WO2021229714A1 - Electronic device inspection device - Google Patents
Electronic device inspection device Download PDFInfo
- Publication number
- WO2021229714A1 WO2021229714A1 PCT/JP2020/019103 JP2020019103W WO2021229714A1 WO 2021229714 A1 WO2021229714 A1 WO 2021229714A1 JP 2020019103 W JP2020019103 W JP 2020019103W WO 2021229714 A1 WO2021229714 A1 WO 2021229714A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electronic device
- contact
- temperature
- inspection
- electrode
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/02—General constructional details
- G01R1/06—Measuring leads; Measuring probes
- G01R1/067—Measuring probes
- G01R1/06711—Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
- G01R1/06755—Material aspects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/26—Testing of individual semiconductor devices
- G01R31/2601—Apparatus or methods therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2851—Testing of integrated circuits [IC]
- G01R31/2886—Features relating to contacting the IC under test, e.g. probe heads; chucks
Definitions
- This application relates to an electronic device inspection device.
- an inspection device in which a contact provided at the tip of an arm extending toward an electrode is actively moved toward the electrode by deformation of the arm (see, for example, Patent Document 1).
- the present application discloses a technique for solving the above-mentioned problems, and aims to obtain an electronic device inspection device capable of efficiently and accurately inspecting an electronic device.
- the electronic device inspection device disclosed in the present application is a holding mechanism that positions and holds electrodes arranged in the electronic device, is formed in a long thin plate shape with a shape memory alloy, one end side is fixed to the holding mechanism, and the other end.
- the other end is provided with a contact whose side has a spiral shape at the first temperature and the spiral expands at the second temperature, and a measuring unit for measuring the electronic device by energizing the electrode through the contact.
- the axis of the side spiral is parallel to the plane of the positioned electrode and at the second temperature forms a contact region along the longitudinal direction between the other end and the positioned electrode. It is characterized by doing.
- the contacts are configured to form contacts along the electrode surface, the electronic device can be inspected efficiently and accurately.
- 1A and 1B are a block diagram showing the configuration of the electronic device inspection apparatus according to the first embodiment, and a schematic diagram showing a shape change with a temperature change of the contactor, respectively. It is a schematic diagram which shows the inspection table part for demonstrating the structure of the electronic device inspection apparatus which concerns on Embodiment 1 in the form of a three-sided view.
- 3A and 3B are a perspective view of an inspection table portion for explaining the configuration of the electronic device inspection apparatus according to the first embodiment, and a schematic view shown in a three-view format.
- 4A and 4B are perspective views for explaining the shapes of inspection tables having different arrangements of contacts in the electronic device inspection apparatus according to the first embodiment.
- 5A and 5B are perspective views of an inspection table portion for explaining the configuration of the electronic device inspection apparatus according to the first modification and the second modification of the first embodiment, respectively.
- 6A and 6B are a perspective view of an inspection table portion for explaining the configuration of the electronic device inspection apparatus according to the second embodiment, and a schematic view shown in a three-view format.
- 7A and 7B are a perspective view of an inspection table portion for explaining the configuration of the electronic device inspection apparatus according to the third embodiment, and a schematic view shown in a three-view format. It is a block diagram which shows the hardware composition of the control part of the electronic device inspection apparatus which concerns on each embodiment.
- Embodiment 1. 1 to 3 are for explaining the electronic device inspection apparatus according to the first embodiment, and FIG. 1 is an inspection table portion on which an electronic device as an inspection product is placed as a configuration of the electronic device inspection apparatus.
- FIG. 1A is a block diagram including a schematic drawing of the above, and a schematic diagram (FIG. 1B) showing a shape change accompanying a temperature change of a contactor in contact with an electrode of an electronic device.
- FIG. 2 is a schematic view showing the inspection table portion in a trigonometric three-view format.
- FIG. 3 is a perspective view (FIG. 3A) of the inspection table portion in a state where the contactor is deformed so as to be in contact with the electrode, and a schematic view (FIG. 3B) shown in a three-view format.
- FIG. 4 and 5 are for explaining the electronic device inspection apparatus according to the application example of the first embodiment, and FIG. 4 shows an example in which the number of contacts is changed, and one contact is shown. It is a perspective view (FIG. 4A) of the inspection table in which the four contacts are arranged, and is a perspective view (FIG. 4B) of the inspection table in which four contacts are arranged.
- FIG. 5 is a perspective view (FIG. 5A) of the inspection table portion of the electronic device inspection device according to the first modification and a perspective view (FIG. 5B) of the inspection table portion of the electronic device inspection device according to the second modification.
- the electronic device inspection device 10 is a mechanism unit having a contact 2 that forms a contact point with an electrode in order to measure the electrical characteristics of the semiconductor device 90 which is an inspection product. 1 and a control unit 6 for controlling a measurement operation are provided.
- An electrode (not shown) is formed on one surface (electrode arrangement surface 90fe: FIG. 2) of an electronic device such as a semiconductor device 90, and by energizing this electrode, measurement of various electrical characteristics is performed. It is configured in.
- the mechanism unit 1 has a contactor 2 and an inspection table 3 to which one end (base 2b) of the contactor 2 is fixed and, for example, a jig (not shown) for holding the semiconductor device 90 is attached.
- the portion for fixing the contact 2 is made of an insulating material such as an insulating substrate, and each contact 2 is provided with a terminal 3t for connecting to the wiring from the measuring unit 61. Further, as described in a modification described later, an instrument for temperature control or fixing of the semiconductor device 90 may be provided.
- the contact 2 is made of a shape memory alloy such as a nickel titanium alloy and is formed in the shape of a long thin plate. Then, as shown in FIG. 1B, one end side is fixed to the upper surface 3ft of the inspection table 3 and the other end side is reversibly changed from a spiral shape to a flat shape or a curved shape in the opposite direction due to a temperature change. It is composed of a variable portion 2a that changes and forms a contact point with the above-mentioned electrode.
- the base portion 2b is fixed to the upper surface 3ft with the axis of the spiral parallel to the electrode placement surface 90fe so that the spiral variable portion 2a rises from the surface 3ft toward the electrode placement surface 90fe. ing. That is, the base portion 2b is fixed to the upper surface 3ft away from the electrode arranging surface 90fe so that the variable portion 2a swirls in the direction approaching the electrode arranging surface 90fe. At that time, with respect to the electrode arrangement surface 90fe of the positioned semiconductor device 90, the side of the spiral variable portion 2a close to the electrode arrangement surface 90fe is directed from the inside to the outside in the direction toward the free end 2ae. It is fixed to the inspection table 3. As a result, when the spiral of the variable portion 2a develops due to the temperature change, the free end 2ae faces the outside of the electrode arrangement surface 90fe.
- the length of the spiral portion needs to be long enough to connect even if there is a gap between the contact 2 and the electrode surface when the shape is restored. For example, in consideration of the manufacturing error in the height direction between the electrode surface and the contactor 2, it is necessary to have a length for securing the deformation amount and the contact area required for generating the pressing force due to the elastic deformation described later.
- the control unit 6 outputs a measurement unit 61 that measures electrical characteristics by passing a current through the inspection product, an inspection control unit 64 that controls the entire inspection operation, an inspection result management unit 65 that manages inspection results, and an inspection result. It includes an inspection result output unit 66 and a data storage unit 67 for storing data. Further, for example, a temperature adjusting unit 63 for changing the shape of the contact 2 and a holding mechanism control unit 62 for controlling a mechanism for holding the inspection product may be provided, which will be described in a modification described later.
- the semiconductor device 90 which is an inspection product
- the contactor 2 at room temperature has a spiral shape, and as described above, the side close to the electrode arrangement surface 90fe is inside in the direction toward the free end 2ae. Towards the outside.
- the semiconductor device 90 uses a jig (not shown) with respect to the inspection table 3 without being interfered by the contactor 2. It can be easily positioned.
- variable portion 2a expands from the spiral shape, and as shown in FIG. 3, the portion of the electrode arrangement surface 90fe that hits an electrode (not shown) is along the electrode surface. It is deformed into a U shape and forms a contact region Rc with the electrode surface.
- the originally flat portion elastically deforms and acts as a spring, so that the variable portion 2a generates a pressing force on the electrode surface and is good between the contact region Rc and the surface. Electrical connection is possible.
- variable portion 2a is deformed along the inclined electrode surface and a pressing force can be applied, so that the variable portion 2a can be efficiently and accurately installed. Allows inspection of electronic devices.
- a contact is formed using a bimetal that deforms due to the difference in the coefficient of linear expansion, it is possible to change between spiral and flat depending on the temperature.
- it acts as a spring due to the change in curvature, it becomes difficult to deform in the direction intersecting the bending direction, and there is a possibility of uneven contact with the tilted electrode surface. It is difficult to form Rc.
- the contactor 2 formed of the shape memory alloy can be deformed not only in the bending direction but also in the direction intersecting the bending direction, and good contact is possible by the deformation along the electrode surface. It becomes. Therefore, the contact resistance is small, accurate measurement can be performed, and the pressure is dispersed, so that the electrode surface of the semiconductor device 90 can be suppressed from being damaged.
- the normal temperature is spiral and the high temperature recovers flat
- the shape is not limited to this.
- a shape memory alloy that recovers its shape at room temperature is used for the contactor 2
- the above-mentioned spring does not act, so that the contactor 2 does not cause interference such as pushing back. , Can be positioned accurately. Then, by cooling the contact 2 to a temperature at which the shape is restored, a good contact region Rc is formed, and accurate inspection becomes possible.
- the number of contacts 2 installed on the inspection table 3 is not limited to two, and as shown in FIG. 4 (FIGS. 4A and 4B), one or four contacts, a test piece, or a test. Any number may be used according to the content. On the other hand, considering the above-mentioned interference by the contacts 2, the effect of facilitating the positioning according to the present application is exhibited as the number of contacts 2 increases.
- a stopper, a pressurizing tool, or a movement preventing tool 4 such as a heavy stone is installed in order to prevent the semiconductor device 90 from being dragged and moving when the contact 2 recovers its shape. You may do so.
