JP2009094473A - Chip type solid electrolytic capacitor - Google Patents

Chip type solid electrolytic capacitor Download PDF

Info

Publication number
JP2009094473A
JP2009094473A JP2008196128A JP2008196128A JP2009094473A JP 2009094473 A JP2009094473 A JP 2009094473A JP 2008196128 A JP2008196128 A JP 2008196128A JP 2008196128 A JP2008196128 A JP 2008196128A JP 2009094473 A JP2009094473 A JP 2009094473A
Authority
JP
Japan
Prior art keywords
electrode
cathode
solid electrolytic
electrolytic capacitor
type solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008196128A
Other languages
Japanese (ja)
Inventor
Kenji Kuranuki
健司 倉貫
Katsuyuki Nakamura
克之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008196128A priority Critical patent/JP2009094473A/en
Publication of JP2009094473A publication Critical patent/JP2009094473A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To make a chip type solid electrolytic capacitor used for various electronic equipment compact. <P>SOLUTION: The chip-type solid electrolytic capacitor comprises: an element stack of a plurality of flat plate type elements 1 provided with positive electrode portions 3 at both ends and also provided with a negative electrode portion 4 between the positive electrode portions 3; an positive conductive member 5 joined to the lowest stage of the element stack; an external package 6 covering the element stack in a state where respective end surfaces of the positive electrode portions 3 of the element stack are exposed on opposite end surfaces and the negative conductive member 5 is exposed on a bottom surface; a base electrode 7 connected to the positive electrode portions 3 of the element stack exposed on the opposite end surfaces of the external package 6; and an external electrode 9 formed on the base electrode 7, the base electrode 7 comprising a zinc layer formed by cold spraying. Consequently, the number of components and the assembly man-hour can be decreased to make the chip-type solid electrolytic capacitor low-cost and compact, and respective electrodes are led out by the shortest distances to reduce ESL. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は各種電子機器に使用されるコンデンサの中で、特に、導電性高分子を固体電解質に用い、かつ、面実装対応としたチップ形固体電解コンデンサに関するものである。   The present invention relates to a chip-type solid electrolytic capacitor that uses a conductive polymer as a solid electrolyte and is surface mountable among capacitors used in various electronic devices.

電子機器の高周波化に伴って電子部品の一つであるコンデンサにも従来よりも高周波領域でのインピーダンス特性に優れたコンデンサが求められてきており、このような要求に応えるために電気伝導度の高い導電性高分子を固体電解質に用いた固体電解コンデンサが種々検討されている。   Along with the increase in frequency of electronic equipment, capacitors that are one of the electronic components have been required to have better impedance characteristics in the high frequency range than before. Various solid electrolytic capacitors using a highly conductive polymer as a solid electrolyte have been studied.

また、近年、パーソナルコンピュータのCPU周り等に使用される固体電解コンデンサには小型大容量化が強く望まれており、更に高周波化に対応して低ESR(等価直列抵抗)化や、ノイズ除去や過渡応答性に優れた低ESL(等価直列インダクタンス)化が要求されており、このような要求に応えるために種々の検討がなされている。   In recent years, a solid electrolytic capacitor used around a CPU of a personal computer has been strongly desired to be small in size and large in capacity. Further, in response to higher frequencies, lower ESR (equivalent series resistance), noise removal, There is a demand for low ESL (equivalent series inductance) excellent in transient response, and various studies have been made to meet such a demand.

図5(a)、(b)はこの種の従来の固体電解コンデンサの構成を示した正面断面図とA−A線における側面断面図であり、図5において、11は素子を示し、この素子11は弁作用金属であるアルミニウム箔からなる陽極体12の表面を粗面化して誘電体酸化皮膜層を形成した後に絶縁性のレジスト部13を設けて陽極電極部14と陰極形成部(図示せず)に分離し、この陰極形成部の誘電体酸化皮膜層上に導電性高分子からなる固体電解質層、カーボン層と銀ペースト層からなる陰極層を順次積層形成することにより陰極電極部15を形成し、これにより長手方向に陽極電極部14と陰極電極部15が設けられた平板状の素子11が構成されているものである。   5 (a) and 5 (b) are a front sectional view and a side sectional view taken along line AA showing the structure of this type of conventional solid electrolytic capacitor. In FIG. Reference numeral 11 denotes a surface of an anode body 12 made of an aluminum foil which is a valve action metal to form a dielectric oxide film layer, and then an insulating resist portion 13 is provided to provide an anode electrode portion 14 and a cathode formation portion (not shown). The cathode electrode portion 15 is formed by sequentially stacking a solid electrolyte layer made of a conductive polymer, a cathode layer made of a carbon layer and a silver paste layer on the dielectric oxide film layer of the cathode forming portion. Thus, a flat element 11 having an anode electrode portion 14 and a cathode electrode portion 15 provided in the longitudinal direction is formed.

16は上記素子11の陽極電極部14に接続された陽極コム端子、16aはこの陽極コム端子16に設けられ、陽極電極部14が搭載される平面部、16bはこの平面部16aの両端を曲げ起こすことにより形成された接続部であり、複数枚積層した素子11の陽極電極部14を上記平面部16a上に搭載し、接続部16bを折り曲げて陽極電極部14に密着するように包み込み、この接続部16bの先端部分と素子11の陽極電極部14とをレーザー溶接することによって接合しているものである。   16 is an anode comb terminal connected to the anode electrode portion 14 of the element 11, 16a is a plane portion provided on the anode comb terminal 16 and on which the anode electrode portion 14 is mounted, and 16b is bent at both ends of the plane portion 16a. A connecting portion formed by waking up, mounting the anode electrode portion 14 of the stacked element 11 on the plane portion 16a, folding the connecting portion 16b so as to be in close contact with the anode electrode portion 14, The tip portion of the connecting portion 16b and the anode electrode portion 14 of the element 11 are joined by laser welding.

