WO2019220808A1 - Method for producing brown coal-containing coke - Google Patents

Method for producing brown coal-containing coke Download PDF

Info

Publication number
WO2019220808A1
WO2019220808A1 PCT/JP2019/015165 JP2019015165W WO2019220808A1 WO 2019220808 A1 WO2019220808 A1 WO 2019220808A1 JP 2019015165 W JP2019015165 W JP 2019015165W WO 2019220808 A1 WO2019220808 A1 WO 2019220808A1
Authority
WO
WIPO (PCT)
Prior art keywords
coke
lignite
biomass
plant
hot
Prior art date
Application number
PCT/JP2019/015165
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 拓也
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2019220808A1 publication Critical patent/WO2019220808A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/08Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form in the form of briquettes, lumps and the like

Definitions

  • the present invention relates to a method for producing coke containing lignite, and particularly to a method for producing coke by hot forming a mixture of lignite and biomass.
  • coking coal widely used as a coke raw material has softening and melting characteristics at 300 ° C. or more and 400 ° C. or less in the process of producing coke.
  • lignite is a low-grade coal containing a very large amount of moisture, and does not have this softening and melting property. For this reason, it is difficult to produce coke having a sufficient strength from lignite by a normal coke production method using a coke oven.
  • Non-Patent Literature 1 reports a method for producing hot-formed coke of lignite and the coke strength.
  • Brown coal has abundant resources among coal, and it is cheaper than ordinary coal and sub-bituminous coal as well as expensive coking coal.
  • the strength of the hot-formed coke of lignite varies greatly depending on the coal type of the lignite as the raw material, and sufficient strength may not be obtained depending on the coal type. Therefore, about the manufacturing method of the hot forming coke using the brown coal proposed so far, there existed a problem that only a part of coal type could be used.
  • the present invention has been made paying attention to the problems as described above, and its purpose is to provide a method for efficiently obtaining high-strength hot-formed coke using cheap and resource-rich lignite. Is to provide.
  • the present inventor has conducted intensive studies and found that the above-described problems can be solved by the following configuration.
  • the method for producing coke according to one aspect of the present invention is a method for producing coke using lignite, a step of mixing lignite and plant-derived biomass to obtain a mixture, a step of hot forming the mixture And a step of coking the hot-formed mixture.
  • FIG. 1 is a graph showing the strength of coke obtained in each example and comparative example.
  • the present inventor has conducted research on the production of hot-formed coke using lignite, and has found that the strength of coke obtained increases as the amount of alkyl carbon (aliphatic carbon) contained in lignite increases. This can be considered for the following reason. In other words, coal was originally fossilized and planted in ancient times, and the higher the degree of coalification, the more aromatic carbon is contained. On the other hand, it is known that lignite with a low degree of coalification contains a lot of lignin structure side chains and cellulose-derived aliphatic carbon in plants. Therefore, it is inferred that the structure close to the original plant body contained in the lignite is a factor that improves the strength in the hot-formed coke of lignite.
  • the method for producing coke of the present embodiment is a method for producing coke using lignite, a step of obtaining a mixture by mixing lignite and plant-derived biomass, a step of hot forming the mixture, and It includes a step of coking the hot-formed mixture.
  • the lignite used in this embodiment is not particularly limited, and any type of lignite can be used.
  • Plant-derived biomass used in the present embodiment can also be used without particular limitation as long as it is a plant-derived biomass.
  • Plant-derived biomass refers to plant-derived organic resources, including wood, dry vegetation, agricultural and forestry waste.
  • the biomass is typically based on cellulose, hemicellulose and lignin.
  • cellulosic biomass such as thinned wood, pruned woody biomass and palm oil residue is preferable from the viewpoint of obtaining coke with higher strength.
  • the plant-derived biomass used in the present embodiment is a biomass subjected to hydrothermal treatment.
  • cellulose, hemicellulose, and lignin which are the main components of plant-derived biomass, hemicellulose that is easily denatured and decomposed thermochemically may have a negative effect in the coking process described later. Therefore, it is desirable to remove especially biomass containing a lot of hemicellulose by hydrothermal treatment. It is considered that hot-formed coke with higher strength can be obtained by using such hydrothermally treated biomass.
  • the temperature of the hydrothermal treatment of this embodiment is preferably about 170 to 220 ° C. It is considered that hemicellulose can be removed within such a temperature range. A more preferable temperature range is about 190 to 210 ° C.
  • the hydrothermal treatment time is preferably about 10 to 60 minutes. If the treatment time is too short, hemicellulose may not be removed sufficiently, while if it is too long, the cost may increase. The treatment time varies within the above range depending on the hydrothermal treatment temperature.
  • the plant-derived biomass is hydrothermally treated
  • drying by adjusting the moisture content by drying, there is an advantage that a large amount of water is prevented from evaporating in the hot molding process in advance, and stable molding can be realized.
  • drying with a water content of 5 to 20% by weight is appropriate.
  • the mixing step it is preferable to pulverize and mix lignite and plant-derived biomass so as to have appropriate sizes.
  • the pulverization can be performed using known pulverization means, and for example, a cutter mill, a ball mill, a hammer mill, or the like can be used.
  • the appropriate size mentioned here for example, it is preferable to grind so that the particle size of both lignite and plant-derived biomass is 106 ⁇ m or less (under 100 mesh sieve). By setting it as such a particle size, it is thought that the intensity
