WO2021229667A1 - 自動分析装置、自動分析方法 - Google Patents

自動分析装置、自動分析方法 Download PDF

Info

Publication number
WO2021229667A1
WO2021229667A1 PCT/JP2020/018899 JP2020018899W WO2021229667A1 WO 2021229667 A1 WO2021229667 A1 WO 2021229667A1 JP 2020018899 W JP2020018899 W JP 2020018899W WO 2021229667 A1 WO2021229667 A1 WO 2021229667A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
impurities
filter
concentration
bacterium
Prior art date
Application number
PCT/JP2020/018899
Other languages
English (en)
French (fr)
Inventor
清隆 杉山
浩子 藤田
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to JP2022522125A priority Critical patent/JP7371245B2/ja
Priority to KR1020227036942A priority patent/KR20220158051A/ko
Priority to US17/996,962 priority patent/US20230167480A1/en
Priority to EP20935377.0A priority patent/EP4151744A4/en
Priority to PCT/JP2020/018899 priority patent/WO2021229667A1/ja
Priority to CN202080100175.3A priority patent/CN115461466A/zh
Publication of WO2021229667A1 publication Critical patent/WO2021229667A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/18Testing for antimicrobial activity of a material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/06Quantitative determination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/025Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/24Methods of sampling, or inoculating or spreading a sample; Methods of physically isolating an intact microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00356Holding samples at elevated temperature (incubation)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00475Filters

