • the external electrode may be formed by adhering a Cu cap having a Sn coating formed in advance to the anode electrode layer 16.
  • the first external electrode 21 and the second external electrode 22 both form an anode terminal of the electrolytic capacitor 11.
  • both the first external electrode 21 and the second external electrode 22 need to be connected to the electrodes on the substrate 17.
  • the first external electrode 21 and the second external electrode 22 may be electrically connected via the surface of the exterior body 14 other than the first surface 14a and the second surface 14b. .. In this case, when mounting the electrolytic capacitor 11 on the substrate 17, either the first external electrode 21 or the second external electrode 22 may be connected to the electrode on the substrate.
  • the electrolytic capacitor 11 includes, for example, a first step of preparing an anode 3, a second step of obtaining a plurality of capacitor elements 10, and an element laminate in which a plurality of capacitor elements 10 are laminated.
  • It can be manufactured by a manufacturing method including a sixth step of electrically connecting with and.
  • the manufacturing method may further include a step of arranging the separation layer 12 (insulating member) in a part of the anode body 3 (separation layer arrangement step).
  • the anode body 3 having the dielectric layer formed on the surface is prepared. More specifically, it comprises a first portion 1 including one end and a second portion 2 including the other end opposite to one end, and a dielectric on the surface of at least the second portion 2.
  • the layered anode 3 is prepared.
  • the first step includes, for example, a step of forming the porous portion 5 on the surface of the anode body 3 and a step of forming a dielectric layer on the surface of the porous portion 5. More specifically, the anode 3 used in the first step includes a first portion 1 including an end to be removed (one end thereof) and a second end 2a (the other end). It has a second portion 2. It is preferable to form the porous portion 5 on the surface of at least the second portion 2.
  • the porous portion 5 on the surface of the anode body 3 it suffices to form irregularities on the surface of the anode body 3, and for example, the surface of the anode foil is roughened by etching (for example, electrolytic etching). May be done by.
  • etching for example, electrolytic etching
  • the dielectric layer may be formed by chemical conversion treatment of the anode body 3.
  • the chemical conversion treatment for example, by immersing the anode body 3 in the chemical conversion liquid, the surface of the anode body 3 is impregnated with the chemical conversion liquid, and the anode body 3 is used as an anode and a voltage is applied between the anode body 3 and the cathode immersed in the chemical conversion liquid. Can be done by applying.
  • the porous portion 5 is provided on the surface of the anode body 3, the dielectric layer is formed along the uneven shape of the surface of the porous portion 5.
  • the step of arranging the separation layer 12 (insulating member) may be performed after the first step and before the second step.
  • an insulating member is arranged on a part of the anode body 3. More specifically, in this step, the insulating member is arranged on the first portion 1 of the anode body 3 via the dielectric layer. The insulating member is arranged so that the insulating member separates the first portion 1 from the cathode portion 6 formed in a subsequent step.
  • a sheet-shaped insulating member (resin tape or the like) may be attached to a part of the anode body 3 (for example, the first part 1). Even when the anode body 3 having the porous portion 5 formed on the surface is used, the insulating member can be firmly adhered to the first portion 1 by compressing and flattening the unevenness of the surface of the first portion 1. ..
  • the sheet-shaped insulating member preferably has an adhesive layer on the surface on the side to be attached to the first portion 1.
  • a liquid resin may be applied or impregnated into a part of the anode body 3 (for example, the first part 1) to form an insulating member.
  • the liquid resin may be applied or impregnated and then cured.
  • an insulating member that is in close contact with the first portion 1 can be easily formed.
  • the curable resin composition exemplified in the fourth step formation of the exterior body 14
  • a resin solution in which the resin is dissolved in a solvent, and the like can be used.
  • a liquid resin may be applied or impregnated on a part of the surface of the porous portion 5 of the anode body 3 (for example, the surface of the first portion 1). preferable.
  • the insulating member can be easily formed so as to fill the unevenness of the surface of the porous portion 5 of the first portion 1.
  • the liquid resin easily enters the recesses on the surface of the porous portion 5, and the insulating member can be easily formed in the recesses as well. As a result, the porous portion 5 on the surface of the anode body 3 is protected by the insulating member.
  • the porous portion 5 of the anode body 3 is protected. Collapse is suppressed. Since the surface of the porous portion 5 of the anode body 3 and the insulating member are firmly adhered to each other, when the anode body 3 is partially removed together with the exterior body 14 in the fourth step, the insulating member is the anode body 3. Peeling from the surface of the porous portion 5 is suppressed.
  • the cathode portion 6 is formed on the anode body 3 to obtain the capacitor element 10.
  • the insulating member is provided in the sixth step, the cathode portion 6 is formed in the portion of the anode body 3 where the insulating member is not arranged, and the capacitor element 10 is obtained. More specifically, in the second step, at least a part of the dielectric layer formed on the surface of the second portion 2 of the anode body 3 is covered with the cathode portion 6.
  • the step of forming the cathode portion 6 includes, for example, a step of forming a solid electrolyte covering at least a part of the dielectric and a step of forming a cathode drawer layer covering at least a part of the solid electrolyte layer 7.
  • the solid electrolyte layer 7 can be formed, for example, by chemically polymerizing and / or electrolytically polymerizing the raw material monomer on the dielectric layer. Further, the solid electrolyte layer 7 may be formed by attaching a treatment liquid containing a conductive polymer and then drying it.
  • the treatment liquid may further contain other components such as dopants.
  • the conductive polymer for example, poly (3,4-ethylenedioxythiophene) (PEDOT) is used.
  • the dopant for example, polystyrene sulfonic acid (PSS) is used.
  • the treatment liquid is a dispersion liquid or a solution of a conductive polymer. Examples of the dispersion medium (solvent) include water, an organic solvent, or a mixture thereof.
  • the cathode extraction layer can be formed, for example, by sequentially laminating the carbon layer 8 and the silver paste layer 9 on the solid electrolyte layer.
  • a plurality of capacitor elements 10 are laminated to obtain an element laminate.
  • the cathode portions 6 of the plurality of capacitor elements 10 are alternately provided with a conductive adhesive so that the first portion 1 faces the opposite side between the plurality of capacitor elements 10 and the adjacent capacitor elements 10.
  • the element laminate is obtained by superimposing the elements.
  • the element laminate is placed on a laminated substrate (board 17) having wiring patterns formed on the front surface and the back surface via a conductive adhesive.
  • a third external electrode 23 is preliminarily formed on the side opposite to the side on which the element laminate of the laminated substrate is placed. By mounting, the third external electrode 23 is a capacitor element constituting the element laminate via a wiring pattern formed on the laminated substrate and a through hole connecting the wiring pattern on the front surface and the wiring pattern on the back surface. It is electrically connected to the cathode portion 6 of 10.
  • a plate-shaped third external electrode 23 processed into a predetermined shape is attached to the surface of the cathode portion 6 exposed in the lowermost layer or the uppermost layer of the element laminate via a conductive paste or the like. Thereby, the element laminate and the third external electrode 23 may be electrically connected.
  • the third external electrode 23 may be formed by using an electrolytic plating method, a electroless plating method, a physical vapor deposition method, a chemical vapor deposition method, a cold spray method, and / or a thermal spraying method.
  • the element laminate is covered with the exterior body 14.
  • the entire third external electrode 23 is not covered with the exterior body 14, and at least a part of the third external electrode 23 is exposed.
  • the exterior body 14 can be formed by injection molding or the like.
  • the exterior body 14 can be formed by filling a predetermined portion with a curable resin composition or a thermoplastic resin (composition) so as to cover the element laminated body, for example, using a predetermined mold.
  • the curable resin composition may contain a filler, a curing agent, a polymerization initiator, and / or a catalyst in addition to the curable resin.
  • the curable resin include epoxy resin, phenol resin, urea resin, polyimide, polyamideimide, polyurethane, diallyl phthalate, and unsaturated polyester.
  • the thermoplastic resin include polyphenylene sulfide (PPS) and polybutylene terephthalate (PBT).
  • a thermoplastic resin composition containing a thermoplastic resin and a filler may be used.
  • the filler for example, insulating particles and / or fibers are preferable.
  • the insulating material constituting the filler include insulating compounds (oxide and the like) such as silica and alumina, glass, and mineral materials (talc, mica, clay and the like).
  • the exterior body 14 may contain one kind of these fillers, or may contain two or more kinds of these fillers in combination.
  • the end face of the first portion 1 is formed and exposed from the exterior body 14. More specifically, at least the anode body 3 is partially removed together with the exterior body 14 on both ends of the element laminate, and at least the first end portion 1a of the anode body 3 (specifically, the first end). The end face of the portion 1a) is exposed from the exterior body 14 on both sides of the first surface 14a and the second surface 14b.
  • exposing the first end portion 1a from the exterior body 14 for example, after covering the capacitor element 10 with the exterior body 14, the surface of the exterior body 14 is exposed so that the first end portion 1a is exposed from the exterior body 14.
  • a method of polishing or cutting off a part of the exterior body 14 can be mentioned. Further, a part of the first portion 1 may be separated together with a part of the exterior body 14. In this case, the first end portion 1a, which does not include the porous portion 5 and has a surface on which a natural oxide film is not formed, can be easily exposed from the exterior body 14, and the first portion 1 and the external electrode can be easily exposed. A highly reliable connection state with low resistance can be obtained. Dicing is preferable as a method for cutting the exterior body 14. As a result, the exposed end surface of the first end portion 1a of the first portion 1 appears on the cut surface.
  • the element laminate has two types of capacitor elements 10 in which the orientation of the first portion 1 is different, when a part of the first portion 1 is separated together with a part of the exterior body 14, it is necessary to cut at two places. be.
  • One of the two cut surfaces is the first surface 14a and the other is the second surface 14b.
  • the anode body 3 and the insulating member are partially removed together with the exterior body 14 on both ends of the element laminate, and the end face of the first end portion 1a and the end face of the insulating member are exposed from the exterior body 14. You may let me. In this case, flush end faces exposed from the exterior body 14 are formed on the anode body 3 and the insulating member, respectively. Thereby, the end surface of the anode body 3 flush with the surface of the exterior body 14 and the end surface of the insulating member can be easily exposed from the exterior body 14, respectively.
  • the end face of the anode body 3 (first end portion 1a) on which the natural oxide film is not formed can be easily exposed from the exterior body 14, and the anode body 3 (more specifically, the first end portion 1a) can be easily exposed.
  • a highly reliable connection state with low resistance can be obtained between 1 part 1) and the external electrode.
  • the end surface of the anode body 3 (first end portion 1a) exposed from the exterior body 14 is electrically connected to the external electrode.
  • the first external electrode 21 is formed so as to cover the first surface 14a of the exterior body 14
  • the second external electrode 22 is formed so as to cover the second surface 14b.
  • Each external electrode is electrically connected to the end face of the first end portion 1a.
  • the end face of the first end portion 1a may be electrically connected to the external electrode by bonding or the like, or an electrolytic plating method, a non-electrolytic plating method, a physical vapor deposition method, a chemical vapor deposition method, a cold spray method, and / or A thermal spraying method may be used.
  • the step of forming the anode electrode layer 16 covering the surface 14a or the second surface 14b may be performed.
  • the first external electrode 21 and the second external electrode 22 are formed so as to cover the anode electrode layer 16.
  • the contact layer 15 can be formed by, for example, a cold spray method, thermal spraying, plating, vapor deposition, or the like.
  • the contact layer 15 may be formed so as not to cover the first surface 14a and the second surface 14b of the exterior body 14 as much as possible, but to selectively cover the end surface of the first end portion 1a.
  • the contact layer 15 is formed by colliding metal particles with the end face of the first end portion 1a at high speed.
  • the metal particles may be metal particles having a lower ionization tendency than the metal constituting the anode 3.
  • the anode 3 is an Al foil
  • Cu particles can be mentioned as such metal particles.
  • the Cu particles that collide with the end face of the first end portion 1a at high speed can break through the natural oxide film (Al oxide film) formed on the end face and form a metal bond between Al and Cu.
  • Al oxide film natural oxide film
  • the surface of the contact layer 15 is covered with a Cu layer which is a non-valve acting metal. Since Cu has a lower ionization tendency than Al, the surface of the contact layer 15 is less likely to be oxidized, and electrical connection with an external electrode (or an anode electrode layer 16) can be reliably performed.
  • metal particles with a size of several ⁇ m to several tens of ⁇ m are accelerated from subsonic to supersonic by using compressed gas such as air, nitrogen, and helium, and used as a substrate in a solid state. It is a technique to form a metal film by colliding with each other.
  • the mechanism of adhesion of metal particles in the cold spray method has not been elucidated in some parts, but in general, the collision energy of metal particles causes plastic deformation of the metal particles or metal substrate, exposing a new surface on the metal surface. It is thought that it is activated by doing so.
  • the metal particles can also collide with the first surface 14a and the second surface 14b of the exterior body 14 made of a non-metal material, and the end surface of the separation layer 12 (insulating member).
  • the base material with which the metal particles collide is a resin base material
  • the bond between the metal particles and the resin base material is mainly due to the plastically deformed metal particles being fitted into the irregularities on the surface of the resin base material. It is considered to be a good joint. Therefore, in order to form a metal on the surface of the resin base material, (ia) the resin base material should have sufficient hardness and the collision energy should be efficiently used for the plastic deformation of the metal particles, and (iia) the metal particles.
  • the conditions are to select a metal material and processing conditions that are prone to plastic deformation, and (iiia) that the resin base material is not easily destroyed by the energy of collision.
  • the resin base material should be made elastic so that the collision energy is not converted into the energy of plastic deformation, and (iib) the end face of the first end portion 1a.
  • the young ratio of the metal particles is smaller than the young ratio of the member (for example, filler) constituting the resin base material, plastic deformation at the time of collision of the metal particles tends to be promoted, and when it is large, the metal particles of the metal particles tend to be deformed. Plastic deformation at the time of collision tends to be suppressed. In the latter case, the collision energy of the metal particles causes brittle fracture of the resin base material, and the surface of the resin base material is scraped off.
  • the member for example, filler
  • the Young's modulus of the metal particles (which may be rephrased as the contact layer 15) larger than the Young's modulus of the filler contained in the resin base material, it is possible to make the metal particles difficult to adhere to the resin base material. can.
  • the formation of the contact layer 15 on the first surface 14a and the second surface 14b of the exterior body 14 and the end faces of the separation layer 12 (insulating member) is suppressed, and the contact layer 15 is formed at the first end. It can be selectively formed on the end face of the portion 1a. Further, by colliding the metal particles with the first surface 14a and the second surface 14b of the exterior body 14, it is possible to obtain the effect of roughening the first surface 14a and the second surface 14b.
  • the fixing state changes depending on the shape, size, temperature of the metal particles, the size of the silica to be filled in the resin material, the filling rate, and the like, and is not limited to this.
  • the anode electrode layer 16 covers the end surface or the contact layer 15 of the first end portion 1a, and when the first surface 14a and the second surface 14b of the exterior body 14 and the separation layer 12 are provided, the separation layer 12 (insulation). It can be formed to cover the end face of the member).
  • the anode electrode layer 16 may be formed by applying a conductive paste containing conductive particles and a resin material. Specifically, a conductive paste (for example, silver paste) is applied to each end face by a dip method, a transfer method, a printing method, a dispense method, or the like, and then cured at a high temperature to form an anode electrode layer 16. do.
  • a conductive paste for example, silver paste
  • the anode electrode layer 16 which is a metal layer may be formed by an electrolytic plating method, a non-electrolytic plating method, a sputtering method, a vacuum vapor deposition method, a chemical vapor deposition (CVD) method, a cold spray method, or a thermal spraying method.
  • the capacitor 11A (predetermined capacitor) of the present modification 1 is a through capacitor.
  • the capacitor 11A includes a housing 24, two anode terminals 25 and 26, a penetrating portion 27, and at least one (four in FIG. 9) cathode terminals 28.
  • the two anode terminals 25 and 26 are exposed to the outside of the housing 24.
  • the two anode terminals 25 and 26 are electrically connected to the electric circuit 30.
  • the penetrating portion 27 is arranged inside the housing 24.
  • the penetration portion 27 electrically connects the two anode terminals 25 and 26.
  • the cathode terminal 28 is exposed to the outside of the housing 24.
  • the cathode terminal 28 is electrically connected to the ground (that is, the conductor pattern N3 of the ground potential).
  • the shape of the housing 24 is a rectangular parallelepiped.
  • the two anode terminals 25 and 26 are provided on two surfaces of the housing 24 facing each other.
  • Each of the plurality of cathode terminals 28 is provided on a surface (a surface facing the conductor pattern N3) different from the above two surfaces of the housing 24.
  • the shape of the penetrating portion 27 is, for example, a sheet shape or a wire shape.
  • the first end of the penetrating portion 27 is electrically connected to the anode terminal 25.
  • the second end of the penetrating portion 27 is electrically connected to the anode terminal 26.
  • the capacitor 11A further includes at least one internal ground electrode.
  • the internal ground electrode is arranged inside the housing 24.
  • the internal ground electrode is electrically connected to at least one cathode terminal 28.
  • the internal ground electrode faces the penetrating portion 27 at a distance from the penetrating portion 27.
  • a conductor pattern 321 and conductor patterns P2 and P3 are provided as a part of the second electric circuit 32.
  • the conductor pattern 321 is electrically connected to the first end of the DC / DC converter 43 (see FIG. 1) and the inductor 44.
  • the conductor pattern P2 is electrically connected to the second end of the inductor 44 and the anode terminal 25.
  • the conductor pattern P3 is electrically connected to the anode terminal 26 and the integrated circuit 41. Further, the integrated circuit 41 is electrically connected to the ground pattern (conductor pattern N3).
  • the penetrating portion 27 electrically connects the conductor patterns P2 and P3. That is, the penetrating portion 27 also serves as a part of the electric path 30 (second electric path 32).
  • the electric circuit 100A with an integrated circuit has such a configuration, but the equivalent circuit of the electric circuit 100A with an integrated circuit is the same as the electric circuit 100 with an integrated circuit (see FIG. 1) of the embodiment.
  • the capacitor 11 may have at least one of the configurations listed below.
  • the capacitor 11 may have an LW inversion type structure.
  • the LW inversion type capacitor has a rectangular shape when viewed from the direction facing the mounting surface, and external electrodes (first external electrode 21 and second external electrode 22) are provided on two sides along the longitudinal direction. Has a structure.
  • the capacitor 11 may have an LW inversion type structure and may be an alternating laminated capacitor as in the embodiment.
  • the capacitor 11 may be a multi-terminal capacitor having three or more external electrodes. Further, when connecting a plurality of multi-terminal capacitors in parallel, the multi-terminal capacitors adjacent to each other may be connected so that their polarities are opposite to each other. In other words, even if the multi-terminal capacitor facing in the positive direction and the multi-terminal capacitor facing in the opposite direction to the positive direction are arranged alternately with the direction of the multi-terminal capacitor in the direction of polarity as the positive direction. good. As a result, the magnetic flux generated by the multi-terminal capacitor can be effectively reduced, and the ESL can be effectively reduced.
  • the number of pairs of the first capacitor element 10a and the second capacitor element 10b is not limited to two, and may be one or three or more. Further, the first capacitor element 10a and the second capacitor element 10b are not limited to being alternately laminated, and a first laminated structure composed of a plurality of first capacitor elements 10a and a plurality of second capacitors are used. The second laminated structure composed of the capacitor element 10b may be alternately laminated.
  • the capacitor 11 may be electrically connected to the first electric circuit 31 and the ground. Further, a parallel circuit of a plurality of capacitors 11 may be electrically connected between the first electric path 31 and the ground. A parallel circuit of a plurality of capacitors 11 may be electrically connected between the second electric circuit 32 and the ground.
  • the capacitor 11 is arranged outside the package accommodating the integrated circuit 41, but it may be built in the package.
  • the integrated circuit 41 may be used in a quantum computer.
  • an AC power supply and an AC / DC converter that converts AC power input from the AC power supply into DC power and outputs it may be used.
  • the electric circuit (101, 101A) for power supply of the integrated circuit (41) includes an electric circuit (30) and at least one predetermined capacitor (11, 11A).
  • the electric circuit (30) supplies DC power from the power source (PS1) to the integrated circuit (41).
  • the predetermined capacitors (11, 11A) have predetermined characteristics.
  • the predetermined capacitors (11, 11A) are electrically connected to the electric circuit (30) and the ground.
  • the predetermined characteristic is that the impedance is 10 [m ⁇ ] or less at least when the frequency is 5 [MHz] or more and 10 [MHz] or less.
  • the number of capacitors used in the electric circuit (101, 101A) can be reduced.
  • the predetermined characteristic is that the frequency is 100 [kHz] or more and 10 [MHz] or less.
  • the impedance is 10 [m ⁇ ] or less.
  • the number of capacitors used in the electric circuit (101, 101A) can be reduced.
  • the electric circuit (101, 101A) for power supply of the integrated circuit (41) further includes a DC / DC converter (43) in the first or second aspect.
  • the DC / DC converter (43) is electrically connected between the power supply (PS1) and a predetermined capacitor (11, 11A).
  • a desired voltage can be supplied to the integrated circuit (41).
  • the switching frequency of the DC / DC converter (43) is 200 [kHz] or more. It is 10 [MHz] or less.
  • the AC component of the input voltage of the integrated circuit (41) can be limited.
  • the predetermined capacitor (11, 11A) and the integrated circuit (41) are used.
  • the wiring impedance between is smaller than the wiring impedance between the DC / DC converter (43) and the integrated circuit (41).
  • the harmonic component of the output voltage of the DC / DC converter (43) can be reduced by a predetermined capacitor (11, 11A).
  • the self of the predetermined capacitor (11, 11A) in any one of the first to fifth aspects, the self of the predetermined capacitor (11, 11A).
  • the resonance frequency (f0) is 300 [kHz] or more and 10 [GHz] or less.
  • the impedance of the predetermined capacitor (11, 11A) can be suppressed in the frequency band before and after the self-resonant frequency (f0).
  • a predetermined capacitor (11, 11A) is driven.
  • the voltage is 3.3 [V] or less.
  • the predetermined capacitors (11, 11A) are suitable for use in the electric circuit (30) electrically connected to the integrated circuit (41).
  • the predetermined capacitor (11) is an electrolytic capacitor. ..
  • the predetermined capacitor (11) includes an element laminate in which a plurality of capacitor elements (10) are laminated, an exterior body (14) that seals the element laminate, a first external electrode (21), and a second.
  • the external electrode (22) and the third external electrode (23) are provided.
  • Each of the plurality of capacitor elements (10) has an anode body (3), a dielectric layer, a cathode portion (6), a first end portion (1a), and a second end portion (2a). ..
  • the anode body (3) has a porous portion (5) on the surface.
  • the dielectric layer is formed on the surface of at least a part of the porous portion (5).
  • the cathode portion (6) covers at least a part of the dielectric layer.
  • the anode body (3) is exposed.
  • the anode (3) is covered with the cathode (6).
  • At least the end face of the first end portion (1a) is exposed from the exterior body (14).
  • the plurality of capacitor elements (10) include a first capacitor element (10a) and a second capacitor element (10b). In the first capacitor element (10a), the first end portion (1a) faces the first surface (14a) of the exterior body (14).
  • the first end portion (1a) faces the second surface (14b) different from the first surface (14a) of the exterior body (14).
  • the first capacitor element (10a) and the second capacitor element (10b) are alternately laminated.
  • the first end portion (1a) of the first capacitor element (10a) is electrically connected to the first external electrode (21).
  • the first end portion (1a) of the second capacitor element (10b) is electrically connected to the second external electrode (22).
  • the third external electrode (23) is electrically connected to the cathode portion (6) of the capacitor element (10).
  • the predetermined capacitor (11A) is a through capacitor. ..
  • the predetermined capacitor (11A) includes a housing (24), two anode terminals (25, 26), a penetration portion (27), and a cathode terminal (28).
  • the two anode terminals (25, 26) are exposed to the outside of the housing (24).
  • the two anode terminals (25, 26) are electrically connected to the electric circuit (30).
  • the penetration portion (27) is arranged inside the housing (24).
  • the penetration portion (27) electrically connects the two anode terminals (25, 26).
  • the cathode terminal (28) is exposed to the outside of the housing (24).
  • the cathode terminal (28) is electrically connected to the ground.
  • the electric circuit (30) is electrically connected to the electric circuit (30).
  • the number of predetermined capacitors (11, 11A) is one.
  • the number of predetermined capacitors (11, 11A) can be reduced.
  • the configuration other than the first aspect is not an essential configuration for the electric circuit (101, 101A) for power supply of the integrated circuit (41), and can be omitted as appropriate.
  • the capacitor (11, 11A) according to the eleventh aspect is a predetermined electric circuit (101, 101A) for power supply of the integrated circuit (41) according to any one of the first to ten aspects. It is used as a capacitor (11, 11A).
  • the number of capacitors used in the electric circuit (101, 101A) can be reduced.
  • the electric circuit with an integrated circuit (100, 100A) according to the twelfth aspect is an electric circuit (101, 101A) for supplying power to the integrated circuit (41) according to any one of the first to tenth aspects. And an integrated circuit (41).
  • the number of capacitors used in the electric circuit (101, 101A) can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Filters And Equalizers (AREA)

Abstract

An electric circuit (101) for power supply to an integrated circuit (41) comprises an electrical path (30) and at least one prescribed capacitor (11). The electrical path (30) supplies DC power to the integrated circuit (41) from a power supply (PS1). The prescribed capacitor (11) has prescribed characteristics. The prescribed capacitor (11) is electrically connected to the electrical path (30) and the cloud. The number of capacitors can be reduced by prescribed characteristics including at least a characteristic whereby the impedance at 5–10 MHz is no more than 10 mΩ.

