WO2021229667A1 - 自動分析装置、自動分析方法 - Google Patents
自動分析装置、自動分析方法 Download PDFInfo
- Publication number
- WO2021229667A1 WO2021229667A1 PCT/JP2020/018899 JP2020018899W WO2021229667A1 WO 2021229667 A1 WO2021229667 A1 WO 2021229667A1 JP 2020018899 W JP2020018899 W JP 2020018899W WO 2021229667 A1 WO2021229667 A1 WO 2021229667A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sample
- impurities
- filter
- concentration
- bacterium
- Prior art date
Links
- 238000004458 analytical method Methods 0.000 title claims abstract description 21
- 241000894006 Bacteria Species 0.000 claims abstract description 108
- 239000012535 impurity Substances 0.000 claims abstract description 95
- 238000000034 method Methods 0.000 claims abstract description 35
- 239000000126 substance Substances 0.000 claims abstract description 7
- 210000004369 blood Anatomy 0.000 claims description 75
- 239000008280 blood Substances 0.000 claims description 75
- 238000012360 testing method Methods 0.000 claims description 53
- 239000004094 surface-active agent Substances 0.000 claims description 31
- 210000003743 erythrocyte Anatomy 0.000 claims description 28
- 210000000601 blood cell Anatomy 0.000 claims description 27
- 238000001914 filtration Methods 0.000 claims description 25
- 229940079593 drug Drugs 0.000 claims description 14
- 239000003814 drug Substances 0.000 claims description 14
- 230000002209 hydrophobic effect Effects 0.000 claims description 14
- 238000001514 detection method Methods 0.000 claims description 8
- 238000007865 diluting Methods 0.000 claims description 7
- 238000003384 imaging method Methods 0.000 claims description 6
- 230000003287 optical effect Effects 0.000 claims description 6
- 230000002401 inhibitory effect Effects 0.000 claims description 4
- 238000010186 staining Methods 0.000 claims description 4
- 239000004215 Carbon black (E152) Substances 0.000 claims description 3
- 239000003945 anionic surfactant Substances 0.000 claims description 3
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 3
- 229930195733 hydrocarbon Natural products 0.000 claims description 3
- 150000002430 hydrocarbons Chemical class 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 238000012258 culturing Methods 0.000 claims description 2
- 239000000284 extract Substances 0.000 claims 1
- 230000001580 bacterial effect Effects 0.000 abstract description 107
- 238000009640 blood culture Methods 0.000 description 34
- 239000000243 solution Substances 0.000 description 16
- 241000588724 Escherichia coli Species 0.000 description 7
- 102000001554 Hemoglobins Human genes 0.000 description 7
- 108010054147 Hemoglobins Proteins 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 6
- 238000010790 dilution Methods 0.000 description 6
- 239000012895 dilution Substances 0.000 description 6
- 230000035755 proliferation Effects 0.000 description 6
- 241000191967 Staphylococcus aureus Species 0.000 description 5
- 239000003242 anti bacterial agent Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000013095 identification testing Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 4
- 206010040047 Sepsis Diseases 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 4
- 238000012937 correction Methods 0.000 description 4
- 239000003599 detergent Substances 0.000 description 4
- 238000002203 pretreatment Methods 0.000 description 4
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 3
- 210000001772 blood platelet Anatomy 0.000 description 3
- 238000011088 calibration curve Methods 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 238000003113 dilution method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 239000013642 negative control Substances 0.000 description 3
- 229940083575 sodium dodecyl sulfate Drugs 0.000 description 3
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 102000009123 Fibrin Human genes 0.000 description 2
- 108010073385 Fibrin Proteins 0.000 description 2
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 2
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 2
- 229930182566 Gentamicin Natural products 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- GSDSWSVVBLHKDQ-JTQLQIEISA-N Levofloxacin Chemical compound C([C@@H](N1C2=C(C(C(C(O)=O)=C1)=O)C=C1F)C)OC2=C1N1CCN(C)CC1 GSDSWSVVBLHKDQ-JTQLQIEISA-N 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- 108010059993 Vancomycin Proteins 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- HVFLCNVBZFFHBT-ZKDACBOMSA-N cefepime Chemical compound S([C@@H]1[C@@H](C(N1C=1C([O-])=O)=O)NC(=O)\C(=N/OC)C=2N=C(N)SC=2)CC=1C[N+]1(C)CCCC1 HVFLCNVBZFFHBT-ZKDACBOMSA-N 0.000 description 2