- the inspection control unit 64 may monitor the progress of the measurement by the measurement unit 61, and the holding mechanism control unit 62 may control the drive and release of the movement preventive tool 4. With this configuration, the contact pressure between the recovered contact 2 and the semiconductor device 90 increases, so that the electrical connection becomes more reliable, and replacement with the next inspection body can be performed quickly. Therefore, the inspection efficiency is high.
- the mechanism for changing the temperature of the contact 2 can be realized by raising the atmosphere temperature by bringing a heat source such as a dryer closer to the contact 2 or putting the test piece in a constant temperature bath or the like. good.
- a thermomodule 5 such as a Pelche element may be arranged in the vicinity of the contactor 2.
- the inspection control unit 64 monitors the progress of the measurement by the measurement unit 61, and causes the temperature adjustment unit 63 to control the temperature rise and cooling by the thermo module 5, the on / off of the dryer, or the loading and unloading of the dryer into the constant temperature bath. You may do so.
- the inspection is performed at a high temperature, it is suitable because the temperature at the time of inspection can be accurately controlled by making the temperature rise and cooling into a process.
- FIG. 6 is for explaining the electronic device inspection apparatus according to the second embodiment, and is a perspective view (FIG. 6A) of an inspection table portion and a schematic view (FIG. 6B) shown in a three-view format.
- the movement of the contact is the same as described in the first embodiment, and the form of the entire electronic device inspection device and the contact itself is shown in FIG. 1, when the contact recovers its shape and forms a contact region.
- FIG. 3B is used for the shape of.
- the electronic device inspection device 10 has a recess from the mounting surface 3ft1 on which the semiconductor device 90 is mounted on the inspection table 3, and a groove portion 3g corresponding to each of the contacts 2.
- the base portion 2b of the contact 2 is fixed on the bottom surface 3ft2 of the groove portion 3g, and the contactor 2 is placed between the mounting surface 3ft1 and the bottom surface 3ft2 when the variable portion 2a has a spiral shape. Contained inside.
- the wall surface of the groove 3g portion is also formed of an insulating material, and contacts 2 connected to terminals 3t (not shown) are arranged therein.
- the variable portion 2a is not in contact with the contactor 2 and is not electrically connected in the spiral state.
- the contact 2 is deformed along the electrode surface of the semiconductor device 90 and is electrically connected by forming the contact region Rc, as in the first embodiment.
- the semiconductor device 90 Since the semiconductor device 90 is installed on the mounting surface 3ft1 of the inspection table 3 itself, the parallelism between the electrode arrangement surface 90fe and the bottom surface 3ft2 is higher than in the case of using a jig or the like, and the shape of the contact 2 is restored. The accuracy of electrical connection is improved. Further, the contact 2 can be electrically connected to the electrode of the semiconductor device 90 by raising the temperature of the contact 2 at an arbitrary timing. Therefore, when the semiconductor device 90 is installed, it is possible to suppress the generation of electrostatic discharge due to the charging of the human body, and it is possible to protect the semiconductor device 90.
- the contact 2 since the contact 2 is housed in the groove 3 g, the side surface of the groove 3 g acts as a guide, and when the contact 2 recovers its shape, it deforms along the side surface. Therefore, if the width of the groove 3g is aligned with the width of the electrode of the semiconductor device 90, the contact 2 can be prevented from being displaced from the electrode when it is deformed, and can be more reliably electrically connected. Further, since the semiconductor device 90 is in contact with the mounting surface 3ft1, there is no physical load when pressing the contactor 2 at the time of installation, and even when the semiconductor device 90 generates heat, the heat dissipation of the inspection table 3 is high. Therefore, the thermal load on the contact 2 and the semiconductor device 90 is reduced. This is particularly effective when an electronic device with a large calorific value is used as an inspection product.
- the movement preventive device 4 and the thermo module 5 may be provided as described in the first modification and the second modification of the first embodiment.
- FIG. 7 is for explaining the electronic device inspection apparatus according to the third embodiment, and is a perspective view (FIG. 7A) of an inspection table portion and a schematic view (FIG. 7B) shown in a three-view format. Also in the third embodiment, the movement of the contactor is the same as that described in the first embodiment, and the form of the entire electronic device inspection device and the contactor itself is shown in FIG. 1, and the shape of the contactor is restored.
- FIG. 3B is used for the shape when the contact region is formed.
- the electronic device inspection device 10 is provided with a socket 31 into which the semiconductor device 90 is fitted in the inspection table 3.
- the socket 31 has a groove portion 3g for accommodating the contact 2 described in the second embodiment, a mounting surface 3ft1 on which the semiconductor device 90 is mounted, and supports four side portions of the rectangular plate-shaped semiconductor device 90.
- a frame-shaped portion 31c is formed.
- the wall surface of the groove portion 3g provided in the socket 31 is also formed of an insulating material, and contactors 2 connected to terminals 3t (not shown) are arranged therein.
- the variable portion 2a is not in contact with the contactor 2 and is not electrically connected in the spiral state.
- the contact 2 is deformed along the electrode surface of the semiconductor device 90 and is electrically connected by forming the contact region Rc, as in the first embodiment. NS.
- the four side portions adjacent to the electrode arranging surface 90fe in the rectangular plate-shaped semiconductor device 90 are supported by the frame-shaped portion 31c, positioning in a direction parallel to the electrode arranging surface 90fe can be easily performed, and the above-mentioned It is possible to prevent misalignment even when a force is applied during shape recovery.
- the parallelism between the electrode arrangement surface 90fe and the bottom surface 3ft2 is high, and the accuracy of electrically connecting the contactor 2 when the shape is restored is improved.
- the contact 2 can be electrically connected to the electrode of the semiconductor device 90 by raising the temperature of the contact 2 at an arbitrary timing. Therefore, when the semiconductor device 90 is installed, it is possible to suppress the generation of electrostatic discharge due to the charging of the human body, and it is possible to protect the semiconductor device 90.
- the contact 2 since the contact 2 is housed in the groove 3 g, the side surface of the groove 3 g acts as a guide, and when the contact 2 recovers its shape, it deforms along the side surface. Therefore, if the width of the groove 3g is aligned with the width of the electrode of the semiconductor device 90, the contact 2 can be prevented from being displaced from the electrode when it is deformed, and can be more reliably electrically connected. Further, since the semiconductor device 90 is in contact with the mounting surface 3ft1, there is no physical load when pressing the contactor 2 at the time of installation, and even when the semiconductor device 90 generates heat, the frame-shaped portion 31c also serves as a heat dissipation path.
- the heat dissipation is higher than that of the second embodiment, and the thermal load on the contact 2 and the semiconductor device 90 is reduced. This is particularly effective when an electronic device with a large calorific value is used as an inspection product.
- the socket 31 is detachably fixed to the inspection table 3 by screwing or the like, so that even if the semiconductor device 90 is burnt out, other parts can be reused by replacing the socket 31.
- the contacts 2 come into contact with each other when the shape changes, and an unintended portion becomes conductive, which makes accurate inspection impossible. Can be considered.
- the partition 3s that partitions the groove 3g is provided, the contacts 2 do not come into contact with each other and become conductive in the process of changing the shape.
- the movement preventing tool 4 and the thermo module 5 may be provided as described in the first modification and the second modification of the first embodiment.
- the portion that executes the calculation or control of the control unit 6 is a hardware composed of the processor 601 and the storage device 602 as in the example shown in FIG. It can be described as wear 60.
- the storage device 602 includes a volatile storage device such as a random access memory (not shown) and a non-volatile auxiliary storage device such as a flash memory. Further, the auxiliary storage device of the hard disk may be provided instead of the flash memory.
- the processor 601 executes the program input from the storage device 602. In this case, the program is input from the auxiliary storage device to the processor 601 via the volatile storage device. Further, the processor 601 may output data such as a calculation result to the volatile storage device of the storage device 602, or may store the data in the auxiliary storage device via the volatile storage device.
- variable portion 2a has been shown to extend toward the outside of the electrode arrangement surface 90fe of the semiconductor device 90, but the present invention is not limited to this, and the variable portion 2a may be arranged so as to extend toward the inside. Further, a case where the variable portion 2a forms a spiral shape and is spaced from the electrode is shown as a preferable example, but it is not always necessary to space the variable portions 2a, and they are in contact with each other unless an excessive repulsive force is generated. You may.
- the holding mechanism for positioning and holding the electrodes arranged in the electronic device (semiconductor device 90), and the shape memory alloy are long. It is formed in the shape of a thin plate, one end side (base 2b) is fixed to the holding mechanism (upper surface 3ft or bottom surface 3ft2), and the other end side (variable part 2a) forms a spiral shape at the first temperature (for example, normal temperature).
- the axis of the spiral on the other end side is parallel to the positioned electrode surface (electrode arrangement surface 90fe or electrode surface), and at the second temperature, is parallel to the other end side (variable portion 2a). Since the contact region Rc along the long direction is formed between the positioned electrode and the electrode, a contact with the contact 2 is formed along the electrode surface to form an electronic device (semiconductor device 90). It can be inspected efficiently and accurately.
- the contact 2 is configured so that the other end side (variable portion 2a) faces the positioned electrode at a distance at the first temperature, the contact 2 will not be interfered with by the contact 2.
- the electronic device semiconductor device 90
- semiconductor device 90 can be accurately positioned.
- a temperature adjusting unit 63 (and a thermo module 5) for adjusting the temperature of the contact 2 and a control unit (inspection control unit 64) for controlling the operation of the measuring unit 61 in conjunction with the operation of the temperature adjusting unit 63 are provided. If the temperature is set to the above, the contact with the contact 2 is measured in a good state, so that more efficient and accurate inspection can be performed.
- the holding mechanism includes a support surface (mounting surface 3ft1) that supports the surface (electrode arrangement surface 90fe) on which the electrodes of the electronic device (semiconductor device 90) are arranged, and a support surface (mounting surface 3ft1). ), And a groove 3g to which one end (base 2b) of the contact 2 is fixed is provided on the bottom surface 3ft2. It will not be deformed by touching it. Further, the groove portion 3g serves as a guide, and the contact 2 can be smoothly deformed.