Description

集積回路の電源供給用の電気回路、コンデンサ及び集積回路付電気回路Electric circuit for power supply of integrated circuit, capacitor and electric circuit with integrated circuit
 本開示は一般に集積回路の電源供給用の電気回路、コンデンサ及び集積回路付電気回路に関し、より詳細には、コンデンサを備える集積回路の電源供給用の電気回路、この電気回路に用いられるコンデンサ、及び、この電気回路を備える集積回路付電気回路に関する。 The present disclosure generally relates to an electric circuit for power supply of an integrated circuit, a capacitor and an electric circuit with an integrated circuit, and more particularly, an electric circuit for power supply of an integrated circuit including a capacitor, a capacitor used in this electric circuit, and , The present invention relates to an electric circuit with an integrated circuit including this electric circuit.
 特許文献1に記載のデジタル信号処理基板は、クロック動作用の素子が接続されたLSIと、このLSIに電力を供給する電源入力ラインと、この電源入力ラインとアース間に接続されたデカップリングコンデンサとを有する。デカップリングコンデンサとして、ESRが25mΩ(100kHz)以下、ESLが800pH(500MHz)以下の面実装型の固体電解コンデンサを用いる。 The digital signal processing board described in Patent Document 1 includes an LSI to which an element for clock operation is connected, a power input line for supplying power to the LSI, and a decoupling capacitor connected between the power input line and ground. And have. As the decoupling capacitor, a surface-mounted solid electrolytic capacitor having an ESR of 25 mΩ (100 kHz) or less and an ESL of 800 pH (500 MHz) or less is used.
特開2006-352059号公報Japanese Unexamined Patent Publication No. 2006-352059
 本開示の一態様に係る集積回路の電源供給用の電気回路は、電路と、少なくとも1つの所定のコンデンサと、を備える。前記電路は、電源から前記集積回路に直流電力を供給する。前記所定のコンデンサは、所定の特性を有する。前記所定のコンデンサは、前記電路とグランドとに電気的に接続されている。前記所定の特性は、少なくとも周波数が5[MHz]以上10[MHz]以下におけるインピーダンスが10[mΩ]以下という特性である。 The electric circuit for power supply of the integrated circuit according to one aspect of the present disclosure includes an electric circuit and at least one predetermined capacitor. The electric circuit supplies DC power from a power source to the integrated circuit. The predetermined capacitor has predetermined characteristics. The predetermined capacitor is electrically connected to the electric circuit and the ground. The predetermined characteristic is a characteristic that the impedance is 10 [mΩ] or less at least when the frequency is 5 [MHz] or more and 10 [MHz] or less.
 本開示の一態様に係るコンデンサは、前記集積回路の電源供給用の電気回路に、前記所定のコンデンサとして用いられる。 The capacitor according to one aspect of the present disclosure is used as the predetermined capacitor in the electric circuit for supplying power to the integrated circuit.
 本開示の一態様に係る集積回路付電気回路は、前記集積回路の電源供給用の電気回路と、前記集積回路と、を備える。 本開示は、コンデンサの員数を削減することができるという利点がある。 The electric circuit with an integrated circuit according to one aspect of the present disclosure includes an electric circuit for supplying power to the integrated circuit and the integrated circuit. This disclosure has the advantage that the number of capacitors can be reduced.
図1は、本開示の一実施形態に係る集積回路付電気回路の回路図である。FIG. 1 is a circuit diagram of an electric circuit with an integrated circuit according to an embodiment of the present disclosure. 図2は、図1の集積回路付電気回路の要部の概略図である。FIG. 2 is a schematic diagram of a main part of the electric circuit with an integrated circuit of FIG. 図3は、比較例に係る集積回路付電気回路の要部の概略図である。FIG. 3 is a schematic diagram of a main part of an electric circuit with an integrated circuit according to a comparative example. 図4は、本開示の一実施形態に係るコンデンサの特性図である。FIG. 4 is a characteristic diagram of a capacitor according to an embodiment of the present disclosure. 図5は、比較例に係るコンデンサの特性図である。FIG. 5 is a characteristic diagram of a capacitor according to a comparative example. 図6は、比較例に係る複数のコンデンサの並列回路の特性図である。FIG. 6 is a characteristic diagram of a parallel circuit of a plurality of capacitors according to a comparative example. 図7は、本開示の一実施形態に係るコンデンサの模式的な断面図である。FIG. 7 is a schematic cross-sectional view of the capacitor according to the embodiment of the present disclosure. 図8は、図8のコンデンサのコンデンサ素子の模式的な断面図である。FIG. 8 is a schematic cross-sectional view of the capacitor element of the capacitor of FIG. 図9は、本開示の一実施形態(変形例1)に係る集積回路付電気回路の要部の概略図である。FIG. 9 is a schematic diagram of a main part of an electric circuit with an integrated circuit according to an embodiment (modification example 1) of the present disclosure.
 実施形態の説明に先立って、従来技術における課題について簡単に以下に示す。 Prior to the explanation of the embodiment, the problems in the prior art are briefly shown below.
 近年、LSI等の集積回路に要求される仕様は更に高度化している。例えば、より広い周波数帯において、集積回路から見た電源供給ラインのインピーダンスを抑えることが要求されている。そのため、より多くのコンデンサが必要となるという課題があった。上記課題を鑑み、本開示は、コンデンサの員数を削減することができる集積回路の電源供給用の電気回路、コンデンサ及び集積回路付電気回路を提供することを目的とする。 In recent years, the specifications required for integrated circuits such as LSI have become more sophisticated. For example, in a wider frequency band, it is required to suppress the impedance of the power supply line seen from the integrated circuit. Therefore, there is a problem that more capacitors are required. In view of the above problems, it is an object of the present disclosure to provide an electric circuit for supplying power to an integrated circuit, a capacitor, and an electric circuit with an integrated circuit, which can reduce the number of capacitors.
 (実施形態)
 以下、実施形態に係る集積回路の電源供給用の電気回路、コンデンサ及び集積回路付電気回路について、図面を用いて説明する。ただし、下記の実施形態は、本開示の様々な実施形態の1つに過ぎない。下記の実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。また、下記の実施形態において説明する各図は、模式的な図であり、図中の各構成要素の大きさ及び厚さそれぞれの比が必ずしも実際の寸法比を反映しているとは限らない。
(Embodiment)
Hereinafter, the electric circuit for supplying power of the integrated circuit, the capacitor, and the electric circuit with the integrated circuit according to the embodiment will be described with reference to the drawings. However, the following embodiments are only one of the various embodiments of the present disclosure. The following embodiments can be variously modified according to the design and the like as long as the object of the present disclosure can be achieved. Further, each figure described in the following embodiment is a schematic view, and the ratio of the size and the thickness of each component in the figure does not necessarily reflect the actual dimensional ratio. ..
 (1)概要
 図1に示すように、本実施形態の集積回路41の電源供給用の電気回路101は、電路30と、少なくとも1つの所定のコンデンサ11と、を備える。電路30は、電源PS1から集積回路41に直流電力を供給する。所定のコンデンサ11は、所定の特性を有する。所定のコンデンサ11は、電路30とグランドとに電気的に接続されている。所定の特性は、少なくとも周波数が5[MHz]以上10[MHz]以下におけるインピーダンスが10[mΩ]以下という特性である。
(1) Outline As shown in FIG. 1, the electric circuit 101 for power supply of the integrated circuit 41 of the present embodiment includes an electric circuit 30 and at least one predetermined capacitor 11. The electric circuit 30 supplies DC power from the power supply PS1 to the integrated circuit 41. The predetermined capacitor 11 has a predetermined characteristic. The predetermined capacitor 11 is electrically connected to the electric circuit 30 and the ground. The predetermined characteristic is that the impedance is 10 [mΩ] or less at least when the frequency is 5 [MHz] or more and 10 [MHz] or less.
 本実施形態によれば、電気回路101に用いるコンデンサの員数を削減することができる。つまり、集積回路41への電源供給ラインである電路30の電圧変動を抑制するために要するコンデンサの員数を削減できる。 According to this embodiment, the number of capacitors used in the electric circuit 101 can be reduced. That is, the number of capacitors required to suppress the voltage fluctuation of the electric circuit 30 which is the power supply line to the integrated circuit 41 can be reduced.
 所定のコンデンサ11が有する所定の特性は、より好ましくは、周波数が100[kHz]以上10[MHz]以下におけるインピーダンスが10[mΩ]以下という特性である。 The predetermined characteristic of the predetermined capacitor 11 is more preferably the characteristic that the impedance is 10 [mΩ] or less when the frequency is 100 [kHz] or more and 10 [MHz] or less.
 所定のコンデンサ11の自己共振周波数は、300[kHz]以上1[GHz]以下であることが好ましい。また、所定のコンデンサ11の駆動電圧は3.3[V]以下であることが好ましい。 The self-resonant frequency of the predetermined capacitor 11 is preferably 300 [kHz] or more and 1 [GHz] or less. Further, the drive voltage of the predetermined capacitor 11 is preferably 3.3 [V] or less.
 コンデンサ11は、集積回路41の電源供給用の電気回路101に上記所定のコンデンサ11として用いられる。コンデンサ11は、電気回路101のうちコンデンサ11以外の構成とは独立して提供されてもよい。 The capacitor 11 is used as the predetermined capacitor 11 in the electric circuit 101 for supplying power to the integrated circuit 41. The capacitor 11 may be provided independently of the configuration of the electric circuit 101 other than the capacitor 11.
 また、集積回路付電気回路100は、集積回路41の電源供給用の電気回路101と、集積回路41と、を備える。 Further, the electric circuit 100 with an integrated circuit includes an electric circuit 101 for supplying power to the integrated circuit 41 and an integrated circuit 41.
 (2)詳細
 集積回路41は、例えば、半導体集積回路(IC)又は大規模集積回路(LSI)である。集積回路41は、例えば、パーソナルコンピュータ、サーバコンピュータ、又は、マイクロコントローラに備えられる。
(2) Details The integrated circuit 41 is, for example, a semiconductor integrated circuit (IC) or a large-scale integrated circuit (LSI). The integrated circuit 41 is provided in, for example, a personal computer, a server computer, or a microcontroller.
 電気回路101は、例えば、プリント配線板の回路である。図1に示すように、集積回路41の電源供給用の電気回路101(以下、単に「電気回路101」と称す)は、電路30として、第1電路31及び第2電路32を備える。また、電気回路101は、コンデンサ11に加えて、コンデンサ42、45を備える。各コンデンサ11、42、45は、電解コンデンサである。また、電気回路101は、DC/DCコンバータ43と、インダクタ44と、を備える。 The electric circuit 101 is, for example, a circuit of a printed wiring board. As shown in FIG. 1, the electric circuit 101 for power supply of the integrated circuit 41 (hereinafter, simply referred to as “electric circuit 101”) includes a first electric circuit 31 and a second electric circuit 32 as the electric circuit 30. Further, the electric circuit 101 includes capacitors 42 and 45 in addition to the capacitor 11. Each of the capacitors 11, 42 and 45 is an electrolytic capacitor. Further, the electric circuit 101 includes a DC / DC converter 43 and an inductor 44.
 電気回路101は、電源PS1に電気的に接続される。第1電路31の第1端は、電源PS1に電気的に接続される。第1電路31の第2端は、DC/DCコンバータ43に電気的に接続される。電源PS1は、直流電源である。電源PS1は、例えば、バッテリである。電源PS1は、直流電力をDC/DCコンバータ43に供給する。 The electric circuit 101 is electrically connected to the power supply PS1. The first end of the first electric line 31 is electrically connected to the power supply PS1. The second end of the first electric circuit 31 is electrically connected to the DC / DC converter 43. The power supply PS1 is a DC power supply. The power source PS1 is, for example, a battery. The power supply PS1 supplies DC power to the DC / DC converter 43.
 電気回路101は、集積回路41に電気的に接続される。第2電路32の第1端は、DC/DCコンバータ43に電気的に接続される。第2電路32の第2端は、集積回路41に電気的に接続される。コンデンサ11は、第2電路32とグランドとの間に電気的に接続されている。より詳細には、コンデンサ11の第1端は第2電路32に電気的に接続されており、第2端はグランドに電気的に接続されている。 The electric circuit 101 is electrically connected to the integrated circuit 41. The first end of the second electric circuit 32 is electrically connected to the DC / DC converter 43. The second end of the second electric circuit 32 is electrically connected to the integrated circuit 41. The capacitor 11 is electrically connected between the second electric circuit 32 and the ground. More specifically, the first end of the capacitor 11 is electrically connected to the second electric circuit 32, and the second end is electrically connected to the ground.
 つまり、DC/DCコンバータ43は、電源PS1とコンデンサ11(所定のコンデンサ)との間に電気的に接続される。DC/DCコンバータ43は、電源PS1から入力された直流電力を所定の電圧の直流電力に変換して、第2電路32へ出力する。集積回路41(の電源ピン)には、DC/DCコンバータ43から出力された直流電力が、第2電路32を介して入力される。 That is, the DC / DC converter 43 is electrically connected between the power supply PS1 and the capacitor 11 (predetermined capacitor). The DC / DC converter 43 converts the DC power input from the power supply PS1 into DC power having a predetermined voltage and outputs the DC power to the second electric circuit 32. The DC power output from the DC / DC converter 43 is input to the integrated circuit 41 (power supply pin) via the second electric path 32.
 DC/DCコンバータ43のスイッチング周波数は、200[kHz]以上10[MHz]以下である。 The switching frequency of the DC / DC converter 43 is 200 [kHz] or more and 10 [MHz] or less.
 第1電路31とグランドとの間には、コンデンサ42が電気的に接続されている。第2電路32とグランドとの間には、コンデンサ45が電気的に接続されている。すなわち、DC/DCコンバータ43の入力段にコンデンサ42が設けられ、出力段にコンデンサ45が設けられている。コンデンサ42は、DC/DCコンバータ43の入力電圧を平滑化する。コンデンサ45は、DC/DCコンバータ43の出力電圧を平滑化する。 A capacitor 42 is electrically connected between the first electric circuit 31 and the ground. A capacitor 45 is electrically connected between the second electric circuit 32 and the ground. That is, a capacitor 42 is provided in the input stage of the DC / DC converter 43, and a capacitor 45 is provided in the output stage. The capacitor 42 smoothes the input voltage of the DC / DC converter 43. The capacitor 45 smoothes the output voltage of the DC / DC converter 43.
 第2電路32には、インダクタ44が電気的に接続されている。より詳細には、インダクタ44は、DC/DCコンバータ43とコンデンサ45との間に電気的に接続されている。インダクタ44は、コンデンサ45と共にローパスフィルタを構成する。 The inductor 44 is electrically connected to the second electric circuit 32. More specifically, the inductor 44 is electrically connected between the DC / DC converter 43 and the capacitor 45. The inductor 44 constitutes a low-pass filter together with the capacitor 45.
 第2電路32とグランドとの間には、コンデンサ11が電気的に接続されている。コンデンサ11と第2電路32との接続点は、コンデンサ45と集積回路41との間に位置する。 A capacitor 11 is electrically connected between the second electric circuit 32 and the ground. The connection point between the capacitor 11 and the second electric circuit 32 is located between the capacitor 45 and the integrated circuit 41.
 また、図1では、第2電路32の寄生抵抗46及び寄生インダクタンス47を図示している。第2電路32の配線インピーダンスは、寄生抵抗46及び寄生インダクタンス47により決まる。ここで、コンデンサ11と集積回路41との間の電路長は、DC/DCコンバータ43と集積回路41との間の電路長よりも短い。コンデンサ11(所定のコンデンサ)と集積回路41との間の配線インピーダンスは、DC/DCコンバータ43と集積回路41との間の配線インピーダンスよりも小さい。 Further, FIG. 1 illustrates the parasitic resistance 46 and the parasitic inductance 47 of the second electric circuit 32. The wiring impedance of the second electric circuit 32 is determined by the parasitic resistance 46 and the parasitic inductance 47. Here, the electric circuit length between the capacitor 11 and the integrated circuit 41 is shorter than the electric circuit length between the DC / DC converter 43 and the integrated circuit 41. The wiring impedance between the capacitor 11 (predetermined capacitor) and the integrated circuit 41 is smaller than the wiring impedance between the DC / DC converter 43 and the integrated circuit 41.
 図2は、集積回路付電気回路100の一部の構成の空間配置の一例を示す模式図である。図2では、第2電路32の一部として、導体パターン321、322が設けられている。導体パターン321は、DC/DCコンバータ43(図1参照)及びインダクタ44の第1端に電気的に接続されている。導体パターン322は、インダクタ44の第2端及び集積回路41に電気的に接続されている。 FIG. 2 is a schematic diagram showing an example of the spatial arrangement of a part of the configuration of the electric circuit 100 with an integrated circuit. In FIG. 2, conductor patterns 321 and 322 are provided as a part of the second electric circuit 32. The conductor pattern 321 is electrically connected to the first end of the DC / DC converter 43 (see FIG. 1) and the inductor 44. The conductor pattern 322 is electrically connected to the second end of the inductor 44 and the integrated circuit 41.
 また、導体パターン322は、第1パターンN1と、第2パターンN2と、第3パターンP1と、を有している。第1パターンN1及び第2パターンN2の電位は、グランド電位である。第3パターンP1の電位は、グランド電位と異なる。インダクタ44の第2端は、第3パターンP1に電気的に接続されている。 Further, the conductor pattern 322 has a first pattern N1, a second pattern N2, and a third pattern P1. The potentials of the first pattern N1 and the second pattern N2 are ground potentials. The potential of the third pattern P1 is different from the ground potential. The second end of the inductor 44 is electrically connected to the third pattern P1.
 コンデンサ11は、4つの外部電極を備えている。より詳細には、コンデンサ11は、第1の外部電極21と、第2の外部電極22と、2つの第3の外部電極23と、を備えている。第1の外部電極21及び第2の外部電極22は、陽極端子である。第1の外部電極21及び第2の外部電極22は、第3パターンP1に電気的に接続されている。2つの第3の外部電極23は、陰極端子である。2つの第3の外部電極23のうち一方は、第1パターンN1に電気的に接続されており、他方は、第2パターンN2に電気的に接続されている。集積回路41は、第3パターンP1に電気的に接続されている。また、集積回路41は、グランドパターン(第1パターンN1又は第2パターンN2)に電気的に接続されている。 The capacitor 11 is provided with four external electrodes. More specifically, the capacitor 11 includes a first external electrode 21, a second external electrode 22, and two third external electrodes 23. The first external electrode 21 and the second external electrode 22 are anode terminals. The first external electrode 21 and the second external electrode 22 are electrically connected to the third pattern P1. The two third external electrodes 23 are cathode terminals. One of the two third external electrodes 23 is electrically connected to the first pattern N1 and the other is electrically connected to the second pattern N2. The integrated circuit 41 is electrically connected to the third pattern P1. Further, the integrated circuit 41 is electrically connected to the ground pattern (first pattern N1 or second pattern N2).
 図1、図2では、コンデンサ11の個数は1個である。このように、電路30に電気的に接続されたコンデンサ11(所定のコンデンサ)の個数は1つであってもよい。あるいは、電路30に電気的に接続されたコンデンサ11(所定のコンデンサ)の個数は複数個であってもよい。集積回路41のロードラインインピーダンスが、集積回路41に要求される所望の値以下となる範囲で、コンデンサ11の個数を可能な限り少なくすることで、コスト及び実装面積等を削減することが好ましい。ここで、集積回路41のロードラインインピーダンスとは、集積回路41から見た電源供給ライン全体の総インピーダンスである。すなわち、集積回路41のロードラインインピーダンスは、DC/DCコンバータ43のインピーダンス、電路30の配線インピーダンス、及び、電路30に電気的に接続されたコンデンサ11等の各素子のインピーダンスから計算される。 In FIGS. 1 and 2, the number of capacitors 11 is one. As described above, the number of capacitors 11 (predetermined capacitors) electrically connected to the electric circuit 30 may be one. Alternatively, the number of capacitors 11 (predetermined capacitors) electrically connected to the electric circuit 30 may be a plurality. It is preferable to reduce the cost, mounting area, etc. by reducing the number of capacitors 11 as much as possible within the range where the load line impedance of the integrated circuit 41 is equal to or less than the desired value required for the integrated circuit 41. Here, the load line impedance of the integrated circuit 41 is the total impedance of the entire power supply line as seen from the integrated circuit 41. That is, the load line impedance of the integrated circuit 41 is calculated from the impedance of the DC / DC converter 43, the wiring impedance of the electric circuit 30, and the impedance of each element such as the capacitor 11 electrically connected to the electric circuit 30.
 集積回路41のロードラインインピーダンスは、例えば、10[MHz]以下の周波数において10[mΩ]以下である。 The load line impedance of the integrated circuit 41 is, for example, 10 [mΩ] or less at a frequency of 10 [MHz] or less.
 また、一例として、集積回路41の使用される周波数帯において、集積回路41の消費電流が200[A]の場合のロードラインインピーダンスは、1.0[mΩ]以下である。 Further, as an example, in the frequency band where the integrated circuit 41 is used, the load line impedance when the current consumption of the integrated circuit 41 is 200 [A] is 1.0 [mΩ] or less.
 別の一例として、集積回路41の使用される周波数帯において、集積回路41の消費電流が226[A]の場合のロードラインインピーダンスは、0.9[mΩ]以下である。 As another example, in the frequency band where the integrated circuit 41 is used, the load line impedance when the current consumption of the integrated circuit 41 is 226 [A] is 0.9 [mΩ] or less.
 別の一例として、集積回路41の使用される周波数帯において、集積回路41の消費電流が117[A]の場合のロードラインインピーダンスは、0.85[mΩ]以下である。 As another example, in the frequency band where the integrated circuit 41 is used, the load line impedance when the current consumption of the integrated circuit 41 is 117 [A] is 0.85 [mΩ] or less.
 別の一例として、集積回路41の使用される周波数帯において、集積回路41の消費電流が392[A]の場合のロードラインインピーダンスは、0.6[mΩ]以下である。 As another example, in the frequency band in which the integrated circuit 41 is used, the load line impedance when the current consumption of the integrated circuit 41 is 392 [A] is 0.6 [mΩ] or less.
 別の一例として、集積回路41の使用される周波数帯において、集積回路41の消費電流が490[A]以上520[A]以下の場合のロードラインインピーダンスは、0.5[mΩ]以下である。 As another example, in the frequency band where the integrated circuit 41 is used, the load line impedance when the current consumption of the integrated circuit 41 is 490 [A] or more and 520 [A] or less is 0.5 [mΩ] or less. ..
 コンデンサ11は、一方向を向いた第1のコンデンサ素子10a(図7参照)と、これと反対方向を向いた第2のコンデンサ素子10b(図7参照)と、を交互に積層した交互積層構造を有している。交互積層構造を有することによって、コンデンサ11は、上述の所定の特性を有している。このようなコンデンサを、交互積層コンデンサと称す。所定の特性は、少なくとも周波数が5[MHz]以上10[MHz]以下におけるインピーダンスが10[mΩ]以下という特性である。 The capacitor 11 has an alternating laminated structure in which a first capacitor element 10a (see FIG. 7) facing in one direction and a second capacitor element 10b (see FIG. 7) facing in the opposite direction are alternately laminated. have. By having the alternating laminated structure, the capacitor 11 has the above-mentioned predetermined characteristics. Such a capacitor is referred to as an alternating laminated capacitor. The predetermined characteristic is that the impedance is 10 [mΩ] or less at least when the frequency is 5 [MHz] or more and 10 [MHz] or less.
 また、コンデンサ11の自己共振周波数におけるコンデンサ11のESR(等価直列抵抗)は、2[mΩ]以下である。500[MHz]におけるコンデンサ11のESL(等価直列インダクタンス)は、100[pH]以下である。 Further, the ESR (equivalent series resistance) of the capacitor 11 at the self-resonant frequency of the capacitor 11 is 2 [mΩ] or less. The ESL (equivalent series inductance) of the capacitor 11 at 500 [MHz] is 100 [pH] or less.
 電路30の電圧は、DC/DCコンバータ43のスイッチング動作及び集積回路41における負荷電流の変動等に起因して変動する。コンデンサ11を設けることで、電圧変動の範囲を、集積回路41に要求される範囲内に収めることができる。また、コンデンサ11が上述の所定の特性を有しているため、必要なコンデンサの員数を削減できる。すなわち、コンデンサ11が比較的広い周波数帯において低インピーダンスであるため、コンデンサ11の員数を削減できる。また、コンデンサ11(第1のコンデンサ)と並列に、所定の特性を有しない第2のコンデンサを電路30に電気的に接続してもよいが、この場合も、コンデンサ11の員数及び第2のコンデンサの員数を削減できる。また、コンデンサ11及び第2のコンデンサの実装面積を低減できる場合がある。 The voltage of the electric circuit 30 fluctuates due to the switching operation of the DC / DC converter 43, the fluctuation of the load current in the integrated circuit 41, and the like. By providing the capacitor 11, the range of voltage fluctuation can be kept within the range required for the integrated circuit 41. Further, since the capacitor 11 has the above-mentioned predetermined characteristics, the number of required capacitors can be reduced. That is, since the capacitor 11 has a low impedance in a relatively wide frequency band, the number of members of the capacitor 11 can be reduced. Further, in parallel with the capacitor 11 (first capacitor), a second capacitor having no predetermined characteristic may be electrically connected to the electric circuit 30, but also in this case, the number of capacitors 11 and the second capacitor 11 are used. The number of capacitors can be reduced. In addition, the mounting area of the capacitor 11 and the second capacitor may be reduced.
 図3は、比較例に係る集積回路付電気回路100Pの一部の構成の空間配置の一例を示す模式図である。図3に示すように、コンデンサ11に代えて、コンデンサ11と比較してインピーダンスが大きいコンデンサ11Pを用いる場合は、このようなコンデンサ11Pを複数個(図3Pでは6つ)並列に接続した並列回路によって、単一のコンデンサ11に相当する特性を得ることができるが、より多くの個数のコンデンサ11Pが必要となる。なお、ここでは一例として、コンデンサ11Pは、セラミックコンデンサであるとする。 FIG. 3 is a schematic diagram showing an example of the spatial arrangement of a part of the configuration of the electric circuit 100P with an integrated circuit according to the comparative example. As shown in FIG. 3, when a capacitor 11P having a larger impedance than the capacitor 11 is used instead of the capacitor 11, a parallel circuit in which a plurality of such capacitors 11P (six in FIG. 3P) are connected in parallel. Therefore, the characteristics corresponding to a single capacitor 11 can be obtained, but a larger number of capacitors 11P are required. Here, as an example, it is assumed that the capacitor 11P is a ceramic capacitor.
 図4に、本実施形態のコンデンサ11(交互積層コンデンサ)の特性を示す。図5に、比較例のコンデンサ11Pの特性を示す。コンデンサ11Pの静電容量は、100[μF]である。図6に、比較例のコンデンサ11Pを6個並列に接続した並列回路の特性を示す。図4~図6の横軸は周波数(単位は、[MHz])を表し、縦軸はインピーダンス(単位は、[Ω])を表す。コンデンサ11、11Pのインピーダンスは、自己共振周波数fより低い周波数帯では容量成分が支配的であるため、周波数が大きいほどインピーダンスが小さい。自己共振周波数fでは、ESR(等価直列抵抗)に相当するインピーダンスのみが現れる。自己共振周波数fより高い周波数帯では、ESL(等価直列インダクタンス)が支配的であるため、周波数が大きいほどインピーダンスが大きい。 FIG. 4 shows the characteristics of the capacitor 11 (alternate laminated capacitor) of the present embodiment. FIG. 5 shows the characteristics of the capacitor 11P of the comparative example. The capacitance of the capacitor 11P is 100 [μF]. FIG. 6 shows the characteristics of a parallel circuit in which six capacitors 11P of the comparative example are connected in parallel. The horizontal axis of FIGS. 4 to 6 represents frequency (unit: [MHz]), and the vertical axis represents impedance (unit: [Ω]). Impedance of the capacitor 11,11P, since the lower frequency band than the self-resonant frequency f 0 is a capacitance component is dominant, the impedance is smaller the larger the frequency. At the self-resonance frequency f 0 , only the impedance corresponding to ESR (equivalent series resistance) appears. In the higher frequency band than the self-resonant frequency f 0, for ESL (equivalent series inductance) it is dominant, impedance is large as the frequency is large.
 図4より、コンデンサ11は、上述の所定の特性を有している。所定の特性は、少なくとも周波数が5[MHz]以上10[MHz]以下におけるインピーダンスが10[mΩ]以下という特性である。ここでは、より広い周波数帯におけるインピーダンスに着目して、次の特性を所定の特性とする。所定の特性は、周波数が100[kHz]以上10[MHz]以下におけるインピーダンスが10[mΩ]以下という特性である。図5より、コンデンサ11Pは所定の特性を有さず、図6より、6つのコンデンサ11Pの並列回路は所定の特性を有する。つまり、本実施形態では、比較例の6つのコンデンサ11Pの並列回路を、1つのコンデンサ11に置き換えられるので、コンデンサの員数を削減できる。コンデンサ11を用いることで、員数を削減しつつ、集積回路41のロードラインインピーダンスを低減することができる。 From FIG. 4, the capacitor 11 has the above-mentioned predetermined characteristics. The predetermined characteristic is that the impedance is 10 [mΩ] or less at least when the frequency is 5 [MHz] or more and 10 [MHz] or less. Here, focusing on the impedance in a wider frequency band, the following characteristics are set as predetermined characteristics. The predetermined characteristic is that the impedance is 10 [mΩ] or less when the frequency is 100 [kHz] or more and 10 [MHz] or less. From FIG. 5, the capacitor 11P does not have a predetermined characteristic, and from FIG. 6, the parallel circuit of the six capacitors 11P has a predetermined characteristic. That is, in the present embodiment, the parallel circuit of the six capacitors 11P of the comparative example can be replaced with one capacitor 11, so that the number of capacitors can be reduced. By using the capacitor 11, the load line impedance of the integrated circuit 41 can be reduced while reducing the number of members.
