WO2021229743A1 - スクリュー圧縮機 - Google Patents

スクリュー圧縮機 Download PDF

Info

Publication number
WO2021229743A1
WO2021229743A1 PCT/JP2020/019237 JP2020019237W WO2021229743A1 WO 2021229743 A1 WO2021229743 A1 WO 2021229743A1 JP 2020019237 W JP2020019237 W JP 2020019237W WO 2021229743 A1 WO2021229743 A1 WO 2021229743A1
Authority
WO
WIPO (PCT)
Prior art keywords
slide valve
screw rotor
screw
valve body
body portion
Prior art date
Application number
PCT/JP2020/019237
Other languages
English (en)
French (fr)
Inventor
直也 光成
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP20935127.9A priority Critical patent/EP4151858A4/en
Priority to PCT/JP2020/019237 priority patent/WO2021229743A1/ja
Publication of WO2021229743A1 publication Critical patent/WO2021229743A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/48Rotary-piston pumps with non-parallel axes of movement of co-operating members
    • F04C18/50Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees
    • F04C18/52Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees of intermeshing engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/10Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F04C28/12Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using sliding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/10Geometry of the inlet or outlet
    • F04C2250/102Geometry of the inlet or outlet of the outlet

Definitions

  • the present disclosure relates to a screw compressor used for, for example, compressing a refrigerant in a refrigerator.
  • the screw compressor includes a screw compressor equipped with one screw rotor and two gate rotors.
  • the screw rotor and the gate rotor are housed in the casing.
  • a plurality of spiral grooves are formed in the screw rotor, and the grooves are meshed with and engaged with a pair of gate rotors arranged in the radial direction of the screw rotor to form a compression chamber.
  • a slide valve that is movable in the direction of the rotation axis of the screw rotor and has a variable internal volume ratio is arranged.
  • the slide valve has a valve body part and a guide part that guides the sliding operation of the valve body part.
  • the valve body portion is arranged to face the screw rotor, and the guide portion is arranged to face the bearing housing that rotatably supports the rotation axis of the screw rotor.
  • the slide valve rotates in the circumferential direction along the outer peripheral surface of the screw rotor due to the influence of the pressure inside the compression chamber, and the valve body contacts the rotating screw rotor. There was a risk of causing trouble such as burning.
  • the shape of the slide valve has the following structure to avoid contact between the valve body and the screw rotor. That is, the guide portion of the slide valve is provided with a protrusion that protrudes relatively inward in the circumferential direction from the valve body portion on the surface facing the bearing housing. With this structure, even if the slide valve rotates in the circumferential direction during the operation of the compressor, the protrusion of the guide portion comes into contact with the bearing housing before the valve body portion comes into contact with the screw rotor. As a result, contact between the valve body and the screw rotor is avoided, and troubles such as seizure are suppressed.
  • Patent Document 1 the protrusion of the guide portion comes into contact with the bearing housing before the valve body portion of the slide valve comes into contact with the screw rotor, thereby avoiding contact between the valve body portion and the screw rotor.
  • the valve body portion of the slide valve is always in a position facing the screw rotor. Therefore, considering that various gas pressures act on the slide valve during operation, the certainty of avoiding contact between the slide valve and the screw rotor is lacking, and there is room for improvement.
  • the present disclosure has been made in view of such a point, and an object of the present invention is to provide a screw compressor capable of further suppressing contact between a slide valve and a screw rotor.
  • the screw compressor according to the present disclosure includes a casing having a discharge port, a screw rotor housed in the casing, one end having an axial suction side and the other end having an axial discharge side, and a slide valve formed in the casing. It is housed in a storage groove and has a slide valve that can slide in the direction of the rotation axis of the screw rotor.
  • the slide valve has a valve body, and the valve body does not face the screw rotor and the position where the valve body faces the screw rotor.
  • the valve body forms a part of the discharge port when it moves to the position and is in the position facing the screw rotor.
  • FIG. It is a schematic block diagram at the time of operation of a high compression ratio in the screw compressor which concerns on Embodiment 1.
  • FIG. It is a schematic block diagram at the time of operation of a low compression ratio in the screw compressor which concerns on Embodiment 1.
  • FIG. It is explanatory drawing of the compression principle in operation of the screw compressor which concerns on Embodiment 1.
  • FIG. It is a development view of the outer peripheral surface of the screw rotor of the screw compressor which concerns on Embodiment 1, and is the operation explanatory view at the time of operation of a high compression ratio.
  • It is a development view of the outer peripheral surface of the screw rotor of the screw compressor which concerns on Embodiment 1, and is the operation explanatory view at the time of operation of a low compression ratio.
  • FIG. 1 It is a development view of the outer peripheral surface of the screw rotor at the time of operation of a high compression ratio in the screw compressor which concerns on Embodiment 2.
  • FIG. 2 It is a developed view of the outer peripheral surface of the screw rotor at the time of operation of a low compression ratio in the screw compressor which concerns on Embodiment 2.
  • FIG. 1 It is a development view of the outer peripheral surface of the screw rotor at the time of operation of a high compression ratio in the screw compressor which concerns on Embodiment 2.
  • FIG. 2 It is a developed view of the outer peripheral surface of the screw rotor at the time of operation of a low compression ratio in the screw compressor which concerns on Embodiment 2.
  • FIG. 1 is a schematic configuration diagram during operation of a high compression ratio in the screw compressor according to the first embodiment.
  • FIG. 2 is a schematic configuration diagram during operation of a low compression ratio in the screw compressor according to the first embodiment. It should be noted that the forms of the components shown in the entire specification are merely examples and are not limited to these descriptions.
  • the screw compressor 1 includes a cylindrical casing 2, a screw rotor 3 housed in the casing 2, and a motor 4 for rotationally driving the screw rotor 3.
  • the motor 4 includes a stator 4a inscribed and fixed to the casing 2 and a motor rotor 4b arranged inside the stator 4a.
  • the rotation speed of the motor 4 is controlled by an inverter method.
  • the screw rotor 3 and the motor rotor 4b are arranged on the same axis, and both are fixed to the rotating shaft 5.
  • the screw rotor 3 has a columnar shape, and a plurality of spiral screw grooves 3a are formed on the outer peripheral surface.
  • the screw rotor 3 is connected to a motor rotor 4b fixed to the rotary shaft 5 and is rotationally driven.
  • the end of the rotary shaft 5 on the discharge side (left side in FIG. 1) is rotatably supported by the bearing housing 13.
  • the bearing housing 13 supports the rotating shaft 5 via the main bearing 12. Further, the end portion of the rotary shaft 5 on the suction side (right side in FIG. 1) is rotatably supported by an auxiliary bearing (not shown).
  • the space of the screw groove 3a formed in the screw rotor 3 is surrounded by the inner cylinder surface of the casing 2 and a pair of gate rotors 6 having a gate rotor tooth portion 6a that meshes with and engages with the screw groove 3a.
  • a compression chamber 14 for compressing the refrigerant gas is formed. Further, the inside of the casing 2 is separated into a suction pressure side and a discharge pressure side by a partition wall (not shown), and a discharge port 8 opening to the discharge flow path 7 is formed on the discharge pressure side of the casing 2. ing.
  • the suction pressure side which is one end side in the rotation axis direction of the screw rotor 3
  • the discharge pressure side which is the other end side
  • an axial discharge side the suction pressure side
  • a semi-cylindrical slide valve storage groove 9 extending in the rotation axis direction of the screw rotor 3 is formed on the cylindrical wall 2a of the casing 2 (hereinafter referred to as the casing cylindrical wall 2a).