- the holding mechanism (inspection table 3) has a frame-shaped portion 31c surrounding the electronic device (semiconductor device 90) in a direction parallel to the surface (electrode arrangement surface 90fe) on which the electrodes of the electronic device (semiconductor device 90) are arranged. If the electronic device (semiconductor device 90) is configured to be provided, the electronic device (semiconductor device 90) can be easily positioned and misalignment can be prevented.
- the holding mechanism (inspection table 3) is provided with a partition 3s in which a plurality of contacts 2 are adjacent to each other along the longitudinal direction and partition between the adjacent contacts 2, a short circuit between the contacts 2 can be caused. Can be prevented.
- a restraining mechanism for restraining the movement of the electronic device (semiconductor device 90) in a direction away from the contact 2
- the electronic device can be pressed by the contact 2.
- the contact state with the contactor 2 can be kept good.
- Mechanism part 10: Electronic device inspection device, 2: Contact, 2a: Variable part, 3: Inspection table (holding mechanism), 31: Socket, 31c: Frame-shaped part, 3ft: Top surface, 3ft 1: Mounting surface (Support surface), 3ft2: Bottom surface, 3g: Groove part, 3s: Partition 4: Movement prevention device (stop mechanism), 5: Thermo module (temperature control unit), 6: Control unit, 61: Measurement unit, 62: Holding Mechanism control unit, 63: Temperature control unit, 64: Inspection control unit, 65: Inspection result management unit, 90: Semiconductor device (electronic device), 90fe: Electrode arrangement surface, Rc: Contact area.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Of Individual Semiconductor Devices (AREA)
Abstract
This electronic device inspection device (10) comprises: an inspection table (3) for positioning and holding an electrode disposed on a semiconductor device (90); a contact (2) that is formed from a shape memory alloy in an elongated thin-plate shape, has a base part (2b) that is fixed to the inspection table (3), and has a variable part (2a) that has a spiral shape at a first temperature and has the spiral unfolded at a second temperature; and a measurement unit (61) for measuring the semiconductor device (90) by causing electricity to flow to the electrode via the contact (2). The axis of the spiral of the variable part (2a) is parallel to the electrode surface of the positioned electrode. At the second temperature, a contact region (Rc) is formed along the length direction of the contact (2) between the variable part (2a) and the positioned electrode.
Description
本願は、電子デバイス検査装置に関するものである。
This application relates to an electronic device inspection device.
半導体装置のような電子デバイスは、電気的諸特性の検査のため、通電のために検査用の接触子を電極に接触させる必要がある。その際、試験体である電子デバイスの電極の高さが所定範囲内に入らないと、接触子と電極との間で接触不良が生じ、正確な検査ができなくなる。そこで、電極に向かって延びるアームの先端に設けた接点を、アームの変形によって電極に向かって能動的に移動させる検査装置が開示されている(例えば、特許文献1参照。)。
For electronic devices such as semiconductor devices, in order to inspect various electrical characteristics, it is necessary to bring an inspection contactor into contact with the electrodes in order to energize. At that time, if the height of the electrode of the electronic device as the test piece does not fall within the predetermined range, poor contact occurs between the contactor and the electrode, and accurate inspection cannot be performed. Therefore, an inspection device is disclosed in which a contact provided at the tip of an arm extending toward an electrode is actively moved toward the electrode by deformation of the arm (see, for example, Patent Document 1).
しかしながら、接点の位置を近づけるだけの構成では、例えば、試験体が傾いた状態でセッティングされた場合、電極周辺部が干渉し、接点を電極に接触させることができず、試験体を再セッティングする必要が生じ、検査効率が低下することがあった。
However, in a configuration in which the positions of the contacts are only brought closer to each other, for example, when the test piece is set in an inclined state, the peripheral portion of the electrode interferes and the contact cannot be brought into contact with the electrode, and the test piece is reset. Needs arise and inspection efficiency may decrease.
本願は、上記のような課題を解決するための技術を開示するものであり、電子デバイスを効率よく正確に検査できる電子デバイス検査装置を得ることを目的としている。
The present application discloses a technique for solving the above-mentioned problems, and aims to obtain an electronic device inspection device capable of efficiently and accurately inspecting an electronic device.
本願に開示される電子デバイス検査装置は、電子デバイスに配置された電極を位置決めして保持する保持機構、 形状記憶合金で長尺薄板状に形成され、一端側が前記保持機構に固定され、他端側が第一温度において渦巻き形状をなし、第二温度において渦巻きが展開する接触子、および前記接触子を介した前記電極への通電により、前記電子デバイスを測定する測定部、を備え、前記他端側の渦巻きの軸は、前記位置決めされた電極の面に平行であり、前記第二温度において、前記他端側と前記位置決めされた電極との間に、長尺方向に沿った接触領域を形成することを特徴とする。
The electronic device inspection device disclosed in the present application is a holding mechanism that positions and holds electrodes arranged in the electronic device, is formed in a long thin plate shape with a shape memory alloy, one end side is fixed to the holding mechanism, and the other end. The other end is provided with a contact whose side has a spiral shape at the first temperature and the spiral expands at the second temperature, and a measuring unit for measuring the electronic device by energizing the electrode through the contact. The axis of the side spiral is parallel to the plane of the positioned electrode and at the second temperature forms a contact region along the longitudinal direction between the other end and the positioned electrode. It is characterized by doing.
本願に開示される電子デバイス検査装置によれば、電極面に沿って接点を形成するように構成したので、電子デバイスを効率よく正確に検査することができる。
According to the electronic device inspection device disclosed in the present application, since the contacts are configured to form contacts along the electrode surface, the electronic device can be inspected efficiently and accurately.
実施の形態1.
図1~図3は、実施の形態1にかかる電子デバイス検査装置について説明するためのものであり、図1は電子デバイス検査装置の構成として、検査品である電子デバイスを載置する検査台部分の模式的な描画を含むブロック図(図1A)と、電子デバイスの電極に接触させる接触子の温度変化に伴う形状変化を示す模式図(図1B)である。そして、図2は検査台部分を三角法による三面図形式で示す模式図である。さらに、図3は接触子を電極に接触するように変形させた状態での、検査台部分の斜視図(図3A)と、三面図形式で示す模式図(図3B)である。 Embodiment 1.
1 to 3 are for explaining the electronic device inspection apparatus according to the first embodiment, and FIG. 1 is an inspection table portion on which an electronic device as an inspection product is placed as a configuration of the electronic device inspection apparatus. It is a block diagram (FIG. 1A) including a schematic drawing of the above, and a schematic diagram (FIG. 1B) showing a shape change accompanying a temperature change of a contactor in contact with an electrode of an electronic device. FIG. 2 is a schematic view showing the inspection table portion in a trigonometric three-view format. Further, FIG. 3 is a perspective view (FIG. 3A) of the inspection table portion in a state where the contactor is deformed so as to be in contact with the electrode, and a schematic view (FIG. 3B) shown in a three-view format.
図1~図3は、実施の形態1にかかる電子デバイス検査装置について説明するためのものであり、図1は電子デバイス検査装置の構成として、検査品である電子デバイスを載置する検査台部分の模式的な描画を含むブロック図(図1A)と、電子デバイスの電極に接触させる接触子の温度変化に伴う形状変化を示す模式図(図1B)である。そして、図2は検査台部分を三角法による三面図形式で示す模式図である。さらに、図3は接触子を電極に接触するように変形させた状態での、検査台部分の斜視図(図3A)と、三面図形式で示す模式図(図3B)である。 Embodiment 1.
1 to 3 are for explaining the electronic device inspection apparatus according to the first embodiment, and FIG. 1 is an inspection table portion on which an electronic device as an inspection product is placed as a configuration of the electronic device inspection apparatus. It is a block diagram (FIG. 1A) including a schematic drawing of the above, and a schematic diagram (FIG. 1B) showing a shape change accompanying a temperature change of a contactor in contact with an electrode of an electronic device. FIG. 2 is a schematic view showing the inspection table portion in a trigonometric three-view format. Further, FIG. 3 is a perspective view (FIG. 3A) of the inspection table portion in a state where the contactor is deformed so as to be in contact with the electrode, and a schematic view (FIG. 3B) shown in a three-view format.
また、図4と図5は実施の形態1の応用例にかかる電子デバイス検査装置について説明するためのもので、図4は接触子の数を変化させた例を示すもので、1つの接触子を配置した検査台の斜視図(図4A)と、4つの接触子を配置した検査台の斜視図(図4B)である。図5は第一変形例にかかる電子デバイス検査装置の検査台部分の斜視図(図5A)と、第二変形例にかかる電子デバイス検査装置の検査台部分の斜視図(図5B)である。
4 and 5 are for explaining the electronic device inspection apparatus according to the application example of the first embodiment, and FIG. 4 shows an example in which the number of contacts is changed, and one contact is shown. It is a perspective view (FIG. 4A) of the inspection table in which the four contacts are arranged, and is a perspective view (FIG. 4B) of the inspection table in which four contacts are arranged. FIG. 5 is a perspective view (FIG. 5A) of the inspection table portion of the electronic device inspection device according to the first modification and a perspective view (FIG. 5B) of the inspection table portion of the electronic device inspection device according to the second modification.
実施の形態1にかかる電子デバイス検査装置10は、図1Aに示すように、検査品である半導体装置90の電気的特性を測定するために電極との接点を形成する接触子2を有する機構部1、および測定動作を制御する制御部6を備えている。半導体装置90等の電子デバイスには、一方の面(電極配置面90fe:図2)に図示しない電極が形成されており、この電極に通電することで、電気的諸特性の測定を実行するように構成している。
As shown in FIG. 1A, the electronic device inspection device 10 according to the first embodiment is a mechanism unit having a contact 2 that forms a contact point with an electrode in order to measure the electrical characteristics of the semiconductor device 90 which is an inspection product. 1 and a control unit 6 for controlling a measurement operation are provided. An electrode (not shown) is formed on one surface (electrode arrangement surface 90fe: FIG. 2) of an electronic device such as a semiconductor device 90, and by energizing this electrode, measurement of various electrical characteristics is performed. It is configured in.