Definitions

  • the present invention relates to an automatic analyzer that analyzes a sample containing bacteria and impurities.
  • Sepsis is an infectious disease with a high case fatality rate, and it is important to promptly carry out diagnosis and appropriate treatment based on it.
  • a blood culture test is usually performed to determine sepsis. This is to determine whether or not bacteria are present in the blood, which is a sterile sample. Generally, a smear test is then performed, followed by an identification test and a susceptibility test. The identification test separates and cultures blood culture-positive samples and identifies the type of bacteria in the resulting colonies.
  • the susceptibility test measures the susceptibility of the bacterium to antibacterial agents. Since the above series of tests takes 1 day for the blood culture test, 1 day for the separation culture, and 1 day for the susceptibility test, a total test time of 2 to 3 days is required. That is, it currently takes 2 to 3 days to determine whether or not the treatment to which an appropriate antibacterial drug has been administered can be carried out. Therefore, the case fatality rate of sepsis is extremely high when ineffective antibacterial agents are administered.
  • CFU colony forming unit
  • the main components other than bacteria in the blood culture bottle include blood cell components and media, as well as resins, beads, activated carbon, etc. that adsorb antibiotics.
  • a sample positive for blood culture is applied to an agar medium to grow colonies.
  • the type of bacteria from the properties of the colony and identifying the type of bacteria more reliably, and by preparing the bacterial solution from the colony, there are no impurities other than bacteria and the bacterial concentration required for the susceptibility test (generally 10).
  • a sample having 5 to 10 6 CFU / mL) can be obtained.
  • the susceptibility test In the susceptibility test, generally, a constant concentration of an antibacterial agent is introduced into a bacterial solution containing bacteria, and the degree of bacterial growth according to the concentration of the antibacterial agent is determined. Since the results of the susceptibility test will fluctuate, it is important to adjust in advance so that the bacterial concentration in the bacterial solution is constant. With regard to susceptibility testing, research is currently underway to speed up the time to complete the test. The current golden standard method measures the degree of bacterial growth by changing the turbidity, and it takes one day and night for the inspection.
  • a method for determining the change in turbidity more quickly using laser light a method for rapidly determining the degree of growth of individual bacteria with a microscope, and a method for rapidly quantifying the degree of bacterial growth by ATP (Adenosine triphosphate) emission. Methods, etc. are being developed, and the time required for susceptibility testing may be reduced to several hours.
  • a pretreatment step for preparing a bacterial solution a method in which separation culture is carried out for one day and the colonies are diluted in the liquid is still used.
  • Patent Document 1 discloses a method of selectively destroying only blood cell components without affecting the growth of bacteria by using two different types of surfactants.
  • Patent Document 2 discloses a method for selectively destroying only blood cell components by degrading blood cells with a protease, swelling treatment with a hypotonic solution, and using a surfactant.
  • Patent Document 3 discloses a method for detecting the number and concentration of bacteria by fluorescently labeling the bacteria captured on a membrane filter. According to this method, it is possible to measure the concentration of bacteria even when impurities other than bacteria are contained.
  • Patent Documents 1 and 2 do not disclose means for adjusting the concentration of bacteria to a constant level.
  • concentration of the bacterial solution based on the value of turbidity.
  • the absorption wavelength of blood cell components such as erythrocytes, leukocytes, and platelets or hemoglobin contained in a large amount in blood cells is the same as the wavelength band used for measuring scattered light of bacteria, it is difficult to adjust by turbidity.
  • Patent Document 3 it is necessary to treat the bacterium with a staining reagent for fluorescent labeling, and exposure to the reagent during the treatment may change the properties of the bacterium and affect the result of the susceptibility test. .. Therefore, a method that requires such a staining step is difficult to apply for a susceptibility test. Another problem is that the reagent cost is high and an expensive optical system dedicated to fluorescence excitation is required.
  • the present invention has been made in view of such a situation, and provides a technique for estimating the bacterial concentration in a sample from a sample in which impurities such as bacteria and blood cells are mixed and adjusting the sample to a desired bacterial concentration. It is a thing.
  • a substance that destroys the impurities is introduced into a sample in which bacteria and impurities are mixed, the destroyed impurities and the bacteria are separated, and then the bacteria are taken out by a filter and described.
  • the concentration of the bacterium in the sample is estimated according to the correspondence data between the amount of the impurity remaining on the filter and the concentration of the bacterium in the sample.
  • the bacterial concentration in the sample can be estimated from the sample in which bacteria and impurities are mixed, and the sample can be adjusted to the desired bacterial concentration.
  • the susceptibility test can be performed accurately. Issues, configurations, and effects other than those described above will be clarified by the description of the following embodiments.
  • FIG. 6 is a graph showing the relationship between the color information of the filter calculated by processing the filter image and the number of red blood cells in the sample passed through the filter. It is a graph which shows the relationship between the color information of a filter calculated by processing a filter image, and the actual blood bacterial concentration. It is a flowchart explaining the procedure of performing the bacterial concentration adjustment using the blood bacterial concentration estimated from the filter image. It is a block diagram of the automatic analyzer 100 which concerns on Embodiment 2. FIG.
  • the results regarding the bacterial concentration adjusted by turbidity measurement from the blood culture positive sample are shown.
  • the results regarding the bacterial concentration adjusted from the blood culture positive sample using the method shown in FIG. 5 are shown.
  • the degree of proliferation of blood culture positive samples and samples prepared from colonies is shown.
  • the degree of proliferation of blood culture positive samples and samples prepared from colonies is shown.
  • the results of the drug susceptibility test are shown.
  • FIG. 1 is a flowchart showing a general procedure for destroying blood cells and removing impurities from a blood sample containing bacteria. Prior to the embodiment of the present invention, a general procedure for removing impurities from a blood cell sample will be described with reference to FIG. Then, the details of the embodiment of the present invention will be described.
  • a surfactant is added to the blood sample to destroy the blood cells.
  • the surfactant may be (a) an anionic surfactant having a hydrophilic and hydrophobic moiety and the hydrophobic moiety being a chain hydrocarbon, or (b) having a hydrophilic and hydrophobic moiety and being hydrophobic.
  • a surfactant having a cyclic hydrocarbon moiety or a combination of (a) and (b) is preferable.
  • the former includes sodium dodecylsulfate, lithium dodecylsulfate, and sodium N-lauroylsarcosin
  • the latter includes saponin, sodium sulphonate, sodium deoxycholate, 3-[(3-cholamidepropyl) dimethylammoni.
  • E] -1 propane sulfonate, 3-[(3-colamidpropyl) dimethylammonio] -2 hydroxy-1 propane sulfonate can be mentioned.
  • the next step S11 may be carried out, but it may be allowed to stand for about 5 to 15 minutes and wait for the reaction to be completed.
  • step S11 in order to remove components in blood cells that have been destroyed by the surfactant and flowed out, such as hemoglobin, centrifugation is performed, and then the supernatant is removed and washed.
  • centrifugation is performed at 2000 G for about 5 to 10 minutes, but it is sufficient if bacteria and blood cell components that have not been destroyed by the surfactant can be separated from the outflowing hemoglobin, etc. This is not the case with regard to.
  • the washing is carried out using pure water, physiological saline, or the like, and the washing may be performed only once or may be performed multiple times.
  • step S12 the sample is filtered with a filter in order to further remove blood cell components and impurities in the medium that could not be destroyed by the surfactant.
  • a filter having a filter hole diameter (mesh spacing) larger than that of bacteria bacteria are allowed to pass through and impurities other than bacteria are captured by the filter.
  • a filter having a pore size of 1 to 40 ⁇ m it is preferable to use a filter having a pore size of 1 to 40 ⁇ m.
  • filtration may be performed a plurality of times, such as filtering with a filter having a large filtration hole diameter and then filtering with a filter having a small filtration hole diameter.
  • a filter made of a hydrophobic material in order to prevent the trapping of bacteria in the filter.
  • Embodiment 1 of the present invention shows a method for obtaining a sample having a bacterial concentration adjusted to a desired value from a blood sample containing bacteria. It should be noted that this embodiment is merely an example, and is not limited to this configuration. Pretreatment of S10-S12 was performed using blood samples containing Escherichia coli and Staphylococcus aureus. Blood samples were prepared according to the following procedure. In a blood culture bottle containing drug-adsorbed beads, 10 mL of blood derived from healthy volunteers and 0.1 mL of bacterial solution whose concentration was adjusted to about 150 CFU / mL in advance from colonies were introduced to prepare blood equivalent to that of an actual septic patient. ..
  • the sample was introduced into a blood culture device and cultured, and when the blood culture became positive, the sample was taken out and used in the experiment.
  • a sample corresponding to a negative control having a blood bacterial concentration of 0 CFU / mL cultured without introducing a bacterial solution was also prepared, and the bacterial concentration was changed by appropriately diluting the sample.
  • FIG. 2 is an example of an image obtained by imaging a filtration filter without staining.
  • the filter area 20 surrounded by the broken line is a notable area. If the actual blood bacteria concentration of 3.9 ⁇ 10 6 CFU / mL, the region 22 where the impurity showing the same color as the filter outer region 21 does not exist is the majority. When the actual blood bacterial concentration is 1 ⁇ 10 9 CFU / mL, the region 23 where the reddish impurities are present occupies most of the region, and the redness becomes stronger as the actual blood bacterial concentration increases. ..
  • FIG. 3 shows the results of filtration using a mixed solution of a negative control blood sample having a blood bacterial concentration of 0 CFU / mL and a surfactant, and the amount of red blood cells in the sample used for filtration and the redness of the filter image.
  • the amount of red blood cells was calculated by a blood cell counter.
  • the saturation value calculated by the following processing was used.
  • the filter image is a color image and is generally represented in the RGB color space. In order to reduce the influence of ambient brightness and the like at the time of imaging, RGB was converted to HSV (hue, saturation, lightness). More specifically, the average value of the saturation values of each pixel inside the filter area 20 was calculated as the redness of the filter image.
  • the negative control blood sample contains platelets and fibrin with hemoglobin attached, and impurities in the medium, and it is considered that such impurities enhance the redness of the filter. That is, the amount of red blood cells and other impurities can be detected from the saturation value of the filter image.
  • the reason why the result shown in FIG. 2 was obtained is presumed as follows.
  • the detergent is added at a certain concentration regardless of the actual blood bacterial concentration, and if the actual blood bacterial concentration is low, most of the blood cells in the sample will be destroyed by the detergent, so step. Most of the blood cells are removed in S11 and no impurities remain on the filter.
  • the concentration of bacteria in blood becomes high, the concentration of bacteria and erythrocytes becomes about the same, and the bacteria themselves inhibit the action of blood cell destruction by the surfactant.
  • step S11 the amount of red blood cells that were not completely destroyed in step S11 increases and is captured in the filtration step of step S12. It is also conceivable that bacteria aggregate with hemoglobin, fibrin, and platelets, and impurities showing redness are captured in the filtration step of step S12. As the actual blood bacterial concentration increases, the redness of the filter region 20 after filtration becomes stronger. Therefore, for example, by calculating the amount of impurities such as red blood cells remaining on the filter after filtration from the image of the filter, the concentration of bacteria that have passed through the filter can be known.
  • FIG. 4 is a graph showing the relationship between the color information of the filter calculated by processing the filter image and the actual blood bacterial concentration.
  • the filter image shown in the RGB color space was converted into HSV (hue, saturation, lightness), and the saturation value was used. Specifically, the average value of the saturation values of each pixel inside the filter area 20 was used.
  • FIG. 3 shows the results of repeated experiments with Escherichia coli and the results of Staphylococcus aureus. Actual blood bacterial concentration is positive correlation between the chroma values in bacterial concentration and the filter image blood is observed in the range of 10 6 ⁇ 10 9 CFU / mL .
  • a calibration curve is obtained from the blood bacterial concentration and the saturation value of the filter image, it is possible to estimate the number of bacteria based on the information of the saturation value of the filtered image. Since this range of bacterial concentration in blood is almost the same as the bacterial concentration in a sample that is usually positive in blood culture, it can be applied to various bacterial species and strains.
  • the specific concentration of the surfactant used for the treatment can be specified in the following range.
  • the concentration of red blood cells in the blood is of the order of 10 9 / mL, if when pretreated samples 1mL is red blood cell count in the sample is 10 nine.
  • the estimated possible impurities e.g. erythrocytes weight in the range of color filters shown in FIG. 3 is 10 6 to 10 8. That is, in order to be able to estimate the actual bacterial concentration from the color of the filter, the red blood cells may be destroyed to 1/1000 to 1/10. That is, a surfactant having a concentration capable of destroying 90 to 99.9% of red blood cells in blood containing bacteria is required.
  • the range of the surfactant concentration shown here is, for example, when a 1 mL sample is pretreated, and when the volume to be treated increases, the destruction rate of erythrocytes increases accordingly. It is preferable to increase the concentration. For example, when a 10 mL sample is pretreated, a detergent having a concentration capable of destroying 99 to 99.99% of red blood cells is required, which may vary depending on the amount of the sample processed.
  • the concentration of a surfactant capable of destroying 99-99.99% of erythrocytes in blood containing bacteria has a hydrophilic and hydrophobic portion, and the hydrophobic portion is a chain hydrocarbon.
  • sodium dodecyl sulfate which is an anionic surfactant, has a concentration in the range of 0.05% by weight to 0.5% by weight.
  • the concentration of the surfactant capable of destroying the desired erythrocytes is also preferable.
  • surfactants having a hydrophilic and hydrophobic moiety and having a cyclic hydrocarbon in the hydrophobic moiety for example, saponin, sodium sulfonic acid, sodium deoxycholate, 3-[(3-].
  • the types of surfactants may be mixed with respect to coramidopropyl) dimethylammonio] -1propanesulfonate and 3-[(3-colamidpropyl) dimethylammonio] -2hydroxy-1propanesulfonate.
  • a surfactant such as sodium dodecyl sulfate having a final concentration in the range of 0.05% by weight to 0.5% by weight, which can destroy 99 to 99.99% of red blood cells in blood containing bacteria, is used. 2.7 mL of blood sample was processed.