17は上記素子11の陰極電極部15に接続された陰極コム端子、17aはこの陰極コム端子17に設けられ、陰極電極部15が搭載される平面部であり、この平面部17aと陰極電極部15間、ならびに各素子11の陰極電極部15間の接合は導電性接着剤18を用いて行われているものである。   Reference numeral 17 denotes a cathode comb terminal connected to the cathode electrode portion 15 of the element 11, and 17a denotes a flat portion provided on the cathode comb terminal 17 on which the cathode electrode portion 15 is mounted. The flat portion 17a and the cathode electrode portion 15 and the cathode electrode part 15 of each element 11 are joined using the conductive adhesive 18.

19は上記陽極コム端子16と陰極コム端子17の一部が夫々外表面に露呈する状態で上記複数枚の素子11を一体に被覆した絶縁性の外装樹脂であり、この外装樹脂19から表出した陽極コム端子16と陰極コム端子17の一部を夫々外装樹脂19に沿って底面へと折り曲げることにより、底面部に陽極端子部16cと陰極端子部17bを形成した面実装型の固体電解コンデンサが構成されているものである。   Reference numeral 19 denotes an insulating exterior resin that integrally covers the plurality of elements 11 in a state where parts of the anode comb terminal 16 and the cathode comb terminal 17 are exposed on the outer surface. The surface-mounted solid electrolytic capacitor in which the anode terminal portion 16c and the cathode terminal portion 17b are formed on the bottom surface portion by bending a part of the anode comb terminal 16 and the cathode comb terminal 17 along the exterior resin 19 to the bottom surface. Is configured.

このように構成された従来の固体電解コンデンサは、陽極コム端子16に設けた接続部16bの先端と素子11の陽極電極部14に同時にレーザー光を照射してレーザー溶接を行うことにより、安定した溶接作業を行うことができるようになるというものであった。   The conventional solid electrolytic capacitor configured as described above is stabilized by performing laser welding by simultaneously irradiating the tip of the connection portion 16b provided on the anode comb terminal 16 and the anode electrode portion 14 of the element 11 with laser light. The welding work can be performed.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。
特開2003−289023号公報
As prior art document information related to the invention of this application, for example, Patent Document 1 is known.
JP 2003-289023 A

しかしながら上記従来の固体電解コンデンサでは、複数枚の素子11を積層して外装樹脂19で一体に被覆するために陽極コム端子16と陰極コム端子17を用いた構成にしているため、部品点数と組み立て工数が増加してコストアップになるばかりでなく、小型化を図るのが困難であり、更に陽極端子部16cと陰極端子部17bまでの各引き出し距離や接続部の関係上、ESLの低減に自ずと限界があるという課題があった。   However, since the conventional solid electrolytic capacitor has a configuration using the anode comb terminal 16 and the cathode comb terminal 17 for laminating a plurality of elements 11 and integrally covering with the exterior resin 19, the number of parts and assembly Not only does the man-hour increase increase the cost, it is difficult to reduce the size, and further, due to the relationship between the lead-out distances and connection portions between the anode terminal portion 16c and the cathode terminal portion 17b, the ESL is naturally reduced. There was a problem that there was a limit.

本発明はこのような従来の課題を解決し、部品点数と組み立て工数を削減してコストダウンと小型化を図り、かつ、各電極を最短距離で引き出すことによって低ESR化・低ESL化が実現できる、チップ形固体電解コンデンサを提供することを目的とするものである。   The present invention solves such a conventional problem, reduces the number of parts and the number of assembling steps, reduces costs and reduces the size, and realizes low ESR and low ESL by pulling out each electrode with the shortest distance. An object of the present invention is to provide a chip-type solid electrolytic capacitor.

上記課題を解決するために本発明は、両端に陽極電極部を、この陽極電極部間に陰極電極部を設けた平板状の素子を複数枚積層した素子積層体と、この素子積層体の最下段の素子の陰極電極部の底面に接合された陰極導電部材と、上記素子積層体の陽極電極部の各端面が対向する端面に夫々露呈すると共に、上記陰極導電部材が底面に露呈する状態で素子積層体を被覆し、かつ陽極電極部の素子間に埋設された絶縁性樹脂からなる外装体と、この外装体の対向する端面に夫々露呈した素子積層体の陽極電極部のそれぞれの弁作用金属箔に拡散層が形成され、この拡散層上並びに素子間に埋設された絶縁性樹脂上に形成された非弁作用金属からなる下地電極と、この下地電極上に形成された外部電極からなる構成にしたものである。   In order to solve the above-mentioned problems, the present invention provides an element laminate in which a plurality of flat elements each having an anode electrode portion at both ends and a cathode electrode portion provided between the anode electrode portions are laminated, and the element laminate. The cathode conductive member joined to the bottom surface of the cathode electrode portion of the lower element and the end surfaces of the anode electrode portion of the element laminate are exposed to the opposing end surfaces, and the cathode conductive member is exposed to the bottom surface. The valve action of the exterior body made of an insulating resin that covers the element laminate and is embedded between the elements of the anode electrode portion, and the anode electrode portion of the element laminate that is exposed on the opposing end surfaces of the exterior body, respectively. A diffusion layer is formed on the metal foil, and includes a base electrode made of a non-valve metal formed on the diffusion layer and an insulating resin embedded between the elements, and an external electrode formed on the base electrode It is a configuration.

また、上記非弁作用金属からなる下地電極が、非弁作用金属粒子の衝突速度を200m/s以上、かつ音速以下で外装体の端面に衝突させて形成された金属間結合した非弁作用金属層からなるものである。   Further, the base electrode made of the non-valve action metal has a metal-bonded non-valve action metal formed by colliding with the end face of the exterior body at a collision speed of the non-valve action metal particles of 200 m / s or more and a sound speed or less. It consists of layers.

以上のように本発明によるチップ形固体電解コンデンサは、平板状の素子を積層した素子積層体を絶縁性樹脂で被覆して陽極電極部を露呈した端面が、陽極電極部の各々の弁作用金属箔に拡散層が形成され、この拡散層上ならびに素子間に埋設された絶縁性樹脂上に非弁作用金属からなる下地電極を形成した構成とすることにより、積層されたそれぞれの弁作用金属箔と下地電極との接触界面が無いので接触抵抗を極めて低くすることができ、また、下地電極の密着強度も高めることができることから、外部電極間を最短距離で引き出すことによる低ESR化及び低ESL化をさらに低減することができるという効果が得られるものである。   As described above, the chip-type solid electrolytic capacitor according to the present invention has an end face that exposes the anode electrode part by covering the element laminate in which the flat elements are laminated with the insulating resin, and each valve action metal of the anode electrode part. Each valve action metal foil laminated by forming a diffusion layer on the foil and forming a base electrode made of a non-valve action metal on the diffusion layer and an insulating resin embedded between the elements. Since there is no contact interface between the electrode and the base electrode, the contact resistance can be made extremely low, and the adhesion strength of the base electrode can also be increased. The effect that it can further reduce is obtained.