機構部1は、接触子2と、接触子2の一端(基部2b)が固定され、例えば、半導体装置90を保持するための図示しない治具が取り付けられる検査台3とを有している。検査台3は、接触子2を固定する部分が絶縁基板等の絶縁材で構成され、接触子2それぞれに対応し、測定部61からの配線と接続するための端子3tが設けられている。また、後述する変形例で説明するように、温度調節、あるいは半導体装置90の固定のための器具等を設けるようにしてもよい。
The mechanism unit 1 has a contactor 2 and an inspection table 3 to which one end (base 2b) of the contactor 2 is fixed and, for example, a jig (not shown) for holding the semiconductor device 90 is attached. In the inspection table 3, the portion for fixing the contact 2 is made of an insulating material such as an insulating substrate, and each contact 2 is provided with a terminal 3t for connecting to the wiring from the measuring unit 61. Further, as described in a modification described later, an instrument for temperature control or fixing of the semiconductor device 90 may be provided.
接触子2は、例えばニッケルチタン合金等の形状記憶合金製で、長尺薄板状に形成されている。そして、図1Bに示すように、一端側が検査台3の上面3ftに固定される基部2bと、他端側が温度変化により、渦巻き状から平坦状あるいは逆向きの湾曲状へと可逆的に形状が変化し、上述した電極との接点を形成する可変部2aとで構成している。
The contact 2 is made of a shape memory alloy such as a nickel titanium alloy and is formed in the shape of a long thin plate. Then, as shown in FIG. 1B, one end side is fixed to the upper surface 3ft of the inspection table 3 and the other end side is reversibly changed from a spiral shape to a flat shape or a curved shape in the opposite direction due to a temperature change. It is composed of a variable portion 2a that changes and forms a contact point with the above-mentioned electrode.
基部2bは、図2に示すように、渦巻き状の可変部2aが面3ftから電極配置面90feに向けて立ち上がるように、渦巻きの軸を電極配置面90feに平行にして、上面3ftに固定されている。つまり、基部2bは、可変部2aが電極配置面90feに近づく方向に渦巻くように、電極配置面90feから離れた上面3ftに固定されている。その際、位置決めされた半導体装置90の電極配置面90feに対して、渦巻き状をなす可変部2aの電極配置面90feに近い側が、自由端2aeに進む方向において、内側から外側に向かうように、検査台3に固定されている。これにより、温度変化によって可変部2aの渦巻きが展開した際、自由端2aeは、電極配置面90feの外側を向くことになる。
As shown in FIG. 2, the base portion 2b is fixed to the upper surface 3ft with the axis of the spiral parallel to the electrode placement surface 90fe so that the spiral variable portion 2a rises from the surface 3ft toward the electrode placement surface 90fe. ing. That is, the base portion 2b is fixed to the upper surface 3ft away from the electrode arranging surface 90fe so that the variable portion 2a swirls in the direction approaching the electrode arranging surface 90fe. At that time, with respect to the electrode arrangement surface 90fe of the positioned semiconductor device 90, the side of the spiral variable portion 2a close to the electrode arrangement surface 90fe is directed from the inside to the outside in the direction toward the free end 2ae. It is fixed to the inspection table 3. As a result, when the spiral of the variable portion 2a develops due to the temperature change, the free end 2ae faces the outside of the electrode arrangement surface 90fe.
なお、渦巻き状部分の長さは、形状回復した際に接触子2と電極面との間に隙間があっても接続できる長さが必要である。例えば電極面と接触子2の高さ方向における製作誤差を考慮して、後述する弾性変形による押圧力を発生させるために必要な変形量と接触面積を確保するための長さが必要である。
The length of the spiral portion needs to be long enough to connect even if there is a gap between the contact 2 and the electrode surface when the shape is restored. For example, in consideration of the manufacturing error in the height direction between the electrode surface and the contactor 2, it is necessary to have a length for securing the deformation amount and the contact area required for generating the pressing force due to the elastic deformation described later.
制御部6には、検査品に電流を流して電気的特性を測定する測定部61、検査動作全体を制御する検査制御部64、検査結果を管理する検査結果管理部65、検査結果を出力する検査結果出力部66、およびデータを保存するデータ保存部67を備えている。さらには、後述する変形例で説明する例えば、接触子2の形状を変化させるための温度調整部63、検査品を保持する機構を制御する保持機構制御部62を備えるようにしてもよい。
The control unit 6 outputs a measurement unit 61 that measures electrical characteristics by passing a current through the inspection product, an inspection control unit 64 that controls the entire inspection operation, an inspection result management unit 65 that manages inspection results, and an inspection result. It includes an inspection result output unit 66 and a data storage unit 67 for storing data. Further, for example, a temperature adjusting unit 63 for changing the shape of the contact 2 and a holding mechanism control unit 62 for controlling a mechanism for holding the inspection product may be provided, which will be described in a modification described later.
上述した構成に基づき、詳細を説明する。検査品である半導体装置90を検査台3に設置する際、常温の接触子2は、渦巻き状をなし、上述したように、電極配置面90feに近い側が、自由端2aeに進む方向において、内側から外側に向かっている。このとき、可変部2aと電極配置面90feとの間には隙間があるため、半導体装置90は、図示しない治具を用いて、接触子2による干渉を受けることなく、検査台3に対して容易に位置決めすることができる。
Details will be explained based on the above-mentioned configuration. When the semiconductor device 90, which is an inspection product, is installed on the inspection table 3, the contactor 2 at room temperature has a spiral shape, and as described above, the side close to the electrode arrangement surface 90fe is inside in the direction toward the free end 2ae. Towards the outside. At this time, since there is a gap between the variable portion 2a and the electrode arranging surface 90fe, the semiconductor device 90 uses a jig (not shown) with respect to the inspection table 3 without being interfered by the contactor 2. It can be easily positioned.
この状態において、接触子2の温度を上昇させると、可変部2aが渦巻き状から展開して、図3に示すように、電極配置面90feの図示しない電極に当たった部分から、電極面に沿って変形してU字状になり、電極面との間で接触領域Rcを形成する。高温状態では、本来、平坦な部分が弾性変形してバネとして作用させることになるため、可変部2aは、電極面に対して押圧力を発生させ、面による接触領域Rcとの間で良好な電気接続が可能となる。
In this state, when the temperature of the contact 2 is raised, the variable portion 2a expands from the spiral shape, and as shown in FIG. 3, the portion of the electrode arrangement surface 90fe that hits an electrode (not shown) is along the electrode surface. It is deformed into a U shape and forms a contact region Rc with the electrode surface. In a high temperature state, the originally flat portion elastically deforms and acts as a spring, so that the variable portion 2a generates a pressing force on the electrode surface and is good between the contact region Rc and the surface. Electrical connection is possible.
つまり、形状記憶による変形を利用することで、接触子2による干渉を受けることなく、半導体装置90を正確に位置決めして検査することが可能となる。また、仮に半導体装置90が傾いて設置されたり、電極面に傾きがあったりしても、可変部2aが傾いた電極面に沿って変形し、かつ押圧力を付与できるため、効率よく正確に電子デバイスの検査が可能になる。
That is, by utilizing the deformation due to the shape memory, it is possible to accurately position and inspect the semiconductor device 90 without being interfered by the contactor 2. Further, even if the semiconductor device 90 is installed at an angle or the electrode surface is inclined, the variable portion 2a is deformed along the inclined electrode surface and a pressing force can be applied, so that the variable portion 2a can be efficiently and accurately installed. Allows inspection of electronic devices.
なお、線膨張係数の差で変形するバイメタルを用いて接触子を形成すると、温度に応じて渦巻きと平坦との間で変化させることは可能である。しかし、その場合は湾曲の変化により、バネとしての作用は有するが、湾曲方向と交差する方向への変形は困難となり、傾いた電極面に対して偏当たりする可能性があり、面による接触領域Rcを形成することは困難である。一方、形状記憶合金で形成した接触子2では、湾曲方向はもちろんのこと、湾曲方向に対して交差する方向に対しても変形可能であり、電極面に沿った変形により、良好な接触が可能となる。そのため、接触抵抗も小さく正確な測定ができる上、圧力が分散されるため半導体装置90の電極面が傷つくことも抑制することができる。
If a contact is formed using a bimetal that deforms due to the difference in the coefficient of linear expansion, it is possible to change between spiral and flat depending on the temperature. However, in that case, although it acts as a spring due to the change in curvature, it becomes difficult to deform in the direction intersecting the bending direction, and there is a possibility of uneven contact with the tilted electrode surface. It is difficult to form Rc. On the other hand, the contactor 2 formed of the shape memory alloy can be deformed not only in the bending direction but also in the direction intersecting the bending direction, and good contact is possible by the deformation along the electrode surface. It becomes. Therefore, the contact resistance is small, accurate measurement can be performed, and the pressure is dispersed, so that the electrode surface of the semiconductor device 90 can be suppressed from being damaged.
なお、上記例では、常温が渦巻き状で高温が平坦に形状回復する例を示したがこれに限ることはない。例えば、常温で形状回復する形状記憶合金を接触子2に用いれば、高温で半導体装置90を設置する際は、前述のバネの作用がないため、接触子2による押し戻し等の干渉を受けずに、正確に位置決めできる。そして、接触子2を形状回復する温度まで冷却することで、良好な接触領域Rcを形成し、正確な検査が可能になる。
In the above example, an example is shown in which the normal temperature is spiral and the high temperature recovers flat, but the shape is not limited to this. For example, if a shape memory alloy that recovers its shape at room temperature is used for the contactor 2, when the semiconductor device 90 is installed at a high temperature, the above-mentioned spring does not act, so that the contactor 2 does not cause interference such as pushing back. , Can be positioned accurately. Then, by cooling the contact 2 to a temperature at which the shape is restored, a good contact region Rc is formed, and accurate inspection becomes possible.
また、検査台3に設置する接触子2の数は、2本に限ることはなく、図4(図4A、図4B)に示すように、1本、または4本等、試験体、あるいは試験内容に応じた任意の数でよい。一方、上述した接触子2による干渉を考慮すると、本願による位置決めを容易にする効果は、接触子2の本数が多いほど、発揮される。
Further, the number of contacts 2 installed on the inspection table 3 is not limited to two, and as shown in FIG. 4 (FIGS. 4A and 4B), one or four contacts, a test piece, or a test. Any number may be used according to the content. On the other hand, considering the above-mentioned interference by the contacts 2, the effect of facilitating the positioning according to the present application is exhibited as the number of contacts 2 increases.