- 229960002100 cefepime Drugs 0.000 description 2
- GPRBEKHLDVQUJE-VINNURBNSA-N cefotaxime Chemical compound N([C@@H]1C(N2C(=C(COC(C)=O)CS[C@@H]21)C(O)=O)=O)C(=O)/C(=N/OC)C1=CSC(N)=N1 GPRBEKHLDVQUJE-VINNURBNSA-N 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 229960003964 deoxycholic acid Drugs 0.000 description 2
- KXGVEGMKQFWNSR-LLQZFEROSA-N deoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 KXGVEGMKQFWNSR-LLQZFEROSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229960003276 erythromycin Drugs 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229950003499 fibrin Drugs 0.000 description 2
- 229960002518 gentamicin Drugs 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 229960003376 levofloxacin Drugs 0.000 description 2
- YFVGRULMIQXYNE-UHFFFAOYSA-M lithium;dodecyl sulfate Chemical compound [Li+].CCCCCCCCCCCCOS([O-])(=O)=O YFVGRULMIQXYNE-UHFFFAOYSA-M 0.000 description 2
- 239000002504 physiological saline solution Substances 0.000 description 2
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 2
- 229930182490 saponin Natural products 0.000 description 2
- 150000007949 saponins Chemical class 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229960003165 vancomycin Drugs 0.000 description 2
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 description 2
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- CLHYKAZPWIRRRD-UHFFFAOYSA-N 1-hydroxypropane-1-sulfonic acid Chemical compound CCC(O)S(O)(=O)=O CLHYKAZPWIRRRD-UHFFFAOYSA-N 0.000 description 1
- BZXMNFQDWOCVMU-UHFFFAOYSA-N 2-[dodecanoyl(methyl)amino]acetic acid;sodium Chemical compound [Na].CCCCCCCCCCCC(=O)N(C)CC(O)=O BZXMNFQDWOCVMU-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 241000192125 Firmicutes Species 0.000 description 1
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 241000295644 Staphylococcaceae Species 0.000 description 1
- 206010042674 Swelling Diseases 0.000 description 1
- 238000011481 absorbance measurement Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- TTWYZDPBDWHJOR-IDIVVRGQSA-L adenosine triphosphate disodium Chemical compound [Na+].[Na+].C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O TTWYZDPBDWHJOR-IDIVVRGQSA-L 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 229940124350 antibacterial drug Drugs 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 1
- 238000004820 blood count Methods 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001332 colony forming effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 238000001215 fluorescent labelling Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000005534 hematocrit Methods 0.000 description 1
- 239000000815 hypotonic solution Substances 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229960003085 meticillin Drugs 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229960001019 oxacillin Drugs 0.000 description 1
- UWYHMGVUTGAWSP-JKIFEVAISA-N oxacillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C1=C(C)ON=C1C1=CC=CC=C1 UWYHMGVUTGAWSP-JKIFEVAISA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000011120 smear test Methods 0.000 description 1
- KSAVQLQVUXSOCR-UHFFFAOYSA-M sodium lauroyl sarcosinate Chemical compound [Na+].CCCCCCCCCCCC(=O)N(C)CC([O-])=O KSAVQLQVUXSOCR-UHFFFAOYSA-M 0.000 description 1
- 239000012128 staining reagent Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
- C12Q1/18—Testing for antimicrobial activity of a material
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
- C12Q1/04—Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
- C12Q1/06—Quantitative determination
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
- C12Q1/025—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
- C12Q1/24—Methods of sampling, or inoculating or spreading a sample; Methods of physically isolating an intact microorganisms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/52—Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N2035/00346—Heating or cooling arrangements
- G01N2035/00356—Holding samples at elevated temperature (incubation)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N2035/00465—Separating and mixing arrangements
- G01N2035/00475—Filters
Definitions
- the present invention relates to an automatic analyzer that analyzes a sample containing bacteria and impurities.
- Sepsis is an infectious disease with a high case fatality rate, and it is important to promptly carry out diagnosis and appropriate treatment based on it.