また、陽極電極部の各端面に直接外部電極を形成することによって端面集電電極を構成したことにより、部品点数と組み立て工数を削減してコストダウンと小型化を図ることができるものである。   Further, by forming the end face current collecting electrode by directly forming the external electrode on each end face of the anode electrode portion, it is possible to reduce the number of parts and the number of assembly steps, thereby reducing the cost and the size.

更に、上記陽極電極部の端面に形成される下地電極は、非弁作用金属粒子の衝突速度を200m/s以上、かつ音速以下で外装体の端面に衝突させて形成された金属間結合した非弁作用金属層からなる構成とすることにより、箔厚の薄い弁作用金属箔の破壊や絶縁性樹脂の欠落を起こすことなく、弁作用金属箔と拡散層を形成し、この拡散層上並びに素子間に埋設された絶縁性樹脂上にも堆積され、均一で酸化していない金属間結合した非弁作用金属層を形成することができるので、接触抵抗の極めて低い、密着強度も高い下地電極を得ることができ、更なる低ESR化を実現することができるという効果が得られるものである。   Further, the base electrode formed on the end surface of the anode electrode portion is a non-valve metal-bonded non-valve metal particle formed by colliding with the end surface of the exterior body at a collision speed of the non-valve action metal particles of 200 m / s or more and below the sound velocity. By forming the valve action metal layer, the valve action metal foil and the diffusion layer are formed without causing the destruction of the thin valve action metal foil or the loss of the insulating resin. It is also possible to form a non-valve metal layer that is deposited on the insulating resin buried between them and bonded to each other in a uniform and non-oxidized manner, so that a base electrode with extremely low contact resistance and high adhesion strength can be formed. It is possible to obtain the effect that a further reduction in ESR can be realized.

(実施の形態1)
以下、実施の形態1を用いて、本発明の特に請求項1〜3に記載の発明について説明する。
(Embodiment 1)
Hereinafter, the invention described in the first to third aspects of the present invention will be described using the first embodiment.

図1(a)、(b)は本発明の実施の形態1によるチップ形固体電解コンデンサの構成を示した斜視図とA−A線における断面を示した正面断面図、図2(a)〜(c)は同チップ形固体電解コンデンサの電極形成前の状態を示した斜視図と正面断面図と側面図、図3(a)、(b)は同チップ形固体電解コンデンサの下地電極を示した正面断面図と要部拡大断面図である。   1A and 1B are a perspective view showing a configuration of a chip-type solid electrolytic capacitor according to Embodiment 1 of the present invention, a front cross-sectional view showing a cross section taken along line AA, and FIGS. (C) is a perspective view, a front sectional view and a side view showing the state of the chip-type solid electrolytic capacitor before electrode formation, and FIGS. 3 (a) and 3 (b) show the base electrode of the chip-type solid electrolytic capacitor. It is the front sectional view and principal part expanded sectional view.

図1〜図3において、1は素子を示し、この素子1は弁作用金属であるアルミニウム箔(厚み:0.1mm)からなる陽極体2の表面を粗面化して誘電体酸化皮膜層を形成した後に絶縁性のレジスト部(図示せず)を設けて両端に陽極電極部3を、この陽極電極部3間に陰極形成部(図示せず)が配設されるように分離し、この陰極形成部の誘電体酸化皮膜層上に導電性高分子からなる固体電解質層、カーボン層と銀ペースト層からなる陰極層を順次積層形成することにより陰極電極部4を形成し、これにより長手方向の両端に陽極電極部3が、この陽極電極部3間に陰極電極部4が設けられた平板状の素子1(縦横:5.6×3.4mm)が構成されているものである。   1 to 3, reference numeral 1 denotes an element. The element 1 forms a dielectric oxide film layer by roughening the surface of an anode body 2 made of an aluminum foil (thickness: 0.1 mm) which is a valve action metal. After that, an insulating resist portion (not shown) is provided, and the anode electrode portion 3 is separated at both ends so that a cathode forming portion (not shown) is disposed between the anode electrode portions 3. A cathode electrode part 4 is formed by sequentially laminating a solid electrolyte layer made of a conductive polymer, a cathode layer made of a carbon layer and a silver paste layer on the dielectric oxide film layer of the forming part, thereby forming a longitudinal electrode A plate-like element 1 (vertical and horizontal: 5.6 × 3.4 mm) in which an anode electrode portion 3 is provided at both ends and a cathode electrode portion 4 is provided between the anode electrode portions 3 is configured.

5は上記素子1を同一方向にして複数枚(本実施の形態では4枚であるが、本発明はこれに限定されるものではない)積層した素子積層体の最下段の素子1の陰極電極部4の底面に接合された陰極導電部材であり、銅板等によって構成されるものである。   5 is the cathode electrode of the lowermost element 1 of the element stack in which a plurality of the elements 1 are arranged in the same direction (four in the present embodiment, but the present invention is not limited thereto). It is a cathode conductive member joined to the bottom surface of the part 4, and is constituted by a copper plate or the like.

6は上記陰極導電部材5が接合された素子積層体を一体に被覆した絶縁性の樹脂からなる外装体であり、この外装体6の対向する端面には素子積層体の陽極電極部3の端面が夫々露呈すると共に、外装体6の底面には陰極導電部材5の底面が露呈した状態になるものである。   Reference numeral 6 denotes an exterior body made of an insulating resin that integrally covers the element laminate to which the cathode conductive member 5 is bonded, and an end face of the anode electrode portion 3 of the element laminate is provided on the opposite end face of the exterior body 6. Are exposed, and the bottom surface of the cathode conductive member 5 is exposed on the bottom surface of the outer package 6.

