WO2022210558A1 - Pellets and method for producing pellets - Google Patents

Pellets and method for producing pellets Download PDF

Info

Publication number
WO2022210558A1
WO2022210558A1 PCT/JP2022/015053 JP2022015053W WO2022210558A1 WO 2022210558 A1 WO2022210558 A1 WO 2022210558A1 JP 2022015053 W JP2022015053 W JP 2022015053W WO 2022210558 A1 WO2022210558 A1 WO 2022210558A1
Authority
WO
WIPO (PCT)
Prior art keywords
pellets
lignocellulosic biomass
pellet
less
biomass
Prior art date
Application number
PCT/JP2022/015053
Other languages
French (fr)
Japanese (ja)
Inventor
寛之 水野
宏治 小林
裕佳 旭
勝成 山田
ジャンタバンディッド、アヌチャー
ペンジャン、ブーチター
淳 南野
Original Assignee
東レ株式会社
セルローシック、バイオマス、テクノロジー、カンパニー、リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社, セルローシック、バイオマス、テクノロジー、カンパニー、リミテッド filed Critical 東レ株式会社
Priority to JP2023511274A priority Critical patent/JPWO2022210558A1/ja
Publication of WO2022210558A1 publication Critical patent/WO2022210558A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to pellets made from lignocellulosic biomass and a method for producing pellets.
  • Biomass energy which uses plant-based biomass as a raw material, is attracting a great deal of attention as a means of curbing global warming. Biomass energy is thought to be neutral during its lifecycle in emissions of carbon dioxide, which is one of the causes of global warming (emission and absorption are equal). expected.
  • a pellet is a cylindrical fuel having a diameter of about 6 to 10 mm and a length of about 10 to 70 mm. Pelleting plant biomass increases bulk density and energy density (calorific value per unit volume), facilitating storage and transportation. Also, by adjusting the moisture content of the pellets, it is possible to control the ignitability and combustibility. Pellets are used as various heat sources by burning them in a boiler.
  • Prior art related to plant-based biomass fuels include a method of burning saccharified biomass to generate energy (Patent Document 1), and residues discharged in the process of producing sugars and/or ethanol using lignocellulosic biomass as a raw material. (Patent Document 2), pellets with good moldability made from lignocellulosic biomass materials (Patent Document 3), and the like are known.
  • the present inventors focused on lignocellulose-based biomass as a raw material for pellets, and as a result of intensive studies, the amount of dust derived from pellets was significantly reduced by setting the average surface roughness of the side surface of the pellet to 50 nm or more and 250 nm or less. It has been found that the quality of pellets can be improved. That is, according to one embodiment of the present invention, the following [1] to [13] are provided. [1] A pellet made from lignocellulose-based biomass and having an average surface roughness of 50 nm or more and 250 nm or less on the side surface of the pellet. [2] The pellet according to [1], which is used for fuel.
  • the alkali pretreatment temperature is 80 to 100°C.
  • the alkali pretreatment is an alkali pretreatment under normal pressure.
  • the saccharification residue of the lignocellulosic biomass obtained in the step (2) is pulverized to a diameter of 10 mm or less.
  • the moisture content of the saccharification residue of the lignocellulosic biomass subjected to compression molding in the step (4) is 10% or more and less than 30%.
  • the lignocellulosic biomass is bagasse.
  • the present invention it is possible to reduce the dust rate of pellets, which was a problem with pellets made from plant-based biomass. Therefore, the present invention can be advantageously used to reduce the amount of air pollutants from boilers, improve the operational safety of biomass boilers, and reduce management costs during transportation.
  • FIG. 1 is a side view of bagasse saccharification residue pellets of Example 1 observed with an atomic force microscope.
  • FIG. 2 is a side view of bagasse pellets of Comparative Example 4 observed with an atomic force microscope.
  • the pellets of the present invention are made from lignocellulosic biomass.
  • Lignocellulosic biomass refers to biomass containing cellulose, hemicellulose, and lignin as constituents.
  • Preferred examples of lignocellulosic biomass include herbaceous biomass such as bagasse, switchgrass, napiergrass, erianthus, corn stover, and straw; woody biomass such as trees, wood chips, and waste building materials; Environmental biomass, grain biomass such as corn husks, wheat husks, soybean husks, rice husks, cassava pulp, and beet pulp.
  • bagasse is particularly preferably used as lignocellulose biomass. Bagasse is the pomace of sugar cane.
  • the method for producing the pellet of the present invention is not particularly limited as long as it is a method that allows the average surface roughness of the side surface of the pellet, which is the final product, to be in the desired range of 250 nm or less. Any method can be used as long as it can be produced by appropriately arranging it within the scope of ordinary creation, but a method of pelletizing saccharification residue of lignocellulosic biomass is preferable.
  • the method for producing the pellets of the present invention by pelletizing the saccharification residue of lignocellulosic biomass will be described in detail below.
  • the saccharification residue of lignocellulosic biomass is a solid residue obtained when producing sugar by hydrolyzing lignocellulosic biomass as a raw material (also referred to as “raw material biomass” in this specification), and is preferably is the solid residue obtained during hydrolysis to produce sugar after pretreatment of raw biomass.
  • the pretreatment of the raw material biomass is a pre-process for hydrolyzing the raw material biomass, and may be a process known to those skilled in the art. However, in the present invention, the pretreatment of the raw material biomass is preferably alkali pretreatment in order to make the average surface roughness of the pellet side surface as the final product a desired range of 250 nm or less.
  • the alkaline solution used for alkali pretreatment is not particularly limited, but sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, calcium hydroxide aqueous solution, ammonia water, or the like can be used. Among these, an aqueous sodium hydroxide solution is preferable from the viewpoint of being inexpensive and easy to handle.
  • the alkaline pretreatment conditions it is preferable to set the raw material biomass solid content concentration in the range of 5 to 10% by weight in a state of being mixed with the alkaline aqueous solution.
  • the amount of alkali added in the alkali pretreatment for example, when using an aqueous sodium hydroxide solution, the amount of sodium hydroxide added is in the range of 5 to 15% by weight relative to the solid content of lignocellulosic biomass. It is suitable for making the average surface roughness of the side surface of the pellet as a product a desired range of 250 nm or less.
  • the temperature for alkali pretreatment is preferably 80 to 100°C, more preferably 85 to 100°C, in order to make the average surface roughness of the pellet side surface of the final product 250 nm or less.
  • the time for alkali pretreatment can be set appropriately according to the amount of alkali, etc., and is usually about 0.5 to 6 hours.
  • Alkaline pretreatment may be performed under normal pressure or under pressure, but preferably under normal pressure.
  • the alkali pretreatment method it is preferable to adopt a pretreatment method in which an alkaline solution is repeatedly passed through the raw biomass in order to make the average surface roughness of the side surface of the pellet, which is the final product, a desired range of 250 nm or less. is.
  • a pretreatment method includes at least a storage unit that stores raw biomass, a filtration unit that passes an alkaline solution through the raw biomass, and a filtrate circulation unit that collects and circulates the alkaline solution obtained from the filtration unit. It is preferable to use the filtering equipment provided, and it is also possible to use known filtering equipment.
  • Preferable examples of known filtration devices include belt-type filters (DeSmet LM), basket-type filters, rotary-type filters (Carousel, Rotocell, REFLEX), Bonnot-type filters, screen-type filters, and the like. be done.
  • Belt-type filters Decorated filters
  • basket-type filters Basket-type filters
  • rotary-type filters Carousel, Rotocell, REFLEX
  • Bonnot-type filters screen-type filters, and the like.
  • screen-type filters and the like.
  • an in-tank screen filtration type device Izumi Food Machinery Co., Ltd.
  • a conveyor type screen filtration type device Cold Iron Works, Model 2, Model 3
  • a pretreated product obtained by alkali pretreatment of lignocellulosic biomass may be directly subjected to a hydrolysis reaction. It is preferable to subject the solid content obtained by liquid separation to hydrolysis as an alkali pretreated product.
  • a solid-liquid separation method a known method such as a centrifugal separation method such as a screw decanter, a filtration method such as pressure/suction filtration, or a membrane filtration method such as microfiltration can be used.
  • the solid content of the alkali pretreated product may be washed with pure water before and after the solid-liquid separation. By washing the solid content, enzyme reaction inhibitors such as lignin degradation products can be further reduced, and the amount of acid required for pH adjustment during the hydrolysis reaction can also be reduced, which is preferable.
  • a cellulase composition is a mixture of different hydrolases that hydrolyze the glycosidic bonds of ⁇ -1,4-glucans.
  • Hydrolytic enzymes contained in the cellulase composition include, for example, cellobiohydrolase, xylanase, endoglucanase, ⁇ -glucosidase, ⁇ -xylosidase, arabinofuranosidase, xylan esterase, ferulic acid esterase, ⁇ -glucuronidase, chitosanase, chitinase, mannanase, mannosidase, ⁇ -galactosidase, ⁇ -galactosidase and the like.
  • the cellulase composition used in the hydrolysis reaction has at least the activities of xylanase, theobirohydrolase and ⁇ -glucosidase when hydrolyzing lignocellulosic biomass, and also exhibits the activity of ⁇ -xylosidase.
  • a cellulase composition that is substantially free is preferably used from the viewpoint of xylo-oligosaccharide production.
  • the origin of these enzymatic activities is not particularly limited. Examples of preparation of such cellulase compositions are described in WO2017/170919 or WO2017/170917.
  • a culture solution obtained by culturing microorganisms may be used as it is as a cellulase composition, or an enzyme purified from the culture solution and other commercially available enzyme products may be mixed and used.
  • a fungus When using a cellulase composition derived from a microorganism, a fungus can be preferably used as the microorganism.
  • fungi include Trichoderma fungi, Aspergillus fungi, Cellulomonas fungi, Clostridium fungi, Streptomyces fungi, and Humicola fungi. , Acremonium fungi, Irpex fungi, Mucor fungi, Talaromyces fungi, and the like.
  • fungi of the genus Trichoderma and fungi of the genus Aspergillus are preferred.
  • Trichoderma reesei QM9414 Trichoderma reesei QM9123
  • Trichoderma reesei RutC-30 Trichoderma reesei RutC-30
  • Trichoderma reesei RutC-30 Trichoderma reesei RutC-30
  • Trichoderma reesei RutC-30 Trichoderma reesei RutC-30
  • Trichoderma reesei RutC-30 Trichoderma reesei RutC-30.
  • Trichoderma reesei PC3-7) ⁇ CL-847(Trichoderma reesei CL-847) ⁇ MCG77(Trichoderma reesei MCG77) ⁇ MCG80(Trichoderma reesei MCG80) ⁇ QM9123(Trichoderma viride QM9123) can be exemplified.
  • Trichoderma reesei is preferred.
  • Mutant strains in which the productivity of the cellulase composition is improved or mutant strains in which the activity of ⁇ -xylosidase is reduced by subjecting the fungi constituting the cellulase composition to mutation treatment with a mutating agent or ultraviolet irradiation are also preferred. can be used.
  • Aspergillus fungi include Aspergillus niger, Aspergillus fumigatus, Aspergillus aculeatus, and Aspergillus terreus.
  • a cellulase composition derived from one of the above fungi may be used, or a mixture of cellulase compositions derived from a plurality of fungi may be used.
  • the combination is not particularly limited.
  • a cellulase composition derived from a fungus of the genus Trichoderma and a cellulase composition derived from a fungus of the genus Aspergillus may be mixed and used.
  • ⁇ -glucosidases derived from fungi of the genus Aspergillus include "Novozyme 188" (Novozymes), " ⁇ -Glucosidase from Aspergillus niger” (Megazyme), and "Sumizyme BGA” (Shinnihon Chemical Industry Co., Ltd.). can be exemplified.
  • the ⁇ -glucosidase active ingredient preferably contains the ⁇ -glucosidase active ingredient of the fungus belonging to the genus Aspergillus.
  • the conditions for hydrolysis by saccharifying enzymes are not particularly limited, but hydrolysis conditions that allow production of xylooligosaccharides, glucose, and xylose are preferable.
  • the lignocellulosic biomass saccharification residue is obtained by solid-liquid separation of the hydrolyzate by saccharifying enzymes of the pretreated lignocellulosic biomass.
  • the solid-liquid separation method includes, but is not limited to, centrifugal separation, membrane separation, pressurized solid-liquid separation, and the like. Also, a plurality of such solid-liquid separation methods may be combined. Examples of solid-liquid separators include continuous centrifuges, screw decanters, disc centrifuges, screw presses, filter presses, roll presses, wash presses, belt filters, and drum filters.
  • the lignocellulosic biomass saccharification residue obtained from the solid-liquid separation step (also referred to herein as "solid residue”) is preferably pulverized with a pulverizer.
  • the pulverization method is not particularly limited, and includes hammer mill, cutter mill, ball mill, jet mill and the like, preferably cutter mill or hammer mill. Pulverization is carried out so that the diameter of the solid residue (also referred to herein as "grinding degree") is 20 mm or less, preferably 10 mm or less. This is to prevent clogging before the die when the solid residue is passed through a hole called a die during pelletization. Also, pulverizing the solid residue improves the efficiency of drying in the post-process.
  • the method for drying the solid residue is not particularly limited, and includes drying by air drying, hot air, and contact with a heating jacket.
  • the temperature during drying is not particularly limited, but when drying by a method other than air drying, the environmental load used in the process can be reduced by effectively utilizing the waste heat generated from the biomass boiler.
  • the water content of the solid residue at the time of pulverization is preferably 10-55%, more preferably 30-50%. If the water content at the time of pulverization is too higher than the above-mentioned water content, the pulverizer is likely to clog. If the water content at the time of pulverization is lower than the above-mentioned water content, the rate of dust generation increases, and there is a concern that dust fires may occur during transportation to the cutter mill and subsequent processes.
  • the water content of the solid residue to be subjected to the subsequent pelletizing step is preferably 10% or more and less than 30%. If the moisture content is less than 10%, it may become impossible to control the temperature of the biomass in the die at the die part of the pelletizer during pelletization. Therefore, some components of the biomass undergo glass transition and become adhesive-like, causing clogging and making continuous pelletization difficult. On the other hand, if the water content is 30% or more, the raw material will bridge inside the pelletizer, making it impossible to feed the material up to the die, making it difficult to stably produce the material.
  • the moisture content of the solid residue can be calculated by heating the object to be measured to 105° C. and calculating the weight change before and after heating.
  • the order of the pulverization step and the drying step is not particularly limited, and the pulverization and drying steps may be performed multiple times. Although the number of times is not limited, it is preferable to perform the drying process after the pulverization process. This enables high-quality pelletization and stable and safe operation.
  • the solid residue is compression-molded and pelletized.
  • the device for pelletization is not particularly limited, but may be a briquetteer (manufactured by Kitagawa Ironworks Co., Ltd., etc.), a ring die type pelletizer (manufactured by CPM Co., Ltd., Thai Sumi, Triumph, etc.), flat A die-type pelletizer (manufactured by Dalton Co., Ltd., etc.) is preferred.
  • a part with multiple holes for compression molding is called a die.
  • the average surface roughness of the side surface of the pellet is 250 nm or less, preferably 200 nm or less, more preferably 180 nm or less.
  • the average surface roughness of the side surface of the pellet is preferably 50 nm or more, more preferably 80 nm or more, still more preferably 100 nm or more, still more preferably 110 nm or more.
  • the range of average surface roughness of the side surface of the pellet is 50 nm or more and 250 nm or less, preferably 80 nm or more and 200 nm or less, more preferably 100 nm or more and 180 nm or less.
  • Pellets obtained by a pelletizer usually have a substantially cylindrical shape, and the side surface of the substantially cylindrical pellet is a side surface sandwiched between two substantially circular bottom surfaces (cut surfaces). Surface roughness is the state of the surface (unevenness).
  • Using an atomic force microscope it is quantified from the atomic force acting between the sample and the stylus.
  • the arithmetic mean roughness of the measurement area is calculated by averaging the absolute values of the displacement from .
  • the average surface roughness of the side surface of the pellet is the average value of arithmetic mean roughnesses in three atomic force microscope measurement areas on the side surface of one pellet.
  • the pellet of the present invention has an average surface roughness of 250 nm or less on the side surface of the pellet, so that the generation of dust derived from the pellet can be suppressed.
  • the degree of dust generated from pellets is evaluated by the dust rate, and the dust rate of the pellets of the present invention is preferably 0.5% by weight or less, more preferably 0.35% by weight or less, and still more preferably 0.2% by weight. It is below.
  • the dust ratio can be calculated from the ratio of the weight of dust that passes through the sieve when a certain amount of pellets is placed in the sieve and vibrated for a certain period of time.
  • the diameter and length of the substantially circular bottom surface (cut surface) of the pellet are not particularly limited, the diameter is preferably 6 to 10 mm, and the length is preferably 10 to 70 mm. Smaller diameters tend to clog inside the die of the pelletizer. If the pellet length is too short, strong breaking forces may occur during pellet production, resulting in increased dust content in the product. If the length of the pellet is too long, the bulk density of the product will be low, resulting in increased transport costs and costs during use.
  • the diameter and length of the substantially circular bottom surface (cut surface) of the pellet can be adjusted with a pelletizer.
  • the lignin content of the pellets of the present invention is preferably 16% by weight or more and 40% by weight or less, more preferably 17% by weight or more and 40% by weight or less, still more preferably 18% by weight or more and 40% by weight or less, still more preferably 18% by weight or more. % by weight or more and 30% by weight or less, more preferably 18% by weight or more and 25% by weight or less.
  • the saccharification residue of the raw biomass particularly in the saccharification residue of the alkali pretreated raw biomass, other components such as cellulose and hemicellulose are decomposed by the saccharification reaction, and the lignin content relatively increases.
  • the upper limit of the lignin content of the pellets of the present invention is usually about 40% by weight.
  • the amount of lignin in the raw material biomass processed until just before pelletization is the sum of the acid-insoluble lignin content and the acid-soluble lignin content.
  • the raw biomass that has been treated immediately before pelletization is obtained by hydrolyzing a pretreated raw biomass (preferably pretreated with alkali) with a saccharifying enzyme. It is a saccharification residue or pulverized product.
  • Acid-insoluble lignin also called Clason lignin
  • Clason lignin is obtained by adding 72% (w/w) sulfuric acid to lignin-containing biomass to swell and partially hydrolyze the polysaccharides, adding water to dilute the sulfuric acid, and autoclaving. is obtained by removing the ash from the insoluble fraction obtained by hydrolyzing the polysaccharide to make it acid-soluble.
  • the acid-soluble lignin content can be measured by absorbance with reference to "Wood science experiment manual" (edited by the Japan Wood Research Society, 2000, Buneidou Publishing), edited by the Japan Wood Research Society (2000). .
  • the pellets of the present invention may have a characteristic that they have a lower ignition temperature and are more combustible than ordinary biomass pellets, and those having such characteristics can be suitably used as fuel.
  • the ignition temperature of pellets suitable for fuel applications is preferably 300° C. or higher and 350° C. or lower, more preferably 300° C. or higher and 340° C. or lower, and particularly preferably 310° C. or higher and 330° C. or lower.
  • the ignition temperature is the temperature indicated by the highest peak of the DTG curve obtained as the first derivative of the TG curve with respect to temperature after performing thermogravimetry (TG).
  • aqueous solution was prepared containing 0.0008% (w/vol) of hydrate, 0.0006% (w/vol) of boric acid and 0.0026% (w/vol) of hexaammonium heptamolybdate tetrahydrate. 100 mL of the prepared aqueous solution was placed in a 500 mL baffled Erlenmeyer flask and autoclave sterilized at 121° C. for 15 minutes.
  • Trichoderma reesei ATCC66589 (distributed by ATCC) was inoculated to 1 ⁇ 10 5 cells/mL, and cultured with shaking at 180 rpm at 28° C. for 72 hours to obtain pre-culture (shake culture).
  • Apparatus BIO-SHAKER BR-40LF manufactured by TAITEC).
  • Xylan degradation activity (U/mL) reducing sugar concentration (g/L) x 1000 x 505 ( ⁇ L)/(150.13 x reaction time (min) x 5 ( ⁇ L)).
  • the xylo-oligosaccharide described in this reference example refers to an oligosaccharide in which 2 to 6 xyloses are linked via ⁇ -glycosidic bonds.
  • the obtained solid content was subjected to solid-liquid separation using a screw press (manufactured by Fukoku Industry Co., Ltd.), and the bagasse saccharification residue was recovered as the solid content.
  • the liquid was further centrifuged at 8000 G for 20 minutes to recover the supernatant, which was then subjected to microfiltration using Sartopore 2 (manufactured by Sautorius Japan Co., Ltd.).
  • Xylooligosaccharides, glucose and xylose contained in the liquid after microfiltration were quantified by the method of Reference Example 4. Table 1 shows the concentrations of the components contained in the liquid after microfiltration.
  • the surface roughness of the pellet was measured using an atomic force microscope (Nanowizard 3 manufactured by JPK).
  • an "APPNANO ACST" type needle needle diameter: 10 nm or less
  • a frequency of 150 kHz 150 kHz
  • a k value of 7.8 N/m a scan speed of 0.8 Hz
  • a measurement area of 10 ⁇ m 2 One randomly selected measurement area on the side surface of the pellet was divided into 256 ⁇ 256 areas, the displacement of each point was measured, and the arithmetic mean roughness was calculated therefrom.
  • two locations were selected at random from one pellet, their arithmetic average roughness was calculated, and the arithmetic average roughness of a total of three locations was averaged to calculate the average surface roughness.
  • Dust rate was measured using a low tap. Using a low-tap sieve shaker (R-1, manufactured by Tanaka Tech Co., Ltd.), Tokyo Screen's stainless steel sieve #16 (JIS standard, opening 1000 ⁇ m) is installed, and 1.0 kg of pellets discharged from the pelletizer for a certain period of time was passed through a sieving machine at 30 rpm and 15 tpm for 10 minutes, and the weight of the dust that passed through #16 was measured. The value obtained by dividing the measured weight by the parameter of 1.0 kg was measured five times in total, and the average value was taken as the dust rate.
  • R-1 low-tap sieve shaker
  • JIS standard opening 1000 ⁇ m
  • Example 1 Preparation, drying and pelletization of bagasse saccharification residue
  • the saccharification residue collected in Reference Example 5 was pulverized with a cutter mill (Baryonics, manufactured by Nara Machinery Co., Ltd.) so that the pulverization degree was 10 mm or less. After that, it was dried in the sun and stirred once every 3 hours, and adjusted so that the moisture content was 10% or more and less than 30% (average moisture content: 20%).
  • the reason for drying after pulverization is that if pulverization is performed after drying, the generation of dust in the cutter mill increases sharply, increasing the risk of dust explosion in the work area. After the drying in the sun, the moisture content was measured while stirring by hand, and if it was too dry, water was added to adjust the moisture content.
  • FIG. 1 shows the result of atomic force microscope observation when the average surface roughness of the pellet side surface was measured.
  • Comparative Example 4 Preparation, drying and pelletization of bagasse
  • the bagasse used in Reference Example 1 was pulverized in the same manner as in Comparative Example 3 so that the degree of pulverization was 1 mm or less. After that, the mixture was dried in the sun and water was added, and the mixture was stirred by hand to adjust the moisture content to 10% or more and less than 30% (average moisture content: 20%). Bagasse with adjusted moisture content was charged into a pelletizer in the same manner as in Comparative Example 3 to produce pellets. The average surface roughness and dust rate of the obtained pellets were measured (Table 2). In addition, when the average surface roughness of the side surface of the pellet was measured, observation with an atomic force microscope revealed that, as shown in FIG. .
  • Comparative Example 5 The bagasse used in Reference Example 1 was pulverized so that the mesh diameter after the cutter mill attached to the cutter mill of Example 1 was larger than those of Comparative Examples 3 and 4, and the degree of pulverization was 2 mm or less. Then, it was adjusted with a dryer so that the water content was less than 10%. Bagasse after moisture content adjustment was put into the same pelletizer as in Example 1 and Comparative Example 3 to try to produce pellets, but the pelletizer inlet was immediately clogged, and pellets could not be produced. (Table 2).
  • Example 2 Measurement of lignin Pulverize the saccharified residue pellets produced in Example 1, evaporate an appropriate amount to dryness on a water bath, and then dry at 105 ° C. Weight loss after drying (however, drying until constant weight ), the moisture content (% by weight) was calculated. Next, an appropriate amount (0.2899 g) of the dried sample was placed in a beaker, 3 mL of 72% sulfuric acid was added, and the mixture was allowed to stand at 30° C. for 1 hour with occasional stirring. This was completely transferred to a pressure bottle while being mixed with 84 mL of pure water. This was thermally decomposed in an autoclave at 120° C. for 1 hour.
  • the decomposition liquid and residue were separated by filtration.
  • the residue was dried at 105°C and weighed 0.0760 g. Furthermore, when the dry sample was ignited at 600° C. and the ash content was measured, it was 35.1% in the decomposition residue. Therefore, the acid-insoluble lignin content in the dry sample was calculated as 17.0%.
  • the filtrate obtained by filtering the decomposition liquid and the residue was adjusted to 100 mL by adding the washing liquid of the residue, and the volume was measured with an absorbance meter at a wavelength of 210 nm.
  • the acid-soluble lignin content in the dried sample was 1.12%, calculated using the absorption coefficient of acid-soluble lignin (110 L/g/cm). From the above, the lignin content in the pellet was calculated to be 18.1%.
  • the liquid component obtained by centrifugation was subjected to microfiltration using "Sartopore 2" (manufactured by Sautorius Japan Co., Ltd.).
  • Xylooligosaccharides, glucose and xylose contained in the liquid after microfiltration were quantified by the method of Reference Example 4.
  • Table 3 shows the concentrations of components contained in the liquid after microfiltration.
  • Example 3 Preparation, drying and pelletization of bagasse saccharification residue 2
  • the saccharification residue collected in Reference Example 7 was pulverized in the same manner as in Example 1 with a cutter mill so that the pulverization degree was 10 mm or less. After that, it was dried in the sun and adjusted to have a moisture content of 10% or more and less than 30% (average moisture content of 20%). Bagasse saccharified residue with adjusted moisture content was put into a pelletizer in the same manner as in Example 1, pellet production was started, and the average surface roughness and dust rate of the obtained pellets were measured (Table 4).
  • Example 4 Ignition temperature measurement of pellets produced from bagasse saccharification residue The ignition temperature of the pellets produced in Example 1 was measured in the same manner as in Comparative Example 8. The sample weight was 15.5 g. As a result, the ignition temperature was 322°C.