 また、図4より、コンデンサ11の自己共振周波数fは、300[kHz]以上1[GHz]以下である。 Further, from FIG. 4, the self-resonant frequency f 0 of the capacitor 11 is 300 [kHz] or more and 1 [GHz] or less.
 コンデンサ11として交互積層コンデンサを採用することで、セラミックコンデンサを採用する場合と比較して、温度及び印加電圧等による特性変化を低減できる。また、コンデンサ11としてセラミックコンデンサを採用する場合と比較して、コンデンサ11に供給される直流に重畳する交流成分によるコンデンサ11の静電容量の変化(ACバイアス特性)が非常に小さい。 By adopting an alternating laminated capacitor as the capacitor 11, it is possible to reduce the characteristic change due to temperature, applied voltage, etc., as compared with the case of adopting a ceramic capacitor. Further, as compared with the case where a ceramic capacitor is adopted as the capacitor 11, the change in the capacitance of the capacitor 11 (AC bias characteristic) due to the AC component superimposed on the direct current supplied to the capacitor 11 is very small.
 次に、本実施形態のコンデンサ11(以下、電解コンデンサ11とも称す)の構造について、図7、図8を参照して説明する。 Next, the structure of the capacitor 11 (hereinafter, also referred to as electrolytic capacitor 11) of the present embodiment will be described with reference to FIGS. 7 and 8.
 [電解コンデンサ]
 本開示の一実施形態に係る電解コンデンサ11は、複数のコンデンサ素子10が積層された素子積層体と、素子積層体を封止する外装体14と、第1の外部電極21と、第2の外部電極22と、第3の外部電極23と、を備える。
[Electrolytic capacitor]
The electrolytic capacitor 11 according to an embodiment of the present disclosure includes an element laminate in which a plurality of capacitor elements 10 are laminated, an exterior body 14 for sealing the element laminate, a first external electrode 21, and a second. An external electrode 22 and a third external electrode 23 are provided.
 複数のコンデンサ素子10は、それぞれ、表面に多孔質部5を有する陽極体3と、多孔質部5の少なくとも一部の表面に形成された誘電体層と、誘電体層の少なくとも一部を覆う陰極部6と、を有する。複数のコンデンサ素子10は、陽極体3が露出する第1端部1aと、陽極体3が陰極部6で覆われた第2端部2aを有し、少なくとも第1端部1aの端面は外装体14から露出している。 The plurality of capacitor elements 10 each cover an anode 3 having a porous portion 5 on its surface, a dielectric layer formed on the surface of at least a part of the porous portion 5, and at least a part of the dielectric layer. It has a cathode portion 6. The plurality of capacitor elements 10 have a first end portion 1a on which the anode body 3 is exposed and a second end portion 2a in which the anode body 3 is covered with the cathode portion 6, and at least the end surface of the first end portion 1a is an exterior. It is exposed from the body 14.
 複数のコンデンサ素子10は、第1端部1aが外装体14の第1の面14aを向くものと、第1端部1aが外装体14の第1の面14aと異なる第2の面14bを向くものがある。このうち、第1端部1aが外装体14の第1の面14aを向くものを第1のコンデンサ素子10aと、第1端部1aが外装体14の第1の面14aと異なる第2の面14bを向くものを第2のコンデンサ素子10bと称する。第1のコンデンサ素子10aの第1端部1aは第1の外部電極21と電気的に接続している。第2のコンデンサ素子10bの第1端部1aは第2の外部電極22と電気的に接続している。 The plurality of capacitor elements 10 have a first end portion 1a facing the first surface 14a of the exterior body 14, and a second end portion 1a having a second surface 14b different from the first surface 14a of the exterior body 14. There is something that suits you. Of these, the one in which the first end portion 1a faces the first surface 14a of the exterior body 14 is different from the first capacitor element 10a, and the first end portion 1a is different from the first surface 14a of the exterior body 14. Those facing the surface 14b are referred to as a second capacitor element 10b. The first end portion 1a of the first capacitor element 10a is electrically connected to the first external electrode 21. The first end portion 1a of the second capacitor element 10b is electrically connected to the second external electrode 22.
 この構成によれば、第1のコンデンサ素子10aと第2のコンデンサ素子10bとで、素子内を電流が流れる向きが異なる。このため、電流により生じる磁界の向きが異なるため、素子積層体内に生じる磁束は減少する。よって、ESLが低減される。好ましくは、第1の面14aと第2の面14bとは、外装体14の互いに対向する面であってもよい。さらに、第1のコンデンサ素子10aと第2のコンデンサ素子10bとが交互に積層されている場合、素子積層体内に生じる磁束が効果的に減少し得る。よって、ESLが効果的に低減され得る。 According to this configuration, the direction in which the current flows in the first capacitor element 10a and the second capacitor element 10b are different. Therefore, since the direction of the magnetic field generated by the current is different, the magnetic flux generated in the element stack is reduced. Therefore, ESL is reduced. Preferably, the first surface 14a and the second surface 14b may be surfaces of the exterior body 14 facing each other. Further, when the first capacitor element 10a and the second capacitor element 10b are alternately laminated, the magnetic flux generated in the element stacking body can be effectively reduced. Therefore, ESL can be effectively reduced.
 第1のコンデンサ素子10aの数と第2のコンデンサ素子10bの数は同数であってもよい。第1のコンデンサ素子10aの数と第2のコンデンサ素子10bの数が同数であると、第1のコンデンサ素子10a内を流れる電流により生じる磁界と第2のコンデンサ素子10b内を流れる電流により生じる磁界とが過不足なく打ち消し合い、素子積層体内に生じる磁束が減少する。よって、ESLを低減させやすい。 The number of the first capacitor elements 10a and the number of the second capacitor elements 10b may be the same. When the number of the first capacitor elements 10a and the number of the second capacitor elements 10b are the same, the magnetic field generated by the current flowing in the first capacitor element 10a and the magnetic field generated by the current flowing in the second capacitor element 10b. And are canceled out without excess or deficiency, and the magnetic flux generated in the element laminated body is reduced. Therefore, it is easy to reduce ESL.
 さらに、素子積層体と外部電極との電気的接続は、それぞれのコンデンサ素子10の外装体14から露出した第1端部1aの端面を、外部電極(第1の外部電極21または第2の外部電極22)と電気的に接続することで行われ得る。第1端部1aの端面と外部電極との電気的接続は、例えば、第1の面14aまたは第2の面14bに沿うように形成した外部電極を用いて、あるいは、第1の面14aまたは第2の面14bに沿うように形成した中間電極(後述する陽極電極層16に相当)を外部電極と電気的に接続させることで、行うことができる。この場合、外装体14内に、第1端部1aと外部電極(第1の外部電極21または第2の外部電極22)とを接続するための他の部材を介在させる必要がないことから、電解コンデンサ11の容量を高めることが容易である。また、陰極部6が形成されない陽極体3の部分(陽極引出部)から第1の外部電極21または第2の外部電極22に至る電流経路において、素子積層体の積層面に平行に流れる電流経路は、陽極引出部の長さに略等しく、短くすることが容易である。よって、上記の素子積層体の積層面に平行に流れる電流経路により生じるESLをさらに低減できる。 Further, in the electrical connection between the element laminate and the external electrode, the end surface of the first end portion 1a exposed from the exterior body 14 of each capacitor element 10 is connected to the external electrode (first external electrode 21 or the second external electrode 21). This can be done by electrically connecting to the electrode 22). The electrical connection between the end face of the first end 1a and the external electrode is, for example, using an external electrode formed along the first surface 14a or the second surface 14b, or the first surface 14a or This can be done by electrically connecting an intermediate electrode (corresponding to the anode electrode layer 16 described later) formed along the second surface 14b to an external electrode. In this case, since it is not necessary to interpose another member for connecting the first end portion 1a and the external electrode (first external electrode 21 or second external electrode 22) in the exterior body 14, it is not necessary to interpose the other member. It is easy to increase the capacity of the electrolytic capacitor 11. Further, in the current path from the portion of the anode body 3 (anode drawing portion) where the cathode portion 6 is not formed to the first external electrode 21 or the second external electrode 22, the current path that flows parallel to the laminated surface of the element laminated body. Is approximately equal to the length of the anode lead-out portion and is easy to shorten. Therefore, the ESL generated by the current path flowing parallel to the laminated surface of the above-mentioned element laminated body can be further reduced.
 第3の外部電極23は、コンデンサ素子10の陰極部6と電気的に接続する。第3の外部電極23は、例えば、素子積層体の最も外側の層(すなわち、最下層または最上層)において陰極部6と電気的に接続している。これにより、陰極端子が電解コンデンサ11の底面に設けられ得る。一方、第1の外部電極21または第2の外部電極22を電解コンデンサ11の底面に延在させることで、陽極端子が電解コンデンサ11の底面に設けられ得る。この場合、第1の外部電極21または第2の外部電極22の延在部分に流れる電流は、陽極引出部に流れる電流とは逆方向に流れる。よって、陽極引出部に流れる電流より生じる磁界は、第1の外部電極21または第2の外部電極22の延在部分に流れる電流により生じる磁界により打ち消され、電解コンデンサ11のESLが一層低減される。結果として、延在部分により、陰極端子と第1および/または第2外部電極との離間距離を短くできるため、ESLが改善される。これらの相乗効果により、ESLは顕著に低減される。 The third external electrode 23 is electrically connected to the cathode portion 6 of the capacitor element 10. The third external electrode 23 is electrically connected to the cathode portion 6 in, for example, the outermost layer (that is, the lowest layer or the uppermost layer) of the element laminate. As a result, the cathode terminal can be provided on the bottom surface of the electrolytic capacitor 11. On the other hand, by extending the first external electrode 21 or the second external electrode 22 to the bottom surface of the electrolytic capacitor 11, the anode terminal can be provided on the bottom surface of the electrolytic capacitor 11. In this case, the current flowing through the extending portion of the first external electrode 21 or the second external electrode 22 flows in the direction opposite to the current flowing through the anode extraction portion. Therefore, the magnetic field generated by the current flowing in the anode extraction portion is canceled by the magnetic field generated by the current flowing in the extending portion of the first external electrode 21 or the second external electrode 22, and the ESL of the electrolytic capacitor 11 is further reduced. .. As a result, the extending portion can reduce the distance between the cathode terminal and the first and / or second external electrode, thus improving ESL. Due to these synergistic effects, ESL is significantly reduced.
 第1端部1aは、コンタクト層15を介して、第1の外部電極21または第2の外部電極22と電気的に接続されてもよい。コンタクト層15は、例えば、複数のコンデンサ素子10の第1端部1aの端面に選択的に形成され得る。コンタクト層15は、複数のコンデンサ素子10の第1端部1aのそれぞれと、第1の面14aまたは第2の面14bを覆うように形成された中間電極(陽極電極層16)または外部電極との間を接続し得る。コンタクト層15を介することにより、第1端部1aと外部電極との電気的接続を確実にすることができる。よって、電解コンデンサ11の信頼性を高めることができる。 The first end portion 1a may be electrically connected to the first external electrode 21 or the second external electrode 22 via the contact layer 15. The contact layer 15 may be selectively formed on, for example, the end face of the first end portion 1a of the plurality of capacitor elements 10. The contact layer 15 includes an intermediate electrode (anode electrode layer 16) or an external electrode formed so as to cover each of the first end portions 1a of the plurality of capacitor elements 10 and the first surface 14a or the second surface 14b. Can be connected between. Through the contact layer 15, the electrical connection between the first end portion 1a and the external electrode can be ensured. Therefore, the reliability of the electrolytic capacitor 11 can be improved.
 第1の外部電極21と第2の外部電極22とは、陽極体3の長手方向において互いに対向していてもよく、短手方向において互いに対向していてもよい。例えば、第1の外部電極21と第2の外部電極22は、それぞれ、外装体14の一表面(例えば、底面)の短手方向に沿う端部に配置されていてもよく、長手方向に沿う端部に配置されていてもよい。ESLを低減させる点で、第1の外部電極21と第2の外部電極22とを、陽極体3の短手方向において互いに対向させてもよい。一方、第1の外部電極21と第2の外部電極22とを、陽極体3の長手方向において互いに対向させる場合、第1の外部電極21または第2の外部電極22の電解コンデンサ11の底面における延在距離を長くすることが容易であり、陰極端子と陽極端子との離間距離を制御し易く、ESLを所望の値に制御し易い。 The first external electrode 21 and the second external electrode 22 may face each other in the longitudinal direction of the anode body 3 or may face each other in the lateral direction. For example, the first external electrode 21 and the second external electrode 22 may be arranged at the ends of one surface (for example, the bottom surface) of the exterior body 14 along the lateral direction, respectively, and may be arranged along the longitudinal direction. It may be arranged at the end. In terms of reducing ESL, the first external electrode 21 and the second external electrode 22 may face each other in the lateral direction of the anode body 3. On the other hand, when the first external electrode 21 and the second external electrode 22 face each other in the longitudinal direction of the anode body 3, the bottom surface of the electrolytic capacitor 11 of the first external electrode 21 or the second external electrode 22 It is easy to lengthen the extension distance, it is easy to control the separation distance between the cathode terminal and the anode terminal, and it is easy to control the ESL to a desired value.
 図7は、本開示の一実施形態に係る電解コンデンサ11の構造を模式的に示す断面図である。図8は、図7の電解コンデンサ11を構成するコンデンサ素子10の構造を示す断面図である。しかしながら、本開示に係る電解コンデンサ11は、これらに限定されるものではない。 FIG. 7 is a cross-sectional view schematically showing the structure of the electrolytic capacitor 11 according to the embodiment of the present disclosure. FIG. 8 is a cross-sectional view showing the structure of the capacitor element 10 constituting the electrolytic capacitor 11 of FIG. 7. However, the electrolytic capacitor 11 according to the present disclosure is not limited to these.
 図7および図8に示すように、電解コンデンサ11は、複数のコンデンサ素子10(10a、10b)を備える。コンデンサ素子10は、陽極体3と、陰極部6とを備える。陽極体3は、例えば箔(陽極箔)である。陽極体3は、表面に多孔質部5を有し、多孔質部5の少なくとも一部の表面に誘電体層(図示しない)が形成されている。陰極部6は、誘電体層の少なくとも一部を覆っている。 As shown in FIGS. 7 and 8, the electrolytic capacitor 11 includes a plurality of capacitor elements 10 (10a, 10b). The capacitor element 10 includes an anode body 3 and a cathode portion 6. The anode body 3 is, for example, a foil (anode foil). The anode body 3 has a porous portion 5 on the surface thereof, and a dielectric layer (not shown) is formed on the surface of at least a part of the porous portion 5. The cathode portion 6 covers at least a part of the dielectric layer.
 コンデンサ素子10は、一方の端部(第1端部)1aにおいて陰極部6で覆われることなく、陽極体3が露出している一方で、他方の端部(第2端部)2aの陽極体3は陰極部6で覆われている。以下において、陽極体3の陰極部6で覆われていない部分を第1部分1と称し、陽極体3の陰極部6で覆われた部分を第2部分2と称する。第1部分1の端部が第1端部1aであり、第2部分2の端部が第2端部2aである。誘電体層は、少なくとも第2部分2に形成された多孔質部5の表面に形成される。なお、陽極体3の第1部分1は、陽極引出部とも呼ばれる。陽極体3の第2部分2は、陰極形成部とも呼ばれる。 In the capacitor element 10, the anode body 3 is exposed at one end (first end) 1a without being covered by the cathode portion 6, while the anode of the other end (second end) 2a. The body 3 is covered with the cathode portion 6. In the following, the portion of the anode 3 not covered by the cathode portion 6 will be referred to as the first portion 1, and the portion of the anode 3 covered with the cathode portion 6 will be referred to as the second portion 2. The end of the first portion 1 is the first end 1a, and the end of the second portion 2 is the second end 2a. The dielectric layer is formed on the surface of the porous portion 5 formed at least in the second portion 2. The first portion 1 of the anode body 3 is also referred to as an anode extraction portion. The second portion 2 of the anode body 3 is also referred to as a cathode forming portion.
 より具体的には、第2部分2は、芯部4と、粗面化(エッチングなど)などにより芯部4の表面に形成された多孔質部(多孔体)5とを有する。一方、第1部分1では、表面に多孔質部5を有していてもよく、有していなくてもよい。誘電体層は、多孔質部5の表面に沿って形成されている。誘電体層の少なくとも一部は、多孔質部5の孔の内壁面を覆い、その内壁面に沿って形成されている。 More specifically, the second portion 2 has a core portion 4 and a porous portion (porous body) 5 formed on the surface of the core portion 4 by roughening (etching or the like) or the like. On the other hand, the first portion 1 may or may not have the porous portion 5 on the surface. The dielectric layer is formed along the surface of the porous portion 5. At least a part of the dielectric layer covers the inner wall surface of the hole of the porous portion 5 and is formed along the inner wall surface thereof.
 陰極部6は、誘電体層の少なくとも一部を覆う固体電解質層7と、固体電解質層7の少なくとも一部を覆う陰極引出層とを備える。誘電体層の表面は、陽極体3の表面の形状に応じた凹凸形状が形成されている。固体電解質層7は、このような誘電体層の凹凸を埋めるように形成され得る。陰極引出層は、例えば、固体電解質層7の少なくとも一部を覆うカーボン層8と、カーボン層8を覆う銀ペースト層9とを備える。 The cathode portion 6 includes a solid electrolyte layer 7 that covers at least a part of the dielectric layer, and a cathode extraction layer that covers at least a part of the solid electrolyte layer 7. The surface of the dielectric layer is formed with an uneven shape corresponding to the shape of the surface of the anode body 3. The solid electrolyte layer 7 may be formed so as to fill the unevenness of such a dielectric layer. The cathode extraction layer includes, for example, a carbon layer 8 that covers at least a part of the solid electrolyte layer 7, and a silver paste layer 9 that covers the carbon layer 8.
 なお、陽極体3上に誘電体層(多孔質部5)を介して固体電解質層7が形成されている陽極体3の部分が第2部分2であり、陽極体3上に誘電体層(多孔質部5)を介して固体電解質層7が形成されていない陽極体3の部分が第1部分1である。 The portion of the anode 3 in which the solid electrolyte layer 7 is formed on the anode 3 via the dielectric layer (porous portion 5) is the second portion 2, and the dielectric layer (peripheral portion 5) is placed on the anode 3. The portion of the anode 3 in which the solid electrolyte layer 7 is not formed via the porous portion 5) is the first portion 1.
 陽極体3の陰極部6と対向しない領域のうち、少なくとも陰極部6に隣接する部分には、陽極体3の表面を覆うように絶縁性の分離層(または絶縁部材)12が形成され得る。これにより、陰極部6と陽極体3の露出部分(第1部分1)との接触が規制されている。分離層12は、例えば、絶縁性の樹脂層である。 An insulating separation layer (or insulating member) 12 may be formed so as to cover the surface of the anode body 3 in at least a portion adjacent to the cathode portion 6 in the region of the anode body 3 that does not face the cathode portion 6. As a result, the contact between the cathode portion 6 and the exposed portion (first portion 1) of the anode body 3 is restricted. The separation layer 12 is, for example, an insulating resin layer.
 図7の例では、4つのコンデンサ素子10(10a、10b)が、陰極部6(第2部分2)同士を重ねるようにして積層されている。しかしながら、陽極体3における第1部分1の向きが異なる2種類のコンデンサ素子10が存在する。図7において、第1のコンデンサ素子10aは、陽極体3の第1部分1が第2部分2に対して一方向(図の右方向)を向いている。これに対し、第2のコンデンサ素子10bは、陽極体3の第1部分1が、第2部分2に対して、第1のコンデンサ素子10aの第1部分1が向く方向と反対方向(図の左方向)を向いている。第1のコンデンサ素子10aと、第2のコンデンサ素子10bとが交互に積層され、素子積層体が構成されている。複数のコンデンサ素子10(10a、10b)において、積層方向で互いに隣り合う陰極部6は、導電性を有する接着層13を介して電気的に接続されている。接着層13の形成には、例えば、導電性接着剤が用いられる。接着層13は、例えば、銀を含む。 In the example of FIG. 7, four capacitor elements 10 (10a, 10b) are laminated so that the cathode portions 6 (second portion 2) are overlapped with each other. However, there are two types of capacitor elements 10 in which the orientation of the first portion 1 of the anode body 3 is different. In FIG. 7, in the first capacitor element 10a, the first portion 1 of the anode body 3 faces in one direction (to the right in the figure) with respect to the second portion 2. On the other hand, in the second capacitor element 10b, the first portion 1 of the anode body 3 faces the second portion 2 in the direction opposite to the direction in which the first portion 1 of the first capacitor element 10a faces (in the figure). (To the left). The first capacitor element 10a and the second capacitor element 10b are alternately laminated to form an element laminate. In the plurality of capacitor elements 10 (10a, 10b), the cathode portions 6 adjacent to each other in the stacking direction are electrically connected via the adhesive layer 13 having conductivity. For example, a conductive adhesive is used to form the adhesive layer 13. The adhesive layer 13 contains, for example, silver.
 電解コンデンサ11は、複数のコンデンサ素子10(10a、10b)が積層された上述の素子積層体と、素子積層体を封止する外装体14と、第1の外部電極21と、第2の外部電極22と、第3の外部電極23と、を備える。素子積層体において、第1端部1aの端面は、外装体14から露出している。 The electrolytic capacitor 11 includes the above-mentioned element laminate in which a plurality of capacitor elements 10 (10a, 10b) are laminated, an exterior body 14 that seals the element laminate, a first external electrode 21, and a second outside. An electrode 22 and a third external electrode 23 are provided. In the element laminated body, the end surface of the first end portion 1a is exposed from the exterior body 14.
 外装体14は、ほぼ直方体の外形を有し、電解コンデンサ11もほぼ直方体の外形を有する。外装体14は、第1の面14aおよび第1の面14aとは反対側の第2の面14bを有する。素子積層体において、第1のコンデンサ素子10aの第1端部1aが第1の面14aを向いており(すなわち、第1端部1aが第2端部2aよりも第1の面14a側にある)、第2のコンデンサ素子10bの第1端部1aが第2の面14bを向いている(すなわち、第1端部1aが第2端部2aよりも第2の面14b側にある)。 The exterior body 14 has a substantially rectangular parallelepiped outer shape, and the electrolytic capacitor 11 also has a substantially rectangular parallelepiped outer shape. The exterior body 14 has a first surface 14a and a second surface 14b opposite to the first surface 14a. In the element laminate, the first end portion 1a of the first capacitor element 10a faces the first surface 14a (that is, the first end portion 1a is closer to the first surface 14a than the second end portion 2a). The first end 1a of the second capacitor element 10b faces the second surface 14b (that is, the first end 1a is closer to the second surface 14b than the second end 2a). ..
 電解コンデンサ11において、外装体14から露出する複数の第1端部1a(第1部分1)のそれぞれは、第1の面14aに沿って延在する第1の外部電極21または第2の面14bに沿って延在する第2の外部電極22と電気的に接続される。この場合、電解コンデンサ11の陽極を形成するために、複数の第1部分1を束ねる必要がなく、複数の第1部分1を束ねるための長さを確保する必要がない。よって、複数の第1部分1を束ねる場合と比べて、陽極体3に占める第1部分1の割合を小さくして高容量化することができる。また、第1部分1によるESLの寄与が低減される。また、第3の外部電極23と第1の外部電極21および/または第2の外部電極22との離間距離を短くできるため、ESLが改善する。 In the electrolytic capacitor 11, each of the plurality of first end portions 1a (first portion 1) exposed from the exterior body 14 is a first external electrode 21 or a second surface extending along the first surface 14a. It is electrically connected to a second external electrode 22 extending along 14b. In this case, in order to form the anode of the electrolytic capacitor 11, it is not necessary to bundle the plurality of first portions 1, and it is not necessary to secure the length for bundling the plurality of first portions 1. Therefore, as compared with the case where a plurality of first portions 1 are bundled, the ratio of the first portion 1 to the anode body 3 can be reduced to increase the capacity. Also, the contribution of ESL by the first portion 1 is reduced. Further, since the separation distance between the third external electrode 23 and the first external electrode 21 and / or the second external electrode 22 can be shortened, the ESL is improved.
 電解コンデンサ11において、外装体14から露出する複数の第1端部1aの端面のそれぞれは、コンタクト層15で覆われている。陽極電極層16が、コンタクト層15および外装体14の第1の面14aおよび第2の面14bを覆っている。第1の外部電極21および第2の外部電極22が、陽極電極層16を覆っており、これにより複数の第1端部1a(第1部分1)が第1の外部電極21または第2の外部電極22と電気的に接続される。具体的に、コンタクト層15と第1の外部電極21との間に、外装体14の第1の面14aを覆う陽極電極層16が介在し、コンタクト層15と、第2の外部電極22との間に、外装体14の第2の面14bを覆う陽極電極層16が介在している。 In the electrolytic capacitor 11, each of the end faces of the plurality of first end portions 1a exposed from the exterior body 14 is covered with the contact layer 15. The anode electrode layer 16 covers the first surface 14a and the second surface 14b of the contact layer 15 and the exterior body 14. The first external electrode 21 and the second external electrode 22 cover the anode electrode layer 16, whereby the plurality of first end portions 1a (first portion 1) are the first external electrode 21 or the second external electrode 21. It is electrically connected to the external electrode 22. Specifically, the anode electrode layer 16 covering the first surface 14a of the exterior body 14 is interposed between the contact layer 15 and the first external electrode 21, and the contact layer 15 and the second external electrode 22 are interposed. An anode electrode layer 16 covering the second surface 14b of the exterior body 14 is interposed between the two.
 図7の例では、素子積層体は、基板17に支持されている。基板17は、例えば、その表面および裏面に導電性の配線パターンが形成された積層基板であり、表面の配線パターンと裏面の配線パターンとはスルーホールにより電気的に接続されている。表面の配線パターンは最下層に積層されたコンデンサ素子10の陰極部6と電気的に接続し、裏面の配線パターンは第3の外部電極23と電気的に接続される。よって、基板17を介して、第3の外部電極23と、素子積層体の各コンデンサ素子10の陰極部6との電気的接続がされている。この場合、裏面の配線パターン次第で、第3の外部電極23の個数、形状および配置を任意に設定することが可能である。第3の外部電極23は、例えばめっき処理により基板17上に形成され、第3の外部電極23を形成した基板17が一部材として取り扱われ得る。 In the example of FIG. 7, the element laminate is supported by the substrate 17. The substrate 17 is, for example, a laminated substrate in which conductive wiring patterns are formed on the front surface and the back surface thereof, and the wiring pattern on the front surface and the wiring pattern on the back surface are electrically connected by through holes. The wiring pattern on the front surface is electrically connected to the cathode portion 6 of the capacitor element 10 laminated on the lowermost layer, and the wiring pattern on the back surface is electrically connected to the third external electrode 23. Therefore, the third external electrode 23 and the cathode portion 6 of each capacitor element 10 of the element laminate are electrically connected via the substrate 17. In this case, the number, shape, and arrangement of the third external electrodes 23 can be arbitrarily set depending on the wiring pattern on the back surface. The third external electrode 23 is formed on the substrate 17 by, for example, a plating process, and the substrate 17 on which the third external electrode 23 is formed can be treated as one member.
 第3の外部電極23の少なくとも一部は電解コンデンサ11の底面において露出している。第3の外部電極23の底面における露出部分は、電解コンデンサ11の陰極端子を構成する。図7の例では、2つの第3の外部電極23が、離間して設けられており、複数の領域において第3の外部電極23が露出している。 At least a part of the third external electrode 23 is exposed on the bottom surface of the electrolytic capacitor 11. The exposed portion on the bottom surface of the third external electrode 23 constitutes the cathode terminal of the electrolytic capacitor 11. In the example of FIG. 7, two third external electrodes 23 are provided apart from each other, and the third external electrode 23 is exposed in a plurality of regions.
 第1の外部電極21の一部は、外装体14の底面に沿って折り曲げられ、電解コンデンサ11の底面において露出している。同様に、第2の外部電極22の一部は、外装体14の底面に沿って第1の外部電極21の折り曲げ部分と対向するように折り曲げられ、電解コンデンサ11の底面において露出している。第1の外部電極21および第2の外部電極22の底面における露出部分は、電解コンデンサ11の陽極端子を構成する。すなわち、本実施形態では、電解コンデンサ11は、離間した2つの陽極端子を有する。離間した2つの陽極端子の間に挟まれるように、陰極端子が存在し得る。 A part of the first external electrode 21 is bent along the bottom surface of the exterior body 14 and is exposed on the bottom surface of the electrolytic capacitor 11. Similarly, a part of the second external electrode 22 is bent along the bottom surface of the exterior body 14 so as to face the bent portion of the first external electrode 21, and is exposed on the bottom surface of the electrolytic capacitor 11. The exposed portion on the bottom surface of the first external electrode 21 and the second external electrode 22 constitutes the anode terminal of the electrolytic capacitor 11. That is, in the present embodiment, the electrolytic capacitor 11 has two anode terminals separated from each other. A cathode terminal may be present so as to be sandwiched between two separated anode terminals.
