WO2022153830A1 - Biomass solid fuel manufacturing method - Google Patents

Biomass solid fuel manufacturing method Download PDF

Info

Publication number
WO2022153830A1
WO2022153830A1 PCT/JP2021/047925 JP2021047925W WO2022153830A1 WO 2022153830 A1 WO2022153830 A1 WO 2022153830A1 JP 2021047925 W JP2021047925 W JP 2021047925W WO 2022153830 A1 WO2022153830 A1 WO 2022153830A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomass
solid fuel
producing
pellets
less
Prior art date
Application number
PCT/JP2021/047925
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 古園
直毅 河本
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to JP2022575505A priority Critical patent/JPWO2022153830A1/ja
Publication of WO2022153830A1 publication Critical patent/WO2022153830A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances

Definitions

  • the present invention relates to a method for producing a biomass solid fuel.
  • Coal-fired power has a large amount of CO 2 emissions per emission intensity and has a high environmental load.
  • biomass co-firing in which coal is mixed with biomass and burned, is drawing attention.
  • Co-firing of wood chips and wood pellets has already been carried out, but since biomass is less pulverizable than coal, the maximum co-firing rate of biomass is only about several percent.
  • Patent Document 1 a woody biomass pulverized product having a size of 5 to 60 mm is densified to 0.5 g / cm 3 or more in bulk density (measured according to 6 “bulk density test method” of JIS K2151). Subsequently, a method for producing a solid fuel, which is characterized by roasting under conditions of an oxygen concentration of 10% or less and a temperature of 170 to 350 ° C., is disclosed.
  • Patent Document 2 the fuel ratio (fixed carbon / volatile matter) is 0.2 to 0.8, the high calorific value of the anhydrous base is 4800 to 7000 (kcal / kg), and the molar ratio O of oxygen O and carbon C is O.
  • a solid biomass fuel obtained by molding a biomass powder having a / C of 0.1 to 0.7 and a molar ratio of hydrogen H to carbon C of 0.8 to 1.3 is disclosed. ..
  • Patent Document 3 describes a method for producing fuel pellets, in which a step of introducing lignocellulosic biomass having a water content of less than about 30% by weight into a reactor and a step of putting the reactor in a vacuum state are described.
  • a step of injecting steam into the reactor having a temperature between about 180 ° C. and about 235 ° C., a step of maintaining the biomass in the reactor for about 1 to about 12 minutes, and the treated A method comprising the step of removing biomass from the reactor is disclosed.
  • solid fuel having improved pulverizability and co-firing rate with coal can be obtained by semi-carbonizing the biomass or steam blasting the biomass. Further, the methods described in Patent Documents 1 to 3 are applicable because a hydrophobic solid fuel (hereinafter, may be referred to as "black pellet”) can be obtained by semi-carbonizing or steam blasting the biomass.
  • Black pellet a hydrophobic solid fuel
  • Solid fuel can be stored outdoors. However, when black pellets are stored outdoors, there is concern about the elution of organic components (chemical oxygen demand (COD)). Coal has almost no elution of organic components, but black pellets elute organic components, so there is concern about the impact on the environment when stored outdoors.
  • An object of the present invention is to provide a method for producing a biomass solid fuel in which COD elution is reduced from biomass obtained through steam blasting treatment.
  • a step of steam-blasting biomass to obtain blasted biomass a step of molding the blasted biomass to obtain biomass pellets, and heating the biomass pellets at 180 ° C. or higher for 5 minutes or longer.
  • a method for producing a biomass solid fuel having a pellet heating step and a method for producing a biomass solid fuel is provided.
  • the method for producing a biomass solid fuel it is preferable to have a first drying step of drying the biomass before the step of obtaining the crushed biomass.
  • the steam blasting is preferably carried out in a closed container under saturated steam of 100 ° C. or higher and 300 ° C. or lower and 0.1 MPa or higher and 9.0 MPa or lower.
  • the pellet heating step heats the biomass pellets at an oxygen concentration of 5% by mass or less and at least 5 minutes and 60 minutes or less.
  • the COD of the biomass pellet after the pellet heating step is 1/6 of the COD of the biomass pellet before the pellet heating step is performed. It is preferable to carry out the pellet heating step as follows.
  • the biomass is preferably at least one selected from the group consisting of woody biomass, herbaceous biomass, crop residue biomass, and palm palm biomass. ..
  • the numerical range represented by using “-” means a range including a numerical value before “-” as a lower limit value and a numerical value after "-" as an upper limit value. do.
  • the method for producing a biomass solid fuel according to the present embodiment includes a step of steam-blasting the biomass to obtain crushed biomass and molding the crushed biomass to obtain biomass. It has a step of obtaining pellets and a pellet heating step of heating the biomass pellets at 180 ° C. or higher for 5 minutes or longer.
  • the biomass solid fuel obtained by the production method of the present embodiment is a pellet heating step in which biomass pellets are molded using steam-blasted biomass (explosed biomass) and then the biomass pellets are heated at 180 ° C. or higher for 5 minutes or longer. It is obtained by carrying out. In the biomass solid fuel thus obtained, the elution of COD is significantly reduced as compared with the biomass solid fuel in which the pellet heating step is not performed.
  • the biomass solid fuel obtained by the production method of the present embodiment can be stored outdoors because it is stored outdoors and does not easily disintegrate even when it gets wet with water, and the elution of COD is reduced. Therefore, it is expected that equipment such as silos will not be required. Above all, since the biomass solid fuel such as wood pellets easily disintegrates when it gets wet with water, it is useful to produce the biomass solid fuel in which the elution of COD is reduced by the production method of the present embodiment. Further, the biomass solid fuel obtained by the production method of the present embodiment secures the characteristics required for the fuel (for example, HGI, high calorific value, bulk density, and mechanical durability) as shown in Examples described later. Has been done. By producing the biomass solid fuel by the production method of the present embodiment, the use of the biomass solid fuel can be expanded.
  • characteristics required for the fuel for example, HGI, high calorific value, bulk density, and mechanical durability
  • biomass The biomass is not particularly limited, and examples thereof include woody biomass, herbaceous biomass, crop residue biomass, palm palm biomass, cellulosic products, and pulp products.
  • the crop residue biomass means something other than the edible portion.
  • palm palm biomass means agricultural waste of palm palm that can be used as a biomass fuel.
  • Specific examples of the palm palm biomass include palm palm shell (PKS: Palm Kernel Shell), palm palm fruit bunch (EFB), palm trunk (Palm Trunk), and the like.
  • PPS Palm Kernel Shell
  • EFB palm palm fruit bunch
  • Palm Trunk palm trunk
  • the biomass is preferably at least one selected from the group consisting of woody biomass, herbaceous biomass, crop residue biomass, and palm palm biomass.
  • woody biomass examples include conifers (eg, sugi, pine, eucalyptus, cypress, and fir) and hardwoods (eg, birch, beech, zelkova, katsura, kiri, rubber tree, and kusunoki). Can be mentioned.
  • the woody biomass may be construction waste (for example, cut offcuts, chips generated at a processing plant, sawdust, etc.), forest residue, thinned wood, bamboo, and the like.
  • Examples of herbaceous biomass include grasses, naturally grown plants, and artificially planted plants.
  • the herbaceous biomass may be hemp, cotton, rice straw, rice husk, straw, bamboo grass, napier grass, sorghum, pampas grass and the like.
  • crop residue biomass examples include leaves, fruit bunches, stems, roots, and other non-edible parts of crops.
  • Examples of the crop include wheat, corn, potatoes, sugar cane (including bagasse), bananas and the like.
  • palm palm biomass examples include palm oil pomace (PKS), fruit bunch (EFB), and fruit bark.
  • PPS palm oil pomace
  • EFB fruit bunch
  • the biomass described above may be used alone or in combination of two or more.
  • the step of obtaining the blasted biomass is a step of obtaining the blasted biomass by steam blasting the biomass.
  • Steam blasting is the structure of biomass by steaming biomass in a closed container such as a pressure-resistant container with saturated steam at high temperature and high pressure for a short time, then rapidly releasing it to atmospheric pressure, cooling it rapidly, and adiabatic expansion. In the case of wood, it refers to the process of destroying the wood structure).
  • the shape of the biomass used for steam blasting is not particularly limited. Examples of the shape of the biomass include the shape of the biomass itself (for example, palm palm empty fruit bunch, etc.), chip shape, long shape, powder shape, indefinite shape, and the like.
  • the biomass used for steam blasting may be the biomass in the obtained state, or the biomass after crushing the obtained biomass into an arbitrary shape and size. For example, palm palm empty fruit bunch and the like can be used as they are obtained.
  • Biomass is crushed and semi-carbonized by steam blasting. For example, when the biomass is chip-shaped biomass (biomass chips), the biomass chips are crushed by steam blasting into biomass powder.
  • the obtained biomass powder (blasted biomass) is in a semi-carbonized state.
  • the temperature of steam blasting is preferably 100 ° C. or higher and 300 ° C. or lower, more preferably 100 ° C. or higher and 280 ° C. or lower.
  • the pressure of steam blasting is preferably 0.1 MPa or more and 9.0 MPa or less, and more preferably 1.0 MPa or more and 6.5 MPa or less.
  • the steam blasting time is preferably 10 minutes or more and 60 minutes or less, and more preferably 15 minutes or more and 30 minutes or less.
  • the steam blasting is preferably carried out in a closed container under saturated steam of 100 ° C. or higher and 300 ° C. or lower, 0.1 MPa or higher and 9.0 MPa or lower, and 100 ° C. or higher and 280 ° C. or lower. More preferably, it is carried out under saturated steam of 1.0 MPa or more and 6.5 MPa or less.
  • the size of the biomass obtained in the process of obtaining the blasted biomass varies depending on the size and shape of the biomass used for steam blasting.
  • the major axis diameter of the biomass powder obtained in the step of obtaining the blasted biomass is preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less.
  • the major axis diameter is the maximum diameter.
  • the major axis diameter of the biomass powder means the maximum length of a straight line when any two points on the outer contour line of the biomass powder are connected by a straight line.
  • the step of obtaining biomass pellets is a step of molding the blasted biomass to obtain biomass pellets.
  • pellets include briquettes.
  • the size and shape of the pellets are not particularly limited, but the pellets are usually cylindrical, preferably 5 mm or more and 10 mm or less in diameter, and 5 mm or more and 50 mm or less in length.
  • the biomass pellet can be produced by extruding the crushed biomass obtained by steam blasting from a metal hole (for example, a diameter of 5 mm or more and 10 mm or less and a length of 5 mm or more and 50 mm or less).
  • biomass pellets can be produced by using, for example, a pelletizer such as a ring die method or a flat die method.
  • Biomass pellets can also be produced, for example, by molding into a charcoal-like or cylindrical shape using a briquette machine.
  • the pellet heating step is a step of heating the biomass pellets at 180 ° C. or higher for 5 minutes or longer.
  • the pellet heating step from the viewpoint of insolubilizing the eluted components, it is preferable to heat the biomass pellets at 190 ° C. or higher for 5 minutes or longer, more preferably at 200 ° C. or higher for 5 minutes or longer, and at 205 ° C. or higher for 5 minutes or longer. It is more preferable to heat above, and it is further preferable to heat at 210 ° C. or higher for 5 minutes or longer.
  • the upper limit temperature in the pellet heating process is less from the viewpoint of ensuring a good balance of the characteristics required for fuel (for example, HGI, high calorific value, bulk density, and mechanical durability) while reducing COD elution. From the viewpoint of reducing the elution of COD with energy, it is preferably not too high, specifically, 270 ° C. or lower, more preferably 265 ° C. or lower, and 260 ° C. or lower. More preferred.
  • the time (heating time) for heating the biomass pellet at 180 ° C. or higher is preferably 240 minutes or less, more preferably 120 minutes or less, still more preferably 60, from the viewpoint of reducing the elution of COD in a short time.
  • the heating time of the biomass pellet means the total time of the time from 180 ° C. to reach the target temperature and the holding time at the target temperature. For example, when the biomass pellet is heated from room temperature (25 ° C.) to 230 ° C. (target temperature) at a heating rate of 5 ° C./min and held at 230 ° C. for 0 minutes, the heating time of the biomass pellet is from 180 ° C. The time required to reach 230 ° C. (10 minutes) and the holding time at 230 ° C. (0 minutes) are added up to calculate 10 minutes.
  • the target temperature may be referred to as the ultimate temperature.
  • the pellet heating step it is preferable to heat to a target temperature at a heating rate of 3 ° C./min or more and 60 ° C./min or less (preferably 3 ° C./min or more and 30 ° C./min or less).
  • the target temperature (reached temperature) is preferably 270 ° C. or lower, more preferably 265 ° C. or lower, and even more preferably 260 ° C. or lower.
  • the atmosphere in the pellet heating step is preferably a low oxygen concentration, specifically, an oxygen concentration of 5% by mass or less, and more preferably an oxygen concentration of 3% by mass or less.
  • Examples of the low oxygen concentration atmosphere in the pellet heating step include an inert gas atmosphere.
  • Examples of the inert gas atmosphere include at least one inert gas atmosphere selected from nitrogen gas, argon gas, carbon dioxide gas, and combustion exhaust gas.
  • the biomass pellet is preferably heated at an oxygen concentration of 5% by mass or less and the biomass pellet is heated at 5 minutes or more and 60 minutes or less, and the biomass pellet is heated at an oxygen concentration of 5% by mass or less and at 5 minutes or more and 50 minutes or less. Is more preferable, and it is more preferable to heat the biomass pellets at an oxygen concentration of 3% by mass or less and for 5 minutes or more and 50 minutes or less.
  • the pellet heating step is carried out so that the COD of the biomass pellets after the pellet heating step is 1/6 or less of the COD of the biomass pellets before the pellet heating step is carried out. It is more preferable to do so.
  • the COD of the biomass pellet after the step is carried out / the COD of the biomass pellet before the pellet heating step is carried out is preferably 1/6 or less, more preferably 1/8 or less, still more preferably 1/10 or less, and further. It is preferably 1/15 or less, more preferably 1/16 or less, still more preferably 1/18 or less, still more preferably 1/20 or less, still more preferably 1/25 or less, still more preferably 1/30 or less.
  • First crushing step In the production method of the present embodiment, it is preferable to have a first crushing step of crushing the biomass before the step of obtaining the crushed biomass.
  • a first crushing step of crushing the biomass As one mode of crushing in the first crushing step, there is a mode in which the obtained biomass is crushed into a shape (for example, a chip shape or a long shape) that can be easily introduced into a steam blasting apparatus.
  • the crushing method is not particularly limited, and the biomass can be crushed into chips, long shapes, or the like using a known crusher.
  • the size of the chip is not particularly limited, but for example, when woody biomass is crushed into chips, the major axis diameter is preferably 5.0 cm or less, more preferably 1.0 cm or less.
  • crushed crushing step In the production method of the present embodiment, it is also preferable to have a second crushing step of crushing the crushed biomass after the step of obtaining the blasted biomass.
  • One mode of crushing in the second crushing step is a mode in which the crushed biomass is further crushed when a relatively large size biomass (for example, a major axis diameter on the order of several tens of centimeters) is steam crushed.
  • the first drying step is a step of drying the biomass and adjusting the water content of the biomass.
  • the first drying step may be natural drying or heat drying.
  • the drying temperature and drying time of the biomass are appropriately selected depending on the biomass species and size. For example, the drying time of biomass is preferably 30 minutes or more.
  • the water content of the biomass obtained in the first drying step is preferably 10% by mass or more and 20% by mass or less, and more preferably 10% by mass or more and 15% by mass or less.
  • the second drying step is a step of adjusting the water content of the crushed biomass by drying the water adhering to the biomass by steam blasting.
  • the second drying step may be natural drying or heat drying.
  • the drying temperature and drying time of the blasted biomass are appropriately selected according to the biomass species and size of the blasted biomass. For example, the drying time of the blasted biomass is preferably 30 minutes or more.
  • the water content of the crushed biomass obtained in the second drying step is preferably 10% by mass or more and 20% by mass or less, and more preferably 10% by mass or more and 15% by mass or less.
  • the explosive biomass is dried so that the water content is 10% by mass or more and 20% by mass or less, so that the formability of the pellets is improved in the step of obtaining the biomass pellets.
  • the first drying step and the second drying step may be carried out together.
  • biomass pellets having more uniform properties can be obtained.
  • the production method of the present embodiment may include a washing step of washing the biomass.
  • the washing step is preferably carried out before the first drying step.
  • the alkali metal component adhering to the surface of the biomass is removed.
  • a known washing liquid such as water or hot water can be used.
  • the washing time and the number of washings are not particularly limited.
  • the production method of the present embodiment includes a step of obtaining crushed biomass, a step of obtaining biomass pellets, and a pellet heating step, and if necessary, a first crushing step, a second crushing step, and a first It may have at least one of a drying step, a second drying step and a washing step of the above.
  • the order of implementation of the production method of the present embodiment is not particularly limited, but it is preferable to carry out the method in the following order.
  • the biomass solid fuel obtained by the production method of the present embodiment may contain other components other than biomass as long as the effects of the present embodiment are not impaired.
  • the other components are not particularly limited, and examples thereof include binders and various additives.
  • the binder include lignin and acrylic acid amide.
  • the content of the binder in the biomass solid fuel is preferably 0% by mass or more and 50% by mass or less, and more preferably 0% by mass or more and 10% by mass or less.
  • the biomass solid fuel obtained by the production method of the present embodiment can be widely used in power plants, steelworks, factories and the like.
  • the biomass solid fuel of the present embodiment may be used by being burned alone, or may be mixed with other fuels such as coal and burned (co-firing).
  • the biomass solid fuel may be crushed by a crusher and introduced into a boiler, or may be introduced into a boiler as it is depending on the size. It is also preferable to use the biomass solid fuel mixed with coal.
  • the biomass solid fuel is crushed together with coal using an existing thermal power generation facility, for example, using a coal crusher, and these are boilers. May be introduced in.
  • the biomass solid fuel may be crushed by a crusher different from the coal crusher (for example, a crusher for biomass solid fuel), mixed with coal crushed separately, and introduced into the boiler.
  • the usage mode of the biomass solid fuel is not limited to the above.
  • the biomass solid fuel of the second embodiment is obtained by the method for producing a biomass solid fuel according to the first embodiment.
  • the biomass solid fuel of the second embodiment has a COD of 1,000 mg / L or less, a hardgrove grindability index (HGI) of 25 or more, a mechanical durability of 93% or more, and a high dry base.
  • the calorific value is 5,000 kcal / kg or more, and the bulk density is 680 kg / m 3 or more. According to the biomass solid fuel of the second embodiment, the elution of COD is reduced.
  • biomass solid fuel of the second embodiment from the viewpoint of reducing the elution of COD and ensuring a well-balanced characteristic required for the fuel, COD, HGI, mechanical durability, high calorific value of dry base, and bulk density.
  • the preferred range of is as follows.
  • the biomass solid fuel of the second embodiment has a COD of 1,000 mg / L or less.
  • the COD is preferably 400 mg / L or less, more preferably 200 mg / L or less.
  • the method for measuring COD is as described in the examples.
  • the biomass solid fuel of the second embodiment has an HGI of 25 or more.
  • the HGI is preferably 27.5 or more, more preferably 30 or more.
  • the method for measuring HGI is as described in Examples.
  • the biomass solid fuel of the second embodiment has a mechanical durability of 93% or more.
  • the mechanical durability is preferably 95% or more, more preferably 97% or more.
  • the method for measuring the mechanical durability is as described in the examples.
  • the biomass solid fuel of the second embodiment has a dry base high calorific value of 5,000 kcal / kg or more.
  • the high calorific value of the dry base is preferably 5,150 kcal / kg or more, more preferably 5,300 kcal / kg or more.
  • the method for measuring the high calorific value of the air-dry base is as described in the examples.
  • the biomass solid fuel of the second embodiment has a bulk density of 680 kg / m 3 or more.
  • the bulk density is preferably 700 kg / m 3 or more, more preferably 720 kg / m 3 or more.
  • the biomass solid fuel having a further reduced COD that is, the COD is 350 mg / L or less (preferably 200 mg / L or less), and the Hardgrove Grindability Index (HGI) is 25.
  • the biomass solid fuel having the above, the mechanical durability of 93% or more, the high calorific value of the dry base of 5,000 kcal / kg or more, and the bulk density of 680 kg / m 3 or more is, for example, the following aspects. It is manufactured by the manufacturing method of A.
  • the manufacturing method of the aspect A is one aspect of the manufacturing method of the first embodiment.
  • the manufacturing method of Aspect A is The process of steam-blasting biomass to obtain crushed biomass, The process of molding the crushed biomass to obtain biomass pellets, It has a pellet heating step of heating the biomass pellets under the conditions of 210 ° C. or higher (preferably 230 ° C. or higher) and 20 minutes or longer and 60 minutes or lower.
  • Table 1 shows the properties of the biomass used in the examples and comparative examples.
  • the industrial analysis values are values measured in accordance with JIS M8812 (2004). Of the elemental analysis values, carbon, hydrogen, nitrogen and sulfur are values measured in accordance with JIS M8819 (1997), and oxygen is a value calculated from other analysis values in accordance with JIS M8813 (2004). be.
  • the high calorific value is a value measured according to JIS M8814 (2003).
  • the fuel ratio is "fixed carbon / volatile matter”.
  • the calorific value of the dry base (DB) represents the calorific value in the dry state.
  • Ad is an abbreviation for Air Dry Basis, which represents an air-drying base and represents a state of being dried in the air.
  • “Daf” is an abbreviation for Dry Ash Free, and represents an anhydrous ash-free base, and represents a virtual state assuming that biomass does not contain water and ash. Obtained by conversion from the analyzed value.
  • Biomass woody type 1
  • Biomass woody type 1
  • the biomass chips were dried in a dryer so that the water content was 10% by mass or more and 12% by mass or less.
  • the dried biomass chips were placed in a pressure vessel. Steam was introduced into the pressure-resistant container, and the biomass chips were steamed (steam blasted) with saturated steam under the following conditions. Then, it was rapidly released to atmospheric pressure and cooled to obtain biomass powder.
  • Biomass powder was compression-molded using a compression molding apparatus to obtain cylindrical biomass pellets (diameter 8 mm, height 10 mm to 40 mm).
  • Example 1-2 to 1-4 and Comparative Examples 1-2 to 1-4 Examples 1-2 to 1-4 and Comparative Example 1 in the same manner as in Example 1-1 except that the ultimate temperature and holding time in the pellet heating step were changed to the reaching temperature and holding time shown in Table 2. -2 to 1-4 biomass solid fuels were obtained.
  • Comparative Example 1-1 The biomass solid fuel (unheated) of Comparative Example 1-1 was obtained in the same manner as in Example 1-1 except that the pellet heating step was not carried out.
  • Example 2-1 Provides to obtain biomass chips
  • Biomass woody type 2 was crushed with a crusher to obtain biomass chips. After that, the biomass solid fuel of Example 2-1 was obtained in the same manner as in Example 1-1.
  • Example 2-2 to 2-4 and Comparative Examples 2-2 to 2-4 Examples 2-2 to 2-4 and Comparative Example 2 in the same manner as in Example 2-1 except that the ultimate temperature and holding time in the pellet heating step were changed to the reaching temperature and holding time shown in Table 2. -2 to 2-4 biomass solid fuels were obtained.
  • Comparative Example 2-1 The biomass solid fuel (unheated) of Comparative Example 2-1 was obtained in the same manner as in Example 2-1 except that the pellet heating step was not carried out.
  • the immersion water used for COD measurement complies with the "Testing method for metals contained in industrial waste (Environmental Agency Notification No. 13 of 1973)" and is subjected to a 6-hour shaking test to prepare wastewater. Prepared by method.
  • the COD concentration in the prepared immersion water was measured with a simple COD meter (COD-60A) manufactured by Toa DKK Corporation.
  • the COD concentration in the black pellet immersion water was measured in advance by the official method (JIS K0102 (2016)), and the regression equation was obtained from the correlation with the measurement result by this apparatus. From the regression equation, the measured value converted to the specified measurement method was obtained. The results are shown in FIGS. 1 and 2. From FIG.
  • Example 1-1 (reaching temperature 190 ° C., holding time 30 minutes) in which the biomass pellets were heated at 180 ° C. or higher for 32 minutes
  • Comparative Example 1-4 (reaching temperature 190 ° C., holding time 30 minutes) in which the biomass pellets were heated at 180 ° C. or higher for 2 minutes
  • Example 1-4 (reaching temperature 230 ° C., holding time 0 minutes) in which the biomass pellets were heated at 180 ° C. or higher for 10 minutes
  • Example 1-3 (reaching temperature 230) in which the biomass pellets were heated at 180 ° C. or higher for 40 minutes.
  • Example 1-1 the elution of COD was further reduced as compared with Example 1-1. Similar results were obtained in the comparison between Example 2-1 (reaching temperature 190 ° C., holding time 30 minutes) and Comparative Example 2-4 (reaching temperature 190 ° C., holding time 0 minutes). Similar results were obtained in the comparison between Example 2-4 (reaching temperature 230 ° C., holding time 0 minutes) and Example 2-3 (reaching temperature 230 ° C., holding time 30 minutes) and Example 2-1. there were.
  • HGI Hardgrove Grindability Index
  • the biomass solid fuel obtained by the production method of the present invention can be stored outdoors in a power plant, a steel mill, a factory, etc. because the elution of COD is reduced.

Abstract

A biomass solid fuel manufacturing method comprising: a step for obtaining blasted biomass by blasting biomass using steam; a step for obtaining biomass pellets by molding said blasted biomass; and a pellet heating step for heating the biomass pellets at 180°C or more for at least 5 minutes.

Description

バイオマス固形燃料の製造方法Biomass solid fuel production method
 本発明は、バイオマス固形燃料の製造方法に関する。 The present invention relates to a method for producing a biomass solid fuel.
 石炭火力は排出原単位あたりのCO排出量が多く、環境負荷が高い。石炭火力からのCO排出削減のため、石炭にバイオマスを混合して燃焼するバイオマス混焼が注目されている。木質チップ及び木質ペレットの混焼は、すでに行われているが、バイオマスは石炭に比べて粉砕性が悪いため、バイオマスの最大混焼率が数%程度にとどまっている。 Coal-fired power has a large amount of CO 2 emissions per emission intensity and has a high environmental load. In order to reduce CO 2 emissions from coal-fired power, biomass co-firing, in which coal is mixed with biomass and burned, is drawing attention. Co-firing of wood chips and wood pellets has already been carried out, but since biomass is less pulverizable than coal, the maximum co-firing rate of biomass is only about several percent.
 バイオマスの混焼率を上げる観点から、バイオマスを半炭化するもしくは水蒸気爆砕処理する方法が検討されている。
 例えば、特許文献1には、サイズが5~60mmである木質系バイオマス粉砕物を、嵩密度(JIS K2151の6「かさ密度試験方法」に従って測定)0.5g/cm以上に高密度化処理し、続いて酸素濃度10%以下で、かつ温度170~350℃の条件下で焙焼することを特徴とする固体燃料の製造方法が開示されている。
 また、特許文献2には、燃料比(固定炭素/揮発分)が0.2~0.8、無水ベース高位発熱量が4800~7000(kcal/kg)、酸素Oと炭素Cのモル比O/Cが0.1~0.7、水素Hと炭素Cのモル比H/Cが0.8~1.3であることを特徴とするバイオマス粉を成型したバイオマス固体燃料が開示されている。
 また、特許文献3には、燃料ペレットを製造する方法であって、含水率が重量の約30%未満のリグノセルロース系バイオマスを反応器に導入するステップと、前記反応器を真空状態にするステップと、温度が摂氏約180度から約235度の間である蒸気を前記反応器に注入するステップと、前記バイオマスを前記反応器内で約1から約12分間維持するステップと、前記処理済みのバイオマスを前記反応器から取り出すステップと、を備えた方法が開示されている。
From the viewpoint of increasing the co-firing rate of biomass, a method of semi-carbonizing or steam blasting the biomass is being studied.
For example, in Patent Document 1, a woody biomass pulverized product having a size of 5 to 60 mm is densified to 0.5 g / cm 3 or more in bulk density (measured according to 6 “bulk density test method” of JIS K2151). Subsequently, a method for producing a solid fuel, which is characterized by roasting under conditions of an oxygen concentration of 10% or less and a temperature of 170 to 350 ° C., is disclosed.
Further, in Patent Document 2, the fuel ratio (fixed carbon / volatile matter) is 0.2 to 0.8, the high calorific value of the anhydrous base is 4800 to 7000 (kcal / kg), and the molar ratio O of oxygen O and carbon C is O. A solid biomass fuel obtained by molding a biomass powder having a / C of 0.1 to 0.7 and a molar ratio of hydrogen H to carbon C of 0.8 to 1.3 is disclosed. ..
Further, Patent Document 3 describes a method for producing fuel pellets, in which a step of introducing lignocellulosic biomass having a water content of less than about 30% by weight into a reactor and a step of putting the reactor in a vacuum state are described. A step of injecting steam into the reactor having a temperature between about 180 ° C. and about 235 ° C., a step of maintaining the biomass in the reactor for about 1 to about 12 minutes, and the treated A method comprising the step of removing biomass from the reactor is disclosed.
特開2015-189958号公報Japanese Unexamined Patent Publication No. 2015-189958 国際公開第2016/056608号International Publication No. 2016/056608 特表2013-538240号公報Special Table 2013-538240
 特許文献1~3に記載の方法は、バイオマスを半炭化するもしくは水蒸気爆砕処理することで、粉砕性及び石炭への混焼率が改善された固体燃料が得られる。さらに特許文献1~3に記載の方法は、バイオマスを半炭化するもしくは水蒸気爆砕処理することで、疎水性の固体燃料(以下、「ブラックペレット」と称することがある。)が得られるため、当該固体燃料を屋外に貯蔵し得る。
 しかしながら、ブラックペレットを屋外貯蔵したとき、有機成分(化学的酸素要求量(COD))の溶出が懸念される。石炭は有機成分の溶出はほぼないが、ブラックペレットは有機成分が溶出するため、屋外貯蔵した場合の環境への影響が懸念される。
 よって、ブラックペレットを屋外貯蔵するにあたっては、有機成分の溶出を可能な限り抑えることが必要とされる。そのためには、製造プロセスから検討を行い、有機成分が溶出しにくい構造を持つブラックペレットの製造方法が求められる。
 なお、特許文献1、3は、有機成分溶出に関して検討がなされておらず、屋外貯蔵のリスクを想定していない。また、特許文献2に記載のバイオマス固体燃料は、製造プロセスの検討が十分行われていないため、CODが比較的高い値を示している。
In the methods described in Patent Documents 1 to 3, solid fuel having improved pulverizability and co-firing rate with coal can be obtained by semi-carbonizing the biomass or steam blasting the biomass. Further, the methods described in Patent Documents 1 to 3 are applicable because a hydrophobic solid fuel (hereinafter, may be referred to as "black pellet") can be obtained by semi-carbonizing or steam blasting the biomass. Solid fuel can be stored outdoors.
However, when black pellets are stored outdoors, there is concern about the elution of organic components (chemical oxygen demand (COD)). Coal has almost no elution of organic components, but black pellets elute organic components, so there is concern about the impact on the environment when stored outdoors.
Therefore, when the black pellets are stored outdoors, it is necessary to suppress the elution of organic components as much as possible. For that purpose, a method for producing black pellets having a structure in which organic components are difficult to elute is required by examining the production process.
In Patent Documents 1 and 3, the elution of organic components has not been studied, and the risk of outdoor storage is not assumed. Further, the biomass solid fuel described in Patent Document 2 shows a relatively high COD value because the production process has not been sufficiently studied.
 本発明の目的は、水蒸気爆砕処理を経て得られるバイオマスから、CODの溶出が低減されたバイオマス固形燃料の製造方法を提供することである。 An object of the present invention is to provide a method for producing a biomass solid fuel in which COD elution is reduced from biomass obtained through steam blasting treatment.
 本発明の一態様によれば、バイオマスを水蒸気爆砕して爆砕済バイオマスを得る工程と、前記爆砕済バイオマスを成型してバイオマスペレットを得る工程と、前記バイオマスペレットを180℃以上で5分以上加熱するペレット加熱工程と、を有するバイオマス固形燃料の製造方法が提供される。 According to one aspect of the present invention, a step of steam-blasting biomass to obtain blasted biomass, a step of molding the blasted biomass to obtain biomass pellets, and heating the biomass pellets at 180 ° C. or higher for 5 minutes or longer. A method for producing a biomass solid fuel having a pellet heating step and a method for producing a biomass solid fuel is provided.
 本発明の一態様に係るバイオマス固形燃料の製造方法において、前記爆砕済バイオマスを得る工程の前に、前記バイオマスを粉砕する第1の粉砕工程を有することが好ましい。 In the method for producing a biomass solid fuel according to one aspect of the present invention, it is preferable to have a first crushing step of crushing the biomass before the step of obtaining the crushed biomass.
 本発明の一態様に係るバイオマス固形燃料の製造方法において、前記爆砕済バイオマスを得る工程の後に、前記爆砕済バイオマスを粉砕する第2の粉砕工程を有することが好ましい。 In the method for producing a biomass solid fuel according to one aspect of the present invention, it is preferable to have a second crushing step of crushing the crushed biomass after the step of obtaining the blasted biomass.
 本発明の一態様に係るバイオマス固形燃料の製造方法において、前記爆砕済バイオマスを得る工程の前に、前記バイオマスを乾燥する第1の乾燥工程を有することが好ましい。 In the method for producing a biomass solid fuel according to one aspect of the present invention, it is preferable to have a first drying step of drying the biomass before the step of obtaining the crushed biomass.
 本発明の一態様に係るバイオマス固形燃料の製造方法において、前記爆砕済バイオマスを得る工程の後に、前記爆砕済バイオマスを乾燥する第2の乾燥工程を有することが好ましい。 In the method for producing a biomass solid fuel according to one aspect of the present invention, it is preferable to have a second drying step of drying the blasted biomass after the step of obtaining the blasted biomass.
 本発明の一態様に係るバイオマス固形燃料の製造方法において、前記水蒸気爆砕は、密閉容器中で、100℃以上300℃以下、0.1MPa以上9.0MPa以下の飽和水蒸気下で行うことが好ましい。 In the method for producing a biomass solid fuel according to one aspect of the present invention, the steam blasting is preferably carried out in a closed container under saturated steam of 100 ° C. or higher and 300 ° C. or lower and 0.1 MPa or higher and 9.0 MPa or lower.
 本発明の一態様に係るバイオマス固形燃料の製造方法において、前記ペレット加熱工程は、酸素濃度5質量%以下で、前記バイオマスペレットを5分以上60分以下で加熱することが好ましい。 In the method for producing a biomass solid fuel according to one aspect of the present invention, it is preferable that the pellet heating step heats the biomass pellets at an oxygen concentration of 5% by mass or less and at least 5 minutes and 60 minutes or less.
 本発明の一態様に係るバイオマス固形燃料の製造方法において、前記ペレット加熱工程を実施する前の前記バイオマスペレットのCODに対し、前記ペレット加熱工程を実施した後の前記バイオマスペレットのCODが1/6以下になるように、前記ペレット加熱工程を実施することが好ましい。 In the method for producing a biomass solid fuel according to one aspect of the present invention, the COD of the biomass pellet after the pellet heating step is 1/6 of the COD of the biomass pellet before the pellet heating step is performed. It is preferable to carry out the pellet heating step as follows.
 本発明の一態様に係るバイオマス固形燃料の製造方法において、前記バイオマスは、木質系バイオマス、草本系バイオマス、農作物残渣バイオマス、及びパーム椰子バイオマスからなる群から選択される少なくとも1種であることが好ましい。 In the method for producing a biomass solid fuel according to one aspect of the present invention, the biomass is preferably at least one selected from the group consisting of woody biomass, herbaceous biomass, crop residue biomass, and palm palm biomass. ..
 本発明の一態様によれば、水蒸気爆砕処理を経て得られるバイオマスから、CODの溶出が低減されたバイオマス固形燃料の製造方法を提供することができる。 According to one aspect of the present invention, it is possible to provide a method for producing a biomass solid fuel in which the elution of COD is reduced from the biomass obtained through the steam blasting treatment.
実施例及び比較例で製造したバイオマス固形燃料のCODを示すグラフである。It is a graph which shows the COD of the biomass solid fuel produced in an Example and a comparative example. 実施例及び比較例で製造したバイオマス固形燃料のCODを示すグラフである。It is a graph which shows the COD of the biomass solid fuel produced in an Example and a comparative example. 実施例及び比較例で製造したバイオマス固形燃料のHGIを示すグラフである。It is a graph which shows the HGI of the biomass solid fuel produced in an Example and a comparative example. 実施例及び比較例で製造したバイオマス固形燃料の重量収率を示すグラフである。It is a graph which shows the weight yield of the biomass solid fuel produced in an Example and a comparative example. 実施例及び比較例で製造したバイオマス固形燃料のドライベースの高位発熱量を示すグラフである。It is a graph which shows the high calorific value of the dry base of the biomass solid fuel produced in an Example and a comparative example. 実施例及び比較例で製造したバイオマス固形燃料のかさ密度を示すグラフである。It is a graph which shows the bulk density of the biomass solid fuel produced in an Example and a comparative example. 実施例及び比較例で製造したバイオマス固形燃料の機械的耐久性を示すグラフである。It is a graph which shows the mechanical durability of the biomass solid fuel produced in an Example and a comparative example.
 本明細書において、「~」を用いて表される数値範囲は、「~」の前に記載される数値を下限値とし、「~」の後に記載される数値を上限値として含む範囲を意味する。 In the present specification, the numerical range represented by using "-" means a range including a numerical value before "-" as a lower limit value and a numerical value after "-" as an upper limit value. do.
〔第1実施形態〕
〔バイオマス固形燃料の製造方法〕
 本実施形態に係るバイオマス固形燃料の製造方法(以下、「本実施形態の製造方法」とも称する)は、バイオマスを水蒸気爆砕して爆砕済バイオマスを得る工程と、前記爆砕済バイオマスを成型してバイオマスペレットを得る工程と、前記バイオマスペレットを180℃以上で5分以上加熱するペレット加熱工程と、を有する。
 本実施形態の製造方法で得られるバイオマス固形燃料は、水蒸気爆砕されたバイオマス(爆砕済バイオマス)を用いてバイオマスペレットを成型した後、当該バイオマスペレットを180℃以上で5分以上加熱するペレット加熱工程を実施することで得られる。
 このようにして得られたバイオマス固形燃料は、前記ペレット加熱工程を実施しないバイオマス固形燃料に比べ、CODの溶出が顕著に低減される。
[First Embodiment]
[Manufacturing method of biomass solid fuel]
The method for producing a biomass solid fuel according to the present embodiment (hereinafter, also referred to as “the production method of the present embodiment”) includes a step of steam-blasting the biomass to obtain crushed biomass and molding the crushed biomass to obtain biomass. It has a step of obtaining pellets and a pellet heating step of heating the biomass pellets at 180 ° C. or higher for 5 minutes or longer.
The biomass solid fuel obtained by the production method of the present embodiment is a pellet heating step in which biomass pellets are molded using steam-blasted biomass (explosed biomass) and then the biomass pellets are heated at 180 ° C. or higher for 5 minutes or longer. It is obtained by carrying out.
In the biomass solid fuel thus obtained, the elution of COD is significantly reduced as compared with the biomass solid fuel in which the pellet heating step is not performed.
 本実施形態の製造方法で得られるバイオマス固形燃料は、屋外に貯蔵し水に濡れても崩壊し難い、かつ、CODの溶出が低減されるので、屋外で貯蔵し得る。そのため、サイロ等の設備が不要になることが期待される。
 中でも、木質系ペレット等のバイオマス固形燃料は水に濡れると崩壊し易いため、本実施形態の製造方法で、CODの溶出が低減されたバイオマス固形燃料を製造することは有用である。また、本実施形態の製造方法で得られるバイオマス固形燃料は、後述の実施例に示すように、燃料に求められる特性(例えば、HGI、高位発熱量、かさ密度、及び機械的耐久性)が確保されている。
 本実施形態の製造方法でバイオマス固形燃料を製造することで、バイオマス固形燃料の利用を拡大することができる。
The biomass solid fuel obtained by the production method of the present embodiment can be stored outdoors because it is stored outdoors and does not easily disintegrate even when it gets wet with water, and the elution of COD is reduced. Therefore, it is expected that equipment such as silos will not be required.
Above all, since the biomass solid fuel such as wood pellets easily disintegrates when it gets wet with water, it is useful to produce the biomass solid fuel in which the elution of COD is reduced by the production method of the present embodiment. Further, the biomass solid fuel obtained by the production method of the present embodiment secures the characteristics required for the fuel (for example, HGI, high calorific value, bulk density, and mechanical durability) as shown in Examples described later. Has been done.
By producing the biomass solid fuel by the production method of the present embodiment, the use of the biomass solid fuel can be expanded.
 始めに、本実施形態の製造方法で用いるバイオマスについて説明する。 First, the biomass used in the production method of this embodiment will be described.
(バイオマス)
 バイオマスとしては特に限定されないが、例えば、木質系バイオマス、草本系バイオマス、農作物残渣バイオマス、パーム椰子バイオマス、セルロース製品、及びパルプ製品等が挙げられる。
 本明細書において、農作物残渣バイオマスとは、食用部分以外のものを意味する。
 本明細書において、パーム椰子バイオマスとは、バイオマス燃料となり得るパーム椰子の農業廃棄物を意味する。パーム椰子バイオマスとしては、具体的には、パーム椰子殻(PKS:Palm Kernel Shell)、及びパーム椰子空果房(EFB:Empty Fruit Bunch)、パームトランク(Palm Trunk)等が挙げられる。
 バイオマスは、木質系バイオマス、草本系バイオマス、農作物残渣バイオマス、及びパーム椰子バイオマスからなる群から選択される少なくとも1種であることが好ましい。
(biomass)
The biomass is not particularly limited, and examples thereof include woody biomass, herbaceous biomass, crop residue biomass, palm palm biomass, cellulosic products, and pulp products.
In the present specification, the crop residue biomass means something other than the edible portion.
In the present specification, palm palm biomass means agricultural waste of palm palm that can be used as a biomass fuel. Specific examples of the palm palm biomass include palm palm shell (PKS: Palm Kernel Shell), palm palm fruit bunch (EFB), palm trunk (Palm Trunk), and the like.
The biomass is preferably at least one selected from the group consisting of woody biomass, herbaceous biomass, crop residue biomass, and palm palm biomass.
 木質系バイオマスとしては、例えば、針葉樹(例えば、スギ、マツ、ユーカリ、ヒノキ、及びモミ等)、及び広葉樹(例えば、白樺(シラカバ)、ブナ、ケヤキ、カツラ、キリ、ゴムノキ及びクスノキ等)等が挙げられる。木質系バイオマスは、建築廃材(例えば、切断した端材、加工場で発生した切りくず、及びおがくず等)、林地残材、切捨間伐材、及び竹等であってもよい。
 草本系バイオマスとしては、例えば、草、自然に生育した植物、及び人工的に植栽した植物等が挙げられる。草本系バイオマスは、麻、綿、稲わら、籾殻、麦わら、ササ、ネピアグラス、ソルガム及びススキ等であってもよい。
Examples of woody biomass include conifers (eg, sugi, pine, eucalyptus, cypress, and fir) and hardwoods (eg, birch, beech, zelkova, katsura, kiri, rubber tree, and kusunoki). Can be mentioned. The woody biomass may be construction waste (for example, cut offcuts, chips generated at a processing plant, sawdust, etc.), forest residue, thinned wood, bamboo, and the like.
Examples of herbaceous biomass include grasses, naturally grown plants, and artificially planted plants. The herbaceous biomass may be hemp, cotton, rice straw, rice husk, straw, bamboo grass, napier grass, sorghum, pampas grass and the like.
 農作物残渣バイオマスとしては、例えば、農作物の葉、果房、茎、根、及びその他食用以外の部分が挙げられる。前記農作物としては、例えば、小麦、とうもろこし、じゃがいも、サトウキビ(バガスを含む)、及びバナナ等が挙げられる。 Examples of crop residue biomass include leaves, fruit bunches, stems, roots, and other non-edible parts of crops. Examples of the crop include wheat, corn, potatoes, sugar cane (including bagasse), bananas and the like.
 パーム椰子バイオマスとしては、例えば、パーム油の絞りかす(PKS)、果房(EFB)、及び果実皮等が挙げられる。
 以上に記載したバイオマスは、1種単独で用いても2種以上併用してもよい。
Examples of palm palm biomass include palm oil pomace (PKS), fruit bunch (EFB), and fruit bark.
The biomass described above may be used alone or in combination of two or more.
 次に、本実施形態の製造方法の各工程について説明する。 Next, each step of the manufacturing method of this embodiment will be described.
(爆砕済バイオマスを得る工程)
 本実施形態の製造方法において、爆砕済バイオマスを得る工程は、バイオマスを水蒸気爆砕することにより、爆砕済バイオマスを得る工程である。
 水蒸気爆砕とは、バイオマスを耐圧容器等の密閉容器中で高温高圧の飽和水蒸気によって短時間蒸煮し、その後、急激に大気圧に放出して、急速に冷却し、断熱膨張により、バイオマスの構造(木材の場合は木材構造)を破壊する処理をいう。
 水蒸気爆砕に用いるバイオマスの形状は特に限定されない。バイオマスの形状としては、例えば、バイオマス自体の形状(例えば、パーム椰子空果房等)、チップ状、長尺状、粉状、及び不定形状等が挙げられる。
 水蒸気爆砕に用いるバイオマスは、入手した状態のバイオマスでもよいし、入手したバイオマスを任意の形状及び大きさに粉砕した後のバイオマスでもよい。
 例えば、パーム椰子空果房等は、入手した状態のまま用いることができる。
 バイオマスは、水蒸気爆砕により粉砕されると共に半炭化される。例えば、バイオマスがチップ状のバイオマス(バイオマスチップ)である場合、バイオマスチップは、水蒸気爆砕により粉砕されてバイオマス粉になる。得られるバイオマス粉(爆砕済バイオマス)は半炭化された状態にある。
(Process to obtain crushed biomass)
In the production method of the present embodiment, the step of obtaining the blasted biomass is a step of obtaining the blasted biomass by steam blasting the biomass.
Steam blasting is the structure of biomass by steaming biomass in a closed container such as a pressure-resistant container with saturated steam at high temperature and high pressure for a short time, then rapidly releasing it to atmospheric pressure, cooling it rapidly, and adiabatic expansion. In the case of wood, it refers to the process of destroying the wood structure).
The shape of the biomass used for steam blasting is not particularly limited. Examples of the shape of the biomass include the shape of the biomass itself (for example, palm palm empty fruit bunch, etc.), chip shape, long shape, powder shape, indefinite shape, and the like.
The biomass used for steam blasting may be the biomass in the obtained state, or the biomass after crushing the obtained biomass into an arbitrary shape and size.
For example, palm palm empty fruit bunch and the like can be used as they are obtained.
Biomass is crushed and semi-carbonized by steam blasting. For example, when the biomass is chip-shaped biomass (biomass chips), the biomass chips are crushed by steam blasting into biomass powder. The obtained biomass powder (blasted biomass) is in a semi-carbonized state.
 水蒸気爆砕の温度は、好ましくは100℃以上300℃以下、より好ましくは100℃以上280℃以下である。
 水蒸気爆砕の圧力は、好ましくは0.1MPa以上9.0MPa以下、より好ましくは1.0MPa以上6.5MPa以下である。
 水蒸気爆砕の時間は、好ましくは10分以上60分以下、より好ましくは15分以上30分以下である。
The temperature of steam blasting is preferably 100 ° C. or higher and 300 ° C. or lower, more preferably 100 ° C. or higher and 280 ° C. or lower.
The pressure of steam blasting is preferably 0.1 MPa or more and 9.0 MPa or less, and more preferably 1.0 MPa or more and 6.5 MPa or less.
The steam blasting time is preferably 10 minutes or more and 60 minutes or less, and more preferably 15 minutes or more and 30 minutes or less.
 爆砕済バイオマスを得る工程において、前記水蒸気爆砕は、密閉容器中で、100℃以上300℃以下、0.1MPa以上9.0MPa以下の飽和水蒸気下で行うことが好ましく、100℃以上280℃以下、1.0MPa以上6.5MPa以下の飽和水蒸気下で行うことがより好ましい。 In the step of obtaining the blasted biomass, the steam blasting is preferably carried out in a closed container under saturated steam of 100 ° C. or higher and 300 ° C. or lower, 0.1 MPa or higher and 9.0 MPa or lower, and 100 ° C. or higher and 280 ° C. or lower. More preferably, it is carried out under saturated steam of 1.0 MPa or more and 6.5 MPa or less.
 爆砕済バイオマスを得る工程で得られるバイオマスの大きさは、水蒸気爆砕に用いるバイオマスの大きさ及び形状により異なる。
 例えば、バイオマスの形状がチップ状(バイオマスチップ)である場合、爆砕済バイオマスを得る工程で得られるバイオマス粉の長軸径は、1000μm以下であることが好ましく、500μm以下であることがより好ましい。
 本明細書において、長軸径とは、最大径のことである。例えば、バイオマス粉の長軸径とは、バイオマス粉の外側輪郭線上の任意の2点を直線で結んだ時の直線の最大長さを意味する。
The size of the biomass obtained in the process of obtaining the blasted biomass varies depending on the size and shape of the biomass used for steam blasting.
For example, when the shape of the biomass is a chip (biomass chip), the major axis diameter of the biomass powder obtained in the step of obtaining the blasted biomass is preferably 1000 μm or less, more preferably 500 μm or less.
In the present specification, the major axis diameter is the maximum diameter. For example, the major axis diameter of the biomass powder means the maximum length of a straight line when any two points on the outer contour line of the biomass powder are connected by a straight line.
(バイオマスペレットを得る工程)
 本実施形態の製造方法において、バイオマスペレットを得る工程は、前記爆砕済バイオマスを成型してバイオマスペレットを得る工程である。
 本明細書において、ペレットは、ブリケットを包含する。ペレットの大きさ及び形状は特に限定されないが、ペレットは、通常、円筒状であり、好ましくは直径5mm以上10mm以下、長さ5mm以上50mm以下である。
 本実施形態において、バイオマスペレットは、水蒸気爆砕で得られた前記爆砕済バイオマスを、金属穴(例えば、直径5mm以上10mm以下、長さ5mm以上50mm以下)から押し出すことで作製できる。また、バイオマスペレットは、例えば、リングダイ方式またはフラットダイ方式等のペレタイザーを用いて作製できる。
 また、バイオマスペレットは、例えば、ブリケットマシーンを用いて豆炭状または円筒状に成型することでも作製できる。
(Process to obtain biomass pellets)
In the production method of the present embodiment, the step of obtaining biomass pellets is a step of molding the blasted biomass to obtain biomass pellets.
As used herein, pellets include briquettes. The size and shape of the pellets are not particularly limited, but the pellets are usually cylindrical, preferably 5 mm or more and 10 mm or less in diameter, and 5 mm or more and 50 mm or less in length.
In the present embodiment, the biomass pellet can be produced by extruding the crushed biomass obtained by steam blasting from a metal hole (for example, a diameter of 5 mm or more and 10 mm or less and a length of 5 mm or more and 50 mm or less). Further, the biomass pellets can be produced by using, for example, a pelletizer such as a ring die method or a flat die method.
Biomass pellets can also be produced, for example, by molding into a charcoal-like or cylindrical shape using a briquette machine.
(ペレット加熱工程)
 本実施形態の製造方法において、ペレット加熱工程は、バイオマスペレットを180℃以上で5分以上加熱する工程である。
 ペレット加熱工程は、溶出成分の不溶化の観点から、バイオマスペレットを、190℃以上で5分以上加熱することが好ましく、200℃以上で5分以上加熱することがより好ましく、205℃以上で5分以上加熱することがさらに好ましく、210℃以上で5分以上加熱することがさらに好ましい。
 ペレット加熱工程における上限の温度は、CODの溶出を低減しつつ、燃料に求められる特性(例えば、HGI、高位発熱量、かさ密度、及び機械的耐久性)をバランスよく確保する観点、またより少ないエネルギーでCODの溶出を低減するという観点から、高すぎないことが好ましく、具体的には、270℃以下であることが好ましく、265℃以下であることがより好ましく、260℃以下であることがさらに好ましい。
 ペレット加熱工程において、バイオマスペレットを180℃以上で加熱する時間(加熱時間)は、短時間でCODの溶出を低減させる観点から、好ましくは240分以下、より好ましくは120分以下、さらに好ましくは60分以下、さらに好ましくは50分以下、さらに好ましくは40分以下である。
 バイオマスペレットの前記加熱時間とは、180℃から目的の温度に到達するまでの時間と、目的の温度での保持時間とを合算した時間をいう。
 例えば、バイオマスペレットを室温(25℃)から昇温速度5℃/分で230℃(目的の温度)まで加熱し、230℃で0分保持した場合、バイオマスペレットの前記加熱時間は、180℃から230℃に到達するまでの時間(10分)と、230℃での保持時間(0分)とを合算し、10分と算出される。以下の説明では、目的の温度を到達温度と称することがある。
 ペレット加熱工程は、昇温速度3℃/分以上60℃/分以下(好ましくは3℃/分以上30℃/分以下)で目的の温度まで加熱することが好ましい。目的の温度(到達温度)は、270℃以下であることが好ましく、265℃以下であることがより好ましく、260℃以下であることがさらに好ましい。
 その結果、CODの溶出を低減でき、かつバイオマスペレットの前記加熱時間を大幅に短縮できる。
(Pellet heating process)
In the production method of the present embodiment, the pellet heating step is a step of heating the biomass pellets at 180 ° C. or higher for 5 minutes or longer.
In the pellet heating step, from the viewpoint of insolubilizing the eluted components, it is preferable to heat the biomass pellets at 190 ° C. or higher for 5 minutes or longer, more preferably at 200 ° C. or higher for 5 minutes or longer, and at 205 ° C. or higher for 5 minutes or longer. It is more preferable to heat above, and it is further preferable to heat at 210 ° C. or higher for 5 minutes or longer.
The upper limit temperature in the pellet heating process is less from the viewpoint of ensuring a good balance of the characteristics required for fuel (for example, HGI, high calorific value, bulk density, and mechanical durability) while reducing COD elution. From the viewpoint of reducing the elution of COD with energy, it is preferably not too high, specifically, 270 ° C. or lower, more preferably 265 ° C. or lower, and 260 ° C. or lower. More preferred.
In the pellet heating step, the time (heating time) for heating the biomass pellet at 180 ° C. or higher is preferably 240 minutes or less, more preferably 120 minutes or less, still more preferably 60, from the viewpoint of reducing the elution of COD in a short time. Minutes or less, more preferably 50 minutes or less, still more preferably 40 minutes or less.
The heating time of the biomass pellet means the total time of the time from 180 ° C. to reach the target temperature and the holding time at the target temperature.
For example, when the biomass pellet is heated from room temperature (25 ° C.) to 230 ° C. (target temperature) at a heating rate of 5 ° C./min and held at 230 ° C. for 0 minutes, the heating time of the biomass pellet is from 180 ° C. The time required to reach 230 ° C. (10 minutes) and the holding time at 230 ° C. (0 minutes) are added up to calculate 10 minutes. In the following description, the target temperature may be referred to as the ultimate temperature.
In the pellet heating step, it is preferable to heat to a target temperature at a heating rate of 3 ° C./min or more and 60 ° C./min or less (preferably 3 ° C./min or more and 30 ° C./min or less). The target temperature (reached temperature) is preferably 270 ° C. or lower, more preferably 265 ° C. or lower, and even more preferably 260 ° C. or lower.
As a result, the elution of COD can be reduced, and the heating time of the biomass pellet can be significantly shortened.
 ペレット加熱工程における雰囲気は、低酸素濃度であることが好ましく、具体的には、酸素濃度5質量%以下であることが好ましく、酸素濃度3質量%以下であることがより好ましい。
 ペレット加熱工程における低酸素濃度雰囲気としては、例えば、不活性ガス雰囲気が挙げられる。不活性ガス雰囲気としては、例えば、窒素ガス、アルゴンガス、炭酸ガス、及び燃焼排ガスから選択される少なくとも1種の不活性ガス雰囲気が挙げられる。
The atmosphere in the pellet heating step is preferably a low oxygen concentration, specifically, an oxygen concentration of 5% by mass or less, and more preferably an oxygen concentration of 3% by mass or less.
Examples of the low oxygen concentration atmosphere in the pellet heating step include an inert gas atmosphere. Examples of the inert gas atmosphere include at least one inert gas atmosphere selected from nitrogen gas, argon gas, carbon dioxide gas, and combustion exhaust gas.
 ペレット加熱工程は、酸素濃度5質量%以下で、バイオマスペレットを5分以上60分以下で加熱することが好ましく、酸素濃度5質量%以下で、バイオマスペレットを5分以上50分以下で加熱することがより好ましく、酸素濃度3質量%以下で、バイオマスペレットを5分以上50分以下で加熱することがさらに好ましい。 In the pellet heating step, the biomass pellet is preferably heated at an oxygen concentration of 5% by mass or less and the biomass pellet is heated at 5 minutes or more and 60 minutes or less, and the biomass pellet is heated at an oxygen concentration of 5% by mass or less and at 5 minutes or more and 50 minutes or less. Is more preferable, and it is more preferable to heat the biomass pellets at an oxygen concentration of 3% by mass or less and for 5 minutes or more and 50 minutes or less.
 本実施形態の製造方法において、ペレット加熱工程を実施する前のバイオマスペレットのCODに対し、ペレット加熱工程を実施した後のバイオマスペレットのCODが1/6以下になるように、ペレット加熱工程を実施することがより好ましい。
 具体的には、ペレット加熱工程を実施する前のバイオマスペレットのCOD(単位:mg/L)に対する、ペレット加熱工程を実施した後のバイオマスペレットのCOD(単位:mg/L)の比(ペレット加熱工程を実施した後のバイオマスペレットのCOD/ペレット加熱工程を実施する前のバイオマスペレットのCOD)は、好ましくは1/6以下、より好ましくは1/8以下、さらに好ましくは1/10以下、さらに好ましくは1/15以下、さらに好ましくは1/16以下、さらに好ましくは1/18以下、さらに好ましくは1/20以下、さらに好ましくは1/25以下、さらに好ましくは1/30以下である。
In the production method of the present embodiment, the pellet heating step is carried out so that the COD of the biomass pellets after the pellet heating step is 1/6 or less of the COD of the biomass pellets before the pellet heating step is carried out. It is more preferable to do so.
Specifically, the ratio of the COD (unit: mg / L) of the biomass pellets after the pellet heating step to the COD (unit: mg / L) of the biomass pellets before the pellet heating step (pellet heating). The COD of the biomass pellet after the step is carried out / the COD of the biomass pellet before the pellet heating step is carried out is preferably 1/6 or less, more preferably 1/8 or less, still more preferably 1/10 or less, and further. It is preferably 1/15 or less, more preferably 1/16 or less, still more preferably 1/18 or less, still more preferably 1/20 or less, still more preferably 1/25 or less, still more preferably 1/30 or less.
(第1の粉砕工程)
 本実施形態の製造方法において、前記爆砕済バイオマスを得る工程の前に、前記バイオマスを粉砕する第1の粉砕工程を有することが好ましい。
 第1の粉砕工程における粉砕の一態様としては、入手したバイオマスを水蒸気爆砕装置に導入し易い形状(例えば、チップ状及び長尺状等)に粉砕する態様が挙げられる。
 粉砕方法は特に限定されず、公知の粉砕機を用いて、バイオマスをチップ状及び長尺状等に粉砕することができる。
 チップの大きさは特に限定されないが、例えば、木質系バイオマスをチップ状に粉砕する場合、長軸径は5.0cm以下が好ましく、1.0cm以下がより好ましい。
(First crushing step)
In the production method of the present embodiment, it is preferable to have a first crushing step of crushing the biomass before the step of obtaining the crushed biomass.
As one mode of crushing in the first crushing step, there is a mode in which the obtained biomass is crushed into a shape (for example, a chip shape or a long shape) that can be easily introduced into a steam blasting apparatus.
The crushing method is not particularly limited, and the biomass can be crushed into chips, long shapes, or the like using a known crusher.
The size of the chip is not particularly limited, but for example, when woody biomass is crushed into chips, the major axis diameter is preferably 5.0 cm or less, more preferably 1.0 cm or less.
(第2の粉砕工程)
 本実施形態の製造方法において、前記爆砕済バイオマスを得る工程の後に、前記爆砕済バイオマスを粉砕する第2の粉砕工程を有することも好ましい。
 第2の粉砕工程における粉砕の一態様としては、比較的大きいサイズのバイオマス(例えば、長軸径が数十センチオーダー)を水蒸気爆砕した場合に、爆砕済バイオマスをさらに粉砕する態様が挙げられる。
(Second crushing step)
In the production method of the present embodiment, it is also preferable to have a second crushing step of crushing the crushed biomass after the step of obtaining the blasted biomass.
One mode of crushing in the second crushing step is a mode in which the crushed biomass is further crushed when a relatively large size biomass (for example, a major axis diameter on the order of several tens of centimeters) is steam crushed.
(第1の乾燥工程)
 本実施形態の製造方法において、前記爆砕済バイオマスを得る工程の前に、前記バイオマスを乾燥する第1の乾燥工程を有することが好ましい。
 第1の乾燥工程は、バイオマスを乾燥させ、バイオマスの含水率を調整する工程である。第1の乾燥工程は、自然乾燥であってもよいし、加熱乾燥であってもよい。
 バイオマスの乾燥温度及び乾燥時間は、バイオマス種及び大きさにより適宜選択される。例えば、バイオマスの乾燥時間は、30分以上であることが好ましい。
 第1の乾燥工程で得られるバイオマスの含水率は、好ましくは10質量%以上20質量%以下、より好ましくは10質量%以上15質量%以下である。バイオマスの含水率を10質量%以上20質量%以下に調整することにより、水蒸気爆砕時に、個々のバイオマスに飽和水蒸気が均等に含まれ易くなるため、均一な水蒸気爆砕が期待される。よって、第1の乾燥工程でバイオマスを乾燥させることにより、爆砕済バイオマスを得る工程で、より均一な性状を有する爆砕済バイオマスを得ることができる。
(First drying step)
In the production method of the present embodiment, it is preferable to have a first drying step of drying the biomass before the step of obtaining the crushed biomass.
The first drying step is a step of drying the biomass and adjusting the water content of the biomass. The first drying step may be natural drying or heat drying.
The drying temperature and drying time of the biomass are appropriately selected depending on the biomass species and size. For example, the drying time of biomass is preferably 30 minutes or more.
The water content of the biomass obtained in the first drying step is preferably 10% by mass or more and 20% by mass or less, and more preferably 10% by mass or more and 15% by mass or less. By adjusting the water content of the biomass to 10% by mass or more and 20% by mass or less, saturated steam is likely to be evenly contained in each biomass during steam explosion, so that uniform steam explosion is expected. Therefore, by drying the biomass in the first drying step, it is possible to obtain the blasted biomass having more uniform properties in the step of obtaining the blasted biomass.
(第2の乾燥工程)
 本実施形態の製造方法において、前記爆砕済バイオマスを得る工程の後に、前記爆砕済バイオマスを乾燥する第2の乾燥工程を有することも好ましい。
 第2の乾燥工程は、水蒸気爆砕でバイオマスに付着した水分を乾燥させることにより、爆砕済バイオマスの含水率を調整する工程である。第2の乾燥工程は、自然乾燥であってもよいし、加熱乾燥であってもよい。
 爆砕済バイオマスの乾燥温度及び乾燥時間は、爆砕済バイオマスのバイオマス種及び大きさにより適宜選択される。例えば、爆砕済バイオマスの乾燥時間は、30分以上であることが好ましい。
 第2の乾燥工程で得られる爆砕済バイオマスの含水率は、好ましくは10質量%以上20質量%以下、より好ましくは10質量%以上15質量%以下である。
 第2の乾燥工程で、含水率が10質量%以上20質量%以下になるように爆砕済バイオマスを乾燥させることにより、バイオマスペレットを得る工程で、ペレットの成型性が向上する。
(Second drying step)
In the production method of the present embodiment, it is also preferable to have a second drying step of drying the blasted biomass after the step of obtaining the blasted biomass.
The second drying step is a step of adjusting the water content of the crushed biomass by drying the water adhering to the biomass by steam blasting. The second drying step may be natural drying or heat drying.
The drying temperature and drying time of the blasted biomass are appropriately selected according to the biomass species and size of the blasted biomass. For example, the drying time of the blasted biomass is preferably 30 minutes or more.
The water content of the crushed biomass obtained in the second drying step is preferably 10% by mass or more and 20% by mass or less, and more preferably 10% by mass or more and 15% by mass or less.
In the second drying step, the explosive biomass is dried so that the water content is 10% by mass or more and 20% by mass or less, so that the formability of the pellets is improved in the step of obtaining the biomass pellets.
 本実施形態の製造方法において、第1の乾燥工程及び第2の乾燥工程を共に実施してもよい。第1の乾燥工程及び第2の乾燥工程を共に実施することで、より均一な性状のバイオマスペレットが得られることとなる。 In the manufacturing method of this embodiment, the first drying step and the second drying step may be carried out together. By carrying out both the first drying step and the second drying step, biomass pellets having more uniform properties can be obtained.
 本実施形態の製造方法は、バイオマスを洗浄する洗浄工程を有してもよい。
 洗浄工程は、第1の乾燥工程の前に実施することが好ましい。
 洗浄工程の実施により、バイオマスの表面に付着しているアルカリ金属成分が除去される。これにより、バイオマスペレットをボイラで燃焼した際に懸念される灰付着が起こりづらい燃料となる。
 洗浄工程に使用される洗浄水は、水やお湯等、公知の洗浄液を用いることができる。洗浄時間、及び洗浄回数は特に限定されない。
The production method of the present embodiment may include a washing step of washing the biomass.
The washing step is preferably carried out before the first drying step.
By carrying out the washing step, the alkali metal component adhering to the surface of the biomass is removed. As a result, it becomes a fuel in which ash adhesion, which is a concern when the biomass pellets are burned in a boiler, is unlikely to occur.
As the washing water used in the washing step, a known washing liquid such as water or hot water can be used. The washing time and the number of washings are not particularly limited.
 本実施形態の製造方法は、爆砕済バイオマスを得る工程と、バイオマスペレットを得る工程と、ペレット加熱工程とを有するが、必要に応じて、第1の粉砕工程、第2の粉砕工程、第1の乾燥工程、第2の乾燥工程及び洗浄工程の少なくともいずれかを有してもよい。本実施形態の製造方法の実施順序は特に限定されないが、以下の順で実施することが好ましい。
(1)爆砕済バイオマスを得る工程、バイオマスペレットを得る工程、及びペレット加熱工程。
(2)第1の乾燥工程、爆砕済バイオマスを得る工程、第2の粉砕工程、バイオマスペレットを得る工程、及びペレット加熱工程。
(3)洗浄工程、第1の粉砕工程、爆砕済バイオマスを得る工程、第2の乾燥工程、バイオマスペレットを得る工程、及びペレット加熱工程。
(4)洗浄工程、第1の乾燥工程、第1の粉砕工程、爆砕済バイオマスを得る工程、バイオマスペレットを得る工程、及びペレット加熱工程。
(5)洗浄工程、第1の乾燥工程、第1の粉砕工程、爆砕済バイオマスを得る工程、第2の乾燥工程、バイオマスペレットを得る工程、及びペレット加熱工程等。
The production method of the present embodiment includes a step of obtaining crushed biomass, a step of obtaining biomass pellets, and a pellet heating step, and if necessary, a first crushing step, a second crushing step, and a first It may have at least one of a drying step, a second drying step and a washing step of the above. The order of implementation of the production method of the present embodiment is not particularly limited, but it is preferable to carry out the method in the following order.
(1) A step of obtaining crushed biomass, a step of obtaining biomass pellets, and a step of heating pellets.
(2) A first drying step, a step of obtaining crushed biomass, a second crushing step, a step of obtaining biomass pellets, and a pellet heating step.
(3) Cleaning step, first crushing step, step of obtaining blasted biomass, second drying step, step of obtaining biomass pellets, and pellet heating step.
(4) Cleaning step, first drying step, first crushing step, step of obtaining blasted biomass, step of obtaining biomass pellets, and step of heating pellets.
(5) Cleaning step, first drying step, first crushing step, step of obtaining blasted biomass, second drying step, step of obtaining biomass pellets, pellet heating step and the like.
(その他成分)
 本実施形態の製造方法で得られるバイオマス固形燃料は、本実施形態の効果を損なわない限り、バイオマス以外のその他成分を含んでもよい。
 その他成分としては特に限定されないが、バインダー及び各種添加剤等が挙げられる。
 バインダーとしては、例えば、リグニン、及びアクリル酸アミド等が挙げられる。
 バイオマス固形燃料中におけるバインダーの含有量は、好ましくは0質量%以上50質量%以下、より好ましくは0質量%以上10質量%以下である。
 バイオマス固形燃料がバインダーを含む場合、前記バイオマスペレットを得る工程において、爆砕済バイオマスとバインダーとの混合物を成型することが好ましい。
(Other ingredients)
The biomass solid fuel obtained by the production method of the present embodiment may contain other components other than biomass as long as the effects of the present embodiment are not impaired.
The other components are not particularly limited, and examples thereof include binders and various additives.
Examples of the binder include lignin and acrylic acid amide.
The content of the binder in the biomass solid fuel is preferably 0% by mass or more and 50% by mass or less, and more preferably 0% by mass or more and 10% by mass or less.
When the biomass solid fuel contains a binder, it is preferable to mold a mixture of the blasted biomass and the binder in the step of obtaining the biomass pellets.
〔バイオマス固形燃料の使用態様〕
 本実施形態の製造方法で得られたバイオマス固形燃料は、発電所、製鉄所、及び工場等で広く用いることができる。本実施形態のバイオマス固形燃料は、単独で燃焼させて用いてもよいし、石炭等の他の燃料と混合して燃焼(混焼)させてもよい。
 例えば、バイオマス固形燃料を火力発電設備で用いる場合、バイオマス固形燃料を粉砕機で粉砕してボイラに導入してもよいし、大きさによってはそのままボイラに導入してもよい。
 また、バイオマス固形燃料を石炭と混合して用いることも好ましく、その場合、既存の火力発電設備を用いて、例えば、石炭粉砕機を利用して、バイオマス固形燃料を石炭と共に粉砕し、これらをボイラに導入してもよい。
 また、バイオマス固形燃料を石炭粉砕機とは別の粉砕機(例えば、バイオマス固形燃料用粉砕機)で粉砕した後、別途粉砕された石炭と混合して、これらをボイラに導入してもよい。バイオマス固形燃料の使用態様は上記に限定されない。
[Usage of biomass solid fuel]
The biomass solid fuel obtained by the production method of the present embodiment can be widely used in power plants, steelworks, factories and the like. The biomass solid fuel of the present embodiment may be used by being burned alone, or may be mixed with other fuels such as coal and burned (co-firing).
For example, when the biomass solid fuel is used in a thermal power generation facility, the biomass solid fuel may be crushed by a crusher and introduced into a boiler, or may be introduced into a boiler as it is depending on the size.
It is also preferable to use the biomass solid fuel mixed with coal. In that case, the biomass solid fuel is crushed together with coal using an existing thermal power generation facility, for example, using a coal crusher, and these are boilers. May be introduced in.
Further, the biomass solid fuel may be crushed by a crusher different from the coal crusher (for example, a crusher for biomass solid fuel), mixed with coal crushed separately, and introduced into the boiler. The usage mode of the biomass solid fuel is not limited to the above.
〔第2実施形態〕
〔バイオマス固形燃料〕
 第2実施形態のバイオマス固形燃料は、第1実施形態に係るバイオマス固形燃料の製造方法で得られる。
 第2実施形態のバイオマス固形燃料は、CODが1,000mg/L以下であり、ハードグローブ粉砕性指数(HGI)が25以上であり、機械的耐久性が93%以上であり、ドライベースの高位発熱量が5,000kcal/kg以上であり、かさ密度が680kg/m以上である。
 第2実施形態のバイオマス固形燃料によれば、CODの溶出が低減される。
[Second Embodiment]
[Biomass solid fuel]
The biomass solid fuel of the second embodiment is obtained by the method for producing a biomass solid fuel according to the first embodiment.
The biomass solid fuel of the second embodiment has a COD of 1,000 mg / L or less, a hardgrove grindability index (HGI) of 25 or more, a mechanical durability of 93% or more, and a high dry base. The calorific value is 5,000 kcal / kg or more, and the bulk density is 680 kg / m 3 or more.
According to the biomass solid fuel of the second embodiment, the elution of COD is reduced.
 第2実施形態のバイオマス固形燃料において、CODの溶出を低減しつつ、燃料に求められる特性をバランスよく確保する観点から、COD、HGI、機械的耐久性、ドライベースの高位発熱量、及びかさ密度の好ましい範囲は以下の通りである。 In the biomass solid fuel of the second embodiment, from the viewpoint of reducing the elution of COD and ensuring a well-balanced characteristic required for the fuel, COD, HGI, mechanical durability, high calorific value of dry base, and bulk density. The preferred range of is as follows.
(COD)
 第2実施形態のバイオマス固形燃料は、CODが1,000mg/L以下である。CODは、好ましくは400mg/L以下、より好ましくは200mg/L以下である。
 CODの測定方法は、実施例に記載した通りである。
(COD)
The biomass solid fuel of the second embodiment has a COD of 1,000 mg / L or less. The COD is preferably 400 mg / L or less, more preferably 200 mg / L or less.
The method for measuring COD is as described in the examples.
(ハードグローブ粉砕性指数(HGI))
 第2実施形態のバイオマス固形燃料は、HGIが25以上である。HGIは、好ましくは27.5以上、より好ましくは30以上である。
 HGIの測定方法は、実施例に記載した通りである。
(Hardgrove Grindability Index (HGI))
The biomass solid fuel of the second embodiment has an HGI of 25 or more. The HGI is preferably 27.5 or more, more preferably 30 or more.
The method for measuring HGI is as described in Examples.
(機械的耐久性)
 第2実施形態のバイオマス固形燃料は、機械的耐久性が93%以上である。機械的耐久性は、好ましくは95%以上、より好ましくは97%以上である。
 機械的耐久性の測定方法は、実施例に記載した通りである。
(Mechanical durability)
The biomass solid fuel of the second embodiment has a mechanical durability of 93% or more. The mechanical durability is preferably 95% or more, more preferably 97% or more.
The method for measuring the mechanical durability is as described in the examples.
(ドライベースの高位発熱量)
 第2実施形態のバイオマス固形燃料は、ドライベースの高位発熱量が5,000kcal/kg以上である。ドライベースの高位発熱量は、好ましくは5,150kcal/kg以上、より好ましくは5,300kcal/kg以上である。
 気乾ベースの高位発熱量の測定方法は、実施例に記載した通りである。
(High calorific value of dry base)
The biomass solid fuel of the second embodiment has a dry base high calorific value of 5,000 kcal / kg or more. The high calorific value of the dry base is preferably 5,150 kcal / kg or more, more preferably 5,300 kcal / kg or more.
The method for measuring the high calorific value of the air-dry base is as described in the examples.
(かさ密度)
 第2実施形態のバイオマス固形燃料は、かさ密度が680kg/m以上である。かさ密度は、好ましくは700kg/m以上、より好ましくは720kg/m以上である。
(Bulk density)
The biomass solid fuel of the second embodiment has a bulk density of 680 kg / m 3 or more. The bulk density is preferably 700 kg / m 3 or more, more preferably 720 kg / m 3 or more.
 第2実施形態のバイオマス固形燃料のうち、よりCODが低減されたバイオマス固形燃料、すなわち、CODが350mg/L以下(好ましくは200mg/L以下)であり、ハードグローブ粉砕性指数(HGI)が25以上であり、機械的耐久性が93%以上であり、ドライベースの高位発熱量が5,000kcal/kg以上であり、かさ密度が680kg/m以上であるバイオマス固形燃料は、例えば、下記態様Aの製造方法で製造される。態様Aの製造方法は、第1実施形態の製造方法の一態様である。 Among the biomass solid fuels of the second embodiment, the biomass solid fuel having a further reduced COD, that is, the COD is 350 mg / L or less (preferably 200 mg / L or less), and the Hardgrove Grindability Index (HGI) is 25. The biomass solid fuel having the above, the mechanical durability of 93% or more, the high calorific value of the dry base of 5,000 kcal / kg or more, and the bulk density of 680 kg / m 3 or more is, for example, the following aspects. It is manufactured by the manufacturing method of A. The manufacturing method of the aspect A is one aspect of the manufacturing method of the first embodiment.
(態様Aの製造方法)
 態様Aの製造方法は、
 バイオマスを水蒸気爆砕して爆砕済バイオマスを得る工程と、
 前記爆砕済バイオマスを成型してバイオマスペレットを得る工程と、
 前記バイオマスペレットを210℃以上(好ましくは230℃以上)、20分以上60分以下の条件で加熱するペレット加熱工程と、を有する。
(Manufacturing method of aspect A)
The manufacturing method of Aspect A is
The process of steam-blasting biomass to obtain crushed biomass,
The process of molding the crushed biomass to obtain biomass pellets,
It has a pellet heating step of heating the biomass pellets under the conditions of 210 ° C. or higher (preferably 230 ° C. or higher) and 20 minutes or longer and 60 minutes or lower.
〔他の実施形態〕
 本発明は、上述の実施形態に限定されず、本発明の目的を達成できる範囲での変更、改良等は、本発明に含まれる。
[Other Embodiments]
The present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the range in which the object of the present invention can be achieved are included in the present invention.
 以下、本発明に係る実施例を説明する。本発明はこれらの実施例によって何ら限定されない。 Hereinafter, examples according to the present invention will be described. The present invention is not limited to these examples.
 実施例及び比較例で使用したバイオマスの性状を表1に示す。 Table 1 shows the properties of the biomass used in the examples and comparative examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
・表1の説明
 工業分析値は、JIS M8812(2004)に準拠して測定した値である。
 元素分析値のうち炭素、水素、窒素及び硫黄は、JIS M8819(1997)に準拠して測定した値であり、酸素はJIS M8813(2004)に準拠して、他の分析値から算出した値である。
 高位発熱量は、JIS M8814(2003)に準拠して測定した値である。
 燃料比は、「固定炭素/揮発分」である。
 ドライベース(DB)の発熱量は、乾燥状態での発熱量を表す。
 「ad」は、Air Dry Basisの略で、気乾ベースを表し、大気中で乾燥させた状態を表す。
 「daf」は、Dry Ash Freeの略で、無水無灰ベースを表し、バイオマスに水分と灰分とが含まれないと仮定した仮想状態を表す。分析値から換算により求める。
-Explanation of Table 1 The industrial analysis values are values measured in accordance with JIS M8812 (2004).
Of the elemental analysis values, carbon, hydrogen, nitrogen and sulfur are values measured in accordance with JIS M8819 (1997), and oxygen is a value calculated from other analysis values in accordance with JIS M8813 (2004). be.
The high calorific value is a value measured according to JIS M8814 (2003).
The fuel ratio is "fixed carbon / volatile matter".
The calorific value of the dry base (DB) represents the calorific value in the dry state.
"Ad" is an abbreviation for Air Dry Basis, which represents an air-drying base and represents a state of being dried in the air.
"Daf" is an abbreviation for Dry Ash Free, and represents an anhydrous ash-free base, and represents a virtual state assuming that biomass does not contain water and ash. Obtained by conversion from the analyzed value.
〔実施例1-1〕
(爆砕済バイオマスを得る工程)
 バイオマス(木質系1)を粉砕機にて粉砕し、バイオマスチップを得た。
 含水率が10質量%以上12質量%以下になるように、バイオマスチップを乾燥機で乾燥させた。
 乾燥したバイオマスチップを耐圧容器に設置した。耐圧容器に水蒸気を導入し、以下の条件で、バイオマスチップを飽和水蒸気によって蒸煮(水蒸気爆砕)した。その後、急激に大気圧に放出して冷却し、バイオマス粉を得た。
 -条件-
・温度:200℃
・圧力:2.2MPa
・時間:20分間
[Example 1-1]
(Process to obtain crushed biomass)
Biomass (woody type 1) was crushed with a crusher to obtain biomass chips.
The biomass chips were dried in a dryer so that the water content was 10% by mass or more and 12% by mass or less.
The dried biomass chips were placed in a pressure vessel. Steam was introduced into the pressure-resistant container, and the biomass chips were steamed (steam blasted) with saturated steam under the following conditions. Then, it was rapidly released to atmospheric pressure and cooled to obtain biomass powder.
-conditions-
・ Temperature: 200 ℃
-Pressure: 2.2 MPa
・ Time: 20 minutes
(バイオマスペレットを得る工程)
 圧縮成型装置を用いてバイオマス粉を圧縮成型し、円筒状のバイオマスペレット(直径8mm、高さ10mm~40mm)を得た。
(Process to obtain biomass pellets)
Biomass powder was compression-molded using a compression molding apparatus to obtain cylindrical biomass pellets (diameter 8 mm, height 10 mm to 40 mm).
(ペレット加熱工程)
 バイオマスペレットを加熱炉に導入し、昇温速度5℃/分で190℃(到達温度)まで昇温した後、30分間保持した。
 以上の工程により、実施例1-1のバイオマス固形燃料を得た。
(Pellet heating process)
The biomass pellets were introduced into a heating furnace, heated to 190 ° C. (reached temperature) at a heating rate of 5 ° C./min, and then held for 30 minutes.
Through the above steps, the biomass solid fuel of Example 1-1 was obtained.
〔実施例1-2~1-4及び比較例1-2~1-4〕
 ペレット加熱工程における到達温度及び保持時間を表2に記載の到達温度及び保持時間に変更したこと以外、実施例1-1と同様の方法で、実施例1-2~1-4及び比較例1-2~1-4のバイオマス固形燃料を得た。
[Examples 1-2 to 1-4 and Comparative Examples 1-2 to 1-4]
Examples 1-2 to 1-4 and Comparative Example 1 in the same manner as in Example 1-1 except that the ultimate temperature and holding time in the pellet heating step were changed to the reaching temperature and holding time shown in Table 2. -2 to 1-4 biomass solid fuels were obtained.
〔比較例1-1〕
 ペレット加熱工程を実施しなかったこと以外、実施例1-1と同様の方法で、比較例1-1のバイオマス固形燃料(未加熱)を得た。
[Comparative Example 1-1]
The biomass solid fuel (unheated) of Comparative Example 1-1 was obtained in the same manner as in Example 1-1 except that the pellet heating step was not carried out.
〔実施例2-1〕
(バイオマスチップを得る工程)
 バイオマス(木質系2)を粉砕機にて粉砕し、バイオマスチップを得た。
 その後は、実施例1-1と同様の方法で、実施例2-1のバイオマス固形燃料を得た。
[Example 2-1]
(Process to obtain biomass chips)
Biomass (woody type 2) was crushed with a crusher to obtain biomass chips.
After that, the biomass solid fuel of Example 2-1 was obtained in the same manner as in Example 1-1.
〔実施例2-2~2-4及び比較例2-2~2-4〕
 ペレット加熱工程における到達温度及び保持時間を表2に記載の到達温度及び保持時間に変更したこと以外、実施例2-1と同様の方法で、実施例2-2~2-4及び比較例2-2~2-4のバイオマス固形燃料を得た。
[Examples 2-2 to 2-4 and Comparative Examples 2-2 to 2-4]
Examples 2-2 to 2-4 and Comparative Example 2 in the same manner as in Example 2-1 except that the ultimate temperature and holding time in the pellet heating step were changed to the reaching temperature and holding time shown in Table 2. -2 to 2-4 biomass solid fuels were obtained.
〔比較例2-1〕
 ペレット加熱工程を実施しなかったこと以外、実施例2-1と同様の方法で、比較例2-1のバイオマス固形燃料(未加熱)を得た。
[Comparative Example 2-1]
The biomass solid fuel (unheated) of Comparative Example 2-1 was obtained in the same manner as in Example 2-1 except that the pellet heating step was not carried out.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
〔評価〕
 各例で得られたバイオマス固形燃料を用いて以下の評価を行った。
〔evaluation〕
The following evaluation was performed using the biomass solid fuel obtained in each example.
(COD)
 CODの測定に用いる浸漬水は、「産業廃棄物に含まれる金属等の検定方法(昭和48年環境庁告示第13号)」に準拠し、6時間の振とう試験を行い、排水を作製する方法により調製した。
 調製した浸漬水中のCOD濃度を、東亜DKK社製簡易式COD計(COD-60A)で測定した。あらかじめ、ブラックペレット浸漬水中のCOD濃度を公定法(JIS K0102(2016))で測定し、本装置での測定結果との相関から回帰式を求めた。その回帰式から、指定測定方法に換算した測定値を求めた。結果を図1、2に示す。
 図1より、ペレット加熱工程を実施した実施例1-1~1-3は、ペレット加熱工程を実施しなかった比較例1-1及び表2に示す条件で加熱工程を実施した比較例1-2~1-3に比べ、COD(mg/L)の溶出が顕著に低減した。
 特に、到達温度210℃及び230℃で加熱工程を実施した実施例1-2~1-3は、前記加熱工程を実施しなかった比較例1-1に比べ、CODの溶出が1/10以下に低減した。
 実施例2-1~2-3と、比較例2-1~2-3との比較においても、同様の結果であった。
 図1より、到達温度を高くすることで、CODの溶出をより低減できることが確認された。
(COD)
The immersion water used for COD measurement complies with the "Testing method for metals contained in industrial waste (Environmental Agency Notification No. 13 of 1973)" and is subjected to a 6-hour shaking test to prepare wastewater. Prepared by method.
The COD concentration in the prepared immersion water was measured with a simple COD meter (COD-60A) manufactured by Toa DKK Corporation. The COD concentration in the black pellet immersion water was measured in advance by the official method (JIS K0102 (2016)), and the regression equation was obtained from the correlation with the measurement result by this apparatus. From the regression equation, the measured value converted to the specified measurement method was obtained. The results are shown in FIGS. 1 and 2.
From FIG. 1, in Examples 1-1 to 1-3 in which the pellet heating step was carried out, Comparative Example 1-1 in which the pellet heating step was not carried out and Comparative Example 1- in which the heating step was carried out under the conditions shown in Table 2. Compared with 2 to 1-3, the elution of COD (mg / L) was significantly reduced.
In particular, in Examples 1-2 to 1-3 in which the heating steps were carried out at the ultimate temperatures of 210 ° C. and 230 ° C., the elution of COD was 1/10 or less as compared with Comparative Example 1-1 in which the heating steps were not carried out. Reduced to.
Similar results were obtained in the comparison between Examples 2-1 to 2-3 and Comparative Examples 2-1 to 2-3.
From FIG. 1, it was confirmed that the elution of COD can be further reduced by increasing the ultimate temperature.
 図2より、バイオマスペレットを180℃以上で32分間加熱した実施例1-1(到達温度190℃、保持時間30分)は、バイオマスペレットを180℃以上で2分加熱した比較例1-4(到達温度190℃、保持時間0分)に比べ、CODの溶出が顕著に低減した。
 また、バイオマスペレットを180℃以上で10分間加熱した実施例1-4(到達温度230℃、保持時間0分)及びバイオマスペレットを180℃以上で40分間加熱した実施例1-3(到達温度230℃、保持時間30分)は、実施例1-1よりもさらにCODの溶出が低減した。
 実施例2-1(到達温度190℃、保持時間30分)と、比較例2-4(到達温度190℃、保持時間0分)との比較においても、同様の結果であった。
 実施例2-4(到達温度230℃、保持時間0分)及び実施例2-3(到達温度230℃、保持時間30分)と、実施例2-1との比較においても、同様の結果であった。
From FIG. 2, in Example 1-1 (reaching temperature 190 ° C., holding time 30 minutes) in which the biomass pellets were heated at 180 ° C. or higher for 32 minutes, Comparative Example 1-4 (reaching temperature 190 ° C., holding time 30 minutes) in which the biomass pellets were heated at 180 ° C. or higher for 2 minutes ( Compared with the reached temperature of 190 ° C. and holding time of 0 minutes), the elution of COD was significantly reduced.
Further, Example 1-4 (reaching temperature 230 ° C., holding time 0 minutes) in which the biomass pellets were heated at 180 ° C. or higher for 10 minutes and Example 1-3 (reaching temperature 230) in which the biomass pellets were heated at 180 ° C. or higher for 40 minutes. At ° C. and holding time of 30 minutes), the elution of COD was further reduced as compared with Example 1-1.
Similar results were obtained in the comparison between Example 2-1 (reaching temperature 190 ° C., holding time 30 minutes) and Comparative Example 2-4 (reaching temperature 190 ° C., holding time 0 minutes).
Similar results were obtained in the comparison between Example 2-4 (reaching temperature 230 ° C., holding time 0 minutes) and Example 2-3 (reaching temperature 230 ° C., holding time 30 minutes) and Example 2-1. there were.
(ハードグローブ粉砕性指数(HGI))
 実施例1-1~1-3、実施例2-1~2-3、比較例1-1及び比較例2-1で得られたバイオマス固形燃料について、JIS M8801(2008)に準拠する方法でハードグローブ粉砕性指数(HGI)を測定した。結果を図3に示す。
 図3より、ペレット加熱工程を実施した実施例2-1~2-3は、ペレット加熱工程を実施しなかった比較例2-1に比べ、HGIが向上した。
 実施例1-1~1-3と、比較例1-1との比較においても、同様の傾向が見られた。
(Hardgrove Grindability Index (HGI))
The biomass solid fuels obtained in Examples 1-1 to 1-3, Examples 2-1 to 2-3, Comparative Example 1-1 and Comparative Example 2-1 were subjected to a method according to JIS M8801 (2008). Hardgrove Grindability Index (HGI) was measured. The results are shown in FIG.
From FIG. 3, the HGI of Examples 2-1 to 2-3 in which the pellet heating step was carried out was improved as compared with Comparative Example 2-1 in which the pellet heating step was not carried out.
A similar tendency was observed in the comparison between Examples 1-1 to 1-3 and Comparative Example 1-1.
(重量収率)
 下記数式(数1)を用いて、実施例1-1~1-3及び実施例2-1~2-3の重量収率(単位:wt%)を求めた。比較例1-1及び比較例2-1の重量収率(単位:wt%)は、それぞれ100%とした。結果を図4に示す。
(Weight yield)
The weight yields (unit: wt%) of Examples 1-1 to 1-3 and Examples 2-1 to 2-3 were calculated using the following mathematical formula (Equation 1). The weight yield (unit: wt%) of Comparative Example 1-1 and Comparative Example 2-1 was set to 100%, respectively. The results are shown in FIG.
Figure JPOXMLDOC01-appb-M000003

 DB…ドライベース
Figure JPOXMLDOC01-appb-M000003

DB ... Dry base
 図4より、ペレット加熱工程を実施した実施例1-1~1-3は、ペレット加熱工程を実施しなかった比較例1-1に比べ、重量収率が低下した。
 実施例2-1~2-3と、比較例2-1との比較においても、同様の結果であった。
From FIG. 4, the weight yields of Examples 1-1 to 1-3 in which the pellet heating step was carried out were lower than those of Comparative Example 1-1 in which the pellet heating step was not carried out.
Similar results were obtained in the comparison between Examples 2-1 to 2-3 and Comparative Example 2-1.
(ドライベース(DB)の高位発熱量)
 実施例1-1~1-3、実施例2-1~2-3、比較例1-1及び比較例2-1で得られたバイオマス固形燃料について、JIS M8814(2003)に準拠する方法でドライベースの高位発熱量(単位:kcal/kg)を測定した。結果を図5に示す。
 図5より、ペレット加熱工程を実施した実施例1-1~1-3は、ペレット加熱工程を実施しなかった比較例1-1に比べ、高位発熱量が増加した。
 実施例2-1~2-3と、比較例2-1との比較においても、同様の結果であった。
(High calorific value of dry base (DB))
The biomass solid fuels obtained in Examples 1-1 to 1-3, Examples 2-1 to 2-3, Comparative Example 1-1 and Comparative Example 2-1 were subjected to a method according to JIS M8814 (2003). The high calorific value (unit: kcal / kg) of the dry base was measured. The results are shown in FIG.
From FIG. 5, in Examples 1-1 to 1-3 in which the pellet heating step was carried out, the higher calorific value increased as compared with Comparative Example 1-1 in which the pellet heating step was not carried out.
Similar results were obtained in the comparison between Examples 2-1 to 2-3 and Comparative Example 2-1.
(かさ密度)
 実施例1-1~1-3、実施例2-1~2-3、比較例1-1及び比較例2-1で得られたバイオマス固形燃料について、ISO17828に準拠する方法でかさ密度(単位:kg/m)を測定した。結果を図6に示す。
 図6より、ペレット加熱工程を実施した実施例1-1~1-3は、ペレット加熱工程を実施しなかった比較例1-1に比べ、かさ密度が低下した。
 実施例2-1~2-3と、比較例2-1との比較においても、同様の結果であった。
(Bulk density)
The bulk density (unit: unit:) of the biomass solid fuels obtained in Examples 1-1 to 1-3, Examples 2-1 to 2-3, Comparative Example 1-1 and Comparative Example 2-1 by a method conforming to ISO17828. kg / m 3 ) was measured. The results are shown in FIG.
From FIG. 6, the bulk densities of Examples 1-1 to 1-3 in which the pellet heating step was carried out were lower than those of Comparative Example 1-1 in which the pellet heating step was not carried out.
Similar results were obtained in the comparison between Examples 2-1 to 2-3 and Comparative Example 2-1.
(機械的耐久性)
 実施例1-1~1-3、実施例2-1~2-3、比較例1-1で得られたバイオマス固形燃料について、ISO17831-1に準拠する方法で機械的耐久性(単位:%)を測定した。結果を図7に示す。図7中、「AR」は、As Receivedの略で、到着状態のサンプルであることを表す。なお、比較例2-1については、機械的耐久性の測定を行わなかった。
 図7より、ペレット加熱工程を実施した実施例1-1~1-3は、ペレット加熱工程を実施しなかった比較例1-1とほぼ同等の機械的強度であった、
 実施例1-1~1-3及び実施例2-1~2-3のバイオマス固形燃料は、いずれも機械的強度が確保されていた。
(Mechanical durability)
Mechanical durability (unit:%) of the biomass solid fuels obtained in Examples 1-1 to 1-3, Examples 2-1 to 2-3, and Comparative Example 1-1 by a method conforming to ISO17831-1. ) Was measured. The results are shown in FIG. In FIG. 7, “AR” is an abbreviation for As Received and represents a sample in the arriving state. For Comparative Example 2-1 the mechanical durability was not measured.
From FIG. 7, Examples 1-1 to 1-3 in which the pellet heating step was carried out had almost the same mechanical strength as Comparative Example 1-1 in which the pellet heating step was not carried out.
The mechanical strength of each of the biomass solid fuels of Examples 1-1 to 1-3 and Examples 2-1 to 2-3 was ensured.
 本発明の製造方法で得られるバイオマス固形燃料は、CODの溶出が低減されるので、発電所、製鉄所、及び工場等の屋外で貯蔵し得る。 The biomass solid fuel obtained by the production method of the present invention can be stored outdoors in a power plant, a steel mill, a factory, etc. because the elution of COD is reduced.

Claims (9)

  1.  バイオマスを水蒸気爆砕して爆砕済バイオマスを得る工程と、
     前記爆砕済バイオマスを成型してバイオマスペレットを得る工程と、
     前記バイオマスペレットを180℃以上で5分以上加熱するペレット加熱工程と、を有する、
     バイオマス固形燃料の製造方法。
    The process of steam-blasting biomass to obtain crushed biomass,
    The process of molding the crushed biomass to obtain biomass pellets,
    It has a pellet heating step of heating the biomass pellets at 180 ° C. or higher for 5 minutes or longer.
    Method for producing biomass solid fuel.
  2.  請求項1に記載のバイオマス固形燃料の製造方法において、
     前記爆砕済バイオマスを得る工程の前に、前記バイオマスを粉砕する第1の粉砕工程を有する、
     バイオマス固形燃料の製造方法。
    In the method for producing a biomass solid fuel according to claim 1,
    Prior to the step of obtaining the crushed biomass, there is a first crushing step of crushing the biomass.
    Method for producing biomass solid fuel.
  3.  請求項1または請求項2に記載のバイオマス固形燃料の製造方法において、
     前記爆砕済バイオマスを得る工程の後に、前記爆砕済バイオマスを粉砕する第2の粉砕工程を有する、
     バイオマス固形燃料の製造方法。
    In the method for producing a biomass solid fuel according to claim 1 or 2.
    After the step of obtaining the crushed biomass, there is a second crushing step of crushing the crushed biomass.
    Method for producing biomass solid fuel.
  4.  請求項1から請求項3のいずれか一項に記載のバイオマス固形燃料の製造方法において、
     前記爆砕済バイオマスを得る工程の前に、前記バイオマスを乾燥する第1の乾燥工程を有する、
     バイオマス固形燃料の製造方法。
    In the method for producing a biomass solid fuel according to any one of claims 1 to 3.
    Prior to the step of obtaining the crushed biomass, there is a first drying step of drying the biomass.
    Method for producing biomass solid fuel.
  5.  請求項1から請求項4のいずれか一項に記載のバイオマス固形燃料の製造方法において、
     前記爆砕済バイオマスを得る工程の後に、前記爆砕済バイオマスを乾燥する第2の乾燥工程を有する、
     バイオマス固形燃料の製造方法。
    In the method for producing a biomass solid fuel according to any one of claims 1 to 4.
    After the step of obtaining the blasted biomass, there is a second drying step of drying the blasted biomass.
    Method for producing biomass solid fuel.
  6.  請求項1から請求項5のいずれか一項に記載のバイオマス固形燃料の製造方法において、
     前記水蒸気爆砕は、密閉容器中で、100℃以上300℃以下、0.1MPa以上9.0MPa以下の飽和水蒸気下で行う、
     バイオマス固形燃料の製造方法。
    In the method for producing a biomass solid fuel according to any one of claims 1 to 5.
    The steam blasting is carried out in a closed container under saturated steam of 100 ° C. or higher and 300 ° C. or lower and 0.1 MPa or higher and 9.0 MPa or lower.
    Method for producing biomass solid fuel.
  7.  請求項1から請求項6のいずれか一項に記載のバイオマス固形燃料の製造方法において、
     前記ペレット加熱工程は、酸素濃度5質量%以下で、前記バイオマスペレットを5分以上60分以下で加熱する、
     バイオマス固形燃料の製造方法。
    In the method for producing a biomass solid fuel according to any one of claims 1 to 6.
    In the pellet heating step, the biomass pellet is heated in 5 minutes or more and 60 minutes or less at an oxygen concentration of 5% by mass or less.
    Method for producing biomass solid fuel.
  8.  請求項1から請求項7のいずれか一項に記載のバイオマス固形燃料の製造方法において、
     前記ペレット加熱工程を実施する前の前記バイオマスペレットのCODに対し、前記ペレット加熱工程を実施した後の前記バイオマスペレットのCODが1/6以下になるように、前記ペレット加熱工程を実施する、
     バイオマス固形燃料の製造方法。
    In the method for producing a biomass solid fuel according to any one of claims 1 to 7.
    The pellet heating step is carried out so that the COD of the biomass pellets after the pellet heating step is 1/6 or less of the COD of the biomass pellets before the pellet heating step is carried out.
    Method for producing biomass solid fuel.
  9.  請求項1から請求項8のいずれか一項に記載のバイオマス固形燃料の製造方法において、
     前記バイオマスは、木質系バイオマス、草本系バイオマス、農作物残渣バイオマス、及びパーム椰子バイオマスからなる群から選択される少なくとも1種である、
     バイオマス固形燃料の製造方法。
    In the method for producing a biomass solid fuel according to any one of claims 1 to 8.
    The biomass is at least one selected from the group consisting of woody biomass, herbaceous biomass, crop residue biomass, and palm palm biomass.
    Method for producing biomass solid fuel.
PCT/JP2021/047925 2021-01-12 2021-12-23 Biomass solid fuel manufacturing method WO2022153830A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022575505A JPWO2022153830A1 (en) 2021-01-12 2021-12-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-002863 2021-01-12
JP2021002863 2021-01-12

Publications (1)

Publication Number Publication Date
WO2022153830A1 true WO2022153830A1 (en) 2022-07-21

Family

ID=82447267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047925 WO2022153830A1 (en) 2021-01-12 2021-12-23 Biomass solid fuel manufacturing method

Country Status (2)

Country Link
JP (1) JPWO2022153830A1 (en)
WO (1) WO2022153830A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005239907A (en) * 2004-02-27 2005-09-08 Sumitomo Osaka Cement Co Ltd Production process and apparatus of biomass semi-carbonized fuel
WO2006006863A1 (en) * 2004-07-08 2006-01-19 Arbaflame Technology As Process for producing fuel pellets
JP2012011583A (en) * 2010-06-29 2012-01-19 Cdm Consulting Co Ltd Method for processing thinned out wood for fuel and processing device
JP2012512270A (en) * 2008-12-15 2012-05-31 ジルカ バイオマス フュールズ エルエルシー Pellet or briquette manufacturing method
WO2014087949A1 (en) * 2012-12-05 2014-06-12 宇部興産株式会社 Biomass solid fuel
JP2016507634A (en) * 2013-02-20 2016-03-10 アルバフレーム・テクノロジー・アーエスArbaflame Technology As Method and apparatus for producing fuel from biomass

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005239907A (en) * 2004-02-27 2005-09-08 Sumitomo Osaka Cement Co Ltd Production process and apparatus of biomass semi-carbonized fuel
WO2006006863A1 (en) * 2004-07-08 2006-01-19 Arbaflame Technology As Process for producing fuel pellets
JP2012512270A (en) * 2008-12-15 2012-05-31 ジルカ バイオマス フュールズ エルエルシー Pellet or briquette manufacturing method
JP2012011583A (en) * 2010-06-29 2012-01-19 Cdm Consulting Co Ltd Method for processing thinned out wood for fuel and processing device
WO2014087949A1 (en) * 2012-12-05 2014-06-12 宇部興産株式会社 Biomass solid fuel
JP2016507634A (en) * 2013-02-20 2016-03-10 アルバフレーム・テクノロジー・アーエスArbaflame Technology As Method and apparatus for producing fuel from biomass

Also Published As

Publication number Publication date
JPWO2022153830A1 (en) 2022-07-21

Similar Documents

Publication Publication Date Title
Ungureanu et al. Influence of biomass moisture content on pellet properties–review
EP3969548B1 (en) Process for producing solid biomass fuel
Sellin et al. Use of banana culture waste to produce briquettes
JP2018048333A (en) Method for manufacturing fuel pellet and other product from lignocellulosic biomass
de Oliveira Maia et al. Characterization and production of banana crop and rice processing waste briquettes
Obidziñski Pelletization of biomass waste with potato pulp content
EP1990399A1 (en) Method for the treatment of the empty fruit bunch (EFB) material of palm oil trees, particulate torrefied EFB product and use of such product as auxiliary fuel in a power plant
GB2586120A (en) Process for producing solid biomass fuel
US20210332305A1 (en) Process for producing solid biomass fuel
WO2021230007A1 (en) Biobiomass solid fuel production method and biomass solid fuel
JP7449162B2 (en) Method for producing composite solid fuel
Japhet et al. A review of pellet production from biomass residues as domestic fuel
WO2022153830A1 (en) Biomass solid fuel manufacturing method
JP2018145252A (en) Fuel pellet, and method of producing fuel pellet
Gageanu et al. Experimental research on influence of recipes used on quality of biomass pellets
Ajobo Densification characteristics of groundnut shell
JP7410000B2 (en) Biomass fuel production method
Pusparizkita et al. Effect of drying duration on the water content of durian peel waste for bio pellet
WO2023119875A1 (en) Method for producing solid biomass fuel
JP2020200411A (en) Method of producing biomass solid fuel, moisture adjustment method of biomass solid fuel, and biomass solid fuel
GB2592842A (en) Process for producing solid biomass fuel
Lavanya et al. Development of briquettes from cotton stalks with the high-pressure briquetting machine
Wilaipon et al. Charcoal Briquette Using Leftover Firewood Fraction from Burnt-Clay Brick Production: Case Study in Thailand
WO2019220808A1 (en) Method for producing brown coal-containing coke
OYEDEMI Characterisation of fuel briquettes from Gmelina arborea (Roxb) sawdust and maize cob particles using Cissus populnea gum as binder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919717

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022575505

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21919717

Country of ref document: EP

Kind code of ref document: A1