第一変形例.
なお、接触子2が形状回復する際、半導体装置90が引きずられて移動することを防止するため、図5Aに示すように、ストッパー、加圧具もしくは、重石等の移動防止具4を設置するようにしてもよい。その際、検査制御部64によって、測定部61による測定の進行度を監視し、移動防止具4の駆動と開放を保持機構制御部62に制御させるようにしてもよい。このように構成することで、回復した接触子2と半導体装置90の接触圧が高まるため、電気的な接続がより確かなものになり、また、次の検査体への交換も迅速にお行われるので、検査効率が高くなる。 First modification example.
As shown in FIG. 5A, a stopper, a pressurizing tool, or amovement preventing tool 4 such as a heavy stone is installed in order to prevent the semiconductor device 90 from being dragged and moving when the contact 2 recovers its shape. You may do so. At that time, the inspection control unit 64 may monitor the progress of the measurement by the measurement unit 61, and the holding mechanism control unit 62 may control the drive and release of the movement preventive tool 4. With this configuration, the contact pressure between the recovered contact 2 and the semiconductor device 90 increases, so that the electrical connection becomes more reliable, and replacement with the next inspection body can be performed quickly. Therefore, the inspection efficiency is high.
なお、接触子2が形状回復する際、半導体装置90が引きずられて移動することを防止するため、図5Aに示すように、ストッパー、加圧具もしくは、重石等の移動防止具4を設置するようにしてもよい。その際、検査制御部64によって、測定部61による測定の進行度を監視し、移動防止具4の駆動と開放を保持機構制御部62に制御させるようにしてもよい。このように構成することで、回復した接触子2と半導体装置90の接触圧が高まるため、電気的な接続がより確かなものになり、また、次の検査体への交換も迅速にお行われるので、検査効率が高くなる。 First modification example.
As shown in FIG. 5A, a stopper, a pressurizing tool, or a
第二変形例.
また、接触子2の温度を変化させる機構については、ドライヤーなどの熱源を接触子2に近づけたり、試験体を含めて、恒温槽等に入れたりして雰囲気温度を上げることで実現してもよい。また、例えば、図5Bに示すように、接触子2の近傍にペルチェ素子等のサーモモジュール5を配置するようにしてもよい。その際、検査制御部64によって、測定部61による測定の進行度を監視し、サーモモジュール5による昇温と冷却、ドライヤーのオン/オフ、あるいは恒温槽への出し入れを温度調整部63に制御させるようにしてもよい。とくに、高温下で検査を行う場合には、昇温と冷却を工程化し、検査時の温度を正確に制御できるので、好適である。 Second modification example.
Further, the mechanism for changing the temperature of thecontact 2 can be realized by raising the atmosphere temperature by bringing a heat source such as a dryer closer to the contact 2 or putting the test piece in a constant temperature bath or the like. good. Further, for example, as shown in FIG. 5B, a thermomodule 5 such as a Pelche element may be arranged in the vicinity of the contactor 2. At that time, the inspection control unit 64 monitors the progress of the measurement by the measurement unit 61, and causes the temperature adjustment unit 63 to control the temperature rise and cooling by the thermo module 5, the on / off of the dryer, or the loading and unloading of the dryer into the constant temperature bath. You may do so. In particular, when the inspection is performed at a high temperature, it is suitable because the temperature at the time of inspection can be accurately controlled by making the temperature rise and cooling into a process.
また、接触子2の温度を変化させる機構については、ドライヤーなどの熱源を接触子2に近づけたり、試験体を含めて、恒温槽等に入れたりして雰囲気温度を上げることで実現してもよい。また、例えば、図5Bに示すように、接触子2の近傍にペルチェ素子等のサーモモジュール5を配置するようにしてもよい。その際、検査制御部64によって、測定部61による測定の進行度を監視し、サーモモジュール5による昇温と冷却、ドライヤーのオン/オフ、あるいは恒温槽への出し入れを温度調整部63に制御させるようにしてもよい。とくに、高温下で検査を行う場合には、昇温と冷却を工程化し、検査時の温度を正確に制御できるので、好適である。 Second modification example.
Further, the mechanism for changing the temperature of the
実施の形態2.
実施の形態1においては、接触子と検査台の高さ関係については言及しなかった。本実施の形態2においては、接触子を検査台の溝に収容できるように構成した例について説明する。図6は実施の形態2にかかる電子デバイス検査装置について説明するためのものであり、検査台部分の斜視図(図6A)と、三面図形式で示す模式図(図6B)である。なお、接触子の動きについては実施の形態1で説明したのと同様であり、電子デバイス検査装置全体と接触子自体の形態については図1、接触子が形状回復して接触領域を形成した際の形状については図3Bを援用する。Embodiment 2.
In the first embodiment, the height relationship between the contact and the inspection table was not mentioned. In the second embodiment, an example in which the contactor is configured to be accommodated in the groove of the inspection table will be described. FIG. 6 is for explaining the electronic device inspection apparatus according to the second embodiment, and is a perspective view (FIG. 6A) of an inspection table portion and a schematic view (FIG. 6B) shown in a three-view format. The movement of the contact is the same as described in the first embodiment, and the form of the entire electronic device inspection device and the contact itself is shown in FIG. 1, when the contact recovers its shape and forms a contact region. FIG. 3B is used for the shape of.
実施の形態1においては、接触子と検査台の高さ関係については言及しなかった。本実施の形態2においては、接触子を検査台の溝に収容できるように構成した例について説明する。図6は実施の形態2にかかる電子デバイス検査装置について説明するためのものであり、検査台部分の斜視図(図6A)と、三面図形式で示す模式図(図6B)である。なお、接触子の動きについては実施の形態1で説明したのと同様であり、電子デバイス検査装置全体と接触子自体の形態については図1、接触子が形状回復して接触領域を形成した際の形状については図3Bを援用する。
In the first embodiment, the height relationship between the contact and the inspection table was not mentioned. In the second embodiment, an example in which the contactor is configured to be accommodated in the groove of the inspection table will be described. FIG. 6 is for explaining the electronic device inspection apparatus according to the second embodiment, and is a perspective view (FIG. 6A) of an inspection table portion and a schematic view (FIG. 6B) shown in a three-view format. The movement of the contact is the same as described in the first embodiment, and the form of the entire electronic device inspection device and the contact itself is shown in FIG. 1, when the contact recovers its shape and forms a contact region. FIG. 3B is used for the shape of.
本実施の形態2にかかる電子デバイス検査装置10は、図6に示すように、検査台3に、半導体装置90を載置する載置面3ft1から窪み、接触子2それぞれに対応して溝部3gを設けるようにした。そして、溝部3gの底面3ft2上に接触子2の基部2bを固定し、可変部2aが渦巻き形状の際に、載置面3ft1と底面3ft2との間に入るように、接触子2を溝部3g内に収容した。
As shown in FIG. 6, the electronic device inspection device 10 according to the second embodiment has a recess from the mounting surface 3ft1 on which the semiconductor device 90 is mounted on the inspection table 3, and a groove portion 3g corresponding to each of the contacts 2. Was set up. Then, the base portion 2b of the contact 2 is fixed on the bottom surface 3ft2 of the groove portion 3g, and the contactor 2 is placed between the mounting surface 3ft1 and the bottom surface 3ft2 when the variable portion 2a has a spiral shape. Contained inside.
検査台3は、溝部3g部分の壁面も絶縁材料で形成されており、そこに図示しない端子3tに接続された接触子2がそれぞれ配置されている。半導体装置90を検査台3の載置面3ft1に設置した際、可変部2aが渦巻き状の状態では、接触子2と接触しておらず電気的に接続されていない。しかし、形状回復する温度まで昇温することで、実施の形態1と同様に、接触子2は半導体装置90の電極面に沿って変形し、接触領域Rcを形成することで電気的に接続される。
In the inspection table 3, the wall surface of the groove 3g portion is also formed of an insulating material, and contacts 2 connected to terminals 3t (not shown) are arranged therein. When the semiconductor device 90 is installed on the mounting surface 3ft1 of the inspection table 3, the variable portion 2a is not in contact with the contactor 2 and is not electrically connected in the spiral state. However, by raising the temperature to a temperature at which the shape is restored, the contact 2 is deformed along the electrode surface of the semiconductor device 90 and is electrically connected by forming the contact region Rc, as in the first embodiment. NS.
検査台3自体の載置面3ft1に半導体装置90を設置するため、治具等を介した場合と比べて、電極配置面90feと底面3ft2との平行度が高く、接触子2が形状回復した際に電気的に接続する精度が向上する。また、任意のタイミングで接触子2を昇温することで接触子2を半導体装置90の電極に対して電気的に接続できる。そのため、半導体装置90を設置する際に、人体の帯電による静電気放電の発生を抑えることができ、半導体装置90を保護できる。
Since the semiconductor device 90 is installed on the mounting surface 3ft1 of the inspection table 3 itself, the parallelism between the electrode arrangement surface 90fe and the bottom surface 3ft2 is higher than in the case of using a jig or the like, and the shape of the contact 2 is restored. The accuracy of electrical connection is improved. Further, the contact 2 can be electrically connected to the electrode of the semiconductor device 90 by raising the temperature of the contact 2 at an arbitrary timing. Therefore, when the semiconductor device 90 is installed, it is possible to suppress the generation of electrostatic discharge due to the charging of the human body, and it is possible to protect the semiconductor device 90.