7は上記外装体6の対向する端面に夫々露呈した陽極電極部3に接続されて端面を被覆するように形成された一対の下地電極であり、この下地電極7は、亜鉛層からなるものである。   Reference numeral 7 denotes a pair of base electrodes that are connected to the anode electrode portions 3 exposed on the opposing end faces of the outer package 6 so as to cover the end faces, and the base electrodes 7 are made of a zinc layer. is there.

8は上記下地電極7の表面上に夫々形成された一対の中間電極であり、この中間電極8は導電性銀ペーストを用いて形成されたものである。   Reference numeral 8 denotes a pair of intermediate electrodes respectively formed on the surface of the base electrode 7, and the intermediate electrode 8 is formed using a conductive silver paste.

9は上記中間電極8の表面上に夫々形成された一対の外部電極であり、この外部電極9は溶融半田めっきを用いて形成されたものである。   Reference numeral 9 denotes a pair of external electrodes respectively formed on the surface of the intermediate electrode 8, and the external electrodes 9 are formed using molten solder plating.

次に、このように構成された本実施の形態によるチップ形固体電解コンデンサの製造方法について説明すると、まず、図2に示すように、素子1を同一方向に複数枚積層して素子積層体を作製し、この素子積層体の最下段の素子1の陰極電極部4の底面に銅板からなる陰極導電部材5を接合した後、上記陽極電極部3の端面が夫々対向する端面に露呈すると共に、上記陰極導電部材5の底面が露呈するようにした状態で絶縁性の樹脂からなる外装体6により素子積層体を一体に被覆する。なお、上記絶縁性の樹脂としては、シリカ(SiO2)からなる無機フィラーを80〜90%含有したエポキシ樹脂を用いたが、本発明はこれに限定されるものではない。 Next, the manufacturing method of the chip-type solid electrolytic capacitor according to this embodiment configured as described above will be described. First, as shown in FIG. After the cathode conductive member 5 made of a copper plate is joined to the bottom surface of the cathode electrode portion 4 of the element 1 at the lowest stage of the element laminate, the end surfaces of the anode electrode portions 3 are exposed to the opposite end surfaces, In a state where the bottom surface of the cathode conductive member 5 is exposed, the element laminate is integrally covered with an exterior body 6 made of an insulating resin. As the insulating resin, an epoxy resin containing 80 to 90% of an inorganic filler made of silica (SiO 2 ) is used, but the present invention is not limited to this.

続いて、図3に示すように、上記外装体6の対向する端面に夫々露呈した一対の陽極電極部3に接続されると共に、この端面全体を被覆するように下地電極7を形成する。この下地電極7の形成は、非弁作用金属である亜鉛粒子を衝突速度が200m/s以上、かつ音速以下で外装体の端面に衝突させて形成された金属間結合した亜鉛層を形成したものであり、上記亜鉛層は、例えば、財団法人 機械システム振興協会が平成17年3月に発行した、システム技術開発調査研究16−R−17「高速粒子衝突を利用した革新部材創製に関する調査研究報告書−要旨−」の、3.調査研究成果の要約、第1章 高速粒子衝突技術、(3)高速粒子衝突を利用した重厚皮膜成形、直接造形技術の欄に紹介されている技術であり、金属粒子を超音速で加速して基材に衝突させることにより、金属粒子が衝突時の塑性変形のエネルギーで溶融し、これにより金属粒子を基材に付着させるようにするものであり、強固な付着強度が得られるものである。   Subsequently, as shown in FIG. 3, the base electrode 7 is formed so as to be connected to the pair of anode electrode portions 3 exposed at the opposing end faces of the outer package 6 and to cover the entire end faces. The base electrode 7 is formed by forming an intermetallic-bonded zinc layer formed by causing zinc particles, which are non-valve action metals, to collide with an end face of an exterior body at a collision speed of 200 m / s or more and a sound speed or less. The zinc layer is, for example, a system technology development research study 16-R-17 “Survey research report on innovative member creation using high-speed particle collisions” issued in March 2005 by the Japan Mechanical Systems Promotion Association. 3. “Summary”. Summary of research results, Chapter 1 High-speed particle collision technology, (3) Heavy film forming using high-speed particle collision, and technology introduced in the column of direct modeling technology, accelerating metal particles at supersonic speed By causing the metal particles to collide with the base material, the metal particles are melted by the energy of plastic deformation at the time of the collision, thereby causing the metal particles to adhere to the base material, and a strong adhesion strength can be obtained.

また、上記高速粒子衝突技術による形成される下地電極7は、陽極電極部3を構成する陽極体2であるアルミニウムと腐食電位が近い材料である亜鉛や真鍮または銅を用いるのが好ましいことから、本実施の形態においては亜鉛を用いた構成にしたものであり、図3(b)の要部拡大断面図に示すように、亜鉛の粒子が陽極電極部3のアルミニウムと拡散層6aを形成するとともに、外装体6の絶縁性樹脂の表面に喰い込んだ状態になっているものである。なお、陽極電極部3を構成する材料がタンタルの場合には、タンタルと腐食電位が近い材料である銅やニッケルを用いるのが好ましいものである。   In addition, the base electrode 7 formed by the high-speed particle collision technique preferably uses zinc, brass, or copper which is a material having a corrosion potential close to that of the anode body 2 constituting the anode electrode portion 3. In this embodiment, zinc is used. As shown in the enlarged cross-sectional view of the main part of FIG. 3B, the zinc particles form the diffusion layer 6a with the aluminum in the anode electrode part 3. At the same time, it is in a state of being bitten into the surface of the insulating resin of the exterior body 6. In addition, when the material which comprises the anode electrode part 3 is a tantalum, it is preferable to use copper and nickel which are materials with a corrosion potential close to tantalum.