 電解コンデンサ11のESLは、底面における第1の外部電極21と第3の外部電極23との離間距離L1、および、底面における第2の外部電極22と第3の外部電極23との離間距離L2に依存する。上記離間距離L1およびL2が短いほど、ESLが小さくなり易い。ESLを低減するため、底面において第3の外部電極23を複数配置してもよい。この場合、複数の第3の外部電極23の一つは第1の外部電極21に近接して配置され、複数の第3の外部電極23の他の一つは第2の外部電極22に近接して配置され得る。これにより、ESLが効果的に低減され得る。離間距離L1およびL2は、例えば、0.4mm~1.1mmであってもよい。なお、「第3の外部電極23を複数有する」とは、複数の離間した領域において、第3の外部電極23が露出していることを意味し、複数の第3の外部電極23が離間している場合に限られない。複数の第3の外部電極23の2つ以上が、外装体14内で連続して形成され、電気的に接続されていてもよい。複数の第3の外部電極23は、1つが上面に設けられ他の1つが底面に設けられるなど、外装体14の異なる面に設けられていてもよい。 ESL of the electrolytic capacitor 11, the distance between the first distance L 1 of the outer electrode 21 and the third external electrodes 23, and, a second external electrode 22 in the bottom third of the external electrode 23 on the bottom surface It depends on L 2. The shorter the separation distances L 1 and L 2 , the smaller the ESL tends to be. In order to reduce ESL, a plurality of third external electrodes 23 may be arranged on the bottom surface. In this case, one of the plurality of third external electrodes 23 is arranged close to the first external electrode 21, and the other one of the plurality of third external electrodes 23 is close to the second external electrode 22. Can be placed. This can effectively reduce ESL. The separation distances L 1 and L 2 may be, for example, 0.4 mm to 1.1 mm. In addition, "having a plurality of third external electrodes 23" means that the third external electrode 23 is exposed in a plurality of separated regions, and the plurality of third external electrodes 23 are separated from each other. Not limited to the case. Two or more of the plurality of third external electrodes 23 may be continuously formed in the exterior body 14 and electrically connected to each other. The plurality of third external electrodes 23 may be provided on different surfaces of the exterior body 14, such as one provided on the upper surface and the other provided on the bottom surface.
 電解コンデンサ11において、第1のコンデンサ素子10aに流れる電流の向きは、第2のコンデンサ素子10bに流れる電流の向きと逆となる。このため、第1のコンデンサ素子10aに流れる電流により生じる磁界と、第2のコンデンサ素子10bに流れる電流により生じる磁界とが打ち消し合い、電解コンデンサ11に生じる磁束が減少する。結果、ESLが低減する。 In the electrolytic capacitor 11, the direction of the current flowing through the first capacitor element 10a is opposite to the direction of the current flowing through the second capacitor element 10b. Therefore, the magnetic field generated by the current flowing in the first capacitor element 10a and the magnetic field generated by the current flowing in the second capacitor element 10b cancel each other out, and the magnetic flux generated in the electrolytic capacitor 11 is reduced. As a result, ESL is reduced.
 一方で、第1部分1、および、第2部分2のうちコンデンサ素子10同士が重ならない部分(図7において、陰極引出層で覆われていない部分)では、磁界の打ち消し効果は生じないが、本実施形態の電解コンデンサ11では、第1部分1の長さを短くすることが容易である。よって、この部分により生じるESLの寄与は低減される。さらに、第1の外部電極21および第2の外部電極22が外装体14の底面に沿って延在していることにより、この部分により生じるESLの寄与を一層低減できる。これらの効果により、電解コンデンサ11のESLは、顕著に改善され得る。 On the other hand, in the portion of the first portion 1 and the second portion 2 in which the capacitor elements 10 do not overlap each other (the portion not covered by the cathode extraction layer in FIG. 7), the effect of canceling the magnetic field does not occur. In the electrolytic capacitor 11 of the present embodiment, it is easy to shorten the length of the first portion 1. Therefore, the contribution of ESL caused by this portion is reduced. Further, since the first external electrode 21 and the second external electrode 22 extend along the bottom surface of the exterior body 14, the contribution of ESL caused by this portion can be further reduced. Due to these effects, the ESL of the electrolytic capacitor 11 can be significantly improved.
 以下、上記実施形態に係る電解コンデンサ11の構成要素について、より詳細に説明する。 Hereinafter, the components of the electrolytic capacitor 11 according to the above embodiment will be described in more detail.
 (陽極体3)
 陽極体3は、弁作用金属、弁作用金属を含む合金、および弁作用金属を含む化合物(金属間化合物など)などを含むことができる。これらの材料は一種を単独でまたは二種以上を組み合わせて使用できる。弁作用金属としては、アルミニウム、タンタル、ニオブ、チタンなどを用いることができる。陽極体3は、弁作用金属、弁作用金属を含む合金、または弁作用金属を含む化合物の箔であってもよく、弁作用金属、弁作用金属を含む合金、または弁作用金属を含む化合物の多孔質焼結体であってもよい。
(Anode body 3)
The anode body 3 can include a valve acting metal, an alloy containing a valve acting metal, a compound containing a valve acting metal (intermetallic compound, etc.) and the like. These materials can be used alone or in combination of two or more. As the valve acting metal, aluminum, tantalum, niobium, titanium and the like can be used. The anode 3 may be a valve-acting metal, an alloy containing a valve-acting metal, or a foil of a compound containing a valve-acting metal, and is a valve-acting metal, an alloy containing a valve-acting metal, or a compound containing a valve-acting metal. It may be a porous sintered body.
 陽極体3に金属箔を用いる場合、通常、表面積を増やすため、陽極箔の少なくとも第2部分2の表面には、多孔質部5が形成される。第2部分2は、芯部4と、芯部4の表面に形成された多孔質部5とを有する。多孔質部5は、陽極箔の少なくとも第2部分2の表面をエッチングなどにより粗面化することにより形成してもよい。第1部分1の表面に所定のマスキング部材を配置した後、エッチング処理などの粗面化処理を行うことも可能である。一方で、陽極箔の表面の全面をエッチング処理などにより粗面化処理することも可能である。前者の場合、第1部分1の表面には多孔質部5を有さず、第2部分2の表面に多孔質部5を有する陽極箔が得られる。後者の場合、第2部分2の表面に加え、第1部分1の表面にも多孔質部5が形成される。エッチング処理としては、公知の手法を用いればよく、例えば、電解エッチングが挙げられる。マスキング部材は、特に限定されないが、樹脂などの絶縁体が好ましい。マスキング部材は、固体電解質層7の形成前に取り除かれるが、導電性材料を含む導電体であってもよい。 When a metal foil is used for the anode body 3, a porous portion 5 is usually formed on the surface of at least the second portion 2 of the anode foil in order to increase the surface area. The second portion 2 has a core portion 4 and a porous portion 5 formed on the surface of the core portion 4. The porous portion 5 may be formed by roughening the surface of at least the second portion 2 of the anode foil by etching or the like. After arranging a predetermined masking member on the surface of the first portion 1, it is also possible to perform a roughening treatment such as an etching treatment. On the other hand, it is also possible to roughen the entire surface of the surface of the anode foil by etching or the like. In the former case, an anode foil having no porous portion 5 on the surface of the first portion 1 and having the porous portion 5 on the surface of the second portion 2 can be obtained. In the latter case, the porous portion 5 is formed on the surface of the first portion 1 in addition to the surface of the second portion 2. As the etching treatment, a known method may be used, and examples thereof include electrolytic etching. The masking member is not particularly limited, but an insulator such as a resin is preferable. The masking member is removed before the formation of the solid electrolyte layer 7, but may be a conductor containing a conductive material.
 陽極箔の表面の全面を粗面化処理する場合、第1部分1の表面に多孔質部5を有する。このため、多孔質部5と外装体14の密着性が十分でなく、多孔質部5と外装体14との接触部分を通じて電解コンデンサ11内部に空気(具体的には、酸素および水分)が侵入する場合がある。これを抑制するため、多孔質に形成された第1部分1を予め圧縮し、多孔質部5の孔をつぶしておいてもよい。これにより、外装体14から露出する第1端部1aより多孔質部5を介した電解コンデンサ11内部への空気の侵入、および当該空気の侵入による電解コンデンサ11の信頼性の低下を抑制できる。 When the entire surface of the anode foil is roughened, the surface of the first portion 1 has a porous portion 5. Therefore, the adhesion between the porous portion 5 and the exterior body 14 is not sufficient, and air (specifically, oxygen and moisture) invades the inside of the electrolytic capacitor 11 through the contact portion between the porous portion 5 and the exterior body 14. May be done. In order to suppress this, the first portion 1 formed in the porous portion may be compressed in advance to close the pores of the porous portion 5. As a result, it is possible to suppress the intrusion of air from the first end portion 1a exposed from the exterior body 14 into the inside of the electrolytic capacitor 11 through the porous portion 5 and the deterioration of the reliability of the electrolytic capacitor 11 due to the intrusion of the air.
 (誘電体層)
 誘電体層は、例えば、陽極体3の少なくとも第2部分2の表面の弁作用金属を、化成処理などにより陽極酸化することで形成される。誘電体層は弁作用金属の酸化物を含む。例えば、弁作用金属としてアルミニウムを用いた場合の誘電体層は酸化アルミニウムを含む。誘電体層は、少なくとも多孔質部5が形成されている第2部分2の表面(多孔質部5の孔の内壁面を含む)に沿って形成される。なお、誘電体層の形成方法はこれに限定されず、第2部分2の表面に、誘電体として機能する絶縁性の層を形成できればよい。誘電体層は、第1部分1の表面(例えば、第1部分1の表面の多孔質部5上)にも形成されてもよい。
(Dielectric layer)
The dielectric layer is formed, for example, by anodizing the valve acting metal on the surface of at least the second portion 2 of the anode body 3 by chemical conversion treatment or the like. The dielectric layer contains an oxide of the valve acting metal. For example, when aluminum is used as the valve acting metal, the dielectric layer contains aluminum oxide. The dielectric layer is formed along at least the surface of the second portion 2 (including the inner wall surface of the hole of the porous portion 5) in which the porous portion 5 is formed. The method for forming the dielectric layer is not limited to this, and it is sufficient that an insulating layer that functions as a dielectric can be formed on the surface of the second portion 2. The dielectric layer may also be formed on the surface of the first portion 1 (for example, on the porous portion 5 on the surface of the first portion 1).
 (陰極部6)
 陰極部6は、誘電体層の少なくとも一部を覆う固体電解質層7と、固体電解質層7の少なくとも一部を覆う陰極引出層とを備える。
(Cathode 6)
The cathode portion 6 includes a solid electrolyte layer 7 that covers at least a part of the dielectric layer, and a cathode extraction layer that covers at least a part of the solid electrolyte layer 7.
 (固体電解質層7)
 固体電解質層7は、例えば、導電性高分子を含む。導電性高分子としては、例えば、ポリピロール、ポリチオフェン、ポリアニリンおよびこれらの誘導体などを用いることができる。固体電解質層7は、例えば、原料モノマーを誘電体層上で化学重合および/または電解重合することにより、形成することができる。あるいは、導電性高分子が溶解した溶液、または、導電性高分子が分散した分散液を、誘電体層に塗布することにより、形成することができる。固体電解質層7は、マンガン化合物を含んでもよい。
(Solid electrolyte layer 7)
The solid electrolyte layer 7 contains, for example, a conductive polymer. As the conductive polymer, for example, polypyrrole, polythiophene, polyaniline and derivatives thereof can be used. The solid electrolyte layer 7 can be formed, for example, by chemically polymerizing and / or electrolytically polymerizing the raw material monomer on the dielectric layer. Alternatively, it can be formed by applying a solution in which the conductive polymer is dissolved or a dispersion in which the conductive polymer is dispersed to the dielectric layer. The solid electrolyte layer 7 may contain a manganese compound.
 (陰極引出層)
 陰極引出層は、例えば、カーボン層8および銀ペースト層9を備える。カーボン層8は、導電性を有していればよく、例えば、黒鉛などの導電性炭素材料を用いて構成することができる。カーボン層8は、例えば、カーボンペーストを固体電解質層7の表面の少なくとも一部に塗布して形成される。銀ペースト層9には、例えば、銀粉末とバインダ樹脂(エポキシ樹脂など)とを含む組成物を用いることができる。銀ペースト層9は、例えば、銀ペーストをカーボン層8の表面に塗布して形成される。なお、陰極引出層の構成は、これに限られず、集電機能を有する構成であればよい。
(Cathode drawer layer)
The cathode extraction layer includes, for example, a carbon layer 8 and a silver paste layer 9. The carbon layer 8 may be conductive as long as it has conductivity, and can be formed by using a conductive carbon material such as graphite. The carbon layer 8 is formed by applying, for example, carbon paste to at least a part of the surface of the solid electrolyte layer 7. For the silver paste layer 9, for example, a composition containing silver powder and a binder resin (epoxy resin or the like) can be used. The silver paste layer 9 is formed by, for example, applying a silver paste to the surface of the carbon layer 8. The configuration of the cathode extraction layer is not limited to this, and may be any configuration having a current collecting function.
 (分離層12)
 第1部分1と陰極部6を電気的に分離するため、絶縁性の分離層12を設けてもよい。分離層12は、第1部分1の表面の少なくとも一部を覆うように、陰極部6に近接して設けられ得る。分離層12は、第1部分1および外装体14と密着していることが好ましい。これにより、上記の電解コンデンサ11内部への空気の侵入を抑制できる。分離層12は、第1部分1の上に誘電体層を介して配置されてもよい。
(Separation layer 12)
In order to electrically separate the first portion 1 and the cathode portion 6, an insulating separation layer 12 may be provided. The separation layer 12 may be provided in close proximity to the cathode portion 6 so as to cover at least a part of the surface of the first portion 1. The separation layer 12 is preferably in close contact with the first portion 1 and the exterior body 14. As a result, it is possible to suppress the intrusion of air into the electrolytic capacitor 11 described above. The separation layer 12 may be arranged on the first portion 1 via a dielectric layer.
 分離層12は、例えば、樹脂を含み、後述の外装体14について例示するものを用いることができる。第1部分1の多孔質部5に形成した誘電体層を圧縮して緻密化することで、絶縁性を持たせてもよい。 The separation layer 12 contains, for example, a resin, and an example of the exterior body 14 described later can be used. Insulation may be imparted by compressing and densifying the dielectric layer formed in the porous portion 5 of the first portion 1.
 第1部分1と密着する分離層12は、例えば、シート状の絶縁部材(樹脂テープなど)を、第1部分1に貼り付けることにより得られる。表面に多孔質部5を有する陽極箔を用いる場合では、第1部分1の多孔質部5を圧縮して平坦化してから、絶縁部材を第1部分1に密着させてもよい。シート状の絶縁部材は、第1部分1に貼り付ける側の表面に粘着層を有することが好ましい。 The separation layer 12 that is in close contact with the first portion 1 can be obtained, for example, by attaching a sheet-shaped insulating member (resin tape or the like) to the first portion 1. When an anode foil having a porous portion 5 on the surface is used, the porous portion 5 of the first portion 1 may be compressed and flattened, and then the insulating member may be brought into close contact with the first portion 1. The sheet-shaped insulating member preferably has an adhesive layer on the surface on the side to be attached to the first portion 1.
 また、液状樹脂を第1部分1に塗布または含浸させて、第1部分1と密着する絶縁部材を形成してもよい。液状樹脂を用いた方法では、絶縁部材は、第1部分1の多孔質部5の表面の凹凸を埋めるように形成される。多孔質部5の表面の凹部に液状樹脂が容易に入り込み、凹部内にも絶縁部材を容易に形成することができる。液状樹脂としては、後述の第4工程で例示する硬化性樹脂組成物などを用いることができる。 Further, the liquid resin may be applied or impregnated into the first portion 1 to form an insulating member in close contact with the first portion 1. In the method using the liquid resin, the insulating member is formed so as to fill the unevenness of the surface of the porous portion 5 of the first portion 1. The liquid resin easily enters the recesses on the surface of the porous portion 5, and the insulating member can be easily formed in the recesses as well. As the liquid resin, the curable resin composition exemplified in the fourth step described later can be used.
 (外装体14)
 外装体14は、例えば、硬化性樹脂組成物の硬化物を含むことが好ましく、熱可塑性樹脂もしくはそれを含む組成物を含んでもよい。
(Exterior body 14)
The exterior body 14 preferably contains, for example, a cured product of a curable resin composition, and may contain a thermoplastic resin or a composition containing the same.
 外装体14は、例えば、射出成形などの成形技術を用いて形成することができる。外装体14は、例えば、所定の金型を用いて、硬化性樹脂組成物または熱可塑性樹脂(組成物)を、コンデンサ素子10を覆うように所定の箇所に充填して形成することができる。 The exterior body 14 can be formed by using a molding technique such as injection molding, for example. The exterior body 14 can be formed by filling a predetermined portion with a curable resin composition or a thermoplastic resin (composition) so as to cover the capacitor element 10, for example, using a predetermined mold.
 硬化性樹脂組成物は、硬化性樹脂に加え、フィラー、硬化剤、重合開始剤、および/または触媒などを含んでもよい。硬化性樹脂としては、熱硬化性樹脂が例示される。硬化剤、重合開始剤、触媒などは、硬化性樹脂の種類に応じて適宜選択される。 The curable resin composition may contain a filler, a curing agent, a polymerization initiator, and / or a catalyst in addition to the curable resin. Examples of the curable resin include thermosetting resins. The curing agent, polymerization initiator, catalyst and the like are appropriately selected depending on the type of the curable resin.
 硬化性樹脂組成物および熱可塑性樹脂(組成物)としては、後述の第3工程で例示するものを用いることができる。 As the curable resin composition and the thermoplastic resin (composition), those exemplified in the third step described later can be used.
 分離層12と外装体14との間の密着性の観点から、絶縁部材および外装体14は、それぞれ樹脂を含むことが好ましい。外装体14は、弁作用金属を含む第1部分1や弁作用金属の酸化物を含む誘電体層と比べて、樹脂を含む絶縁部材と密着し易い。 From the viewpoint of adhesion between the separation layer 12 and the exterior body 14, it is preferable that the insulating member and the exterior body 14 each contain a resin. The exterior body 14 is more likely to adhere to the insulating member containing the resin than the first portion 1 containing the valve acting metal or the dielectric layer containing the oxide of the valve acting metal.
 分離層12および外装体14は、互いに同一の樹脂を含むことがより好ましい。この場合、分離層12と外装体14との間の密着性がさらに向上し、それにより電解コンデンサ11内部への空気の侵入がさらに抑制される。分離層12および外装体14に含まれる互いに同一の樹脂としては、例えば、エポキシ樹脂が挙げられる。 It is more preferable that the separation layer 12 and the exterior body 14 contain the same resin as each other. In this case, the adhesion between the separation layer 12 and the exterior body 14 is further improved, whereby the intrusion of air into the electrolytic capacitor 11 is further suppressed. Examples of the same resin contained in the separation layer 12 and the exterior body 14 include an epoxy resin.
 外装体14の強度などを高める観点から、外装体14はフィラーを含むことが好ましい。一方、分離層12は、外装体14よりも粒径が小さいフィラーを含むことが好ましく、フィラーを含まないことがより好ましい。第1部分1に液状樹脂を含浸させて分離層12を形成する場合、液状樹脂は、外装体14よりも粒径が小さいフィラーを含むことが好ましく、フィラーを含まないことがより好ましい。この場合、第1部分1の多孔質部5の表面の凹部の深部にまで、液状樹脂を含浸させ易く、分離層12を形成し易い。また、複数のコンデンサ素子10を積層可能なように、厚みの小さい分離層12を形成し易い。 From the viewpoint of increasing the strength of the exterior body 14, it is preferable that the exterior body 14 contains a filler. On the other hand, the separation layer 12 preferably contains a filler having a smaller particle size than the exterior body 14, and more preferably does not contain the filler. When the first portion 1 is impregnated with the liquid resin to form the separation layer 12, the liquid resin preferably contains a filler having a smaller particle size than the exterior body 14, and more preferably does not contain the filler. In this case, it is easy to impregnate the liquid resin deep into the recesses on the surface of the porous portion 5 of the first portion 1, and it is easy to form the separation layer 12. Further, it is easy to form a separation layer 12 having a small thickness so that a plurality of capacitor elements 10 can be laminated.
 (コンタクト層15)
 コンタクト層15は、陽極体3の第1端部1aの端面を覆うように形成され得る。好ましくは、コンタクト層15は、樹脂材料である外装体14(および、分離層12)の表面を極力覆わず、外装体14から露出した第1端部1aの表面のみを覆うように形成され得る。
(Contact layer 15)
The contact layer 15 may be formed so as to cover the end surface of the first end portion 1a of the anode body 3. Preferably, the contact layer 15 can be formed so as not to cover the surface of the exterior body 14 (and the separation layer 12) which is a resin material as much as possible, but to cover only the surface of the first end portion 1a exposed from the exterior body 14. ..
 コンタクト層15は、陽極体3を構成する金属よりもイオン化傾向の小さい金属を含んでいてもよい。例えば陽極体3がアルミニウム(Al)箔である場合、コンタクト層15としては、例えば、Zn、Ni、Sn、Cu、Agを含む材料を用いることができる。この場合、コンタクト層15の表面において強固な酸化膜の形成が抑制されるため、第1端部1aにおける陽極体3の露出部分を直接外部電極と接続する場合と比べて、電気的接続をより確実にすることができる。 The contact layer 15 may contain a metal having a lower ionization tendency than the metal constituting the anode 3. For example, when the anode 3 is an aluminum (Al) foil, a material containing, for example, Zn, Ni, Sn, Cu, and Ag can be used as the contact layer 15. In this case, since the formation of a strong oxide film is suppressed on the surface of the contact layer 15, the electrical connection is improved as compared with the case where the exposed portion of the anode 3 at the first end portion 1a is directly connected to the external electrode. You can be sure.
 コンタクト層15と陽極体3との界面に、合金層が形成されていてもよい。例えば陽極体3がアルミニウム(Al)箔である場合、Cu、Zn、またはAgは、原子間距離がAlと近いため、Alとの金属間結合による合金層が界面に形成され得る。これにより、陽極体3との接合強度をより強固にすることができる。コンタクト層15は、上記の元素の単元素金属で構成されてもよいし、青銅あるいは黄銅などの合金で構成されてもよいし、複数の異なる単元素の金属層が積層されたもの(例えば、Cu層とAg層との積層構造)であってもよい。 An alloy layer may be formed at the interface between the contact layer 15 and the anode body 3. For example, when the anode 3 is an aluminum (Al) foil, Cu, Zn, or Ag has an interatomic distance close to that of Al, so that an alloy layer due to an intermetal bond with Al can be formed at the interface. Thereby, the bonding strength with the anode body 3 can be further strengthened. The contact layer 15 may be made of a single element metal of the above element, may be made of an alloy such as bronze or brass, or may be a laminated metal layer of a plurality of different single elements (for example,). It may be a laminated structure of a Cu layer and an Ag layer).
 コンタクト層15を形成する場合、外装体14はフィラーを含まないか、あるいは、外装体14がフィラーを含む場合、フィラーのヤング率がコンタクト層15のヤング率よりも小さいことが好ましい。これにより、外装体14の表面へのコンタクト層15の形成が抑制され、第1端部1aの端面にコンタクト層15が選択的に形成され得る。 When forming the contact layer 15, it is preferable that the exterior body 14 does not contain a filler, or when the exterior body 14 contains a filler, the Young's modulus of the filler is smaller than the Young's modulus of the contact layer 15. As a result, the formation of the contact layer 15 on the surface of the exterior body 14 is suppressed, and the contact layer 15 can be selectively formed on the end surface of the first end portion 1a.
 コンタクト層15は、例えば、コールドスプレー法、溶射、めっき、蒸着等により形成され得る。コールドスプレー法では、例えば、固体状態の金属粒子を、第1端部1aの露出表面を含む外装体14の表面(第1の面14aおよび/または第2の面14b)に衝突させることにより、金属粒子を塑性変形により表面に固着させて、第1端部1aの端面に金属粒子を構成する金属を含むコンタクト層15を形成する。この場合に、金属粒子のヤング率が外装体14の構成部材(例えば、フィラー)のヤング率よりも大きい場合、外装体14の表面に衝突した金属粒子は、外装体14の表面で塑性変形することが抑制され、外装体14の表面に固着することが抑制され得る。衝突によるエネルギーの少なくとも一部は、外装体14の破壊に使用され、樹脂の一部が削り取られる。結果、陽極体3の第1端部1aの端面に選択的にコンタクト層15が形成されるとともに、外装体14の表面(第1の面14aおよび/または第2の面14b)が粗面化され得る。 The contact layer 15 can be formed by, for example, a cold spray method, thermal spraying, plating, vapor deposition, or the like. In the cold spray method, for example, solid metal particles are made to collide with the surface (first surface 14a and / or second surface 14b) of the exterior body 14 including the exposed surface of the first end portion 1a. The metal particles are fixed to the surface by plastic deformation to form a contact layer 15 containing a metal constituting the metal particles on the end face of the first end portion 1a. In this case, when the Young's modulus of the metal particles is larger than the Young's modulus of the constituent member (for example, filler) of the exterior body 14, the metal particles colliding with the surface of the exterior body 14 are plastically deformed on the surface of the exterior body 14. This can be suppressed and sticking to the surface of the exterior body 14 can be suppressed. At least part of the energy from the collision is used to destroy the exterior 14 and some of the resin is scraped off. As a result, the contact layer 15 is selectively formed on the end surface of the first end portion 1a of the anode body 3, and the surface (first surface 14a and / or the second surface 14b) of the exterior body 14 is roughened. Can be done.
 (陽極電極層16)
 コンタクト層15と外部電極(第1の外部電極21または第2の外部電極22)との間に、陽極電極層16を介在させてもよい。陽極電極層16は、外装体14の第1の面14aまたは第2の面14bを覆うとともに、必要に応じてコンタクト層15を介して、(複数の)コンデンサ素子10の第1端部1aと電気的に接続し得る。
(Anode electrode layer 16)
The anode electrode layer 16 may be interposed between the contact layer 15 and the external electrode (first external electrode 21 or second external electrode 22). The anode electrode layer 16 covers the first surface 14a or the second surface 14b of the exterior body 14 and, if necessary, via the contact layer 15 with the first end portion 1a of the (plural) capacitor elements 10. Can be electrically connected.
 陽極電極層16は、導電性粒子が混入された導電性樹脂層を含んでいてもよい。導電性樹脂層は、導電性粒子および樹脂材料を含む導電性ペーストを外装体14の第1の面14aまたは第2の面14bに塗布乾燥により形成され得る。樹脂材料は、外装体14および陽極体3(コンタクト層15)を構成する材料との接着に適しており、化学結合(例えば、水素結合)により接合強度を高めることができる。導電性粒子としては、例えば、銀、銅などの金属粒子や、カーボンなどの導電性の無機材料の粒子を用いることができる。 The anode electrode layer 16 may include a conductive resin layer mixed with conductive particles. The conductive resin layer can be formed by applying and drying a conductive paste containing conductive particles and a resin material on the first surface 14a or the second surface 14b of the exterior body 14. The resin material is suitable for adhesion to the material constituting the exterior body 14 and the anode body 3 (contact layer 15), and the bonding strength can be increased by a chemical bond (for example, a hydrogen bond). As the conductive particles, for example, metal particles such as silver and copper, and particles of a conductive inorganic material such as carbon can be used.
 陽極電極層16は、金属層であってもよい。その場合、電解めっき法、無電解めっき法、スパッタリング法、真空蒸着法、化学蒸着(CVD)法、コールドスプレー法、溶射法を用いて、陽極電極層16を形成してもよい。 The anode electrode layer 16 may be a metal layer. In that case, the anode electrode layer 16 may be formed by using an electrolytic plating method, a non-electrolytic plating method, a sputtering method, a vacuum vapor deposition method, a chemical vapor deposition (CVD) method, a cold spray method, or a thermal spraying method.
 陽極電極層16は、外装体14の第1の面14aおよび第2の面14bと直交する表面(例えば、上面または底面)の一部を被覆してもよい。 The anode electrode layer 16 may cover a part of a surface (for example, an upper surface or a bottom surface) orthogonal to the first surface 14a and the second surface 14b of the exterior body 14.
 陽極電極層16により被覆される外装体14の表面の粗さRaは、5マイクロメートル以上であってもよい。この場合、陽極電極層16と外装体14との接触面積が増大し、アンカー効果により陽極電極層16と外装体14との密着性が向上し、信頼性をより高めることができる。 The roughness Ra of the surface of the exterior body 14 covered with the anode electrode layer 16 may be 5 micrometers or more. In this case, the contact area between the anode electrode layer 16 and the exterior body 14 is increased, and the adhesion between the anode electrode layer 16 and the exterior body 14 is improved by the anchor effect, and the reliability can be further improved.
 (外部電極)
 第1~第3の外部電極21~23は、金属層であることが好ましい。金属層は、例えば、めっき層である。金属層は、例えば、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、錫(Sn)、銀(Ag)、および金(Au)よりなる群から選択される少なくとも1種を含む。第1~第3電極層の形成には、例えば、電解めっき法、無電解めっき法、スパッタリング法、真空蒸着法、化学蒸着(CVD)法、コールドスプレー法、溶射法などの成膜技術を用いてもよい。
(External electrode)
The first to third external electrodes 21 to 23 are preferably a metal layer. The metal layer is, for example, a plating layer. The metal layer contains, for example, at least one selected from the group consisting of nickel (Ni), copper (Cu), zinc (Zn), tin (Sn), silver (Ag), and gold (Au). For the formation of the first to third electrode layers, for example, film forming techniques such as electrolytic plating method, electroless plating method, sputtering method, vacuum vapor deposition method, chemical vapor deposition (CVD) method, cold spray method, and thermal spraying method are used. You may.