- a blood culture test is usually performed to determine sepsis. This is to determine whether or not bacteria are present in the blood, which is a sterile sample. Generally, a smear test is then performed, followed by an identification test and a susceptibility test. The identification test separates and cultures blood culture-positive samples and identifies the type of bacteria in the resulting colonies.
- the susceptibility test measures the susceptibility of the bacterium to antibacterial agents. Since the above series of tests takes 1 day for the blood culture test, 1 day for the separation culture, and 1 day for the susceptibility test, a total test time of 2 to 3 days is required. That is, it currently takes 2 to 3 days to determine whether or not the treatment to which an appropriate antibacterial drug has been administered can be carried out. Therefore, the case fatality rate of sepsis is extremely high when ineffective antibacterial agents are administered.
- CFU colony forming unit
- the main components other than bacteria in the blood culture bottle include blood cell components and media, as well as resins, beads, activated carbon, etc. that adsorb antibiotics.
- a sample positive for blood culture is applied to an agar medium to grow colonies.
- the type of bacteria from the properties of the colony and identifying the type of bacteria more reliably, and by preparing the bacterial solution from the colony, there are no impurities other than bacteria and the bacterial concentration required for the susceptibility test (generally 10).
- a sample having 5 to 10 6 CFU / mL) can be obtained.
- the susceptibility test In the susceptibility test, generally, a constant concentration of an antibacterial agent is introduced into a bacterial solution containing bacteria, and the degree of bacterial growth according to the concentration of the antibacterial agent is determined. Since the results of the susceptibility test will fluctuate, it is important to adjust in advance so that the bacterial concentration in the bacterial solution is constant. With regard to susceptibility testing, research is currently underway to speed up the time to complete the test. The current golden standard method measures the degree of bacterial growth by changing the turbidity, and it takes one day and night for the inspection.
- a method for determining the change in turbidity more quickly using laser light a method for rapidly determining the degree of growth of individual bacteria with a microscope, and a method for rapidly quantifying the degree of bacterial growth by ATP (Adenosine triphosphate) emission. Methods, etc. are being developed, and the time required for susceptibility testing may be reduced to several hours.
- a pretreatment step for preparing a bacterial solution a method in which separation culture is carried out for one day and the colonies are diluted in the liquid is still used.
- Patent Document 1 discloses a method of selectively destroying only blood cell components without affecting the growth of bacteria by using two different types of surfactants.
- Patent Document 2 discloses a method for selectively destroying only blood cell components by degrading blood cells with a protease, swelling treatment with a hypotonic solution, and using a surfactant.
- Patent Document 3 discloses a method for detecting the number and concentration of bacteria by fluorescently labeling the bacteria captured on a membrane filter. According to this method, it is possible to measure the concentration of bacteria even when impurities other than bacteria are contained.
- Patent Documents 1 and 2 do not disclose means for adjusting the concentration of bacteria to a constant level.
- concentration of the bacterial solution based on the value of turbidity.
- the absorption wavelength of blood cell components such as erythrocytes, leukocytes, and platelets or hemoglobin contained in a large amount in blood cells is the same as the wavelength band used for measuring scattered light of bacteria, it is difficult to adjust by turbidity.
- Patent Document 3 it is necessary to treat the bacterium with a staining reagent for fluorescent labeling, and exposure to the reagent during the treatment may change the properties of the bacterium and affect the result of the susceptibility test. .. Therefore, a method that requires such a staining step is difficult to apply for a susceptibility test. Another problem is that the reagent cost is high and an expensive optical system dedicated to fluorescence excitation is required.
- the present invention has been made in view of such a situation, and provides a technique for estimating the bacterial concentration in a sample from a sample in which impurities such as bacteria and blood cells are mixed and adjusting the sample to a desired bacterial concentration. It is a thing.
- a substance that destroys the impurities is introduced into a sample in which bacteria and impurities are mixed, the destroyed impurities and the bacteria are separated, and then the bacteria are taken out by a filter and described.
- the concentration of the bacterium in the sample is estimated according to the correspondence data between the amount of the impurity remaining on the filter and the concentration of the bacterium in the sample.
- the bacterial concentration in the sample can be estimated from the sample in which bacteria and impurities are mixed, and the sample can be adjusted to the desired bacterial concentration.
- the susceptibility test can be performed accurately. Issues, configurations, and effects other than those described above will be clarified by the description of the following embodiments.