また、上記高速粒子衝突技術による形成される下地電極7は、陽極電極部3が弁作用金属であるアルミニウムにより構成されているため、このアルミニウムと拡散層6aを形成するものでないとアルミニウムと下地電極7とに境界部分が存在し低ESR化を図ることができなくなるので、これを防止するためには非弁作用金属を用い、この非弁作用金属に置換することが必要なものであり、上記亜鉛に限定されるものではない。   In addition, the base electrode 7 formed by the high-speed particle collision technique is configured such that the anode electrode portion 3 is made of aluminum which is a valve action metal. Therefore, it is necessary to use a non-valve action metal and to replace it with the non-valve action metal in order to prevent this. It is not limited to zinc.

また、上記高速粒子衝突技術による下地電極7の形成は、非弁作用金属である亜鉛粒子の衝突速度を200m/s以上、かつ音速以下で外装体6の端面に衝突させて形成するようにしたものであるが、外装体6の対向する一方の端面は陽極電極部3の側端面部が露呈しており、その面積が約0.3mm2と極めて小さいため、音速を超えた超音速で亜鉛粒子を衝突させるコールドスプレー法を用いると、亜鉛粒子が陽極電極部3の側端面部を削り取ってしまい、拡散層6aが形成されず、下地電極7である亜鉛層も均一に積層されなくなる。一方、200m/s未満で亜鉛粒子を衝突させると亜鉛層は形成されるものの、衝突の衝撃が弱いので拡散層6aを形成することができず、チップ形固体電解コンデンサの低ESR化を図ることができないので好ましくない。なお、亜鉛粒子の平均粒径は5〜30μmの範囲のものが好ましい。 In addition, the formation of the base electrode 7 by the high-speed particle collision technique is performed by causing the collision speed of zinc particles, which are non-valve action metals, to collide with the end surface of the exterior body 6 at a speed of 200 m / s or higher and a speed of sound or lower. However, since the opposite end surface of the exterior body 6 is exposed from the side end surface of the anode electrode portion 3 and its area is as small as about 0.3 mm 2 , zinc is used at supersonic speeds exceeding the sound speed. When the cold spray method in which the particles collide is used, the zinc particles scrape off the side end surface portion of the anode electrode portion 3, the diffusion layer 6a is not formed, and the zinc layer as the base electrode 7 is not uniformly laminated. On the other hand, when zinc particles are collided at a speed of less than 200 m / s, a zinc layer is formed, but the impact of the collision is weak, so the diffusion layer 6a cannot be formed, and the chip type solid electrolytic capacitor has a low ESR. It is not preferable because it cannot be done. The average particle diameter of the zinc particles is preferably in the range of 5 to 30 μm.

さらに、外装体6の端面から露呈する陽極電極部3の面積が小さいため、陽極電極部3の素子1間に絶縁性樹脂を埋設することにより、亜鉛粒子を衝突させたときの陽極電極部3の露呈部分を保護する役目があり、陽極電極部3の露呈部分を維持してアルミニウムと亜鉛粒子との拡散層6aを形成し、均一な亜鉛層を形成することができる。   Furthermore, since the area of the anode electrode portion 3 exposed from the end face of the outer package 6 is small, the anode electrode portion 3 when the zinc particles collide with each other by embedding an insulating resin between the elements 1 of the anode electrode portion 3. The exposed portion of the anode electrode portion 3 can be maintained to form the diffusion layer 6a of aluminum and zinc particles, thereby forming a uniform zinc layer.

続いて、上記一対の下地電極7の表面上に夫々中間電極8を形成する。なお、この中間電極8としては導電性銀ペーストを用いたが、本発明はこれに限定されるものではなく、銅−ニッケル合金粒子や銅粒子にニッケルコートし、銀めっきした粒子を用いたペースト等、コスト的に安価なものも使用可能である。   Subsequently, intermediate electrodes 8 are formed on the surfaces of the pair of base electrodes 7 respectively. In addition, although the electroconductive silver paste was used as this intermediate electrode 8, this invention is not limited to this, The paste using the nickel-coated copper-nickel alloy particle or the copper particle, and the silver plating particle | grains For example, an inexpensive one can be used.

続いて、上記一対の中間電極8の表面上に夫々外部電極9を形成する。なお、この外部電極9としては溶融半田めっきを用いたが、本発明はこれに限定されるものではなく、一般的なめっきであっても良い。   Subsequently, external electrodes 9 are respectively formed on the surfaces of the pair of intermediate electrodes 8. In addition, although the molten solder plating was used as this external electrode 9, this invention is not limited to this, General plating may be sufficient.

このように構成された本実施の形態によるチップ形固体電解コンデンサは、平板状の素子を積層した素子積層体の陽極電極部3の各端面に直接電極を形成することによって端面集電電極を構成したことにより、部品点数と組み立て工数を削減してコストダウンと小型化を図り、かつ、各電極を最短距離で引き出すことによって低ESL化を図ることができるという格別の効果を奏するものである。   The chip-type solid electrolytic capacitor according to the present embodiment configured as described above has an end face collecting electrode formed by directly forming an electrode on each end face of the anode electrode portion 3 of the element laminated body in which flat elements are laminated. As a result, it is possible to reduce the number of parts and the number of assembling steps, thereby reducing costs and downsizing, and to obtain a special effect of reducing the ESL by pulling out each electrode at the shortest distance.

更に、上記陽極電極部3に接続される下地電極7は高速粒子衝突技術による金属間結合した非弁作用金属層を形成した構成により、陽極電極部3の表面に形成された酸化皮膜層を破壊して弁作用金属箔からなるアルミニウムと拡散層6aを形成し、これにより高い強度で非弁作用金属を付着させると共に、露呈したアルミニウムの表面に酸化皮膜層が形成されないようにすることができるため、高いコンタクト性と接続抵抗の低減を図り、更なる低ESR化を実現することができるという格別の効果も奏するものである。   Furthermore, the base electrode 7 connected to the anode electrode part 3 has a structure in which a metal-bonded non-valve metal layer is formed by a high-speed particle collision technique, so that the oxide film layer formed on the surface of the anode electrode part 3 is destroyed. As a result, it is possible to form aluminum and a diffusion layer 6a made of valve-acting metal foil, thereby attaching a non-valve action metal with high strength and preventing an oxide film layer from being formed on the exposed aluminum surface. In addition, it is possible to achieve a special effect that the high contact property and the connection resistance can be reduced and the ESR can be further reduced.