  • FIG. 5 is a flowchart illustrating a procedure for adjusting the bacterial concentration using the blood bacterial concentration estimated from the filter image. Steps S10 to S12 are the same as the steps shown in FIG.
  • step S50 the filter is imaged and the color of the impurities remaining on the filter is acquired.
  • the amount of impurities is estimated based on the color of the red blood cells remaining on the filter, so it is not necessary to stain the sample or impurities.
  • step S51 the correspondence data describing the correspondence between the color of the impurities remaining on the filter and the actual blood bacterial concentration is read out, and the correspondence data is referred to using the color acquired from the filter image.
  • the estimated blood bacterial concentration is calculated.
  • a calibration curve represented by a semi-logarithm is obtained, and the blood bacterial concentration estimated from the data of the calibration curve is calculated.
  • the correspondence data is illustrated in FIG. 4, and is created in advance and stored in the storage device.
  • the method of the present invention can be applied if there is at least one correspondence-related data regardless of the bacterial species or the type of surfactant.
  • resistant strains such as methicillin-resistant staphylococci, and the type of surfactant. ..
  • step S52 the sample is diluted to obtain the desired bacterial concentration based on the blood bacterial concentration estimated in S51. For example, when the estimated blood bacterial concentration in S51 is 5 ⁇ 10 8 CFU / mL and the desired bacterial concentration is 5 ⁇ 10 5 CFU / mL, dilute 1000 times. If the blood bacterial concentration estimated in S51 does not reach the desired bacterial concentration, it is preferable to proceed to step S53 and determine that the sample is defective. If it is determined to be a defective sample, it is difficult to prepare a sample suitable for the susceptibility test. Therefore, the blood culture bottle is further cultured, the bacteria are grown, and then the process returns to step S10. Alternatively, an identification test or a susceptibility test may be carried out using the colonies obtained by carrying out the isolation culture.
  • an identification test and a susceptibility test are carried out using the prepared bacterial solution. Any method may be used as the inspection method. For example, an identification test using an automatic device, a genetic test, a susceptibility test by a trace liquid dilution method, a susceptibility test by a disk method, a rapid susceptibility test by microscopic image or laser scattered light measurement, and the like can be mentioned.
  • the sample after the blood cells are destroyed is filtered by a filtration filter, and the correspondence data between the color component of the image of the impurities remaining on the filter and the actual blood bacterial concentration is referred to. , Calculate the estimated blood bacterial concentration.
  • This makes it possible to prepare a sample having a desired bacterial concentration without performing isolation culture. Therefore, the separation culture step, which normally requires about one day and night, can be shortened to, for example, about 30 minutes.
  • the second embodiment shows an automatic analyzer for obtaining a sample having a bacterial concentration adjusted to a desired value from a blood sample containing bacteria. It should be noted that this embodiment is merely an example, and is not limited to this configuration.
  • FIG. 6 is a block diagram of the automatic analyzer 100 according to the second embodiment of the present invention.
  • the automatic analyzer 100 is an apparatus that automatically carries out the pretreatment procedure described with reference to FIG. Normally, a rubber stopper is used in a blood culture bottle to prevent contamination and the like, and the inside of the bottle is evacuated. The operator takes out the blood sample from the blood culture bottle using an injection needle and dispenses the blood sample into a container containing a surfactant. As a result, S10 is carried out. Instead of the operator introducing the surfactant, an introduction device 101 that automatically introduces the surfactant into the sample can be provided as a part of the automatic analyzer 100.
  • the sample into which the surfactant is introduced is introduced into the centrifuge 102.
  • the blood cells in the sample are destroyed by the detergent.
  • the centrifuge 102 separates the eluted hemoglobin and the like from bacteria and blood cells that could not be destroyed. As a result, the separation step of S11 is carried out.
  • the sample for which centrifugation has been completed is introduced into the cleaning unit 103.
  • the cleaning unit 103 removes the supernatant of the sample, and cleans the sample with, for example, about 1 mL of physiological saline or a cleaning solution such as pure water or a medium.
  • the cleaning pipette 104 sucks the supernatant.
  • the supernatant may be treated from the bottom of the sample container to a certain reference height. As a result, the rest of S11 is carried out.
  • the sample that has been washed is introduced into the filtration filter unit 105.
  • the filtration filter unit 105 is composed of, for example, a disposable filtration filter and a syringe for capturing impurities in the filter. S12 is carried out by the filtration filter unit 105. In some cases, the sample may be filtered using the centrifuge 102.
  • the camera 106 (corresponding to a sensor that detects the amount of impurities) captures the impurities remaining on the filtration filter unit 105.
  • the storage unit 107 stores the correspondence data described with reference to FIG.
  • the computer 110 (calculation unit) converts the RGB image captured by the camera 106 into an HSV color space image, detects the color component (for example, the saturation value) of the impurity region (S50), and uses the color for the correspondence relationship. By referring to the data, the estimated blood bacterial concentration is calculated (S51).
  • the filtered sample is introduced into the dilution section 108.
  • the dilution unit 108 adjusts the dilution ratio so as to obtain a desired bacterial concentration based on the blood bacterial concentration estimated by the computer 110.
  • the diluting pipette 109 introduces the diluted solution according to the dilution ratio. As a result, S52 is carried out.
  • the computer 110 automatically performs the above steps by controlling each part of the automatic analyzer 100.
  • the computer 110 is provided with an input / output device, and it is preferable that the operator can instruct the computer 110 of the type of bacteria, the desired concentration of bacteria, and the like.
  • the computer 110 can also change the correspondence data to be referred to according to the input bacterial type, and change the dilution ratio by the dilution unit 108 according to the desired bacterial concentration.
  • the blood bacterial concentration value estimated by the computer 110 may be output to an output device such as a display, and a flag indicating a defective sample may be displayed when the concentration is equal to or lower than the desired bacterial concentration (S53).
  • the automatic analyzer 100 may include a susceptibility test device 111.
  • the computer 110 automatically performs the susceptibility test by controlling the susceptibility test device 111. Thereby, all the steps from S10 to S54 can be automatically carried out.
  • the minimum inhibitory concentration described in the examples described later can also be measured.
  • the method for adjusting the blood bacterial concentration in the blood sample described in the first and second embodiments is considered to be influenced to some extent by the amount of red blood cells contained in the original blood.
  • the concentration of human erythrocytes varies depending on gender and health condition, but it is about 3 ⁇ 10 9 to 6 ⁇ 10 9 cells / mL, which varies when compared with the bacterial concentration range of 10 6 to 10 10 cells / mL. Is extremely small. Therefore, it is considered that the effect on the result of the estimated blood bacterial concentration is small.
  • step S51 can be corrected by using the value.
  • the correction procedure can be considered as the correction procedure.
  • the amount of impurities on the filter is estimated at least once by the operator or the computer 110 performing the procedure of FIG. 5, and another detection result is also acquired.
  • the final amount of impurities is obtained by averaging the amounts of these plurality of impurities excluding the abnormal value.
  • the estimated blood bacterial concentration is calculated by referring to the correspondence data using the amount of the impurity.
  • the correspondence data is referred to using another detection result that measures the amount of impurities. Therefore, the correspondence data needs to describe the correspondence between the amount of impurities and the actual blood bacterial concentration.
  • the saturation value of the filter image and the corresponding impurity amount can be described together in the correspondence data, or the conversion formula between the saturation value and the impurity amount is defined in advance and the conversion formula is used. It can also be used to convert another detection result into a saturation value. That is, the correspondence data may describe the correspondence between the value representing the amount of impurities remaining on the filter in some form and the actual blood bacterial concentration in the blood sample.
  • the saturation value of the filter image was used to detect the red blood cells remaining in the filter.
  • an optical sensor that detects absorption or reflection of a specific wavelength corresponding to red color can also be used. That is, by using an optical sensor capable of detecting at least the largest RGB component of impurities remaining on the filter, it is possible to obtain information similar to the saturation value of the image captured by the camera 106. In this case, it is necessary to describe the numerical value measured by the optical sensor instead of the saturation value in the correspondence data.
  • a human may visually measure the amount of impurities based on the color sample, and refer to the correspondence data based on the measurement result.
  • the color swatch itself may describe the correspondence between the color of the impurity and the concentration of bacteria in the blood.
  • Example 1 the superiority of the pretreatment method according to the present invention will be described together with a comparative example.
  • the concentration was adjusted to the recommended bacterial concentration range of the susceptibility test by the concentration adjustment using the turbidity measurement and the concentration adjustment according to the present invention, and the comparison was made.
  • absorbance measurement with a wavelength of 600 nm was used.
  • the concentration adjustment according to the present invention the pretreatment method shown in FIG. 1 was used.
  • the bacteria used, the type and concentration of the surfactant, and the like are the same as those in the first embodiment.
  • FIG. 7 shows the results of adjusting the bacterial concentration from the bacterial solution obtained by the pretreatment method shown in FIG. 1 by measuring the turbidity used in the conventional bacterial test pretreatment.
  • the hatched area is the recommended bacterial concentration range for performing susceptibility testing as defined by the National Institute of Clinical Laboratory Standardization. The range of this hatch was in the region of 5 ⁇ 10 5 CFU / mL ( ⁇ 60%), and adjustments were made to achieve this median value of 5 ⁇ 10 5 CFU / mL.
  • McFarland standards bacterial solution was adjusted to McFarland turbidity 0.5 the number of bacteria concentration corresponding to 1.5 ⁇ 10 8 CFU / mL was diluted 300-fold.
  • FIG. 8 shows the result of adjusting the concentration from the estimated blood bacterial concentration using the method shown in FIG. Compared to FIG. 7, the bacterial density after adjustment even if the actual blood bacterial cell concentration in the blood samples of 10 6 ⁇ 10 7 CFU / mL does not decrease, and generally within the range of hatching ..
  • FIG. 8 also shows the results of pretreatment with Escherichia coli and Staphylococcus aureus based on the same correspondence data. According to FIG. 8, it is possible to keep the adjusted bacterial concentration within a certain range based on one correspondence data even for gram-negative bacteria and gram-positive bacteria having significantly different properties. Is shown. When it is desired to adjust the concentration more accurately, it is preferable to hold the correspondence data for each bacterial species and refer to the correspondence data corresponding to the bacterial species.
  • Example 2 of the present invention shows an example in which the bacterial concentration was adjusted from a blood culture positive sample by the pretreatment method according to the present invention using Escherichia coli.
  • the degree of proliferation when a bacterial solution is prepared from a colony by isolation culture for one day and night is used.
  • the bacterial concentration in the blood culture positive sample was adjusted to 5 ⁇ 10 5 CFU / mL by using three different bacterial concentrations from 10 7 to 10 9 CFU / mL. Even if you create a cell suspension from a colony it was adjusted using turbidity measurements as a final bacteria concentration of 5 ⁇ 10 5 CFU / mL.
  • FIG. 9 shows the degree of proliferation of blood culture positive samples and samples prepared from colonies. Although there is a difference of about 0.5 hours in the time for the bacterial growth rate to rise between the blood culture positive _1 and the isolated culture _1, the final growth rates are almost the same. The same applies to blood culture positive _2 and blood culture positive _3. This indicates that even when the blood culture positive sample is pretreated, the concentration can be adjusted to the same level as the bacterial concentration adjusted from the colony, and there is no effect on the bacterial growth in the susceptibility test. ..
  • Example 3 In Example 3 of the present invention, the result when the Escherichia coli of Example 2 is changed to Staphylococcus aureus will be described.
  • FIG. 10 shows the degree of proliferation of blood culture positive samples and samples prepared from colonies. Similar to Example 2, the final degree of proliferation is consistent between the positive blood culture and the isolated culture. Therefore, as in Example 2, even when the blood culture positive sample is pretreated, the concentration can be adjusted to the same level as the bacterial concentration adjusted from the colony, and there is no influence on the bacterial growth in the susceptibility test. Is shown.
  • Example 4 the results of performing a drug susceptibility test on both a blood culture positive sample and a sample prepared from a colony are shown.
  • the lowest concentration minimum inhibitory concentration, Minimum Inhibitory Concentration: MIC
  • the trace liquid dilution method was used for the susceptibility test. The MIC was determined by mixing the bacterial solution and agents of different concentrations and visually determining the turbidity of each well of the cultured 96-well plate after 18 hours.
  • FIG. 11 shows the results of performing a drug susceptibility test.
  • cefepime (CFPM), cefotaxim (CTX), gentamicin (GM), and levofloxacin (LVFX) are allowed to act on Escherichia coli, and erythromycin (EM), oxacillin (MPIPC), and penicillin are allowed to act on Staphylococcus aureus.
  • G (PCG) and vancomycin (VCM) were allowed to act.
  • the MIC when the blood culture sample is pretreated is within ⁇ 1 tube (double or half) of the MIC in the case of the sample prepared from the colony, and the blood culture sample is pretreated. It shows that the susceptibility test can be performed correctly even from the sample.
  • FIG. 11 shows an example of determining the MIC by using the trace liquid dilution method
  • the MIC may be determined by a rapid susceptibility test using a microscopic image as obtained in FIGS. 8 to 9.
  • a rapid sensitivity test using a laser beam may be performed.
  • the correspondence data is referred to by using the average value of the saturation values of the filter region 20, but the maximum value or the mode value may be used instead of the average value.
  • the amount of impurities remaining on the filter may be represented by a feature amount represented by at least two of hue / lightness / saturation.
  • the present invention can also be used in other bacterial samples. That is, the present invention can be used as long as the sample has a correspondence relationship between the image information obtained by imaging the impurities remaining on the filter and the bacterial concentration in the sample.
  • the substance added to destroy the impurities may be appropriately changed depending on the type of impurities.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Toxicology (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本発明は、細菌と不純物が混在する試料から細菌濃度を推定し、試料中の細菌濃度を所望の値に調整する技術を提供する。本発明に係る自動分析装置は、細菌と不純物が混在する試料に対して前記不純物を破壊する物質を導入し、破壊された前記不純物と前記細菌を分離した上で前記細菌をフィルタによって取り出し、前記フィルタ上に残る前記不純物の量と前記試料内の前記細菌の濃度との間の対応関係データに従って、前記試料内の前記細菌の濃度を推定する(図5参照)。