Abstract

The present invention provides: plant-based pellets that generate little dust, that reduce the amount of air pollutants from a boiler and improve the operational safety of a biomass boiler when used as a fuel, and that can be used to advantageously reduce management costs during transportation; and a method for producing the pellets. More specifically, the present invention provides pellets and a method for producing the pellets in which lignocellulosic biomass is used as a starting material and the average surface roughness of a side surface section of the pellets is 50-250 nm.

Description

ペレットおよびペレットの製造方法Pellets and methods for producing pellets 関連出願の参照Reference to Related Applications
 本特許出願は、2021年3月29日に出願された日本国特許出願2021-56162号に基づく優先権の主張を伴うものであり、かかる先の特許出願における全開示内容は、引用することにより本明細書の一部とされる。 This patent application claims priority based on Japanese Patent Application No. 2021-56162 filed on March 29, 2021, and the entire disclosure content in such earlier patent application is incorporated by reference. incorporated herein.
 本発明は、リグノセルロース系バイオマスを原料とするペレットおよびペレットの製造方法に関する。 The present invention relates to pellets made from lignocellulosic biomass and a method for producing pellets.
 地球温暖化抑制に向けて植物系バイオマスを原料としたエネルギー、バイオマスエネルギー、が大きな注目を集めている。バイオマスエネルギーは、地球温暖化の原因の一つである二酸化炭素の排出がライフサイクル中で中立(排出と吸収が等しい)と考えられており、化石燃料の代替として今後ますます使用量が増加すると予想されている。  Biomass energy, which uses plant-based biomass as a raw material, is attracting a great deal of attention as a means of curbing global warming. Biomass energy is thought to be neutral during its lifecycle in emissions of carbon dioxide, which is one of the causes of global warming (emission and absorption are equal). expected.
 植物系バイオマスを燃料として使用する場合、一般に、体積当たりの重量が小さい(かさ密度が大きい)ためペレット化されることが多い。ペレットとは、原料を破砕したのち圧縮形成したものであり、直径6~10mm程度、長さ10~70mm程度の円筒形の燃料である。植物系バイオマスをペレット化することで、かさ密度やエネルギー密度(単位体積あたりの発熱量)が大きくなり、貯蔵や輸送が容易になる。また、ペレットの含水率を調整することで、着火性や燃焼性を制御することが可能となる。ペレットはボイラーに入れて燃焼させることで各種熱源として利用される。 When plant-based biomass is used as fuel, it is often pelletized due to its low weight per volume (high bulk density). A pellet is a cylindrical fuel having a diameter of about 6 to 10 mm and a length of about 10 to 70 mm. Pelleting plant biomass increases bulk density and energy density (calorific value per unit volume), facilitating storage and transportation. Also, by adjusting the moisture content of the pellets, it is possible to control the ignitability and combustibility. Pellets are used as various heat sources by burning them in a boiler.
 植物系バイオマス燃料に関する先行技術としては、糖化されたバイオマスを燃焼してエネルギーを生成する方法(特許文献1)、リグノセルロース系バイオマスを原料として糖類及び/またはエタノールを製造する工程で排出される残渣を利用した燃料組成物(特許文献2)、リグノセルロース系バイオマス材料を原料とする成形性が良好なペレット(特許文献3)などが知られている。 Prior art related to plant-based biomass fuels include a method of burning saccharified biomass to generate energy (Patent Document 1), and residues discharged in the process of producing sugars and/or ethanol using lignocellulosic biomass as a raw material. (Patent Document 2), pellets with good moldability made from lignocellulosic biomass materials (Patent Document 3), and the like are known.
特表2016-517268号公報Japanese translation of PCT publication No. 2016-517268 特開2014-132052号公報JP 2014-132052 A 特開2017-100382号公報JP 2017-100382 A
 植物系バイオマスをペレット化してボイラーにて燃焼する場合、ペレット由来の粉塵が多すぎると、外部に流出し大気汚染を引き起こす、ボイラー燃焼中に粉塵の着火性が高いことからボイラー投入側に延焼して運転の安全性が侵される、輸送中の粉塵の漏れにより輸送事業者の管理負荷がかかるといった複数の課題がある。そこで、本発明では、植物系バイオマスを原料とする粉塵が少ないペレットを提供することを一つの目的とする。 When pelletizing plant biomass and burning it in a boiler, if there is too much dust from the pellets, it will flow outside and cause air pollution. There are several issues, such as the safety of operation being compromised due to air pollution, and the management burden on transportation companies due to dust leaks during transportation. Accordingly, it is an object of the present invention to provide pellets made from plant-based biomass and producing less dust.
 本発明者らは、ペレット原料としてリグノセルロース系バイオマスに着目し、鋭意検討した結果、ペレット側面部の平均表面粗さを50nm以上250nm以下とすることで、ペレット由来の粉塵の量を大幅に低下させることができ、ペレットの品質を上げることができることを見出した。
 すなわち、本発明の一実施態様によれば、以下の[1]~[13]が提供される。
[1]リグノセルロース系バイオマスを原料とし、ペレット側面部の平均表面粗さが50nm以上250nm以下である、ペレット。
[2]燃料用途である、[1]に記載のペレット。
[3]前記リグノセルロース系バイオマスがバガスである、[1]または[2]に記載のペレット。
[4]前記原料がリグノセルロース系バイオマスの糖化残渣である、[1]~[3]のいずれかに記載のペレット。
[5]前記リグノセルロース系バイオマスの糖化残渣が、リグノセルロース系バイオマスのアルカリ前処理物の糖化残渣である、[4]に記載のペレット。
[6]リグニン含有率が16重量%以上40重量%以下である、[1]~[5]のいずれかに記載のペレット。
[7]粉塵率が0.5重量%以下である、[1]~[6]のいずれかに記載のペレット。
[8][1]~[7]にいずれかに記載のペレットを製造する方法であって、
 リグノセルロース系バイオマスをアルカリ前処理して得られる前処理物を糖化酵素で加水分解する工程(1)、
 工程(1)で得られたリグノセルロース系バイオマスの加水分解物を固液分離して固形分としてリグノセルロース系バイオマスの糖化残渣を得る工程(2)、
 工程(2)で得られたリグノセルロース系バイオマスの糖化残渣を粉砕する工程(3)、および
 工程(3)で得られたリグノセルロース系バイオマスの糖化残渣を圧縮成型してペレット化する工程(4)を含む、方法。
[9]前記工程(1)において、アルカリ前処理の温度が80~100℃である、[8]に記載の方法。
[10]前記工程(1)において、アルカリ前処理が常圧下でのアルカリ前処理である、[8]または[9]に記載の方法。
[11]前記工程(3)において、工程(2)で得られたリグノセルロース系バイオマスの糖化残渣を直径10mm以下に粉砕する、[8]~[10]のいずれかに記載の方法。
[12]前記工程(4)において、圧縮成型に供するリグノセルロース系バイオマスの糖化残渣の含水率が10%以上30%未満である、[8]~[11]のいずれかに記載の方法。
[13]前記リグノセルロース系バイオマスがバガスである、[8]~[12]のいずれかに記載の方法。
The present inventors focused on lignocellulose-based biomass as a raw material for pellets, and as a result of intensive studies, the amount of dust derived from pellets was significantly reduced by setting the average surface roughness of the side surface of the pellet to 50 nm or more and 250 nm or less. It has been found that the quality of pellets can be improved.
That is, according to one embodiment of the present invention, the following [1] to [13] are provided.
[1] A pellet made from lignocellulose-based biomass and having an average surface roughness of 50 nm or more and 250 nm or less on the side surface of the pellet.
[2] The pellet according to [1], which is used for fuel.
[3] The pellets according to [1] or [2], wherein the lignocellulosic biomass is bagasse.
[4] The pellet according to any one of [1] to [3], wherein the raw material is saccharification residue of lignocellulosic biomass.
[5] The pellet according to [4], wherein the lignocellulosic biomass saccharification residue is a saccharification residue of an alkali pretreated lignocellulosic biomass.
[6] The pellet according to any one of [1] to [5], having a lignin content of 16% by weight or more and 40% by weight or less.
[7] The pellet according to any one of [1] to [6], which has a dust rate of 0.5% by weight or less.
[8] A method for producing the pellets according to any one of [1] to [7],
Step (1) of hydrolyzing a pretreated product obtained by pretreating lignocellulosic biomass with an alkali, using a saccharifying enzyme;
Step (2) of solid-liquid separation of the hydrolyzate of lignocellulosic biomass obtained in step (1) to obtain a saccharification residue of lignocellulosic biomass as a solid content;
Step (3) of pulverizing the saccharified residue of lignocellulosic biomass obtained in step (2), and Step (4) of compressing and pelletizing the saccharified residue of lignocellulosic biomass obtained in step (3). ), methods.
[9] The method according to [8], wherein in the step (1), the alkali pretreatment temperature is 80 to 100°C.
[10] The method according to [8] or [9], wherein in the step (1), the alkali pretreatment is an alkali pretreatment under normal pressure.
[11] The method according to any one of [8] to [10], wherein in the step (3), the saccharification residue of the lignocellulosic biomass obtained in the step (2) is pulverized to a diameter of 10 mm or less.
[12] The method according to any one of [8] to [11], wherein the moisture content of the saccharification residue of the lignocellulosic biomass subjected to compression molding in the step (4) is 10% or more and less than 30%.
[13] The method according to any one of [8] to [12], wherein the lignocellulosic biomass is bagasse.
 本発明により植物系バイオマスを原料とするペレットでの課題であったペレットの粉塵率を下げることができる。したがって、本発明は、ボイラーからの大気汚染物質量減少、バイオマスボイラーの運転安全性向上、輸送時の管理コスト削減において有利に利用することができる。 With the present invention, it is possible to reduce the dust rate of pellets, which was a problem with pellets made from plant-based biomass. Therefore, the present invention can be advantageously used to reduce the amount of air pollutants from boilers, improve the operational safety of biomass boilers, and reduce management costs during transportation.
図1は、原子間力顕微鏡にて観察した、実施例1のバガス糖化残渣ペレットの側面部である。FIG. 1 is a side view of bagasse saccharification residue pellets of Example 1 observed with an atomic force microscope. 図2は、原子間力顕微鏡にて観察した、比較例4のバガスペレットの側面部である。FIG. 2 is a side view of bagasse pellets of Comparative Example 4 observed with an atomic force microscope.
 本発明のペレットは、リグノセルロース系バイオマスを原料とする。リグノセルロース系バイオマスとは、構成成分にセルロース、ヘミセルロース、およびリグニンを含むバイオマスのことを指す。リグノセルロース系バイオマスの好適な例として、バガス、スイッチグラス、ネピアグラス、エリアンサス、コーンストーバー、わらなどの草本系バイオマス、あるいは樹木、木屑、廃建材などの木質系バイオマス、さらに藻類、海藻など水生環境由来のバイオマス、コーン外皮、小麦外皮、大豆外皮、籾殻、キャッサバパルプ、ビートパルプなどの穀物バイオマスなどがあげられる。これらの中でも、リグノセルロース系バイオマスとして、特にバガスが好ましく使用される。バガスとは、サトウキビの搾りかすである。 The pellets of the present invention are made from lignocellulosic biomass. Lignocellulosic biomass refers to biomass containing cellulose, hemicellulose, and lignin as constituents. Preferred examples of lignocellulosic biomass include herbaceous biomass such as bagasse, switchgrass, napiergrass, erianthus, corn stover, and straw; woody biomass such as trees, wood chips, and waste building materials; Environmental biomass, grain biomass such as corn husks, wheat husks, soybean husks, rice husks, cassava pulp, and beet pulp. Among these, bagasse is particularly preferably used as lignocellulose biomass. Bagasse is the pomace of sugar cane.
 本発明のペレットを製造する方法は、最終製品であるペレット側面部の平均表面粗さを250nm以下の所望の範囲にできる方法であれば特に制限はなく、当業者にとって公知の方法に当業者の通常の創作の範囲内で適宜アレンジを加えることで製造できる方法であればよいが、リグノセルロース系バイオマスの糖化残渣をペレット化する方法が好適である。以下、リグノセルロース系バイオマスの糖化残渣のペレット化によって本発明のペレットを製造する方法ついて詳述する。 The method for producing the pellet of the present invention is not particularly limited as long as it is a method that allows the average surface roughness of the side surface of the pellet, which is the final product, to be in the desired range of 250 nm or less. Any method can be used as long as it can be produced by appropriately arranging it within the scope of ordinary creation, but a method of pelletizing saccharification residue of lignocellulosic biomass is preferable. The method for producing the pellets of the present invention by pelletizing the saccharification residue of lignocellulosic biomass will be described in detail below.
 リグノセルロース系バイオマスの糖化残渣とは、原料であるリグノセルロース系バイオマス(本明細書中、「原料バイオマス」ともいう)を加水分解して糖を製造する際に得られる固形物残渣であり、好ましくは、原料バイオマスの前処理後に加水分解して糖を製造する際に得られる固形物残渣である。 The saccharification residue of lignocellulosic biomass is a solid residue obtained when producing sugar by hydrolyzing lignocellulosic biomass as a raw material (also referred to as “raw material biomass” in this specification), and is preferably is the solid residue obtained during hydrolysis to produce sugar after pretreatment of raw biomass.
 原料バイオマスの前処理とは、原料バイオマスを加水分解するための前工程であり、当業者にとって公知の工程であってよい。しかしながら、本発明において、原料バイオマスの前処理は、アルカリ前処理であることが、最終製品であるペレット側面部の平均表面粗さを250nm以下の所望の範囲にするうえで好適である。 The pretreatment of the raw material biomass is a pre-process for hydrolyzing the raw material biomass, and may be a process known to those skilled in the art. However, in the present invention, the pretreatment of the raw material biomass is preferably alkali pretreatment in order to make the average surface roughness of the pellet side surface as the final product a desired range of 250 nm or less.
 アルカリ前処理に使用するアルカリ性溶液は特に限定されないが、水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化カルシウム水溶液、またはアンモニア水などを用いることができる。これらの中でも、安価で扱いやすいという観点で、水酸化ナトリウム水溶液が好ましい。アルカリ前処理条件としては、原料バイオマス固形分濃度がアルカリ性水溶液と混合した状態で5~10重量%の範囲に設定することが好適である。 The alkaline solution used for alkali pretreatment is not particularly limited, but sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, calcium hydroxide aqueous solution, ammonia water, or the like can be used. Among these, an aqueous sodium hydroxide solution is preferable from the viewpoint of being inexpensive and easy to handle. As for the alkaline pretreatment conditions, it is preferable to set the raw material biomass solid content concentration in the range of 5 to 10% by weight in a state of being mixed with the alkaline aqueous solution.
 アルカリ前処理でのアルカリ添加量としては、例えば、水酸化ナトリウム水溶液を用いる場合、水酸化ナトリウムの添加量がリグノセルロース系バイオマス固形分に対して5~15重量%の範囲とすることが、最終製品であるペレット側面部の平均表面粗さを250nm以下の所望の範囲にするうえで好適である。 As the amount of alkali added in the alkali pretreatment, for example, when using an aqueous sodium hydroxide solution, the amount of sodium hydroxide added is in the range of 5 to 15% by weight relative to the solid content of lignocellulosic biomass. It is suitable for making the average surface roughness of the side surface of the pellet as a product a desired range of 250 nm or less.