  • the mixing method is not particularly limited. For example, after a predetermined ratio of lignite and plant-derived biomass are put into a mixing vessel or a molding vessel, the raw materials can be mixed by stirring with a stirring rod.
  • the mixing ratio of lignite and plant-derived biomass is preferably adjusted so that the mixing ratio of plant-derived biomass is 1 to 15% by weight.
  • a more preferable mixing ratio is such that the mixing ratio of plant-derived biomass is 3 to 10% by weight.
  • This mixing ratio can also be adjusted as appropriate depending on the type of lignite (type of coal included, etc.). For example, when it is known that the lignite has a low alkyl carbon (aliphatic carbon) content, the strength can be ensured by increasing the amount of plant-derived biomass.
  • the mixture of lignite and plant-derived biomass obtained above is hot-molded.
  • the mixture is put in a molding machine, heated at a temperature of about 120 to 200 ° C., and then pressure-molded by a press machine or the like.
  • the time for heating at the above temperature is, for example, about 5 to 60 minutes.
  • the molding pressure during the pressure molding is preferably about 0.5 to 1.2 t / cm 2 .
  • the shape of the molded product obtained in the hot molding step is not particularly limited and can be molded into a desired shape, for example, a spherical shape or a columnar shape.
  • the hot molded product obtained above is coke.
  • the hot-molded product is charged and placed in a coke oven (dry distillation furnace), and kept at a temperature of 900 ° C. or higher to perform coking in an oxygen-free state.
  • the holding temperature at this time is not particularly limited as long as it is 900 ° C. or higher, but considering the cost and the like, it is realistic to set it to 1200 ° C. or lower.
  • the holding time is preferably about 5 to 20 minutes.
  • the oxygen-free state here is not particularly limited as long as oxygen is not supplied.
  • coking may be performed in an atmosphere under a nitrogen flow.
  • the coke obtained by such a production method of the present embodiment is a useful coke that is inexpensive and has excellent performance because it is excellent in strength despite using lignite as a raw material.
  • the coke obtained in this embodiment can be used effectively as iron-making coke, boiler fuel, kiln fuel, and the like. Furthermore, since the coke of this embodiment uses plant-derived biomass as a part of the coke raw material, CO 2 emissions when using coke as a fuel can also be reduced.
  • the method for producing coke according to one aspect of the present invention is a method for producing coke using lignite, a step of mixing lignite and plant-derived biomass to obtain a mixture, a step of hot forming the mixture And a step of coking the hot-formed mixture.
  • the plant-derived biomass is a biomass obtained by performing a hydrothermal treatment at 190 to 220 ° C. Thereby, it is considered that the above-described effects can be obtained more reliably.
  • the mixing ratio of the plant-derived biomass in the mixture is preferably 1 to 15% by weight. By using such a mixing ratio, it is considered that high strength coke can be obtained more reliably.
  • Example 1 [Hydrothermal treatment of biomass] EFB which is a palm oil industrial residue was treated in hot water at 200 ° C. for 30 minutes to obtain hydrothermally treated biomass. This was dried to a moisture content of 10% and then subjected to the following steps.
  • Muria coal was used as the raw material for lignite. Brown coal and the hydrothermally treated biomass obtained above were pulverized before mixing using an Extreme Mill MX-1100XTS (manufactured by Waring) so that the particle size would be 0.1 mm or less.
  • lignite was mixed with hydrothermally treated biomass at a mixing ratio of 5% by weight and sufficiently mixed with a spatula, and 10 g of the mixture sample was put into a molding machine. Furthermore, after inserting the rod in the upper part, it was stored in a preheated dryer (200 ° C., nitrogen atmosphere) for 120 minutes to heat the sample and the molding machine. Thereafter, using a press machine (a press machine “P-8” manufactured by Riken Seiki Co., Ltd. equipped with a molding machine fixed pore (special order)), the mold was held for 8 minutes at a molding pressure of 1.19 t / cm 2 and molded. The obtained hot molded product was placed in a dry distillation furnace, heated to 1000 ° C. at 3 ° C./min under a nitrogen flow, and after reaching 1000 ° C., held for 10 minutes for coking.
  • a press machine a press machine “P-8” manufactured by Riken Seiki Co., Ltd. equipped with a molding machine fixed pore (special order)
  • Example 2 Coke was produced in the same manner as in Example 1 except that the mixing ratio of lignite and hydrothermally treated biomass charged into the molding machine was changed so that the ratio of hydrothermally treated biomass was 10% by weight.
  • Coke was produced in the same manner as in Example 1 except that hydrothermally treated biomass was not added to the molding machine and only lignite was added.
  • Example 1 brown coal simple
  • Example 1 brown coal hydrothermally treated biomass 5% by weight
  • Example 2 brown coal hydrothermally treated biomass 10% by weight
  • Crushing strength of hot formed coke As is apparent from FIG. 1, the coke of Example 1 shows a crushing strength about three times that of the coke of Comparative Example 1 in which no plant-derived biomass was blended. Even in the case of coke of Example 2, the crushing strength is 1.5 times that of Comparative Example 1.
  • the result of Example 2 suggests that the strength improvement effect is lowered when the amount of hydrothermally treated biomass is too large.
  • Example 2 The reason why the crush strength of the coke of Example 2 was lower than that of Example 1 was that hemicellulose, which decomposes at a relatively low temperature by hydrothermal treatment of biomass, was eluted and removed, but the components that could not be removed were negative at the stage of coking. It is thought that this was because of the influence.
  • the present invention has wide industrial applicability in the technical field related to the energy industry such as biomass and coke.