  • a semi-cylindrical slide valve 10 that can move in the rotation axis direction of the screw rotor 3 is housed in the slide valve storage groove 9. Two sets of the slide valve accommodating groove 9 and the slide valve 10 are provided in the circumferential direction of the screw rotor 3.
  • the slide valve 10 forms a part of the discharge port 8, and the timing at which the discharge port 8 opens, that is, the timing at which the compression chamber 14 communicates with the discharge flow path 7, changes according to the position of the slide valve 10.
  • the internal volume ratio is a value obtained by dividing the volume of the compression chamber 14 at the completion of suction by the volume of the compression chamber 14 at the start of discharge.
  • the slide valve 10 is positioned on the axial suction side (right side in FIG. 2) to delay the opening timing of the discharge port 8 to increase the internal volume ratio.
  • the internal volume ratio is reduced by locating the slide valve 10 on the axial discharge side (left side in FIG. 2) and accelerating the opening timing of the discharge port 8. In this way, the slide valve 10 can adjust the internal volume ratio in two stages, a low internal volume ratio and a high internal volume ratio.
  • the slide valve 10 includes a valve body portion 10a, a guide portion 10b, and a connecting portion 10c.
  • the valve body portion 10a has a shape in which a part of the cylinder is cut off by an arc having a radius of the screw rotor 3 in the rotation axis direction of the screw rotor 3, and forms a part of the discharge port 8.
  • the guide portion 10b has a columnar shape and is a portion that guides the movement of the valve body portion 10a.
  • the connecting portion 10c is a portion that connects the valve body portion 10a and the guide portion 10b.
  • the valve body portion 10a and the guide portion 10b form a discharge passage that communicates with the discharge flow path 7.
  • the slide valve 10 has a position where the valve body portion 10a faces the screw rotor 3 as shown in FIG. 1 and a position where the valve body portion 10a does not face the screw groove 3a of the screw rotor 3 as shown in FIG. 2, specifically.
  • a slide valve drive mechanism 11 for sliding the slide valve 10 in the direction of the rotation axis of the screw rotor 3 is arranged.
  • the slide valve drive mechanism 11 allows the slide valve 10 to slide and move in the direction of the rotation axis of the screw rotor 3.
  • the slide valve 10 slides to the high internal volume ratio side shown in FIG. 1 by the slide valve drive mechanism 11.
  • the slide valve 10 slides to the low internal volume ratio side shown in FIG. 2 by the slide valve drive mechanism 11.
  • the slide valve drive mechanism 11 is controlled by a control device (not shown).
  • FIG. 3 is an explanatory diagram of the compression principle in the operation of the screw compressor according to the first embodiment.
  • FIG. 3A shows a suction stroke
  • FIG. 3B shows a compression stroke
  • FIG. 3C shows a discharge stroke.
  • the screw rotor 3 is rotated by the motor 4 (see FIG. 1) via the rotation shaft 5 (see FIG. 1), so that the gate rotor tooth portion 6a moves relatively in the compression chamber 14. do.
  • the suction stroke, the compression stroke, and the discharge stroke are set as one cycle, and this cycle is repeated.
  • each process will be described with a focus on the compression chamber 14 indicated by dots in FIG.
  • FIG. 3A shows the state of the compression chamber 14 in the suction stroke.
  • the screw rotor 3 is driven by the motor 4 and rotates in the direction of the solid arrow.
  • the volume of the compression chamber 14 is reduced as shown in FIG. 3 (b).
  • the compression chamber 14 communicates with the discharge port 8 formed from the casing cylindrical wall 2a and the valve body portion 10a of the slide valve 10.
  • the high-pressure refrigerant gas compressed in the compression chamber 14 passes through the discharge flow path 7 from the discharge port 8 and is discharged to the outside of the compressor. Then, the same compression is performed again on the back surface of the screw rotor 3.
  • valve body portion 10a of the slide valve 10 is located at a position facing the screw rotor 3, and the discharge port 8 is a cylindrical wall of the valve body portion 10a and the casing 2. Formed by 2a.
  • the valve body portion 10a of the slide valve 10 is located at a position facing the bearing housing 13, and the discharge port 8 is formed only by the casing cylindrical wall 2a. It has a structure.
  • FIGS. 4 and 5 the developed view of the outer peripheral surface of the screw rotor 3 at the time of each operation of the high compression ratio and the low compression ratio is shown in FIGS. 4 and 5 below, divided into suction, compression and discharge.
  • FIG. 4 is a developed view of the outer peripheral surface of the screw rotor of the screw compressor according to the first embodiment, and is an operation explanatory view during operation with a high compression ratio.
  • 4 (a) shows a suction stroke
  • FIG. 4 (b) shows a compression stroke
  • FIG. 4 (c) shows a discharge stroke.
  • the hatching diagonally downward to the left shows the cylindrical wall 2a of the casing 2.
  • valve body suction the suction side end surface 10e of the valve body portion 10a (hereinafter referred to as valve body suction).
  • the side end surface 10e) is brought into contact with the end surface 2b on the axial suction side of the slide valve storage groove 9.
  • the discharge port 8 is formed by the casing cylindrical wall 2a and the valve body discharge side end surface 10d.
  • the end face on the suction side in the axial direction of the discharge port 8 is the end face 10d on the discharge side of the valve body. Since the slide valve storage groove 9 is formed in the casing 2, the end surface 2b on the axial suction side of the slide valve storage groove 9 is referred to as the casing end surface 2b below.
  • the valve body discharge side end surface 10d has an inclination angle of the side surface 3b on the axial discharge side of the screw groove 3a at the moment when the inclination angle thereof communicates with the discharge port 8.
  • the inclination angle of the valve body discharge side end surface 10d forming a part of the discharge port 8 during operation at a high compression ratio is the same as the groove inclination angle at the time of communication, so that the discharge port is compared with the case where it is not equivalent.
  • the discharge area of 8 can be expanded. Therefore, the pressure loss of the refrigerant gas at the time of discharge can be reduced.
  • the inclination angle is an angle of the valve body discharge side end surface 10d with respect to the rotation axis direction.
  • FIG. 5 is a developed view of the outer peripheral surface of the screw rotor of the screw compressor according to the first embodiment, and is an operation explanatory view during operation at a low compression ratio.
  • 5 (a) shows a suction stroke
  • FIG. 5 (b) shows a compression stroke
  • FIG. 5 (c) shows a discharge stroke.
  • the hatching diagonally downward to the left shows the cylindrical wall 2a of the casing 2.
  • the slide valve 10 is placed at a position on the axial discharge side where the valve body portion 10a does not face the screw groove 3a, specifically. Is slid to a position facing the bearing housing 13 of the valve body portion 10a.
  • the discharge port 8 is formed only by the casing cylindrical wall 2a, and the end face of the discharge port 8 on the axial suction side is the casing end face 2b. That is, during operation with a low compression ratio, since the discharge port 8 is formed only by the casing 2 without using the slide valve 10, the valve body portion 10a of the slide valve 10 is moved to a position away from the position facing the screw rotor 3. It is possible to make it.
  • the casing end surface 2b of the casing cylindrical wall 2a is configured so that its inclination angle is equal to the groove inclination angle at the time of communication.
  • the inclination angle of the casing end surface 2b constituting a part of the discharge port 8 is equal to the groove inclination angle at the time of communication during operation at a low compression ratio, the pressure loss at the time of discharge can be reduced. ..
  • the connecting portion 10c of the slide valve 10 is not located in the discharge flow path 7 (see FIG. 2). Therefore, the flow of the discharged gas passing through the discharge flow path 7 is not obstructed by the connecting portion 10c, and the pressure loss of the discharged gas after the discharge can be reduced. Further, since the slide valve 10 moves to a position away from the compression chamber 14, the slide valve 10 does not bend outward in the radial direction due to the pressure difference between the inside of the compression chamber 14 and the suction pressure side.