- FIG. 6 is a graph showing the relationship between the color information of the filter calculated by processing the filter image and the number of red blood cells in the sample passed through the filter. It is a graph which shows the relationship between the color information of a filter calculated by processing a filter image, and the actual blood bacterial concentration. It is a flowchart explaining the procedure of performing the bacterial concentration adjustment using the blood bacterial concentration estimated from the filter image. It is a block diagram of the automatic analyzer 100 which concerns on Embodiment 2. FIG.
- the results regarding the bacterial concentration adjusted by turbidity measurement from the blood culture positive sample are shown.
- the results regarding the bacterial concentration adjusted from the blood culture positive sample using the method shown in FIG. 5 are shown.
- the degree of proliferation of blood culture positive samples and samples prepared from colonies is shown.
- the degree of proliferation of blood culture positive samples and samples prepared from colonies is shown.
- the results of the drug susceptibility test are shown.
- FIG. 1 is a flowchart showing a general procedure for destroying blood cells and removing impurities from a blood sample containing bacteria. Prior to the embodiment of the present invention, a general procedure for removing impurities from a blood cell sample will be described with reference to FIG. Then, the details of the embodiment of the present invention will be described.
- a surfactant is added to the blood sample to destroy the blood cells.
- the surfactant may be (a) an anionic surfactant having a hydrophilic and hydrophobic moiety and the hydrophobic moiety being a chain hydrocarbon, or (b) having a hydrophilic and hydrophobic moiety and being hydrophobic.
- a surfactant having a cyclic hydrocarbon moiety or a combination of (a) and (b) is preferable.
- the former includes sodium dodecylsulfate, lithium dodecylsulfate, and sodium N-lauroylsarcosin
- the latter includes saponin, sodium sulphonate, sodium deoxycholate, 3-[(3-cholamidepropyl) dimethylammoni.
- E] -1 propane sulfonate, 3-[(3-colamidpropyl) dimethylammonio] -2 hydroxy-1 propane sulfonate can be mentioned.
- the next step S11 may be carried out, but it may be allowed to stand for about 5 to 15 minutes and wait for the reaction to be completed.
- step S11 in order to remove components in blood cells that have been destroyed by the surfactant and flowed out, such as hemoglobin, centrifugation is performed, and then the supernatant is removed and washed.
- centrifugation is performed at 2000 G for about 5 to 10 minutes, but it is sufficient if bacteria and blood cell components that have not been destroyed by the surfactant can be separated from the outflowing hemoglobin, etc. This is not the case with regard to.
- the washing is carried out using pure water, physiological saline, or the like, and the washing may be performed only once or may be performed multiple times.
- step S12 the sample is filtered with a filter in order to further remove blood cell components and impurities in the medium that could not be destroyed by the surfactant.
- a filter having a filter hole diameter (mesh spacing) larger than that of bacteria bacteria are allowed to pass through and impurities other than bacteria are captured by the filter.
- a filter having a pore size of 1 to 40 ⁇ m it is preferable to use a filter having a pore size of 1 to 40 ⁇ m.
- filtration may be performed a plurality of times, such as filtering with a filter having a large filtration hole diameter and then filtering with a filter having a small filtration hole diameter.
- a filter made of a hydrophobic material in order to prevent the trapping of bacteria in the filter.
- Embodiment 1 of the present invention shows a method for obtaining a sample having a bacterial concentration adjusted to a desired value from a blood sample containing bacteria. It should be noted that this embodiment is merely an example, and is not limited to this configuration. Pretreatment of S10-S12 was performed using blood samples containing Escherichia coli and Staphylococcus aureus. Blood samples were prepared according to the following procedure. In a blood culture bottle containing drug-adsorbed beads, 10 mL of blood derived from healthy volunteers and 0.1 mL of bacterial solution whose concentration was adjusted to about 150 CFU / mL in advance from colonies were introduced to prepare blood equivalent to that of an actual septic patient. ..
- the sample was introduced into a blood culture device and cultured, and when the blood culture became positive, the sample was taken out and used in the experiment.
- a sample corresponding to a negative control having a blood bacterial concentration of 0 CFU / mL cultured without introducing a bacterial solution was also prepared, and the bacterial concentration was changed by appropriately diluting the sample.