Abstract

One aspect of the present invention pertains to a method for producing a coke by using brown coal, the method including: a step for obtaining a mixture by mixing brown coal with a plant-derived biomass; a step for performing hot molding of the mixture; and a step for performing coking of the hot-molded mixture.

Description

褐炭含有コークスの製造方法Method for producing lignite-containing coke
 本発明は、褐炭を含有するコークスの製造方法、特に、褐炭とバイオマスの混合物を熱間成型してコークスを製造する方法に関する。 The present invention relates to a method for producing coke containing lignite, and particularly to a method for producing coke by hot forming a mixture of lignite and biomass.
 近年、コークス製造の原料に用いられる原料炭の国際的な需要が増大しており、高品位炭の需給が逼迫するとともに原料炭の価格が高騰している。このため、埋蔵量が豊富で安価な低品位炭を用いてコークスを製造することが望まれている。 In recent years, the international demand for coking coal used as a raw material for coke production has increased, and the supply and demand for high-grade coal has tightened and the price of coking coal has risen. For this reason, it is desired to produce coke using low-grade coal that is rich in reserves and inexpensive.
 昨今、コークス原料として広く使用されている原料炭は、コークスの製造過程における300℃以上400℃以下で軟化溶融特性を有する。一方、褐炭は、水分を非常に多く含む低品位炭であり、この軟化溶融特性を有しない。このため、コークス炉を用いた通常のコークス製造方法では、褐炭から十分な強度のコークスを製造することは困難である。 Recently, coking coal widely used as a coke raw material has softening and melting characteristics at 300 ° C. or more and 400 ° C. or less in the process of producing coke. On the other hand, lignite is a low-grade coal containing a very large amount of moisture, and does not have this softening and melting property. For this reason, it is difficult to produce coke having a sufficient strength from lignite by a normal coke production method using a coke oven.
 燃料等として使用するコークスを褐炭から製造する方法としては、褐炭を圧縮した後、乾留してコークスに成型する方法が知られている。例えば、非特許文献1では、褐炭の熱間成型コークスの製造方法及びコークスの発現強度について報告している。 As a method for producing coke used as fuel or the like from lignite, a method is known in which lignite is compressed and then carbonized to form coke. For example, Non-Patent Literature 1 reports a method for producing hot-formed coke of lignite and the coke strength.
 褐炭は石炭の中では資源量が豊富にあり、さらに高価な原料炭はもちろんのこと、一般炭・亜瀝青炭と比較しても安価であるため、今後、製鉄業などへの活用が望まれる。しかし、褐炭の熱間成型コークスの強度は、原料となる褐炭の炭種により大きく異なり、炭種によっては十分な強度が得られない場合がある。よって、これまでに提案されてきた褐炭を用いた熱間成型コークスの製造方法については、一部の炭種しか使用できないという問題があった。 Brown coal has abundant resources among coal, and it is cheaper than ordinary coal and sub-bituminous coal as well as expensive coking coal. However, the strength of the hot-formed coke of lignite varies greatly depending on the coal type of the lignite as the raw material, and sufficient strength may not be obtained depending on the coal type. Therefore, about the manufacturing method of the hot forming coke using the brown coal proposed so far, there existed a problem that only a part of coal type could be used.
 さらに、他の石炭と同様に化石資源であるため、COを大気中に放出するという環境上の課題もある。 Furthermore, since it is a fossil resource like other coals, there is also an environmental problem of releasing CO 2 into the atmosphere.
 本発明は、上記の様な問題点に着目してなされたものであって、その目的は、安価で資源量が豊富な褐炭を用いて、効率良く強度の高い熱間成型コークスを得る方法を提供することである。 The present invention has been made paying attention to the problems as described above, and its purpose is to provide a method for efficiently obtaining high-strength hot-formed coke using cheap and resource-rich lignite. Is to provide.
 本発明者は鋭意検討を重ね、下記構成によって上記課題が解決できることを見出した。 The present inventor has conducted intensive studies and found that the above-described problems can be solved by the following configuration.
 すなわち、本発明の一局面に係るコークスの製造方法は、褐炭を用いてコークスを製造する方法であって、褐炭と植物由来バイオマスを混合して混合物を得る工程、前記混合物を熱間成型する工程、及び、熱間成型された前記混合物をコークス化する工程を含むことを特徴とする。 That is, the method for producing coke according to one aspect of the present invention is a method for producing coke using lignite, a step of mixing lignite and plant-derived biomass to obtain a mixture, a step of hot forming the mixture And a step of coking the hot-formed mixture.
図1は、各実施例および比較例で得られたコークスの強度を示すグラフである。FIG. 1 is a graph showing the strength of coke obtained in each example and comparative example.