 アルカリ前処理する温度は、最終製品であるペレット側面部の平均表面粗さを250nm以下にするうえで80~100℃とすることが好ましく、85~100℃とすることがより好ましい。 The temperature for alkali pretreatment is preferably 80 to 100°C, more preferably 85 to 100°C, in order to make the average surface roughness of the pellet side surface of the final product 250 nm or less.
 アルカリ前処理の時間は、アルカリ量等に応じて適宜設定でき、通常、0.5~6時間程度である。 The time for alkali pretreatment can be set appropriately according to the amount of alkali, etc., and is usually about 0.5 to 6 hours.
 アルカリ前処理は常圧下、加圧下のどちらで行われても良いが、好ましくは常圧下で行われるのが良い。 Alkaline pretreatment may be performed under normal pressure or under pressure, but preferably under normal pressure.
 アルカリ前処理方法としては、原料バイオマスにアルカリ性溶液を繰り返し通液させる前処理方法を採用することが、最終製品であるペレット側面部の平均表面粗さを250nm以下の所望の範囲にするうえで好適である。そのような方法としては、原料バイオマスを少なくとも収容する収容部と、原料バイオマスにアルカリ性溶液を通液させる濾過部と、濾過部から得られるアルカリ性溶液を回収して循環させる濾液循環部と、を少なくとも備えている濾過機器を使用することが好ましく、公知の濾過機器を用いることも可能である。公知の濾過機器の好適な例としては、ベルト式濾過機(DeSmet社LM)、バスケット式濾過機、ロータリー式濾過機(Carousel、Rotocell、REFLEX)、ボノット式濾過機、スクリーン濾過式装置などが挙げられる。これらの中でも、最終製品であるペレット側面部の平均表面粗さを250nm以下の所望の範囲にするうえで、より好ましくはタンク内スクリーン濾過式装置(イズミフードマシナリ社)、コンベア式スクリーン濾過式装置(CrownIronWorks社、モデル2、モデル3)などである。 As the alkali pretreatment method, it is preferable to adopt a pretreatment method in which an alkaline solution is repeatedly passed through the raw biomass in order to make the average surface roughness of the side surface of the pellet, which is the final product, a desired range of 250 nm or less. is. Such a method includes at least a storage unit that stores raw biomass, a filtration unit that passes an alkaline solution through the raw biomass, and a filtrate circulation unit that collects and circulates the alkaline solution obtained from the filtration unit. It is preferable to use the filtering equipment provided, and it is also possible to use known filtering equipment. Preferable examples of known filtration devices include belt-type filters (DeSmet LM), basket-type filters, rotary-type filters (Carousel, Rotocell, REFLEX), Bonnot-type filters, screen-type filters, and the like. be done. Among these, in order to make the average surface roughness of the pellet side surface of the final product a desired range of 250 nm or less, it is more preferable to use an in-tank screen filtration type device (Izumi Food Machinery Co., Ltd.), a conveyor type screen filtration type device (Crown Iron Works, Model 2, Model 3).
 リグノセルロース系バイオマスをアルカリ前処理して得られる前処理物(本明細書中、「アルカリ前処理物」ともいう)は、そのまま加水分解反応に供してもよいが、加水分解反応の前に固液分離し、得られた固形分をアルカリ前処理物として加水分解に供することが好ましい。固液分離の手法としては、スクリューデカンタなどの遠心分離法、加圧・吸引濾過などの濾過法、または精密濾過などの膜濾過法など公知の手法を用いることができる。また、アルカリ前処理物の固形分を固液分離の前後で純水により洗浄してもよい。固形分を洗浄することにより、リグニン分解物などの酵素反応阻害物質をさらに低減でき、加水分解反応の際のpH調整に必要な酸の量も低減できるため好ましい。 A pretreated product obtained by alkali pretreatment of lignocellulosic biomass (also referred to herein as an “alkali pretreated product”) may be directly subjected to a hydrolysis reaction. It is preferable to subject the solid content obtained by liquid separation to hydrolysis as an alkali pretreated product. As a solid-liquid separation method, a known method such as a centrifugal separation method such as a screw decanter, a filtration method such as pressure/suction filtration, or a membrane filtration method such as microfiltration can be used. Also, the solid content of the alkali pretreated product may be washed with pure water before and after the solid-liquid separation. By washing the solid content, enzyme reaction inhibitors such as lignin degradation products can be further reduced, and the amount of acid required for pH adjustment during the hydrolysis reaction can also be reduced, which is preferable.
 上述のような原料バイオマスの前処理物の加水分解反応に使用する糖化酵素は特に限定されないが、セルラーゼ組成物を使用することが好ましい。セルラーゼ組成物は、β-1,4-グルカンのグリコシド結合を加水分解する種々の加水分解酵素の混合物である。セルラーゼ組成物に含まれる加水分解酵素としては、例えば、セロビオハイドラーゼ、キシラナーゼ、エンドグルカナーゼ、β-グルコシダーゼ、β-キシロシダーゼ、アラビノフラノシダーゼ、キシランエステラーゼ、フェルラ酸エステラーゼ、α-グルクロニダーゼ、キトサナーゼ、キチナーゼ、マンナナーゼ、マンノシダーゼ、α-ガラクトシダーゼ、β-ガラクトシダーゼなどが挙げられる。これらの中でも、加水分解反応で用いるセルラーゼ組成物としては、リグノセルロース系バイオマスに対する加水分解時において少なくともキシラナーゼ、セオビロハイドラーゼおよびβ-グルコシダーゼの活性を有しており、かつβ-キシロシダーゼの活性を実質的に有していないセルラーゼ組成物がキシロオリゴ糖生産の観点から好ましく使用される。また、これらの酵素活性の由来は、特に限定されない。このようなセルラーゼ組成物の調製例は、WO2017/170919号またはWO2017/170917号に記載されている。また、微生物を培養して得られた培養液をセルラーゼ組成物としてそのまま用いてもよいし、培養液から精製された酵素と他の市販の酵素製品を混合して用いることもできる。 Although the saccharification enzyme used for the hydrolysis reaction of the pretreated raw biomass as described above is not particularly limited, it is preferable to use a cellulase composition. A cellulase composition is a mixture of different hydrolases that hydrolyze the glycosidic bonds of β-1,4-glucans. Hydrolytic enzymes contained in the cellulase composition include, for example, cellobiohydrolase, xylanase, endoglucanase, β-glucosidase, β-xylosidase, arabinofuranosidase, xylan esterase, ferulic acid esterase, α-glucuronidase, chitosanase, chitinase, mannanase, mannosidase, α-galactosidase, β-galactosidase and the like. Among these, the cellulase composition used in the hydrolysis reaction has at least the activities of xylanase, theobirohydrolase and β-glucosidase when hydrolyzing lignocellulosic biomass, and also exhibits the activity of β-xylosidase. A cellulase composition that is substantially free is preferably used from the viewpoint of xylo-oligosaccharide production. Moreover, the origin of these enzymatic activities is not particularly limited. Examples of preparation of such cellulase compositions are described in WO2017/170919 or WO2017/170917. In addition, a culture solution obtained by culturing microorganisms may be used as it is as a cellulase composition, or an enzyme purified from the culture solution and other commercially available enzyme products may be mixed and used.
 微生物に由来するセルラーゼ組成物を用いる場合、微生物としては、真菌を好ましく用いることができる。真菌の具体例としては、トリコデルマ属(Trichoderma)真菌、アスペルギルス属(Aspergillus)真菌、セルロモナス属(Cellulomonas)真菌、クロストリジウム属(Chlostridium)真菌、ストレプトマイセス属(Streptomyces)真菌、フミコラ属(Humicola)真菌、アクレモニウム属(Acremonium)真菌、イルペックス属(Irpex)真菌、ムコール属(Mucor)真菌、タラロマイセス属(Talaromyces)真菌などを例示することができる。これら真菌の中でも、トリコデルマ属真菌、アスペルギルス属真菌が好ましい。 When using a cellulase composition derived from a microorganism, a fungus can be preferably used as the microorganism. Specific examples of fungi include Trichoderma fungi, Aspergillus fungi, Cellulomonas fungi, Clostridium fungi, Streptomyces fungi, and Humicola fungi. , Acremonium fungi, Irpex fungi, Mucor fungi, Talaromyces fungi, and the like. Among these fungi, fungi of the genus Trichoderma and fungi of the genus Aspergillus are preferred.
 トリコデルマ属真菌の具体例としては、トリコデルマ・リーセイQM9414(Trichoderma reesei QM9414)、トリコデルマ・リーセイQM9123(Trichoderma reesei QM9123)、トリコデルマ・リーセイRutC-30(Trichoderma reesei RutC-30)、トリコデルマ・リーセイPC3-7(Trichoderma reesei PC3-7)、トリコデルマ・リーセイCL-847(Trichoderma reesei CL-847)、トリコデルマ・リーセイMCG77(Trichoderma reesei MCG77)、トリコデルマ・リーセイMCG80(Trichoderma reesei MCG80)、トリコデルマ・ビリデQM9123(Trichoderma viride QM9123)を例示することができる。これらトリコデルマ属真菌の中でも、トリコデルマ・リーセイが好ましい。また、上記のセルラーゼ組成物を構成する真菌に変異剤または紫外線照射などで変異処理を施すことによりセルラーゼ組成物の生産性が向上した変異株や、β-キシロシダーゼの活性が低下した変異株も好ましく用いることができる。 Specific examples of the fungi of the genus Trichoderma include Trichoderma reesei QM9414, Trichoderma reesei QM9123, Trichoderma reesei RutC-30, Trichoderma reesei RutC-30, Trichoderma reesei RutC-30, and Trichoderma reesei RutC-30. Trichoderma reesei PC3-7)、トリコデルマ・リーセイCL-847(Trichoderma reesei CL-847)、トリコデルマ・リーセイMCG77(Trichoderma reesei MCG77)、トリコデルマ・リーセイMCG80(Trichoderma reesei MCG80)、トリコデルマ・ビリデQM9123(Trichoderma viride QM9123) can be exemplified. Among these fungi of the genus Trichoderma, Trichoderma reesei is preferred. Mutant strains in which the productivity of the cellulase composition is improved or mutant strains in which the activity of β-xylosidase is reduced by subjecting the fungi constituting the cellulase composition to mutation treatment with a mutating agent or ultraviolet irradiation are also preferred. can be used.
 また、アスペルギルス属真菌の具体例としては、アスペルギルス・ニガー(Aspergillus niger)、アスペルギルス・フミガタス(Aspergillus fumigatus)、アスペルギルス・アクレアータス(Aspergillus aculeatus)、アスペルギルス・テレウス(Aspergillus terreus)を例示することができる。 Specific examples of Aspergillus fungi include Aspergillus niger, Aspergillus fumigatus, Aspergillus aculeatus, and Aspergillus terreus.
 セルラーゼ組成物として、上記の真菌のうち1種類の真菌由来のセルラーゼ組成物を用いてもよいし、複数の真菌由来のセルラーゼ組成物を混合して用いてよい。複数の真菌由来のセルラーゼ組成物を混合して用いる場合、組み合わせは特に限定されないが、例えばトリコデルマ属真菌由来のセルラーゼ組成物と、アスペルギルス属真菌由来のセルラーゼ組成物を混合して用いても良い。アスペルギルス属真菌由来のβ-グルコシダーゼとして、具体的には、“Novozyme188”(ノボザイムズ社)、“β-Glucosidase from Aspergillus niger”(Megazyme社)、“スミチームBGA”(新日本化学工業株式会社)などを例示することができる。なお、β-グルコシダーゼ活性成分は、上記したアスペルギルス属真菌のβ-グルコシダーゼ活性成分を含むことが好ましい。 As the cellulase composition, a cellulase composition derived from one of the above fungi may be used, or a mixture of cellulase compositions derived from a plurality of fungi may be used. When cellulase compositions derived from a plurality of fungi are mixed and used, the combination is not particularly limited. For example, a cellulase composition derived from a fungus of the genus Trichoderma and a cellulase composition derived from a fungus of the genus Aspergillus may be mixed and used. Specific examples of β-glucosidases derived from fungi of the genus Aspergillus include "Novozyme 188" (Novozymes), "β-Glucosidase from Aspergillus niger" (Megazyme), and "Sumizyme BGA" (Shinnihon Chemical Industry Co., Ltd.). can be exemplified. The β-glucosidase active ingredient preferably contains the β-glucosidase active ingredient of the fungus belonging to the genus Aspergillus.
 糖化酵素による加水分解(本明細書中、「糖化反応」ともいう)条件は特に限定されないが、キシロオリゴ糖、グルコース、キシロースを製造できるような加水分解条件であることが好ましい。 The conditions for hydrolysis by saccharifying enzymes (also referred to as "saccharifying reaction" in this specification) are not particularly limited, but hydrolysis conditions that allow production of xylooligosaccharides, glucose, and xylose are preferable.
 リグノセルロース系バイオマスの糖化残渣は、リグノセルロース系バイオマスの前処理物の糖化酵素による加水分解物を固液分離することで得られる。固液分離の方法としては、遠心分離法、膜分離法、加圧固液分離法などがあるが特に限定されない。また、こうした固液分離方法を複数種組み合わせて行ってもよい。固液分離装置として、連続遠心機、スクリューデカンタ、ディスク型遠心分離機、スクリュープレス、フィルタープレス、ロールプレス、ウォッシュプレス、ベルトフィルター、ドラムフィルターなどを例示することができる。 The lignocellulosic biomass saccharification residue is obtained by solid-liquid separation of the hydrolyzate by saccharifying enzymes of the pretreated lignocellulosic biomass. The solid-liquid separation method includes, but is not limited to, centrifugal separation, membrane separation, pressurized solid-liquid separation, and the like. Also, a plurality of such solid-liquid separation methods may be combined. Examples of solid-liquid separators include continuous centrifuges, screw decanters, disc centrifuges, screw presses, filter presses, roll presses, wash presses, belt filters, and drum filters.
 固液分離工程から得られたリグノセルロース系バイオマスの糖化残渣(本明細書中、「固形物残渣」ともいう)を好ましくは粉砕機にて粉砕する。粉砕の方法は特に限定されず、ハンマーミル、カッターミル、ボールミル、ジェットミルなどがあるが、好ましくはカッターミル又はハンマーミルである。粉砕は、固形物残渣の直径(本明細書中、「粉砕度」ともいう)が20mm以下、好ましくは10mm以下になるように粉砕する。これはペレット化の際にダイスと呼ばれる孔に前記の固形物残渣を通すことになるが、ダイスの手前で詰まることを防止するためである。また、固形物残渣を粉砕することによって後工程での乾燥の効率が向上する。 The lignocellulosic biomass saccharification residue obtained from the solid-liquid separation step (also referred to herein as "solid residue") is preferably pulverized with a pulverizer. The pulverization method is not particularly limited, and includes hammer mill, cutter mill, ball mill, jet mill and the like, preferably cutter mill or hammer mill. Pulverization is carried out so that the diameter of the solid residue (also referred to herein as "grinding degree") is 20 mm or less, preferably 10 mm or less. This is to prevent clogging before the die when the solid residue is passed through a hole called a die during pelletization. Also, pulverizing the solid residue improves the efficiency of drying in the post-process.
 固形物残渣を適宜乾燥することで固形物残渣の含水率を調整することができる。固形物残渣の乾燥方法は特に限定されないが、風乾、熱風、加熱ジャケット接触により乾燥する方法が挙げられる。乾燥時の温度は特に限定されないが、風乾以外の方法で乾燥する場合は、バイオマスボイラーから発生する排熱などを有効利用することで、工程で使用する環境負荷を下げることができる。 By appropriately drying the solid residue, the moisture content of the solid residue can be adjusted. The method for drying the solid residue is not particularly limited, and includes drying by air drying, hot air, and contact with a heating jacket. The temperature during drying is not particularly limited, but when drying by a method other than air drying, the environmental load used in the process can be reduced by effectively utilizing the waste heat generated from the biomass boiler.
 粉砕時の固形物残渣の含水率は10~55%とすることが好ましく、30~50%とすることがより好ましい。粉砕時の含水率が前記含水率より高すぎると、粉砕機に詰まりやすくなる。粉砕時の含水率が前記含水率より低くなると、粉塵発生率が高くなり、カッターミル中および後工程への輸送中に粉塵火災を起こす懸念がある。 The water content of the solid residue at the time of pulverization is preferably 10-55%, more preferably 30-50%. If the water content at the time of pulverization is too higher than the above-mentioned water content, the pulverizer is likely to clog. If the water content at the time of pulverization is lower than the above-mentioned water content, the rate of dust generation increases, and there is a concern that dust fires may occur during transportation to the cutter mill and subsequent processes.