- FIG. 2 is an example of an image obtained by imaging a filtration filter without staining.
- the filter area 20 surrounded by the broken line is a notable area. If the actual blood bacteria concentration of 3.9 ⁇ 10 6 CFU / mL, the region 22 where the impurity showing the same color as the filter outer region 21 does not exist is the majority. When the actual blood bacterial concentration is 1 ⁇ 10 9 CFU / mL, the region 23 where the reddish impurities are present occupies most of the region, and the redness becomes stronger as the actual blood bacterial concentration increases. ..
- FIG. 3 shows the results of filtration using a mixed solution of a negative control blood sample having a blood bacterial concentration of 0 CFU / mL and a surfactant, and the amount of red blood cells in the sample used for filtration and the redness of the filter image.
- the amount of red blood cells was calculated by a blood cell counter.
- the saturation value calculated by the following processing was used.
- the filter image is a color image and is generally represented in the RGB color space. In order to reduce the influence of ambient brightness and the like at the time of imaging, RGB was converted to HSV (hue, saturation, lightness). More specifically, the average value of the saturation values of each pixel inside the filter area 20 was calculated as the redness of the filter image.
- the negative control blood sample contains platelets and fibrin with hemoglobin attached, and impurities in the medium, and it is considered that such impurities enhance the redness of the filter. That is, the amount of red blood cells and other impurities can be detected from the saturation value of the filter image.
- the reason why the result shown in FIG. 2 was obtained is presumed as follows.
- the detergent is added at a certain concentration regardless of the actual blood bacterial concentration, and if the actual blood bacterial concentration is low, most of the blood cells in the sample will be destroyed by the detergent, so step. Most of the blood cells are removed in S11 and no impurities remain on the filter.
- the concentration of bacteria in blood becomes high, the concentration of bacteria and erythrocytes becomes about the same, and the bacteria themselves inhibit the action of blood cell destruction by the surfactant.
- step S11 the amount of red blood cells that were not completely destroyed in step S11 increases and is captured in the filtration step of step S12. It is also conceivable that bacteria aggregate with hemoglobin, fibrin, and platelets, and impurities showing redness are captured in the filtration step of step S12. As the actual blood bacterial concentration increases, the redness of the filter region 20 after filtration becomes stronger. Therefore, for example, by calculating the amount of impurities such as red blood cells remaining on the filter after filtration from the image of the filter, the concentration of bacteria that have passed through the filter can be known.
- FIG. 4 is a graph showing the relationship between the color information of the filter calculated by processing the filter image and the actual blood bacterial concentration.
- the filter image shown in the RGB color space was converted into HSV (hue, saturation, lightness), and the saturation value was used. Specifically, the average value of the saturation values of each pixel inside the filter area 20 was used.
- FIG. 3 shows the results of repeated experiments with Escherichia coli and the results of Staphylococcus aureus. Actual blood bacterial concentration is positive correlation between the chroma values in bacterial concentration and the filter image blood is observed in the range of 10 6 ⁇ 10 9 CFU / mL .
- a calibration curve is obtained from the blood bacterial concentration and the saturation value of the filter image, it is possible to estimate the number of bacteria based on the information of the saturation value of the filtered image. Since this range of bacterial concentration in blood is almost the same as the bacterial concentration in a sample that is usually positive in blood culture, it can be applied to various bacterial species and strains.
- the specific concentration of the surfactant used for the treatment can be specified in the following range.
- the concentration of red blood cells in the blood is of the order of 10 9 / mL, if when pretreated samples 1mL is red blood cell count in the sample is 10 nine.
- the estimated possible impurities e.g. erythrocytes weight in the range of color filters shown in FIG. 3 is 10 6 to 10 8. That is, in order to be able to estimate the actual bacterial concentration from the color of the filter, the red blood cells may be destroyed to 1/1000 to 1/10. That is, a surfactant having a concentration capable of destroying 90 to 99.9% of red blood cells in blood containing bacteria is required.
- the range of the surfactant concentration shown here is, for example, when a 1 mL sample is pretreated, and when the volume to be treated increases, the destruction rate of erythrocytes increases accordingly. It is preferable to increase the concentration. For example, when a 10 mL sample is pretreated, a detergent having a concentration capable of destroying 99 to 99.99% of red blood cells is required, which may vary depending on the amount of the sample processed.