 第1~第3の外部電極21~23は、例えば、Ni層と錫層との積層構造であってもよい。第1~第3の外部電極21~23は、少なくともその外表面が、はんだとの濡れ性に優れた金属であればよい。このような金属として、たとえばSn、Au、Ag、Pd等が挙げられる。 The first to third external electrodes 21 to 23 may have, for example, a laminated structure of a Ni layer and a tin layer. The first to third external electrodes 21 to 23 may be made of a metal having at least an outer surface thereof having excellent wettability with solder. Examples of such a metal include Sn, Au, Ag, Pd and the like.
 第1の外部電極21および第2の外部電極22については、予めSn被膜を形成したCu製のキャップを、陽極電極層16に接着させることにより、外部電極を形成してもよい。 For the first external electrode 21 and the second external electrode 22, the external electrode may be formed by adhering a Cu cap having a Sn coating formed in advance to the anode electrode layer 16.
 第1の外部電極21と第2の外部電極22とは、ともに電解コンデンサ11の陽極端子を構成する。電解コンデンサ11を基板17に搭載するに際して、第1の外部電極21および第2の外部電極22の両方を、基板17上の電極と接続する必要がある。しかしながら、第1の外部電極21と第2の外部電極22との間を、第1の面14aおよび第2の面14b以外の外装体14の表面を介して、電気的に接続してもよい。この場合、電解コンデンサ11を基板17に搭載するに際して、第1の外部電極21と第2の外部電極22のいずれか一方を、基板上の電極と接続すればよい。 The first external electrode 21 and the second external electrode 22 both form an anode terminal of the electrolytic capacitor 11. When mounting the electrolytic capacitor 11 on the substrate 17, both the first external electrode 21 and the second external electrode 22 need to be connected to the electrodes on the substrate 17. However, the first external electrode 21 and the second external electrode 22 may be electrically connected via the surface of the exterior body 14 other than the first surface 14a and the second surface 14b. .. In this case, when mounting the electrolytic capacitor 11 on the substrate 17, either the first external electrode 21 or the second external electrode 22 may be connected to the electrode on the substrate.
 [電解コンデンサ11の製造方法]
 本開示の一実施形態に係る電解コンデンサ11は、例えば、陽極体3を準備する第1工程と、複数のコンデンサ素子10を得る第2工程と、複数のコンデンサ素子10を積層した素子積層体を得る第3工程と、素子積層体を外装体14で覆う第4工程と、第1部分1の端面を形成して外装体14から露出させる第5工程と、第1部分1の端面を外部電極と電気的に接続させる第6工程と、を含む製造方法により製造され得る。製造方法は、さらに、陽極体3の一部に分離層12(絶縁部材)を配置する工程(分離層配置工程)を含んでもよい。以下、電解コンデンサ11の製造方法の各工程について説明する。
[Manufacturing method of electrolytic capacitor 11]
The electrolytic capacitor 11 according to the embodiment of the present disclosure includes, for example, a first step of preparing an anode 3, a second step of obtaining a plurality of capacitor elements 10, and an element laminate in which a plurality of capacitor elements 10 are laminated. The third step of obtaining, the fourth step of covering the element laminate with the exterior body 14, the fifth step of forming the end face of the first portion 1 and exposing it from the exterior body 14, and the end face of the first portion 1 being exposed to an external electrode. It can be manufactured by a manufacturing method including a sixth step of electrically connecting with and. The manufacturing method may further include a step of arranging the separation layer 12 (insulating member) in a part of the anode body 3 (separation layer arrangement step). Hereinafter, each step of the method for manufacturing the electrolytic capacitor 11 will be described.
 (第1工程)
 第1工程では、表面に誘電体層が形成された陽極体3を準備する。より具体的には、一方の端部を含む第1部分1と一方の端部とは反対側の他方の端部を含む第2部分2とを備え、少なくとも第2部分2の表面に誘電体層が形成された陽極体3が準備される。第1工程は、例えば、陽極体3の表面に多孔質部5を形成する工程と、多孔質部5の表面に誘電体層を形成する工程とを含む。より具体的には、第1工程で用いられる陽極体3は、除去予定端部(上記一方の端部)を含む第1部分1と、第2端部2a(上記他方の端部)を含む第2部分2とを有する。少なくとも第2部分2の表面には、多孔質部5を形成することが好ましい。
(First step)
In the first step, the anode body 3 having the dielectric layer formed on the surface is prepared. More specifically, it comprises a first portion 1 including one end and a second portion 2 including the other end opposite to one end, and a dielectric on the surface of at least the second portion 2. The layered anode 3 is prepared. The first step includes, for example, a step of forming the porous portion 5 on the surface of the anode body 3 and a step of forming a dielectric layer on the surface of the porous portion 5. More specifically, the anode 3 used in the first step includes a first portion 1 including an end to be removed (one end thereof) and a second end 2a (the other end). It has a second portion 2. It is preferable to form the porous portion 5 on the surface of at least the second portion 2.
 陽極体3の表面の多孔質部5を形成する際には、陽極体3の表面に凹凸を形成できればよく、例えば、陽極箔の表面をエッチング(例えば、電解エッチング)などにより粗面化することにより行ってもよい。 When forming the porous portion 5 on the surface of the anode body 3, it suffices to form irregularities on the surface of the anode body 3, and for example, the surface of the anode foil is roughened by etching (for example, electrolytic etching). May be done by.
 誘電体層は、陽極体3を化成処理することにより形成すればよい。化成処理は、例えば、陽極体3を化成液中に浸漬することにより、陽極体3の表面に化成液を含浸させ、陽極体3をアノードとして、化成液中に浸漬したカソードとの間に電圧を印加することにより行うことができる。陽極体3の表面に多孔質部5を有する場合、誘電体層は、多孔質部5の表面の凹凸形状に沿って形成される。 The dielectric layer may be formed by chemical conversion treatment of the anode body 3. In the chemical conversion treatment, for example, by immersing the anode body 3 in the chemical conversion liquid, the surface of the anode body 3 is impregnated with the chemical conversion liquid, and the anode body 3 is used as an anode and a voltage is applied between the anode body 3 and the cathode immersed in the chemical conversion liquid. Can be done by applying. When the porous portion 5 is provided on the surface of the anode body 3, the dielectric layer is formed along the uneven shape of the surface of the porous portion 5.
 (分離層配置工程)
 分離層12(絶縁部材)を備える電解コンデンサ11を製造する場合、分離層12(絶縁部材)を配置する工程を、第1工程の後、第2工程の前に行ってもよい。この工程では、陽極体3の一部に絶縁部材を配置する。より具体的には、この工程では、陽極体3の第1部分1の上に誘電体層を介して絶縁部材を配置する。絶縁部材は、絶縁部材は、第1部分1と後工程で形成される陰極部6とを隔離するように配置される。
(Separation layer placement process)
When the electrolytic capacitor 11 including the separation layer 12 (insulating member) is manufactured, the step of arranging the separation layer 12 (insulating member) may be performed after the first step and before the second step. In this step, an insulating member is arranged on a part of the anode body 3. More specifically, in this step, the insulating member is arranged on the first portion 1 of the anode body 3 via the dielectric layer. The insulating member is arranged so that the insulating member separates the first portion 1 from the cathode portion 6 formed in a subsequent step.
 分離層配置工程では、シート状の絶縁部材(樹脂テープなど)を、陽極体3の一部(例えば、第1部分1)に貼り付けてもよい。表面に多孔質部5が形成された陽極体3を用いる場合でも、第1部分1の表面の凹凸を圧縮し平坦化することで、絶縁部材を第1部分1に強固に密着させることができる。シート状の絶縁部材は、第1部分1に貼り付ける側の表面に粘着層を有することが好ましい。 In the separation layer arranging step, a sheet-shaped insulating member (resin tape or the like) may be attached to a part of the anode body 3 (for example, the first part 1). Even when the anode body 3 having the porous portion 5 formed on the surface is used, the insulating member can be firmly adhered to the first portion 1 by compressing and flattening the unevenness of the surface of the first portion 1. .. The sheet-shaped insulating member preferably has an adhesive layer on the surface on the side to be attached to the first portion 1.
 上記以外に、分離層配置工程では、液状樹脂を陽極体3の一部(例えば、第1部分1)に塗布または含浸させて絶縁部材を形成してもよい。例えば、液状樹脂を塗布または含浸させた後、硬化させればよい。この場合、第1部分1に密着する絶縁部材を容易に形成することができる。液状樹脂としては、第4工程(外装体14の形成)で例示する硬化性樹脂組成物、樹脂を溶媒に溶解させた樹脂溶液などを用いることができる。 In addition to the above, in the separation layer arranging step, a liquid resin may be applied or impregnated into a part of the anode body 3 (for example, the first part 1) to form an insulating member. For example, the liquid resin may be applied or impregnated and then cured. In this case, an insulating member that is in close contact with the first portion 1 can be easily formed. As the liquid resin, the curable resin composition exemplified in the fourth step (formation of the exterior body 14), a resin solution in which the resin is dissolved in a solvent, and the like can be used.
 陽極体3の表面に多孔質部5が形成されている場合、陽極体3の多孔質部5の表面の一部(例えば、第1部分1の表面)に液状樹脂を塗布または含浸させることが好ましい。この場合、第1部分1の多孔質部5の表面の凹凸を埋めるように絶縁部材を容易に形成することができる。多孔質部5の表面の凹部に液状樹脂が容易に入り込み、凹部内にも絶縁部材を容易に形成することができる。これにより、陽極体3の表面の多孔質部5が絶縁部材で保護されるため、第4工程で陽極体3を外装体14とともに部分的に除去する際に、陽極体3の多孔質部5の崩壊が抑制される。陽極体3の多孔質部5の表面と絶縁部材とが強固に密着しているため、第4工程で陽極体3を外装体14とともに部分的に除去する際に、絶縁部材が陽極体3の多孔質部5の表面から剥離することが抑制される。 When the porous portion 5 is formed on the surface of the anode body 3, a liquid resin may be applied or impregnated on a part of the surface of the porous portion 5 of the anode body 3 (for example, the surface of the first portion 1). preferable. In this case, the insulating member can be easily formed so as to fill the unevenness of the surface of the porous portion 5 of the first portion 1. The liquid resin easily enters the recesses on the surface of the porous portion 5, and the insulating member can be easily formed in the recesses as well. As a result, the porous portion 5 on the surface of the anode body 3 is protected by the insulating member. Therefore, when the anode body 3 is partially removed together with the exterior body 14 in the fourth step, the porous portion 5 of the anode body 3 is protected. Collapse is suppressed. Since the surface of the porous portion 5 of the anode body 3 and the insulating member are firmly adhered to each other, when the anode body 3 is partially removed together with the exterior body 14 in the fourth step, the insulating member is the anode body 3. Peeling from the surface of the porous portion 5 is suppressed.
 (第2工程)
 第2工程では、陽極体3上に陰極部6を形成してコンデンサ素子10を得る。第6工程で絶縁部材を設ける場合には、第2工程で、陽極体3の絶縁部材が配置されていない部分に陰極部6を形成し、コンデンサ素子10を得る。より具体的には、第2工程では、陽極体3の第2部分2の表面に形成された誘電体層の少なくとも一部を陰極部6で覆う。
(Second step)
In the second step, the cathode portion 6 is formed on the anode body 3 to obtain the capacitor element 10. When the insulating member is provided in the sixth step, the cathode portion 6 is formed in the portion of the anode body 3 where the insulating member is not arranged, and the capacitor element 10 is obtained. More specifically, in the second step, at least a part of the dielectric layer formed on the surface of the second portion 2 of the anode body 3 is covered with the cathode portion 6.
 陰極部6を形成する工程は、例えば、誘電体の少なくとも一部を覆う固体電解質を形成する工程と、固体電解質層7の少なくとも一部を覆う陰極引出層を形成する工程と、を含む。 The step of forming the cathode portion 6 includes, for example, a step of forming a solid electrolyte covering at least a part of the dielectric and a step of forming a cathode drawer layer covering at least a part of the solid electrolyte layer 7.
 固体電解質層7は、例えば、原料モノマーを誘電体層上で化学重合および/または電解重合することにより、形成することができる。また、固体電解質層7は、導電性高分子を含む処理液を付着させた後、乾燥させて形成してもよい。処理液は、さらにドーパントなどの他の成分を含んでもよい。導電性高分子には、例えば、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)が用いられる。ドーパントには、例えば、ポリスチレンスルホン酸(PSS)が用いられる。処理液は、導電性高分子の分散液または溶液である。分散媒(溶媒)としては、例えば、水、有機溶媒、またはこれらの混合物が挙げられる。 The solid electrolyte layer 7 can be formed, for example, by chemically polymerizing and / or electrolytically polymerizing the raw material monomer on the dielectric layer. Further, the solid electrolyte layer 7 may be formed by attaching a treatment liquid containing a conductive polymer and then drying it. The treatment liquid may further contain other components such as dopants. As the conductive polymer, for example, poly (3,4-ethylenedioxythiophene) (PEDOT) is used. As the dopant, for example, polystyrene sulfonic acid (PSS) is used. The treatment liquid is a dispersion liquid or a solution of a conductive polymer. Examples of the dispersion medium (solvent) include water, an organic solvent, or a mixture thereof.
 陰極引出層は、例えば、固体電解質層上に、カーボン層8と銀ペースト層9とを順次積層することにより、形成することができる。 The cathode extraction layer can be formed, for example, by sequentially laminating the carbon layer 8 and the silver paste layer 9 on the solid electrolyte layer.
 (第3工程)
 第3工程では、複数のコンデンサ素子10を積層し、素子積層体を得る。この工程では、例えば、複数のコンデンサ素子10を、隣接するコンデンサ素子10間で第1部分1が反対側を向くように、交互に複数のコンデンサ素子10の陰極部6同士を導電性接着材を介して重ね合わせ、素子積層体を得る。
(Third step)
In the third step, a plurality of capacitor elements 10 are laminated to obtain an element laminate. In this step, for example, the cathode portions 6 of the plurality of capacitor elements 10 are alternately provided with a conductive adhesive so that the first portion 1 faces the opposite side between the plurality of capacitor elements 10 and the adjacent capacitor elements 10. The element laminate is obtained by superimposing the elements.
 その後、素子積層体を、導電性接着材を介して、表面および裏面に配線パターンが形成された積層基板(基板17)の上に載置する。積層基板の素子積層体が載置される側と反対側には第3の外部電極23が予め形成されている。載置により、第3の外部電極23は、積層基板に形成された配線パターン、および、表面の配線パターンと裏面の配線パターン都を接続するスルーホールを介して、素子積層体を構成するコンデンサ素子10の陰極部6と電気的に接続される。 After that, the element laminate is placed on a laminated substrate (board 17) having wiring patterns formed on the front surface and the back surface via a conductive adhesive. A third external electrode 23 is preliminarily formed on the side opposite to the side on which the element laminate of the laminated substrate is placed. By mounting, the third external electrode 23 is a capacitor element constituting the element laminate via a wiring pattern formed on the laminated substrate and a through hole connecting the wiring pattern on the front surface and the wiring pattern on the back surface. It is electrically connected to the cathode portion 6 of 10.
 他に、例えば、所定の形状に加工した板状の第3の外部電極23を導電性のペースト等を介して、素子積層体の最下層または最上層において露出する陰極部6の表面に貼り付けることにより、素子積層体と第3の外部電極23との電気的接続を行ってもよい。 Alternatively, for example, a plate-shaped third external electrode 23 processed into a predetermined shape is attached to the surface of the cathode portion 6 exposed in the lowermost layer or the uppermost layer of the element laminate via a conductive paste or the like. Thereby, the element laminate and the third external electrode 23 may be electrically connected.
 電解めっき法、無電解めっき法、物理蒸着法、化学蒸着法、コールドスプレー法、および/または溶射法を用いて、第3の外部電極23を形成してもよい。 The third external electrode 23 may be formed by using an electrolytic plating method, a electroless plating method, a physical vapor deposition method, a chemical vapor deposition method, a cold spray method, and / or a thermal spraying method.
 (第4工程)
 第4工程では、素子積層体を外装体14で覆う。このとき、第3の外部電極23の全部が外装体14で覆われず、第3の外部電極23の少なくとも一部が露出するようにする。外装体14は射出成形などを用いて形成することができる。外装体14は、例えば、所定の金型を用いて、硬化性樹脂組成物または熱可塑性樹脂(組成物)を、素子積層体を覆うように所定の箇所に充填して形成することができる。
(4th step)
In the fourth step, the element laminate is covered with the exterior body 14. At this time, the entire third external electrode 23 is not covered with the exterior body 14, and at least a part of the third external electrode 23 is exposed. The exterior body 14 can be formed by injection molding or the like. The exterior body 14 can be formed by filling a predetermined portion with a curable resin composition or a thermoplastic resin (composition) so as to cover the element laminated body, for example, using a predetermined mold.
 硬化性樹脂組成物は、硬化性樹脂に加え、フィラー、硬化剤、重合開始剤、および/または触媒などを含んでもよい。硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、ユリア樹脂、ポリイミド、ポリアミドイミド、ポリウレタン、ジアリルフタレート、不飽和ポリエステルなどが挙げられる。熱可塑性樹脂としては、ポリフェニレンサルファイド(PPS)、ポリブチレンテレフタレート(PBT)などが挙げられる。熱可塑性樹脂およびフィラーを含む熱可塑性樹脂組成物を用いてもよい。 The curable resin composition may contain a filler, a curing agent, a polymerization initiator, and / or a catalyst in addition to the curable resin. Examples of the curable resin include epoxy resin, phenol resin, urea resin, polyimide, polyamideimide, polyurethane, diallyl phthalate, and unsaturated polyester. Examples of the thermoplastic resin include polyphenylene sulfide (PPS) and polybutylene terephthalate (PBT). A thermoplastic resin composition containing a thermoplastic resin and a filler may be used.
 フィラーとしては、例えば、絶縁性の粒子および/または繊維などが好ましい。フィラーを構成する絶縁性材料としては、例えば、シリカ、アルミナなどの絶縁性の化合物(酸化物など)、ガラス、鉱物材料(タルク、マイカ、クレーなど)などが挙げられる。外装体14は、これらのフィラーを一種含んでもよく、二種以上組み合わせて含んでもよい。 As the filler, for example, insulating particles and / or fibers are preferable. Examples of the insulating material constituting the filler include insulating compounds (oxide and the like) such as silica and alumina, glass, and mineral materials (talc, mica, clay and the like). The exterior body 14 may contain one kind of these fillers, or may contain two or more kinds of these fillers in combination.
 (第5工程)
 第5工程では、第4工程の後、第1部分1の端面を形成して、外装体14から露出させる。より具体的には、素子積層体の両端部側において、少なくとも陽極体3を外装体14とともに部分的に除去して、少なくとも陽極体3の第1端部1a(具体的には、第1端部1aの端面)を、第1の面14aおよび第2の面14bの両面において外装体14から露出させる。第1端部1aを外装体14から露出させる方法としては、例えば、コンデンサ素子10を外装体14で覆った後、外装体14から第1端部1aが露出するように、外装体14の表面を研磨したり、外装体14の一部を切り離したりする方法が挙げられる。また、第1部分1の一部を外装体14の一部とともに切り離してもよい。この場合、多孔質部5を含まず、かつ、自然酸化皮膜が形成されていない表面を有する第1端部1aを、外装体14より容易に露出させることができ、第1部分1と外部電極との間において抵抗が小さく信頼性の高い接続状態が得られる。外装体14の切断方法としては、ダイシングが好ましい。これにより、切断面には第1部分1の第1端部1aの露出端面が現れる。なお、素子積層体において第1部分1の向きが異なる2種類のコンデンサ素子10を有することから、第1部分1の一部を外装体14の一部とともに切り離す場合、2箇所で切断する必要がある。2つの切断面の一方が第1の面14aとなり、他方が第2の面14bとなる。
(Fifth step)
In the fifth step, after the fourth step, the end face of the first portion 1 is formed and exposed from the exterior body 14. More specifically, at least the anode body 3 is partially removed together with the exterior body 14 on both ends of the element laminate, and at least the first end portion 1a of the anode body 3 (specifically, the first end). The end face of the portion 1a) is exposed from the exterior body 14 on both sides of the first surface 14a and the second surface 14b. As a method of exposing the first end portion 1a from the exterior body 14, for example, after covering the capacitor element 10 with the exterior body 14, the surface of the exterior body 14 is exposed so that the first end portion 1a is exposed from the exterior body 14. A method of polishing or cutting off a part of the exterior body 14 can be mentioned. Further, a part of the first portion 1 may be separated together with a part of the exterior body 14. In this case, the first end portion 1a, which does not include the porous portion 5 and has a surface on which a natural oxide film is not formed, can be easily exposed from the exterior body 14, and the first portion 1 and the external electrode can be easily exposed. A highly reliable connection state with low resistance can be obtained. Dicing is preferable as a method for cutting the exterior body 14. As a result, the exposed end surface of the first end portion 1a of the first portion 1 appears on the cut surface. Since the element laminate has two types of capacitor elements 10 in which the orientation of the first portion 1 is different, when a part of the first portion 1 is separated together with a part of the exterior body 14, it is necessary to cut at two places. be. One of the two cut surfaces is the first surface 14a and the other is the second surface 14b.
 第5工程では、素子積層体の両端部側において、陽極体3および絶縁部材を外装体14とともに部分的に除去して、第1端部1aの端面および絶縁部材の端面を外装体14から露出させてもよい。この場合、陽極体3および絶縁部材にそれぞれ外装体14から露出する面一の端面が形成される。これにより、外装体14の表面と面一の陽極体3の端面および絶縁部材の端面を、それぞれ、外装体14から容易に露出させることができる。 In the fifth step, the anode body 3 and the insulating member are partially removed together with the exterior body 14 on both ends of the element laminate, and the end face of the first end portion 1a and the end face of the insulating member are exposed from the exterior body 14. You may let me. In this case, flush end faces exposed from the exterior body 14 are formed on the anode body 3 and the insulating member, respectively. Thereby, the end surface of the anode body 3 flush with the surface of the exterior body 14 and the end surface of the insulating member can be easily exposed from the exterior body 14, respectively.
 第5工程により、自然酸化皮膜が形成されていない陽極体3(第1端部1a)の端面を、外装体14から容易に露出させることができ、陽極体3(より具体的には、第1部分1)と外部電極との間において抵抗が小さく信頼性の高い接続状態が得られる。 By the fifth step, the end face of the anode body 3 (first end portion 1a) on which the natural oxide film is not formed can be easily exposed from the exterior body 14, and the anode body 3 (more specifically, the first end portion 1a) can be easily exposed. A highly reliable connection state with low resistance can be obtained between 1 part 1) and the external electrode.
 (第6工程)
 第6工程では、外装体14から露出する陽極体3(第1端部1a)の端面を、外部電極と電気的に接続させる。この工程では、例えば、第1の外部電極21を、外装体14の第1の面14aを覆うように形成し、第2の外部電極22を第2の面14bを覆うように形成して、それぞれの外部電極を第1端部1aの端面と電気的に接続させる。第1端部1aの端面と外部電極との電気的接続は、接合などにより行ってもよいし、電解めっき法、無電解めっき法、物理蒸着法、化学蒸着法、コールドスプレー法、および/または溶射法を用いてもよい。
(6th step)
In the sixth step, the end surface of the anode body 3 (first end portion 1a) exposed from the exterior body 14 is electrically connected to the external electrode. In this step, for example, the first external electrode 21 is formed so as to cover the first surface 14a of the exterior body 14, and the second external electrode 22 is formed so as to cover the second surface 14b. Each external electrode is electrically connected to the end face of the first end portion 1a. The end face of the first end portion 1a may be electrically connected to the external electrode by bonding or the like, or an electrolytic plating method, a non-electrolytic plating method, a physical vapor deposition method, a chemical vapor deposition method, a cold spray method, and / or A thermal spraying method may be used.
 第1の外部電極21および第2の外部電極22を形成するに先立って、第1端部1aの端面である表面にコンタクト層15を形成する工程、および/または、外装体14の第1の面14aまたは第2の面14bを覆う陽極電極層16を形成する工程を行ってもよい。陽極電極層16を形成する場合、第1の外部電極21および第2の外部電極22は、陽極電極層16を覆うように形成される。 Prior to forming the first external electrode 21 and the second external electrode 22, the step of forming the contact layer 15 on the surface which is the end surface of the first end portion 1a, and / or the first step of the exterior body 14. The step of forming the anode electrode layer 16 covering the surface 14a or the second surface 14b may be performed. When forming the anode electrode layer 16, the first external electrode 21 and the second external electrode 22 are formed so as to cover the anode electrode layer 16.
 (コンタクト層15を形成する工程)
 コンタクト層15の形成は、例えば、コールドスプレー法、溶射、めっき、蒸着等の方法により形成することができる。コンタクト層15は、外装体14の第1の面14aおよび第2の面14bを極力覆わず、第1端部1aの端面を選択的に覆うように形成してもよい。
(Step of forming the contact layer 15)
The contact layer 15 can be formed by, for example, a cold spray method, thermal spraying, plating, vapor deposition, or the like. The contact layer 15 may be formed so as not to cover the first surface 14a and the second surface 14b of the exterior body 14 as much as possible, but to selectively cover the end surface of the first end portion 1a.
 コールドスプレー法を用いる場合、コンタクト層15は、金属粒子を高速で第1端部1aの端面に衝突させることにより形成される。金属粒子は、陽極体3を構成する金属よりもイオン化傾向の小さい金属の粒子であってもよい。例えば陽極体3がAl箔である場合、このような金属粒子としてCu粒子が挙げられる。この場合、高速で第1端部1aの端面に衝突したCu粒子は、端面に形成された自然酸化膜(Al酸化膜)を突き破り、AlとCuとの金属結合が形成され得る。結果、コンタクト層15と第1端部1aとの界面には、AlとCuとの合金層が形成され得る。一方、コンタクト層15の表面は、非弁作用金属であるCu層で被覆されている。Cuは、Alよりもイオン化傾向が小さいため、コンタクト層15の表面は酸化され難く、外部電極(または、陽極電極層16)との電気的接続を確実に行うことができる。 When the cold spray method is used, the contact layer 15 is formed by colliding metal particles with the end face of the first end portion 1a at high speed. The metal particles may be metal particles having a lower ionization tendency than the metal constituting the anode 3. For example, when the anode 3 is an Al foil, Cu particles can be mentioned as such metal particles. In this case, the Cu particles that collide with the end face of the first end portion 1a at high speed can break through the natural oxide film (Al oxide film) formed on the end face and form a metal bond between Al and Cu. As a result, an alloy layer of Al and Cu can be formed at the interface between the contact layer 15 and the first end portion 1a. On the other hand, the surface of the contact layer 15 is covered with a Cu layer which is a non-valve acting metal. Since Cu has a lower ionization tendency than Al, the surface of the contact layer 15 is less likely to be oxidized, and electrical connection with an external electrode (or an anode electrode layer 16) can be reliably performed.
 コールドスプレー法は、空気、窒素、ヘリウムなどの圧縮された気体により、数μm~数十μmの大きさの金属粒子を亜音速から超音速にまで加速して、固相状態のまま基材に衝突させて金属被膜を形成する技術である。コールドスプレー法における金属粒子の付着メカニズムに関しては、解明されていない部分もあるが、一般的には、金属粒子の衝突エネルギーによって、金属粒子または金属基材が塑性変形し、金属表面に新生面が露出することによって、活性化するものと考えられている。 In the cold spray method, metal particles with a size of several μm to several tens of μm are accelerated from subsonic to supersonic by using compressed gas such as air, nitrogen, and helium, and used as a substrate in a solid state. It is a technique to form a metal film by colliding with each other. The mechanism of adhesion of metal particles in the cold spray method has not been elucidated in some parts, but in general, the collision energy of metal particles causes plastic deformation of the metal particles or metal substrate, exposing a new surface on the metal surface. It is thought that it is activated by doing so.
 上記コールドスプレー法において、金属粒子は、非金属材料で構成された外装体14の第1の面14aおよび第2の面14b、および、分離層12(絶縁部材)の端面にも衝突し得る。金属粒子が衝突する基材が樹脂基材である場合、金属粒子と樹脂基材との結合は、主として、樹脂基材の表面の凹凸に塑性変形した金属粒子が嵌まり込むことによる、機械的な接合と考えられる。よって、樹脂基材の表面に金属を成膜するには、(ia)樹脂基材に十分な硬度を持たせて衝突のエネルギーを金属粒子の塑性変形に効率よく費やすこと、(iia)金属粒子の塑性変形が起こりやすい金属材料および加工条件を選定すること、および(iiia)衝突のエネルギーで樹脂基材が破壊されにくいこと、が条件となる。 In the cold spray method, the metal particles can also collide with the first surface 14a and the second surface 14b of the exterior body 14 made of a non-metal material, and the end surface of the separation layer 12 (insulating member). When the base material with which the metal particles collide is a resin base material, the bond between the metal particles and the resin base material is mainly due to the plastically deformed metal particles being fitted into the irregularities on the surface of the resin base material. It is considered to be a good joint. Therefore, in order to form a metal on the surface of the resin base material, (ia) the resin base material should have sufficient hardness and the collision energy should be efficiently used for the plastic deformation of the metal particles, and (iia) the metal particles. The conditions are to select a metal material and processing conditions that are prone to plastic deformation, and (iiia) that the resin base material is not easily destroyed by the energy of collision.