 後段のペレット化工程に供する固形物残渣の含水率は10%以上30%未満が好ましい。含水率が10%未満では、ペレット化する際に、ペレタイザーのダイス部にてダイス中のバイオマス温度制御ができなくなる場合がある。したがって、バイオマスの一部の成分がガラス転移を起こして接着材のような状態になり、詰まりが発生してペレット化を連続して行うことが難しくなりうる。一方、含水率が30%以上では、ペレタイザーの装置内部で原料がブリッジしてしまい、ダイス部までの投入ができず、安定的に製造することが難しくなりうる。固形物残渣の含水率は、測定対象物を105℃まで加熱し、加熱前後の重量変化から算出することができる。 The water content of the solid residue to be subjected to the subsequent pelletizing step is preferably 10% or more and less than 30%. If the moisture content is less than 10%, it may become impossible to control the temperature of the biomass in the die at the die part of the pelletizer during pelletization. Therefore, some components of the biomass undergo glass transition and become adhesive-like, causing clogging and making continuous pelletization difficult. On the other hand, if the water content is 30% or more, the raw material will bridge inside the pelletizer, making it impossible to feed the material up to the die, making it difficult to stably produce the material. The moisture content of the solid residue can be calculated by heating the object to be measured to 105° C. and calculating the weight change before and after heating.
 なお、前記の粉砕工程と乾燥工程の順序は特に制限されず、粉砕と乾燥工程を複数回行っても構わない。回数は限らないが、粉砕工程後に乾燥工程を行うことが好ましい。これにより、高品質のペレット化ができるとともに、安定的・安全に運転できる。 The order of the pulverization step and the drying step is not particularly limited, and the pulverization and drying steps may be performed multiple times. Although the number of times is not limited, it is preferable to perform the drying process after the pulverization process. This enables high-quality pelletization and stable and safe operation.
 前記固形物残渣を圧縮成型してペレット化する。ペレット化のための装置(ペレタイザー)は特に限定されていないが、ブリケッター(北川鉄工所(株)製など)、リングダイ式ペレタイザー(CPM(株)製、Thai Sumi製、Triumph製など)、フラットダイ式ペレタイザー(ダルトン(株)製など)などが好ましい。圧縮成型を行うための孔が複数空いた部品をダイスと呼ぶ。上記の通り、糖化残渣の粉砕度および含水率を調整することにより、ダイス前のペレタイザー内部の搬入部への詰まりが発生すること、およびダイス内部そのものへの詰まりが発生することを抑制できる。前記粉砕工程と乾燥工程の条件を調整することにより、粉塵含有率が少ない高品質のバイオマスペレットを長時間安定的に製造することが可能となる。 The solid residue is compression-molded and pelletized. The device for pelletization (pelletizer) is not particularly limited, but may be a briquetteer (manufactured by Kitagawa Ironworks Co., Ltd., etc.), a ring die type pelletizer (manufactured by CPM Co., Ltd., Thai Sumi, Triumph, etc.), flat A die-type pelletizer (manufactured by Dalton Co., Ltd., etc.) is preferred. A part with multiple holes for compression molding is called a die. As described above, by adjusting the degree of pulverization and the water content of the saccharification residue, it is possible to suppress the occurrence of clogging in the loading section inside the pelletizer before the die and the occurrence of clogging in the die itself. By adjusting the conditions of the pulverization step and the drying step, it becomes possible to stably produce high-quality biomass pellets with a low dust content for a long period of time.
 本発明のペレットにおいて、ペレット側面部の平均表面粗さは250nm以下、好ましくは200nm以下、より好ましくは180nm以下である。また、本発明のペレットにおいて、ペレット側面部の平均表面粗さは、好ましくは50nm以上、より好ましくは80nm以上、より一層好ましくは100nm以上、さらに好ましくは110nm以上である。また、本発明の一実施態様によれば、ペレット側面部の平均表面粗さの範囲は50nm以上250nm以下とされるが、好ましくは80nm以上200nm以下、より好ましくは100nm以上180nm以下であり、より一層好ましくは110nm以上180nm以下である。ペレタイザーにより得られるペレットは、通常、略円柱形の形状をとるが、ペレット側面部とは略円柱形のペレットの二つの略円形底面(切断面)に挟まれた側面をいう。表面粗さとは表面の状態(凹凸)を表すもので、原子間力顕微鏡を用いて、試料と触針間で働く原子間力から数値化され、計測エリアの平均値を基準面として、基準面からの変位の絶対値の平均を取ることで計測エリアの算術平均粗さが算出される。そして、ペレット側面部の平均表面粗さは、1個のペレットの側面部での3箇所の原子間力顕微鏡計測エリア内の算術平均粗さの平均値とする。 In the pellet of the present invention, the average surface roughness of the side surface of the pellet is 250 nm or less, preferably 200 nm or less, more preferably 180 nm or less. In addition, in the pellet of the present invention, the average surface roughness of the side surface of the pellet is preferably 50 nm or more, more preferably 80 nm or more, still more preferably 100 nm or more, still more preferably 110 nm or more. Further, according to one embodiment of the present invention, the range of average surface roughness of the side surface of the pellet is 50 nm or more and 250 nm or less, preferably 80 nm or more and 200 nm or less, more preferably 100 nm or more and 180 nm or less. More preferably, it is 110 nm or more and 180 nm or less. Pellets obtained by a pelletizer usually have a substantially cylindrical shape, and the side surface of the substantially cylindrical pellet is a side surface sandwiched between two substantially circular bottom surfaces (cut surfaces). Surface roughness is the state of the surface (unevenness). Using an atomic force microscope, it is quantified from the atomic force acting between the sample and the stylus. The arithmetic mean roughness of the measurement area is calculated by averaging the absolute values of the displacement from . The average surface roughness of the side surface of the pellet is the average value of arithmetic mean roughnesses in three atomic force microscope measurement areas on the side surface of one pellet.
 本発明のペレットは、ペレット側面部の平均表面粗さが250nm以下であることで、ペレット由来の粉塵の発生を抑制することができる。ペレット由来の粉塵の発生程度は粉塵率によって評価され、本発明のペレットの粉塵率は、好ましくは0.5重量%以下、より好ましくは0.35重量%以下、さらに好ましくは0.2重量%以下である。粉塵率は、一定量のペレットをふるいに入れ、一定時間振動させた際にふるいを通過した粉塵重量の割合から算出することができる。 The pellet of the present invention has an average surface roughness of 250 nm or less on the side surface of the pellet, so that the generation of dust derived from the pellet can be suppressed. The degree of dust generated from pellets is evaluated by the dust rate, and the dust rate of the pellets of the present invention is preferably 0.5% by weight or less, more preferably 0.35% by weight or less, and still more preferably 0.2% by weight. It is below. The dust ratio can be calculated from the ratio of the weight of dust that passes through the sieve when a certain amount of pellets is placed in the sieve and vibrated for a certain period of time.
 ペレットの略円形底面(切断面)の直径および長さは特に制限されないが、直径は6~10mmが好ましく、長さは10~70mmが好ましい。直径が小さい場合は、ペレタイザーのダイス内部で詰まりやすくなる。ペレットの長さが短すぎると、ペレット製造中に強い破断力が生じて製品中の粉塵含有量が増えてしまう場合がある。ペレットの長さが長すぎると、製品嵩密度が小さくなり、輸送コスト・使用時のコストが増大してしまう。ペレットの略円形底面(切断面)の直径および長さはペレタイザーで調整することができる。 Although the diameter and length of the substantially circular bottom surface (cut surface) of the pellet are not particularly limited, the diameter is preferably 6 to 10 mm, and the length is preferably 10 to 70 mm. Smaller diameters tend to clog inside the die of the pelletizer. If the pellet length is too short, strong breaking forces may occur during pellet production, resulting in increased dust content in the product. If the length of the pellet is too long, the bulk density of the product will be low, resulting in increased transport costs and costs during use. The diameter and length of the substantially circular bottom surface (cut surface) of the pellet can be adjusted with a pelletizer.
 本発明のペレットのリグニン含有率は、好ましくは16重量%以上40重量%以下、より好ましくは17重量%以上40重量%以下、さらに好ましくは18重量%以上40重量%以下、さらにより好ましくは18重量%以上30重量%以下、より一層好ましくは18重量%以上25重量%以下である。原料バイオマスの糖化残渣、特に原料バイオマスのアルカリ前処理物の糖化残渣では、糖化反応によりセルロースおよびヘミセルロースといった他成分が分解され、相対的にリグニン含有率が増加する。リグニン含有率が16重量%以上であることでペレット表面にリグニンが十分存在し、成形性や表面平滑性が優れるようになると推察される。なお、本発明のペレットのリグニン含有率の上限は通常、40重量%程度である。 The lignin content of the pellets of the present invention is preferably 16% by weight or more and 40% by weight or less, more preferably 17% by weight or more and 40% by weight or less, still more preferably 18% by weight or more and 40% by weight or less, still more preferably 18% by weight or more. % by weight or more and 30% by weight or less, more preferably 18% by weight or more and 25% by weight or less. In the saccharification residue of the raw biomass, particularly in the saccharification residue of the alkali pretreated raw biomass, other components such as cellulose and hemicellulose are decomposed by the saccharification reaction, and the lignin content relatively increases. It is presumed that when the lignin content is 16% by weight or more, sufficient lignin is present on the surface of the pellets, resulting in excellent moldability and surface smoothness. The upper limit of the lignin content of the pellets of the present invention is usually about 40% by weight.
 本発明のペレットのリグニン含有率は、ペレット化する直前まで処理された原料バイオマス(好ましい具体例として、糖化残渣またはその粉砕物)の乾燥重量に対するリグニンの含有率(重量%)として、以下の式で求めることができる。
 リグニン含有率(%)=ペレット化する直前の原料バイオマス中のリグニン量(g)/ペレット化する直前まで処理された原料バイオマスの乾燥重量(g)×100。 ペレット化する直前まで処理された原料バイオマス中のリグニン量とは、酸不溶性リグニン含有量と酸可溶性リグニン含有量の和である。
 また、本発明の特に好ましい実施態様によれば、ペレット化する直前まで処理された原料バイオマスとは、原料バイオマスの前処理物(好ましくはアルカリ前処理物)を糖化酵素により加水分解することにより得られる糖化残渣または粉砕物である。
The lignin content of the pellets of the present invention is the lignin content (% by weight) relative to the dry weight of the raw material biomass (preferable specific example, saccharification residue or pulverized product thereof) processed immediately before pelletization, and is expressed by the following formula: can be found at
Lignin content (%) = lignin amount (g) in raw material biomass immediately before pelletization/dry weight (g) of raw material biomass processed until just before pelletization × 100. The amount of lignin in the raw material biomass processed until just before pelletization is the sum of the acid-insoluble lignin content and the acid-soluble lignin content.
According to a particularly preferred embodiment of the present invention, the raw biomass that has been treated immediately before pelletization is obtained by hydrolyzing a pretreated raw biomass (preferably pretreated with alkali) with a saccharifying enzyme. It is a saccharification residue or pulverized product.
 酸不溶性リグニンは、クラーソンリグニンとも呼ばれ、リグニン含有バイオマスに72%(w/w)硫酸を加えて多糖を膨潤、一部加水分解させ、水を加えて硫酸を希釈してオートクレーブ処理することで多糖を加水分解して酸可溶性としたときの不溶性画分から灰分を除いたものである。「Determination of Structural Carbohydrates and Lignin in Biomass」(A.Sluiter他7名著、National Renewable Energy Laboratory(NREL)、2008年4月(Revision 2012年8月))を参考として酸不溶性リグニン含有量を測定することができる。 Acid-insoluble lignin, also called Clason lignin, is obtained by adding 72% (w/w) sulfuric acid to lignin-containing biomass to swell and partially hydrolyze the polysaccharides, adding water to dilute the sulfuric acid, and autoclaving. is obtained by removing the ash from the insoluble fraction obtained by hydrolyzing the polysaccharide to make it acid-soluble. "Determination of Structural Carbohydrates and Lignin in Biomass" (A. Sluiter et al. 7 authors, National Renewable Energy Laboratory (NREL), April 2008 (Revision August 2012)) to measure the acid-insoluble lignin content can be done.
 酸可溶性リグニン含有量は、日本木材学会編(2000)「木質科学実験マニュアル」(日本木材学会編、2000年、文永堂出版)を参考として吸光度により酸可溶性リグニン含有量を測定することができる。
 本発明のペレットは、通常のバイオマスペレットよりも着火温度が低く燃えやすいという特徴を持ち合わせる場合があり、そのような特徴を有するものは燃料用途として好適に使用できる。燃料用途として好適なペレットの着火温度は、300℃以上350℃以下が好ましく、300℃以上340℃以下がより好ましく、310℃以上330℃以下が特に好ましい。着火温度は、熱重量測定(TG)を行った後、TG曲線の温度に関する一次微分として求まるDTG曲線を描き、その最も高いピークが示す温度である。
The acid-soluble lignin content can be measured by absorbance with reference to "Wood science experiment manual" (edited by the Japan Wood Research Society, 2000, Buneidou Publishing), edited by the Japan Wood Research Society (2000). .
The pellets of the present invention may have a characteristic that they have a lower ignition temperature and are more combustible than ordinary biomass pellets, and those having such characteristics can be suitably used as fuel. The ignition temperature of pellets suitable for fuel applications is preferably 300° C. or higher and 350° C. or lower, more preferably 300° C. or higher and 340° C. or lower, and particularly preferably 310° C. or higher and 330° C. or lower. The ignition temperature is the temperature indicated by the highest peak of the DTG curve obtained as the first derivative of the TG curve with respect to temperature after performing thermogravimetry (TG).
 以下、参考例、実施例および比較例に基づいて、本発明を具体的に説明する。但し、本発明はこれらに限定されるものではない。 The present invention will be specifically described below based on Reference Examples, Examples, and Comparative Examples. However, the present invention is not limited to these.
 [参考例1]原料バイオマス(バガス)の前処理
 カッターミル(奈良機械製作所、バリオニクスBRX-400)を使用してバガスを粉砕した。粉砕条件は、カッターミルの篩の目開きを70mmと設定し、回転速度600rpm、供給速度1000kg/hrで供給しながら粉砕を行った。得られた粉砕バガス(含水率:50%、乾燥重量:100g)に対して、水酸化ナトリウム10g、かつ固形分濃度が5重量%となるように水酸化ナトリウム水溶液及び水を加えて混合物を調製し、80℃にて3時間前処理した。ざるを用いて固液分離した後の固形分を糖化反応の原料(前処理バガス)とした。この操作を繰り返して、糖化反応の原料(前処理バガス)を得た。