なお、本実施の形態においては、上記外装体6の対向する端面に夫々露呈した陽極電極部3に接続されるように下地電極7を端面全体に形成し、この下地電極7上に中間電極8を形成し、更にこの中間電極8上に外部電極9を形成する構成で説明したが、本発明はこれに限定されるものではなく、中間電極8を無くし、下地電極7上に外部電極9を直接形成することも可能なものである。   In the present embodiment, the base electrode 7 is formed on the entire end face so as to be connected to the anode electrode portion 3 exposed at the opposing end face of the exterior body 6, and the intermediate electrode 8 is formed on the base electrode 7. However, the present invention is not limited to this, and the intermediate electrode 8 is eliminated, and the external electrode 9 is formed on the base electrode 7. It can also be formed directly.

以下、具体的な実施例について説明する。   Specific examples will be described below.

(実施例)
弁作用金属箔であるアルミニウム箔(厚み:0.1mm)の表面を粗面化して誘電体酸化皮膜層を形成した後、この表面の両端に絶縁性のレジスト部を設けて両端を陽極電極部とし、この陽極電極部の間を陰極形成部として分離し、この陰極形成部の誘電体酸化皮膜層上に電解重合法によるポリピロールからなる導電性高分子層、カーボン層と銀ペースト層からなる陰極層を順次積層形成して陰極電極部を形成し、これにより長手方向に陽極電極部と陰極電極部が設けられた平板状の素子(縦横:5.6×3.4mm)を得た。
(Example)
After roughening the surface of an aluminum foil (thickness: 0.1 mm) that is a valve metal foil to form a dielectric oxide film layer, an insulating resist portion is provided on both ends of the surface, and both ends are anode electrode portions. The anode electrode part is separated as a cathode forming part, and a conductive polymer layer made of polypyrrole by an electrolytic polymerization method, a cathode made of a carbon layer and a silver paste layer are formed on the dielectric oxide film layer of the cathode forming part. The cathode electrode part was formed by successively laminating layers, thereby obtaining a flat element (vertical and horizontal: 5.6 × 3.4 mm) provided with an anode electrode part and a cathode electrode part in the longitudinal direction.

次に、上記素子を陽極電極部を同一方向に配設されるように4枚積層して素子積層体を形成し、陽極電極部の両端面が露呈すると共に、素子の上面並びに陽極電極部の素子間を絶縁性樹脂で被覆して外装体を得た。この外装体の陰極電極部の底面は露呈した状態にある。   Next, four elements are stacked so that the anode electrode portions are arranged in the same direction to form an element laminate, and both end surfaces of the anode electrode portion are exposed, and the upper surface of the element and the anode electrode portion The element was covered with an insulating resin to obtain an outer package. The bottom surface of the cathode electrode portion of the outer package is exposed.

次に、上記外装体の対向する陽極電極部が露呈した両端面に、高速粒子衝突技術により、亜鉛粒子(平均粒径10μm)を150m/s、200m/s、250m/s、300m/s、350m/s、400m/sのそれぞれの衝突速度で衝突させ、下地電極(厚さ5μm)を形成した。その後、導電性銀ペーストを用いて中間電極を形成した。続いて、外装体の対向する他方の端面に露呈した陰極電極部にも導電性銀ペーストを用いて形成した。最後に、上記各中間電極の表面上に溶融半田めっきを用いて外部電極を形成してチップ形固体電解コンデンサを作製した(定格2V 120μF)。   Next, zinc particles (average particle size 10 μm) are 150 m / s, 200 m / s, 250 m / s, 300 m / s, by a high-speed particle collision technique on both end surfaces of the outer electrode body where the opposing anode electrode portions are exposed. Collisions were performed at a collision speed of 350 m / s and 400 m / s to form a base electrode (thickness 5 μm). Thereafter, an intermediate electrode was formed using a conductive silver paste. Subsequently, a conductive silver paste was also used to form the cathode electrode portion exposed on the opposite end face of the outer package. Finally, an external electrode was formed on the surface of each intermediate electrode by using molten solder plating to produce a chip-type solid electrolytic capacitor (rated rating 2V 120 μF).

(比較例)
上記実施例において、下地電極の代わりに、外装体の両端面に銀ペーストを塗布した後、外部電極として溶融半田めっきしたチップ形固体電解コンデンサを作製した。また、従来例として、図5に示した陽陰極コム端子を用いたチップ形固体電解コンデンサを作製した(定格2V 120μF)。
(Comparative example)
In the above example, instead of the base electrode, a silver paste was applied to both end faces of the outer package, and then a chip-type solid electrolytic capacitor was produced by hot-dip solder plating as an external electrode. Further, as a conventional example, a chip-type solid electrolytic capacitor using a positive-cathode comb terminal shown in FIG. 5 was produced (rated 2V 120 μF).

上記実施例及び比較例並びに従来例のチップ形固体電解コンデンサについて、容量、ESR、ESL、漏れ電流(LC)の特性を測定した。その結果を(表1)に示す。   For the chip-type solid electrolytic capacitors of the above Examples, Comparative Examples, and Conventional Examples, the characteristics of capacitance, ESR, ESL, and leakage current (LC) were measured. The results are shown in (Table 1).

Figure 2009094473
Figure 2009094473

上記(表1)から明らかなように、下地電極の形成が亜鉛粒子の衝突速度を200m/s未満にするとESR特性が悪くなり、衝突速度が400m/sと音速を超えた超音速になるとLCが悪くなり、好適な範囲は200m/s以上で、かつ音速の速さ以下である。この範囲にすることにより、ESR特性、ESL特性、LC特性を比較例及び従来例よりも低減させることができる。   As is clear from the above (Table 1), the formation of the base electrode deteriorates the ESR characteristics when the collision speed of the zinc particles is less than 200 m / s, and the LC becomes supersonic when the collision speed exceeds 400 m / s and exceeds the sound speed. The preferred range is 200 m / s or more and less than the speed of sound. By setting this range, the ESR characteristic, ESL characteristic, and LC characteristic can be reduced as compared with the comparative example and the conventional example.

(実施の形態2)
以下、実施の形態2を用いて、本発明の特に請求項4に記載の発明について説明する。
(Embodiment 2)
The second aspect of the present invention will be described below with reference to the second embodiment.