 逆に、樹脂基材に金属粒子を固着させない場合には、(ib)樹脂基材に弾性を持たせて衝突エネルギーを塑性変形のエネルギーに変換させないこと、(iib)第1端部1aの端面にコンタクト層15を形成できる範囲内で、塑性変形の起こり難い金属材料および加工条件を選定すること、および(iiib)樹脂基材の強度を下げて、塑性変形が起こる衝撃以下で基材を破壊させること、が基本条件となる。 On the contrary, when the metal particles are not fixed to the resin base material, (ib) the resin base material should be made elastic so that the collision energy is not converted into the energy of plastic deformation, and (iib) the end face of the first end portion 1a. Select a metal material and processing conditions that are unlikely to cause plastic deformation within the range in which the contact layer 15 can be formed, and (iiib) reduce the strength of the resin base material to destroy the base material below the impact of plastic deformation. The basic condition is to let them do it.
 一般に、金属粒子のヤング率が、樹脂基材を構成する部材(例えば、フィラー)のヤング率よりも小さい場合、金属粒子の衝突時の塑性変形が促される傾向にあり、大きい場合、金属粒子の衝突時の塑性変形が抑制される傾向にある。後者の場合、金属粒子の衝突エネルギーによって樹脂基材が脆性破壊し、樹脂基材の表面が削り取られる。 Generally, when the young ratio of the metal particles is smaller than the young ratio of the member (for example, filler) constituting the resin base material, plastic deformation at the time of collision of the metal particles tends to be promoted, and when it is large, the metal particles of the metal particles tend to be deformed. Plastic deformation at the time of collision tends to be suppressed. In the latter case, the collision energy of the metal particles causes brittle fracture of the resin base material, and the surface of the resin base material is scraped off.
 よって、金属粒子(コンタクト層15と言い換えてもよい)のヤング率を、樹脂基材に含まれるフィラーのヤング率より大きくすることで、金属粒子が樹脂基材に固着し難い状態を作ることができる。これにより、外装体14の第1の面14aおよび第2の面14b、および、分離層12(絶縁部材)の端面にコンタクト層15が形成されるのが抑制され、コンタクト層15を第1端部1aの端面に選択的に形成することが可能となる。また、外装体14の第1の面14aおよび第2の面14bに金属粒子を衝突させることにより、第1の面14aおよび第2の面14bを粗面化する効果を得ることができる。 Therefore, by making the Young's modulus of the metal particles (which may be rephrased as the contact layer 15) larger than the Young's modulus of the filler contained in the resin base material, it is possible to make the metal particles difficult to adhere to the resin base material. can. As a result, the formation of the contact layer 15 on the first surface 14a and the second surface 14b of the exterior body 14 and the end faces of the separation layer 12 (insulating member) is suppressed, and the contact layer 15 is formed at the first end. It can be selectively formed on the end face of the portion 1a. Further, by colliding the metal particles with the first surface 14a and the second surface 14b of the exterior body 14, it is possible to obtain the effect of roughening the first surface 14a and the second surface 14b.
 例えば、外装体14にヤング率が94GPaのシリカが充填されている場合、これより大きなヤング率を持ち、かつ、Alとの接合が容易な金属粒子として、Cu粒子およびNi粒子を用いることができる。ただし、金属粒子の形状、サイズ、温度、および、樹脂材料に充填するシリカのサイズ、充填率等によっても、固着状態は変化するので、これに限定されるわけではない。 For example, when the exterior body 14 is filled with silica having a Young's modulus of 94 GPa, Cu particles and Ni particles can be used as metal particles having a Young's modulus larger than this and easily bonded to Al. .. However, the fixing state changes depending on the shape, size, temperature of the metal particles, the size of the silica to be filled in the resin material, the filling rate, and the like, and is not limited to this.
 (陽極電極層16を形成する工程)
 陽極電極層16は、第1端部1aの端面またはコンタクト層15を覆い、外装体14の第1の面14aおよび第2の面14b、および、分離層12を設ける場合、分離層12(絶縁部材)の端面を覆うように形成され得る。
(Step of forming the anode electrode layer 16)
The anode electrode layer 16 covers the end surface or the contact layer 15 of the first end portion 1a, and when the first surface 14a and the second surface 14b of the exterior body 14 and the separation layer 12 are provided, the separation layer 12 (insulation). It can be formed to cover the end face of the member).
 陽極電極層16は、導電性粒子および樹脂材料を含む導電性ペーストの塗布により形成してもよい。具体的には、導電性ペースト(例えば、銀ペースト)を、ディップ法、転写法、印刷法、ディスペンス法などで各端面に塗布し、その後、高温で硬化させることにより、陽極電極層16を形成する。 The anode electrode layer 16 may be formed by applying a conductive paste containing conductive particles and a resin material. Specifically, a conductive paste (for example, silver paste) is applied to each end face by a dip method, a transfer method, a printing method, a dispense method, or the like, and then cured at a high temperature to form an anode electrode layer 16. do.
 他に、電解めっき法、無電解めっき法、スパッタリング法、真空蒸着法、化学蒸着(CVD)法、コールドスプレー法、溶射法によって、金属層である陽極電極層16を形成してもよい。 Alternatively, the anode electrode layer 16 which is a metal layer may be formed by an electrolytic plating method, a non-electrolytic plating method, a sputtering method, a vacuum vapor deposition method, a chemical vapor deposition (CVD) method, a cold spray method, or a thermal spraying method.
 (変形例1)
 以下、実施形態の変形例1に係る集積回路付電気回路100A及び電気回路101Aについて、図9を参照して説明する。実施形態と同様の構成については、同一の符号を付して説明を省略する。
(Modification 1)
Hereinafter, the electric circuit 100A with an integrated circuit and the electric circuit 101A according to the first modification of the embodiment will be described with reference to FIG. The same reference numerals are given to the same configurations as those of the embodiments, and the description thereof will be omitted.
 本変形例1では、所定の特性を有する所定のコンデンサを実現するために、貫通コンデンサを採用する場合について説明する。すなわち、本変形例1のコンデンサ11A(所定のコンデンサ)は、貫通コンデンサである。 In this modification 1, a case where a through capacitor is adopted in order to realize a predetermined capacitor having a predetermined characteristic will be described. That is, the capacitor 11A (predetermined capacitor) of the present modification 1 is a through capacitor.
 コンデンサ11Aは、筐体24と、2つの陽極端子25、26と、貫通部27と、少なくとも1つ(図9では4つ)の陰極端子28と、を備えている。2つの陽極端子25、26は、筐体24の外部に露出している。2つの陽極端子25、26は、電路30に電気的に接続されている。貫通部27は、筐体24の内部に配置されている。貫通部27は、2つの陽極端子25、26を電気的に接続している。陰極端子28は、筐体24の外部に露出している。陰極端子28は、グランド(すなわち、グランド電位の導体パターンN3)に電気的に接続されている。 The capacitor 11A includes a housing 24, two anode terminals 25 and 26, a penetrating portion 27, and at least one (four in FIG. 9) cathode terminals 28. The two anode terminals 25 and 26 are exposed to the outside of the housing 24. The two anode terminals 25 and 26 are electrically connected to the electric circuit 30. The penetrating portion 27 is arranged inside the housing 24. The penetration portion 27 electrically connects the two anode terminals 25 and 26. The cathode terminal 28 is exposed to the outside of the housing 24. The cathode terminal 28 is electrically connected to the ground (that is, the conductor pattern N3 of the ground potential).
 筐体24の形状は、直方体状である。2つの陽極端子25、26は、筐体24の互いに対向する2面に設けられている。複数の陰極端子28の各々は、筐体24のうち上記2面とは別の面(導体パターンN3との対向面)に設けられている。 The shape of the housing 24 is a rectangular parallelepiped. The two anode terminals 25 and 26 are provided on two surfaces of the housing 24 facing each other. Each of the plurality of cathode terminals 28 is provided on a surface (a surface facing the conductor pattern N3) different from the above two surfaces of the housing 24.
 貫通部27の形状は、例えば、シート状又はワイヤ状である。貫通部27の第1端は、陽極端子25に電気的に接続されている。貫通部27の第2端は、陽極端子26に電気的に接続されている。 The shape of the penetrating portion 27 is, for example, a sheet shape or a wire shape. The first end of the penetrating portion 27 is electrically connected to the anode terminal 25. The second end of the penetrating portion 27 is electrically connected to the anode terminal 26.
 コンデンサ11Aは、少なくとも1つの内部接地電極を更に備えている。内部接地電極は、筐体24の内部に配置されている。内部接地電極は、少なくとも1つの陰極端子28に電気的に接続されている。内部接地電極は、貫通部27との間に間隔をあけて貫通部27に対向している。 The capacitor 11A further includes at least one internal ground electrode. The internal ground electrode is arranged inside the housing 24. The internal ground electrode is electrically connected to at least one cathode terminal 28. The internal ground electrode faces the penetrating portion 27 at a distance from the penetrating portion 27.
 図9では、第2電路32の一部として、導体パターン321と、導体パターンP2、P3と、が設けられている。導体パターン321は、DC/DCコンバータ43(図1参照)及びインダクタ44の第1端に電気的に接続されている。導体パターンP2は、インダクタ44の第2端及び陽極端子25に電気的に接続されている。導体パターンP3は、陽極端子26及び集積回路41に電気的に接続されている。また、集積回路41は、グランドパターン(導体パターンN3)に電気的に接続されている。 In FIG. 9, a conductor pattern 321 and conductor patterns P2 and P3 are provided as a part of the second electric circuit 32. The conductor pattern 321 is electrically connected to the first end of the DC / DC converter 43 (see FIG. 1) and the inductor 44. The conductor pattern P2 is electrically connected to the second end of the inductor 44 and the anode terminal 25. The conductor pattern P3 is electrically connected to the anode terminal 26 and the integrated circuit 41. Further, the integrated circuit 41 is electrically connected to the ground pattern (conductor pattern N3).
 貫通部27は、導体パターンP2、P3間を電気的に接続している。つまり、貫通部27は、電路30(第2電路32)の一部を兼ねている。集積回路付電気回路100Aは、このような構成を備えるが、集積回路付電気回路100Aの等価回路は、実施形態の集積回路付電気回路100(図1参照)と同じである。 The penetrating portion 27 electrically connects the conductor patterns P2 and P3. That is, the penetrating portion 27 also serves as a part of the electric path 30 (second electric path 32). The electric circuit 100A with an integrated circuit has such a configuration, but the equivalent circuit of the electric circuit 100A with an integrated circuit is the same as the electric circuit 100 with an integrated circuit (see FIG. 1) of the embodiment.
 (変形例2)
 以下、実施形態の変形例2について説明する。
(Modification 2)
Hereinafter, the second modification of the embodiment will be described.
 所定の特性を有するコンデンサ11を実現するために、コンデンサ11は、以下に列挙する構成のうち少なくとも1つの構成を有していてもよい。 In order to realize the capacitor 11 having a predetermined characteristic, the capacitor 11 may have at least one of the configurations listed below.
 コンデンサ11は、LW反転タイプの構造であってもよい。LW反転タイプのコンデンサは、実装面と対向する方向から見て長方形状であり、長手方向に沿った2辺に外部電極(第1の外部電極21及び第2の外部電極22)が設けられた構造を有する。 The capacitor 11 may have an LW inversion type structure. The LW inversion type capacitor has a rectangular shape when viewed from the direction facing the mounting surface, and external electrodes (first external electrode 21 and second external electrode 22) are provided on two sides along the longitudinal direction. Has a structure.
 また、コンデンサ11は、LW反転タイプの構造であって、かつ、実施形態と同様に交互積層コンデンサであってもよい。 Further, the capacitor 11 may have an LW inversion type structure and may be an alternating laminated capacitor as in the embodiment.
 また、コンデンサ11は、3つ以上の外部電極を有する多端子コンデンサであってもよい。また、複数の多端子コンデンサを並列に接続する場合に、互いに隣り合う多端子コンデンサの極性が逆であるように接続してもよい。つまり、極性がある方向になるときの多端子コンデンサの方向を正方向として、正方向に向いた多端子コンデンサと、正方向とは反対方向に向いた多端子コンデンサとを交互に配置してもよい。これにより、多端子コンデンサで生じる磁束が効果的に減少し、ESLを効果的に低減され得る。 Further, the capacitor 11 may be a multi-terminal capacitor having three or more external electrodes. Further, when connecting a plurality of multi-terminal capacitors in parallel, the multi-terminal capacitors adjacent to each other may be connected so that their polarities are opposite to each other. In other words, even if the multi-terminal capacitor facing in the positive direction and the multi-terminal capacitor facing in the opposite direction to the positive direction are arranged alternately with the direction of the multi-terminal capacitor in the direction of polarity as the positive direction. good. As a result, the magnetic flux generated by the multi-terminal capacitor can be effectively reduced, and the ESL can be effectively reduced.
 実施形態の交互積層コンデンサにおいて、第1のコンデンサ素子10aと第2のコンデンサ素子10bとの組の個数は、2組に限定されず、1組又は3組以上であってもよい。また、第1のコンデンサ素子10aと第2のコンデンサ素子10bとが交互に積層していることに限定されず、複数の第1のコンデンサ素子10aからなる第1積層構造と、複数の第2のコンデンサ素子10bからなる第2積層構造とが、交互に積層していてもよい。 In the alternating laminated capacitor of the embodiment, the number of pairs of the first capacitor element 10a and the second capacitor element 10b is not limited to two, and may be one or three or more. Further, the first capacitor element 10a and the second capacitor element 10b are not limited to being alternately laminated, and a first laminated structure composed of a plurality of first capacitor elements 10a and a plurality of second capacitors are used. The second laminated structure composed of the capacitor element 10b may be alternately laminated.
 (実施形態のその他の変形例)
 以下、実施形態のその他の変形例を列挙する。以下の変形例は、適宜組み合わせて実現されてもよい。また、以下の変形例は、上述の変形例1又は2と適宜組み合わせて実現されてもよい。
(Other variants of the embodiment)
Hereinafter, other modifications of the embodiment are listed. The following modifications may be realized by combining them as appropriate. Further, the following modified examples may be realized in combination with the above-mentioned modified examples 1 or 2 as appropriate.
 コンデンサ11は、第1電路31とグランドとに電気的に接続されてもよい。また、第1電路31とグランドとの間に、複数のコンデンサ11の並列回路が電気的に接続されてもよい。第2電路32とグランドとの間に、複数のコンデンサ11の並列回路が電気的に接続されてもよい。 The capacitor 11 may be electrically connected to the first electric circuit 31 and the ground. Further, a parallel circuit of a plurality of capacitors 11 may be electrically connected between the first electric path 31 and the ground. A parallel circuit of a plurality of capacitors 11 may be electrically connected between the second electric circuit 32 and the ground.
 実施形態では、コンデンサ11は、集積回路41を収容するパッケージの外部に配置されているが、パッケージに内蔵されていてもよい。 In the embodiment, the capacitor 11 is arranged outside the package accommodating the integrated circuit 41, but it may be built in the package.
 集積回路41は、量子コンピュータに用いられてもよい。 The integrated circuit 41 may be used in a quantum computer.
 電源PS1として、交流電源と、交流電源から入力された交流電力を直流電力に変換して出力するAC/DCコンバータと、を用いてもよい。 As the power supply PS1, an AC power supply and an AC / DC converter that converts AC power input from the AC power supply into DC power and outputs it may be used.
 (まとめ)
 以上説明した実施形態等から、以下の態様が開示されている。
(summary)
From the embodiments described above, the following aspects are disclosed.
 第1の態様に係る集積回路(41)の電源供給用の電気回路(101、101A)は、電路(30)と、少なくとも1つの所定のコンデンサ(11、11A)と、を備える。電路(30)は、電源(PS1)から集積回路(41)に直流電力を供給する。所定のコンデンサ(11、11A)は、所定の特性を有する。所定のコンデンサ(11、11A)は、電路(30)とグランドとに電気的に接続されている。所定の特性は、少なくとも周波数が5[MHz]以上10[MHz]以下におけるインピーダンスが10[mΩ]以下という特性である。 The electric circuit (101, 101A) for power supply of the integrated circuit (41) according to the first aspect includes an electric circuit (30) and at least one predetermined capacitor (11, 11A). The electric circuit (30) supplies DC power from the power source (PS1) to the integrated circuit (41). The predetermined capacitors (11, 11A) have predetermined characteristics. The predetermined capacitors (11, 11A) are electrically connected to the electric circuit (30) and the ground. The predetermined characteristic is that the impedance is 10 [mΩ] or less at least when the frequency is 5 [MHz] or more and 10 [MHz] or less.
 上記の構成によれば、電気回路(101、101A)に用いるコンデンサの員数を削減することができる。 According to the above configuration, the number of capacitors used in the electric circuit (101, 101A) can be reduced.
 また、第2の態様に係る集積回路(41)の電源供給用の電気回路(101、101A)では、第1の態様において、所定の特性は、周波数が100[kHz]以上10[MHz]以下におけるインピーダンスが10[mΩ]以下という特性である。 Further, in the electric circuit (101, 101A) for power supply of the integrated circuit (41) according to the second aspect, in the first aspect, the predetermined characteristic is that the frequency is 100 [kHz] or more and 10 [MHz] or less. The impedance is 10 [mΩ] or less.
 上記の構成によれば、電気回路(101、101A)に用いるコンデンサの員数を削減することができる。 According to the above configuration, the number of capacitors used in the electric circuit (101, 101A) can be reduced.
 また、第3の態様に係る集積回路(41)の電源供給用の電気回路(101、101A)は、第1又は2の態様において、DC/DCコンバータ(43)を更に備える。DC/DCコンバータ(43)は、電源(PS1)と所定のコンデンサ(11、11A)との間に電気的に接続されている。 Further, the electric circuit (101, 101A) for power supply of the integrated circuit (41) according to the third aspect further includes a DC / DC converter (43) in the first or second aspect. The DC / DC converter (43) is electrically connected between the power supply (PS1) and a predetermined capacitor (11, 11A).
 上記の構成によれば、集積回路(41)に所望の電圧を供給できる。 According to the above configuration, a desired voltage can be supplied to the integrated circuit (41).
 また、第4の態様に係る集積回路(41)の電源供給用の電気回路(101、101A)では、第3の態様において、DC/DCコンバータ(43)のスイッチング周波数は、200[kHz]以上10[MHz]以下である。 Further, in the electric circuit (101, 101A) for power supply of the integrated circuit (41) according to the fourth aspect, in the third aspect, the switching frequency of the DC / DC converter (43) is 200 [kHz] or more. It is 10 [MHz] or less.
 上記の構成によれば、集積回路(41)の入力電圧の交流成分を制限できる。 According to the above configuration, the AC component of the input voltage of the integrated circuit (41) can be limited.
 また、第5の態様に係る集積回路(41)の電源供給用の電気回路(101、101A)では、第3又は4の態様において、所定のコンデンサ(11、11A)と集積回路(41)との間の配線インピーダンスは、DC/DCコンバータ(43)と集積回路(41)との間の配線インピーダンスよりも小さい。 Further, in the electric circuit (101, 101A) for supplying power of the integrated circuit (41) according to the fifth aspect, in the third or fourth aspect, the predetermined capacitor (11, 11A) and the integrated circuit (41) are used. The wiring impedance between is smaller than the wiring impedance between the DC / DC converter (43) and the integrated circuit (41).
 上記の構成によれば、DC/DCコンバータ(43)の出力電圧の高調波成分を、所定のコンデンサ(11、11A)により低減できる。 According to the above configuration, the harmonic component of the output voltage of the DC / DC converter (43) can be reduced by a predetermined capacitor (11, 11A).
 また、第6の態様に係る集積回路(41)の電源供給用の電気回路(101、101A)では、第1~5の態様のいずれか1つにおいて、所定のコンデンサ(11、11A)の自己共振周波数(f0)は、300[kHz]以上10[GHz]以下である。 Further, in the electric circuit (101, 101A) for power supply of the integrated circuit (41) according to the sixth aspect, in any one of the first to fifth aspects, the self of the predetermined capacitor (11, 11A). The resonance frequency (f0) is 300 [kHz] or more and 10 [GHz] or less.
 上記の構成によれば、自己共振周波数(f0)の前後の周波数帯において、所定のコンデンサ(11、11A)のインピーダンスを抑えられる。 According to the above configuration, the impedance of the predetermined capacitor (11, 11A) can be suppressed in the frequency band before and after the self-resonant frequency (f0).
 また、第7の態様に係る集積回路(41)の電源供給用の電気回路(101、101A)では、第1~6の態様のいずれか1つにおいて、所定のコンデンサ(11、11A)の駆動電圧は3.3[V]以下である。 Further, in the electric circuit (101, 101A) for supplying power of the integrated circuit (41) according to the seventh aspect, in any one of the first to sixth aspects, a predetermined capacitor (11, 11A) is driven. The voltage is 3.3 [V] or less.
 上記の構成によれば、所定のコンデンサ(11、11A)は、集積回路(41)に電気的に接続される電路(30)での使用に適する。 According to the above configuration, the predetermined capacitors (11, 11A) are suitable for use in the electric circuit (30) electrically connected to the integrated circuit (41).
 また、第8の態様に係る集積回路(41)の電源供給用の電気回路(101)では、第1~7の態様のいずれか1つにおいて、所定のコンデンサ(11)は、電解コンデンサである。所定のコンデンサ(11)は、複数のコンデンサ素子(10)が積層された素子積層体と、素子積層体を封止する外装体(14)と、第1の外部電極(21)と、第2の外部電極(22)と、第3の外部電極(23)と、を備える。複数のコンデンサ素子(10)のそれぞれは、陽極体(3)と、誘電体層と、陰極部(6)と、第1端部(1a)と、第2端部(2a)と、を有する。陽極体(3)は、表面に多孔質部(5)を有する。誘電体層は、多孔質部(5)の少なくとも一部の表面に形成されている。陰極部(6)は、誘電体層の少なくとも一部を覆う。第1端部(1a)では、陽極体(3)が露出する。第2端部(2a)では、陽極体(3)が陰極部(6)で覆われている。少なくとも第1端部(1a)の端面は、外装体(14)から露出している。複数のコンデンサ素子(10)は、第1のコンデンサ素子(10a)と、第2のコンデンサ素子(10b)と、を有する。第1のコンデンサ素子(10a)では、第1端部(1a)が外装体(14)の第1の面(14a)を向いている。第2のコンデンサ素子(10b)では、第1端部(1a)が外装体(14)の第1の面(14a)と異なる第2の面(14b)を向いている。素子積層体において、第1のコンデンサ素子(10a)と第2のコンデンサ素子(10b)とが交互に積層されている。第1のコンデンサ素子(10a)の第1端部(1a)は、第1の外部電極(21)と電気的に接続している。第2のコンデンサ素子(10b)の第1端部(1a)は、第2の外部電極(22)と電気的に接続している。第3の外部電極(23)は、コンデンサ素子(10)の陰極部(6)と電気的に接続している。 Further, in the electric circuit (101) for supplying power of the integrated circuit (41) according to the eighth aspect, in any one of the first to seventh aspects, the predetermined capacitor (11) is an electrolytic capacitor. .. The predetermined capacitor (11) includes an element laminate in which a plurality of capacitor elements (10) are laminated, an exterior body (14) that seals the element laminate, a first external electrode (21), and a second. The external electrode (22) and the third external electrode (23) are provided. Each of the plurality of capacitor elements (10) has an anode body (3), a dielectric layer, a cathode portion (6), a first end portion (1a), and a second end portion (2a). .. The anode body (3) has a porous portion (5) on the surface. The dielectric layer is formed on the surface of at least a part of the porous portion (5). The cathode portion (6) covers at least a part of the dielectric layer. At the first end (1a), the anode body (3) is exposed. At the second end (2a), the anode (3) is covered with the cathode (6). At least the end face of the first end portion (1a) is exposed from the exterior body (14). The plurality of capacitor elements (10) include a first capacitor element (10a) and a second capacitor element (10b). In the first capacitor element (10a), the first end portion (1a) faces the first surface (14a) of the exterior body (14). In the second capacitor element (10b), the first end portion (1a) faces the second surface (14b) different from the first surface (14a) of the exterior body (14). In the element laminate, the first capacitor element (10a) and the second capacitor element (10b) are alternately laminated. The first end portion (1a) of the first capacitor element (10a) is electrically connected to the first external electrode (21). The first end portion (1a) of the second capacitor element (10b) is electrically connected to the second external electrode (22). The third external electrode (23) is electrically connected to the cathode portion (6) of the capacitor element (10).
 上記の構成によれば、低ESLかつ高容量の所定のコンデンサ(11)を提供できる。 According to the above configuration, it is possible to provide a predetermined capacitor (11) having a low ESL and a high capacity.
 また、第9の態様に係る集積回路(41)の電源供給用の電気回路(101A)では、第1~7の態様のいずれか1つにおいて、所定のコンデンサ(11A)は、貫通コンデンサである。所定のコンデンサ(11A)は、筐体(24)と、2つの陽極端子(25、26)と、貫通部(27)と、陰極端子(28)と、を備えている。2つの陽極端子(25、26)は、筐体(24)の外部に露出している。2つの陽極端子(25、26)は、電路(30)に電気的に接続されている。貫通部(27)は、筐体(24)の内部に配置されている。貫通部(27)は、2つの陽極端子(25、26)を電気的に接続している。陰極端子(28)は、筐体(24)の外部に露出している。陰極端子(28)は、グランドに電気的に接続されている。 Further, in the electric circuit (101A) for power supply of the integrated circuit (41) according to the ninth aspect, in any one of the first to seventh aspects, the predetermined capacitor (11A) is a through capacitor. .. The predetermined capacitor (11A) includes a housing (24), two anode terminals (25, 26), a penetration portion (27), and a cathode terminal (28). The two anode terminals (25, 26) are exposed to the outside of the housing (24). The two anode terminals (25, 26) are electrically connected to the electric circuit (30). The penetration portion (27) is arranged inside the housing (24). The penetration portion (27) electrically connects the two anode terminals (25, 26). The cathode terminal (28) is exposed to the outside of the housing (24). The cathode terminal (28) is electrically connected to the ground.
 上記の構成によれば、低ESLかつ高容量の所定のコンデンサ(11A)を提供できる。 According to the above configuration, it is possible to provide a predetermined capacitor (11A) having a low ESL and a high capacity.
 また、第10の態様に係る集積回路(41)の電源供給用の電気回路(101、101A)では、第1~9の態様のいずれか1つにおいて、電路(30)に電気的に接続された所定のコンデンサ(11、11A)の個数は1つである。 Further, in the electric circuit (101, 101A) for power supply of the integrated circuit (41) according to the tenth aspect, in any one of the first to ninth aspects, the electric circuit (30) is electrically connected to the electric circuit (30). The number of predetermined capacitors (11, 11A) is one.
 上記の構成によれば、所定のコンデンサ(11、11A)の員数を少なくできる。 According to the above configuration, the number of predetermined capacitors (11, 11A) can be reduced.
 第1の態様以外の構成については、集積回路(41)の電源供給用の電気回路(101、101A)に必須の構成ではなく、適宜省略可能である。 The configuration other than the first aspect is not an essential configuration for the electric circuit (101, 101A) for power supply of the integrated circuit (41), and can be omitted as appropriate.
 また、第11の態様に係るコンデンサ(11、11A)は、第1~10の態様のいずれか1つに係る集積回路(41)の電源供給用の電気回路(101、101A)に、所定のコンデンサ(11、11A)として用いられる。 Further, the capacitor (11, 11A) according to the eleventh aspect is a predetermined electric circuit (101, 101A) for power supply of the integrated circuit (41) according to any one of the first to ten aspects. It is used as a capacitor (11, 11A).
 上記の構成によれば、電気回路(101、101A)に用いるコンデンサの員数を削減することができる。 According to the above configuration, the number of capacitors used in the electric circuit (101, 101A) can be reduced.
 また、第12の態様に係る集積回路付電気回路(100、100A)は、第1~10の態様のいずれか1つに係る集積回路(41)の電源供給用の電気回路(101、101A)と、集積回路(41)と、を備える。 Further, the electric circuit with an integrated circuit (100, 100A) according to the twelfth aspect is an electric circuit (101, 101A) for supplying power to the integrated circuit (41) according to any one of the first to tenth aspects. And an integrated circuit (41).
 上記の構成によれば、電気回路(101、101A)に用いるコンデンサの員数を削減することができる。 According to the above configuration, the number of capacitors used in the electric circuit (101, 101A) can be reduced.
1a 第1端部
2a 第2端部
3 陽極体
5 多孔質部
6 陰極部
10 コンデンサ素子
10a 第1のコンデンサ素子
10b 第2のコンデンサ素子
11、11A コンデンサ
14 外装体
14a 第1の面
14b 第2の面
21 第1の外部電極
22 第2の外部電極
23 第3の外部電極
24 筐体
25、26 陽極端子
27 貫通部
28 陰極端子
30 電路
41 集積回路
43 DC/DCコンバータ
100、100A 集積回路付電気回路
101、101A 電気回路
f0 自己共振周波数
PS1 電源
1a 1st end 2a 2nd end 3 Electrode 5 Porous part 6 Cathode 10 Condenser element 10a First condenser element 10b Second condenser element 11, 11A Condenser 14 Exterior 14a First surface 14b Second 21 First external electrode 22 Second external electrode 23 Third external electrode 24 Housing 25, 26 Anostate terminal 27 Penetration part 28 Cathode terminal 30 Electric circuit 41 Integrated circuit 43 DC / DC converter 100, 100A With integrated circuit Electric circuit 101, 101A Electric circuit f0 Self-resonant frequency PS1 Power supply