[Reference Example 1] Pretreatment of raw material biomass (bagasse) Bagasse was pulverized using a cutter mill (Baryonyx BRX-400, Nara Machinery Co., Ltd.). The pulverization conditions were set to 70 mm for the opening of the sieve of the cutter mill, and pulverization was performed while feeding at a rotational speed of 600 rpm and a feed rate of 1000 kg/hr. To the obtained pulverized bagasse (water content: 50%, dry weight: 100 g), 10 g of sodium hydroxide and an aqueous sodium hydroxide solution and water are added so that the solid content concentration is 5% by weight to prepare a mixture. and pretreated at 80° C. for 3 hours. The solid content after solid-liquid separation using a sieve was used as the raw material (pretreated bagasse) for the saccharification reaction. This operation was repeated to obtain a raw material (pretreated bagasse) for the saccharification reaction.
 [参考例2]キシロオリゴ糖製造用酵素組成物の調製
 [前培養]
 蒸留水を用いて、コーンスティープリカー5%(w/vol)、グルコース2%(w/vol)、酒石酸アンモニウム0.37%(w/vol)、硫酸アンモニウム0.14%(w/vol)、リン酸二水素カリウム0.2%(w/vol)、塩化カルシウム二水和物0.03%(w/vol)、硫酸マグネシウム七水和物0.03%(w/vol)、塩化亜鉛0.02%(w/vol)、塩化鉄(III)六水和物0.01%(w/vol)、硫酸銅(II)五水和物0.004%(w/vol)、塩化マンガン四水和物0.0008%(w/vol)、ホウ酸0.0006%(w/vol)および七モリブデン酸六アンモニウム四水和物0.0026%(w/vol)を含む水溶液を調製した。調製した水溶液100mLを500mLバッフル付き三角フラスコにはりこみ、121℃で15分間オートクレーブ滅菌した。放冷後、これとは別にそれぞれ121℃で15分間オートクレーブ滅菌したPE-MおよびTween80をそれぞれ0.01%(w/vol)添加し、前培養培地とした。この前培養培地100mLにトリコデルマ・リーセイATCC66589(ATCCより分譲)を1×10個/mLになるように植菌し、28℃、72時間、180rpmで振とう培養し、前培養とした(振とう装置:TAITEC社製、BIO-SHAKER BR-40LF)。
[Reference Example 2] Preparation of enzyme composition for producing xylooligosaccharide [Pre-culture]
Corn steep liquor 5% (w/vol), glucose 2% (w/vol), ammonium tartrate 0.37% (w/vol), ammonium sulfate 0.14% (w/vol), phosphorus 0.2% (w/vol) potassium dihydrogenate, 0.03% (w/vol) calcium chloride dihydrate, 0.03% (w/vol) magnesium sulfate heptahydrate, 0.03% (w/vol) zinc chloride. 02% (w/vol), iron (III) chloride hexahydrate 0.01% (w/vol), copper (II) sulfate pentahydrate 0.004% (w/vol), manganese chloride tetrahydrate An aqueous solution was prepared containing 0.0008% (w/vol) of hydrate, 0.0006% (w/vol) of boric acid and 0.0026% (w/vol) of hexaammonium heptamolybdate tetrahydrate. 100 mL of the prepared aqueous solution was placed in a 500 mL baffled Erlenmeyer flask and autoclave sterilized at 121° C. for 15 minutes. After cooling, 0.01% (w/vol) of PE-M and Tween 80, which had been autoclaved at 121°C for 15 minutes, were separately added to prepare a pre-culture medium. In 100 mL of this pre-culture medium, Trichoderma reesei ATCC66589 (distributed by ATCC) was inoculated to 1×10 5 cells/mL, and cultured with shaking at 180 rpm at 28° C. for 72 hours to obtain pre-culture (shake culture). Apparatus: BIO-SHAKER BR-40LF manufactured by TAITEC).
 [本培養]
 蒸留水を用いて、コーンスティープリカー5%(w/vol)、グルコース2%(w/vol)、セルロース(アビセル)10%(w/vol)、酒石酸アンモニウム0.37%(w/vol)、硫酸アンモニウム0.14%(w/vol)、リン酸二水素カリウム0.2%(w/vol)、塩化カルシウム二水和物0.03%(w/vol)、硫酸マグネシウム七水和物0.03%(w/vol)、塩化亜鉛0.02%(w/vol)、塩化鉄(III)六水和物0.01%(w/vol)、硫酸銅(II)五水和物0.004%(w/vol)、塩化マンガン四水和物0.0008%(w/vol)、ホウ酸0.0006%(w/vol)および七モリブデン酸六アンモニウム四水和物0.0026%(w/vol)を含む水溶液を調製した。調製した水溶液2.5Lを5L容撹拌ジャーDPC-2A(ABLE社製)の容器にはりこみ、121℃、15分間オートクレーブ滅菌した。放冷後、これとは別にそれぞれ121℃、15分間オートクレーブ滅菌したPE-MおよびTween80をそれぞれ0.1%(w/vol)添加し、本培養培地とした。この本培養培地2.5Lにあらかじめ前記の前培養培地で前培養したトリコデルマ・リーセイATCC66589を250mL接種した。その後、28℃、87時間、300rpm、通気量1vvmにて培養を行い、遠心分離後、上清をステリカップ-GV(メルクミリポア社製)を用いて膜濾過した。この培養液に対し、β-グルコシダーゼ(Novozymes188)をタンパク重量比として、1/100量添加し、酵素組成物を得た。
[Main culture]
Corn steep liquor 5% (w/vol), glucose 2% (w/vol), cellulose (Avicel) 10% (w/vol), ammonium tartrate 0.37% (w/vol), with distilled water. 0.14% (w/vol) ammonium sulfate, 0.2% (w/vol) potassium dihydrogen phosphate, 0.03% (w/vol) calcium chloride dihydrate, 0.03% (w/vol) magnesium sulfate heptahydrate. 0.02% (w/vol) zinc chloride, 0.01% (w/vol) iron (III) chloride hexahydrate, 0.01% (w/vol) copper (II) sulfate pentahydrate. 004% (w/vol), 0.0008% (w/vol) manganese chloride tetrahydrate, 0.0006% (w/vol) boric acid and 0.0026% (w/vol) hexaammonium heptamolybdate tetrahydrate ( w/vol) was prepared. 2.5 L of the prepared aqueous solution was placed in a 5 L stirring jar DPC-2A (manufactured by ABLE) and autoclaved at 121° C. for 15 minutes. After cooling, 0.1% (w/vol) of PE-M and Tween 80, which had been autoclaved at 121° C. for 15 minutes, were separately added to prepare the main culture medium. Into 2.5 L of this main culture medium was inoculated 250 mL of Trichoderma reesei ATCC66589 pre-cultured in the pre-culture medium. Thereafter, the cells were cultured at 28° C. for 87 hours at 300 rpm and an aeration rate of 1 vvm. After centrifugation, the supernatant was subjected to membrane filtration using Stericup-GV (manufactured by Merck Millipore). To this culture solution, β-glucosidase (Novozymes 188) was added at a protein weight ratio of 1/100 to obtain an enzyme composition.
 [キシロオリゴ糖製造用酵素組成物の調製]
 前記酵素組成物のpHを水酸化ナトリウム水溶液により7.5に調整し、水でタンパク濃度4g/Lまで希釈した後、40℃で2時間保温した。
[Preparation of enzyme composition for producing xylooligosaccharide]
The pH of the enzyme composition was adjusted to 7.5 with an aqueous sodium hydroxide solution, diluted with water to a protein concentration of 4 g/L, and then kept at 40° C. for 2 hours.
 [参考例3]キシラン分解活性の測定
 50mM酢酸ナトリウム緩衝液(pH5.0)に、1重量%になるようにキシラン(Xylam from Birch wood、Fluca社製)を懸濁したものを基質溶液とした。分注した500μLの基質溶液に、得られた酵素組成物の液5μLを添加し、50℃で回転混和しながら反応させた。反応時間は30分間とした。反応後、チューブを遠心分離し、その上清成分の還元糖濃度をDNS法により測定した。この反応系において、1分間に1μmolの還元糖を生成する酵素量を1Uと定義し、活性値(U/mL)を下記式に従って算出した。
キシラン分解活性(U/mL)=還元糖濃度(g/L)×1000×505(μL)/(150.13×反応時間(分)×5(μL))。
[Reference Example 3] Measurement of xylan degradation activity A substrate solution was prepared by suspending xylan (Xylam from Birch wood, manufactured by Fluca) in 50 mM sodium acetate buffer (pH 5.0) to a concentration of 1% by weight. . To 500 μL of the dispensed substrate solution, 5 μL of the resulting enzyme composition solution was added and reacted at 50° C. while rotating and mixing. The reaction time was 30 minutes. After the reaction, the tube was centrifuged, and the reducing sugar concentration of the supernatant was measured by the DNS method. In this reaction system, the amount of enzyme that produces 1 μmol of reducing sugar per minute was defined as 1 U, and the activity value (U/mL) was calculated according to the following formula.
Xylan degradation activity (U/mL) = reducing sugar concentration (g/L) x 1000 x 505 (µL)/(150.13 x reaction time (min) x 5 (µL)).
 [参考例4]キシロオリゴ糖分析
 キシロオリゴ糖、グルコースおよびキシロースは、日立高速液体クロマトグラフLaChrom Eite(HITACHI)を用いて、以下の条件で定量分析した。
 キシロオリゴ糖、グルコースおよびキシロースは、キシロオリゴ糖(キシロビオース、キシロトリオース、キシロテトラオース、キシロペンタオースおよびキシロヘキサオース)、グルコースおよびキシロースの標品で作成した検量線をもとに定量分析した。なお、本参考例で記すキシロオリゴ糖とは、キシロースがβ-グリコシド結合により2~6個結合したオリゴ糖を指す。
カラム:KS802、KS803(SHODEX)
移動相:水
検出方法:RI
流速:0.5mL/min
温度:75℃。
[Reference Example 4] Xylooligosaccharide analysis Xylooligosaccharides, glucose and xylose were quantitatively analyzed under the following conditions using a Hitachi high-performance liquid chromatograph LaChrom Eite (HITACHI).
Xylooligosaccharides, glucose and xylose were quantitatively analyzed based on a calibration curve prepared from standards of xylooligosaccharides (xylobiose, xylotriose, xylotetraose, xylopentaose and xylohexose), glucose and xylose. The xylo-oligosaccharide described in this reference example refers to an oligosaccharide in which 2 to 6 xyloses are linked via β-glycosidic bonds.
Column: KS802, KS803 (SHODEX)
Mobile phase: Water Detection method: RI
Flow rate: 0.5mL/min
Temperature: 75°C.
 [参考例5]キシロオリゴ糖製造時のバガス糖化残渣の調製
 参考例1で調製した前処理バガスを固形分濃度5%になるように水を加え、さらに塩酸を加えてpH7.0に調整した。このスラリー液200Lに参考例2で調製したキシロオリゴ糖製造用酵素組成物をキシラン分解活性が固形分1gあたり250Uとなるように添加し、40℃で8時間撹拌しながら加温した。得られた固形分に対してスクリュープレス(フコク工業製)を用いて固液分離を行い、固形分としてバガス糖化残渣を回収した。液分はさらに8000G、20分遠心分離を行って上清を回収した後、ザルトポア2(ザウトリウスジャパン株式会社製)を用いて、精密濾過を行った。精密濾過後の液に含まれるキシロオリゴ糖、グルコースおよびキシロースは参考例4の方法で定量した。精密濾過後の液に含まれる成分の濃度を表1に示す。
[Reference Example 5] Preparation of Bagasse Saccharification Residue in Production of Xylooligosaccharide Water was added to the pretreated bagasse prepared in Reference Example 1 so that the solid content concentration was 5%, and hydrochloric acid was further added to adjust the pH to 7.0. To 200 L of this slurry liquid, the enzyme composition for producing xylo-oligosaccharides prepared in Reference Example 2 was added so that the xylan-degrading activity was 250 U per 1 g of solid content, and the mixture was heated at 40° C. for 8 hours with stirring. The obtained solid content was subjected to solid-liquid separation using a screw press (manufactured by Fukoku Industry Co., Ltd.), and the bagasse saccharification residue was recovered as the solid content. The liquid was further centrifuged at 8000 G for 20 minutes to recover the supernatant, which was then subjected to microfiltration using Sartopore 2 (manufactured by Sautorius Japan Co., Ltd.). Xylooligosaccharides, glucose and xylose contained in the liquid after microfiltration were quantified by the method of Reference Example 4. Table 1 shows the concentrations of the components contained in the liquid after microfiltration.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [平均表面粗さの測定]
 ペレットの表面粗さは、原子間力顕微鏡(JPK社製Nanowizard3)を用いて計測した。原子間力顕微鏡の操作モードとして“APPNANO ACST”タイプの針(針径:10nm以下)を振動数150kHz、k値7.8N/m、スキャンスピード0.8Hz、計測エリア10μmに設定した。ペレットの側面部について無作為に選んだ1箇所の計測エリアを256×256分割して各ポイントの変位を測定し、そこから算術平均粗さを算出した。一つのペレットからさらに、無作為に2箇所選び、それらの算術平均粗さを算出し、計3箇所の算術平均粗さを平均して平均表面粗さを算定した。
[Measurement of average surface roughness]
The surface roughness of the pellet was measured using an atomic force microscope (Nanowizard 3 manufactured by JPK). As the operation mode of the atomic force microscope, an "APPNANO ACST" type needle (needle diameter: 10 nm or less) was set at a frequency of 150 kHz, a k value of 7.8 N/m, a scan speed of 0.8 Hz, and a measurement area of 10 μm 2 . One randomly selected measurement area on the side surface of the pellet was divided into 256×256 areas, the displacement of each point was measured, and the arithmetic mean roughness was calculated therefrom. Further, two locations were selected at random from one pellet, their arithmetic average roughness was calculated, and the arithmetic average roughness of a total of three locations was averaged to calculate the average surface roughness.
 [粉塵率の測定]
 粉塵率はロータップを使用して測定した。ロータップふるい振盪機(タナカテック社製、R-1)を使用し、東京スクリーン製のステンレス篩#16(JIS規格、目開き1000μm)を設置し、ペレタイザーから一定時間排出されたペレットから1.0kgを篩機に30rpm、15tpmの条件で10分間かけて、#16を通過した粉塵の重量を測定した。測定した重量を母数の1.0kgで割った値を計5回測定し、その平均値を粉塵率とした。
[Measurement of dust rate]
Dust rate was measured using a low tap. Using a low-tap sieve shaker (R-1, manufactured by Tanaka Tech Co., Ltd.), Tokyo Screen's stainless steel sieve #16 (JIS standard, opening 1000 μm) is installed, and 1.0 kg of pellets discharged from the pelletizer for a certain period of time was passed through a sieving machine at 30 rpm and 15 tpm for 10 minutes, and the weight of the dust that passed through #16 was measured. The value obtained by dividing the measured weight by the parameter of 1.0 kg was measured five times in total, and the average value was taken as the dust rate.
 [実施例1]バガス糖化残渣の調製、乾燥、ペレット化
 参考例5で回収した糖化残渣を、粉砕度が10mm以下になるようにカッターミル(奈良機械製作所製バリオニクス)で粉砕した。その後、天日干しにて3時間に一度かき混ぜながら、含水率が10%以上30%未満(平均含水率20%)となるように調整した。粉砕後に乾燥したのは、乾燥後に粉砕した場合、カッターミルにて粉塵発生が急激に増加して、作業場所エリアの粉塵爆発リスクが高くなったためである。なお、天日干し後は、手で攪拌しつつ含水率を測定し、乾燥しすぎていた場合は加水して含水率を調整した。含水率調整後のバガス糖化残渣をペレタイザー(Triumph製“Pellet mill”)に投入してペレットを製造し、得られたペレットの平均表面粗さと粉塵率を測定した(表2)。また、ペレット側面部の平均表面粗さを測定した際の原子間力顕微鏡の観察結果を図1に示す。
[Example 1] Preparation, drying and pelletization of bagasse saccharification residue The saccharification residue collected in Reference Example 5 was pulverized with a cutter mill (Baryonics, manufactured by Nara Machinery Co., Ltd.) so that the pulverization degree was 10 mm or less. After that, it was dried in the sun and stirred once every 3 hours, and adjusted so that the moisture content was 10% or more and less than 30% (average moisture content: 20%). The reason for drying after pulverization is that if pulverization is performed after drying, the generation of dust in the cutter mill increases sharply, increasing the risk of dust explosion in the work area. After the drying in the sun, the moisture content was measured while stirring by hand, and if it was too dry, water was added to adjust the moisture content. The bagasse saccharification residue after adjusting the moisture content was charged into a pelletizer (“Pellet mill” manufactured by Triumph) to produce pellets, and the average surface roughness and dust rate of the obtained pellets were measured (Table 2). FIG. 1 shows the result of atomic force microscope observation when the average surface roughness of the pellet side surface was measured.
 [比較例1]バガス糖化残渣の調製、乾燥、ペレット化
 参考例5で回収した糖化残渣を実施例1と同様に粉砕度が10mm以下になるように粉砕した。その後、実施例1よりも長時間の天日干しにより、含水率が10%未満になるように調整した。含水率調整後のバガス糖化残渣を実施例1と同様のペレタイザーに投入し、ペレットの製造を試みたが、ペレタイザーのダイス部にて詰まりが発生し、ペレットを製造することができなかった(表2)。