また、接触子2は溝部3g内に収容されているため、溝部3gの側面がガイドの役割を果たし、接触子2が形状回復する際、側面に沿って変形する。そのため、溝3gの幅を半導体装置90の電極の幅と揃えれば、接触子2が変形した際の電極からのずれを防止し、より確実に電気的に接続することができる。また、半導体装置90は載置面3ft1と接触しているため、設置時に接触子2を押さえつける際の物理的負荷がなく、かつ半導体装置90が発熱する場合でも、検査台3の放熱性も高くなるため、接触子2と半導体装置90への熱的負荷が減少する。とくに、検査品として発熱量が大きな電子デバイスを用いたときの有効である。
Further, since the contact 2 is housed in the groove 3 g, the side surface of the groove 3 g acts as a guide, and when the contact 2 recovers its shape, it deforms along the side surface. Therefore, if the width of the groove 3g is aligned with the width of the electrode of the semiconductor device 90, the contact 2 can be prevented from being displaced from the electrode when it is deformed, and can be more reliably electrically connected. Further, since the semiconductor device 90 is in contact with the mounting surface 3ft1, there is no physical load when pressing the contactor 2 at the time of installation, and even when the semiconductor device 90 generates heat, the heat dissipation of the inspection table 3 is high. Therefore, the thermal load on the contact 2 and the semiconductor device 90 is reduced. This is particularly effective when an electronic device with a large calorific value is used as an inspection product.
なお、複数の接触子2が長尺方向に沿って隣接する場合、形状変化の際に、接触子2同士が接触して、意図しない部分が導通し、正確な検査ができなくなる場合が考えられる。しかし、溝部3g間を仕切る仕切り3sを設けるようにすれば、接触子2が形状変化する過程で、互いが接触して導通することがなくなる。
When a plurality of contacts 2 are adjacent to each other along the long direction, it is conceivable that the contacts 2 may come into contact with each other when the shape is changed, and an unintended portion may be conducted, making accurate inspection impossible. .. However, if the partition 3s that partitions the groove 3g is provided, the contacts 2 do not come into contact with each other and become conductive in the process of changing the shape.
なお、溝部3gを設けた場合でも、実施の形態1の第一変形例、第二変形例で説明したように、移動防止具4、サーモモジュール5を設けるようにしてもよいことは言うまでもない。
Needless to say, even when the groove portion 3g is provided, the movement preventive device 4 and the thermo module 5 may be provided as described in the first modification and the second modification of the first embodiment.
実施の形態3.
実施の形態2においては、載置面に平行な方向における半導体装置の位置決め構成については言及しなかった。本実施の形態3においては、半導体装置を位置決め固定できるソケットを設けた例について説明する。図7は実施の形態3にかかる電子デバイス検査装置について説明するためのものであり、検査台部分の斜視図(図7A)と、三面図形式で示す模式図(図7B)である。なお、本実施の形態3においても、接触子の動きについては実施の形態1で説明したのと同様であり、電子デバイス検査装置全体と接触子自体の形態については図1、接触子が形状回復して接触領域を形成した際の形状については図3Bを援用する。Embodiment 3.
In the second embodiment, the positioning configuration of the semiconductor device in the direction parallel to the mounting surface is not mentioned. In the third embodiment, an example in which a socket capable of positioning and fixing the semiconductor device is provided will be described. FIG. 7 is for explaining the electronic device inspection apparatus according to the third embodiment, and is a perspective view (FIG. 7A) of an inspection table portion and a schematic view (FIG. 7B) shown in a three-view format. Also in the third embodiment, the movement of the contactor is the same as that described in the first embodiment, and the form of the entire electronic device inspection device and the contactor itself is shown in FIG. 1, and the shape of the contactor is restored. FIG. 3B is used for the shape when the contact region is formed.
実施の形態2においては、載置面に平行な方向における半導体装置の位置決め構成については言及しなかった。本実施の形態3においては、半導体装置を位置決め固定できるソケットを設けた例について説明する。図7は実施の形態3にかかる電子デバイス検査装置について説明するためのものであり、検査台部分の斜視図(図7A)と、三面図形式で示す模式図(図7B)である。なお、本実施の形態3においても、接触子の動きについては実施の形態1で説明したのと同様であり、電子デバイス検査装置全体と接触子自体の形態については図1、接触子が形状回復して接触領域を形成した際の形状については図3Bを援用する。
In the second embodiment, the positioning configuration of the semiconductor device in the direction parallel to the mounting surface is not mentioned. In the third embodiment, an example in which a socket capable of positioning and fixing the semiconductor device is provided will be described. FIG. 7 is for explaining the electronic device inspection apparatus according to the third embodiment, and is a perspective view (FIG. 7A) of an inspection table portion and a schematic view (FIG. 7B) shown in a three-view format. Also in the third embodiment, the movement of the contactor is the same as that described in the first embodiment, and the form of the entire electronic device inspection device and the contactor itself is shown in FIG. 1, and the shape of the contactor is restored. FIG. 3B is used for the shape when the contact region is formed.
本実施の形態3にかかる電子デバイス検査装置10は、図7に示すように、検査台3に、半導体装置90を嵌め込むソケット31を設けるようにした。ソケット31には、実施の形態2で説明した接触子2を収容する溝部3gと、半導体装置90を載置する載置面3ft1を有するとともに、矩形板状の半導体装置90の4側部を支持する枠状部31cが形成されている。
As shown in FIG. 7, the electronic device inspection device 10 according to the third embodiment is provided with a socket 31 into which the semiconductor device 90 is fitted in the inspection table 3. The socket 31 has a groove portion 3g for accommodating the contact 2 described in the second embodiment, a mounting surface 3ft1 on which the semiconductor device 90 is mounted, and supports four side portions of the rectangular plate-shaped semiconductor device 90. A frame-shaped portion 31c is formed.
ソケット31に設けた溝部3g部分の壁面も絶縁材料で形成されており、そこに図示しない端子3tに接続された接触子2がそれぞれ配置されている。半導体装置90をソケット31の枠状部31c内の載置面3ft1に設置した際、可変部2aが渦巻き状の状態では、接触子2と接触しておらず電気的に接続されていない。しかし、形状回復する温度まで昇温することで、実施の形態1と同様に、接触子2は半導体装置90の電極面に沿って変形し、接触領域Rcを形成することで電気的に接続される。
The wall surface of the groove portion 3g provided in the socket 31 is also formed of an insulating material, and contactors 2 connected to terminals 3t (not shown) are arranged therein. When the semiconductor device 90 is installed on the mounting surface 3ft1 in the frame-shaped portion 31c of the socket 31, the variable portion 2a is not in contact with the contactor 2 and is not electrically connected in the spiral state. However, by raising the temperature to a temperature at which the shape is restored, the contact 2 is deformed along the electrode surface of the semiconductor device 90 and is electrically connected by forming the contact region Rc, as in the first embodiment. NS.
その際、矩形板状の半導体装置90における電極配置面90feに隣接する4つの側部は枠状部31cにより支持されるため、電極配置面90feに平行な方向における位置決めを容易にでき、しかも上述した形状回復時の力がかかった際にも位置ずれを防止できる。さらに、実施の形態2で説明したように、電極配置面90feと底面3ft2との平行度が高く、接触子2が形状回復した際に電気的に接続する精度が向上する。また、任意のタイミングで接触子2を昇温することで接触子2を半導体装置90の電極に対して電気的に接続できる。そのため、半導体装置90を設置する際に、人体の帯電による静電気放電の発生を抑えることができ、半導体装置90を保護できる。
At that time, since the four side portions adjacent to the electrode arranging surface 90fe in the rectangular plate-shaped semiconductor device 90 are supported by the frame-shaped portion 31c, positioning in a direction parallel to the electrode arranging surface 90fe can be easily performed, and the above-mentioned It is possible to prevent misalignment even when a force is applied during shape recovery. Further, as described in the second embodiment, the parallelism between the electrode arrangement surface 90fe and the bottom surface 3ft2 is high, and the accuracy of electrically connecting the contactor 2 when the shape is restored is improved. Further, the contact 2 can be electrically connected to the electrode of the semiconductor device 90 by raising the temperature of the contact 2 at an arbitrary timing. Therefore, when the semiconductor device 90 is installed, it is possible to suppress the generation of electrostatic discharge due to the charging of the human body, and it is possible to protect the semiconductor device 90.
また、接触子2は溝部3g内に収容されているため、溝部3gの側面がガイドの役割を果たし、接触子2が形状回復する際、側面に沿って変形する。そのため、溝3gの幅を半導体装置90の電極の幅と揃えれば、接触子2が変形した際の電極からのずれを防止し、より確実に電気的に接続することができる。また、半導体装置90は載置面3ft1と接触しているため、設置時に接触子2を押さえつける際の物理的負荷がなく、かつ半導体装置90が発熱する場合でも、枠状部31cも放熱経路として機能するため、実施の形態2よりもさらに放熱性が高くなり、接触子2と半導体装置90への熱的負荷が減少する。とくに、検査品として発熱量が大きな電子デバイスを用いたときの有効である。また、ソケット31は、検査台3にねじ止めなどで着脱自在に固定することにより、例えば、半導体装置90が焼損した場合でも、ソケット31を交換すれば、その他の部品は再利用できる。
Further, since the contact 2 is housed in the groove 3 g, the side surface of the groove 3 g acts as a guide, and when the contact 2 recovers its shape, it deforms along the side surface. Therefore, if the width of the groove 3g is aligned with the width of the electrode of the semiconductor device 90, the contact 2 can be prevented from being displaced from the electrode when it is deformed, and can be more reliably electrically connected. Further, since the semiconductor device 90 is in contact with the mounting surface 3ft1, there is no physical load when pressing the contactor 2 at the time of installation, and even when the semiconductor device 90 generates heat, the frame-shaped portion 31c also serves as a heat dissipation path. Since it functions, the heat dissipation is higher than that of the second embodiment, and the thermal load on the contact 2 and the semiconductor device 90 is reduced. This is particularly effective when an electronic device with a large calorific value is used as an inspection product. Further, the socket 31 is detachably fixed to the inspection table 3 by screwing or the like, so that even if the semiconductor device 90 is burnt out, other parts can be reused by replacing the socket 31.