Claims (12)

  1.  集積回路の電源供給用の電気回路であって、
     電源から前記集積回路に直流電力を供給する電路と、
     所定の特性を有し、前記電路とグランドとに電気的に接続された少なくとも1つの所定のコンデンサと、を備え、
     前記所定の特性は、少なくとも周波数が5[MHz]以上10[MHz]以下におけるインピーダンスが10[mΩ]以下という特性である、
     集積回路の電源供給用の電気回路。
    An electric circuit for supplying power to an integrated circuit.
    An electric circuit that supplies DC power from a power source to the integrated circuit,
    It comprises at least one predetermined capacitor, which has a predetermined characteristic and is electrically connected to the electric circuit and the ground.
    The predetermined characteristic is that the impedance is 10 [mΩ] or less at least when the frequency is 5 [MHz] or more and 10 [MHz] or less.
    An electric circuit for supplying power to an integrated circuit.
  2.  前記所定の特性は、周波数が100[kHz]以上10[MHz]以下におけるインピーダンスが10[mΩ]以下という特性である、
     請求項1に記載の集積回路の電源供給用の電気回路。
    The predetermined characteristic is that the impedance is 10 [mΩ] or less when the frequency is 100 [kHz] or more and 10 [MHz] or less.
    The electric circuit for supplying power to the integrated circuit according to claim 1.
  3.  前記電源と前記所定のコンデンサとの間に電気的に接続されたDC/DCコンバータを更に備える、
     請求項1又は2に記載の集積回路の電源供給用の電気回路。
    Further comprising a DC / DC converter electrically connected between the power supply and the predetermined capacitor.
    The electric circuit for supplying power to the integrated circuit according to claim 1 or 2.
  4.  前記DC/DCコンバータのスイッチング周波数は、200[kHz]以上10[MHz]以下である、
     請求項3に記載の集積回路の電源供給用の電気回路。
    The switching frequency of the DC / DC converter is 200 [kHz] or more and 10 [MHz] or less.
    The electric circuit for supplying power to the integrated circuit according to claim 3.
  5.  前記所定のコンデンサと前記集積回路との間の配線インピーダンスは、前記DC/DCコンバータと前記集積回路との間の配線インピーダンスよりも小さい、
     請求項3又は4に記載の集積回路の電源供給用の電気回路。
    The wiring impedance between the predetermined capacitor and the integrated circuit is smaller than the wiring impedance between the DC / DC converter and the integrated circuit.
    The electric circuit for power supply of the integrated circuit according to claim 3 or 4.
  6.  前記所定のコンデンサの自己共振周波数は、300[kHz]以上1[GHz]以下である、
     請求項1~5のいずれか一項に記載の集積回路の電源供給用の電気回路。
    The self-resonant frequency of the predetermined capacitor is 300 [kHz] or more and 1 [GHz] or less.
    The electric circuit for supplying power to the integrated circuit according to any one of claims 1 to 5.
  7.  前記所定のコンデンサの駆動電圧は3.3[V]以下である、
     請求項1~6のいずれか一項に記載の集積回路の電源供給用の電気回路。
    The drive voltage of the predetermined capacitor is 3.3 [V] or less.
    The electric circuit for supplying power to the integrated circuit according to any one of claims 1 to 6.
  8.  前記所定のコンデンサは、電解コンデンサであって、
     前記所定のコンデンサは、
      複数のコンデンサ素子が積層された素子積層体と、
      前記素子積層体を封止する外装体と、
      第1の外部電極と、
      第2の外部電極と、
      第3の外部電極と、を備え、
     前記複数のコンデンサ素子のそれぞれは、
      表面に多孔質部を有する陽極体と、
      前記多孔質部の少なくとも一部の表面に形成された誘電体層と、
      前記誘電体層の少なくとも一部を覆う陰極部と、
      前記陽極体が露出する第1端部と、
      前記陽極体が前記陰極部で覆われた第2端部と、を有し、
     少なくとも前記第1端部の端面は、前記外装体から露出しており、
     前記複数のコンデンサ素子は、前記第1端部が前記外装体の第1の面を向いた第1のコンデンサ素子と、前記第1端部が前記外装体の前記第1の面と異なる第2の面を向いた第2のコンデンサ素子と、を有し、 前記素子積層体において、前記第1のコンデンサ素子と前記第2のコンデンサ素子とが交互に積層され、
     前記第1のコンデンサ素子の前記第1端部は、前記第1の外部電極と電気的に接続しており、
     前記第2のコンデンサ素子の前記第1端部は、前記第2の外部電極と電気的に接続しており、
     前記第3の外部電極は、前記コンデンサ素子の前記陰極部と電気的に接続している、
     請求項1~7のいずれか一項に記載の集積回路の電源供給用の電気回路。
    The predetermined capacitor is an electrolytic capacitor, and the predetermined capacitor is an electrolytic capacitor.
    The predetermined capacitor is
    An element laminate in which multiple capacitor elements are laminated, and
    An exterior body that seals the element laminate and
    With the first external electrode,
    With the second external electrode,
    With a third external electrode,
    Each of the plurality of capacitor elements
    An anode having a porous part on the surface and
    A dielectric layer formed on the surface of at least a part of the porous portion and
    A cathode portion that covers at least a part of the dielectric layer,
    The first end where the anode is exposed and
    The anode has a second end covered with the cathode and has.
    At least the end face of the first end portion is exposed from the exterior body.
    The plurality of capacitor elements include a first capacitor element whose first end portion faces the first surface of the exterior body, and a second capacitor element whose first end portion is different from the first surface of the exterior body. The first capacitor element and the second capacitor element are alternately laminated in the element laminate.
    The first end of the first capacitor element is electrically connected to the first external electrode.
    The first end of the second capacitor element is electrically connected to the second external electrode.
    The third external electrode is electrically connected to the cathode portion of the capacitor element.
    The electric circuit for supplying power to the integrated circuit according to any one of claims 1 to 7.
  9.  前記所定のコンデンサは、貫通コンデンサであって、
     前記所定のコンデンサは、
      筐体と、
      前記筐体の外部に露出し前記電路に電気的に接続された2つの陽極端子と、
      前記筐体の内部に配置され前記2つの陽極端子を電気的に接続している貫通部と、
      前記筐体の外部に露出し前記グランドに電気的に接続された陰極端子と、を備える、
     請求項1~7のいずれか一項に記載の集積回路の電源供給用の電気回路。
    The predetermined capacitor is a through capacitor.
    The predetermined capacitor is
    With the housing
    Two anode terminals exposed to the outside of the housing and electrically connected to the electric circuit,
    A penetrating portion that is arranged inside the housing and electrically connects the two anode terminals,
    A cathode terminal exposed to the outside of the housing and electrically connected to the ground.
    The electric circuit for supplying power to the integrated circuit according to any one of claims 1 to 7.
  10.  前記電路に電気的に接続された前記所定のコンデンサの個数は1つである、
     請求項1~9のいずれか一項に記載の集積回路の電源供給用の電気回路。
    The number of the predetermined capacitors electrically connected to the electric circuit is one.
    The electric circuit for supplying power to the integrated circuit according to any one of claims 1 to 9.
  11.  請求項1~10のいずれか一項に記載の集積回路の電源供給用の電気回路に前記所定のコンデンサとして用いられる、
     コンデンサ。
    It is used as the predetermined capacitor in the electric circuit for supplying power of the integrated circuit according to any one of claims 1 to 10.
    Capacitor.
  12.  請求項1~10のいずれか一項に記載の集積回路の電源供給用の電気回路と、前記集積回路と、を備える、
     集積回路付電気回路。
    The integrated circuit according to any one of claims 1 to 10 is provided with an electric circuit for supplying power to the integrated circuit and the integrated circuit.
    Electric circuit with integrated circuit.
PCT/JP2021/017083 2020-05-12 2021-04-28 Electric circuit for integrated circuit power supply, capacitor, and electric circuit having integrated circuit WO2021230089A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-084089 2020-05-12
JP2020084089A JP2023085583A (en) 2020-05-12 2020-05-12 Electric circuits for power supply of integrated circuit, capacitor, and electric circuit with integrated circuit