[Comparative Example 1] Preparation, drying and pelletization of bagasse saccharification residue The saccharification residue collected in Reference Example 5 was pulverized in the same manner as in Example 1 so that the pulverization degree was 10 mm or less. After that, it was dried in the sun for a longer period of time than in Example 1 to adjust the moisture content to less than 10%. An attempt was made to produce pellets by putting the bagasse saccharification residue after adjusting the moisture content into the same pelletizer as in Example 1, but clogging occurred in the die part of the pelletizer, and pellets could not be produced (Table 2).
 [比較例2]バガス糖化残渣の調製、乾燥、ペレット化
 参考例5で回収した糖化残渣を実施例1と同様に粉砕度が10mm以下になるように粉砕した。その後、短時間の天日干しの後、含水率計で蒸発しすぎた場合は加水も行い、含水率が30%以上(平均含水率40%)になるように調整した。含水率調整後のバガス糖化残渣をペレタイザーに投入し、ペレット製造を試みたところ、開始直後はペレットを製造することができたが、速やかにペレタイザー投入口に詰まりが発生し、ペレットを製造することができなくなった。得られたペレット平均表面粗さと粉塵率を測定した(表2)。
[Comparative Example 2] Preparation, drying and pelletization of bagasse saccharification residue The saccharification residue collected in Reference Example 5 was pulverized in the same manner as in Example 1 so that the pulverization degree was 10 mm or less. After that, after drying in the sun for a short period of time, water was added to adjust the moisture content to 30% or more (average moisture content of 40%) when the moisture content was too much to evaporate. When the bagasse saccharified residue after moisture content adjustment was put into the pelletizer and pellet production was attempted, pellets could be produced immediately after the start, but the pelletizer inlet quickly became clogged and pellet production was not possible. is no longer possible. The obtained pellet average surface roughness and dust rate were measured (Table 2).
 [比較例3]バガスの調製、乾燥、ペレット化
 参考例1で使用したバガスを実施例1のカッターミルに付随するカッターミル後のメッシュ径を小さくして粉砕度が1mm以下になるように粉砕した。これは、事前テストにおいて、粉砕度10mm以下に粉砕したバガスはペレタイザーの投入部、ダイスの手前など様々な装置にて詰まりを発生させたからである。バガスそのものの繊維は固く、実施例1、比較例1および2と同じ粉砕度で、実施例1と同じ機器および条件でペレット化を行うことは困難であった。1mm以下に粉砕後、乾燥機にて、含水率が10%未満になるように調整した。含水率調整後のバガスをペレタイザーに投入し、ペレットの製造を試みたところ、ペレットは得られたが全てのバガスをペレット化することはできず、製造途中でダイス中にバガスが詰まった。得られたペレットの平均表面粗さと粉塵率を測定した(表2)。
[Comparative Example 3] Preparation, drying, and pelletization of bagasse The bagasse used in Reference Example 1 was pulverized so that the mesh diameter after the cutter mill attached to the cutter mill of Example 1 was reduced to a pulverization degree of 1 mm or less. did. This is because, in preliminary tests, bagasse pulverized to a pulverization degree of 10 mm or less caused clogging in various devices such as the inlet of the pelletizer and before the die. The fibers of the bagasse itself were hard, and it was difficult to pelletize with the same grinding degree as in Example 1, Comparative Examples 1 and 2, and with the same equipment and conditions as in Example 1. After pulverizing to 1 mm or less, it was adjusted with a dryer so that the water content was less than 10%. When the bagasse after moisture content adjustment was put into a pelletizer and an attempt was made to produce pellets, pellets were obtained, but not all of the bagasse could be pelletized, and the die clogged with bagasse during production. The average surface roughness and dust rate of the obtained pellets were measured (Table 2).
 [比較例4]バガスの調製、乾燥、ペレット化
 参考例1で使用したバガスを粉砕度が1mm以下になるように比較例3と同様の方法で粉砕した。その後、天日干しおよび水を加えて、手での攪拌にて、含水率が10%以上30%未満(平均含水率20%)になるように調整した。含水率を調整したバガスを比較例3と同様にペレタイザーに投入し、ペレット製造を実施したところ、比較例3と異なり、準備した全てのバガスがペレット化できた。得られたペレットの平均表面粗さと粉塵率を測定した(表2)。また、当該ペレット側面の平均表面粗さを測定した際の原子間力顕微鏡の観察したところ、図2の通り、バガスの粒と思われる成分がそのままペレット表面に形状を保持して存在していた。
[Comparative Example 4] Preparation, drying and pelletization of bagasse The bagasse used in Reference Example 1 was pulverized in the same manner as in Comparative Example 3 so that the degree of pulverization was 1 mm or less. After that, the mixture was dried in the sun and water was added, and the mixture was stirred by hand to adjust the moisture content to 10% or more and less than 30% (average moisture content: 20%). Bagasse with adjusted moisture content was charged into a pelletizer in the same manner as in Comparative Example 3 to produce pellets. The average surface roughness and dust rate of the obtained pellets were measured (Table 2). In addition, when the average surface roughness of the side surface of the pellet was measured, observation with an atomic force microscope revealed that, as shown in FIG. .
 [比較例5]
 参考例1で使用したバガスを実施例1のカッターミルに付随するカッターミル後のメッシュ径を比較例3および4よりも大きくして粉砕度が2mm以下になるように粉砕した。その後、乾燥機にて、含水率が10%未満になるように調整した。含水率調整後のバガスを実施例1や比較例3と同様のペレタイザーに投入し、ペレット製造を試みたが、ペレタイザー投入部にすぐに詰まりが発生してしまい、ペレットを製造することができなかった(表2)。
[Comparative Example 5]
The bagasse used in Reference Example 1 was pulverized so that the mesh diameter after the cutter mill attached to the cutter mill of Example 1 was larger than those of Comparative Examples 3 and 4, and the degree of pulverization was 2 mm or less. Then, it was adjusted with a dryer so that the water content was less than 10%. Bagasse after moisture content adjustment was put into the same pelletizer as in Example 1 and Comparative Example 3 to try to produce pellets, but the pelletizer inlet was immediately clogged, and pellets could not be produced. (Table 2).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [実施例2]リグニンの測定
 実施例1で製造した糖化残渣のペレットを粉砕し、適量を水浴上で蒸発乾固させた後、105℃で乾燥後の重量減(但し、恒量になるまで乾燥)から水分率(重量%)を算定した。次に、乾燥試料適量(0.2899g)をビーカーにとり、72%硫酸3mLを加え、30℃でときどき攪拌しながら1時間静置した。これを純水84mLと混釈しながら耐圧瓶に完全に移した。これを120℃で1時間オートクレーブにより加熱分解した。加熱分解した後、分解液と残渣を濾別した。残渣を105℃で乾燥し重量を測ると0.0760gであった。さらに、乾燥試料を600℃に強熱し、その灰分率を測定すると分解残渣中の35.1%であった。したがって、乾燥試料中の酸不溶性リグニン含有量は17.0%と算定した。オートクレーブ後、分解液と残渣を濾別して得られた濾液に、残渣の洗液を加えて100mLに定容したものを、吸光度計にて210nmの波長で測定した。酸可溶性リグニンの吸光係数(110L/g/cm)を用いて算出した結果、乾燥試料中の酸可溶性リグニン含有量は1.12%であった。以上より、ペレット中のリグニン含有率は18.1%と算定した。
[Example 2] Measurement of lignin Pulverize the saccharified residue pellets produced in Example 1, evaporate an appropriate amount to dryness on a water bath, and then dry at 105 ° C. Weight loss after drying (however, drying until constant weight ), the moisture content (% by weight) was calculated. Next, an appropriate amount (0.2899 g) of the dried sample was placed in a beaker, 3 mL of 72% sulfuric acid was added, and the mixture was allowed to stand at 30° C. for 1 hour with occasional stirring. This was completely transferred to a pressure bottle while being mixed with 84 mL of pure water. This was thermally decomposed in an autoclave at 120° C. for 1 hour. After thermal decomposition, the decomposition liquid and residue were separated by filtration. The residue was dried at 105°C and weighed 0.0760 g. Furthermore, when the dry sample was ignited at 600° C. and the ash content was measured, it was 35.1% in the decomposition residue. Therefore, the acid-insoluble lignin content in the dry sample was calculated as 17.0%. After the autoclave, the filtrate obtained by filtering the decomposition liquid and the residue was adjusted to 100 mL by adding the washing liquid of the residue, and the volume was measured with an absorbance meter at a wavelength of 210 nm. The acid-soluble lignin content in the dried sample was 1.12%, calculated using the absorption coefficient of acid-soluble lignin (110 L/g/cm). From the above, the lignin content in the pellet was calculated to be 18.1%.
 [参考例6]リグニンの測定
 比較例3で製造したバガスのペレットを実施例2と同様の方法でリグニンの測定を実施した。その結果、ペレット中のリグニン含有率は22.3%と算定した。
[Reference Example 6] Measurement of lignin The bagasse pellets produced in Comparative Example 3 were measured for lignin in the same manner as in Example 2. As a result, the lignin content in the pellet was calculated to be 22.3%.
 [参考例7]キシロース製造時のバガス糖化残渣の調製
 参考例1で得られた前処理バガスを固形分濃度5重量%になるように水を加え、さらに塩酸を加えてpH5.0に調整した。このスラリー液200Lに、ダニスコ・ジャパン社製糖化酵素“アクセルレース・デュエット”を200mL入れて、温度48℃に保って攪拌しながら8時間保持した。その後、本200Lを遠心分離した後、その固形分をさらにスクリュープレスで絞った。本絞った固形分は、含水率が50~55%であった。遠心分離で得られた液成分を“ザルトポア2”(ザウトリウスジャパン株式会社製)を用いて精密濾過を行った。精密濾過後の液に含まれるキシロオリゴ糖、グルコースおよびキシロースは参考例4の方法で定量した。精密濾過後の液に含まれる成分の濃度を表3に示す。
[Reference Example 7] Preparation of bagasse saccharification residue during xylose production Water was added to the pretreated bagasse obtained in Reference Example 1 so that the solid content concentration was 5% by weight, and hydrochloric acid was added to adjust the pH to 5.0. . To 200 L of this slurry liquid, 200 mL of saccharifying enzyme "Accelerase Duet" manufactured by Danisco Japan was added, and the mixture was kept at 48° C. for 8 hours with stirring. The 200L book was then centrifuged and the solid content was further squeezed with a screw press. The solid content after final squeezing had a moisture content of 50 to 55%. The liquid component obtained by centrifugation was subjected to microfiltration using "Sartopore 2" (manufactured by Sautorius Japan Co., Ltd.). Xylooligosaccharides, glucose and xylose contained in the liquid after microfiltration were quantified by the method of Reference Example 4. Table 3 shows the concentrations of components contained in the liquid after microfiltration.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 [実施例3]バガス糖化残渣2の調製、乾燥、ペレット化
 参考例7で回収した糖化残渣を、実施例1と同様の方法でカッターミルにより粉砕度が10mm以下になるように粉砕した。その後、天日干しにて、含水率が10%以上30%未満(平均含水率20%)となるように調整した。含水率を調整したバガス糖化残渣を実施例1と同様にペレタイザーに投入し、ペレット製造を開始し、得られたペレットの平均表面粗さと粉塵率を測定した(表4)。
[Example 3] Preparation, drying and pelletization of bagasse saccharification residue 2 The saccharification residue collected in Reference Example 7 was pulverized in the same manner as in Example 1 with a cutter mill so that the pulverization degree was 10 mm or less. After that, it was dried in the sun and adjusted to have a moisture content of 10% or more and less than 30% (average moisture content of 20%). Bagasse saccharified residue with adjusted moisture content was put into a pelletizer in the same manner as in Example 1, pellet production was started, and the average surface roughness and dust rate of the obtained pellets were measured (Table 4).
 [比較例6]バガス糖化残渣2の調製、乾燥、ペレット化
 参考例7で回収した糖化残渣を粉砕度が実施例1と同様の方法で10mm以下になるように粉砕した。その後、天日干しにて、含水率が10%未満になるように乾燥した。得られたバガス糖化残渣をペレタイザーに投入し、ペレットの製造を試みたところ、ペレタイザーのダイス部にて詰まりが発生し、ペレットを製造することができなかった(表4)。
[Comparative Example 6] Preparation, drying and pelletization of bagasse saccharification residue 2 The saccharification residue collected in Reference Example 7 was pulverized in the same manner as in Example 1 so that the degree of pulverization was 10 mm or less. After that, it was dried in the sun so that the water content was less than 10%. When the obtained bagasse saccharification residue was put into a pelletizer and an attempt was made to produce pellets, clogging occurred in the die part of the pelletizer, and pellets could not be produced (Table 4).
 [比較例7]バガス糖化残渣2の調製、乾燥、ペレット化
 参考例7で回収した糖化残渣を、実施例1と同様の方法でカッターミルにより粉砕度が10mm以下になるように粉砕した。その後、天日干しにて、含水率が30%以上になるように、短時間の乾燥と乾燥しすぎた場合は水を加え、手で攪拌して含水率を確認しながら平均含水率40%となるよう調整した。含水率を調整したバガス糖化残渣をペレタイザーに投入し、ペレット製造を開始した。その結果、開始直後はペレットを製造することができたが、速やかにペレタイザー投入口に詰まりが発生し、ペレットを製造することができなくなった。得られたペレットの平均表面粗さと粉塵率を測定した(表4)。
[Comparative Example 7] Preparation, drying and pelletization of bagasse saccharification residue 2 The saccharification residue collected in Reference Example 7 was pulverized in the same manner as in Example 1 with a cutter mill so that the pulverization degree was 10 mm or less. After that, dry it in the sun so that the moisture content becomes 30% or more, and if it is too dry, add water and stir it by hand to check the moisture content, so that the average moisture content is 40%. adjusted to be Bagasse saccharified residue with adjusted moisture content was put into a pelletizer and pellet production was started. As a result, although pellets could be produced immediately after the start, clogging occurred in the inlet of the pelletizer quickly, making it impossible to produce pellets. The average surface roughness and dust rate of the obtained pellets were measured (Table 4).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 [比較例8]バガスの着火温度測定
 分析装置として、示差熱熱重量同時測定装置を用いた。測定は空気40ml/分の雰囲下で、室温から800℃まで、30℃/分の昇温走査にて行った。試料重量は4.15gであった。TG分析後、DTG曲線を求めた結果、着火温度は363℃であった。
[Comparative Example 8] Ignition temperature measurement of bagasse As an analyzer, a simultaneous differential thermogravimetric analyzer was used. The measurement was performed in an atmosphere of 40 ml/min of air, from room temperature to 800° C., with a temperature increase scan of 30° C./min. The sample weight was 4.15 g. After the TG analysis, the ignition temperature was 363°C as a result of obtaining the DTG curve.
 [実施例4]バガス糖化残渣から製造したペレットの着火温度測定
 実施例1で製造したペレットの着火温度を比較例8と同様の方法にて測定した。試料重量は15.5gであった。その結果、着火温度は322℃であった。
[Example 4] Ignition temperature measurement of pellets produced from bagasse saccharification residue The ignition temperature of the pellets produced in Example 1 was measured in the same manner as in Comparative Example 8. The sample weight was 15.5 g. As a result, the ignition temperature was 322°C.