  • the suction side end surface of the discharge port 8 is composed of the valve body discharge side end surface 10d during operation with a high compression ratio, and is composed of the casing end surface 2b during operation with a low compression ratio. That is, the suction side end face of the discharge port 8 is composed of separate members for the operation with a high compression ratio and the operation with a low compression ratio. Therefore, each inclined surface can be set independently, and the optimum shape can be obtained for each compression ratio. Therefore, the flow path area when the refrigerant gas is discharged from the discharge port 8 can be designed separately at each of the high compression ratio and the low compression ratio, the pressure loss at the time of discharge can be reduced, and the high-performance screw compressor can be used. Can be provided.
  • the gas in the compression chamber 14 expands due to the reverse rotation of the screw rotor 3, and the pressure in the compression chamber 14 becomes smaller than the suction pressure.
  • the slide valve 10 is attracted to the inside in the radial direction, that is, to the screw rotor 3 side due to the pressure difference between the pressure inside the compression chamber 14 and the suction pressure. Therefore, if the valve body portion 10a is located at a position facing the screw rotor 3, the valve body portion 10a and the screw rotor 3 may come into contact with each other.
  • the slide valve 10 when the operation is stopped, the slide valve 10 is moved to a position facing the bearing housing 13 immediately before the operation is stopped.
  • the slide valve 10 and the screw rotor 3 do not come into contact with each other while the compressor is stopped, and seizure of both can be avoided.
  • a highly reliable screw compressor can be provided.
  • the screw compressor of the first embodiment is housed in a casing 2 having a discharge port 8 and a screw rotor in which one end side is the axial suction side and the other end side is the axial discharge side.
  • 3 and a slide valve 10 housed in a slide valve storage groove 9 formed in the casing 2 and slidable in the rotation axis direction of the screw rotor 3 are provided.
  • the slide valve 10 has a valve body portion 10a, and the valve body portion 10a moves to a position facing the screw rotor 3 and a position not facing the screw rotor 3 and is in a position facing the screw rotor 3.
  • the portion 10a forms a part of the discharge port 8.
  • the slide valve 10 and the screw rotor 3 are compared with the configuration in which the slide valve 10 is always facing the screw rotor 3. Contact can be suppressed.
  • the screw compressor of the first embodiment is arranged on the axial discharge side of the screw rotor 3 and includes a bearing housing 13 that supports the rotating shaft 5 of the screw rotor 3.
  • the position where the valve body portion 10a of the slide valve 10 does not face the screw rotor 3 is the position where the valve body portion 10a of the slide valve 10 faces the bearing housing 13.
  • valve body portion 10a of the slide valve 10 in order to position the valve body portion 10a of the slide valve 10 at a position not facing the screw rotor 3, the valve body portion 10a of the slide valve 10 may be moved to a position facing the bearing housing 13.
  • valve body portion 10a of the slide valve 10 is located at a position not facing the screw rotor 3.
  • the casing end surface 2b which is the end surface of the slide valve storage groove 9 on the axial suction side, becomes the end surface of the discharge port 8 on the axial suction side.
  • the discharge port 8 is formed by the casing end surface 2b constituting the slide valve storage groove 9, the discharge port 8 is not formed by the slide valve 10. Therefore, the slide valve 10 can be moved to a position where the valve body portion 10a does not face the screw rotor 3.
  • the inclination angle of the end surface 2b on the axial suction side of the discharge port 8 in the developed view of the outer peripheral surface of the screw rotor 3 is the side surface 3b on the axial discharge side of the screw groove 3a formed in the screw rotor 3 and constituting the compression chamber 14. It is set to be the same as the tilt angle of.
  • valve body portion 10a of the slide valve 10 is located at a position not facing the screw rotor 3 immediately before the operation is stopped.
  • Embodiment 2 In the second embodiment, the differences from the first embodiment will be mainly described, and the configurations not described in the second embodiment are the same as those in the first embodiment.
  • the inclination angle of the casing end surface 2b (see FIGS. 4 and 5) of the casing 2 is configured to be equivalent to the groove inclination angle at the time of communication.
  • the second embodiment relates to a structure suitable when it is difficult to process the casing end surface 2b having an angle equivalent to the groove inclination angle at the time of communication in the casing 2.
  • FIG. 6 is a developed view of the outer peripheral surface of the screw rotor during operation at a high compression ratio in the screw compressor according to the second embodiment.
  • FIG. 7 is a developed view of the outer peripheral surface of the screw rotor during operation at a low compression ratio in the screw compressor according to the second embodiment.
  • the screw compressor of the second embodiment further has a semi-cylindrical compression chamber forming component 15 in addition to the configuration of the first embodiment.
  • the compression chamber forming component 15 is arranged on the axial suction side of the valve body portion 10a of the slide valve 10.
  • the inclination angle of the end surface 15a on the axial discharge side of the compression chamber forming component 15 is set to the same angle as the inclination angle of the casing end surface 2b described in the first embodiment.
  • the compression chamber forming component 15 is housed in the component storage groove 9a in which the slide valve storage groove 9 formed in the casing cylindrical wall 2a is extended to the suction side in the axial direction.
  • the wall surface of the compression chamber forming component 15 facing the outer peripheral surface of the screw rotor 3 has the same shape as the casing cylindrical wall 2a.
  • the compression chamber forming component 15 is fixed to the casing 2 by a pin 17 so as not to move in the rotation axis direction of the screw rotor 3 and the circumferential direction of the screw rotor 3.
  • the operation of the slide valve 10 during each operation of the high compression ratio and the low compression ratio is the same as that of the first embodiment. That is, during operation at a high compression ratio, the slide valve 10 is moved to the axial suction side as shown in FIG. 6, and the valve body suction side end surface 10e is brought into contact with the discharge side end surface 15a of the compression chamber forming component 15. During operation at a low compression ratio, as shown in FIG. 7, the slide valve 10 is on the axial discharge side, and the valve body portion 10a does not face the screw groove 3a of the screw rotor 3, specifically, the bearing housing 13. Move to the position facing the.
  • the compression chamber forming component 15 is provided separately from the casing 2, and the compression chamber forming component 15 is provided with an end face 15a having a groove inclination angle during communication. Since the compression chamber forming component 15 has a simpler shape than the casing 2, it can be easily machined rather than machining the casing end face 2b having a groove inclination angle at the time of communication with the casing 2.
  • the compression chamber forming component 15 is provided in the casing 2 fixedly arranged on the axial suction side of the slide valve 10, and the compression chamber is provided during operation at a low compression ratio.
  • the end face on the axial discharge side of the forming component 15 is the end face on the axial suction side of the discharge port 8.
  • the end face 10e on the axial suction side of the valve body portion 10a of the slide valve 10 is in the axial direction of the compression chamber forming component 15.
  • the slide valve 10 is located at a position in contact with the end surface 15a on the discharge side.
  • the slide valve 10 is positioned at a position where the end surface 10e on the axial suction side of the valve body portion 10a comes into contact with the end surface 15a on the axial discharge side of the compression chamber forming component 15 during operation at a high compression ratio.
  • the end face 10d on the axial discharge side of the valve body portion 10a can form the end face on the axial discharge side of the discharge port 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