本実施の形態は、上記実施の形態1で図1〜図3を用いて説明したチップ形固体電解コンデンサの素子の構成が一部異なるようにしたものであり、これ以外の構成は実施の形態1と同様であるために同一部分には同一の符号を付与してその詳細な説明は省略し、異なる部分についてのみ以下に図面を用いて説明する。   In the present embodiment, the configuration of the chip-type solid electrolytic capacitor described in the first embodiment with reference to FIGS. 1 to 3 is partially different, and other configurations are the same as those in the first embodiment. The same reference numerals are given to the same parts and the detailed description thereof is omitted, and only different parts will be described below with reference to the drawings.

図4は本発明の実施の形態2によるチップ形固体電解コンデンサの電極形成前の状態を示した正面断面図であり、図4において、10は素子1の陽極電極部3の表面に形成された絶縁性の樹脂層であり、この樹脂層10を設けることにより陽極電極部3の厚みと陰極電極部4の厚みが略同じ厚みになるように構成されたものである。なお、本実施の形態においては上記樹脂層10としてエポキシ樹脂を用いたものであるが、本発明はこれに限定されるものではない。   FIG. 4 is a front sectional view showing a state of the chip-type solid electrolytic capacitor according to the second embodiment of the present invention before electrode formation. In FIG. 4, 10 is formed on the surface of the anode electrode portion 3 of the element 1. It is an insulating resin layer. By providing this resin layer 10, the anode electrode portion 3 and the cathode electrode portion 4 have substantially the same thickness. In the present embodiment, an epoxy resin is used as the resin layer 10, but the present invention is not limited to this.

このように構成された本実施の形態によるチップ形固体電解コンデンサは、素子1の陽極電極部3の表面に絶縁性の樹脂層10を設けることによって陽極電極部3の厚みと陰極電極部4の厚みが略同じになるようにした構成により、素子積層体を形成した段階で陽極電極部3間に隙間がなくなるため、この素子積層体を絶縁性の樹脂で一体に被覆して外装体6を成形する際に、陽極電極部3が樹脂の射出圧力で変形したりすることがなくなり、寸法精度ならびに品質共に安定したモールド成形を行うことができるようになるという格別の効果を奏するものである。   In the chip-type solid electrolytic capacitor according to the present embodiment configured as described above, the insulating resin layer 10 is provided on the surface of the anode electrode portion 3 of the element 1, whereby the thickness of the anode electrode portion 3 and the cathode electrode portion 4 are reduced. Since the gap is eliminated between the anode electrode portions 3 when the element laminate is formed by the configuration in which the thicknesses are substantially the same, the exterior laminate 6 is covered by covering the element laminate integrally with an insulating resin. At the time of molding, the anode electrode portion 3 is not deformed by the injection pressure of the resin, and there is an extraordinary effect that it becomes possible to perform molding with stable dimensional accuracy and quality.

本発明によるチップ形固体電解コンデンサは、コストダウンと小型化を図り、かつ、低ESL化も実現できるという効果を有し、あらゆる分野のコンデンサとして有用である。   The chip-type solid electrolytic capacitor according to the present invention has the effects of reducing costs and downsizing, and also realizing low ESL, and is useful as a capacitor in all fields.

(a)本発明の実施の形態1によるチップ形固体電解コンデンサの構成を示した斜視図、(b)同A−A線における正面断面図(A) The perspective view which showed the structure of the chip-type solid electrolytic capacitor by Embodiment 1 of this invention, (b) Front sectional drawing in the AA line (a)同チップ形固体電解コンデンサの電極形成前の状態を示した斜視図、(b)同正面断面図、(c)同側面図(A) The perspective view which showed the state before electrode formation of the chip-type solid electrolytic capacitor, (b) The front sectional view, (c) The side view (a)同チップ形固体電解コンデンサの下地電極を示した正面断面図、(b)同要部拡大断面図(A) Front sectional view showing the base electrode of the chip-type solid electrolytic capacitor, (b) Enlarged sectional view of the main part 本発明の実施の形態2によるチップ形固体電解コンデンサの電極形成前の状態を示した正面断面図Front sectional view showing a state before electrode formation of a chip-type solid electrolytic capacitor according to Embodiment 2 of the present invention (a)従来の固体電解コンデンサの構成を示した正面断面図、(b)同A−A線における側面断面図(A) Front sectional view showing the configuration of a conventional solid electrolytic capacitor, (b) Side sectional view taken along the line AA.

符号の説明Explanation of symbols

1 素子
2 陽極体
3 陽極電極部
4 陰極電極部
5 陰極導電部材
6 外装体
7 下地電極
8 中間電極
9 外部電極
10 樹脂層
DESCRIPTION OF SYMBOLS 1 Element 2 Anode body 3 Anode electrode part 4 Cathode electrode part 5 Cathode conductive member 6 Exterior body 7 Base electrode 8 Intermediate electrode 9 External electrode 10 Resin layer

Claims (4)