また、ソケット31を用いた場合でも、接触子2が同じ方向に複数並ぶ場合、形状変化の際に、接触子2同士が接触して、意図しない部分が導通し、正確な検査ができなくなる場合が考えられる。しかし、溝部3g間を仕切る仕切り3sを設けるようにすれば、接触子2が形状変化する過程で、互いが接触して導通することがなくなる。なお、ソケット31を設けた場合でも、実施の形態1の第一変形例、第二変形例で説明したように、移動防止具4、サーモモジュール5を設けるようにしてもよいことは言うまでもない。
Further, even when the socket 31 is used, when a plurality of contacts 2 are lined up in the same direction, the contacts 2 come into contact with each other when the shape changes, and an unintended portion becomes conductive, which makes accurate inspection impossible. Can be considered. However, if the partition 3s that partitions the groove 3g is provided, the contacts 2 do not come into contact with each other and become conductive in the process of changing the shape. Needless to say, even when the socket 31 is provided, the movement preventing tool 4 and the thermo module 5 may be provided as described in the first modification and the second modification of the first embodiment.
なお、各実施の形態にかかる電子デバイス検査装置10において、例えば、制御部6の演算あるいは制御を実行する部分を、図8に示す一例のように、プロセッサ601と記憶装置602から構成されるハードウェア60と表記することができる。記憶装置602は、図示しないランダムアクセスメモリ等の揮発性記憶装置と、フラッシュメモリ等の不揮発性の補助記憶装置とを具備する。また、フラッシュメモリの代わりにハードディスクの補助記憶装置を具備してもよい。プロセッサ601は、記憶装置602から入力されたプログラムを実行する。この場合、補助記憶装置から揮発性記憶装置を介してプロセッサ601にプログラムが入力される。また、プロセッサ601は、演算結果等のデータを記憶装置602の揮発性記憶装置に出力してもよいし、揮発性記憶装置を介して補助記憶装置にデータを保存してもよい。
In the electronic device inspection device 10 according to each embodiment, for example, the portion that executes the calculation or control of the control unit 6 is a hardware composed of the processor 601 and the storage device 602 as in the example shown in FIG. It can be described as wear 60. The storage device 602 includes a volatile storage device such as a random access memory (not shown) and a non-volatile auxiliary storage device such as a flash memory. Further, the auxiliary storage device of the hard disk may be provided instead of the flash memory. The processor 601 executes the program input from the storage device 602. In this case, the program is input from the auxiliary storage device to the processor 601 via the volatile storage device. Further, the processor 601 may output data such as a calculation result to the volatile storage device of the storage device 602, or may store the data in the auxiliary storage device via the volatile storage device.
なお、本願は、様々な例示的な実施の形態および実施例が記載されているが、実施の形態内に記載された様々な特徴、態様、および機能の組み合わせは、実施の形態として記載された内容に限られるのではなく、単独で、または様々な組み合わせで適用可能である。したがって、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、組み合わせを変更する場合が含まれるものとする。
Although various exemplary embodiments and examples have been described in the present application, the combinations of various features, embodiments, and functions described within the embodiments have been described as embodiments. It is not limited to the content, but can be applied alone or in various combinations. Therefore, innumerable variations not exemplified are envisioned within the scope of the techniques disclosed herein. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and the combination is changed.
例えば、可変部2aは半導体装置90の電極配置面90feの外側に向けて延びる例を示したが、これに限ることはなく、内側に向けて延びるように配置してもよい。また、可変部2aが渦巻き状をなすときに、電極と間隔をあける場合を好適例として示したが、必ずしも間隔をあける必要はなく、過度な反発力を発生する状態でなければ、接触していてもよい。
For example, the variable portion 2a has been shown to extend toward the outside of the electrode arrangement surface 90fe of the semiconductor device 90, but the present invention is not limited to this, and the variable portion 2a may be arranged so as to extend toward the inside. Further, a case where the variable portion 2a forms a spiral shape and is spaced from the electrode is shown as a preferable example, but it is not always necessary to space the variable portions 2a, and they are in contact with each other unless an excessive repulsive force is generated. You may.
以上のように、実施の形態にかかる電子デバイス検査装置10によれば、電子デバイス(半導体装置90)に配置された電極を位置決めして保持する保持機構(検査台3)、形状記憶合金で長尺薄板状に形成され、一端側(基部2b)が保持機構(上面3ft、あるいは底面3ft2)に固定され、他端側(可変部2a)が第一温度(例えば、常温)において渦巻き形状をなし、第二温度(例えば、常温より高い温度)において渦巻きが展開する接触子2、および接触子2を介した電極への通電により、電子デバイス(半導体装置90)を測定する測定部61、を備え、他端側(可変部2a)の渦巻きの軸は、位置決めされた電極の面(電極配置面90fe、あるいは電極面)に平行であり、第二温度において、他端側(可変部2a)と位置決めされた電極との間に、長尺方向に沿った接触領域Rcを形成するように構成したので、電極面に沿って接触子2との接点を形成し、電子デバイス(半導体装置90)を効率よく正確に検査することができる。
As described above, according to the electronic device inspection device 10 according to the embodiment, the holding mechanism (inspection table 3) for positioning and holding the electrodes arranged in the electronic device (semiconductor device 90), and the shape memory alloy are long. It is formed in the shape of a thin plate, one end side (base 2b) is fixed to the holding mechanism (upper surface 3ft or bottom surface 3ft2), and the other end side (variable part 2a) forms a spiral shape at the first temperature (for example, normal temperature). A measuring unit 61 for measuring an electronic device (semiconductor device 90) by energizing a contact 2 in which a swirl develops at a second temperature (for example, a temperature higher than normal temperature) and an electrode via the contact 2 is provided. The axis of the spiral on the other end side (variable portion 2a) is parallel to the positioned electrode surface (electrode arrangement surface 90fe or electrode surface), and at the second temperature, is parallel to the other end side (variable portion 2a). Since the contact region Rc along the long direction is formed between the positioned electrode and the electrode, a contact with the contact 2 is formed along the electrode surface to form an electronic device (semiconductor device 90). It can be inspected efficiently and accurately.
とくに、接触子2は、第一温度において、他端側(可変部2a)が位置決めされた電極に対して間隔をあけて対向するように構成すれば、接触子2に干渉されることなく、電子デバイス(半導体装置90)を正確に位置決めできる。
In particular, if the contact 2 is configured so that the other end side (variable portion 2a) faces the positioned electrode at a distance at the first temperature, the contact 2 will not be interfered with by the contact 2. The electronic device (semiconductor device 90) can be accurately positioned.
接触子2の温度を調整する温度調整部63(およびサーモモジュール5)、および測定部61の動作を温度調整部63の動作に連動して制御する制御部(検査制御部64)、を備えるように構成すれば、接触子2との接触が良好な状態で測定するので、より一層効率よく正確な検査ができる。
A temperature adjusting unit 63 (and a thermo module 5) for adjusting the temperature of the contact 2 and a control unit (inspection control unit 64) for controlling the operation of the measuring unit 61 in conjunction with the operation of the temperature adjusting unit 63 are provided. If the temperature is set to the above, the contact with the contact 2 is measured in a good state, so that more efficient and accurate inspection can be performed.
保持機構(検査台3)には、電子デバイス(半導体装置90)の電極が配置された面(電極配置面90fe)を支持する支持面(載置面3ft1)と、支持面(載置面3ft1)から窪み、底面3ft2に接触子2の一端部(基部2b)が固定される溝部3gが設けられているようにすれば、電子デバイス(半導体装置90)を載置する際に接触子2に触れて変形させることがなくなる。また、溝部3gがガイドとなって接触子2の変形をスムーズに実現できる。
The holding mechanism (inspection table 3) includes a support surface (mounting surface 3ft1) that supports the surface (electrode arrangement surface 90fe) on which the electrodes of the electronic device (semiconductor device 90) are arranged, and a support surface (mounting surface 3ft1). ), And a groove 3g to which one end (base 2b) of the contact 2 is fixed is provided on the bottom surface 3ft2. It will not be deformed by touching it. Further, the groove portion 3g serves as a guide, and the contact 2 can be smoothly deformed.
保持機構(検査台3)には、電子デバイス(半導体装置90)の電極が配置された面(電極配置面90fe)に平行な方向において、電子デバイス(半導体装置90)を囲む枠状部31cが設けられているように構成すれば、電子デバイス(半導体装置90)を容易に位置決めでき、また、位置ずれを防止できる。
The holding mechanism (inspection table 3) has a frame-shaped portion 31c surrounding the electronic device (semiconductor device 90) in a direction parallel to the surface (electrode arrangement surface 90fe) on which the electrodes of the electronic device (semiconductor device 90) are arranged. If the electronic device (semiconductor device 90) is configured to be provided, the electronic device (semiconductor device 90) can be easily positioned and misalignment can be prevented.
保持機構(検査台3)には、複数の接触子2が長尺方向に沿って隣接し、隣接した接触子2の間を仕切る仕切り3sが設けられているので、接触子2間の短絡を防止できる。
Since the holding mechanism (inspection table 3) is provided with a partition 3s in which a plurality of contacts 2 are adjacent to each other along the longitudinal direction and partition between the adjacent contacts 2, a short circuit between the contacts 2 can be caused. Can be prevented.
電子デバイス(半導体装置90)の接触子2から離れる方向への動きを制止する制止機構(移動防止具4)を備えるようにすれば、接触子2からの押圧による電子デバイス(半導体装置90)と接触子2との接触状態を良好に保つことができる。
If a restraining mechanism (movement preventive device 4) for restraining the movement of the electronic device (semiconductor device 90) in a direction away from the contact 2 is provided, the electronic device (semiconductor device 90) can be pressed by the contact 2. The contact state with the contactor 2 can be kept good.
1:機構部、 10:電子デバイス検査装置、 2:接触子、 2a:可変部、 3:検査台(保持機構)、 31:ソケット、 31c:枠状部、 3ft:上面、 3ft1:載置面(支持面)、 3ft2:底面、 3g:溝部、 3s:仕切り、4:移動防止具(制止機構)、 5:サーモモジュール(温度調整部)、 6:制御部、 61:測定部、 62:保持機構制御部、 63:温度調整部、 64:検査制御部、 65:検査結果管理部、 90:半導体装置(電子デバイス)、 90fe:電極配置面、 Rc:接触領域。
1: Mechanism part, 10: Electronic device inspection device, 2: Contact, 2a: Variable part, 3: Inspection table (holding mechanism), 31: Socket, 31c: Frame-shaped part, 3ft: Top surface, 3ft 1: Mounting surface (Support surface), 3ft2: Bottom surface, 3g: Groove part, 3s: Partition 4: Movement prevention device (stop mechanism), 5: Thermo module (temperature control unit), 6: Control unit, 61: Measurement unit, 62: Holding Mechanism control unit, 63: Temperature control unit, 64: Inspection control unit, 65: Inspection result management unit, 90: Semiconductor device (electronic device), 90fe: Electrode arrangement surface, Rc: Contact area.