Description

自動分析装置、自動分析方法
 本発明は、細菌と不純物を含む試料を分析する自動分析装置に関する。
 敗血症は致死率の高い感染症であり、診断およびそれに基づいた適切な治療を迅速に実施することが重要である。敗血症を判定する際には通常、血液培養検査が実施される。これは無菌試料である血液中に細菌が存在するかどうかを判定するものである。一般的にはその後塗抹検査を実施し、次に同定検査と感受性検査を実施する。同定検査は、血液培養陽性の試料を分離培養し、得られたコロニーに対して細菌の種類を特定する。感受性検査は、その細菌の抗菌薬に対する感受性を測定する。以上の一連の検査は、血液培養試験に1日、分離培養に1日、さらに感受性検査に1日要するので、全体で2~3日の検査時間を要する。すなわち、適切な抗菌薬が投与された治療が実施できているかどうか判明するまでには、現状2~3日を要する。従って、効果の無い抗菌薬が投与されていた場合には、敗血症の致死率は極めて高くなる。
 血液培養試験においては、敗血症の場合に含まれる10CFU/mL(CFU:コロニー形成単位)程度の極めて少ない細菌を培養ボトル中で増殖させる。一般的には8時間~1晩程度の培養を実施し、細菌の呼吸や発酵等によって生成されたガス成分等が検出可能なレベルになるまで細菌を増殖させる。血液培養が陽性となった培養ボトルの中には10~1010CFU/mLの細菌が含まれることが知られている。血液培養陽性時の細菌の濃度は患者の血液の状態や菌種、血液培養試験装置などによっても異なるので、このような幅広い範囲をとる。血液培養ボトル中の細菌以外の主要な成分は、血球成分や培地の他に、抗生物質を吸着するレジン、ビーズ、活性炭などが含まれる。これらのなかでも血液中に存在する赤血球や白血球の濃度は高く、それぞれ10個/mL、10個/mL程度であり、細菌の濃度と同等かそれ以上である。
 分離培養においては、血液培養陽性となった試料を寒天培地に塗布しコロニーを発育させる。コロニーの性状等から細菌の種類を予測しより確実に細菌種類を同定すること、コロニーから菌液を調製することにより、細菌以外の不純物がなく感受性検査に必要な細菌濃度(一般的には10~10CFU/mL)を有する試料を得ることができる。
 感受性検査においては、一般的には、細菌の含まれる菌液中に一定濃度の抗菌薬を導入し、抗菌薬の濃度に応じた細菌の増殖度合いを判定する。感受性検査の結果が変動してしまうので、菌液中の細菌濃度が一定となるよう事前に調整しておくことが重要である。感受性検査に関しては検査終了までの時間を迅速化する研究が現在進んでいる。現状のゴールデンスタンダードの方式は、濁度の変化により細菌の増殖度合いを測定するものであり、検査に1昼夜を要する。現在、レーザ光を用いて濁度変化をより迅速に判定する方法や、顕微鏡により個々の細菌の増殖度合いを迅速に判定する方法、ATP(Adenosine triphosphate)発光により細菌の増殖度合いを迅速に定量する方法、などが開発されつつあり、感受性検査に要する時間は数時間程度まで短縮される可能性がある。一方で菌液を調製するための前処理工程は、分離培養を1日間実施し、コロニーを液体中に希釈する方法が依然として用いられている。
 これに対し分離培養を実施せず、血液培養陽性試料から細菌以外の成分(例えば血球成分、培地に含まれる不純物など)を除去し、10~10CFU/mLのある一定濃度の菌液を作製することが短時間でできれば、感受性検査に要する時間はさらに1日短縮される。
 このような課題に対して、特許文献1は、2種類の異なる界面活性剤を用いることにより、細菌の生育には影響を与えず血球成分だけを選択的に破壊する手法を開示している。特許文献2は、血球細胞に対してプロテアーゼによる分解、低張液による膨張処理、および界面活性剤を用いて血球成分だけを選択的に破壊する手法を開示している。
 特許文献3は、メンブレンフィルタ上に捕捉した細菌を蛍光標識し、細菌の個数や濃度を検出する手法を開示している。この方法によると、細菌以外の夾雑物が含まれる場合であっても、細菌の濃度を計測することが可能である。
特開2014-235076号公報 WO2019/097752 特開2007-006709号公報
 しかしながら、特許文献1~2は、細菌の濃度を一定に調整する手段に関しては開示していない。例えば、一般的にコロニーから菌液を作成する際には濁度の値を元に菌液の濃度を調整することが可能である。しかし赤血球や白血球、血小板などの血球成分または血球中に多量に含まれるヘモグロビンなどの吸収波長は細菌の散乱光計測に用いられる波長帯と同じであるので、濁度による調整は困難である。
 特許文献3においては、蛍光標識用の染色試薬で細菌を処理する必要があり、処理中に試薬に暴露されることによって細菌の性状が変化し、感受性検査の結果に影響を及ぼす可能性がある。従ってこのような染色工程が必要な方法は、感受性検査向けには適用が難しい。また、試薬コストが高く蛍光励起による専用の高価な光学系が必要という課題もある。
 本発明はこのような状況を鑑みてなされたものであり、細菌と血球のような不純物が混在する試料から試料中の細菌濃度を推定し、試料を所望の細菌濃度に調整する技術を提供するものである。
 本発明に係る自動分析装置は、細菌と不純物が混在する試料に対して前記不純物を破壊する物質を導入し、破壊された前記不純物と前記細菌を分離した上で前記細菌をフィルタによって取り出し、前記フィルタ上に残る前記不純物の量と前記試料内の前記細菌の濃度との間の対応関係データに従って、前記試料内の前記細菌の濃度を推定する。
 本発明に係る自動分析装置によれば、細菌と不純物が混在する試料から試料中の細菌濃度を推定し、試料を所望の細菌濃度に調整することができる。この結果、感受性検査を正確に実施することができる。上記した以外の、課題、構成、および効果は、以下の実施形態の説明により明らかにされる。
細菌を含む血液試料から血球を破壊して不純物を除去する一般的手順を示すフローチャートである。 染色せずにろ過フィルタを撮像した画像の例である。 フィルタ画像を処理することによって算出したフィルタの色情報と、フィルタを通過させた試料中の赤血球数との間の関係を示すグラフである。 フィルタ画像を処理することによって算出したフィルタの色情報と、実際の血中細菌濃度との間の関係を示すグラフである。 フィルタ画像より推定される血中細菌濃度を用いて細菌濃度調整を行う手順を説明するフローチャートである。 実施形態2に係る自動分析装置100の構成図である。 血液培養陽性試料から濁度計測により調整した細菌濃度に関する結果を示す。 血液培養陽性試料から図5に示した方法を用いて調整した細菌濃度に関する結果を示す。 血液培養陽性試料およびコロニーから作成した試料の増殖度を示す。 血液培養陽性試料およびコロニーから作成した試料の増殖度を示す。 薬剤感受性検査を実施した結果を示す。
 図1は、細菌を含む血液試料から血球を破壊して不純物を除去する一般的手順を示すフローチャートである。本発明の実施形態に先立ち、図1に従って、血球試料から不純物を除去する一般的手順を説明する。その後、本発明の実施形態についての詳細を説明する。
 ステップS10において、血液試料に界面活性剤を加えて血球を破壊する。処理する血液量が多いほど、最終的に得られる細菌数も増えるので、より多い試料を前処理することが好ましいが、廃液も増えるので1サンプルにつき数mL~10 mL程度を前処理することが好ましい。界面活性剤は、(a)親水性および疎水性部分を有し疎水性部分が鎖状炭化水素である陰イオン性界面活性剤、または、(b)親水性および疎水性部分を有し疎水性部分が環状炭化水素を有する界面活性剤、または、(a)(b)の組み合わせが好ましい。具体的には前者は、ドデシル硫酸ナトリウム、ドデシル硫酸リチウム、およびN-ラウロイルサルコシンナトリウムが挙げられ、後者はサポニン、コール酸ナトリウム、デオキシコール酸ナトリウム、3-[(3-コラミドプロピル)ジメチルアンモニオ]-1プロパンスルホナート、3-[(3-コラミドプロピル)ジメチルアンモニオ]-2ヒドロキシ-1プロパンスルホナートが挙げられる。界面活性剤を加えた後、すぐに次のステップS11を実施しても構わないが、5~15分程度静置させ、反応が完了するのを待ってもよい。
 ステップS11において、界面活性剤により破壊され流出した血球内の成分、例えばヘモグロビン等を除去するために、遠心分離を実施し、その後、上清の除去と洗浄を実施する。本ステップでは、例えば2000Gで5~10分程度の遠心分離を実施することが好ましいが、界面活性剤により破壊されなかった細菌や血球成分と流出したヘモグロビン等を分離できればよく、遠心速度や遠心時間に関してはこの限りではない。洗浄は純水や生理食塩水などを用いて実施し、1回のみの洗浄でもよいし複数回でもよい。
 ステップS12においては、界面活性剤により破壊できなかった血球成分や培地中の不純物をさらに除去するために、フィルタにより試料をろ過する。フィルタのろ過孔径(メッシュ間隔)として細菌より大きいものを用いることにより、細菌を通過させ、細菌以外の不純物はフィルタで捕捉する。例えば、孔径1~40μmのフィルタを用いることが好ましい。不純物の量が多い場合には、ろ過孔径の大きなフィルタでろ過した後に、ろ過孔径の小さいフィルタでろ過するなど、複数回のろ過を行ってもよい。フィルタに細菌が捕捉されることを抑制するために、疎水性材料でできたフィルタを用いることが好ましい。以上のステップS10~S12により血液試料から細菌以外の不純物を除去し、細菌を抽出することが可能である。
<実施形態1>
 本発明の実施形態1では、細菌が含まれた血液試料から所望の値に調整された細菌濃度を有する試料を得る方法を示す。なお、本実施形態はあくまで一例であり、この構成に限定したものではない。大腸菌および黄色ブドウ球菌を含む血液試料を用いてS10~S12の前処理を実施した。血液試料は次の手順に従って作製した。薬剤吸着ビーズ入りの血液培養ボトルに、健常ボランティア由来の血液10mLおよび事前にコロニーから約150CFU/mLに濃度調整された菌液0.1mLを導入し、実際の敗血症患者と同等の血液を作製した。その後、試料を血液培養装置に導入および培養し、血液培養が陽性となったところで取り出し、実験に用いた。また、菌液を導入せずに培養した血中細菌濃度が0CFU/mLのネガティブコントロール相当の試料も作製し、適宜希釈することによって細菌濃度を変化させた。
 図2は、染色せずにろ過フィルタを撮像した画像の例である。ここでは血液試料中の大腸菌の濃度が10~10CFU/mLとなるようあらかじめ作成された血液試料を処理した結果を示す。破線で囲んだフィルタ領域20が注目すべき領域である。実際の血中細菌濃度が3.9×10CFU/mLの場合には、フィルタ外領域21と同じ色味を示す不純物が存在しない領域22が大部分を占めている。実際の血中細菌濃度が1×10CFU/mLの場合には赤みの強い不純物が存在する領域23が大部分を占めており、実際の血中細菌濃度が上昇するに従って赤みはより強くなる。
 図3は、血中細菌濃度が0CFU/mLのネガティブコントロールの血液試料と界面活性剤の混合溶液を用いてろ過を行った結果であり、ろ過に用いた試料中の赤血球量とフィルタ画像の赤みを比較した。なお、赤血球量は血球カウンタで算出した。赤みを定量評価するために以下の処理により算出した彩度値を用いた。フィルタ画像はカラー画像であり、一般にRGB色空間で表現される。撮像時の周囲の明るさなどの影響を低減するために、RGBからHSV(色相、彩度、明度)へ変換した。そしてより具体的には、フィルタ領域20内部の各ピクセルの彩度値の平均値をフィルタ画像の赤みとして算出した。図3の結果より、フィルタを通過させた試料中の赤血球量とフィルタ画像の彩度値には正の相関関係があることが分かる。ネガティブコントロールの血液試料中には、赤血球の他にもヘモグロビンが付着した血小板やフィブリン、培地中の不純物が含まれるため、このような不純物がフィルタの赤みを強くさせていると考えられる。すなわち、フィルタ画像の彩度値から赤血球やその他の不純物量を検出することができる。
 試料中に含まれる赤血球などの不純物量に応じてフィルタの赤みが強くなることから、図2の結果が得られた理由は次のように推定される。実際の血中細菌濃度に関わらず界面活性剤はある一定の濃度で加えており、実際の血中細菌濃度が低い場合には試料中のほとんどの血球が界面活性剤により破壊されるので、ステップS11においてほとんどの血球が除去されフィルタ上には不純物は残らない。一方、実際の血中細菌濃度が高くなると、細菌と赤血球の濃度は同程度となり、界面活性剤による血球破壊の作用を細菌自身が阻害する。これにより、ステップS11において完全には破壊されなかった赤血球量が増え、ステップS12のろ過工程において捕捉される。また、細菌がヘモグロビンやフィブリン、血小板と凝集し、赤みを示す不純物がステップS12のろ過工程において捕捉される場合も考えられる。実際の血中細菌濃度が上昇するに従ってろ過後のフィルタ領域20の赤みはより強くなる。従って、例えばフィルタの画像から、ろ過後にフィルタ上に残った不純物である例えば赤血球の量を算出することにより、フィルタを通過した細菌の濃度を知ることができる。
 図4は、フィルタ画像を処理することによって算出したフィルタの色情報と、実際の血中細菌濃度との間の関係を示すグラフである。フィルタの色情報を定量化するために、RGB色空間で示されるフィルタ画像をHSV(色相、彩度、明度)へ変換し、彩度の値を用いた。具体的には、フィルタ領域20内部の各ピクセルの彩度値の平均値を用いた。図3は、大腸菌で繰り返し実験した結果および黄色ブドウ球菌の結果を併せて示す。実際の血中細菌濃度が10~10CFU/mLの範囲で血中細菌濃度とフィルタ画像の彩度値との間に正の相関関係がみられる。この血中細菌濃度とフィルタ画像の彩度値から検量線を取得すれば、ろ過後のフィルタ画像の彩度値の情報を元に菌数を推定することが可能である。この血中細菌濃度の範囲は、通常血液培養で陽性となる試料中の細菌濃度とほぼ同等であるため、様々な菌種および菌株に適用できる。
 処理に使用する界面活性剤の具体的な濃度に関しては、次の通りの範囲で規定できる。通常、血液中の赤血球の濃度は10個/mLのオーダーであり、仮に1mLの試料を前処理した場合には、試料中の赤血球数は10個である。ここで、図3に示したフィルタの色味から推定可能な不純物例えば赤血球量の範囲は10~108個である。すなわちフィルタの色味から実際の細菌濃度を推定可能とするには、赤血球を1/1000~1/10となるまで破壊すればよい。すなわち、細菌を含む血液中の90~99.9%の赤血球を破壊可能な濃度の界面活性剤が必要である。
 なおここで示した界面活性剤濃度の範囲は、一例として1mLの試料を前処理した場合であり、処理する容量が増える場合には、それに応じて赤血球の破壊率が高くなるよう界面活性剤の濃度を増加させることが好ましい。例えば、10mLの試料を前処理した場合には、99~99.99%の赤血球を破壊可能な濃度の界面活性剤が必要であり、試料の処理量に応じて変わってよい。
 具体的には、細菌を含む血液中の99~99.99%の赤血球を破壊することが可能な界面活性剤の濃度は、親水性および疎水性部分を有し疎水性部分が鎖状炭化水素である陰イオン性界面活性剤であるドデシル硫酸ナトリウムを例に挙げると濃度が0.05重量%から0.5重量%の範囲である。他の界面活性剤、例えばドデシル硫酸リチウムやN-ラウロイルサルコシンナトリウムに関しても、所望の赤血球を破壊することができる界面活性剤の濃度であることが好ましい。
 またその他の界面活性剤として、親水性および疎水性部分を有し疎水性部分が環状炭化水素を有する界面活性剤である、例えばサポニン、コール酸ナトリウム、デオキシコール酸ナトリウム、3-[(3-コラミドプロピル)ジメチルアンモニオ]-1プロパンスルホナート、3-[(3-コラミドプロピル)ジメチルアンモニオ]-2ヒドロキシ-1プロパンスルホナートに関して、界面活性剤の種類を混合させても良い。
 実施形態1では、細菌を含む血液中の99~99.99%の赤血球を破壊できる、終濃度が0.05重量%から0.5重量%の範囲のドデシル硫酸ナトリウムなどの界面活性剤を用いて、2.7mLの血液試料を処理した。
 図5は、フィルタ画像より推定される血中細菌濃度を用いて細菌濃度調整を行う手順を説明するフローチャートである。ステップS10~S12までは図1に示した工程と同じである。
 ステップS50において、フィルタを撮像し、フィルタ上に残った不純物の色を取得する。本フローチャートにおいては、フィルタ上に残った赤血球の色に基づき不純物量を推定するので、試料や不純物を染色する必要はない。
 ステップS51において、フィルタ上に残った不純物の色と実際の血中細菌濃度との間の対応関係を記述した対応関係データを読み出し、フィルタ画像から取得した色を用いてその対応関係データを参照することにより、推定された血中細菌濃度を算出する。具体的には、フィルタ上に残った不純物の色と実際の血中細菌濃度に関して、例えば片対数で示される検量線を取得し、検量線のデータより推定された血中細菌濃度を算出する。対応関係データは図4において例示したものであり、あらかじめ作成して記憶装置に格納しておく。なお、対応関係データは、菌種や界面活性剤の種類に関わらず少なくとも1つあれば本発明の方法は適用できる。より正確に推定された血中細菌濃度を求める場合には、菌種ごとや耐性株例えばメチシリン耐性ブドウ球菌などの情報や界面活性剤の種類に応じて、対応関係データを保有しても問題ない。
 ステップS52において、S51で推定される血中細菌濃度を基準として、所望の細菌濃度を得るために試料を希釈する。例えば、S51において推定される血中細菌濃度が5×10CFU/mLであった際に、所望の細菌濃度が5×10CFU/mLであれば、1000倍希釈する。S51で推定される血中細菌濃度が所望の細菌濃度に達していない場合はステップS53に進み不良検体と判定することが好ましい。不良検体と判定された場合には、感受性検査に適した検体の作製が困難であるので、血液培養ボトルをさらに培養させ、菌を増殖させてからステップS10に戻る。あるいは分離培養を実施することにより得られたコロニーを用いて同定検査や感受性検査を実施してもよい。
 ステップS54において、作成された菌液を用いて同定検査や感受性検査を実施する。検査手法としてどのような方法を用いてもよい。例えば自動装置を用いた同定検査、遺伝子検査、微量液体希釈法による感受性検査、ディスク法による感受性検査、顕微鏡画像やレーザ散乱光計測などによる迅速感受性検査、などが挙げられる。
<実施形態1:まとめ>
 本実施形態1において、血球を破壊した後の試料をろ過フィルタによってフィルタリングし、フィルタ上に残った不純物の画像の色成分と実際の血中細菌濃度との間の対応関係データを参照することにより、推定される血中細菌濃度を算出する。これにより、分離培養を実施することなく、所望の細菌濃度を有する試料を作成することができる。従って、通常1昼夜程度を要する分離培養工程を例えば30分程度に短縮することができる。
<実施形態2>
 実施形態2では、細菌が含まれた血液試料から所望の値に調整された細菌濃度を有する試料を得るための自動分析装置に関して示す。なお、本実施形態はあくまで一例であり、この構成に限定したものではない。
 図6は、本発明の実施形態2に係る自動分析装置100の構成図である。自動分析装置100は、図5で説明した前処理手順を自動的に実施する装置である。通常、血液培養ボトルはコンタミネーション等を防止するためにゴム栓が用いられており、ボトル内部は真空となっている。作業者は血液培養ボトルから注射針を用いて血液試料を取り出し、界面活性剤の入った容器にその血液試料を分注する。これによりS10が実施される。作業者が界面活性剤を導入することに代えて、試料に対して界面活性剤を自動的に導入する導入装置101を自動分析装置100の一部として備えることもできる。
 界面活性剤を導入した試料は、遠心分離器102に導入される。試料内の血球は界面活性剤によって破壊されている。遠心分離器102は、溶出したヘモグロビン等と、細菌および破壊できなかった血球などとを分離する。これによりS11のうち分離工程が実施される。
 遠心分離が終了した試料は洗浄部103に導入される。洗浄部103は試料の上清を除去し、例えば1mL程度の生理食塩水もしくは純水や培地等の洗浄液によって試料を洗浄する。洗浄用ピペット104は上清を吸引する。試料容器の底からある基準の高さまでを上清として扱って構わない。これによりS11のうち残部が実施される。より厳密には、液位置センサなどを設け、細菌や血球が固まってペレット状になっている部分と液体部分との間の界面を検知し、界面位置付近までを上清として扱うことが好ましい。
 洗浄が終了した試料はろ過フィルタ部105に導入される。ろ過フィルタ部105は、例えばディスポーザルのろ過フィルタおよび不純物をフィルタに捕捉するためのシリンジ等から構成される。ろ過フィルタ部105によってS12が実施される。場合によっては遠心分離器102を用いて試料をろ過しても構わない。
 カメラ106(不純物の量を検出するセンサに相当)は、ろ過フィルタ部105上に残った不純物を撮像する。記憶部107は図4で説明した対応関係データを格納している。コンピュータ110(演算部)は、カメラ106が撮像したRGB画像をHSV色空間画像に変換した上で不純物領域の色成分(例えば彩度値)を検出し(S50)、その色を用いて対応関係データを参照することにより、推定された血中細菌濃度を算出する(S51)。
 ろ過された試料は希釈部108に導入される。希釈部108は、コンピュータ110が推測した血中細菌濃度に基づき、所望の細菌濃度となるように希釈倍率を調整する。希釈用ピペット109はその希釈倍率に従って、希釈液を導入する。これによりS52が実施される。
 コンピュータ110は、自動分析装置100が備える各部を制御することにより、以上の工程を自動的に実施する。コンピュータ110は入出力装置を備えており、作業者は細菌種類や所望の細菌濃度などをコンピュータ110に対して指示できることが好ましい。コンピュータ110は、入力された細菌種類に応じて参照する対応関係データを変え、所望の細菌濃度に応じて希釈部108による希釈倍率を変更することもできる。コンピュータ110が推測した血中細菌濃度値は、例えばディスプレイなどの出力装置に出力し、所望の細菌濃度以下の場合には不良検体であるフラグを表示しても良い(S53)。
 自動分析装置100は上記構成に加えて、感受性検査装置111を備えてもよい。コンピュータ110は、感受性検査装置111を制御することにより、感受性検査を自動的に実施する。これにより、S10からS54までに至る全工程を自動的に実施することができる。感受性検査の内容としては、実施形態1で説明したもののほか、後述する実施例において説明する最小発育阻止濃度などを測定することもできる。
<実施形態3>
 実施形態1~2で説明した、血液試料内の血中細菌濃度を調整する方法は、元の血液中に含まれる赤血球の量によってある程度の影響を受けると考えられる。ヒトの赤血球の濃度は、性別や健康状態によっても異なるが、3×10~6×10個/mL程度であり、細菌の濃度範囲10~1010個/mLと比較すると、その変動は極めて小さい。従って推定した血中細菌濃度の結果に対する影響は少ないと考えられる。ただし、別の血球分析等により事前に赤血球濃度やヘマトクリット値などのように不純物量の別検出結果が求められている場合には、その値を用いてステップS51の結果を補正することもできる。これによりさらに正確に推定された血中細菌濃度を算出できる。補正手順としては例えば以下のようなものが考えられる。
(補正手順1)図5の手順を作業者またはコンピュータ110が実施することによって推定した血中細菌濃度が異常値である(あらかじめ定めた許容範囲を逸脱している)場合、フィルタ画像を用いて推定する不純物量に代えて、別検出結果を用いる。すなわち別検出結果を用いて対応関係データを参照することにより、血中細菌濃度を推定する。
(補正手順2)図5の手順を作業者またはコンピュータ110が実施することによってフィルタ上の不純物量を1回以上推定し、さらに別検出結果も取得する。これら複数の不純物量のうち異常値を除いたものを平均することにより、最終的な不純物量を求める。その不純物量を用いて対応関係データを参照することにより、推定される血中細菌濃度を算出する。
 上記補正手順においては、不純物量を計測した別検出結果を用いて対応関係データを参照する。従って対応関係データは、その不純物量と実際の血中細菌濃度との間の対応関係を記述しておく必要がある。例えばフィルタ画像の彩度値とこれに対応する不純物量を対応関係データ内に併記することもできるし、彩度値と不純物量との間の変換式をあらかじめ定義しておいてその変換式を用いて別検出結果を彩度値に変換することもできる。すなわち対応関係データは、フィルタ上に残った不純物量を何らかの形式で表す値と、血液試料内の実際の血中細菌濃度との間の対応関係を記述すればよい。
 実施形態1~2においては、フィルタに残った赤血球を検出するためにフィルタ画像の彩度値を用いた。カメラ106の代わりに赤色に相当する特定波長の吸収や反射を検知する光センサを用いることもできる。すなわち、フィルタ上に残る不純物のRGB成分のうち最も大きいものを少なくとも検出することができる光学センサを用いることにより、カメラ106が撮像した画像の彩度値と同様の情報を得ることができる。この場合は対応関係データも彩度値に代えて、光学センサが計測する数値を記述する必要がある。あるいは色見本を元に人間が目視で不純物量を計測し、その計測結果に基づき対応関係データを参照してもよい。さらには色見本自体が不純物の色と血中細菌濃度との間の対応関係を記述してもよい。
<実施例1>
 本発明の実施例1では、本発明に係る前処理方法の優位性に関して、比較例とともに説明する。本実施例1では、濁度計測を用いた濃度調整と本発明による濃度調整で、感受性検査の推奨細菌濃度範囲に調整を行い比較した。濁度計測の場合には波長600nmの吸光度計測を用いた。本発明による濃度調整の場合には図1に示した前処理方法を用いた。使用した細菌、界面活性剤の種類および濃度などは実施形態1と同じである。
 図7は、図1に示した前処理方法により得られた菌液から、従来の細菌検査前処理において用いられる濁度計測により細菌濃度を調整した結果を示す。ハッチング領域は、米国臨床検査標準化機構によって定められた、感受性検査を実施する際の推奨細菌濃度範囲である。このハッチングの範囲は5×10CFU/mL(±60%)の領域であり、この中央値である5×10CFU/mLになるよう調整を試みた。具体的には、マクファーランド比濁法により、菌数濃度が1.5×10CFU/mLに相当するマクファーランド濁度0.5に調整した菌液を300倍希釈した。
 血液試料内の菌濃度が10CFU/mL以上ある場合には所望の濃度範囲付近に調整することが可能であるが、血液試料内の菌濃度が10~10CFU/mLの場合には、調整後の菌数は1~2桁低下してしまう。この理由は、ステップS11およびステップS12で除去できなかったヘモグロビンや培地中に含まれる微粒子等が散乱光増加に寄与することにより、細菌濃度が低いにも関わらず濁度の値が高くなるからである。従って、細菌濃度を過剰に見積ってしまうので、濁度計測を用いることによって細菌濃度を調整するのは困難である。このことは図7のプロットが、推奨細菌濃度範囲を示すハッチング領域に全く収まっていないことからも明らかである。
 図8は、図5に示した方法を用いて推定される血中細菌濃度から濃度調整を行った結果を示す。図7と比較すると、血液試料内の実際の血中細菌菌濃度が10~10CFU/mLの場合であっても調整後の細菌濃度は低下せず、概ねハッチングの範囲に収まっている。また図8は、同じ対応関係データに基づいて、大腸菌と黄色ブドウ球菌を前処理した結果を示す。図8によれば、グラム陰性菌およびグラム陽性菌という性状の大きく異なる菌であっても、1つの対応関係データに基づいて、調整後の細菌濃度を一定範囲内に収めることが可能であることを示す。より正確に濃度を調整したい場合には、細菌種毎に対応関係データを保有しておき、細菌種に対応する対応関係データを参照することが好ましい。
<実施例2>
 本発明の実施例2では、大腸菌を用いて、血液培養陽性試料から本発明に係る前処理法により細菌濃度調整を行った例を示す。比較例として、1昼夜の分離培養によりコロニーから菌液を作成した場合の増殖度を用いる。血液培養陽性試料内の菌濃度は10~10CFU/mLまでの3種類の異なるものを用い、最終的な菌濃度が5×10CFU/mLとなるように調整した。コロニーから菌液を作成した場合にも、最終的な菌濃度が5×10CFU/mLとなるように濁度計測を用いて調整した。試料を96穴プレートに50μL分注し、2倍の濃さで調整したミューラーヒントン培地も50μL分注した。その後、96穴プレートを35~37℃のインキュベータの中に入れ、増殖の様子を明視野顕微鏡で観察した。増殖度に関しては、顕微鏡画像中の細菌と判定された領域の面積を増殖度の指標として用い、増殖度の経時変化を算出した。
 図9は、血液培養陽性試料およびコロニーから作成した試料の増殖度を示す。血液培養陽性_1と分離培養_1との間には、細菌増殖度が立ち上がる時間が約0.5時間の差があるものの、最終的な増殖度は概ね一致している。血液培養陽性_2と血液培養陽性_3についても同様である。このことは、血液培養陽性試料を前処理した場合であっても、コロニーから調整された細菌濃度と同程度に調整できており、かつ感受性検査にあたり細菌の発育に影響が無いことを示している。
<実施例3>
 本発明の実施例3では、実施例2の大腸菌を黄色ブドウ球菌に変更した場合の結果について説明する。
 図10は、血液培養陽性試料およびコロニーから作成した試料の増殖度を示す。実施例2と同様、血液培養陽性と分離培養との間で最終的な増殖度は一致している。従って実施例2と同様に、血液培養陽性試料を前処理した場合であっても、コロニーから調整された細菌濃度と同程度に調整できており、かつ感受性検査にあたり細菌の発育に影響が無いことを示している。
<実施例4>
 本発明の実施例4では、血液培養陽性試料およびコロニーから作成した試料の両者で薬剤感受性検査を実施した結果を示す。感受性検査においては、薬剤が細菌に抗菌作用を示す濃度のうち最も低い濃度(最小発育阻止濃度、Minimum Inhibitory Concentration:MIC)を測定する。ここでは、感受性検査には微量液体希釈法を用いた。菌液および異なる濃度の薬剤を混合し、培養した96穴プレートの各ウェルの18時間後の濁度を目視判定することによりMICを判定した。
 図11は、薬剤感受性検査を実施した結果を示す。図10においては1例として、大腸菌に関してはセフェピム(CFPM)、セフォタキシム(CTX)、ゲンタマイシン(GM)、レボフロキサシン(LVFX)を作用させ、黄色ブドウ球菌に関してはエリスロマイシン(EM)、オキサシリン(MPIPC)、ペニシリンG(PCG)、バンコマイシン(VCM)を作用させた。
 いずれの場合においても、血液培養試料を前処理した場合のMICは、コロニーから作成した試料の場合のMICの±1管(倍または半分)の範囲内に収まっており、血液培養試料を前処理した試料からでも正しく感受性検査ができることを表している。
 図11においては微量液体希釈法を用いてMICを判定する例を示したが、図8~図9で得られているように顕微鏡画像を用いた迅速感受性検査によりMICを判定してもよいし、その他にレーザ光による迅速感受性検査を実施してもよい。
<本発明の変形例について>
 以上の実施形態において、フィルタ領域20の彩度値の平均値を用いて対応関係データを参照することを説明したが、平均値に代えて最大値または最頻値を用いてもよい。あるいは彩度値に代えて、色相/明度/彩度のうち少なくとも2つによって表される特徴量によって、フィルタ上に残った不純物量を表してもよい。
 以上の実施形態において、血液試料に含まれる血球を不純物として検出する例を説明したが、その他の細菌試料においても本発明を用いることができる。すなわち、フィルタ上に残った不純物を撮像することによって得られる画像情報と試料内の細菌濃度との間に対応関係がある試料であれば、本発明を用いることができる。不純物を破壊するために加える物質は、不純物の種類によって適宜変えればよい。
100:自動分析装置
101:導入装置
102:遠心分離器
103:洗浄部
104:洗浄用ピペット
105:ろ過フィルタ部
106:カメラ
107:記憶部
108:希釈部
109:希釈用ピペット
110:コンピュータ

Claims (13)

  1.  細菌と不純物を含む試料を分析する自動分析方法であって、
     前記不純物を破壊する物質を前記試料に対して導入するステップ、
     前記物質を導入した前記試料内における前記不純物と前記細菌を互いに分離するステップ、
     前記不純物と前記細菌を分離した前記試料から前記細菌を取り出すフィルタを用いて前記試料から前記細菌を取り出すステップ、
     前記フィルタ上に残る前記不純物の量を表す数値と前記試料内の前記細菌の濃度との間の対応関係を記述した対応関係データを格納する記憶部から前記対応関係データを読み取るステップ、
     前記試料から前記細菌を取り出した後に前記フィルタ上に残った前記不純物の量を表す数値を用いて前記対応関係データを参照することにより前記試料内の前記細菌の濃度を推定するステップ、
     を有することを特徴とする自動分析方法。
  2.  前記試料は、前記不純物として血球を含んでおり、
     前記物質は、界面活性剤であり、
     前記界面活性剤は、
      親水性部分と疎水性部分を有し、前記疎水性部分が鎖状炭化水素である陰イオン性界面活性剤、
      親水性部分と疎水性部分を有し、前記疎水性部分が環状炭化水素を有する界面活性剤、
     のうち少なくともいずれか一方を含む
     ことを特徴とする請求項1記載の自動分析方法。
  3.  前記フィルタは、前記試料をろ過することにより前記不純物と前記細菌を分離するろ過フィルタであり、
     前記細菌の濃度を推定するステップにおいては、前記フィルタ上に残った前記不純物を染色せずに撮像することにより取得した画像を用いて、前記フィルタ上に残った前記不純物の量を検出し、
     前記細菌の濃度を推定するステップにおいては、前記画像を用いて検出した前記不純物の量を用いて前記対応関係データを参照する
     ことを特徴とする請求項1記載の自動分析方法。
  4.  前記自動分析方法はさらに、前記画像としてRGB画像を撮像するステップを有し、
     前記細菌の濃度を推定するステップにおいては、前記RGB画像をHSV色空間画像へ変換し、
     前記細菌の濃度を推定するステップにおいては、前記フィルタ上に残った前記不純物の量を表す数値として、前記フィルタ上に残った前記不純物の前記HSV色空間画像上における彩度値を用いる
     ことを特徴とする請求項3記載の自動分析方法。
  5.  前記自動分析方法はさらに、前記画像としてRGB画像を撮像するステップを有し、
     前記細菌の濃度を推定するステップにおいては、前記RGB画像をHSV色空間画像へ変換し、
     前記細菌の濃度を推定するステップにおいては、前記フィルタ上に残った前記不純物の量を表す数値として、前記フィルタ上に残った前記不純物の前記HSV色空間画像上における色相値、彩度値、および明度値によって表される特徴量を用いる
     ことを特徴とする請求項3記載の自動分析方法。
  6.  前記細菌の濃度を推定するステップにおいては、前記不純物が有するRGB色成分のうち最も大きいものを少なくとも検出する光学センサから、前記不純物を検出した結果を取得し、
     前記細菌の濃度を推定するステップにおいては、前記フィルタ上に残った前記不純物の量を表す数値として、前記フィルタ上に残った前記不純物を前記光学センサが検出した結果を用いる
     ことを特徴とする請求項1記載の自動分析方法。
  7.  前記フィルタは、前記試料をろ過することにより前記不純物と前記細菌をろ過するろ過フィルタであり、
     前記自動分析方法はさらに、前記フィルタ上に残った前記不純物の量を検出するステップを有し、
     前記細菌の濃度を推定するステップにおいては、前記フィルタ上に残った前記不純物の量を検出するステップにおいて検出した前記不純物の量とは別に、前記試料内の前記不純物の量を検出した別検出結果を取得し、
     前記細菌の濃度を推定するステップにおいては、前記別検出結果を用いて、前記フィルタ上に残った前記不純物の量を検出するステップにおいて検出した前記不純物の量を補正し、その補正した前記不純物の量を用いて前記対応関係データを参照する
     ことを特徴とする請求項1記載の自動分析方法。
  8.  前記自動分析方法はさらに、薬剤に対する前記細菌の薬剤感受性検査を実施するステップを有し、
     前記薬剤感受性検査を実施するステップにおいては、前記試料内の前記細菌の濃度を推定した後、前記試料内の前記細菌を培養することなく、前記試料内の前記細菌に対する薬剤感受性検査を実施する
     ことを特徴とする請求項1記載の自動分析方法。
  9.  前記自動分析方法はさらに、前記試料を希釈するステップを有し、
     前記希釈するステップにおいては、前記試料内の前記細菌の濃度を推定した後、前記試料を希釈することにより、前記薬剤感受性検査を実施するために必要な前記細菌の濃度を有する検査試料を作成し、
     前記薬剤感受性検査を実施するステップにおいては、前記希釈するステップにおいて作成した前記検査試料に対して、前記薬剤感受性検査を実施する
     ことを特徴とする請求項8記載の自動分析方法。
  10.  前記薬剤感受性検査を実施するステップにおいては、35~37℃に保持したインキュベータ内に設置された試料の画像を撮像装置によって撮像し、
     前記薬剤感受性検査を実施するステップにおいては、前記撮像装置が撮像した前記試料の画像を用いて前記細菌の増殖度を測定することにより、前記薬剤の最小発育阻止濃度を判定する
     ことを特徴とする請求項8記載の自動分析方法。
  11.  前記フィルタのろ過孔径は1~40μmであり、前記フィルタの材料は疎水性材料である
     ことを特徴とする請求項1記載の自動分析方法。
  12.  前記試料は血液試料であり、前記不純物は少なくとも血液内の赤血球を含む
     ことを特徴とする請求項1記載の自動分析方法。
  13.  細菌と不純物を含む試料を分析する自動分析装置であって、
     前記不純物を破壊する物質を導入した前記試料内における前記不純物と前記細菌を互いに分離する分離器、
     前記不純物と前記細菌を分離した前記試料から前記細菌を取り出すフィルタ、
     前記フィルタ上に残る前記不純物の量を表す数値と前記試料内の前記細菌の濃度との間の対応関係を記述した対応関係データを格納する記憶部、
     前記試料から前記細菌を取り出した後に前記フィルタ上に残った前記不純物の量を表す数値を用いて前記対応関係データを参照することにより前記試料内の前記細菌の濃度を推定する演算部、
     を備えることを特徴とする自動分析装置。
PCT/JP2020/018899 2020-05-12 2020-05-12 自動分析装置、自動分析方法 WO2021229667A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2022522125A JP7371245B2 (ja) 2020-05-12 2020-05-12 自動分析装置、自動分析方法
KR1020227036942A KR20220158051A (ko) 2020-05-12 2020-05-12 자동 분석 장치, 자동 분석 방법
US17/996,962 US20230167480A1 (en) 2020-05-12 2020-05-12 Automatic analyzer and automatic analysis method
EP20935377.0A EP4151744A4 (en) 2020-05-12 2020-05-12 AUTOMATED ANALYZER AND AUTOMATIC ANALYSIS METHOD
PCT/JP2020/018899 WO2021229667A1 (ja) 2020-05-12 2020-05-12 自動分析装置、自動分析方法
CN202080100175.3A CN115461466A (zh) 2020-05-12 2020-05-12 自动分析装置、自动分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/018899 WO2021229667A1 (ja) 2020-05-12 2020-05-12 自動分析装置、自動分析方法

Publications (1)

Publication Number Publication Date
WO2021229667A1 true WO2021229667A1 (ja) 2021-11-18

Family

ID=78525467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018899 WO2021229667A1 (ja) 2020-05-12 2020-05-12 自動分析装置、自動分析方法

Country Status (6)

Country Link
US (1) US20230167480A1 (ja)
EP (1) EP4151744A4 (ja)
JP (1) JP7371245B2 (ja)
KR (1) KR20220158051A (ja)
CN (1) CN115461466A (ja)
WO (1) WO2021229667A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078292A (ja) * 1991-01-24 1995-01-13 Orion Corp グラム陰性細菌の検出方法
JP2005503803A (ja) * 2001-09-13 2005-02-10 ヘモシステム 血液製剤及び/又はその派生物からの病原菌の濃縮及び検出装置及び方法
JP2007006709A (ja) * 2005-06-28 2007-01-18 Matsushita Electric Ind Co Ltd 発光物の判別方法
JP2013512685A (ja) * 2009-12-08 2013-04-18 バイオカルティス、ソシエテ、アノニム 細胞の選択的溶解
JP2014235076A (ja) * 2013-06-03 2014-12-15 株式会社日立ハイテクノロジーズ 血球破壊試薬及びそれを用いる血球破壊方法
WO2019097752A1 (ja) * 2017-11-15 2019-05-23 国立大学法人 富山大学 血液検体の前処理方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10059975B2 (en) * 2008-10-31 2018-08-28 Biomerieux, Inc. Methods for the isolation and identification of microorganisms

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078292A (ja) * 1991-01-24 1995-01-13 Orion Corp グラム陰性細菌の検出方法
JP2005503803A (ja) * 2001-09-13 2005-02-10 ヘモシステム 血液製剤及び/又はその派生物からの病原菌の濃縮及び検出装置及び方法
JP2007006709A (ja) * 2005-06-28 2007-01-18 Matsushita Electric Ind Co Ltd 発光物の判別方法
JP2013512685A (ja) * 2009-12-08 2013-04-18 バイオカルティス、ソシエテ、アノニム 細胞の選択的溶解
JP2014235076A (ja) * 2013-06-03 2014-12-15 株式会社日立ハイテクノロジーズ 血球破壊試薬及びそれを用いる血球破壊方法
WO2019097752A1 (ja) * 2017-11-15 2019-05-23 国立大学法人 富山大学 血液検体の前処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4151744A4 *

Also Published As

Publication number Publication date
CN115461466A (zh) 2022-12-09
JPWO2021229667A1 (ja) 2021-11-18
EP4151744A1 (en) 2023-03-22
EP4151744A4 (en) 2024-01-10
US20230167480A1 (en) 2023-06-01
JP7371245B2 (ja) 2023-10-30
KR20220158051A (ko) 2022-11-29

Similar Documents

Publication Publication Date Title
Gulati et al. In vitro culturing and screening of Candida albicans biofilms
JP6186414B2 (ja) 固体又は半固体培地上の微生物のキャラクタリゼーション方法
US20210189321A1 (en) Test Apparatus
US20200299748A1 (en) Method for determining the concentration of intact microorganisms in a sample
US20210032674A1 (en) Method for determining microorganism concentration
US6803208B2 (en) Automated epifluorescence microscopy for detection of bacterial contamination in platelets
EP0944733B1 (en) Rapid microbiological assay
JP2010213598A (ja) 抗菌薬の微生物に対する有効性の検査方法
US20240344106A1 (en) Rapid antimicrobial susceptibility testing by video-based object scattering intensity detection
JP5814259B2 (ja) 診断解析の方法及び装置
WO2021229667A1 (ja) 自動分析装置、自動分析方法
JP5600603B2 (ja) 微生物自動分析装置および微生物自動分析方法
KR20140020835A (ko) 감염도 결정 방법
US20240036029A1 (en) Interfering flag to reduce falses diagnosis due to interfering conditions in microscopic morphology based sediment urinalysis
JP2001149091A (ja) 微生物測定方法及び装置
Iyengar et al. Spectral analysis and sorting of microbial organisms using a spectral sorter
Phillips et al. Potential clinical application of an automated fluorescent microbial cell counter in the detection of urinary tract infection
EP3645734B1 (en) A method for quantifying the cultivability of individual bacterial cells using culture independent parameters
Isbilen et al. Comparison of Urine Culture and Flow Cytometric Methods for Detecting Bacteriuria by Using a Simulation Model
US20170314057A1 (en) Method, device and system for testing drug sensitivity
Fujinami et al. Comparisons of the fully automated urine particle analyzer (uf-1000i) to quantitative urine culture and nitrite reaction in urinary tract infection test
Schreiner Detection of bacterial contaminations in platelet concentrates using Raman spectroscopy and flow cytometry
WO2023118906A1 (en) Dyes and uses thereof
CN118451477A (zh) 微生物图像解析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935377

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022522125

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227036942

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020935377

Country of ref document: EP

Effective date: 20221212