スクリュー圧縮機は、吐出ポートを有するケーシングと、ケーシング内に収容され、一端側が軸方向吸込側となり他端側が軸方向吐出側となるスクリューロータと、ケーシング内に形成されたスライドバルブ収納溝内に収納され、スクリューロータの回転軸方向にスライド自在なスライドバルブとを備える。スライドバルブは、弁体部を有する。弁体部がスクリューロータに対向する位置とスクリューロータに対向しない位置とに移動し、スクリューロータに対向する位置にあるときに弁体部が吐出ポートの一部を形成する。

Description

スクリュー圧縮機
 本開示は、例えば冷凍機の冷媒圧縮に用いられるスクリュー圧縮機に関するものである。
 スクリュー圧縮機には、1つのスクリューロータと2つのゲートロータとを備えたスクリュー圧縮機がある。
 スクリュー圧縮機では、スクリューロータとゲートロータとがケーシング内に収容されている。スクリューロータには複数の螺旋状の溝が形成されており、この溝がスクリューロータの径方向に配置された一対のゲートロータと噛み合い係合することにより圧縮室が形成されている。スクリューロータの外周側には、スクリューロータの回転軸方向に移動自在で、内部容積比を可変にするスライドバルブが配置されている。
 スライドバルブは、弁体部と、弁体部のスライド動作をガイドするガイド部とを備えている。弁体部はスクリューロータに対向して配置され、ガイド部はスクリューロータの回転軸を回転自在に支持する軸受ハウジングに対向して配置されている。
 この種のスライドバルブを備えたスクリュー圧縮機では、スライドバルブが圧縮室内部の圧力の影響によってスクリューロータの外周面に沿って周方向へ回転し、弁体部が回転中のスクリューロータに接触して焼付等のトラブルを招く恐れがあった。
 そこで、特許文献1では、スライドバルブの形状を、次の構造とすることで弁体部とスクリューロータとの接触を避けるようにしていた。すなわち、スライドバルブのガイド部における軸受ハウジングとの対向面に、弁体部よりも周方向内側に相対的に突出した突起部を備えている。この構造により、圧縮機の運転中にスライドバルブが周方向に回転したとしても、弁体部がスクリューロータに接触するよりも先に、ガイド部の突起部が軸受ハウジングに当接する。これにより、弁体部とスクリューロータとの接触を回避し、焼付等のトラブルを抑制している。
特開2013-60877号公報
 特許文献1では、スライドバルブの弁体部がスクリューロータに接触する前に、ガイド部の突起部が軸受ハウジングに当接することで、弁体部とスクリューロータとの接触を回避している。しかしながら、特許文献1では、スライドバルブの弁体部が常にスクリューロータに対向する位置にある。このため、運転中、スライドバルブには様々なガス圧が作用することを考えると、スライドバルブとスクリューロータとの接触回避の確実性に欠け、改善の余地がある。
 本開示はこのような点を鑑みなされたもので、スライドバルブとスクリューロータとの接触をより抑制することが可能なスクリュー圧縮機を提供することにある。
 本開示に係るスクリュー圧縮機は、吐出ポートを有するケーシングと、ケーシング内に収容され、一端側が軸方向吸込側となり他端側が軸方向吐出側となるスクリューロータと、ケーシング内に形成されたスライドバルブ収納溝内に収納され、スクリューロータの回転軸方向にスライド自在なスライドバルブとを備え、スライドバルブは、弁体部を有し、弁体部がスクリューロータに対向する位置とスクリューロータに対向しない位置とに移動し、スクリューロータに対向する位置にあるときに弁体部が吐出ポートの一部を形成するものである。
 本開示によれば、スライドバルブをスクリューロータと対向しない位置まで移動できるようにしたことで、スライドバルブとスクリューロータとの接触を抑制することができる。
実施の形態1に係るスクリュー圧縮機における高圧縮比の運転時の概略構成図である。 実施の形態1に係るスクリュー圧縮機における低圧縮比の運転時の概略構成図である。 実施の形態1に係るスクリュー圧縮機の運転における圧縮原理の説明図である。 実施の形態1に係るスクリュー圧縮機のスクリューロータの外周面の展開図であって、高圧縮比の運転時の動作説明図である。 実施の形態1に係るスクリュー圧縮機のスクリューロータの外周面の展開図であって、低圧縮比の運転時の動作説明図である。 実施の形態2に係るスクリュー圧縮機における高圧縮比の運転時のスクリューロータの外周面の展開図である。 実施の形態2に係るスクリュー圧縮機における低圧縮比の運転時のスクリューロータの外周面の展開図である。
実施の形態1.
(スクリュー圧縮機の構成説明)
 図1は、実施の形態1に係るスクリュー圧縮機における高圧縮比の運転時の概略構成図である。図2は、実施の形態1に係るスクリュー圧縮機における低圧縮比の運転時の概略構成図である。なお、明細書全文に示されている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
 図1および図2に概略の構成を示すように、スクリュー圧縮機1は、筒状のケーシング2と、ケーシング2内に収容されたスクリューロータ3と、スクリューロータ3を回転駆動するモータ4とを備えている。モータ4は、ケーシング2に内接して固定されたステータ4aと、ステータ4aの内側に配置されたモーターロータ4bとを備えている。モータ4は、インバータ方式で回転数が制御されるようになっている。スクリューロータ3とモーターロータ4bとは互いに同一軸線上に配置されており、いずれも回転軸5に固定されている。
 スクリューロータ3は円柱状であり、外周面には複数の螺旋状のスクリュー溝3aが形成されている。スクリューロータ3は、回転軸5に固定されたモーターロータ4bに連結されて回転駆動される。回転軸5の吐出側(図1の左側)の端部は、軸受ハウジング13によって回転自在に支持されている。軸受ハウジング13は、主軸受12を介して回転軸5を支持している。また、回転軸5の吸込側(図1の右側)の端部は、副軸受(図示しない)によって回転自在に支持されている。