- the concentration of a surfactant capable of destroying 99-99.99% of erythrocytes in blood containing bacteria has a hydrophilic and hydrophobic portion, and the hydrophobic portion is a chain hydrocarbon.
- sodium dodecyl sulfate which is an anionic surfactant, has a concentration in the range of 0.05% by weight to 0.5% by weight.
- the concentration of the surfactant capable of destroying the desired erythrocytes is also preferable.
- surfactants having a hydrophilic and hydrophobic moiety and having a cyclic hydrocarbon in the hydrophobic moiety for example, saponin, sodium sulfonic acid, sodium deoxycholate, 3-[(3-].
- the types of surfactants may be mixed with respect to coramidopropyl) dimethylammonio] -1propanesulfonate and 3-[(3-colamidpropyl) dimethylammonio] -2hydroxy-1propanesulfonate.
- a surfactant such as sodium dodecyl sulfate having a final concentration in the range of 0.05% by weight to 0.5% by weight, which can destroy 99 to 99.99% of red blood cells in blood containing bacteria, is used. 2.7 mL of blood sample was processed.
- FIG. 5 is a flowchart illustrating a procedure for adjusting the bacterial concentration using the blood bacterial concentration estimated from the filter image. Steps S10 to S12 are the same as the steps shown in FIG.
- step S50 the filter is imaged and the color of the impurities remaining on the filter is acquired.
- the amount of impurities is estimated based on the color of the red blood cells remaining on the filter, so it is not necessary to stain the sample or impurities.
- step S51 the correspondence data describing the correspondence between the color of the impurities remaining on the filter and the actual blood bacterial concentration is read out, and the correspondence data is referred to using the color acquired from the filter image.
- the estimated blood bacterial concentration is calculated.
- a calibration curve represented by a semi-logarithm is obtained, and the blood bacterial concentration estimated from the data of the calibration curve is calculated.
- the correspondence data is illustrated in FIG. 4, and is created in advance and stored in the storage device.
- the method of the present invention can be applied if there is at least one correspondence-related data regardless of the bacterial species or the type of surfactant.
- resistant strains such as methicillin-resistant staphylococci, and the type of surfactant. ..
- step S52 the sample is diluted to obtain the desired bacterial concentration based on the blood bacterial concentration estimated in S51. For example, when the estimated blood bacterial concentration in S51 is 5 ⁇ 10 8 CFU / mL and the desired bacterial concentration is 5 ⁇ 10 5 CFU / mL, dilute 1000 times. If the blood bacterial concentration estimated in S51 does not reach the desired bacterial concentration, it is preferable to proceed to step S53 and determine that the sample is defective. If it is determined to be a defective sample, it is difficult to prepare a sample suitable for the susceptibility test. Therefore, the blood culture bottle is further cultured, the bacteria are grown, and then the process returns to step S10. Alternatively, an identification test or a susceptibility test may be carried out using the colonies obtained by carrying out the isolation culture.
- an identification test and a susceptibility test are carried out using the prepared bacterial solution. Any method may be used as the inspection method. For example, an identification test using an automatic device, a genetic test, a susceptibility test by a trace liquid dilution method, a susceptibility test by a disk method, a rapid susceptibility test by microscopic image or laser scattered light measurement, and the like can be mentioned.
- the sample after the blood cells are destroyed is filtered by a filtration filter, and the correspondence data between the color component of the image of the impurities remaining on the filter and the actual blood bacterial concentration is referred to. , Calculate the estimated blood bacterial concentration.
- This makes it possible to prepare a sample having a desired bacterial concentration without performing isolation culture. Therefore, the separation culture step, which normally requires about one day and night, can be shortened to, for example, about 30 minutes.
- the second embodiment shows an automatic analyzer for obtaining a sample having a bacterial concentration adjusted to a desired value from a blood sample containing bacteria. It should be noted that this embodiment is merely an example, and is not limited to this configuration.
- FIG. 6 is a block diagram of the automatic analyzer 100 according to the second embodiment of the present invention.