表面を粗面化して誘電体酸化皮膜層が形成された弁作用金属箔からなる陽極体の所定の位置に絶縁部を設けて長手方向の両端に陽極電極部を、この陽極電極部間に陰極形成部が配設されるように分離し、上記陰極形成部の誘電体酸化皮膜層上に導電性高分子からなる固体電解質層、カーボン層と銀ペースト層からなる陰極層を順次積層形成することにより陰極電極部が形成されたコンデンサ素子と、このコンデンサ素子を同一方向にして複数枚積層した素子積層体と、この素子積層体の最下段の素子の陰極電極部の底面に接合された陰極導電部材と、
上記素子積層体の陽極電極部の各端面が対向する端面に夫々露呈すると共に、上記陰極導電部材が底面に露呈する状態で素子積層体を被覆し、かつ陽極電極部の素子間に埋設された絶縁性樹脂からなる外装体と、
この外装体の対向する端面に夫々露呈した素子積層体の陽極電極部のそれぞれの弁作用金属箔に拡散層が形成され、この拡散層上並びに素子間に埋設された絶縁性樹脂上に形成された非弁作用金属からなる下地電極と、この下地電極上に形成された外部電極からなるチップ形固体電解コンデンサ。
An insulating portion is provided at a predetermined position of an anode body made of a valve-acting metal foil having a dielectric oxide film layer formed by roughening the surface, anode electrodes are provided at both ends in the longitudinal direction, and a cathode is provided between the anode electrodes. Separated so that the forming portion is disposed, a solid electrolyte layer made of a conductive polymer, a cathode layer made of a carbon layer and a silver paste layer are sequentially laminated on the dielectric oxide film layer of the cathode forming portion. Capacitor element having a cathode electrode part formed by the above, an element laminate in which a plurality of capacitor elements are laminated in the same direction, and a cathode conductive material bonded to the bottom surface of the cathode electrode part of the lowermost element of the element laminate Members,
Each end face of the anode electrode portion of the element laminate is exposed to the opposite end face, and the element laminate is covered with the cathode conductive member exposed to the bottom, and embedded between the elements of the anode electrode portion. An exterior body made of an insulating resin;
A diffusion layer is formed on each valve action metal foil of the anode electrode portion of the element laminate exposed on the opposing end surfaces of the exterior body, and formed on the diffusion layer and an insulating resin embedded between the elements. A chip-type solid electrolytic capacitor comprising a base electrode made of a non-valve metal and an external electrode formed on the base electrode.
非弁作用金属からなる下地電極が、非弁作用金属粒子の衝突速度を200m/s以上、かつ音速以下で外装体の端面に衝突させて形成された金属間結合した非弁作用金属層からなる請求項1に記載のチップ形固体電解コンデンサ。 The base electrode made of a non-valve action metal is made of an inter-metal bonded non-valve action metal layer formed by colliding with the end face of the exterior body at a collision speed of non-valve action metal particles of 200 m / s or more and a sound speed or less. The chip-type solid electrolytic capacitor according to claim 1. 外装体の一方の端面に露呈した素子積層体の陽極電極部に形成された下地電極と、この下地電極上に形成された外部電極との間に中間電極を設けた請求項1に記載のチップ形固体電解コンデンサ。 2. The chip according to claim 1, wherein an intermediate electrode is provided between a base electrode formed on the anode electrode portion of the element laminate exposed on one end face of the exterior body and an external electrode formed on the base electrode. Type solid electrolytic capacitor. 陽極電極部の表面に絶縁性の樹脂層を設けた請求項1に記載のチップ形固体電解コンデンサ。 The chip-type solid electrolytic capacitor according to claim 1, wherein an insulating resin layer is provided on the surface of the anode electrode portion.
JP2008196128A 2007-09-19 2008-07-30 Chip type solid electrolytic capacitor Pending JP2009094473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008196128A JP2009094473A (en) 2007-09-19 2008-07-30 Chip type solid electrolytic capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007241876 2007-09-19
JP2008196128A JP2009094473A (en) 2007-09-19 2008-07-30 Chip type solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2009094473A true JP2009094473A (en) 2009-04-30

Family

ID=40666101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008196128A Pending JP2009094473A (en) 2007-09-19 2008-07-30 Chip type solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2009094473A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104785A (en) * 2010-11-15 2012-05-31 Tdk Corp Mounting structure of chip type electronic component, mounting method of chip type electronic component, chip type electronic component, and method for manufacturing chip type electronic component
WO2021200452A1 (en) * 2020-03-31 2021-10-07 株式会社村田製作所 Solid electrolytic capacitor
US11742150B2 (en) * 2020-06-05 2023-08-29 Panasonic Intellectual Property Management Co., Ltd. Solid electrolytic capacitor including an exterior body that covers a capacitor element and method of manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104785A (en) * 2010-11-15 2012-05-31 Tdk Corp Mounting structure of chip type electronic component, mounting method of chip type electronic component, chip type electronic component, and method for manufacturing chip type electronic component
WO2021200452A1 (en) * 2020-03-31 2021-10-07 株式会社村田製作所 Solid electrolytic capacitor
JPWO2021200452A1 (en) * 2020-03-31 2021-10-07
CN115335936A (en) * 2020-03-31 2022-11-11 株式会社村田制作所 Solid electrolytic capacitor
JP7439907B2 (en) 2020-03-31 2024-02-28 株式会社村田製作所 solid electrolytic capacitor
US11742150B2 (en) * 2020-06-05 2023-08-29 Panasonic Intellectual Property Management Co., Ltd. Solid electrolytic capacitor including an exterior body that covers a capacitor element and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP5131079B2 (en) Manufacturing method of solid electrolytic capacitor
US8064192B2 (en) Solid electrolytic capacitor
CN101176172B (en) Stacked type solid electrolytic capacitor and method for manufacturing same
US11227725B2 (en) Solid electrolytic capacitor including a plurality of capacitor elements and method for producing the same
WO2006077906A1 (en) Chip type solid electrolytic capacitor
JP2010062406A (en) Solid electrolytic capacitor and method of manufacturing the same
JP5007677B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4830875B2 (en) Solid electrolytic capacitor
JP2008288295A (en) Solid electrolytic capacitor
JP2009094474A (en) Chip type solid electrolytic capacitor
JP4636613B2 (en) Chip-shaped solid electrolytic capacitor
JP2009094473A (en) Chip type solid electrolytic capacitor
WO2021085555A1 (en) Electrolytic capacitor
WO2021230089A1 (en) Electric circuit for integrated circuit power supply, capacitor, and electric circuit having integrated circuit
JP2006190925A (en) Solid electrolytic capacitor and its manufacturing method
JP2006032880A (en) Solid electrolytic capacitor and manufacturing method for the same
CN115335935A (en) Electrolytic capacitor
JP5095107B2 (en) Solid electrolytic capacitor
WO2022181606A1 (en) Filter circuit
JP2009094475A (en) Chip type solid electrolytic capacitor
JP2005311216A (en) Solid electrolytic capacitor and its manufacturing method
JP5279019B2 (en) Solid electrolytic capacitor
WO2022163644A1 (en) Electrolytic capacitor
JP5294311B2 (en) Solid electrolytic capacitor
JP5445737B2 (en) Solid electrolytic capacitor