 スクリューロータ3に形成されたスクリュー溝3aの空間は、ケーシング2の内筒面と、このスクリュー溝3aに噛み合い係合するゲートロータ歯部6aを備えた一対のゲートロータ6とによって囲まれて、冷媒ガスを圧縮する圧縮室14を形成する。また、ケーシング2内は、隔壁(図示しない)により、吸込圧力側と吐出圧力側とに隔てられており、ケーシング2の吐出圧力側には、吐出流路7に開口する吐出ポート8が形成されている。以下、スクリューロータ3の回転軸方向の一端側である吸込圧力側を軸方向吸込側、他端側である吐出圧力側を軸方向吐出側、ということがある。
 ケーシング2の円筒壁2a(以下、ケーシング円筒壁2aという)には、スクリューロータ3の回転軸方向に延びる半円筒状のスライドバルブ収納溝9が形成されている。スライドバルブ収納溝9には、スクリューロータ3の回転軸方向に移動可能な半円柱状のスライドバルブ10が収納されている。スライドバルブ収納溝9およびスライドバルブ10の組は、スクリューロータ3の周方向に2つ設けられている。
 スライドバルブ10は、吐出ポート8の一部を形成しており、スライドバルブ10の位置に応じて吐出ポート8が開くタイミング、すなわち圧縮室14が吐出流路7に連通するタイミングが変化する。このように吐出ポート8が開くタイミングが変化することで、スクリューロータ3の内部容積比が調整される。内部容積比とは、吸込完了時の圧縮室14の容積を吐出開始時の圧縮室14の容積で除算した値である。
 具体的には、図1に示すようにスライドバルブ10を軸方向吸込側(図2の右側)に位置させて吐出ポート8が開くタイミングを遅くすることで内部容積比が大きくなる。一方、図2に示すように、スライドバルブ10を軸方向吐出側(図2の左側)に位置させて吐出ポート8が開くタイミングを早くすることで内部容積比が小さくなる。このように、スライドバルブ10によって内部容積比を低内部容積比と高内部容積比の2段階に調整できる。
 スライドバルブ10は、弁体部10aと、ガイド部10bと、連結部10cとを備えている。弁体部10aは、円柱の一部を、スクリューロータ3の回転軸方向にスクリューロータ3の半径の円弧で削り落とした形状を有し、吐出ポート8の一部を形成する。ガイド部10bは円柱状であり、弁体部10aの移動をガイドする部分である。連結部10cは弁体部10aとガイド部10bとを連結する部分である。弁体部10aとガイド部10bとの間は、吐出流路7に連通する吐出通路となっている。
 スライドバルブ10は、図1に示すように弁体部10aがスクリューロータ3に対向する位置と、図2に示すように弁体部10aがスクリューロータ3のスクリュー溝3aに対向しない位置、具体的には軸受ハウジング13に対向する位置と、にスライドする構造となっている。つまり、弁体部10aがスクリューロータ3のスクリュー溝3aに対向する位置にあるとき、内部容積比は高くなる。また、弁体部10aが軸受ハウジング13に対向する位置にあるとき、内部容積比は低くなる。
 スクリューロータ3のモータ4とは反対側の端部には、スライドバルブ10をスクリューロータ3の回転軸方向にスライド移動させるスライドバルブ駆動機構11が配置されている。このスライドバルブ駆動機構11によって、スライドバルブ10は、スクリューロータ3の回転軸方向へスライド移動可能となっている。
 スクリュー圧縮機が備えられる冷凍サイクルの高低圧差が設定圧より大きい高圧縮比の運転時、スライドバルブ駆動機構11によってスライドバルブ10は図1に示した高内部容積比側にスライド移動する。冷凍サイクルの高低圧差が設定圧以下の低圧縮比の運転時、スライドバルブ駆動機構11によってスライドバルブ10は図2に示した低内部容積比側にスライド移動する。スライドバルブ駆動機構11の制御は、図示しない制御装置によって行われる。
(動作説明)
 次に、本実施の形態1におけるスクリュー圧縮機の動作について説明する。
 図3は、実施の形態1に係るスクリュー圧縮機の運転における圧縮原理の説明図である。図3(a)は吸込行程、図3(b)は圧縮行程、図3(c)吐出行程を示している。図3に示すようにスクリューロータ3がモータ4(図1参照)により回転軸5(図1参照)を介して回転させられることで、ゲートロータ歯部6aが圧縮室14内を相対的に移動する。これにより、圧縮室14内では吸込行程、圧縮行程および吐出行程を一サイクルとして、このサイクルを繰り返すようになっている。ここでは、図3においてドットで示した圧縮室14に着目して各行程について説明する。
 図3(a)は吸込行程における圧縮室14の状態を示している。スクリューロータ3がモータ4により駆動されて実線矢印の方向に回転する。これにより図3(b)のように圧縮室14の容積が縮小する。
 引き続きスクリューロータ3が回転すると、図3(c)に示すように、圧縮室14がケーシング円筒壁2aとスライドバルブ10の弁体部10aとから形成される吐出ポート8に連通する。これにより、圧縮室14内で圧縮された高圧の冷媒ガスが吐出ポート8より吐出流路7を通過して圧縮機外部へ吐出される。そして、再びスクリューロータ3の背面で同様の圧縮が行われる。
 高圧縮比の運転時には、図1に示すようにスライドバルブ10の弁体部10aがスクリューロータ3に対向する位置に位置しており、吐出ポート8は、弁体部10aとケーシング2の円筒壁2aとによって形成される。
 一方、低圧縮比の運転時には、図2に示すようにスライドバルブ10の弁体部10aが軸受ハウジング13に対向する位置に位置しており、吐出ポート8はケーシング円筒壁2aのみで形成される構造となっている。
 ここで、高圧縮比および低圧縮比のそれぞれの運転時におけるスクリューロータ3の外周面の展開図を、吸込、圧縮および吐出に分けて、次の図4および図5に示す。
 図4は、実施の形態1に係るスクリュー圧縮機のスクリューロータの外周面の展開図であって、高圧縮比の運転時の動作説明図である。図4(a)は吸込行程、図4(b)は圧縮行程、図4(c)は吐出行程を示している。図4において左斜め下向きのハッチングはケーシング2の円筒壁2aを示している。
 図4(a)~図4(c)に示すように、高圧縮比の運転時には、スライドバルブ10を軸方向吸込側に移動させ、弁体部10aの吸込側端面10e(以下、弁体吸込側端面10eという)をスライドバルブ収納溝9の軸方向吸込側の端面2bに接触させる。このとき、吐出ポート8は、ケーシング円筒壁2aと弁体吐出側端面10dとで形成される。吐出ポート8の軸方向吸込側の端面は、弁体吐出側端面10dとなる。なお、スライドバルブ収納溝9はケーシング2に形成されていることから、以下ではスライドバルブ収納溝9の軸方向吸込側の端面2bをケーシング端面2bという。