Claims (13)

  1.  リグノセルロース系バイオマスを原料とし、ペレット側面部の平均表面粗さが50nm以上250nm以下である、ペレット。 A pellet made from lignocellulosic biomass and having an average surface roughness of 50 nm or more and 250 nm or less on the side surface of the pellet.
  2.  燃料用途である、請求項1に記載のペレット。 The pellet according to claim 1, which is used for fuel.
  3.  前記リグノセルロース系バイオマスがバガスである、請求項1または2に記載のペレット。 The pellets according to claim 1 or 2, wherein the lignocellulosic biomass is bagasse.
  4.  前記原料がリグノセルロース系バイオマスの糖化残渣である、請求項1~3のいずれか一項に記載のペレット。 The pellet according to any one of claims 1 to 3, wherein the raw material is a saccharification residue of lignocellulosic biomass.
  5.  前記リグノセルロース系バイオマスの糖化残渣が、リグノセルロース系バイオマスのアルカリ前処理物の糖化残渣である、請求項4に記載のペレット。 The pellets according to claim 4, wherein the saccharification residue of lignocellulosic biomass is a saccharification residue of alkali pretreated lignocellulosic biomass.
  6.  リグニン含有率が16重量%以上40重量%以下である、請求項1~5のいずれか一項に記載のペレット。 The pellet according to any one of claims 1 to 5, wherein the lignin content is 16% by weight or more and 40% by weight or less.
  7.  粉塵率が0.5重量%以下である、請求項1~6のいずれか一項に記載のペレット。 The pellet according to any one of claims 1 to 6, which has a dust rate of 0.5% by weight or less.
  8.  請求項1~7のいずれか一項に記載のペレットを製造する方法であって、
     リグノセルロース系バイオマスをアルカリ前処理して得られるリグノセルロース系バイオマスのアルカリ前処理物を糖化酵素で加水分解する工程(1)、
     工程(1)で得られたリグノセルロース系バイオマスの加水分解物を固液分離して固形分としてリグノセルロース系バイオマスの糖化残渣を得る工程(2)、
     工程(2)で得られたリグノセルロース系バイオマスの糖化残渣を粉砕する工程(3)、および
     工程(3)で得られたリグノセルロース系バイオマスの糖化残渣を圧縮成型してペレット化する工程(4)を含む、方法。
    A method for producing the pellets according to any one of claims 1 to 7,
    Step (1) of hydrolyzing an alkali-pretreated lignocellulosic biomass obtained by alkali pretreatment of lignocellulosic biomass with a saccharifying enzyme;
    Step (2) of solid-liquid separation of the hydrolyzate of lignocellulosic biomass obtained in step (1) to obtain a saccharification residue of lignocellulosic biomass as a solid content;
    Step (3) of pulverizing the saccharified residue of lignocellulosic biomass obtained in step (2), and Step (4) of compressing and pelletizing the saccharified residue of lignocellulosic biomass obtained in step (3). ), methods.
  9.  前記工程(1)において、アルカリ前処理の温度が80~100℃である、請求項8に記載の方法。 The method according to claim 8, wherein in the step (1), the temperature of the alkali pretreatment is 80 to 100°C.
  10.  前記工程(1)において、アルカリ前処理が常圧下でのアルカリ前処理である、請求項8または9に記載の方法。 The method according to claim 8 or 9, wherein in the step (1), the alkali pretreatment is an alkali pretreatment under normal pressure.
  11.  前記工程(3)において、工程(2)で得られたリグノセルロース系バイオマスの糖化残渣を直径10mm以下に粉砕する、請求項8~10のいずれか一項に記載の方法。 The method according to any one of claims 8 to 10, wherein in the step (3), the saccharification residue of the lignocellulosic biomass obtained in the step (2) is pulverized to a diameter of 10 mm or less.
  12.  前記工程(4)において、圧縮成型に供するリグノセルロース系バイオマスの糖化残渣の含水率が10%以上30%未満である、請求項8~11のいずれか一項に記載の方法。 The method according to any one of claims 8 to 11, wherein in the step (4), the moisture content of the saccharification residue of the lignocellulosic biomass subjected to compression molding is 10% or more and less than 30%.
  13.  前記リグノセルロース系バイオマスがバガスである、請求項8~12のいずれか一項に記載の方法。 The method according to any one of claims 8 to 12, wherein the lignocellulosic biomass is bagasse.
PCT/JP2022/015053 2021-03-29 2022-03-28 Pellets and method for producing pellets WO2022210558A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023511274A JPWO2022210558A1 (en) 2021-03-29 2022-03-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-056162 2021-03-29
JP2021056162 2021-03-29