 本発明者は、褐炭を用いた熱間成型コークスの製造について研究を重ね、褐炭に含まれるアルキル炭素(脂肪族炭素)が多いほど得られるコークスの強度が高いことを見出した。これは以下の理由によると考察できる。つまり、石炭はもともと太古の昔に植物などが堆積しこれが化石化したものであり、石炭化度が高いほど芳香族系炭素が多く含まれている。一方で、石炭化度が低い褐炭などには、植物中のリグニン構造側鎖やセルロース由来の脂肪族炭素が多く含まれていることが知られている。よって、褐炭に含まれるもとの植物体に近い構造が、褐炭の熱間成型コークスでは強度を向上させる要因となっていると推察される。 The present inventor has conducted research on the production of hot-formed coke using lignite, and has found that the strength of coke obtained increases as the amount of alkyl carbon (aliphatic carbon) contained in lignite increases. This can be considered for the following reason. In other words, coal was originally fossilized and planted in ancient times, and the higher the degree of coalification, the more aromatic carbon is contained. On the other hand, it is known that lignite with a low degree of coalification contains a lot of lignin structure side chains and cellulose-derived aliphatic carbon in plants. Therefore, it is inferred that the structure close to the original plant body contained in the lignite is a factor that improves the strength in the hot-formed coke of lignite.
 この知見を応用することによって、脂肪族炭素が少ない褐炭に対して、植物由来のバイオマスを適量配合することで、熱間成型コークスの強度向上が図れることを見出した。 By applying this knowledge, it was found that the strength of hot-formed coke can be improved by blending an appropriate amount of plant-derived biomass with lignite with less aliphatic carbon.
 よって、本実施形態のコークスの製造方法は、褐炭を用いてコークスを製造する方法であって、褐炭と植物由来バイオマスを混合して混合物を得る工程、前記混合物を熱間成型する工程、及び、熱間成型された前記混合物をコークス化する工程を含むことを特徴とする。 Therefore, the method for producing coke of the present embodiment is a method for producing coke using lignite, a step of obtaining a mixture by mixing lignite and plant-derived biomass, a step of hot forming the mixture, and It includes a step of coking the hot-formed mixture.
 このような構成により、安価で豊富な資源である褐炭を用いて、効率良く強度の高い熱間成型コークスを得る方法を提供することができる。また、カーボンニュートラルとなるため、植物由来バイオマスをコークス原料の一部とすることで、コークス利用の際のCO排出量を削減できるという優れた利点もある。 With such a configuration, it is possible to provide a method for efficiently obtaining hot-formed coke having high strength using lignite, which is an inexpensive and abundant resource. Further, there is to become carbon neutral, by a plant-derived biomass part of the coke raw material, also advantages of reducing CO 2 emissions during coke utilized.
 以下、本発明の実施の形態についてより具体的に説明するが、本発明は、これらに限定されるものではない。 Hereinafter, embodiments of the present invention will be described more specifically, but the present invention is not limited to these.
 (混合工程)
 本工程では、コークスの原料として使用する褐炭と、植物由来のバイオマスとを混合する。
(Mixing process)
In this process, lignite used as a raw material for coke and plant-derived biomass are mixed.
 本実施形態で使用する褐炭としては特に限定されず、どのような炭種の褐炭でも使用することが可能である。 The lignite used in this embodiment is not particularly limited, and any type of lignite can be used.
 本実施形態で使用する植物由来バイオマスについても、植物由来のバイオマスであれば特に限定なく使用することができる。植物由来のバイオマスとは、植物由来の有機物資源をいい、木材、乾燥草木、農業系や林業系の廃棄物が含まれる。当該バイオマスは典型的にはセルロース、ヘミセルロース及びリグニンを主成分とする。 The plant-derived biomass used in the present embodiment can also be used without particular limitation as long as it is a plant-derived biomass. Plant-derived biomass refers to plant-derived organic resources, including wood, dry vegetation, agricultural and forestry waste. The biomass is typically based on cellulose, hemicellulose and lignin.
 具体的には、例えば、間伐材、剪定枝、廃材、樹皮チップ、その他の木材、竹、草、やし殻、パームオイル残渣(EFB:Empty Fruit Bunch)、過剰生産による廃棄野菜、野菜クズ、カット野菜、果実、おが屑、麦わら、稲わら、籾殻等を挙げることができる。これらの植物由来バイオマスの中でも、間伐材、剪定枝の木質バイオマスやパームオイル残渣等のセルロース系バイオマスが、より強度の高いコークスを得るという観点から好ましい。 Specifically, for example, thinned wood, pruned branches, waste wood, bark chips, other wood, bamboo, grass, palm shell, palm oil residue (EFB: Empty Fruit Bunch), waste vegetables due to overproduction, vegetable scraps, Examples include cut vegetables, fruits, sawdust, wheat straw, rice straw, and rice husks. Among these plant-derived biomass, cellulosic biomass such as thinned wood, pruned woody biomass and palm oil residue is preferable from the viewpoint of obtaining coke with higher strength.
 さらに、本実施形態で使用する植物由来バイオマスは、水熱処理を施したバイオマスであることが好ましい。植物由来バイオマスの主成分であるセルロース、ヘミセルロース、リグニンのうち、熱化学的に変性・分解しやすいヘミセルロースは、後述するコークス化工程で負の影響を及ぼすおそれがある。そのため、特にヘミセルロースを多く含むバイオマス等は水熱処理によって取り除くことが望ましい。このような水熱処理バイオマスを用いることで、より強度の高い熱間成型コークスを得ることができると考えられる。 Furthermore, it is preferable that the plant-derived biomass used in the present embodiment is a biomass subjected to hydrothermal treatment. Among cellulose, hemicellulose, and lignin, which are the main components of plant-derived biomass, hemicellulose that is easily denatured and decomposed thermochemically may have a negative effect in the coking process described later. Therefore, it is desirable to remove especially biomass containing a lot of hemicellulose by hydrothermal treatment. It is considered that hot-formed coke with higher strength can be obtained by using such hydrothermally treated biomass.
 本実施形態の水熱処理の温度は、170~220℃程度であることが好ましい。このような温度範囲であれば、ヘミセルロースを取り除くことができると考えられる。より好ましい温度範囲は、190~210℃程度である。また、水熱処理時間については、10~60分間程度であることが望ましい。処理時間が短すぎると、ヘミセルロースを十分に取り除くことができないおそれがあり、一方で長すぎるとコストが上がるというおそれがある。なお、処理時間は水熱処理温度によって上記範囲内で変動する。 The temperature of the hydrothermal treatment of this embodiment is preferably about 170 to 220 ° C. It is considered that hemicellulose can be removed within such a temperature range. A more preferable temperature range is about 190 to 210 ° C. The hydrothermal treatment time is preferably about 10 to 60 minutes. If the treatment time is too short, hemicellulose may not be removed sufficiently, while if it is too long, the cost may increase. The treatment time varies within the above range depending on the hydrothermal treatment temperature.
 水熱処理において、水に各種添加剤(酸やアルカリ等)を加えることもできるが、それに付随するコストが発生するため、工業的には一般に利用できる水だけを水熱処理に使用することが望ましい。 In the hydrothermal treatment, various additives (acid, alkali, etc.) can be added to the water. However, since costs associated therewith are generated, it is desirable to use only water that is generally available industrially for the hydrothermal treatment.
 また、植物由来バイオマスに水熱処理を施した場合は、水熱処理バイオマスを褐炭と混合する前に、乾燥させることが好ましい。乾燥は、水熱処理バイオマスの含水率が5~20重量%となるまで行うことが好ましい。このように乾燥によって含水率を調整することによって、熱間成型工程において多量の水分が蒸発することを事前に防ぎ、安定した成型が実現できるという利点がある。また、安価な乾燥方法を選択することを考慮すると、含水率5~20重量%までの乾燥が適当である。 In addition, when the plant-derived biomass is hydrothermally treated, it is preferable to dry the hydrothermally treated biomass before mixing with the lignite. Drying is preferably performed until the moisture content of the hydrothermally treated biomass is 5 to 20% by weight. Thus, by adjusting the moisture content by drying, there is an advantage that a large amount of water is prevented from evaporating in the hot molding process in advance, and stable molding can be realized. In consideration of selecting an inexpensive drying method, drying with a water content of 5 to 20% by weight is appropriate.
 さらに、混合工程においては、褐炭と植物由来バイオマスをそれぞれ適当な大きさになるように粉砕してから混合することが好ましい。前記粉砕は、公知の粉砕手段を用いて行うことができ、例えば、カッターミル、ボールミル、ハンマーミル等を使用することができる。 Furthermore, in the mixing step, it is preferable to pulverize and mix lignite and plant-derived biomass so as to have appropriate sizes. The pulverization can be performed using known pulverization means, and for example, a cutter mill, a ball mill, a hammer mill, or the like can be used.
 ここでいう適当な大きさについては、例えば、褐炭及び植物由来バイオマスのいずれも粒度が106μm以下(100メッシュ篩下)となるように粉砕することが好ましい。このような粒度とすることによって、得られるコークスの強度がより高くなると考えられる。 As for the appropriate size mentioned here, for example, it is preferable to grind so that the particle size of both lignite and plant-derived biomass is 106 μm or less (under 100 mesh sieve). By setting it as such a particle size, it is thought that the intensity | strength of the coke obtained becomes higher.
 混合方法としては特に限定はなく、例えば、所定割合の褐炭と植物由来バイオマスを混合容器もしくは成型容器に投入した後、原料を撹拌棒によって撹拌することによって混合することができる。 The mixing method is not particularly limited. For example, after a predetermined ratio of lignite and plant-derived biomass are put into a mixing vessel or a molding vessel, the raw materials can be mixed by stirring with a stirring rod.
 本実施形態の混合工程における、褐炭と植物由来バイオマスとの混合比は、植物由来バイオマスの混合割合が1~15重量%となるように調整することが好ましい。このような混合比とすることによって、より確実に高強度のコークスを得ることができると考えられる。より好ましい混合比では、植物由来バイオマスの混合割合が3~10重量%となるようにする。 In the mixing step of the present embodiment, the mixing ratio of lignite and plant-derived biomass is preferably adjusted so that the mixing ratio of plant-derived biomass is 1 to 15% by weight. By setting it as such a mixing ratio, it is thought that a high intensity | strength coke can be obtained more reliably. A more preferable mixing ratio is such that the mixing ratio of plant-derived biomass is 3 to 10% by weight.
 この混合比は、褐炭の種類(含まれる炭種等)によって適宜調整することもできる。例えば、アルキル炭素(脂肪族炭素)含有率が低い褐炭であることがわかっている場合等は、植物由来バイオマスの配合量を増やすことにより強度を確保することもできる。 This mixing ratio can also be adjusted as appropriate depending on the type of lignite (type of coal included, etc.). For example, when it is known that the lignite has a low alkyl carbon (aliphatic carbon) content, the strength can be ensured by increasing the amount of plant-derived biomass.
 (熱間成型工程)
 次に、上記で得られた褐炭と植物由来バイオマスとの混合物を熱間成型する。具体的には、例えば、成型器に前記混合物を入れ、120~200℃程度の温度で加熱した後、プレス機などによって加圧成型する。上記温度で加熱する時間としては、例えば、5~60分間程度である。加圧成型する際の成型加圧力は0.5~1.2t/cm程度であることが好ましい。
(Hot forming process)
Next, the mixture of lignite and plant-derived biomass obtained above is hot-molded. Specifically, for example, the mixture is put in a molding machine, heated at a temperature of about 120 to 200 ° C., and then pressure-molded by a press machine or the like. The time for heating at the above temperature is, for example, about 5 to 60 minutes. The molding pressure during the pressure molding is preferably about 0.5 to 1.2 t / cm 2 .
 熱間成型工程において得られる成型物の形状としては、特に限定はなく所望の形状に成型することができ、例えば、球状、柱状等とすることができる。 The shape of the molded product obtained in the hot molding step is not particularly limited and can be molded into a desired shape, for example, a spherical shape or a columnar shape.
 (コークス化工程)
 次に、上記で得られた熱間成型物をコークス化する。具体的な、例えば、コークス炉(乾留炉)内に前記熱間成型物を投入・設置して、900℃以上の温度にて保持して無酸素状態でコークス化を行う。この時の保持温度は、900℃以上であれば特に限定はされないが、コスト等を考慮すると、1200℃以下とすることが現実的である。保持時間は、5~20分間程度とすることが好ましい。ここでいう無酸素状態とは、酸素が供給されない状態であれば特に限定はないが、例えば、窒素流通下の雰囲気等でコークス化を実施してもよい。
(Coke process)
Next, the hot molded product obtained above is coke. Specifically, for example, the hot-molded product is charged and placed in a coke oven (dry distillation furnace), and kept at a temperature of 900 ° C. or higher to perform coking in an oxygen-free state. The holding temperature at this time is not particularly limited as long as it is 900 ° C. or higher, but considering the cost and the like, it is realistic to set it to 1200 ° C. or lower. The holding time is preferably about 5 to 20 minutes. The oxygen-free state here is not particularly limited as long as oxygen is not supplied. For example, coking may be performed in an atmosphere under a nitrogen flow.
 このような本実施形態の製造方法によって得られるコークスは、褐炭を原料としているにも関わらず強度に優れているため、安価で優れた性能を有する有用なコークスである。本実施形態で得られるコークスは、製鉄用コークス、ボイラ用燃料、キルン用燃料等として有効に使用することができる。さらに、本実施形態のコークスは、植物由来バイオマスをコークス原料の一部として用いているため、コークスを燃料として利用する際のCO排出量も削減することができる。 The coke obtained by such a production method of the present embodiment is a useful coke that is inexpensive and has excellent performance because it is excellent in strength despite using lignite as a raw material. The coke obtained in this embodiment can be used effectively as iron-making coke, boiler fuel, kiln fuel, and the like. Furthermore, since the coke of this embodiment uses plant-derived biomass as a part of the coke raw material, CO 2 emissions when using coke as a fuel can also be reduced.
 本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 すなわち、本発明の一局面に係るコークスの製造方法は、褐炭を用いてコークスを製造する方法であって、褐炭と植物由来バイオマスを混合して混合物を得る工程、前記混合物を熱間成型する工程、及び、熱間成型された前記混合物をコークス化する工程を含むことを特徴とする。 That is, the method for producing coke according to one aspect of the present invention is a method for producing coke using lignite, a step of mixing lignite and plant-derived biomass to obtain a mixture, a step of hot forming the mixture And a step of coking the hot-formed mixture.
 このような構成により、安価で豊富な資源である褐炭を用いて、高強度のコークスを得ることができる。また、カーボンニュートラルとなるため、バイオマスをコークス原料の一部とすることで、コークス利用の際のCO排出量を削減できるという優れた利点もある。 With such a configuration, high-strength coke can be obtained using lignite, which is an inexpensive and abundant resource. Further, there is to become carbon neutral, by biomass and part of the coke raw material, also advantages of reducing CO 2 emissions during coke utilized.
 さらに、前記コークスの製造方法において、前記植物由来バイオマスが、190~220℃で水熱処理を行って得られるバイオマスであることが好ましい。それにより、上述したような効果をより確実に得られると考えられる。 Furthermore, in the method for producing coke, it is preferable that the plant-derived biomass is a biomass obtained by performing a hydrothermal treatment at 190 to 220 ° C. Thereby, it is considered that the above-described effects can be obtained more reliably.
 また、前記コークスの製造方法において、前記混合物における前記植物由来バイオマスの混合割合が1~15重量%であることが好ましい。このような混合比とすることによって、より確実に高強度のコークスを得ることができると考えられる。 In the method for producing coke, the mixing ratio of the plant-derived biomass in the mixture is preferably 1 to 15% by weight. By using such a mixing ratio, it is considered that high strength coke can be obtained more reliably.
 以下では、本発明を、実施例を用いてさらに具体的に説明するが、本発明はこれらの実施例により何ら限定されない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
 (実施例1)
 〔バイオマスの水熱処理〕
 パーム油産業残渣であるEFBを200℃の熱水中で30分処理を行い、水熱処理バイオマスを得た。これを含水率10%まで乾燥させた後、以下の工程に供した。
(Example 1)
[Hydrothermal treatment of biomass]
EFB which is a palm oil industrial residue was treated in hot water at 200 ° C. for 30 minutes to obtain hydrothermally treated biomass. This was dried to a moisture content of 10% and then subjected to the following steps.
 〔コークスの製造〕
 褐炭原料にはムリア炭を用いた。褐炭および上記で得られた水熱処理バイオマスは、混合前に、それぞれ、粒度が0.1mm以下となるようにエクストリームミル MX-1100XTS(ワーリング社製)を用いて粉砕した。
[Production of coke]
Muria coal was used as the raw material for lignite. Brown coal and the hydrothermally treated biomass obtained above were pulverized before mixing using an Extreme Mill MX-1100XTS (manufactured by Waring) so that the particle size would be 0.1 mm or less.
 あらかじめ、褐炭に水熱処理バイオマスが5重量%となる混合比で混合し、スパチュラで十分に混合した後、混合物サンプル10gを成型器へ投入した。さらに上部にロッドを装入した上で、予め加熱した乾燥機(200℃、窒素雰囲気)に120分間保管しサンプルおよび成型器を加熱した。その後プレス機(成型器固定気孔(特注)を備えた理研精機社製のプレス機「P-8」)を用いて、成型圧1.19t/cmで8分間保持を行い、成型した。得られた熱間成型物を、乾留炉内に設置し、窒素流通下で、3℃/minで1000℃まで昇温し、1000℃到達後、10分保持しコークス化を行った。 In advance, lignite was mixed with hydrothermally treated biomass at a mixing ratio of 5% by weight and sufficiently mixed with a spatula, and 10 g of the mixture sample was put into a molding machine. Furthermore, after inserting the rod in the upper part, it was stored in a preheated dryer (200 ° C., nitrogen atmosphere) for 120 minutes to heat the sample and the molding machine. Thereafter, using a press machine (a press machine “P-8” manufactured by Riken Seiki Co., Ltd. equipped with a molding machine fixed pore (special order)), the mold was held for 8 minutes at a molding pressure of 1.19 t / cm 2 and molded. The obtained hot molded product was placed in a dry distillation furnace, heated to 1000 ° C. at 3 ° C./min under a nitrogen flow, and after reaching 1000 ° C., held for 10 minutes for coking.
 (実施例2)
 成型器に投入する褐炭と水熱処理バイオマスの混合比を、水熱処理バイオマスの割合が10重量%となるように変更した以外は、実施例1と同様にしてコークスの製造を行った。
(Example 2)
Coke was produced in the same manner as in Example 1 except that the mixing ratio of lignite and hydrothermally treated biomass charged into the molding machine was changed so that the ratio of hydrothermally treated biomass was 10% by weight.
 (比較例)
 成型器に水熱処理バイオマスを入れず、褐炭のみを投入した以外は、実施例1と同様にしてコークスの製造を行った。
(Comparative example)
Coke was produced in the same manner as in Example 1 except that hydrothermally treated biomass was not added to the molding machine and only lignite was added.
 (評価:コークス強度測定)
 コークス化終了後、各実施例および比較例のコークスサンプルを窒素雰囲気下で冷却し、室温にてコークス強度測定試験を実施した。コークス強度はJIS A1113に準じて、割裂引張試験を実施し、以下の式を用いて引張強度を算出した。
(Evaluation: Coke strength measurement)
After completion of coking, the coke samples of each example and comparative example were cooled in a nitrogen atmosphere, and a coke strength measurement test was performed at room temperature. The coke strength was subjected to a split tensile test according to JIS A1113, and the tensile strength was calculated using the following formula.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
(ただし、σ:引張強度[MPa],P:最大荷重[N]、d:サンプル直径[mm]、l:サンプル長さ[mm])
 結果を、図1にグラフで示す。
(However, σ t : Tensile strength [MPa], P: Maximum load [N], d: Sample diameter [mm], l: Sample length [mm])
The results are shown graphically in FIG.
 (考察)
 図1に示す結果は、左から比較例1(褐炭単味)、実施例1(褐炭に水熱処理バイオマス5重量%)、および実施例2(褐炭に水熱処理バイオマス10重量%)で製造した、熱間成型コークスの圧壊強度である。図1から明らかなように、実施例1のコークスは、植物由来バイオマスを配合しなかった比較例1のコークスよりも約3倍の圧壊強度を示している。また実施例2のコークスの場合でも、比較例1の1.5倍の圧壊強度となっている。この実施例2の結果から、水熱処理バイオマスの量が多すぎると強度向上効果が低くなることが示唆される。実施例2のコークスで圧壊強度が実施例1よりも低下した原因は、バイオマスの水熱処理により比較的低温で分解するヘミセルロースを溶出除去したものの、除去しきれなかった成分がコークス化の段階で負の影響を及ぼしたためと考えられる。
(Discussion)
The results shown in FIG. 1 were produced from the left in Comparative Example 1 (brown coal simple), Example 1 (brown coal hydrothermally treated biomass 5% by weight), and Example 2 (brown coal hydrothermally treated biomass 10% by weight), Crushing strength of hot formed coke. As is apparent from FIG. 1, the coke of Example 1 shows a crushing strength about three times that of the coke of Comparative Example 1 in which no plant-derived biomass was blended. Even in the case of coke of Example 2, the crushing strength is 1.5 times that of Comparative Example 1. The result of Example 2 suggests that the strength improvement effect is lowered when the amount of hydrothermally treated biomass is too large. The reason why the crush strength of the coke of Example 2 was lower than that of Example 1 was that hemicellulose, which decomposes at a relatively low temperature by hydrothermal treatment of biomass, was eluted and removed, but the components that could not be removed were negative at the stage of coking. It is thought that this was because of the influence.
 この出願は、2018年5月18日に出願された日本国特許出願特願2018-96030を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2018-96030 filed on May 18, 2018, the contents of which are included in the present application.
 本発明を表現するために、前述において具体例等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been described appropriately and sufficiently through the embodiments with reference to specific examples and the like. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not limited to the scope of the claims. To be construed as inclusive.
 本発明は、バイオマスやコークス等のエネルギー産業に関する技術分野において、広範な産業上の利用可能性を有する。
 
The present invention has wide industrial applicability in the technical field related to the energy industry such as biomass and coke.

Claims (3)

  1.  褐炭を用いてコークスを製造する方法であって、
     褐炭と植物由来バイオマスを混合して混合物を得る工程、
     前記混合物を熱間成型する工程、及び
     熱間成型された前記混合物をコークス化する工程を含む、コークスの製造方法。
    A method for producing coke using lignite,
    Mixing lignite and plant-derived biomass to obtain a mixture,
    A method for producing coke, comprising a step of hot-molding the mixture and a step of coking the hot-molded mixture.
  2.  前記植物由来バイオマスが、190~220℃で水熱処理を行って得られるバイオマスである、請求項1に記載のコークスの製造方法。 The method for producing coke according to claim 1, wherein the plant-derived biomass is biomass obtained by hydrothermal treatment at 190 to 220 ° C.
  3.  前記混合物における前記植物由来バイオマスの混合割合が1~15重量%である、請求項1または2に記載のコークスの製造方法。 The method for producing coke according to claim 1 or 2, wherein a mixing ratio of the plant-derived biomass in the mixture is 1 to 15% by weight.
PCT/JP2019/015165 2018-05-18 2019-04-05 Method for producing brown coal-containing coke WO2019220808A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018096030A JP2019199567A (en) 2018-05-18 2018-05-18 Manufacturing method of coke containing lignite
JP2018-096030 2018-05-18

Publications (1)

Publication Number Publication Date
WO2019220808A1 true WO2019220808A1 (en) 2019-11-21

Family

ID=68540234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015165 WO2019220808A1 (en) 2018-05-18 2019-04-05 Method for producing brown coal-containing coke

Country Status (2)

Country Link
JP (1) JP2019199567A (en)
WO (1) WO2019220808A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179294A (en) * 1981-04-07 1982-11-04 Schwarze Pumpe Gas Veb Manufacture of pyrolysis-resistant soft brown coal briquette
JPS63193987A (en) * 1987-02-09 1988-08-11 Idemitsu Kosan Co Ltd Production of granular carbon material
JP2002129167A (en) * 2000-10-27 2002-05-09 Nippon Steel Corp Production method for metallurgical low-density formed coke
JP2008024984A (en) * 2006-07-20 2008-02-07 Jfe Steel Kk Blast furnace operating method using woody biomass as raw material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179294A (en) * 1981-04-07 1982-11-04 Schwarze Pumpe Gas Veb Manufacture of pyrolysis-resistant soft brown coal briquette
JPS63193987A (en) * 1987-02-09 1988-08-11 Idemitsu Kosan Co Ltd Production of granular carbon material
JP2002129167A (en) * 2000-10-27 2002-05-09 Nippon Steel Corp Production method for metallurgical low-density formed coke
JP2008024984A (en) * 2006-07-20 2008-02-07 Jfe Steel Kk Blast furnace operating method using woody biomass as raw material

Also Published As

Publication number Publication date
JP2019199567A (en) 2019-11-21

Similar Documents

Publication Publication Date Title
US20200157448A1 (en) Method for the production of pellets or briquettes
ES2549920T3 (en) Methods for the manufacture of combustible pellets and other products from lignocellulosic biomass
US11624037B2 (en) Process for producing solid biomass fuel
CN111925853A (en) Production method of solid biomass fuel
US20200208065A1 (en) High temperature bio-char carbonization and micron grinding and classification for inclusion into master batch polymerization
KR20220134737A (en) Solid biomass fuel production process
US20210332305A1 (en) Process for producing solid biomass fuel
GB2586120A (en) Process for producing solid biomass fuel
US9133341B2 (en) Methods for producing binders and combustible composite materials and compositions produced therefrom
GB2586230A (en) Process for producing solid biomass fuel
WO2019220808A1 (en) Method for producing brown coal-containing coke
KR101278312B1 (en) Biopellets with high heating value made from water hyacinth and method for manufacturing thereof
JP7410000B2 (en) Biomass fuel production method
RU2246530C1 (en) Carbon-containing moldings and a method for fabrication thereof
JP2019026730A (en) Biomass-modified coal, production method of biomass-modified coal
Komlajeva et al. Evaluation of flax (linum usitatissimum L.) quality parameters for bioenergy production
CN107880913A (en) A kind of biogas residue machine-made carbon and preparation method thereof
WO2022153830A1 (en) Biomass solid fuel manufacturing method
Daniel et al. Thermal and Physicochemical Characterization of Biochar Produced from Waste Bamboo. Proceeding of 1st Nigerian Society of Engineers Minna Branch Engineering Conference, 23rd-24th June, PTDF Hall, School of Infrastructure, Process Engineering and Technology, FUT, Minna, Nigeria.
Balakrishna et al. Comparative analysis of boiler efficiency between commercial sawdust briquettes and biomass briquettes
GB2610680A (en) Process for producing solid biomass fuel
CZ30771U1 (en) A shaped fuel based on a mixture of biomass and coal dust

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19802952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19802952

Country of ref document: EP

Kind code of ref document: A1