 図4(b)に示すように、弁体吐出側端面10dは、その傾斜角度が圧縮室14が吐出ポート8と連通する瞬間における、スクリュー溝3aの軸方向吐出側の側面3bの傾斜角度(以下、連通時溝傾斜角度)と同等となるように構成されている。このように、高圧縮比の運転時において吐出ポート8の一部を形成する弁体吐出側端面10dの傾斜角度が連通時溝傾斜角度と同等であることで、同等でない場合に比べて吐出ポート8の吐出面積を拡大することができる。このため、吐出時の冷媒ガスの圧力損失を低減させることができる。なお、傾斜角度とは、回転軸方向に対する弁体吐出側端面10dの角度である。
 図5は、実施の形態1に係るスクリュー圧縮機のスクリューロータの外周面の展開図であって、低圧縮比の運転時の動作説明図である。図5(a)は吸込行程、図5(b)は圧縮行程、図5(c)は吐出行程を示している。図5において左斜め下向きのハッチングはケーシング2の円筒壁2aを示している。
 図5(a)~図5(c)に示すように、低圧縮比の運転時には、スライドバルブ10を、軸方向吐出側であって弁体部10aがスクリュー溝3aと対向しない位置、具体的には弁体部10aの軸受ハウジング13に対向する位置までスライドさせる。このとき、吐出ポート8はケーシング円筒壁2aのみで形成され、吐出ポート8の軸方向吸込側の端面は、ケーシング端面2bとなる。つまり、低圧縮比の運転時には、スライドバルブ10を用いずケーシング2のみで吐出ポート8が形成されるため、スライドバルブ10の弁体部10aをスクリューロータ3に対向する位置から離れた位置に移動させることが可能となる。
 スライドバルブ10が図5に示す位置にあるとき、展開図上における吐出ポート8の面積は、上記図4と比較して弁体部10aの面積分、広い。つまり、吐出完了時の圧縮室14の容積が図4の場合に比べて広くなっている。よって、図5に示す位置にスライドバルブ10が位置する場合、図4に示す位置にスライドバルブ10が位置する場合に比べて内部容積比が低くなる。
 図5(b)に示すように、ケーシング円筒壁2aのケーシング端面2bは、その傾斜角度が連通時溝傾斜角度と同等となるように構成されている。このように、低圧縮比の運転時において吐出ポート8の一部を構成するケーシング端面2bの傾斜角度が連通時溝傾斜角度と同等であることで、吐出時の圧力損失を低減させることができる。
 スライドバルブ10の弁体部10aがスクリューロータ3に対向しない位置にあるとき、図5に示すように弁体部10aを含めたスライドバルブ10全体が、スクリューロータ3とは対向しない位置にある。圧縮機の運転中においてスライドバルブ10とスクリューロータ3とがこの位置関係にあるとき、スライドバルブ10とスクリューロータ3とが接触することはないため、両者の焼付を回避できる。
 また、低圧縮比の運転において、スライドバルブ10の連結部10cは吐出流路7(図2参照)に位置しない。このため、吐出流路7を通過する吐出ガスの流れが連結部10cによって阻害されることがなく、吐出後の吐出ガスの圧力損失を低減できる。また、スライドバルブ10が圧縮室14から離れた位置に移動することで、圧縮室14内と吸込圧力側との圧力差によって、スライドバルブ10が径方向外側に撓む事象が生じない。このため、この撓みによる、スクリューロータ3とスライドバルブ10の弁体部10aとの間の隙間の拡大が生じないため、隙間からの冷媒の漏れを抑制できて高効率な運転を行え、圧縮機の性能向上を図ることができる。
 また、上述したように吐出ポート8の吸込側端面は、高圧縮比の運転時には弁体吐出側端面10dにより構成され、低圧縮比の運転時にはケーシング端面2bにより構成され、ている。つまり、吐出ポート8の吸込側端面が、高圧縮比の運転時と低圧縮比の運転時とで別々の部材で構成されている。このため、それぞれの傾斜面を独立して設定でき、各圧縮比に最適な形状とすることができる。したがって、高圧縮比および低圧縮比のそれぞれにおいて冷媒ガスが吐出ポート8から吐出するときの流路面積を別々に設計でき、吐出時の圧力損失を低減させることができ、高性能なスクリュー圧縮機を提供することができる。
 ところで、圧縮機の運転停止時には、スクリューロータ3の逆回転により圧縮室14内のガスが膨張し、圧縮室14内の圧力が吸込圧力よりも小さくなる。このとき、スライドバルブ10は圧縮室14内圧力と吸込圧力との圧力差により径方向内側、つまりスクリューロータ3側に引き寄せられる。このため、弁体部10aがスクリューロータ3と対向する位置にあると、弁体部10aとスクリューロータ3が接触する可能性がある。
 このため、本実施の形態1では、運転停止時には、その直前にスライドバルブ10を軸受ハウジング13に対向する位置まで移動させる。これにより、圧縮機の停止中にスライドバルブ10とスクリューロータ3とが接触することがなく、両者の焼付を回避することができる。その結果、信頼性の高いスクリュー圧縮機を提供することができる。
 以上説明したように本実施の形態1のスクリュー圧縮機は、吐出ポート8を有するケーシング2と、ケーシング2内に収容され、一端側が軸方向吸込側となり他端側が軸方向吐出側となるスクリューロータ3と、ケーシング2内に形成されたスライドバルブ収納溝9内に収納され、スクリューロータ3の回転軸方向にスライド自在なスライドバルブ10とを備える。スライドバルブ10は弁体部10aを有し、弁体部10aがスクリューロータ3に対向する位置とスクリューロータ3に対向しない位置とに移動し、スクリューロータ3に対向する位置にあるときに弁体部10aが吐出ポート8の一部を形成する。
 このように、スライドバルブ10をスクリューロータ3と対向しない位置まで移動できるようにしたことで、スライドバルブ10が常にスクリューロータ3と対向する位置にある構成に比べてスライドバルブ10とスクリューロータ3との接触を抑制することができる。
 本実施の形態1のスクリュー圧縮機は、スクリューロータ3の軸方向吐出側に配置され、スクリューロータ3の回転軸5を支持する軸受ハウジング13を備える。スライドバルブ10の弁体部10aがスクリューロータ3に対向しない位置とは、スライドバルブ10の弁体部10aが軸受ハウジング13に対向する位置である。