Publications (1)

Publication Number Publication Date
WO2022210558A1 true WO2022210558A1 (en) 2022-10-06

Family

ID=83456358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015053 WO2022210558A1 (en) 2021-03-29 2022-03-28 Pellets and method for producing pellets

Country Status (2)

Country Link
JP (1) JPWO2022210558A1 (en)
WO (1) WO2022210558A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102517510B1 (en) * 2022-10-27 2023-04-04 한국세라믹기술원 Fuel making method including silica component extracted from biomass that can prevent internal corrosion, agglomeration and slagging of boiler

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52101202A (en) * 1976-01-05 1977-08-25 Gunnerman Rudolf W Fuel pellets and method of producing same
JPS59102989A (en) * 1982-12-03 1984-06-14 Japan Steel Works Ltd:The Manufacture of fuel pellet
JPS60170696A (en) * 1984-02-15 1985-09-04 アイアン フレイザ− ジヨンストン Fuel pellet and manufacture
JP2014132052A (en) * 2013-01-07 2014-07-17 Oji Holdings Corp Fuel composition
JP2021178886A (en) * 2020-05-11 2021-11-18 出光興産株式会社 Production method of biomass solid fuel and biomass solid fuel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52101202A (en) * 1976-01-05 1977-08-25 Gunnerman Rudolf W Fuel pellets and method of producing same
JPS59102989A (en) * 1982-12-03 1984-06-14 Japan Steel Works Ltd:The Manufacture of fuel pellet
JPS60170696A (en) * 1984-02-15 1985-09-04 アイアン フレイザ− ジヨンストン Fuel pellet and manufacture
JP2014132052A (en) * 2013-01-07 2014-07-17 Oji Holdings Corp Fuel composition
JP2021178886A (en) * 2020-05-11 2021-11-18 出光興産株式会社 Production method of biomass solid fuel and biomass solid fuel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102517510B1 (en) * 2022-10-27 2023-04-04 한국세라믹기술원 Fuel making method including silica component extracted from biomass that can prevent internal corrosion, agglomeration and slagging of boiler

Also Published As

Publication number Publication date
JPWO2022210558A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
AU2005289333B2 (en) Continuous flowing pre-treatment system with steam recovery
Rabelo et al. A comparison between lime and alkaline hydrogen peroxide pretreatments of sugarcane bagasse for ethanol production
CA2848935C (en) Method for heating a feedstock
JP5149785B2 (en) Treatment of biomass to obtain ethanol
Kurakake et al. Pretreatment with ammonia water for enzymatic hydrolysis of corn husk, bagasse, and switchgrass
US8728770B2 (en) Method for enzymatic saccharification treatment of lignocellulose-containing biomass, and method for producing ethanol from lignocellulose-containing biomass
US9574212B2 (en) Process comprising sulfur dioxide and/or sulfurous acid pretreatment and enzymatic hydrolysis
US20140004571A1 (en) Compositions and methods for biomass liquefaction
JP4619917B2 (en) Pretreatment method of lignocellulose
JP2010524473A (en) Combined thermochemical pretreatment and refining of lignocellulose biomass
JP2013544099A (en) Continuous feed biomass pretreatment method for packed bed reactors
CN102089435A (en) Methods for producing fermentation products
JP2010041923A (en) Enzymatic saccharification method and ethanol production method
JP2011045277A (en) Production system for cellulose-based ethanol, and method for producing the same
WO2022210558A1 (en) Pellets and method for producing pellets
US20150037848A1 (en) Method for producing saccharide
WO2010016536A1 (en) Method for treating lignocellulose material
JP5824074B2 (en) Bioethanol production method and system
JP6331490B2 (en) Method for producing ethanol from lignocellulose-containing biomass
JP2014090707A (en) Method for enzymatic saccharification of biomass containing lignocellulose and method of producing ethanol with biomass containing lignocellulose
JP5910427B2 (en) Method for producing ethanol from lignocellulose-containing biomass
JP2014039492A (en) Method of producing ethanol from lignocellulose-containing biomass
JP2013141415A (en) Method and device for producing monosaccharide, and method and device for producing ethanol
JP2015159755A (en) Method for producing ethanol from lignocellulose-containing biomass
JP6492724B2 (en) Method for crushing lignocellulose-containing biomass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780769

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023511274

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2301006389

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780769

Country of ref document: EP

Kind code of ref document: A1