Claims (7)
- 電子デバイスに配置された電極を位置決めして保持する保持機構、
形状記憶合金で長尺薄板状に形成され、一端側が前記保持機構に固定され、他端側が第一温度において渦巻き形状をなし、第二温度において渦巻きが展開する接触子、および
前記接触子を介した前記電極への通電により、前記電子デバイスを測定する測定部、を備え、
前記他端側の渦巻きの軸は、前記位置決めされた電極の面に平行であり、前記第二温度において、前記他端側と前記位置決めされた電極との間に、長尺方向に沿った接触領域を形成することを特徴とする電子デバイス検査装置。 A holding mechanism that positions and holds the electrodes placed on the electronic device,
It is formed in the shape of a long thin plate with a shape memory alloy, one end side is fixed to the holding mechanism, the other end side forms a spiral shape at the first temperature, and the spiral expands at the second temperature, and the contactor is used. A measuring unit for measuring the electronic device by energizing the electrode is provided.
The axis of the spiral on the other end side is parallel to the surface of the positioned electrode, and at the second temperature, contact between the other end side and the positioned electrode along the longitudinal direction. An electronic device inspection device characterized by forming a region. - 前記接触子は、前記第一温度において、前記他端側が前記位置決めされた電極に対して間隔をあけて対向することを特徴とする請求項1に記載の電子デバイス検査装置。 The electronic device inspection device according to claim 1, wherein the contactor faces the positioned electrode at a distance from the other end side at the first temperature.
- 前記接触子の温度を調整する温度調整部、および
前記測定部の動作を前記温度調整部の動作に連動して制御する制御部、を備えたことを特徴とする請求項1または2に記載の電子デバイス検査装置。 The first or second aspect of the present invention, wherein the temperature adjusting unit for adjusting the temperature of the contact and the control unit for controlling the operation of the measuring unit in conjunction with the operation of the temperature adjusting unit are provided. Electronic device inspection equipment. - 前記保持機構には、前記電子デバイスの前記電極が配置された面を支持する支持面と、
前記支持面から窪み、底面に前記接触子の一端部が固定される溝部が設けられていることを特徴とする請求項1から3のいずれか1項に記載の電子デバイス検査装置。 The holding mechanism includes a support surface that supports the surface on which the electrodes of the electronic device are arranged, and a support surface that supports the surface on which the electrodes are arranged.
The electronic device inspection apparatus according to any one of claims 1 to 3, wherein a groove portion is provided on the bottom surface thereof so as to be recessed from the support surface and one end portion of the contactor is fixed. - 前記保持機構には、前記電子デバイスの前記電極が配置された面に平行な方向において、前記電子デバイスを囲む枠状部が設けられていることを特徴とする請求項1から4のいずれか1項に記載の電子デバイス検査装置。 One of claims 1 to 4, wherein the holding mechanism is provided with a frame-shaped portion surrounding the electronic device in a direction parallel to the plane on which the electrodes of the electronic device are arranged. The electronic device inspection device described in the section.
- 前記保持機構には、複数の前記接触子が前記長尺方向に沿って隣接し、
前記隣接した接触子の間を仕切る仕切りが設けられていることを特徴とする請求項1から5のいずれか1項に記載の電子デバイス検査装置。 A plurality of the contacts are adjacent to the holding mechanism along the length direction.
The electronic device inspection apparatus according to any one of claims 1 to 5, wherein a partition for partitioning between the adjacent contacts is provided. - 前記電子デバイスの前記接触子から離れる方向への動きを制止する制止機構を備えたことを特徴とする請求項1から6のいずれか1項に記載の電子デバイス検査装置。 The electronic device inspection device according to any one of claims 1 to 6, further comprising a stopping mechanism for stopping the movement of the electronic device in a direction away from the contact.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/019103 WO2021229714A1 (en) | 2020-05-13 | 2020-05-13 | Electronic device inspection device |
CN202080100563.1A CN115552259A (en) | 2020-05-13 | 2020-05-13 | Electronic device inspection apparatus |
US17/907,639 US12123906B2 (en) | 2020-05-13 | Electronic device inspection apparatus | |
JP2022522165A JP7203283B2 (en) | 2020-05-13 | 2020-05-13 | Electronic device inspection equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/019103 WO2021229714A1 (en) | 2020-05-13 | 2020-05-13 | Electronic device inspection device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021229714A1 true WO2021229714A1 (en) | 2021-11-18 |
Family
ID=78525534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/019103 WO2021229714A1 (en) | 2020-05-13 | 2020-05-13 | Electronic device inspection device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7203283B2 (en) |
CN (1) | CN115552259A (en) |
WO (1) | WO2021229714A1 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0233366U (en) * | 1988-08-29 | 1990-03-02 | ||
JPH0494576U (en) * | 1990-12-28 | 1992-08-17 | ||
JPH06231845A (en) * | 1992-12-08 | 1994-08-19 | Mitsubishi Electric Corp | Socket for semiconductor device |
JPH1073616A (en) * | 1996-08-29 | 1998-03-17 | Nec Kyushu Ltd | Probe card |
JPH10510923A (en) * | 1994-12-19 | 1998-10-20 | フォード モーター カンパニー | Method and apparatus for testing a semiconductor die |
JP2000315555A (en) * | 1999-04-28 | 2000-11-14 | Nec Corp | Socket for semiconductor package |
JP2002231399A (en) * | 2001-02-02 | 2002-08-16 | Fujitsu Ltd | Semiconductor device testing contact and manufacturing method therefor |
JP2008039502A (en) * | 2006-08-03 | 2008-02-21 | Alps Electric Co Ltd | Contact and its manufacturing method |
JP2017204532A (en) * | 2016-05-10 | 2017-11-16 | 株式会社リコー | Probe card, wafer inspection device, and measuring method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6724203B1 (en) * | 1997-10-30 | 2004-04-20 | International Business Machines Corporation | Full wafer test configuration using memory metals |
JP2002313855A (en) * | 2001-04-10 | 2002-10-25 | Sekisui Chem Co Ltd | Electronic circuit device inspection apparatus and inspecting method |
JP2008060510A (en) * | 2006-09-04 | 2008-03-13 | Alps Electric Co Ltd | Method for manufacturing semiconductor chip mounted circuit and mounted circuit therefor |
JP6231845B2 (en) | 2013-10-15 | 2017-11-15 | シャープ株式会社 | Charging device and image forming apparatus having the same |
-
2020
- 2020-05-13 WO PCT/JP2020/019103 patent/WO2021229714A1/en active Application Filing
- 2020-05-13 CN CN202080100563.1A patent/CN115552259A/en active Pending
- 2020-05-13 JP JP2022522165A patent/JP7203283B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0233366U (en) * | 1988-08-29 | 1990-03-02 | ||
JPH0494576U (en) * | 1990-12-28 | 1992-08-17 | ||
JPH06231845A (en) * | 1992-12-08 | 1994-08-19 | Mitsubishi Electric Corp | Socket for semiconductor device |
JPH10510923A (en) * | 1994-12-19 | 1998-10-20 | フォード モーター カンパニー | Method and apparatus for testing a semiconductor die |
JPH1073616A (en) * | 1996-08-29 | 1998-03-17 | Nec Kyushu Ltd | Probe card |
JP2000315555A (en) * | 1999-04-28 | 2000-11-14 | Nec Corp | Socket for semiconductor package |
JP2002231399A (en) * | 2001-02-02 | 2002-08-16 | Fujitsu Ltd | Semiconductor device testing contact and manufacturing method therefor |
JP2008039502A (en) * | 2006-08-03 | 2008-02-21 | Alps Electric Co Ltd | Contact and its manufacturing method |
JP2017204532A (en) * | 2016-05-10 | 2017-11-16 | 株式会社リコー | Probe card, wafer inspection device, and measuring method |
Also Published As
Publication number | Publication date |
---|---|
US20230131641A1 (en) | 2023-04-27 |
JPWO2021229714A1 (en) | 2021-11-18 |
JP7203283B2 (en) | 2023-01-12 |
CN115552259A (en) | 2022-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5796933B2 (en) | Probe card assembly | |
US20050156613A1 (en) | Probe card | |
JP2003059602A (en) | Socket for semiconductor device | |
KR20010024447A (en) | Burn-in board with adaptable heat sink device | |
US7928749B2 (en) | Vertical probe comprising slots and probe card for integrated circuit devices using the same | |
JP2010133787A (en) | Probe card | |
JP2005233858A (en) | Probe card | |
KR20170022414A (en) | Connection structural member and connection structural member module, and probe card assembly and wafer testing apparatus using the same | |
KR20150093046A (en) | Wafer test apparatus | |
WO2021229714A1 (en) | Electronic device inspection device | |
KR20080063060A (en) | Electrical connecting apparatus and method for use thereof | |
JP6360671B2 (en) | Contact spring for inspection socket for high current inspection of electronic components | |
US7081005B2 (en) | Electric-connection testing device | |
US12123906B2 (en) | Electronic device inspection apparatus | |
JP2011501116A (en) | Probe holding device | |
KR101976028B1 (en) | A contact pin for a semiconductor socket which can prevent a short circuit while performing a buffer action by elasticity | |
US11802909B2 (en) | Compliant ground block and testing system having compliant ground block | |
US7518386B2 (en) | Probe card having a leaf spring | |
JP2006275543A (en) | Probe device | |
JP4408690B2 (en) | Semiconductor package test system and test method | |
US20180081410A1 (en) | Chassis structure capable of sensing temperature of media storage device | |
JP2015046489A (en) | Device inspection method | |
KR20100130935A (en) | Test contact module | |
JP2005249448A (en) | Semiconductor component inspection device | |
US20080299792A1 (en) | Burn-in socket having loading plate with uneven seating surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20934911 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022522165 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20934911 Country of ref document: EP Kind code of ref document: A1 |