 このように、スライドバルブ10の弁体部10aがスクリューロータ3に対向しない位置に位置させるには、スライドバルブ10の弁体部10aを軸受ハウジング13に対向する位置まで移動させればよい。
 スクリュー圧縮機が備えられる冷凍サイクルの高低圧差が設定圧以下の低圧縮比の運転時には、スライドバルブ10の弁体部10aがスクリューロータ3に対向しない位置に位置する。
 これにより、低圧縮比の運転時において、スライドバルブ10とスクリューロータ3との接触を回避できる。
 低圧縮比の運転時には、スライドバルブ収納溝9の軸方向吸込側の端面であるケーシング端面2bが吐出ポート8の軸方向吸込側の端面となる。
 このように、スライドバルブ収納溝9を構成するケーシング端面2bによって吐出ポート8が形成されるため、スライドバルブ10によっては吐出ポート8は形成されない。このため、スライドバルブ10を、弁体部10aがスクリューロータ3に対向しない位置に移動させることができる。
 スクリューロータ3の外周面の展開図における吐出ポート8の軸方向吸込側の端面2bの傾斜角度は、スクリューロータ3に形成されて圧縮室14を構成するスクリュー溝3aの軸方向吐出側の側面3bの傾斜角度と同じに設定されている。
 これにより、吐出ポート8で生じる圧力損失を低減できる。
 また、運転停止時には、その直前に、スライドバルブ10の弁体部10aがスクリューロータ3に対向しない位置に位置する。
 これにより、運転停止時にスクリューロータ3が逆回転して圧縮室14内のガスが膨張することに起因したスライドバルブ10の径方向内側への引き寄せが生じても、スライドバルブ10の弁体部10aがスクリューロータ3に接触することを防止できる。
実施の形態2.
 本実施の形態2では実施の形態1との差異点を中心に説明するものとし、本実施の形態2で説明されていない構成は実施の形態1と同様である。
 上記実施の形態1では、ケーシング2のケーシング端面2b(図4および図5参照)の傾斜角度が連通時溝傾斜角度と同等に構成される点について説明した。本実施の形態2は、ケーシング2に、連通時溝傾斜角度と同等の角度のケーシング端面2bを加工することが困難である場合に好適な構造に関する。
 図6は、実施の形態2に係るスクリュー圧縮機における高圧縮比の運転時のスクリューロータの外周面の展開図である。図7は、実施の形態2に係るスクリュー圧縮機における低圧縮比の運転時のスクリューロータの外周面の展開図である。
 実施の形態2のスクリュー圧縮機は、実施の形態1の構成に加えてさらに半円柱状の圧縮室形成部品15を有する。圧縮室形成部品15は、スライドバルブ10の弁体部10aの軸方向吸込側に配置されている。圧縮室形成部品15の軸方向吐出側の端面15aの傾斜角度は、上記実施の形態1にて説明したケーシング端面2bの傾斜角度と同様の角度に設定されている。
 圧縮室形成部品15は、ケーシング円筒壁2a内に形成されたスライドバルブ収納溝9を軸方向吸込側に延長した部品収納溝9aに収納されている。スクリューロータ3の外周面に対向する圧縮室形成部品15の壁面はケーシング円筒壁2aと同形状となっている。圧縮室形成部品15は、ピン17によってケーシング2に固定されており、スクリューロータ3の回転軸方向およびスクリューロータ3の周方向に移動しないようになっている。
 高圧縮比および低圧縮比のそれぞれの運転時におけるスライドバルブ10の動作は実施の形態1と同様である。すなわち、高圧縮比の運転時は、図6に示すようにスライドバルブ10を軸方向吸込側に移動させ、弁体吸込側端面10eを圧縮室形成部品15の吐出側端面15aに接触させる。低圧縮比の運転時は、図7に示すようにスライドバルブ10を軸方向吐出側であって、弁体部10aがスクリューロータ3のスクリュー溝3aと対向しない位置、具体的には軸受ハウジング13に対向する位置まで移動させる。
 本実施の形態2では、ケーシング2とは別体の圧縮室形成部品15を備えており、圧縮室形成部品15に連通時溝傾斜角度を有する端面15aを設けている。圧縮室形成部品15はケーシング2に比べて単純な形状であるため、ケーシング2に連通時溝傾斜角度を持ったケーシング端面2bを加工するよりも、容易に加工を行える。
 以上説明したように、本実施の形態2では、ケーシング2内において、スライドバルブ10の軸方向吸込側に固定して配置された圧縮室形成部品15を備え、低圧縮比の運転時には、圧縮室形成部品15の軸方向吐出側の端面が吐出ポート8の軸方向吸込側の端面となる。
 このように、ケーシング2とは別体の圧縮室形成部品15により吐出ポート8の軸方向吸込側の端面を構成できるので、ケーシング2に対して吐出ポート8の軸方向吸込側の端面を加工する必要がなく、圧縮室形成部品15に加工すればよいので、加工が容易となる。
 また、スクリュー圧縮機が備えられる冷凍サイクルの高低圧差が設定圧より大きい高圧縮比の運転時には、スライドバルブ10の弁体部10aの軸方向吸込側の端面10eが圧縮室形成部品15の軸方向吐出側の端面15aに接触する位置にスライドバルブ10が位置する。
 このように、高圧縮比の運転時に、弁体部10aの軸方向吸込側の端面10eが圧縮室形成部品15の軸方向吐出側の端面15aに接触する位置にスライドバルブ10が位置することで、弁体部10aの軸方向吐出側の端面10dにより吐出ポート8の軸方向吐出側の端面を構成できる。
 上記実施の形態1および実施の形態2では、ゲートロータ6が圧縮機に2つ設けられた形態について説明したが、ゲートロータ6が圧縮機に1つ設けられたものに対しても同様に適用可能である。
 1 スクリュー圧縮機、2 ケーシング、2a ケーシング円筒壁、2b ケーシング端面、3 スクリューロータ、3a スクリュー溝、3b 側面、4 モータ、4a ステータ、4b モーターロータ、5 回転軸、6 ゲートロータ、6a ゲートロータ歯部、7 吐出流路、8 吐出ポート、9 スライドバルブ収納溝、9a 部品収納溝、10 スライドバルブ、10a 弁体部、10b ガイド部、10c 連結部、10d 弁体吐出側端面、10e 弁体吸込側端面、11 スライドバルブ駆動機構、12 主軸受、13 軸受ハウジング、14 圧縮室、15 圧縮室形成部品、15a 吐出側端面、17 ピン。

Claims (8)

  1.  吐出ポートを有するケーシングと、
     前記ケーシング内に収容され、一端側が軸方向吸込側となり他端側が軸方向吐出側となるスクリューロータと、
     前記ケーシング内に形成されたスライドバルブ収納溝内に収納され、前記スクリューロータの回転軸方向にスライド自在なスライドバルブとを備え、
     前記スライドバルブは、弁体部を有し、前記弁体部が前記スクリューロータに対向する位置と前記スクリューロータに対向しない位置とに移動し、前記スクリューロータに対向する位置にあるときに前記弁体部が前記吐出ポートの一部を形成するスクリュー圧縮機。
  2.  前記スクリューロータの前記軸方向吐出側に配置され、前記スクリューロータの回転軸を支持する軸受ハウジングを備え、
     前記スライドバルブの前記弁体部が前記スクリューロータに対向しない位置とは、前記スライドバルブの前記弁体部が前記軸受ハウジングに対向する位置である請求項1記載のスクリュー圧縮機。
  3.  当該スクリュー圧縮機が備えられる冷凍サイクルの高低圧差が設定圧以下の低圧縮比の運転時には、前記スライドバルブの前記弁体部が前記スクリューロータに対向しない位置に位置する請求項1または請求項2記載のスクリュー圧縮機。
  4.  前記低圧縮比の運転時には、前記スライドバルブ収納溝の前記軸方向吸込側の端面が前記吐出ポートの前記軸方向吸込側の端面となる請求項3記載のスクリュー圧縮機。
  5.  前記ケーシング内において、前記スライドバルブの前記軸方向吸込側に固定して配置された圧縮室形成部品を備え、
     前記低圧縮比の運転時には、前記圧縮室形成部品の前記軸方向吐出側の端面が前記吐出ポートの前記軸方向吸込側の端面となる請求項3または請求項4記載のスクリュー圧縮機。
  6.  該スクリュー圧縮機が備えられる冷凍サイクルの高低圧差が設定圧より大きい高圧縮比の運転時には、前記スライドバルブの前記弁体部の前記軸方向吸込側の端面が、前記圧縮室形成部品の前記軸方向吐出側の端面に接触する位置に前記スライドバルブが位置する請求項5記載のスクリュー圧縮機。
  7.  前記スクリューロータの外周面の展開図における前記吐出ポートの前記軸方向吸込側の前記端面の傾斜角度は、前記スクリューロータに形成されて圧縮室を構成するスクリュー溝の前記軸方向吐出側の側面の傾斜角度と同等に設定されている請求項4~請求項6のいずれか一項に記載のスクリュー圧縮機。
  8.  運転停止時には、その直前に、前記スライドバルブの前記弁体部が前記スクリューロータに対向しない位置に位置する請求項1~請求項7のいずれか一項に記載のスクリュー圧縮機。
PCT/JP2020/019237 2020-05-14 2020-05-14 スクリュー圧縮機 WO2021229743A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20935127.9A EP4151858A4 (en) 2020-05-14 2020-05-14 SCREW COMPRESSOR
PCT/JP2020/019237 WO2021229743A1 (ja) 2020-05-14 2020-05-14 スクリュー圧縮機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/019237 WO2021229743A1 (ja) 2020-05-14 2020-05-14 スクリュー圧縮機

Publications (1)

Publication Number Publication Date
WO2021229743A1 true WO2021229743A1 (ja) 2021-11-18

Family

ID=78525522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019237 WO2021229743A1 (ja) 2020-05-14 2020-05-14 スクリュー圧縮機

Country Status (2)

Country Link
EP (1) EP4151858A4 (ja)
WO (1) WO2021229743A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060877A (ja) 2011-09-13 2013-04-04 Daikin Industries Ltd スクリュー圧縮機
CN203430782U (zh) * 2013-08-29 2014-02-12 吴家伟 一种螺杆压缩机能量及内容积比合一的调节机构
WO2017149659A1 (ja) * 2016-03-01 2017-09-08 三菱電機株式会社 スクリュー圧縮機および冷凍サイクル装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101896725B (zh) * 2007-12-17 2013-07-10 大金工业株式会社 螺杆式压缩机
JP5836867B2 (ja) * 2012-04-02 2015-12-24 三菱電機株式会社 スクリュー圧縮機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060877A (ja) 2011-09-13 2013-04-04 Daikin Industries Ltd スクリュー圧縮機
CN203430782U (zh) * 2013-08-29 2014-02-12 吴家伟 一种螺杆压缩机能量及内容积比合一的调节机构
WO2017149659A1 (ja) * 2016-03-01 2017-09-08 三菱電機株式会社 スクリュー圧縮機および冷凍サイクル装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4151858A4

Also Published As

Publication number Publication date
EP4151858A4 (en) 2023-07-12
EP4151858A1 (en) 2023-03-22

Similar Documents

Publication Publication Date Title
JP6430003B2 (ja) スクリュー圧縮機、及びそのスクリュー圧縮機を備えた冷凍サイクル装置
US5145344A (en) Scroll-type fluid machinery with offset passage to the exhaust port
EP3842641B1 (en) Screw compressor
WO2020240678A1 (ja) スクリュー圧縮機
WO2021229743A1 (ja) スクリュー圧縮機
JP2011512481A (ja) 回転ベーン式圧縮機及びその製造方法
JP2013060877A (ja) スクリュー圧縮機
JP2004324601A (ja) シングルスクリュー圧縮機
JP2022075840A (ja) スクリュー圧縮機
JP2013127203A (ja) スクリュー圧縮機
WO2020021707A1 (ja) スクリュー圧縮機
JP5827978B2 (ja) 回転ベーン式圧縮機及びその製造方法
WO2020026333A1 (ja) スクリュー圧縮機及び冷凍サイクル装置
WO2019220562A1 (ja) スクリュー圧縮機
JP6682042B2 (ja) 圧縮機及び冷凍サイクル装置
WO2024075275A1 (ja) スクリュー圧縮機
JP7372581B2 (ja) スクリュー圧縮機及び冷凍装置
JPH06221285A (ja) 流体圧縮機
WO2024075176A1 (ja) スクリュー圧縮機
WO2022244219A1 (ja) スクリュー圧縮機
JP7158603B2 (ja) スクリュー圧縮機
WO2011077657A1 (ja) スクリュー圧縮機
WO2022269661A1 (ja) スクリュー圧縮機
JP3212674B2 (ja) 流体圧縮機
JPH0587071A (ja) スクリユー圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020935127

Country of ref document: EP

Effective date: 20221214

NENP Non-entry into the national phase

Ref country code: JP