Publications (1)

Publication Number Publication Date
WO2021230089A1 true WO2021230089A1 (en) 2021-11-18

Family

ID=78525716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017083 WO2021230089A1 (en) 2020-05-12 2021-04-28 Electric circuit for integrated circuit power supply, capacitor, and electric circuit having integrated circuit

Country Status (2)

Country Link
JP (1) JP2023085583A (en)
WO (1) WO2021230089A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220406526A1 (en) * 2020-09-21 2022-12-22 Tdk Electronics Ag Capacitor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006352059A (en) * 2005-05-18 2006-12-28 Matsushita Electric Ind Co Ltd Digital signal processing board
JP2007258478A (en) * 2006-03-23 2007-10-04 Rohm Co Ltd Composite circuit component and semiconductor device comprising the same
JP2008022017A (en) * 2003-05-06 2008-01-31 Marvell World Trade Ltd Ultralow inductance multilayer ceramic capacitor
JP2008098462A (en) * 2006-10-13 2008-04-24 Fujitsu Media Device Kk Solid electrolytic capacitor
WO2009028183A1 (en) * 2007-08-29 2009-03-05 Panasonic Corporation Solid electrolytic capacitor
JP3185175U (en) * 2013-05-24 2013-08-01 アルプス電気株式会社 Power supply circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008022017A (en) * 2003-05-06 2008-01-31 Marvell World Trade Ltd Ultralow inductance multilayer ceramic capacitor
JP2006352059A (en) * 2005-05-18 2006-12-28 Matsushita Electric Ind Co Ltd Digital signal processing board
JP2007258478A (en) * 2006-03-23 2007-10-04 Rohm Co Ltd Composite circuit component and semiconductor device comprising the same
JP2008098462A (en) * 2006-10-13 2008-04-24 Fujitsu Media Device Kk Solid electrolytic capacitor
WO2009028183A1 (en) * 2007-08-29 2009-03-05 Panasonic Corporation Solid electrolytic capacitor
JP3185175U (en) * 2013-05-24 2013-08-01 アルプス電気株式会社 Power supply circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220406526A1 (en) * 2020-09-21 2022-12-22 Tdk Electronics Ag Capacitor
US11996239B2 (en) * 2020-09-21 2024-05-28 Tdk Electronics Ag Capacitor

Also Published As

Publication number Publication date
JP2023085583A (en) 2023-06-21

Similar Documents

Publication Publication Date Title
JP7300616B2 (en) Electrolytic capacitor and manufacturing method thereof
CN111247610B (en) Electrolytic capacitor and method for manufacturing the same
US10008340B2 (en) Composite electronic component, board having the same, and power smoother including the same
JP5131079B2 (en) Manufacturing method of solid electrolytic capacitor
US6785147B2 (en) Circuit module
TWI378482B (en) Solid electrolytic capacitor element and solid electrolytic capacitor
WO2021172236A1 (en) Electrolytic capacitor and method for producing same
WO2021085555A1 (en) Electrolytic capacitor
US9953769B2 (en) Composite electronic component and board having the same
WO2021230089A1 (en) Electric circuit for integrated circuit power supply, capacitor, and electric circuit having integrated circuit
WO2022163644A1 (en) Electrolytic capacitor
US20160027593A1 (en) Composite electronic component and board having the same
WO2022163645A1 (en) Electrolytic capacitor
WO2022181606A1 (en) Filter circuit
WO2021200197A1 (en) Electrolytic capacitor
JP2009094474A (en) Chip type solid electrolytic capacitor
JP2023028537A (en) Electric device, filter device and capacitor module
WO2023176684A1 (en) Capacitor and power source module
JP2009094473A (en) Chip type solid electrolytic capacitor
CN111095452A (en) Solid electrolytic capacitor and method for manufacturing the same
JP5210672B2 (en) Capacitor parts
JP2004288793A (en) Substrate with built-in dc power supply circuit and its manufacturing method
KR100958457B1 (en) Metal capacitor
JP2009253136A (en) Substrate with built-in capacitor and manufacturing method thereof, and electronic apparatus using the same
JP2002299159A (en) Regulator for power supply

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21804120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21804120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP