WO2021230007A1 - Biobiomass solid fuel production method and biomass solid fuel - Google Patents

Biobiomass solid fuel production method and biomass solid fuel Download PDF

Info

Publication number
WO2021230007A1
WO2021230007A1 PCT/JP2021/015800 JP2021015800W WO2021230007A1 WO 2021230007 A1 WO2021230007 A1 WO 2021230007A1 JP 2021015800 W JP2021015800 W JP 2021015800W WO 2021230007 A1 WO2021230007 A1 WO 2021230007A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomass
solid fuel
less
reactor
biomass solid
Prior art date
Application number
PCT/JP2021/015800
Other languages
French (fr)
Japanese (ja)
Other versions
WO2021230007A8 (en
Inventor
拓也 古園
健斗 岡庭
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2021230007A1 publication Critical patent/WO2021230007A1/en
Publication of WO2021230007A8 publication Critical patent/WO2021230007A8/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a method for producing a biomass solid fuel and a biomass solid fuel.
  • Coal-fired power has a large amount of CO 2 emissions per unit of emission, and has a high environmental load.
  • biomass co-firing in which coal is mixed with biomass and burned.
  • Co-firing of wood chips and wood pellets has already been carried out, but since biomass has poorer crushability than coal, the maximum co-firing rate of biomass is only about several percent. Therefore, as one of the means for increasing the biomass co-firing rate, there is a method of semi-carbonizing biomass. By semi-carbonizing the biomass, a solid fuel with improved pulverizability can be obtained. It is also possible to increase the co-firing rate with coal.
  • Patent Document 1 a woody biomass pulverized product having a size of 5 to 60 mm is densified to 0.5 g / cm 3 or more in bulk density (measured according to 6 “bulk density test method” of JIS K 2151).
  • a method for producing a solid fuel which comprises treating and subsequently roasting under conditions of an oxygen concentration of 10% or less and a temperature of 170 to 350 ° C.
  • Patent Document 2 describes a fuel ratio (fixed carbon / biomass) of 0.2 to 0.8, an anhydrous base high calorific value of 4800 to 7000 (kcal / kg), and a molar ratio of oxygen O and carbon C O.
  • An object of the present invention is to provide a method for producing a biomass solid fuel in which the elution amounts of BOD and COD are suppressed, and to provide a biomass solid fuel.
  • a method for producing a biomass solid fuel in which a lump containing biomass powder is heated by a reactor to produce a biomass solid fuel, and the lump containing the biomass powder is subjected to the reaction.
  • the first heating step of preheating at a temperature 2 ° C. lower than the dew point temperature of the atmosphere in the reactor and the mass heated in the first heating step are put into the reactor before being charged into the vessel. It has a second heating step of charging and heating the lumps at 200 ° C. or higher and 300 ° C. or lower and 10 minutes or more and 240 minutes or less, and the heating temperature in the first heating step is heating in the second heating step.
  • a method for producing a biomass solid fuel that is lower than the temperature is provided.
  • the temperature of 2 ° C. or higher than the dew point temperature is preferably 100 ° C. or lower.
  • the amount of water contained in the atmosphere in the reactor in the second heating step is preferably 40% by mass or less.
  • the method for producing a biomass solid fuel there is a step of recovering at least a part of the carbonization gas generated in the second heating step, and the recovered carbonization gas is reused in the second heating step. It is preferable to have a step of carbonization.
  • heat generated by burning a part of the recovered carbonization gas is used to heat and distill from the carbonization gas. It is preferable to generate a gas and return the generated carbonized carbonization gas to the inside of the reactor.
  • combustion exhaust gas is generated by burning the recovered carbonization gas, and the generated combustion exhaust gas is used in the reactor. It is preferable to put it back inside.
  • the biomass powder is preferably derived from at least one selected from the group consisting of woody biomass, vegetation biomass, crop residue biomass, and palm coconut biomass. ..
  • the produced biomass solid fuel preferably has a BOD of 200 ppm or less and a COD of 200 ppm or less.
  • the produced biomass solid fuel has an arithmetic mean roughness Ra of 5.0 ⁇ m or less, a BOD of 200 ppm or less, and a COD of 200 ppm or less. Is preferable.
  • biomass solid fuel containing biomass powder having an arithmetic mean roughness Ra of 5.0 ⁇ m or less, a BOD of 200 mg / L or less, and a COD of 200 mg / L or less.
  • Biomass solid fuel is provided.
  • the numerical range represented by using “-” means a range including a numerical value before “-” as a lower limit value and a numerical value after "-" as an upper limit value. do.
  • a lump containing biomass powder is heated by a reactor to produce a biomass solid fuel. How to do it.
  • a mass containing biomass powder is preheated (preheated) at a temperature 2 ° C. lower than the dew point temperature of the atmosphere in the reactor before being charged into the reactor. 1 heating step and a second heating step of putting the lump material heated in the first heating step into the reactor and heating the lump material in 200 ° C. or higher and 300 ° C. or lower and 10 minutes or more and 240 minutes or less.
  • the heating temperature in the first heating step is lower than the heating temperature in the second heating step.
  • effect of the present embodiment it is possible to obtain a biomass solid fuel in which the elution amounts of BOD and COD are suppressed (hereinafter, it may be referred to as "effect of the present embodiment").
  • the biomass powder contained in the obtained biomass solid fuel is semi-carbonized by the implementation of the second heating step.
  • semi-carbonized means a state in which at least a part of biomass is carbonized. Therefore, semi-carbonization in the present specification includes a state in which a part of biomass is carbonized and a state in which all of the biomass is carbonized.
  • the semi-carbonized biomass solid fuel is obtained by heating solid biomass (for example, woody biomass) at, for example, 200 ° C. or higher and 300 ° C. or lower.
  • FIG. 1 is a diagram for explaining an event that may occur when black pellets (solid fuel obtained by semi-carbonizing biomass) are produced by a conventional method. Events 1 to 4 shown in FIG. 1 are as follows.
  • the white pellet is a solid fuel in which the biomass is not semi-carbonized.
  • -Event 1 When the white pellet 20 is put into the reactor, the surface of the white pellet 20 comes into contact with a high temperature (for example, 270 ° C.) gas containing water.
  • -Event 2 Since the surface temperature of the white pellet 20 immediately after the reactor is charged is close to normal temperature (25 ° C.), water 21 is adsorbed on the surface and dew condensation is likely to occur.
  • -Event 3 The water 21 generated by the dew condensation dissolves the component 22 considered to be derived from lignin coating the white pellet 20, and the surface loses its luster. That is, the surface of the white pellet 20 is deteriorated.
  • -Event 4 Moisture evaporates when the temperature rises to the temperature for semi-carbonizing the white pellet 20 whose surface has deteriorated. As a result, black pellets 30 having a deteriorated surface are obtained.
  • the present inventors preheat the white pellets at a specific temperature before charging the white pellets into the reactor, specifically, "the atmosphere in the reactor". It has been found that the surface of the obtained black pellets is less likely to be deteriorated by preheating at a temperature equal to or higher than the dew point temperature by 2 ° C. According to the production method of the present embodiment, it is considered that the adsorption of water on the pellet surface immediately after the white pellet is put into the reactor is suppressed, and the component considered to be derived from lignin coating the white pellet is difficult to dissolve. Be done. That is, it is considered that event 2 and event 3 are less likely to occur.
  • the temperature at which the white pellets are preheated rises, the amount of water adsorbed on the surface decreases, so that the degree of surface deterioration decreases in proportion to the temperature of the preheating, and the amount of BOD and COD eluted. It is believed that less black pellets can be obtained. Therefore, from the viewpoint of more exerting the effect of the present embodiment, the temperature at which the white pellets are preheated (that is, the temperature of the preheating in the first heating step) is "a temperature equal to or higher than the dew point temperature of the atmosphere in the reactor". Is preferable, and "the temperature exceeding the dew point temperature of the atmosphere in the reactor" is more preferable.
  • FIG. 2 is a graph showing the relationship between temperature and saturated moisture.
  • the curve C1 is a curve showing the dew point temperature.
  • the curve C2 is a curve obtained by moving the curve C1 by -2 ° C. in the horizontal axis direction.
  • the "temperature above 2 ° C. lower than the dew point temperature of the atmosphere in the reactor” means the temperature in the region on the right side of the curve C2 shown in FIG. 2 (region RD in FIG. 2).
  • the "dew point temperature” is calculated from the curve C1 to 81.1 ° C. Further, the "temperature 2 ° C. lower than the dew point temperature” is calculated as "79.1 ° C.” from the curve C2. That is, in the production method of the present embodiment, when the water content in the gas atmosphere in the reactor is 23% by mass, the effect of the present embodiment is achieved by preheating the white pellets at 79.1 ° C. or higher. Will be done.
  • FIG. 3 is a flowchart showing a method for producing a biomass solid fuel according to the first embodiment.
  • the production method shown in FIG. 3 includes a step of preparing biomass (preparation step ST1), a step of crushing biomass (crushing step ST2), and a step of drying the crushed biomass (that is, biomass powder) (drying step ST3).
  • the step of compression-molding the dried biomass powder compression molding step ST4) and the temperature of 2 ° C. or higher lower than the dew point temperature of the atmosphere in the reactor before charging the compression-molded mass into the reactor.
  • the first heating step (first heating step ST10) of preheating (preheating) at a temperature and the lumps heated in the first heating step are put into the reactor, and the temperature is 200 ° C. or higher and 300 ° C. or lower for 10 minutes or longer. It has a second heating step (second heating step ST20) for heating the biomass in 240 minutes or less.
  • the preparation step ST1 is a step for convenience.
  • the size of the prepared biomass is not particularly limited. Biomass may be crushed in the subsequent crushing step ST2, but crushed biomass (biomass powder) may be prepared. In that case, the crushing step ST2 does not have to be carried out. Suitable biomass will be described in the section of crushing step ST2.
  • the biomass is not particularly limited, and examples thereof include woody biomass, vegetation biomass, crop residue biomass, palm palm biomass, cellulose products, and pulp products.
  • the crop residue biomass means something other than the edible portion.
  • palm palm biomass means agricultural waste of palm palm that can be a biomass fuel.
  • Specific examples of the palm coconut biomass include palm coconut shells (PKS: Palm Kernel Cell), palm coconut husks (EFB: Empty Fruit Bunch), and the like.
  • woody biomass examples include conifers (eg, sugi, pine, eucalyptus, cypress, fir, etc.), hardwoods (eg, white hippo, beech, zelkova, katsura, drill, rubber tree, kusunoki, etc.) and the like.
  • the woody biomass may be construction waste (for example, cut offcuts, chips generated at a processing plant, sawdust, etc.), forest residue, thinned wood, bamboo, and the like.
  • vegetation biomass examples include grasses, naturally grown plants, and artificially planted plants.
  • the vegetation biomass may be hemp, cotton, rice straw, rice husks, straw, sasa, pampas grass and the like.
  • crop residue biomass examples include leaves, fruit bunches, stems, roots, and other non-edible parts of crops.
  • Examples of the crop include wheat, corn, potatoes, sugar cane (including bagasse) and the like.
  • palm palm biomass examples include palm oil pomace (PKS), fruit bunch (EFB), and fruit bark.
  • PPS palm oil pomace
  • EFB fruit bunch
  • the biomass described above may be used alone or in combination of two or more.
  • the biomass powder is preferably derived from at least one selected from the group consisting of woody biomass, vegetation biomass, crop residue biomass, and palm palm biomass. It is more preferable that the biomass powder is derived from at least one selected from the group consisting of woody biomass, vegetation biomass, and crop residue biomass. It is more preferable that the biomass powder is derived from woody biomass.
  • Biomass powder is obtained by crushing biomass using a known crusher. For example, when wood is used as woody biomass, a large piece of wood may be roughly crushed into chips of several centimeters and then crushed into powder.
  • the average particle size of the biomass powder is preferably 10 ⁇ m or more and 5000 ⁇ m or less, more preferably 30 ⁇ m or more and 3000 ⁇ m or less, and further preferably 50 ⁇ m or more and 1000 ⁇ m or less.
  • the average particle size of the biomass powder is 10 ⁇ m or more, compression molding becomes easy.
  • the average particle size of the biomass powder is 5000 ⁇ m or less, it becomes easy to suppress the crushing energy.
  • the particle size of the biomass powder is the maximum diameter of the biomass powder, and specifically, the maximum length of the straight line when any two points on the outer contour line of the biomass powder are connected by a straight line. Means that.
  • the average particle size of biomass powder can be measured by the following method. Using an image analysis particle size distribution meter, the maximum diameter of arbitrarily selected biomass powder (100 pieces) is measured, and the average value of these maximum diameters is defined as the "average particle size of the biomass powder". As the image analysis particle size distribution meter, for example, "DW-3000" manufactured by Jasco International can be used. The average particle size of the biomass powder can also be adjusted using a sieve.
  • the biomass powder is preferably dried from the viewpoint of adjusting the water content to a suitable range (for example, 10% by mass or more and 20% by mass or less).
  • the drying method is not particularly limited, and a known drying device can be used.
  • the compression molding step ST4 is a step of compression molding the biomass powder at a predetermined pressure. As a result, a lump containing biomass powder can be obtained.
  • the shape and size of the lump are not particularly limited.
  • the lumps are preferably pellets or briquettes.
  • the pellets are usually cylindrical and have a diameter of 5 mm or more and 10 mm or less and a length of 5 mm or more and 50 mm or less. Briquettes usually have a larger diameter or length than pellets.
  • Pellets can be produced, for example, by extruding biomass powder from metal holes (eg, diameter 5 mm or more and 10 mm or less, length 5 mm or more and 200 mm or less).
  • the pellet can be produced by using a pelletizer such as a ring die method or a flat die method.
  • the briquette can be produced, for example, by molding into a charcoal-like or cylindrical shape using a briquette machine.
  • the method of compression molding is not particularly limited, and a known compression molding device (for example, a briquette machine) can be used.
  • the pressure during compression molding is preferably 50 MPa or more and 150 MPa or less.
  • the pressurization time during compression molding is preferably 1 minute or more and 20 minutes or less.
  • First heating step (preheating step) ST10) In the first heating step ST10, before the lump containing biomass powder (for example, wood pellets (an example of white pellets)) is charged into the reactor, the temperature is 2 ° C. or higher lower than the dew point temperature of the atmosphere in the reactor. This is a step of preheating at a temperature.
  • the first heating step ST10 is usually carried out in a preheater.
  • the upper limit of "the temperature of 2 ° C. or higher than the dew point temperature of the atmosphere in the reactor” depends on the amount of water in the reactor in the second heating step ST20 (see FIG. 2). It is preferably 100 ° C. or lower, more preferably 95 ° C.
  • the lower limit of "the temperature of 2 ° C. or higher than the dew point temperature of the atmosphere in the reactor” is preferably 30 ° C. or higher, more preferably from the viewpoint of further exhibiting the effect of the present embodiment. Is 50 ° C. or higher, more preferably 60 ° C. or higher.
  • the temperature at which the lump is preheated (preheated) is the temperature of the preheater into which the lump is charged.
  • the "temperature of 2 ° C. or higher than the dew point temperature of the atmosphere in the reactor” is preferably 30 ° C. or higher and 100 ° C.
  • the temperature is 60 ° C. or higher and 90 ° C. or lower.
  • the "temperature of 2 ° C. or higher than the dew point temperature of the atmosphere in the reactor" in the first heating step ST10 is preferably 50 ° C. or higher and 100 ° C. or lower, and preferably 60 ° C. or higher and 100 ° C. or lower. It is preferably 30 ° C. or higher and 95 ° C. or lower, and it is also preferable that the temperature is 30 ° C. or higher and 90 ° C. or lower.
  • the heating time of the lump containing the biomass powder is preferably 5 minutes or longer, more preferably 10 minutes or longer, still more preferably 30 minutes or longer, from the viewpoint of further suppressing the surface deterioration of the obtained biomass solid fuel.
  • the upper limit of the heating time of the lump is preferably 60 minutes or less from the viewpoint of improving the production efficiency.
  • the atmosphere in the preheater is not particularly limited, but is preferably an air atmosphere, a nitrogen atmosphere, or a combustion exhaust gas atmosphere.
  • the amount of water contained in the atmosphere in the preheater depends on the amount of water contained in the biomass, but is preferably 5% by mass or less.
  • the method for measuring the amount of water contained in the atmosphere in the preheater is as follows. Atmospheric gas is sucked from the preheater with a pump so that the suction amount becomes 45 L. The sucked atmospheric gas is cooled with ice water and sodium chloride and condensed. The flow rate of the sucked gas is measured with a wet gas meter (WS-1A manufactured by Shinagawa Co., Ltd.), and the water content is calculated from the mass of the condensed water water.
  • the second heating step ST20 is a step of putting the lumps heated in the first heating step ST10 into a reactor and heating the lumps at 200 ° C. or higher and 300 ° C. or lower and 10 minutes or more and 240 minutes or lower. Further, the heating temperature in the first heating step is lower than the heating temperature in the second heating step.
  • the heating temperature is preferably 200 ° C. or higher and 300 ° C. or lower, more preferably 230 ° C. or higher and 300 ° C. or lower, from the viewpoint of improving the pulverizability while ensuring the calorific value of the obtained biomass solid fuel. More preferably, it is 250 ° C. or higher and 300 ° C. or lower.
  • the heating temperature in the second heating step ST20 is the temperature of the reactor into which the lump is charged.
  • the heating time depends on the heating temperature, but is preferably 10 minutes or more and 240 minutes or less, more preferably 20 minutes or more and 180 minutes or less, and further preferably 30 minutes or more and 150 minutes or less.
  • the atmosphere in the reactor is not particularly limited, but is preferably a dry distillation gas atmosphere or a combustion exhaust gas atmosphere.
  • the amount of water contained in the atmosphere in the reactor is preferably 40% by mass or less, more preferably 35% by mass or less, still more preferably 30% by mass or less.
  • the temperature of the preheating in the first heating step is 100 ° C. or less, and surface deterioration can be easily prevented.
  • the lower limit of the amount of water contained in the atmosphere in the reactor is usually preferably 5% by mass or more.
  • the method for measuring the amount of water contained in the atmosphere in the reactor is as follows.
  • Atmospheric gas is sucked from the reactor with a pump under the following conditions.
  • the sucked atmospheric gas is cooled with ice water and sodium chloride and condensed. Since the condensed sample contains organic components and water, the water content in the sample is measured with a Karl Fischer moisture meter. Further, the flow rate of the sucked gas is measured by a wet gas meter (WS-1A manufactured by Shinagawa Co., Ltd.), and the atmospheric gas is measured by gas chromatography (Agient 490 microGC), and the weight of the gas is calculated from the gas composition. By doing so, the water content in the gas is calculated.
  • the water content can be calculated based on the literature (Energy Fuels 2019, 33, 3257-3266) assuming that the carbonization gas composition is CO 2: 80% by mass and CO: 20% by mass. good. -conditions- ⁇ Suction time: 30 minutes ⁇ Suction flow rate: 1.5L / min ⁇ Total suction amount: 45L
  • the temperature of the preheating in the first heating step is lower than the heating temperature in the second heating step.
  • the relationship between the preheating temperature in the first heating step and the heating temperature in the second heating step preferably satisfies the following formula (1), more preferably the following formula (2), and further preferably the following formula (3). 170 ° C ⁇ heating temperature in the second heating step-preheating temperature in the first heating step ⁇ 240 ° C ... (1) 175 ° C ⁇ heating temperature of the second heating step-preheating temperature of the first heating step ⁇ 220 ° C ... (2) 180 ° C ⁇ heating temperature in the second heating step-preheating temperature in the first heating step ⁇ 200 ° C ... (3)
  • the relationship between the preheating temperature in the first heating step and the heating temperature in the second heating step preferably satisfies any one of the following formulas (4) to (7).
  • 170 ° C ⁇ heating temperature in the second heating step-preheating temperature in the first heating step ⁇ 230 ° C ... (4) 170 ° C ⁇ heating temperature in the second heating step-preheating temperature in the first heating step ⁇ 220 ° C ... (5)
  • the produced biomass solid fuel preferably has an arithmetic mean roughness Ra, a maximum height roughness Rz, a BOD, a COD, and a mechanical durability DU in the following ranges.
  • the arithmetic average roughness Ra of the biomass solid fuel is preferably 5.0 ⁇ m or less, more preferably 4.8 ⁇ m or less, and further preferably 4.6 ⁇ m or less.
  • the arithmetic average roughness Ra is 5.0 ⁇ m or less, surface deterioration is suppressed, and it becomes easy to obtain a biomass solid fuel having gloss.
  • the maximum height roughness Rz of the biomass solid fuel is preferably 30.0 ⁇ m or less, more preferably 28.0 ⁇ m or less, still more preferably 26.0 ⁇ m or less.
  • the arithmetic mean roughness Ra and the maximum height roughness Rz are measured according to ISO4287 (1997). The method for measuring the arithmetic mean roughness Ra and the maximum height roughness Rz is described in the section of Examples.
  • the BOD of the biomass solid fuel is preferably 200 ppm or less, more preferably 190 ppm or less, still more preferably 180 ppm or less.
  • the immersion water used for measuring BOD is prepared by the method described in Examples. BOD is measured by the test method described in JIS K0102-21 (2016).
  • the COD of the biomass solid fuel is preferably 200 ppm or less, more preferably 190 ppm or less, still more preferably 180 ppm or less.
  • the immersion water used for measuring COD is prepared by the method described in Examples. COD is measured by the test method described in JIS K0102-17 (2016).
  • the produced biomass solid fuel has an arithmetic mean roughness Ra of 5.0 ⁇ m or less, a BOD of 200 ppm or less, and a COD of 200 ppm or less. It is preferably 200 ppm or less.
  • Form of biomass solid fuel Briquettes or pellets are preferable as the form of the biomass solid fuel (in the form of a lump) of the present embodiment.
  • the shape and size of the biomass solid fuel are not particularly limited.
  • Pellets can be produced, for example, by extruding biomass powder from metal holes (eg, diameter 5 mm or more and 10 mm or less, length 5 mm or more and 200 mm or less). Further, the pellet can be produced by using a pelletizer such as a ring die method or a flat die method.
  • FIG. 4 is a flowchart showing a method for producing a biomass solid fuel according to the second embodiment.
  • the manufacturing method of the second embodiment is different from that of the first embodiment in that it has a storage step ST5. Other than this, it is the same as that of the first embodiment. Therefore, in the following description, the storage step ST5 will be described, and the other description will be omitted.
  • the manufacturing method of the second embodiment includes a preparation step ST1, a crushing step ST2, a drying step ST3, a compression molding step ST4, and a storage step ST5 for storing the lumps obtained in the compression molding step ST4 for a certain period of time.
  • It has a first heating step ST10 and a second heating step ST20. According to the production method of the second embodiment, it is possible to obtain a biomass solid fuel in which the elution amounts of BOD and COD are suppressed. Further, according to the production method of the second embodiment, the produced biomass solid fuel can be used more effectively.
  • the storage location and storage time of the mass obtained in the compression molding step ST4 are not particularly limited, but the storage location is preferably indoors from the viewpoint of further suppressing the elution of BOD and COD. Since the biomass solid fuel obtained by the production method of the second embodiment is a solid fuel in which the elution amounts of BOD and COD are suppressed, the impact on the environment can be reduced and the biomass solid fuel can be easily stored outdoors. Examples of the storage location include silos, hoppers, and the like.
  • the manufacturing method of the third embodiment is a manufacturing method in which at least a part of the carbonization gas generated in the second heating step is reused as recycled gas from the viewpoint of effective energy utilization.
  • the production method of the third embodiment is a step of recovering at least a part of the dry distillation gas generated in the second heating step (recovery step ST6) and the recovered dry distillation of the first embodiment and the second embodiment. It is different in that it further has a step of reusing the gas in the second heating step (reuse step ST7). Other than this, it is the same as the first embodiment and the second embodiment. Therefore, in the following description, the recovery step ST6 and the reuse step ST7 will be described, and the other description will be omitted.
  • the method for recovering the carbonization gas is not particularly limited. In the recovery step ST6, it is preferable to remove fine powder from the carbonization gas generated in the second heating step ST20 to recover the carbonization gas.
  • the fine powder is removed by a known fine powder separation device.
  • the reuse step ST7 the heat generated by burning a part of the recovered carbonization gas is used to generate a heated carbonization gas from the carbonization gas, and the generated heat carbonization gas is used in the reactor. It is preferable that the step is to return to the inside (hereinafter, it may be referred to as "aspect 1 of the reuse step ST7"). Further, it is also preferable that the reuse step ST7 is a step of generating combustion exhaust gas by burning the dry distillate gas recovered in the recovery step ST6 and returning the generated combustion exhaust gas to the inside of the reactor. (Hereinafter, it may be referred to as "aspect 2 of the reuse step ST7").
  • FIG. 5 is a schematic view showing one aspect of the manufacturing equipment used in the manufacturing method of the third embodiment.
  • FIG. 5 shows a method for producing black pellets from white pellets according to “Aspect 1 of the reuse step ST7”.
  • the manufacturing facility 100 shown in FIG. 5 includes a preheater 11 for carrying out the first heating step ST10, a reactor 12 for carrying out the second heating step ST20, and fine powder for removing fine powder from the dry distillation gas generated in the reactor 12. It includes a separating device 13 (cyclone), a heat exchanger 14 that transfers heat to the carbonization gas, and a combustor 15 that burns the branched dry distillation gas after passing through the heat exchanger 14.
  • a separating device 13 cyclone
  • a heat exchanger 14 that transfers heat to the carbonization gas
  • a combustor 15 that burns the branched dry distillation gas after passing through the heat exchanger 14.
  • the combustor 15 includes a burner (not shown) that burns the carbonization gas together with combustion air. Further, the manufacturing equipment 100 includes a conveyor 16 for transporting the black pellets manufactured by the reactor 12 and a sieve 17.
  • L11 indicates the route of the white pellet
  • L12 indicates the route of the black pellet.
  • L21 shows the path of the carbonization gas generated in the reactor 12.
  • L22 shows the path of the carbonization gas transferred by the heat exchanger 14
  • L23 shows the path of the carbonization gas branched from L22 and burned by the combustor 15, and L24 is branched from L22 and reacts.
  • the path of the carbonization gas returned to the vessel 12 is shown.
  • L31 indicates the path of heat generated by the combustion exhaust gas
  • L32 indicates the path of the combustion exhaust gas.
  • the path L Air indicates the path of the combustion air introduced into the combustor 15.
  • the carbonization gas generated in the reactor 12 is used as the recycled gas as follows.
  • the carbonization gas generated in the reactor 12 passes through the path L21, and after the fine powder is separated by the fine powder separation device 13, it is distributed to the heat exchanger 14 and recovered (recovery step ST6).
  • the heat exchanger 14 heat is transferred to the carbonization gas by utilizing the heat of the combustion exhaust gas generated by the combustion of the carbonization gas branched in the path L23 (passage L31 in FIG. 5).
  • the carbonization gas transferred by the heat exchanger 14 flows through the path L22 and is branched into the path L23 and the path L24 at the branch point.
  • the carbonization gas branched to the path L23 is introduced into the combustor 15 and burned together with the combustion air by the burner to become combustion exhaust gas (reuse step ST7).
  • the combustion air is introduced into the combustor 15 via the path LA Air.
  • the carbonization gas branched to the path L24 is returned to the reactor 12 and reused (reuse step ST7).
  • the heat generated when the combustion exhaust gas is generated by the combustion of the carbonization gas is used for heat transfer to the carbonization gas in the heat exchanger 14 (path L31).
  • the combustion exhaust gas after being used for heat transfer to the carbonization gas is released into the atmosphere via the path L32.
  • the black pellets manufactured by the reactor 12 are transported by the conveyor 16 via the path L12 and sieved through the sieve 17.
  • FIG. 6 is a schematic view showing one aspect of the manufacturing equipment used in the manufacturing method of the third embodiment.
  • FIG. 6 shows a method for producing black pellets from white pellets according to “Aspect 2 of the reuse step ST7”.
  • the manufacturing equipment 100A shown in FIG. 6 includes a preheater 11 for carrying out the first heating step ST10, a reactor 12 for carrying out the second heating step ST20, and fine powder for removing fine powder from the carbonization gas generated in the reactor 12.
  • a separation device 13 (cyclone) and a combustor 15 for burning the carbonization gas from which fine powder is separated are provided.
  • the combustor 15 includes a burner (not shown) that burns the carbonization gas together with combustion air.
  • the manufacturing equipment 100A includes a conveyor 16 for transporting the black pellets manufactured by the reactor 12 and a sieve 17.
  • L11 indicates the route of the white pellet
  • L12 indicates the route of the black pellet.
  • L21 shows the path of the carbonization gas generated in the reactor 12.
  • L25 indicates the path of the combustion exhaust gas generated by the combustor 15.
  • L26 indicates the path of the combustion exhaust gas branched from L25 and returned to the reactor 12.
  • L27 indicates a path of combustion exhaust gas branched from L25 and used for other purposes.
  • the path L Air indicates the path of the combustion air introduced into the combustor 15.
  • the carbonization gas generated in the reactor 12 is burned in the combustor 15, and the combustion exhaust gas generated by the combustion is used as the recycled gas.
  • the carbonization gas generated in the reactor 12 passes through the path L21, and after the fine powder is separated by the fine powder separation device 13, it is distributed to the combustor 15 and recovered (recovery step ST6).
  • the carbonization gas is burned together with combustion air by a burner to become combustion exhaust gas.
  • the combustion air is introduced into the combustor 15 via the path LA Air.
  • the combustion exhaust gas generated in the combustor 15 flows through the path L25, and is branched to the path L26 and the path L27 at the branch point.
  • the combustion exhaust gas branched to the path L26 is returned to the reactor 12 and used (reuse step ST7).
  • the combustion exhaust gas branched to the path L27 is used for other purposes (for example, drying of biomass powder which is a raw material for pellets).
  • the black pellets manufactured by the reactor 12 are transported by the conveyor 16 via the path L12 and sieved through the sieve 17.
  • the biomass solid fuel of the fourth embodiment is a biomass solid fuel containing biomass powder, having an arithmetic mean roughness Ra of 5.0 ⁇ m or less, a BOD of 200 mg / L or less, and a COD of 200 mg / L or less. be.
  • the biomass solid fuel in which the elution amounts of BOD and COD are suppressed is provided.
  • the biomass solid fuel of the fourth embodiment is produced by, for example, any of the production methods of the first embodiment to the third embodiment. Therefore, the surface deterioration of the biomass solid fuel of the fourth embodiment is suppressed.
  • the preferred range of the arithmetic mean roughness Ra, BOD and COD of the biomass solid fuel of the fourth embodiment and the preferable range of the maximum height roughness Rz are preferable of the biomass solid fuel obtained by the production method of the first embodiment. Similar to range.
  • the biomass solid fuel of the fourth embodiment is not particularly limited as long as the arithmetic average roughness Ra is 5.0 ⁇ m or less, the BOD is 200 mg / L or less, and the COD is 200 mg / L or less.
  • the biomass solid fuel of the present embodiment may contain other components as long as the effects of the present embodiment are not impaired.
  • examples of other components include binders and various additives.
  • the content of the other components is preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 1% by mass or less, based on the total amount of the biomass solid fuel.
  • the biomass solid fuel of the present embodiment can be widely used in power plants, steelworks, factories and the like.
  • the biomass solid fuel may be crushed by a coal crusher using an existing thermal power generation facility and introduced into a boiler. Further, the biomass solid fuel may be crushed by a crusher different from the coal crusher and then introduced into the boiler.
  • the usage mode of the biomass solid fuel is not limited to the above.
  • the drying step ST3 is carried out after the crushing step ST2, but the drying step ST3 may be carried out before the crushing step ST2. Specifically, after the biomass is dried, the dried biomass may be crushed.
  • Table 1 shows the properties of the biomass (rubber tree) used in the examples and comparative examples.
  • the industrial analysis values are values measured in accordance with JIS M8812 (2004). Of the elemental analysis values, carbon, hydrogen, nitrogen and sulfur are the values measured according to JIS M8819 (1997), and oxygen is the value calculated from other analysis values according to JIS M8813 (2004). be.
  • the high calorific value is a value measured according to JIS M8814 (2003).
  • the fuel ratio is "fixed carbon / volatile matter”.
  • “Ar” is an abbreviation for As Received Base, which represents an arrival base and indicates the state as it is without any modification.
  • Ad is an abbreviation for Air Dry Basis, which represents an air-drying base and represents a state of being dried in the air.
  • Dry Ash Free is an abbreviation for Dry Ash Free, and represents an anhydrous ash-free base, and represents a virtual state assuming that the biomass does not contain water and ash. Obtained by conversion from the analysis value. " ⁇ 0.01" means "less than 0.01".
  • Example 1 (Preparation step ST1 and crushing step ST2) Biomass (woody biomass (rubber tree)) was pulverized with a pulverizer to obtain biomass powder having an average particle size of 800 ⁇ m. The average particle size of the biomass powder was measured according to the above-mentioned "method for measuring the average particle size of the biomass powder".
  • compression molding process ST4 The dried biomass powder was compression-molded with an ANDRITZ compression molding apparatus (model number: Pellet MillPM30) to obtain cylindrical pellets having a diameter of 8 mm and a height of 10 mm to 40 mm.
  • First heating step ST10 (preheating step)
  • the pellets (white pellets) obtained in the compression molding step ST4 were put into a preheater. After raising the temperature to 80 ° C. at a heating rate of 5 ° C./min, the mixture was heated at 80 ° C. for 5 minutes.
  • the conditions of the preheater are as follows. -conditions- ⁇ Atmosphere (carrier gas): Dry nitrogen ⁇ Moisture content in preheater: 0% by mass
  • Example 2 Comparative Examples 1 to 3
  • the white pellets were heated until the surface temperature (temperature of the preheater) reached the temperature shown in Table 2, and then heated at that temperature for 5 minutes.
  • the biomass solid fuels of Example 2 and Comparative Examples 1 to 3 were obtained.
  • Example 4 the biomass solid fuel of Comparative Example 4 was obtained by the same method as in Example 1 except that the first heating step ST10 was not carried out.
  • BOD and COD The immersion water used for BOD and COD measurement is based on the "Testing method for metals contained in industrial waste (Environment Agency Notification No. 13 of 1973)" and is subjected to a 6-hour shaking test to drain water. It was prepared by the method of preparation. BOD was measured by the test method described in JIS K0102-21 (2016). COD was measured by the test method described in JIS K0102-17 (2016).
  • FIG. 7 shows the relationship between the temperature of the first heating step and BOD and COD.
  • the arithmetic mean roughness Ra and the maximum height roughness Rz were measured according to ISO4287 (1997) using a small surface roughness measuring machine SJ-210 (manufactured by Mitutoyo Co., Ltd.). Specifically, the arithmetic average roughness Ra and the maximum height are measured at a measurement distance of 4 mm, a feed rate of 0.25 mm / min, and a measurement pitch of 0.5 ⁇ m from the central portion of the biomass solid fuel in the longitudinal direction toward one end. Roughness Rz was measured. This measurement was performed on 4 to 10 semi-carbonized pellets under the same conditions, and the average values were taken as the arithmetic average roughness Ra and the maximum height roughness Rz, respectively.
  • FIG. 8 The photographs of the biomass solid fuels obtained in Examples 1 and 2 and Comparative Examples 1 to 4 are shown in FIG.
  • FIG. 8 in Examples 1 and 2 in which the first heating step ST10 was carried out at a temperature equal to or higher than the dew point temperature in the reactor by 2 ° C., the temperature was lower than the temperature lower than the dew point temperature in the reactor by 2 ° C.
  • Comparative Examples 1 to 3 in which the first heating step ST10 was carried out at a temperature and Comparative Example 4 in which the first heating step ST10 was not carried out, a biomass solid fuel having a gloss and a good surface shape was obtained.
  • the biomass solid fuel of the present invention can be used for biomass power generation and co-firing power generation with biomass and coal in power plants, steel mills, and factories.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Coke Industry (AREA)

Abstract

A biomass solid fuel production method in which a biomass solid fuel is produced by heating a massive material containing a biomass powder in a reactor, the method comprising a first heating step (ST10) for preheating the massive material containing the biomass powder at a temperature that is equal to or higher than a temperature lower by 2℃ than the dew point temperature of the atmosphere in the reactor prior to the charge of the massive material into the reactor and a second heating step (ST20) for charging the massive material that has been heated in the first heating step (ST10) into the reactor and then heating the massive material at 200 to 300℃, inclusive, for 10 to 240 minutes, inclusive, in which the heating temperature in the first heating step (ST10) is lower than the heating temperature in the second heating step (ST20).

Description

バイオマス固形燃料の製造方法及びバイオマス固形燃料Biomass solid fuel manufacturing method and biomass solid fuel
 本発明は、バイオマス固形燃料の製造方法及びバイオマス固形燃料に関する。 The present invention relates to a method for producing a biomass solid fuel and a biomass solid fuel.
 石炭火力は排出原単位あたりのCO排出量が多く、環境負荷が高い。石炭火力からのCO排出削減のため、石炭にバイオマスを混合して燃焼するバイオマス混焼が注目されている。
 木質チップ及び木質ペレットの混焼は、すでに行われているが、バイオマスは石炭に比べて粉砕性が悪いため、バイオマスの最大混焼率が数%程度にとどまっている。
 そこで、バイオマス混焼率を上げるための手段の一つとして、バイオマスを半炭化する方法が挙げられる。バイオマスを半炭化することにより、粉砕性が向上した固形燃料が得られる。また、石炭への混焼率を上げることもできる。
 例えば、特許文献1には、サイズが5~60mmである木質系バイオマス粉砕物を、嵩密度(JIS K 2151の6「かさ密度試験方法」に従って測定)0.5g/cm以上に高密度化処理し、続いて酸素濃度10%以下で、かつ温度170~350℃の条件下で焙焼することを特徴とする固体燃料の製造方法が開示されている。
 例えば、特許文献2には、燃料比(固定炭素/揮発分)が0.2~0.8、無水ベース高位発熱量が4800~7000(kcal/kg)、酸素Oと炭素Cのモル比O/Cが0.1~0.7、水素Hと炭素Cのモル比H/Cが0.8~1.3であることを特徴とするバイオマス粉を成型したバイオマス固体燃料が開示されている。
Coal-fired power has a large amount of CO 2 emissions per unit of emission, and has a high environmental load. In order to reduce CO 2 emissions from coal-fired power, attention is being paid to biomass co-firing, in which coal is mixed with biomass and burned.
Co-firing of wood chips and wood pellets has already been carried out, but since biomass has poorer crushability than coal, the maximum co-firing rate of biomass is only about several percent.
Therefore, as one of the means for increasing the biomass co-firing rate, there is a method of semi-carbonizing biomass. By semi-carbonizing the biomass, a solid fuel with improved pulverizability can be obtained. It is also possible to increase the co-firing rate with coal.
For example, in Patent Document 1, a woody biomass pulverized product having a size of 5 to 60 mm is densified to 0.5 g / cm 3 or more in bulk density (measured according to 6 “bulk density test method” of JIS K 2151). Disclosed is a method for producing a solid fuel, which comprises treating and subsequently roasting under conditions of an oxygen concentration of 10% or less and a temperature of 170 to 350 ° C.
For example, Patent Document 2 describes a fuel ratio (fixed carbon / biomass) of 0.2 to 0.8, an anhydrous base high calorific value of 4800 to 7000 (kcal / kg), and a molar ratio of oxygen O and carbon C O. A biomass solid fuel obtained by molding a biomass powder, characterized in that / C is 0.1 to 0.7 and the molar ratio H / C of hydrogen H and carbon C is 0.8 to 1.3, is disclosed. ..
特開2015-189958号公報Japanese Unexamined Patent Publication No. 2015-189958 国際公開第2016/056608号International Publication No. 2016/056608
 一方、木質ペレット等の固形燃料を考えた場合、例えば、固形燃料は水に濡れると崩壊してしまうためサイロ等に保管する必要があるが、バイオマスを半炭化した固形燃料(以下、「ブラックペレット」と称することがある。)は疎水性であるため、屋外に貯蔵でき、サイロ等の設備が必要ないなどのメリットが生じる。
 しかしながら、ブラックペレットを屋外貯蔵したとき、有機成分(COD及びBOD)の溶出が懸念される。石炭は有機成分の溶出はほぼないが、ブラックペレットは有機成分が溶出するため、屋外貯蔵した場合の環境への影響が懸念される。
 よって、ブラックペレットを屋外貯蔵するにあたっては、有機成分の溶出を可能な限り抑えることが必要とされる。そのためには、製造プロセスから検討を行い、有機成分が溶出しにくい構造を持つブラックペレットの製造方法が求められる。
 なお、特許文献2に記載のバイオマス固体燃料は、製造プロセスの検討が十分行われていないため、CODが比較的高い値を示している。
On the other hand, when considering solid fuel such as wood pellets, for example, solid fuel needs to be stored in a silo or the like because it collapses when it gets wet with water. ”) Is hydrophobic, so it can be stored outdoors and has the advantage of not requiring equipment such as silos.
However, when the black pellets are stored outdoors, there is concern about the elution of organic components (COD and BOD). Coal has almost no elution of organic components, but black pellets elute organic components, so there is concern about the impact on the environment when stored outdoors.
Therefore, when storing black pellets outdoors, it is necessary to suppress the elution of organic components as much as possible. For that purpose, a method for producing black pellets having a structure in which organic components are difficult to elute is required by examining the production process.
The biomass solid fuel described in Patent Document 2 has a relatively high COD because the production process has not been sufficiently studied.
 本発明の目的は、BOD及びCODの溶出量が抑制されたバイオマス固形燃料の製造方法、及びバイオマス固形燃料を提供することである。 An object of the present invention is to provide a method for producing a biomass solid fuel in which the elution amounts of BOD and COD are suppressed, and to provide a biomass solid fuel.
 本発明の一態様によれば、バイオマス粉を含む塊状物を、反応器で加熱してバイオマス固形燃料を製造するバイオマス固形燃料の製造方法であって、前記バイオマス粉を含む塊状物を、前記反応器に投入する前に、前記反応器内の雰囲気の露点温度より2℃低い温度以上の温度で予め加熱する第1加熱工程と、前記第1加熱工程で加熱された塊状物を前記反応器に投入し、200℃以上300℃以下、10分以上240分以下で前記塊状物を加熱する第2加熱工程と、を有し、前記第1加熱工程における加熱温度は、前記第2加熱工程における加熱温度より低い、バイオマス固形燃料の製造方法が提供される。 According to one aspect of the present invention, there is a method for producing a biomass solid fuel in which a lump containing biomass powder is heated by a reactor to produce a biomass solid fuel, and the lump containing the biomass powder is subjected to the reaction. The first heating step of preheating at a temperature 2 ° C. lower than the dew point temperature of the atmosphere in the reactor and the mass heated in the first heating step are put into the reactor before being charged into the vessel. It has a second heating step of charging and heating the lumps at 200 ° C. or higher and 300 ° C. or lower and 10 minutes or more and 240 minutes or less, and the heating temperature in the first heating step is heating in the second heating step. A method for producing a biomass solid fuel that is lower than the temperature is provided.
 本発明の一態様に係るバイオマス固形燃料の製造方法において、前記露点温度より2℃低い温度以上の温度は、100℃以下であることが好ましい。 In the method for producing a biomass solid fuel according to one aspect of the present invention, the temperature of 2 ° C. or higher than the dew point temperature is preferably 100 ° C. or lower.
 本発明の一態様に係るバイオマス固形燃料の製造方法において、前記第2加熱工程における前記反応器内の雰囲気中に含まれる水分量は、40質量%以下であることが好ましい。 In the method for producing a biomass solid fuel according to one aspect of the present invention, the amount of water contained in the atmosphere in the reactor in the second heating step is preferably 40% by mass or less.
 本発明の一態様に係るバイオマス固形燃料の製造方法において、前記第2加熱工程で発生する乾留ガスの少なくとも一部を回収する工程と、回収された前記乾留ガスを前記第2加熱工程に再利用する工程と、を有することが好ましい。 In the method for producing a biomass solid fuel according to one aspect of the present invention, there is a step of recovering at least a part of the carbonization gas generated in the second heating step, and the recovered carbonization gas is reused in the second heating step. It is preferable to have a step of carbonization.
 本発明の一態様に係るバイオマス固形燃料の製造方法において、前記再利用する工程は、回収された前記乾留ガスの一部を燃焼させることにより発生した熱を利用して、前記乾留ガスから加熱乾留ガスを生成させ、生成した前記加熱乾留ガスを、前記反応器内に戻すことが好ましい。 In the method for producing a biomass solid fuel according to one aspect of the present invention, in the recycling step, heat generated by burning a part of the recovered carbonization gas is used to heat and distill from the carbonization gas. It is preferable to generate a gas and return the generated carbonized carbonization gas to the inside of the reactor.
 本発明の一態様に係るバイオマス固形燃料の製造方法において、前記再利用する工程は、回収された前記乾留ガスを燃焼させることにより、燃焼排ガスを生成させ、生成した前記燃焼排ガスを、前記反応器内に戻すことが好ましい。 In the method for producing a biomass solid fuel according to one aspect of the present invention, in the reusing step, combustion exhaust gas is generated by burning the recovered carbonization gas, and the generated combustion exhaust gas is used in the reactor. It is preferable to put it back inside.
 本発明の一態様に係るバイオマス固形燃料の製造方法において、前記バイオマス粉は、木質バイオマス、草木バイオマス、農作物残渣バイオマス、及びパーム椰子バイオマスからなる群から選択される少なくとも1種に由来することが好ましい。 In the method for producing a biomass solid fuel according to one aspect of the present invention, the biomass powder is preferably derived from at least one selected from the group consisting of woody biomass, vegetation biomass, crop residue biomass, and palm coconut biomass. ..
 本発明の一態様に係るバイオマス固形燃料の製造方法において、製造された前記バイオマス固形燃料は、BODが200ppm以下であり、CODが200ppm以下であることが好ましい。 In the method for producing a biomass solid fuel according to one aspect of the present invention, the produced biomass solid fuel preferably has a BOD of 200 ppm or less and a COD of 200 ppm or less.
 本発明の一態様に係るバイオマス固形燃料の製造方法において、製造された前記バイオマス固形燃料は、算術平均粗さRaが5.0μm以下であり、BODが200ppm以下であり、CODが200ppm以下であることが好ましい。 In the method for producing a biomass solid fuel according to one aspect of the present invention, the produced biomass solid fuel has an arithmetic mean roughness Ra of 5.0 μm or less, a BOD of 200 ppm or less, and a COD of 200 ppm or less. Is preferable.
 本発明の一態様によれば、バイオマス粉を含むバイオマス固形燃料であって、算術平均粗さRaが5.0μm以下であり、BODが200mg/L以下であり、CODが200mg/L以下であるバイオマス固形燃料が提供される。 According to one aspect of the present invention, it is a biomass solid fuel containing biomass powder, having an arithmetic mean roughness Ra of 5.0 μm or less, a BOD of 200 mg / L or less, and a COD of 200 mg / L or less. Biomass solid fuel is provided.
 本発明の一態様によれば、BOD及びCODの溶出量が抑制されたバイオマス固形燃料の製造方法、及びバイオマス固形燃料を提供することができる。 According to one aspect of the present invention, it is possible to provide a method for producing a biomass solid fuel in which the elution amounts of BOD and COD are suppressed, and a biomass solid fuel.
従来の方法でブラックペレットを製造したときに生じ得る事象を説明するための図。The figure for demonstrating the event which may occur when the black pellet is manufactured by the conventional method. 温度と飽和水分との関係を示すグラフ。A graph showing the relationship between temperature and saturated moisture. 第1実施形態に係るバイオマス固形燃料の製造方法を示すフローチャート。The flowchart which shows the manufacturing method of the biomass solid fuel which concerns on 1st Embodiment. 第2実施形態に係るバイオマス固形燃料の製造方法を示すフローチャート。The flowchart which shows the manufacturing method of the biomass solid fuel which concerns on 2nd Embodiment. 第3実施形態の製造方法で用いる製造設備の一態様を示す概略図。The schematic diagram which shows one aspect of the manufacturing equipment used in the manufacturing method of 3rd Embodiment. 第3実施形態の製造方法で用いる製造設備の一態様を示す概略図。The schematic diagram which shows one aspect of the manufacturing equipment used in the manufacturing method of 3rd Embodiment. 第1加熱工程の温度とBOD及びCODとの関係を示すグラフ。The graph which shows the relationship between the temperature of the 1st heating step, BOD and COD. 実施例1~2及び比較例1~4で得られたバイオマス固形燃料の写真。Photographs of biomass solid fuels obtained in Examples 1 and 2 and Comparative Examples 1 to 4.
 本明細書において、「~」を用いて表される数値範囲は、「~」の前に記載される数値を下限値とし、「~」の後に記載される数値を上限値として含む範囲を意味する。 In the present specification, the numerical range represented by using "-" means a range including a numerical value before "-" as a lower limit value and a numerical value after "-" as an upper limit value. do.
〔第1実施形態〕
<バイオマス固形燃料の製造方法>
 本実施形態に係るバイオマス固形燃料の製造方法(以下、「本実施形態の製造方法」と称することがある。)は、バイオマス粉を含む塊状物を、反応器で加熱してバイオマス固形燃料を製造する方法である。
 本実施形態の製造方法は、バイオマス粉を含む塊状物を、反応器に投入する前に、前記反応器内の雰囲気の露点温度より2℃低い温度以上の温度で予め加熱(予備加熱)する第1加熱工程と、第1加熱工程で加熱された塊状物を前記反応器に投入し、200℃以上300℃以下、10分以上240分以下で前記塊状物を加熱する第2加熱工程と、を有する。
 また、第1加熱工程における加熱温度は、第2加熱工程における加熱温度より低い。
[First Embodiment]
<Manufacturing method of biomass solid fuel>
In the method for producing a biomass solid fuel according to the present embodiment (hereinafter, may be referred to as "the production method of the present embodiment"), a lump containing biomass powder is heated by a reactor to produce a biomass solid fuel. How to do it.
In the production method of the present embodiment, a mass containing biomass powder is preheated (preheated) at a temperature 2 ° C. lower than the dew point temperature of the atmosphere in the reactor before being charged into the reactor. 1 heating step and a second heating step of putting the lump material heated in the first heating step into the reactor and heating the lump material in 200 ° C. or higher and 300 ° C. or lower and 10 minutes or more and 240 minutes or less. Have.
Further, the heating temperature in the first heating step is lower than the heating temperature in the second heating step.
 本実施形態の製造方法によれば、BOD及びCODの溶出量が抑制されたバイオマス固形燃料を得ることができる(以下、「本実施形態の効果」と称することがある。)。 According to the production method of the present embodiment, it is possible to obtain a biomass solid fuel in which the elution amounts of BOD and COD are suppressed (hereinafter, it may be referred to as "effect of the present embodiment").
 本実施形態の製造方法では、第2加熱工程の実施により、得られるバイオマス固形燃料に含まれるバイオマス粉が半炭化される。
 ここで、半炭化とは、少なくとも一部のバイオマスを炭化した状態をいう。そのため、本明細書における半炭化は、バイオマスの一部を炭化した状態、及びバイオマスの全てを炭化した状態を包含する。半炭化されたバイオマス固形燃料は、固体状のバイオマス(例えば木質バイオマス)を、例えば200℃以上300℃以下で加熱することで得られる。
In the production method of the present embodiment, the biomass powder contained in the obtained biomass solid fuel is semi-carbonized by the implementation of the second heating step.
Here, semi-carbonized means a state in which at least a part of biomass is carbonized. Therefore, semi-carbonization in the present specification includes a state in which a part of biomass is carbonized and a state in which all of the biomass is carbonized. The semi-carbonized biomass solid fuel is obtained by heating solid biomass (for example, woody biomass) at, for example, 200 ° C. or higher and 300 ° C. or lower.
 従来の固形燃料の製造方法では、バイオマス粉を含む塊状物を、予め加熱することなく反応器に投入し、当該塊状物を所定温度及び所定時間で加熱することで固形燃料を得ていた。すなわち、従来の固形燃料の製造方法では、本実施形態における第1加熱工程(つまり予備加熱工程)を実施することなく、第2加熱工程のみを実施することで固形燃料を得ていた。
 しかし、このような方法で製造された固形燃料は、表面が劣化し易く、COD及びBODが溶出し易いことがわかった。その理由は以下のように考えられる。
 図1は、従来の方法でブラックペレット(バイオマスを半炭化した固形燃料)を製造したときに生じ得る事象を説明するための図である。図1に示す事象1~4は、以下の通りである。なお、ホワイトペレットとは、バイオマスを半炭化していない状態の固形燃料である。
・事象1:ホワイトペレット20を反応器に投入すると、ホワイトペレット20の表面に水分を含む高温(例えば270℃)のガスが触れる。
・事象2:反応器投入直後のホワイトペレット20は、表面温度が常温(25℃)に近いため、表面に水21が吸着して結露が生じ易くなる。
・事象3:結露で生じた水21により、ホワイトペレット20をコーティングしているリグニン由来と考えられる成分22が溶け、表面から光沢がなくなる。つまり、ホワイトペレット20の表面が劣化する。
・事象4:表面が劣化したホワイトペレット20を半炭化するための温度まで上昇する際、水分が蒸発する。その結果、表面が劣化したブラックペレット30が得られる。
In the conventional method for producing solid fuel, a solid fuel is obtained by putting a lump containing biomass powder into a reactor without heating in advance and heating the lump at a predetermined temperature and a predetermined time. That is, in the conventional method for producing solid fuel, the solid fuel is obtained by carrying out only the second heating step without carrying out the first heating step (that is, the preheating step) in the present embodiment.
However, it has been found that the surface of the solid fuel produced by such a method is easily deteriorated and COD and BOD are easily eluted. The reason is considered as follows.
FIG. 1 is a diagram for explaining an event that may occur when black pellets (solid fuel obtained by semi-carbonizing biomass) are produced by a conventional method. Events 1 to 4 shown in FIG. 1 are as follows. The white pellet is a solid fuel in which the biomass is not semi-carbonized.
-Event 1: When the white pellet 20 is put into the reactor, the surface of the white pellet 20 comes into contact with a high temperature (for example, 270 ° C.) gas containing water.
-Event 2: Since the surface temperature of the white pellet 20 immediately after the reactor is charged is close to normal temperature (25 ° C.), water 21 is adsorbed on the surface and dew condensation is likely to occur.
-Event 3: The water 21 generated by the dew condensation dissolves the component 22 considered to be derived from lignin coating the white pellet 20, and the surface loses its luster. That is, the surface of the white pellet 20 is deteriorated.
-Event 4: Moisture evaporates when the temperature rises to the temperature for semi-carbonizing the white pellet 20 whose surface has deteriorated. As a result, black pellets 30 having a deteriorated surface are obtained.
 本発明者らは、事象1~4について鋭意検討した結果、ホワイトペレットを反応器に投入する前に、ホワイトペレットを特定の温度で予備加熱する、具体的には、「反応器内の雰囲気の露点温度より2℃低い温度以上の温度」で予め加熱することで、得られるブラックペレットの表面が劣化しにくくなることを見出した。
 本実施形態の製造方法によれば、ホワイトペレットを反応器に投入した直後の、ペレット表面への水分の吸着が抑制され、ホワイトペレットをコーティングしているリグニン由来と考えられる成分が溶けにくくなると考えられる。すなわち、事象2及び事象3が生じにくくなると考えられる。その結果、表面の劣化が抑制されたブラックペレットが得られ、本実施形態の効果が奏されると考えられる。
 なお、ホワイトペレットを予備加熱する際の温度が上がるほど、表面に吸着する水分の量が少なくなるため、予備加熱の温度に比例して、表面劣化の程度が少なく、かつBOD及びCODの溶出量がより少ないブラックペレットが得られると考えられる。
 よって、本実施形態の効果をより奏する観点から、ホワイトペレットを予備加熱する際の温度(つまり、第1加熱工程における予備加熱の温度)は、「反応器内の雰囲気の露点温度以上の温度」が好ましく、「反応器内の雰囲気の露点温度超えの温度」がより好ましい。
As a result of diligent studies on events 1 to 4, the present inventors preheat the white pellets at a specific temperature before charging the white pellets into the reactor, specifically, "the atmosphere in the reactor". It has been found that the surface of the obtained black pellets is less likely to be deteriorated by preheating at a temperature equal to or higher than the dew point temperature by 2 ° C.
According to the production method of the present embodiment, it is considered that the adsorption of water on the pellet surface immediately after the white pellet is put into the reactor is suppressed, and the component considered to be derived from lignin coating the white pellet is difficult to dissolve. Be done. That is, it is considered that event 2 and event 3 are less likely to occur. As a result, black pellets in which deterioration of the surface is suppressed can be obtained, and it is considered that the effect of the present embodiment is exhibited.
As the temperature at which the white pellets are preheated rises, the amount of water adsorbed on the surface decreases, so that the degree of surface deterioration decreases in proportion to the temperature of the preheating, and the amount of BOD and COD eluted. It is believed that less black pellets can be obtained.
Therefore, from the viewpoint of more exerting the effect of the present embodiment, the temperature at which the white pellets are preheated (that is, the temperature of the preheating in the first heating step) is "a temperature equal to or higher than the dew point temperature of the atmosphere in the reactor". Is preferable, and "the temperature exceeding the dew point temperature of the atmosphere in the reactor" is more preferable.
 本明細書における「反応器内の雰囲気の露点温度より2℃低い温度以上の温度」について説明する。
 図2は、温度と飽和水分との関係を示すグラフである。
 図2中、曲線C1は、露点温度を示す曲線である。曲線C2は、この曲線C1を横軸方向に-2℃移動した曲線である。本明細書における「反応器内の雰囲気の露点温度より2℃低い温度以上の温度」とは、図2に示す曲線C2から右側の領域(図2中、領域R)における温度を意味する。
 例えば、反応器内のガス雰囲気中の水分量が23質量%である場合、「露点温度」は、曲線C1から81.1℃と算出される。また、「露点温度より2℃低い温度」は、曲線C2から「79.1℃」と算出される。すなわち、本実施形態の製造方法において、反応器内のガス雰囲気中の水分量が23質量%である場合、ホワイトペレットを79.1℃以上で予備加熱することで、本実施形態の効果が奏される。
In the present specification, "a temperature 2 ° C. lower than the dew point temperature of the atmosphere in the reactor" will be described.
FIG. 2 is a graph showing the relationship between temperature and saturated moisture.
In FIG. 2, the curve C1 is a curve showing the dew point temperature. The curve C2 is a curve obtained by moving the curve C1 by -2 ° C. in the horizontal axis direction. As used herein, the "temperature above 2 ° C. lower than the dew point temperature of the atmosphere in the reactor" means the temperature in the region on the right side of the curve C2 shown in FIG. 2 (region RD in FIG. 2).
For example, when the water content in the gas atmosphere in the reactor is 23% by mass, the "dew point temperature" is calculated from the curve C1 to 81.1 ° C. Further, the "temperature 2 ° C. lower than the dew point temperature" is calculated as "79.1 ° C." from the curve C2. That is, in the production method of the present embodiment, when the water content in the gas atmosphere in the reactor is 23% by mass, the effect of the present embodiment is achieved by preheating the white pellets at 79.1 ° C. or higher. Will be done.
 第1実施形態の製造方法について図3を用いて説明する。
 図3は、第1実施形態に係るバイオマス固形燃料の製造方法を示すフローチャートである。
 図3に示す製造方法は、バイオマスを準備する工程(準備工程ST1)と、バイオマスを粉砕する工程(粉砕工程ST2)と、粉砕されたバイオマス(つまりバイオマス粉)を乾燥する工程(乾燥工程ST3)と、乾燥したバイオマス粉を圧縮成型する工程(圧縮成型工程ST4)と、圧縮成型された塊状物を反応器に投入する前に、前記反応器内の雰囲気の露点温度より2℃低い温度以上の温度で予め加熱(予備加熱)する第1加熱工程(第1加熱工程ST10)と、第1加熱工程で加熱された塊状物を前記反応器に投入し、200℃以上300℃以下、10分以上240分以下で前記塊状物を加熱する第2加熱工程(第2加熱工程ST20)と、を有する。
The manufacturing method of the first embodiment will be described with reference to FIG.
FIG. 3 is a flowchart showing a method for producing a biomass solid fuel according to the first embodiment.
The production method shown in FIG. 3 includes a step of preparing biomass (preparation step ST1), a step of crushing biomass (crushing step ST2), and a step of drying the crushed biomass (that is, biomass powder) (drying step ST3). The step of compression-molding the dried biomass powder (compression molding step ST4) and the temperature of 2 ° C. or higher lower than the dew point temperature of the atmosphere in the reactor before charging the compression-molded mass into the reactor. The first heating step (first heating step ST10) of preheating (preheating) at a temperature and the lumps heated in the first heating step are put into the reactor, and the temperature is 200 ° C. or higher and 300 ° C. or lower for 10 minutes or longer. It has a second heating step (second heating step ST20) for heating the biomass in 240 minutes or less.
 以下、第1実施形態の製造方法で実施する各工程について説明する。 Hereinafter, each process carried out by the manufacturing method of the first embodiment will be described.
(準備工程ST1)
 準備工程ST1は、便宜上の工程である。準備したバイオマスの大きさは特に限定されない。バイオマスは続く粉砕工程ST2で粉砕してもよいが、粉砕されたバイオマス(バイオマス粉)を準備してもよい。その場合、粉砕工程ST2は実施しなくてよい。好適なバイオマスについては粉砕工程ST2の項で説明する。
(Preparation process ST1)
The preparation step ST1 is a step for convenience. The size of the prepared biomass is not particularly limited. Biomass may be crushed in the subsequent crushing step ST2, but crushed biomass (biomass powder) may be prepared. In that case, the crushing step ST2 does not have to be carried out. Suitable biomass will be described in the section of crushing step ST2.
(粉砕工程ST2)
 準備したバイオマスは、公知の粉砕機を用いて粉末に粉砕される。これにより、バイオマス粉が得られる。
(Crushing step ST2)
The prepared biomass is pulverized into powder using a known pulverizer. As a result, biomass powder is obtained.
 バイオマスとしては特に限定されないが、例えば、木質バイオマス、草木バイオマス、農作物残渣バイオマス、パーム椰子バイオマス、セルロース製品、及びパルプ製品等が挙げられる。
 本明細書において、農作物残渣バイオマスとは、食用部分以外のものを意味する。
 本明細書において、パーム椰子バイオマスとは、バイオマス燃料となり得るパーム椰子の農業廃棄物を意味する。パーム椰子バイオマスとしては、具体的には、パーム椰子殻(PKS:Palm Kernel Shell)、及びパーム椰子空果房(EFB:Empty Fruit Bunch)等が挙げられる。
The biomass is not particularly limited, and examples thereof include woody biomass, vegetation biomass, crop residue biomass, palm palm biomass, cellulose products, and pulp products.
In the present specification, the crop residue biomass means something other than the edible portion.
As used herein, palm palm biomass means agricultural waste of palm palm that can be a biomass fuel. Specific examples of the palm coconut biomass include palm coconut shells (PKS: Palm Kernel Cell), palm coconut husks (EFB: Empty Fruit Bunch), and the like.
 木質バイオマスとしては、例えば、針葉樹(例えば、スギ、マツ、ユーカリ、ヒノキ、及びモミ等)、及び広葉樹(例えば、シラカバ、ブナ、ケヤキ、カツラ、キリ、ゴムノキ及びクスノキ等)等が挙げられる。木質バイオマスは、建築廃材(例えば、切断した端材、加工場で発生した切りくず、及びおがくず等)、林地残材、切捨間伐材、及び竹等であってもよい。
 草木バイオマスとしては、例えば、草、自然に生育した植物、及び人工的に植林した植物等が挙げられる。草木バイオマスは、麻、綿、稲わら、籾殻、麦わら、ササ、及びススキ等であってもよい。
Examples of woody biomass include conifers (eg, sugi, pine, eucalyptus, cypress, fir, etc.), hardwoods (eg, white hippo, beech, zelkova, katsura, drill, rubber tree, kusunoki, etc.) and the like. The woody biomass may be construction waste (for example, cut offcuts, chips generated at a processing plant, sawdust, etc.), forest residue, thinned wood, bamboo, and the like.
Examples of vegetation biomass include grasses, naturally grown plants, and artificially planted plants. The vegetation biomass may be hemp, cotton, rice straw, rice husks, straw, sasa, pampas grass and the like.
 農作物残渣バイオマスとしては、例えば、農作物の葉、果房、茎、根、及びその他食用以外の不要部分が挙げられる。前記農作物としては、例えば、小麦、とうもろこし、じゃがいも、及びサトウキビ(バガスを含む)等が挙げられる。 Examples of crop residue biomass include leaves, fruit bunches, stems, roots, and other non-edible parts of crops. Examples of the crop include wheat, corn, potatoes, sugar cane (including bagasse) and the like.
 パーム椰子バイオマスとしては、例えば、パーム油の絞りかす(PKS)、果房(EFB)、及び果実皮等が挙げられる。
 以上に記載したバイオマスは、1種単独で用いても2種以上併用してもよい。
Examples of palm palm biomass include palm oil pomace (PKS), fruit bunch (EFB), and fruit bark.
The biomass described above may be used alone or in combination of two or more.
 バイオマス粉は、木質バイオマス、草木バイオマス、農作物残渣バイオマス、及びパーム椰子バイオマスからなる群から選択される少なくとも1種に由来することが好ましい。バイオマス粉は、木質バイオマス、草木バイオマス、及び農作物残渣バイオマスからなる群から選択される少なくとも1種に由来することがより好ましい。バイオマス粉は、木質バイオマスに由来することがさらに好ましい。 The biomass powder is preferably derived from at least one selected from the group consisting of woody biomass, vegetation biomass, crop residue biomass, and palm palm biomass. It is more preferable that the biomass powder is derived from at least one selected from the group consisting of woody biomass, vegetation biomass, and crop residue biomass. It is more preferable that the biomass powder is derived from woody biomass.
 バイオマス粉は、バイオマスを公知の粉砕機を用いて粉砕することで得られる。
 例えば、木質バイオマスとして木材を用いる場合、木材で大型のものは数センチ程度のチップに粗粉砕し、その後、粉末に粉砕してもよい。
Biomass powder is obtained by crushing biomass using a known crusher.
For example, when wood is used as woody biomass, a large piece of wood may be roughly crushed into chips of several centimeters and then crushed into powder.
 バイオマス粉の平均粒径は、圧縮成型のし易さの観点から、好ましくは10μm以上5000μm以下、より好ましくは30μm以上3000μm以下、さらに好ましくは50μm以上1000μm以下である。
 バイオマス粉の平均粒径が10μm以上であると、圧縮成型し易くなる。
 バイオマス粉の平均粒径が5000μm以下であると、粉砕エネルギーを抑制し易くなる。
 本明細書において、バイオマス粉の粒径とは、バイオマス粉の最大径のことであり、具体的には、バイオマス粉の外側輪郭線上の任意の2点を直線で結んだ時の直線の最大長さを意味する。
From the viewpoint of ease of compression molding, the average particle size of the biomass powder is preferably 10 μm or more and 5000 μm or less, more preferably 30 μm or more and 3000 μm or less, and further preferably 50 μm or more and 1000 μm or less.
When the average particle size of the biomass powder is 10 μm or more, compression molding becomes easy.
When the average particle size of the biomass powder is 5000 μm or less, it becomes easy to suppress the crushing energy.
In the present specification, the particle size of the biomass powder is the maximum diameter of the biomass powder, and specifically, the maximum length of the straight line when any two points on the outer contour line of the biomass powder are connected by a straight line. Means that.
・バイオマス粉の平均粒径の測定方法
 バイオマス粉の平均粒径は、以下の方法で測定することができる。画像解析粒度分布計を用いて、任意に選んだバイオマス粉(100個)の最大径を測定し、これらの最大径の平均値を「バイオマス粉の平均粒径」とする。画像解析粒度分布計としては、例えば、ジャスコインタナショナル社製の「DW-3000」を用いることができる。
 また、バイオマス粉の平均粒径は、篩を用いて調整することもできる。
-Method for measuring the average particle size of biomass powder The average particle size of biomass powder can be measured by the following method. Using an image analysis particle size distribution meter, the maximum diameter of arbitrarily selected biomass powder (100 pieces) is measured, and the average value of these maximum diameters is defined as the "average particle size of the biomass powder". As the image analysis particle size distribution meter, for example, "DW-3000" manufactured by Jasco International can be used.
The average particle size of the biomass powder can also be adjusted using a sieve.
(乾燥工程ST3)
 バイオマス粉は、含水率を好適な範囲(例えば10質量%以上20質量%以下)に調整する観点から、乾燥することが好ましい。
 乾燥方法としては特に限定されず、公知の乾燥装置を用いることができる。
(Drying step ST3)
The biomass powder is preferably dried from the viewpoint of adjusting the water content to a suitable range (for example, 10% by mass or more and 20% by mass or less).
The drying method is not particularly limited, and a known drying device can be used.
(圧縮成型工程ST4)
 圧縮成型工程ST4は、バイオマス粉を、所定の圧力で圧縮成型する工程である。これにより、バイオマス粉を含む塊状物が得られる。
 塊状物の形状及び大きさは特に限定されない。
 塊状物はペレットまたはブリケットであることが好ましい。ペレットは、通常、円筒状であり、直径5mm以上10mm以下、長さ5mm以上50mm以下である。ブリケットは、通常、ペレットよりも大きい直径または長さを有する。
 ペレットは、例えば、バイオマス粉を金属穴(例えば、直径5mm以上10mm以下、長さ5mm以上200mm以下)から押し出すことで作製することができる。また、ペレットは、リングダイ方式またはフラットダイ方式等のペレタイザーを用いて作製することができる。
 ブリケットは、例えば、ブリケットマシーンを用いて豆炭状または円筒状に成型することで作製することができる。
 圧縮成型する方法としては特に限定されず、公知の圧縮成型装置(例えばブリケットマシーン)を用いることができる。
 圧縮成型時の圧力は、50MPa以上150MPa以下であることが好ましい。
 圧縮成型時の加圧時間は、1分以上20分以下であることが好ましい。
(Compression molding process ST4)
The compression molding step ST4 is a step of compression molding the biomass powder at a predetermined pressure. As a result, a lump containing biomass powder can be obtained.
The shape and size of the lump are not particularly limited.
The lumps are preferably pellets or briquettes. The pellets are usually cylindrical and have a diameter of 5 mm or more and 10 mm or less and a length of 5 mm or more and 50 mm or less. Briquettes usually have a larger diameter or length than pellets.
Pellets can be produced, for example, by extruding biomass powder from metal holes (eg, diameter 5 mm or more and 10 mm or less, length 5 mm or more and 200 mm or less). Further, the pellet can be produced by using a pelletizer such as a ring die method or a flat die method.
The briquette can be produced, for example, by molding into a charcoal-like or cylindrical shape using a briquette machine.
The method of compression molding is not particularly limited, and a known compression molding device (for example, a briquette machine) can be used.
The pressure during compression molding is preferably 50 MPa or more and 150 MPa or less.
The pressurization time during compression molding is preferably 1 minute or more and 20 minutes or less.
(第1加熱工程(予備加熱工程)ST10)
 第1加熱工程ST10は、バイオマス粉を含む塊状物(例えば木質ペレット(ホワイトペレットの一例))を、反応器に投入する前に、前記反応器内の雰囲気の露点温度より2℃低い温度以上の温度で予め加熱する工程である。第1加熱工程ST10は、通常、予備加熱器で実施される。
 第1加熱工程ST10において、「反応器内の雰囲気の露点温度より2℃低い温度以上の温度」の上限値は、第2加熱工程ST20における反応器内の水分量によるが(図2参照)、好ましくは100℃以下、より好ましくは95℃以下、さらに好ましくは90℃以下である。
 第1加熱工程ST10において、「反応器内の雰囲気の露点温度より2℃低い温度以上の温度」の下限値は、本実施形態の効果をより発現する観点から、好ましくは30℃以上、より好ましくは50℃以上、さらに好ましくは60℃以上である。なお、第1加熱工程ST10において、前記塊状物を予め加熱(予備加熱)する際の温度とは、前記塊状物が投入される予備加熱器の温度である。
 第1加熱工程ST10において、「反応器内の雰囲気の露点温度より2℃低い温度以上の温度」は、30℃以上100℃以下であることが好ましく、50℃以上95℃以下であることがより好ましく、60℃以上90℃以下であることがさらに好ましい。
 第1加熱工程ST10における「反応器内の雰囲気の露点温度より2℃低い温度以上の温度」は、50℃以上100℃以下であることも好ましく、60℃以上100℃以下であることも好ましく、30℃以上95℃以下であることも好ましく、30℃以上90℃以下であることも好ましい。
(First heating step (preheating step) ST10)
In the first heating step ST10, before the lump containing biomass powder (for example, wood pellets (an example of white pellets)) is charged into the reactor, the temperature is 2 ° C. or higher lower than the dew point temperature of the atmosphere in the reactor. This is a step of preheating at a temperature. The first heating step ST10 is usually carried out in a preheater.
In the first heating step ST10, the upper limit of "the temperature of 2 ° C. or higher than the dew point temperature of the atmosphere in the reactor" depends on the amount of water in the reactor in the second heating step ST20 (see FIG. 2). It is preferably 100 ° C. or lower, more preferably 95 ° C. or lower, and even more preferably 90 ° C. or lower.
In the first heating step ST10, the lower limit of "the temperature of 2 ° C. or higher than the dew point temperature of the atmosphere in the reactor" is preferably 30 ° C. or higher, more preferably from the viewpoint of further exhibiting the effect of the present embodiment. Is 50 ° C. or higher, more preferably 60 ° C. or higher. In the first heating step ST10, the temperature at which the lump is preheated (preheated) is the temperature of the preheater into which the lump is charged.
In the first heating step ST10, the "temperature of 2 ° C. or higher than the dew point temperature of the atmosphere in the reactor" is preferably 30 ° C. or higher and 100 ° C. or lower, and more preferably 50 ° C. or higher and 95 ° C. or lower. It is preferable that the temperature is 60 ° C. or higher and 90 ° C. or lower.
The "temperature of 2 ° C. or higher than the dew point temperature of the atmosphere in the reactor" in the first heating step ST10 is preferably 50 ° C. or higher and 100 ° C. or lower, and preferably 60 ° C. or higher and 100 ° C. or lower. It is preferably 30 ° C. or higher and 95 ° C. or lower, and it is also preferable that the temperature is 30 ° C. or higher and 90 ° C. or lower.
 バイオマス粉を含む塊状物の加熱時間は、得られるバイオマス固形燃料の表面劣化をより抑制する観点から、好ましくは5分以上、より好ましくは10分以上、さらに好ましくは30分以上である。
 前記塊状物の加熱時間の上限値は、製造効率を向上させる観点から、好ましくは60分以下である。
The heating time of the lump containing the biomass powder is preferably 5 minutes or longer, more preferably 10 minutes or longer, still more preferably 30 minutes or longer, from the viewpoint of further suppressing the surface deterioration of the obtained biomass solid fuel.
The upper limit of the heating time of the lump is preferably 60 minutes or less from the viewpoint of improving the production efficiency.
 第1加熱工程ST10を予備加熱器で実施する場合、予備加熱器内の雰囲気は、特に限定されないが、空気雰囲気、窒素雰囲気、又は燃焼排ガス雰囲気であることが好ましい。
 予備加熱器内の雰囲気中に含まれる水分量は、バイオマスに含まれる水分量にもよるが、好ましくは5質量%以下である。
 予備加熱器内の雰囲気中に含まれる水分量の測定方法は、以下の方法で行う。
 予備加熱器からポンプで吸引量が45Lとなるように、雰囲気ガスを吸引する。吸引した雰囲気ガスを氷水及び塩化ナトリウムで冷却し、凝縮させる。吸引したガスの流量を湿式ガスメーター(株式会社シナガワ社製、WS-1A)で測定し、凝縮した水分の質量から、水分を算出する。
When the first heating step ST10 is carried out by the preheater, the atmosphere in the preheater is not particularly limited, but is preferably an air atmosphere, a nitrogen atmosphere, or a combustion exhaust gas atmosphere.
The amount of water contained in the atmosphere in the preheater depends on the amount of water contained in the biomass, but is preferably 5% by mass or less.
The method for measuring the amount of water contained in the atmosphere in the preheater is as follows.
Atmospheric gas is sucked from the preheater with a pump so that the suction amount becomes 45 L. The sucked atmospheric gas is cooled with ice water and sodium chloride and condensed. The flow rate of the sucked gas is measured with a wet gas meter (WS-1A manufactured by Shinagawa Co., Ltd.), and the water content is calculated from the mass of the condensed water water.
(第2加熱工程ST20)
 第2加熱工程ST20は、第1加熱工程ST10で加熱された前記塊状物を反応器に投入し、200℃以上300℃以下、10分以上240分以下で前記塊状物を加熱する工程である。
 また、第1加熱工程における加熱温度は、第2加熱工程における加熱温度より低い。
(Second heating step ST20)
The second heating step ST20 is a step of putting the lumps heated in the first heating step ST10 into a reactor and heating the lumps at 200 ° C. or higher and 300 ° C. or lower and 10 minutes or more and 240 minutes or lower.
Further, the heating temperature in the first heating step is lower than the heating temperature in the second heating step.
 第2加熱工程ST20において、加熱温度は、得られるバイオマス固形燃料の発熱量を確保しつつ粉砕性を向上する観点から、好ましくは200℃以上300℃以下、より好ましくは230℃以上300℃以下、さらに好ましくは250℃以上300℃以下である。なお、第2加熱工程ST20における加熱温度とは、前記塊状物が投入される反応器の温度である。
 第2加熱工程ST20において、加熱時間は、加熱温度に依るが、好ましくは10分以上240分以下、より好ましくは20分以上180分以下、さらに好ましくは30分以上150分以下である。
In the second heating step ST20, the heating temperature is preferably 200 ° C. or higher and 300 ° C. or lower, more preferably 230 ° C. or higher and 300 ° C. or lower, from the viewpoint of improving the pulverizability while ensuring the calorific value of the obtained biomass solid fuel. More preferably, it is 250 ° C. or higher and 300 ° C. or lower. The heating temperature in the second heating step ST20 is the temperature of the reactor into which the lump is charged.
In the second heating step ST20, the heating time depends on the heating temperature, but is preferably 10 minutes or more and 240 minutes or less, more preferably 20 minutes or more and 180 minutes or less, and further preferably 30 minutes or more and 150 minutes or less.
 第2加熱工程ST20において、反応器内の雰囲気は、特に限定されないが、乾留ガス雰囲気、又は燃焼排ガス雰囲気であることが好ましい。
 第2加熱工程において、前記反応器内の雰囲気中に含まれる水分量は、好ましくは40質量%以下、より好ましくは35質量%以下、さらに好ましくは30質量%以下である。
 前記反応器内の雰囲気中に含まれる水分量が40質量%以下であると、第1加熱工程における予備加熱の温度が100℃以下で表面劣化を防ぎ易くなる。
 なお、前記反応器内の雰囲気中に含まれる水分量の下限値は、通常、5質量%以上であることが好ましい。
 反応器内の雰囲気中に含まれる水分量の測定方法は、以下の方法で行う。
 下記条件で反応器からポンプで雰囲気ガスを吸引する。吸引した雰囲気ガスを氷水及び塩化ナトリウムで冷却し、凝縮させる。凝縮した試料中には有機成分と水分が含まれることから、カールフィッシャー水分計で試料中の水分を測定する。また、吸引したガスの流量を湿式ガスメーター(株式会社シナガワ製、WS-1A)で測定するとともに、雰囲気ガスをガスクロマトグラフィー(Agilent 490マイクロGC)で測定し、ガス組成から気体の重量を算出することで、ガス中の水分を算出する。
 なお、雰囲気ガスが乾留ガスの場合、乾留ガス組成をCO:80質量%及びCO:20質量%と仮定して文献(Energy Fuels 2019,33,3257-3266)に基づき水分を算出してもよい。
 -条件-
・吸引時間 :30分・吸引流量 :1.5L/分
・合計吸引量:45L
In the second heating step ST20, the atmosphere in the reactor is not particularly limited, but is preferably a dry distillation gas atmosphere or a combustion exhaust gas atmosphere.
In the second heating step, the amount of water contained in the atmosphere in the reactor is preferably 40% by mass or less, more preferably 35% by mass or less, still more preferably 30% by mass or less.
When the amount of water contained in the atmosphere in the reactor is 40% by mass or less, the temperature of the preheating in the first heating step is 100 ° C. or less, and surface deterioration can be easily prevented.
The lower limit of the amount of water contained in the atmosphere in the reactor is usually preferably 5% by mass or more.
The method for measuring the amount of water contained in the atmosphere in the reactor is as follows.
Atmospheric gas is sucked from the reactor with a pump under the following conditions. The sucked atmospheric gas is cooled with ice water and sodium chloride and condensed. Since the condensed sample contains organic components and water, the water content in the sample is measured with a Karl Fischer moisture meter. Further, the flow rate of the sucked gas is measured by a wet gas meter (WS-1A manufactured by Shinagawa Co., Ltd.), and the atmospheric gas is measured by gas chromatography (Agient 490 microGC), and the weight of the gas is calculated from the gas composition. By doing so, the water content in the gas is calculated.
When the atmospheric gas is a carbonization gas, the water content can be calculated based on the literature (Energy Fuels 2019, 33, 3257-3266) assuming that the carbonization gas composition is CO 2: 80% by mass and CO: 20% by mass. good.
-conditions-
・ Suction time: 30 minutes ・ Suction flow rate: 1.5L / min ・ Total suction amount: 45L
 第2加熱工程ST20において、第1加熱工程における予備加熱の温度は、第2加熱工程における加熱温度より低い。第1加熱工程における予備加熱の温度及び第2加熱工程における加熱温度の関係は、好ましくは下記式(1)、より好ましくは下記式(2)、さらに好ましくは下記式(3)を満たす。
170℃≦第2加熱工程の加熱温度-第1加熱工程の予備加熱の温度≦240℃…(1)
175℃≦第2加熱工程の加熱温度-第1加熱工程の予備加熱の温度≦220℃…(2)
180℃≦第2加熱工程の加熱温度-第1加熱工程の予備加熱の温度≦200℃…(3)
In the second heating step ST20, the temperature of the preheating in the first heating step is lower than the heating temperature in the second heating step. The relationship between the preheating temperature in the first heating step and the heating temperature in the second heating step preferably satisfies the following formula (1), more preferably the following formula (2), and further preferably the following formula (3).
170 ° C ≤ heating temperature in the second heating step-preheating temperature in the first heating step ≤ 240 ° C ... (1)
175 ° C ≤ heating temperature of the second heating step-preheating temperature of the first heating step ≤ 220 ° C ... (2)
180 ° C ≤ heating temperature in the second heating step-preheating temperature in the first heating step ≤ 200 ° C ... (3)
 また、第1加熱工程における予備加熱の温度及び第2加熱工程における加熱温度の関係は、下記式(4)~下記式(7)のいずれかを満たすことも好ましい。
170℃≦第2加熱工程の加熱温度-第1加熱工程の予備加熱の温度≦230℃…(4)
170℃≦第2加熱工程の加熱温度-第1加熱工程の予備加熱の温度≦220℃…(5)
170℃≦第2加熱工程の加熱温度-第1加熱工程の予備加熱の温度≦210℃…(6)
170℃≦第2加熱工程の加熱温度-第1加熱工程の予備加熱の温度≦205℃…(7)
Further, the relationship between the preheating temperature in the first heating step and the heating temperature in the second heating step preferably satisfies any one of the following formulas (4) to (7).
170 ° C ≤ heating temperature in the second heating step-preheating temperature in the first heating step ≤ 230 ° C ... (4)
170 ° C ≤ heating temperature in the second heating step-preheating temperature in the first heating step ≤ 220 ° C ... (5)
170 ° C ≤ heating temperature in the second heating step-preheating temperature in the first heating step ≤ 210 ° C ... (6)
170 ° C ≤ heating temperature in the second heating step-preheating temperature in the first heating step ≤ 205 ° C ... (7)
(バイオマス固形燃料の特性)
 製造されたバイオマス固形燃料は、算術平均粗さRa、最大高さ粗さRz、BOD、COD、及び機械的耐久性DUが以下の範囲であることが好ましい。
(Characteristics of biomass solid fuel)
The produced biomass solid fuel preferably has an arithmetic mean roughness Ra, a maximum height roughness Rz, a BOD, a COD, and a mechanical durability DU in the following ranges.
・算術平均粗さRa
 バイオマス固形燃料の算術平均粗さRaは、好ましくは5.0μm以下、より好ましくは4.8μm以下、さらに好ましくは4.6μm以下である。
 算術平均粗さRaが5.0μm以下であると、表面劣化が抑制され、光沢性を有するバイオマス固形燃料が得られ易くなる。
・ Arithmetic mean roughness Ra
The arithmetic average roughness Ra of the biomass solid fuel is preferably 5.0 μm or less, more preferably 4.8 μm or less, and further preferably 4.6 μm or less.
When the arithmetic average roughness Ra is 5.0 μm or less, surface deterioration is suppressed, and it becomes easy to obtain a biomass solid fuel having gloss.
・最大高さ粗さRz
 バイオマス固形燃料の最大高さ粗さRzは、好ましくは30.0μm以下、より好ましくは28.0μm以下、さらに好ましくは26.0μm以下である。
 最大高さ粗さRzが30.0μm以下であると、表面劣化が抑制され、光沢性を有するバイオマス固形燃料が得られ易くなる。
 算術平均粗さRa及び最大高さ粗さRzは、ISO4287(1997)に準じて測定される。算術平均粗さRa及び最大高さ粗さRzの測定方法は、実施例の項で記載する。
・ Maximum height roughness Rz
The maximum height roughness Rz of the biomass solid fuel is preferably 30.0 μm or less, more preferably 28.0 μm or less, still more preferably 26.0 μm or less.
When the maximum height roughness Rz is 30.0 μm or less, surface deterioration is suppressed, and it becomes easy to obtain a biomass solid fuel having gloss.
The arithmetic mean roughness Ra and the maximum height roughness Rz are measured according to ISO4287 (1997). The method for measuring the arithmetic mean roughness Ra and the maximum height roughness Rz is described in the section of Examples.
・BOD
 バイオマス固形燃料のBODは、好ましくは200ppm以下、より好ましくは190ppm以下、さらに好ましくは180ppm以下である。
 BODが200mg/L以下であると、水質汚染を抑制できるので、屋外でもバイオマス固形燃料を貯蔵し易くなる。
 BODの測定に用いる浸漬水は、実施例に記載の方法で調製される。
 BODは、JIS K0102-21(2016)に記載された試験方法で測定される。
・ BOD
The BOD of the biomass solid fuel is preferably 200 ppm or less, more preferably 190 ppm or less, still more preferably 180 ppm or less.
When the BOD is 200 mg / L or less, water pollution can be suppressed, so that it becomes easy to store the biomass solid fuel even outdoors.
The immersion water used for measuring BOD is prepared by the method described in Examples.
BOD is measured by the test method described in JIS K0102-21 (2016).
・COD
 バイオマス固形燃料のCODは、好ましくは200ppm以下、より好ましくは190ppm以下、さらに好ましくは180ppm以下である。
 CODが200mg/L以下であると、水質汚染を抑制できるので、屋外でもバイオマス固形燃料を貯蔵し易くなる。
 CODの測定に用いる浸漬水は、実施例に記載の方法で調製される。
 CODは、JIS K0102-17(2016)に記載された試験方法で測定される。
・ COD
The COD of the biomass solid fuel is preferably 200 ppm or less, more preferably 190 ppm or less, still more preferably 180 ppm or less.
When the COD is 200 mg / L or less, water pollution can be suppressed, so that it becomes easy to store the biomass solid fuel even outdoors.
The immersion water used for measuring COD is prepared by the method described in Examples.
COD is measured by the test method described in JIS K0102-17 (2016).
 有機成分(COD及びBOD)の溶出をより抑制し易い構造とする観点から、製造されたバイオマス固形燃料は、算術平均粗さRaが5.0μm以下であり、BODが200ppm以下であり、CODが200ppm以下であることが好ましい。 From the viewpoint of making the structure easier to suppress the elution of organic components (COD and BOD), the produced biomass solid fuel has an arithmetic mean roughness Ra of 5.0 μm or less, a BOD of 200 ppm or less, and a COD of 200 ppm or less. It is preferably 200 ppm or less.
(バイオマス固形燃料の形態)
 本実施形態のバイオマス固形燃料の形態(塊状物の形態)としては、ブリケットまたはペレットが好ましい。バイオマス固形燃料の形状及び大きさは特に限定されない。
 ペレットは、例えば、バイオマス粉を金属穴(例えば、直径5mm以上10mm以下、長さ5mm以上200mm以下)から押し出すことで作製することができる。また、ペレットは、リングダイ方式またはフラットダイ方式等のペレタイザーを用いて作製することができる。
(Form of biomass solid fuel)
Briquettes or pellets are preferable as the form of the biomass solid fuel (in the form of a lump) of the present embodiment. The shape and size of the biomass solid fuel are not particularly limited.
Pellets can be produced, for example, by extruding biomass powder from metal holes (eg, diameter 5 mm or more and 10 mm or less, length 5 mm or more and 200 mm or less). Further, the pellet can be produced by using a pelletizer such as a ring die method or a flat die method.
〔第2実施形態〕
 第2実施形態の製造方法について図4を用いて説明する。
 図4は、第2実施形態に係るバイオマス固形燃料の製造方法を示すフローチャートである。
 第2実施形態の製造方法は、第1実施形態に対し、貯蔵工程ST5を有する点で相違する。これ以外は、第1実施形態と同様であるので、以下の説明では、貯蔵工程ST5について説明し、それ以外の説明を省略する。
 第2実施形態の製造方法は、準備工程ST1と、粉砕工程ST2と、乾燥工程ST3と、圧縮成型工程ST4と、圧縮成型工程ST4で得られた塊状物を一定時間貯蔵する貯蔵工程ST5と、第1加熱工程ST10と、第2加熱工程ST20と、を有する。
 第2実施形態の製造方法によれば、BOD及びCODの溶出量が抑制されたバイオマス固形燃料を得ることができる。また、第2実施形態の製造方法によれば、製造されたバイオマス固形燃料をより有効利用することができる。
[Second Embodiment]
The manufacturing method of the second embodiment will be described with reference to FIG.
FIG. 4 is a flowchart showing a method for producing a biomass solid fuel according to the second embodiment.
The manufacturing method of the second embodiment is different from that of the first embodiment in that it has a storage step ST5. Other than this, it is the same as that of the first embodiment. Therefore, in the following description, the storage step ST5 will be described, and the other description will be omitted.
The manufacturing method of the second embodiment includes a preparation step ST1, a crushing step ST2, a drying step ST3, a compression molding step ST4, and a storage step ST5 for storing the lumps obtained in the compression molding step ST4 for a certain period of time. It has a first heating step ST10 and a second heating step ST20.
According to the production method of the second embodiment, it is possible to obtain a biomass solid fuel in which the elution amounts of BOD and COD are suppressed. Further, according to the production method of the second embodiment, the produced biomass solid fuel can be used more effectively.
 (貯蔵工程ST5)
 圧縮成型工程ST4で得られた塊状物の貯蔵場所及び貯蔵時間は特に限定されないが、BOD及びCODの溶出をより抑制する観点から、貯蔵場所は屋内であることが好ましい。
 第2実施形態の製造方法で得られるバイオマス固形燃料は、BOD及びCODの溶出量が抑制された固形燃料であるため、環境への影響を低減でき、バイオマス固形燃料を屋外でも貯蔵し易くなる。
 貯蔵場所としては、例えば、サイロ、及びホッパー等が挙げられる。
(Storage process ST5)
The storage location and storage time of the mass obtained in the compression molding step ST4 are not particularly limited, but the storage location is preferably indoors from the viewpoint of further suppressing the elution of BOD and COD.
Since the biomass solid fuel obtained by the production method of the second embodiment is a solid fuel in which the elution amounts of BOD and COD are suppressed, the impact on the environment can be reduced and the biomass solid fuel can be easily stored outdoors.
Examples of the storage location include silos, hoppers, and the like.
〔第3実施形態〕
 第1実施形態及び第2実施形態の製造方法では、第2加熱工程にて、バイオマス粉を含む塊状物を加熱することにより乾留ガスが発生する。
 第3実施形態の製造方法は、エネルギー有効利用の観点から、第2加熱工程で発生した乾留ガスの少なくとも一部をリサイクルガスとして再利用する製造方法である。
 第3実施形態の製造方法は、第1実施形態及び第2実施形態に対し、第2加熱工程で発生する乾留ガスの少なくとも一部を回収する工程(回収工程ST6)と、回収された前記乾留ガスを第2加熱工程に再利用する工程(再利用工程ST7)と、をさらに有する点で相違する。これ以外は、第1実施形態及び第2実施形態と同様であるため、以下の説明では、回収工程ST6及び再利用工程ST7について説明し、それ以外の説明を省略する。
[Third Embodiment]
In the production methods of the first embodiment and the second embodiment, carbonization gas is generated by heating a mass containing biomass powder in the second heating step.
The manufacturing method of the third embodiment is a manufacturing method in which at least a part of the carbonization gas generated in the second heating step is reused as recycled gas from the viewpoint of effective energy utilization.
The production method of the third embodiment is a step of recovering at least a part of the dry distillation gas generated in the second heating step (recovery step ST6) and the recovered dry distillation of the first embodiment and the second embodiment. It is different in that it further has a step of reusing the gas in the second heating step (reuse step ST7). Other than this, it is the same as the first embodiment and the second embodiment. Therefore, in the following description, the recovery step ST6 and the reuse step ST7 will be described, and the other description will be omitted.
 (回収工程ST6)
 乾留ガスの回収方法は特に限定されない。回収工程ST6は、第2加熱工程ST20で発生した乾留ガスから微粉を除去して前記乾留ガスを回収することが好ましい。微粉の除去は、公知の微粉分離装置により行われる。
(Recovery process ST6)
The method for recovering the carbonization gas is not particularly limited. In the recovery step ST6, it is preferable to remove fine powder from the carbonization gas generated in the second heating step ST20 to recover the carbonization gas. The fine powder is removed by a known fine powder separation device.
 (再利用工程ST7)
 再利用工程ST7は、回収された前記乾留ガスの一部を燃焼させることにより発生した熱を利用して、前記乾留ガスから加熱乾留ガスを生成させ、生成した前記加熱乾留ガスを、前記反応器内に戻す工程であることが好ましい(以下、「再利用工程ST7の態様1」と称することがある。)。
 また、再利用工程ST7は、回収工程ST6にて回収された前記乾留ガスを燃焼させることにより、燃焼排ガスを生成させ、生成した前記燃焼排ガスを、前記反応器内に戻す工程であることも好ましい(以下、「再利用工程ST7の態様2」と称することがある。)。
(Reuse process ST7)
In the reuse step ST7, the heat generated by burning a part of the recovered carbonization gas is used to generate a heated carbonization gas from the carbonization gas, and the generated heat carbonization gas is used in the reactor. It is preferable that the step is to return to the inside (hereinafter, it may be referred to as "aspect 1 of the reuse step ST7").
Further, it is also preferable that the reuse step ST7 is a step of generating combustion exhaust gas by burning the dry distillate gas recovered in the recovery step ST6 and returning the generated combustion exhaust gas to the inside of the reactor. (Hereinafter, it may be referred to as "aspect 2 of the reuse step ST7").
 始めに、再利用工程ST7の態様1について図5を用いて説明する。 First, aspect 1 of the reuse step ST7 will be described with reference to FIG.
・再利用工程ST7の態様1
 図5は、第3実施形態の製造方法で用いる製造設備の一態様を示す概略図である。図5には、「再利用工程ST7の態様1」により、ホワイトペレットからブラックペレットを製造する方法が示されている。
 図5に示す製造設備100は、第1加熱工程ST10を実施する予備加熱器11と、第2加熱工程ST20を実施する反応器12と、反応器12で発生した乾留ガスから微粉を除去する微粉分離装置13(サイクロン)と、乾留ガスへの伝熱を行う熱交換器14と、熱交換器14を通過した後、分岐された乾留ガスを燃焼させる燃焼器15と、を備える。燃焼器15は、前記乾留ガスを、燃焼用空気とともに燃焼させるバーナー(不図示)を備える。また、製造設備100は、反応器12で製造されたブラックペレットを輸送するコンベア16と、篩17とを備える。
 図5中、L11は、ホワイトペレットの経路を示し、L12は、ブラックペレットの経路を示す。L21は、反応器12で発生した乾留ガスの経路を示す。L22は、熱交換器14で伝熱された乾留ガスの経路を示し、L23は、L22から分岐されて燃焼器15で燃焼される乾留ガスの経路を示し、L24は、L22から分岐されて反応器12に戻される乾留ガスの経路を示す。L31は、燃焼排ガスで発生した熱の経路を示し、L32は、燃焼排ガスの経路を示す。また、経路LAirは、燃焼器15に導入される燃焼用空気の経路を示す。
-Aspect 1 of the reuse step ST7
FIG. 5 is a schematic view showing one aspect of the manufacturing equipment used in the manufacturing method of the third embodiment. FIG. 5 shows a method for producing black pellets from white pellets according to “Aspect 1 of the reuse step ST7”.
The manufacturing facility 100 shown in FIG. 5 includes a preheater 11 for carrying out the first heating step ST10, a reactor 12 for carrying out the second heating step ST20, and fine powder for removing fine powder from the dry distillation gas generated in the reactor 12. It includes a separating device 13 (cyclone), a heat exchanger 14 that transfers heat to the carbonization gas, and a combustor 15 that burns the branched dry distillation gas after passing through the heat exchanger 14. The combustor 15 includes a burner (not shown) that burns the carbonization gas together with combustion air. Further, the manufacturing equipment 100 includes a conveyor 16 for transporting the black pellets manufactured by the reactor 12 and a sieve 17.
In FIG. 5, L11 indicates the route of the white pellet, and L12 indicates the route of the black pellet. L21 shows the path of the carbonization gas generated in the reactor 12. L22 shows the path of the carbonization gas transferred by the heat exchanger 14, L23 shows the path of the carbonization gas branched from L22 and burned by the combustor 15, and L24 is branched from L22 and reacts. The path of the carbonization gas returned to the vessel 12 is shown. L31 indicates the path of heat generated by the combustion exhaust gas, and L32 indicates the path of the combustion exhaust gas. Further, the path L Air indicates the path of the combustion air introduced into the combustor 15.
 図5では、以下のようにして、反応器12で発生した乾留ガスがリサイクルガスとして利用される。
 反応器12で発生した乾留ガスは、経路L21を経て、微粉分離装置13で微粉が分離された後、熱交換器14へ流通し回収される(回収工程ST6)。
 熱交換器14では、経路L23で分岐された乾留ガスの燃焼で発生した燃焼排ガスの熱(図5中、経路L31)を利用して、乾留ガスへの伝熱が行われる。
 熱交換器14で伝熱された乾留ガスは、経路L22を経て流通し、分岐点で、経路L23及び経路L24へ分岐される。経路L23へ分岐された乾留ガスは、燃焼器15に導入され、バーナーで燃焼用空気とともに燃焼されて燃焼排ガスとなる(再利用工程ST7)。なお、燃焼用空気は、経路LAirを経て燃焼器15に導入される。一方、経路L24へ分岐された乾留ガスは、反応器12に戻され再利用される(再利用工程ST7)。
 乾留ガスの燃焼で燃焼排ガスを発生する際に生じた熱は、熱交換器14で乾留ガスへの伝熱に利用される(経路L31)。乾留ガスへの伝熱に利用された後の燃焼排ガスは、経路L32を経て大気中へ放出される。
 なお、図5に示す製造設備100では、反応器12で製造されたブラックペレットは、経路L12を経てコンベア16で輸送され、篩17にかけられる。
In FIG. 5, the carbonization gas generated in the reactor 12 is used as the recycled gas as follows.
The carbonization gas generated in the reactor 12 passes through the path L21, and after the fine powder is separated by the fine powder separation device 13, it is distributed to the heat exchanger 14 and recovered (recovery step ST6).
In the heat exchanger 14, heat is transferred to the carbonization gas by utilizing the heat of the combustion exhaust gas generated by the combustion of the carbonization gas branched in the path L23 (passage L31 in FIG. 5).
The carbonization gas transferred by the heat exchanger 14 flows through the path L22 and is branched into the path L23 and the path L24 at the branch point. The carbonization gas branched to the path L23 is introduced into the combustor 15 and burned together with the combustion air by the burner to become combustion exhaust gas (reuse step ST7). The combustion air is introduced into the combustor 15 via the path LA Air. On the other hand, the carbonization gas branched to the path L24 is returned to the reactor 12 and reused (reuse step ST7).
The heat generated when the combustion exhaust gas is generated by the combustion of the carbonization gas is used for heat transfer to the carbonization gas in the heat exchanger 14 (path L31). The combustion exhaust gas after being used for heat transfer to the carbonization gas is released into the atmosphere via the path L32.
In the manufacturing facility 100 shown in FIG. 5, the black pellets manufactured by the reactor 12 are transported by the conveyor 16 via the path L12 and sieved through the sieve 17.
・再利用工程ST7の態様2
 図6は、第3実施形態の製造方法で用いる製造設備の一態様を示す概略図である。図6には、「再利用工程ST7の態様2」により、ホワイトペレットからブラックペレットを製造する方法が示されている。
 図6に示す製造設備100Aは、第1加熱工程ST10を実施する予備加熱器11と、第2加熱工程ST20を実施する反応器12と、反応器12で発生した乾留ガスから微粉を除去する微粉分離装置13(サイクロン)と、微粉が分離された乾留ガスを燃焼させる燃焼器15と、を備える。燃焼器15は、前記乾留ガスを、燃焼用空気とともに燃焼させるバーナー(不図示)を備える。また、製造設備100Aは、反応器12で製造されたブラックペレットを輸送するコンベア16と、篩17とを備える。
 図6中、L11は、ホワイトペレットの経路を示し、L12は、ブラックペレットの経路を示す。L21は、反応器12で発生した乾留ガスの経路を示す。L25は、燃焼器15で発生した燃焼排ガスの経路を示す。L26は、L25から分岐されて反応器12に戻される燃焼排ガスの経路を示す。L27は、L25から分岐されて、他の目的に利用される燃焼排ガスの経路を示す。また、経路LAirは、燃焼器15に導入される燃焼用空気の経路を示す。
-Aspect 2 of the reuse process ST7
FIG. 6 is a schematic view showing one aspect of the manufacturing equipment used in the manufacturing method of the third embodiment. FIG. 6 shows a method for producing black pellets from white pellets according to “Aspect 2 of the reuse step ST7”.
The manufacturing equipment 100A shown in FIG. 6 includes a preheater 11 for carrying out the first heating step ST10, a reactor 12 for carrying out the second heating step ST20, and fine powder for removing fine powder from the carbonization gas generated in the reactor 12. A separation device 13 (cyclone) and a combustor 15 for burning the carbonization gas from which fine powder is separated are provided. The combustor 15 includes a burner (not shown) that burns the carbonization gas together with combustion air. Further, the manufacturing equipment 100A includes a conveyor 16 for transporting the black pellets manufactured by the reactor 12 and a sieve 17.
In FIG. 6, L11 indicates the route of the white pellet, and L12 indicates the route of the black pellet. L21 shows the path of the carbonization gas generated in the reactor 12. L25 indicates the path of the combustion exhaust gas generated by the combustor 15. L26 indicates the path of the combustion exhaust gas branched from L25 and returned to the reactor 12. L27 indicates a path of combustion exhaust gas branched from L25 and used for other purposes. Further, the path L Air indicates the path of the combustion air introduced into the combustor 15.
 図6では、反応器12で発生した乾留ガスが燃焼器15で燃焼され、その燃焼で発生した燃焼排ガスがリサイクルガスとして利用される。
 まず、反応器12で発生した乾留ガスは、経路L21を経て、微粉分離装置13で微粉が分離された後、燃焼器15へ流通し回収される(回収工程ST6)。燃焼器15では、前記乾留ガスが、バーナーで燃焼用空気とともに燃焼されて燃焼排ガスとなる。なお、燃焼用空気は、経路LAirを経て燃焼器15に導入される。燃焼器15で発生した燃焼排ガスは、経路L25を経て流通し、分岐点で、経路L26及び経路L27へ分岐される。経路L26へ分岐された燃焼排ガスは、反応器12に戻され利用される(再利用工程ST7)。経路L27へ分岐された燃焼排ガスは、他の目的(例えばペレットの原料となるバイオマス粉の乾燥など)に利用される。
 なお、図6に示す製造設備100Aでは、反応器12で製造されたブラックペレットが、経路L12を経てコンベア16で輸送され、篩17にかけられる。
In FIG. 6, the carbonization gas generated in the reactor 12 is burned in the combustor 15, and the combustion exhaust gas generated by the combustion is used as the recycled gas.
First, the carbonization gas generated in the reactor 12 passes through the path L21, and after the fine powder is separated by the fine powder separation device 13, it is distributed to the combustor 15 and recovered (recovery step ST6). In the combustor 15, the carbonization gas is burned together with combustion air by a burner to become combustion exhaust gas. The combustion air is introduced into the combustor 15 via the path LA Air. The combustion exhaust gas generated in the combustor 15 flows through the path L25, and is branched to the path L26 and the path L27 at the branch point. The combustion exhaust gas branched to the path L26 is returned to the reactor 12 and used (reuse step ST7). The combustion exhaust gas branched to the path L27 is used for other purposes (for example, drying of biomass powder which is a raw material for pellets).
In the manufacturing facility 100A shown in FIG. 6, the black pellets manufactured by the reactor 12 are transported by the conveyor 16 via the path L12 and sieved through the sieve 17.
〔第4実施形態〕
 第4実施形態のバイオマス固形燃料は、バイオマス粉を含むバイオマス固形燃料であって、算術平均粗さRaが5.0μm以下であり、BODが200mg/L以下であり、CODが200mg/L以下である。
 第4実施形態によれば、BOD及びCODの溶出量が抑制されたバイオマス固形燃料が提供される。
 第4実施形態のバイオマス固形燃料は、例えば、第1実施形態~第3実施形態のいずれかの製造方法で製造される。そのため、第4実施形態のバイオマス固形燃料は、表面劣化が抑制されている。
[Fourth Embodiment]
The biomass solid fuel of the fourth embodiment is a biomass solid fuel containing biomass powder, having an arithmetic mean roughness Ra of 5.0 μm or less, a BOD of 200 mg / L or less, and a COD of 200 mg / L or less. be.
According to the fourth embodiment, the biomass solid fuel in which the elution amounts of BOD and COD are suppressed is provided.
The biomass solid fuel of the fourth embodiment is produced by, for example, any of the production methods of the first embodiment to the third embodiment. Therefore, the surface deterioration of the biomass solid fuel of the fourth embodiment is suppressed.
 第4実施形態のバイオマス固形燃料の算術平均粗さRa、BOD及びCODの好ましい範囲、並びに最大高さ粗さRzの好ましい範囲は、第1実施形態の製造方法で得られたバイオマス固形燃料の好ましい範囲と同様である。
 なお、第4実施形態のバイオマス固形燃料は、算術平均粗さRaが5.0μm以下、BODが200mg/L以下、及びCODが200mg/L以下を満たしていれば、特に限定されない。
The preferred range of the arithmetic mean roughness Ra, BOD and COD of the biomass solid fuel of the fourth embodiment and the preferable range of the maximum height roughness Rz are preferable of the biomass solid fuel obtained by the production method of the first embodiment. Similar to range.
The biomass solid fuel of the fourth embodiment is not particularly limited as long as the arithmetic average roughness Ra is 5.0 μm or less, the BOD is 200 mg / L or less, and the COD is 200 mg / L or less.
(バイオマス固形燃料のその他成分)
 本実施形態のバイオマス固形燃料は、本実施形態の効果を損なわない範囲で、その他成分を含んでもよい。その他成分としては、バインダー及び各種添加剤等が挙げられる。
 その他成分の含有量は、バイオマス固形燃料の全量に対し、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは1質量%以下である。
(Other components of biomass solid fuel)
The biomass solid fuel of the present embodiment may contain other components as long as the effects of the present embodiment are not impaired. Examples of other components include binders and various additives.
The content of the other components is preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 1% by mass or less, based on the total amount of the biomass solid fuel.
〔バイオマス固形燃料の使用態様〕
 本実施形態のバイオマス固形燃料は、発電所、製鉄所、及び工場等で広く用いることができる。例えば、バイオマス固形燃料を火力発電設備で用いる場合、既存の火力発電設備を用いて、例えば、石炭粉砕機によりバイオマス固形燃料を粉砕してボイラーに導入してもよい。
 また、バイオマス固形燃料を石炭粉砕機とは別の粉砕機で粉砕した後、ボイラーに導入してもよい。バイオマス固形燃料の使用態様は上記に限定されない。
[Usage of biomass solid fuel]
The biomass solid fuel of the present embodiment can be widely used in power plants, steelworks, factories and the like. For example, when the biomass solid fuel is used in a thermal power generation facility, the biomass solid fuel may be crushed by a coal crusher using an existing thermal power generation facility and introduced into a boiler.
Further, the biomass solid fuel may be crushed by a crusher different from the coal crusher and then introduced into the boiler. The usage mode of the biomass solid fuel is not limited to the above.
 本発明は、上述の実施形態に限定されず、本発明の目的を達成できる範囲での変更、改良等は、本発明に含まれる。
 例えば、第1実施形態~第3実施形態では、粉砕工程ST2の後に乾燥工程ST3を実施したが、乾燥工程ST3は、粉砕工程ST2の前に実施してもよい。具体的には、バイオマスを乾燥させた後、乾燥したバイオマスを粉砕してもよい。
The present invention is not limited to the above-described embodiment, and changes, improvements, and the like to the extent that the object of the present invention can be achieved are included in the present invention.
For example, in the first to third embodiments, the drying step ST3 is carried out after the crushing step ST2, but the drying step ST3 may be carried out before the crushing step ST2. Specifically, after the biomass is dried, the dried biomass may be crushed.
 以下、本発明に係る実施例を説明する。本発明はこれらの実施例によって何ら限定されない。 Hereinafter, examples according to the present invention will be described. The present invention is not limited to these examples.
 実施例及び比較例で使用したバイオマス(ゴムノキ)の性状を表1に示す。 Table 1 shows the properties of the biomass (rubber tree) used in the examples and comparative examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
・表1の説明
 工業分析値は、JIS M8812(2004)に準拠して測定した値である。
 元素分析値のうち炭素、水素、窒素及び硫黄は、JIS M8819(1997)に準拠して測定した値であり、酸素はJIS M8813(2004)に準拠して、他の分析値から算出した値である。
 高位発熱量は、JIS M8814(2003)に準拠して測定した値である。
 燃料比は、「固定炭素/揮発分」である。
 「ar」は、As Received Baseの略で、到着ベースを表し、何も手を加えないそのままの状態を示す。
 「ad」は、Air Dry Basisの略で、気乾ベースを表し、大気中で乾燥させた状態を表す。
 「daf」は、Dry Ash Freeの略で、無水無灰ベースを表し、バイオマスに水分と灰分とが含まれないと仮定した仮想状態を表す。分析値から換算により求める。
 「<0.01」は、「0.01未満」であることを表す。
-Explanation of Table 1 The industrial analysis values are values measured in accordance with JIS M8812 (2004).
Of the elemental analysis values, carbon, hydrogen, nitrogen and sulfur are the values measured according to JIS M8819 (1997), and oxygen is the value calculated from other analysis values according to JIS M8813 (2004). be.
The high calorific value is a value measured according to JIS M8814 (2003).
The fuel ratio is "fixed carbon / volatile matter".
"Ar" is an abbreviation for As Received Base, which represents an arrival base and indicates the state as it is without any modification.
"Ad" is an abbreviation for Air Dry Basis, which represents an air-drying base and represents a state of being dried in the air.
"Daf" is an abbreviation for Dry Ash Free, and represents an anhydrous ash-free base, and represents a virtual state assuming that the biomass does not contain water and ash. Obtained by conversion from the analysis value.
"<0.01" means "less than 0.01".
〔実施例1〕
(準備工程ST1及び粉砕工程ST2)
 バイオマス(木質バイオマス(ゴムノキ))を粉砕機にて粉砕し、平均粒径800μmのバイオマス粉を得た。バイオマス粉の平均粒径は、前述の「バイオマス粉の平均粒径の測定方法」に従い測定した。
[Example 1]
(Preparation step ST1 and crushing step ST2)
Biomass (woody biomass (rubber tree)) was pulverized with a pulverizer to obtain biomass powder having an average particle size of 800 μm. The average particle size of the biomass powder was measured according to the above-mentioned "method for measuring the average particle size of the biomass powder".
(乾燥工程ST3)
 バイオマス粉を120℃で10分間加熱し乾燥させた。
(Drying step ST3)
The biomass powder was heated at 120 ° C. for 10 minutes and dried.
(圧縮成型工程ST4)
 乾燥したバイオマス粉を、Andritz社製圧縮成型装置(型番:Pellet MillPM30)で圧縮成型し、直径8mm、高さ10mm~40mmの寸法を有する円筒状のペレットを得た。
(Compression molding process ST4)
The dried biomass powder was compression-molded with an ANDRITZ compression molding apparatus (model number: Pellet MillPM30) to obtain cylindrical pellets having a diameter of 8 mm and a height of 10 mm to 40 mm.
(第1加熱工程ST10(予備加熱工程))
 圧縮成型工程ST4で得られたペレット(ホワイトペレット)を予備加熱器に投入した。昇温速度5℃/分で80℃まで昇温後、80℃のまま5分間加熱した。予備加熱器の条件は以下の通りである。
 -条件-
・雰囲気(キャリアガス):ドライ窒素
・予備加熱器内の水分量 :0質量%
(First heating step ST10 (preheating step))
The pellets (white pellets) obtained in the compression molding step ST4 were put into a preheater. After raising the temperature to 80 ° C. at a heating rate of 5 ° C./min, the mixture was heated at 80 ° C. for 5 minutes. The conditions of the preheater are as follows.
-conditions-
・ Atmosphere (carrier gas): Dry nitrogen ・ Moisture content in preheater: 0% by mass
(第2加熱工程ST20)
 第1加熱工程ST10で予備加熱されたホワイトペレットを反応器に投入した。反応器を昇温し始めた段階で、反応器にスチームを吹込み、反応器内の雰囲気(キャリアガス)中に含まれる水分量が23.3質量%となるように調整した。昇温速度5℃/分で270℃まで昇温後、270℃のまま30分間加熱し、ペレットに含まれるバイオマス粉を半炭化した。反応器の条件は以下の通りである。
 以上のようにして、実施例1のバイオマス固形燃料(ブラックペレット)を得た。
 -条件-
・雰囲気(キャリアガス):窒素
・反応器内の水分量:23.3質量%(露点温度81.6℃)
(Second heating step ST20)
The white pellets preheated in the first heating step ST10 were charged into the reactor. When the temperature of the reactor started to rise, steam was blown into the reactor to adjust the water content in the atmosphere (carrier gas) in the reactor to 23.3% by mass. After raising the temperature to 270 ° C. at a heating rate of 5 ° C./min, the mixture was heated at 270 ° C. for 30 minutes to semi-carbonize the biomass powder contained in the pellets. The conditions of the reactor are as follows.
As described above, the biomass solid fuel (black pellet) of Example 1 was obtained.
-conditions-
-Atmosphere (carrier gas): Nitrogen-Moisture content in the reactor: 23.3% by mass (dew point temperature 81.6 ° C)
〔実施例2、比較例1~3〕
 実施例1の第1加熱工程ST10において、ホワイトペレットの表面温度(予備加熱器の温度)が表2に示す温度に到達するまで加熱し、当該温度で5分間加熱したこと以外、実施例1と同様の方法で、実施例2及び比較例1~3のバイオマス固形燃料を得た。
[Example 2, Comparative Examples 1 to 3]
In the first heating step ST10 of Example 1, the white pellets were heated until the surface temperature (temperature of the preheater) reached the temperature shown in Table 2, and then heated at that temperature for 5 minutes. In the same manner, the biomass solid fuels of Example 2 and Comparative Examples 1 to 3 were obtained.
〔比較例4〕
 実施例1において、第1加熱工程ST10を実施しなかったこと以外、実施例1と同様の方法で、比較例4のバイオマス固形燃料を得た。
[Comparative Example 4]
In Example 1, the biomass solid fuel of Comparative Example 4 was obtained by the same method as in Example 1 except that the first heating step ST10 was not carried out.
〔評価〕
 各例で得られたバイオマス固形燃料を用いて以下の評価を行った。結果を表2に示す。
〔evaluation〕
The following evaluation was performed using the biomass solid fuel obtained in each example. The results are shown in Table 2.
(BOD及びCOD)
 BOD及びCODの測定に用いる浸漬水は、「産業廃棄物に含まれる金属等の検定方法(昭和48年環境庁告示第13号)」に準拠し、6時間の振とう試験を行い、排水を作製する方法により調製した。
 BODは、JIS K0102-21(2016)に記載された試験方法で測定した。
 CODは、JIS K0102-17(2016)に記載された試験方法で測定した。
 図7に、第1加熱工程の温度とBOD及びCODとの関係を示す。
(BOD and COD)
The immersion water used for BOD and COD measurement is based on the "Testing method for metals contained in industrial waste (Environment Agency Notification No. 13 of 1973)" and is subjected to a 6-hour shaking test to drain water. It was prepared by the method of preparation.
BOD was measured by the test method described in JIS K0102-21 (2016).
COD was measured by the test method described in JIS K0102-17 (2016).
FIG. 7 shows the relationship between the temperature of the first heating step and BOD and COD.
(算術平均粗さRa及び最大高さ粗さRz)
 算術平均粗さRa及び最大高さ粗さRzは、小型表面粗さ測定機SJ-210(ミツトヨ社製)を用いて、ISO4287(1997)に準じて測定した。
 具体的には、バイオマス固形燃料の長手方向の中央部分から一端の方向に向かって測定距離4mm、送り速度0.25mm/分、及び測定ピッチ0.5μmで、算術平均粗さRa及び最大高さ粗さRzを測定した。
 この測定を、同じ条件で半炭化したペレット4粒~10粒について行い、その平均値をそれぞれ算術平均粗さRa及び最大高さ粗さRzとした。
(Arithmetic Mean Roughness Ra and Maximum Height Roughness Rz)
The arithmetic mean roughness Ra and the maximum height roughness Rz were measured according to ISO4287 (1997) using a small surface roughness measuring machine SJ-210 (manufactured by Mitutoyo Co., Ltd.).
Specifically, the arithmetic average roughness Ra and the maximum height are measured at a measurement distance of 4 mm, a feed rate of 0.25 mm / min, and a measurement pitch of 0.5 μm from the central portion of the biomass solid fuel in the longitudinal direction toward one end. Roughness Rz was measured.
This measurement was performed on 4 to 10 semi-carbonized pellets under the same conditions, and the average values were taken as the arithmetic average roughness Ra and the maximum height roughness Rz, respectively.
(表面形状)
 実施例1~2及び比較例1~4で得られたバイオマス固形燃料の写真を図8に示す。
 図8に示すように、反応器内の露点温度より2℃低い温度以上の温度で第1加熱工程ST10を実施した実施例1~2は、反応器内の露点温度より2℃低い温度未満の温度で第1加熱工程ST10を実施した比較例1~3、及び第1加熱工程ST10を実施しなかった比較例4に比べ、光沢があり、表面形状が良好なバイオマス固形燃料が得られた。
(Surface shape)
The photographs of the biomass solid fuels obtained in Examples 1 and 2 and Comparative Examples 1 to 4 are shown in FIG.
As shown in FIG. 8, in Examples 1 and 2 in which the first heating step ST10 was carried out at a temperature equal to or higher than the dew point temperature in the reactor by 2 ° C., the temperature was lower than the temperature lower than the dew point temperature in the reactor by 2 ° C. Compared with Comparative Examples 1 to 3 in which the first heating step ST10 was carried out at a temperature and Comparative Example 4 in which the first heating step ST10 was not carried out, a biomass solid fuel having a gloss and a good surface shape was obtained.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2及び図7に示すように、実施例1~2は、比較例1~4に比べ、BOD及びCODの溶出量が十分低減されていた。
 また、実施例1~2は、比較例1~4に比べ、算術平均粗さRa及び最大高さ粗さRzが共に小さかった。この実施例1~2の算術平均粗さRa及び最大高さ粗さRzの値は、図6に示す写真(光沢があり、表面形状が良好である写真)の結果を反映していると考えられる。
 本実施例の製造方法によれば、表面の劣化が抑制され、BOD及びCODの溶出量が抑制されたバイオマス固形燃料が得られる。
As shown in Table 2 and FIG. 7, in Examples 1 and 2, the elution amounts of BOD and COD were sufficiently reduced as compared with Comparative Examples 1 and 4.
Further, in Examples 1 and 2, both the arithmetic mean roughness Ra and the maximum height roughness Rz were smaller than those of Comparative Examples 1 and 4. It is considered that the values of the arithmetic mean roughness Ra and the maximum height roughness Rz of Examples 1 and 2 reflect the results of the photograph shown in FIG. 6 (the photograph having a gloss and a good surface shape). Be done.
According to the production method of this example, a biomass solid fuel in which the deterioration of the surface is suppressed and the elution amounts of BOD and COD are suppressed can be obtained.
 本発明のバイオマス固形燃料は、発電所、製鉄所、及び工場において、バイオマス発電、並びにバイオマス及び石炭との混焼発電に用いることができる。 The biomass solid fuel of the present invention can be used for biomass power generation and co-firing power generation with biomass and coal in power plants, steel mills, and factories.
 11…予備加熱器、12…反応器、13…微粉分離装置、14…熱交換器、15…燃焼器、16…コンベア、17…篩、20…ホワイトペレット、21…水、22…コーティングしている成分、30…ブラックペレット、100,100A…製造設備。 11 ... Preheater, 12 ... Reactor, 13 ... Fine powder separator, 14 ... Heat exchanger, 15 ... Combustor, 16 ... Conveyor, 17 ... Sieve, 20 ... White pellets, 21 ... Water, 22 ... Coated Ingredients, 30 ... black pellets, 100, 100A ... manufacturing equipment.

Claims (10)

  1.  バイオマス粉を含む塊状物を、反応器で加熱してバイオマス固形燃料を製造するバイオマス固形燃料の製造方法であって、
     前記バイオマス粉を含む塊状物を、前記反応器に投入する前に、前記反応器内の雰囲気の露点温度より2℃低い温度以上の温度で予め加熱する第1加熱工程と、
     前記第1加熱工程で加熱された塊状物を前記反応器に投入し、200℃以上300℃以下、10分以上240分以下で前記塊状物を加熱する第2加熱工程と、
    を有し、
     前記第1加熱工程における加熱温度は、前記第2加熱工程における加熱温度より低い、バイオマス固形燃料の製造方法。
    A method for producing a biomass solid fuel, in which a lump containing biomass powder is heated by a reactor to produce a biomass solid fuel.
    A first heating step in which the mass containing the biomass powder is preheated at a temperature equal to or higher than the dew point temperature of the atmosphere in the reactor by 2 ° C. before being charged into the reactor.
    In the second heating step, the lumps heated in the first heating step are put into the reactor and the lumps are heated in 200 ° C. or higher and 300 ° C. or lower and 10 minutes or more and 240 minutes or less.
    Have,
    A method for producing a biomass solid fuel, wherein the heating temperature in the first heating step is lower than the heating temperature in the second heating step.
  2.  請求項1に記載のバイオマス固形燃料の製造方法において、
     前記露点温度より2℃低い温度以上の温度は、100℃以下である、
    バイオマス固形燃料の製造方法。
    In the method for producing a solid biomass fuel according to claim 1,
    The temperature of 2 ° C. or higher than the dew point temperature is 100 ° C. or lower.
    Biomass solid fuel production method.
  3.  請求項1または請求項2に記載のバイオマス固形燃料の製造方法において、
     前記第2加熱工程における前記反応器内の雰囲気中に含まれる水分量は、40質量%以下である、バイオマス固形燃料の製造方法。
    In the method for producing a solid biomass fuel according to claim 1 or 2.
    A method for producing a biomass solid fuel, wherein the amount of water contained in the atmosphere in the reactor in the second heating step is 40% by mass or less.
  4.  請求項1から請求項3のいずれか一項に記載のバイオマス固形燃料の製造方法において、
     前記第2加熱工程で発生する乾留ガスの少なくとも一部を回収する工程と、
     回収された前記乾留ガスを前記第2加熱工程に再利用する工程と、
    を有する、バイオマス固形燃料の製造方法。
    The method for producing a biomass solid fuel according to any one of claims 1 to 3.
    A step of recovering at least a part of the carbonization gas generated in the second heating step and a step of recovering the carbonization gas.
    A step of reusing the recovered carbonization gas in the second heating step, and a step of reusing the recovered carbonization gas.
    A method for producing a biomass solid fuel.
  5.  請求項4に記載のバイオマス固形燃料の製造方法において、
     前記再利用する工程は、回収された前記乾留ガスの一部を燃焼させることにより発生した熱を利用して、前記乾留ガスから加熱乾留ガスを生成させ、生成した前記加熱乾留ガスを、前記反応器内に戻す、
    バイオマス固形燃料の製造方法。
    In the method for producing a solid biomass fuel according to claim 4,
    In the reuse step, the heat generated by burning a part of the recovered carbonization gas is used to generate a heated carbonization gas from the carbonization gas, and the generated heat carbonization gas is used for the reaction. Return to the vessel,
    Biomass solid fuel production method.
  6.  請求項4に記載のバイオマス固形燃料の製造方法において、
     前記再利用する工程は、回収された前記乾留ガスを燃焼させることにより、燃焼排ガスを生成させ、生成した前記燃焼排ガスを、前記反応器内に戻す、
    バイオマス固形燃料の製造方法。
    In the method for producing a solid biomass fuel according to claim 4,
    In the reusing step, the recovered dry distillation gas is burned to generate combustion exhaust gas, and the generated combustion exhaust gas is returned to the inside of the reactor.
    Biomass solid fuel production method.
  7.  請求項1から請求項6のいずれか一項に記載のバイオマス固形燃料の製造方法において、
     前記バイオマス粉は、木質バイオマス、草木バイオマス、農作物残渣バイオマス、及びパーム椰子バイオマスからなる群から選択される少なくとも1種に由来する、
    バイオマス固形燃料の製造方法。
    The method for producing a biomass solid fuel according to any one of claims 1 to 6.
    The biomass flour is derived from at least one selected from the group consisting of woody biomass, vegetation biomass, crop residue biomass, and palm palm biomass.
    Biomass solid fuel production method.
  8.  請求項1から請求項7のいずれか一項に記載のバイオマス固形燃料の製造方法において、
     製造された前記バイオマス固形燃料は、
     BODが200ppm以下であり、
     CODが200ppm以下である、
    バイオマス固形燃料の製造方法。
    The method for producing a biomass solid fuel according to any one of claims 1 to 7.
    The produced biomass solid fuel is
    BOD is 200ppm or less,
    COD is 200 ppm or less,
    Biomass solid fuel production method.
  9.  請求項1から請求項8のいずれか一項に記載のバイオマス固形燃料の製造方法において、
     製造された前記バイオマス固形燃料は、
     算術平均粗さRaが5.0μm以下であり、
     BODが200ppm以下であり、
     CODが200ppm以下である、
    バイオマス固形燃料の製造方法。
    The method for producing a biomass solid fuel according to any one of claims 1 to 8.
    The produced biomass solid fuel is
    Arithmetic mean roughness Ra is 5.0 μm or less,
    BOD is 200ppm or less,
    COD is 200 ppm or less,
    Biomass solid fuel production method.
  10.  バイオマス粉を含むバイオマス固形燃料であって、
     前記バイオマス固形燃料は、
     算術平均粗さRaが5.0μm以下であり、
     BODが200mg/L以下であり、
     CODが200mg/L以下である、
    バイオマス固形燃料。
     
    Biomass solid fuel containing biomass powder
    The biomass solid fuel is
    Arithmetic mean roughness Ra is 5.0 μm or less,
    BOD is 200 mg / L or less,
    COD is 200 mg / L or less,
    Biomass solid fuel.
PCT/JP2021/015800 2020-05-11 2021-04-19 Biobiomass solid fuel production method and biomass solid fuel WO2021230007A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-083192 2020-05-11
JP2020083192A JP7490444B2 (en) 2020-05-11 2020-05-11 Biomass solid fuel manufacturing method

Publications (2)

Publication Number Publication Date
WO2021230007A1 true WO2021230007A1 (en) 2021-11-18
WO2021230007A8 WO2021230007A8 (en) 2022-10-20

Family

ID=78510948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015800 WO2021230007A1 (en) 2020-05-11 2021-04-19 Biobiomass solid fuel production method and biomass solid fuel

Country Status (2)

Country Link
JP (1) JP7490444B2 (en)
WO (1) WO2021230007A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210558A1 (en) * 2021-03-29 2022-10-06 東レ株式会社 Pellets and method for producing pellets
JP2023028411A (en) * 2021-08-19 2023-03-03 出光興産株式会社 Biomass solid fuel production facility

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090297A (en) * 1976-01-05 1985-05-21 ウ−デツクス・インタ−ナシヨナル・リミテツド Fuel pellet
JP2009540097A (en) * 2006-06-14 2009-11-19 トル−コール テクノロジー べー ヴェー Method of preparing solid fuel by roasting, solid fuel thus obtained and use of those fuels
JP2011521191A (en) * 2008-04-03 2011-07-21 ノース・キャロライナ・ステイト・ユニヴァーシティ Self-heating movable roaster
JP2015189958A (en) * 2014-03-28 2015-11-02 日本製紙株式会社 Manufacturing method of solid fuel and solid fuel
JP2017100382A (en) * 2015-12-02 2017-06-08 日本製紙株式会社 Method for producing pellet
WO2019069860A1 (en) * 2017-10-04 2019-04-11 宇部興産株式会社 Device and method for manufacturing biomass solid fuel
JP2019529634A (en) * 2016-09-20 2019-10-17 ファン, アンソニーPHAN, Anthony Biomass processing method and apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110179701A1 (en) 2010-01-27 2011-07-28 G-Energy Technologies, Llc Torrefaction of ligno-cellulosic biomasses and mixtures
US20110179700A1 (en) 2010-03-22 2011-07-28 James Russell Monroe System and Method for Torrefaction and Processing of Biomass

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090297A (en) * 1976-01-05 1985-05-21 ウ−デツクス・インタ−ナシヨナル・リミテツド Fuel pellet
JP2009540097A (en) * 2006-06-14 2009-11-19 トル−コール テクノロジー べー ヴェー Method of preparing solid fuel by roasting, solid fuel thus obtained and use of those fuels
JP2011521191A (en) * 2008-04-03 2011-07-21 ノース・キャロライナ・ステイト・ユニヴァーシティ Self-heating movable roaster
JP2015189958A (en) * 2014-03-28 2015-11-02 日本製紙株式会社 Manufacturing method of solid fuel and solid fuel
JP2017100382A (en) * 2015-12-02 2017-06-08 日本製紙株式会社 Method for producing pellet
JP2019529634A (en) * 2016-09-20 2019-10-17 ファン, アンソニーPHAN, Anthony Biomass processing method and apparatus
WO2019069860A1 (en) * 2017-10-04 2019-04-11 宇部興産株式会社 Device and method for manufacturing biomass solid fuel

Also Published As

Publication number Publication date
WO2021230007A8 (en) 2022-10-20
JP2021178886A (en) 2021-11-18
JP7490444B2 (en) 2024-05-27

Similar Documents

Publication Publication Date Title
DK2580307T3 (en) Methods for making fuel pellets and other products of the lignocellulosic biomass
WO2021230007A1 (en) Biobiomass solid fuel production method and biomass solid fuel
Sellin et al. Use of banana culture waste to produce briquettes
CA2836840C (en) Method for producing bio-coke
EP1990399A1 (en) Method for the treatment of the empty fruit bunch (EFB) material of palm oil trees, particulate torrefied EFB product and use of such product as auxiliary fuel in a power plant
WO2011092906A1 (en) Solid fuel
JP2019502013A (en) Biofuel
WO2014165995A1 (en) Torrefaction process
US20220177795A1 (en) Torrefied biomass briquettes and related methods
US20210332305A1 (en) Process for producing solid biomass fuel
GB2586120A (en) Process for producing solid biomass fuel
CA2686853A1 (en) Apparatus and method for making fuel using forest residue
Kumar et al. Production and characterization of briquettes from invasive forest weeds: Lantana camara and Prosopis juliflora
JP2018145252A (en) Fuel pellet, and method of producing fuel pellet
JP2021176938A (en) Composite solid fuel and method for manufacturing composite solid fuel
Kumar et al. Evaluation of Boiler efficiency of Bobriquettes by Indirect Method
Petricoski et al. Briquettes produced with a mixture of urban pruning waste, glycerin and cassava processing residue
WO2022153830A1 (en) Biomass solid fuel manufacturing method
Gbabo et al. Evaluation of some combustion properties of rice husk briquettes produced at varying binder concentrations from a modified block briquetting machine
Rajan et al. Suitability of invasive species for briquette production: Lantana camara and Prosopis juliflora
Mukhopadhyay et al. Biochar washing to improve the fuel quality of agro-industrial waste biomass
WO2023119875A1 (en) Method for producing solid biomass fuel
US11124724B2 (en) Method for producing a water-resistant, compressed biomass product
Dorofėjūtė et al. Assessment of the Characteristics of Corncobs Used for Energy Needs
Peña et al. Evaluation of Sugarcane Cutting Residues for the Production of Solid Biofuel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21804599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21804599

Country of ref document: EP

Kind code of ref document: A1