- the automatic analyzer 100 is an apparatus that automatically carries out the pretreatment procedure described with reference to FIG. Normally, a rubber stopper is used in a blood culture bottle to prevent contamination and the like, and the inside of the bottle is evacuated. The operator takes out the blood sample from the blood culture bottle using an injection needle and dispenses the blood sample into a container containing a surfactant. As a result, S10 is carried out. Instead of the operator introducing the surfactant, an introduction device 101 that automatically introduces the surfactant into the sample can be provided as a part of the automatic analyzer 100.
- the sample into which the surfactant is introduced is introduced into the centrifuge 102.
- the blood cells in the sample are destroyed by the detergent.
- the centrifuge 102 separates the eluted hemoglobin and the like from bacteria and blood cells that could not be destroyed. As a result, the separation step of S11 is carried out.
- the sample for which centrifugation has been completed is introduced into the cleaning unit 103.
- the cleaning unit 103 removes the supernatant of the sample, and cleans the sample with, for example, about 1 mL of physiological saline or a cleaning solution such as pure water or a medium.
- the cleaning pipette 104 sucks the supernatant.
- the supernatant may be treated from the bottom of the sample container to a certain reference height. As a result, the rest of S11 is carried out.
- the sample that has been washed is introduced into the filtration filter unit 105.
- the filtration filter unit 105 is composed of, for example, a disposable filtration filter and a syringe for capturing impurities in the filter. S12 is carried out by the filtration filter unit 105. In some cases, the sample may be filtered using the centrifuge 102.
- the camera 106 (corresponding to a sensor that detects the amount of impurities) captures the impurities remaining on the filtration filter unit 105.
- the storage unit 107 stores the correspondence data described with reference to FIG.
- the computer 110 (calculation unit) converts the RGB image captured by the camera 106 into an HSV color space image, detects the color component (for example, the saturation value) of the impurity region (S50), and uses the color for the correspondence relationship. By referring to the data, the estimated blood bacterial concentration is calculated (S51).
- the filtered sample is introduced into the dilution section 108.
- the dilution unit 108 adjusts the dilution ratio so as to obtain a desired bacterial concentration based on the blood bacterial concentration estimated by the computer 110.
- the diluting pipette 109 introduces the diluted solution according to the dilution ratio. As a result, S52 is carried out.
- the computer 110 automatically performs the above steps by controlling each part of the automatic analyzer 100.
- the computer 110 is provided with an input / output device, and it is preferable that the operator can instruct the computer 110 of the type of bacteria, the desired concentration of bacteria, and the like.
- the computer 110 can also change the correspondence data to be referred to according to the input bacterial type, and change the dilution ratio by the dilution unit 108 according to the desired bacterial concentration.
- the blood bacterial concentration value estimated by the computer 110 may be output to an output device such as a display, and a flag indicating a defective sample may be displayed when the concentration is equal to or lower than the desired bacterial concentration (S53).
- the automatic analyzer 100 may include a susceptibility test device 111.
- the computer 110 automatically performs the susceptibility test by controlling the susceptibility test device 111. Thereby, all the steps from S10 to S54 can be automatically carried out.
- the minimum inhibitory concentration described in the examples described later can also be measured.
- the method for adjusting the blood bacterial concentration in the blood sample described in the first and second embodiments is considered to be influenced to some extent by the amount of red blood cells contained in the original blood.
- the concentration of human erythrocytes varies depending on gender and health condition, but it is about 3 ⁇ 10 9 to 6 ⁇ 10 9 cells / mL, which varies when compared with the bacterial concentration range of 10 6 to 10 10 cells / mL. Is extremely small. Therefore, it is considered that the effect on the result of the estimated blood bacterial concentration is small.
- step S51 can be corrected by using the value.
- the correction procedure can be considered as the correction procedure.
- the amount of impurities on the filter is estimated at least once by the operator or the computer 110 performing the procedure of FIG. 5, and another detection result is also acquired.
- the final amount of impurities is obtained by averaging the amounts of these plurality of impurities excluding the abnormal value.
- the estimated blood bacterial concentration is calculated by referring to the correspondence data using the amount of the impurity.
- the correspondence data is referred to using another detection result that measures the amount of impurities. Therefore, the correspondence data needs to describe the correspondence between the amount of impurities and the actual blood bacterial concentration.
- the saturation value of the filter image and the corresponding impurity amount can be described together in the correspondence data, or the conversion formula between the saturation value and the impurity amount is defined in advance and the conversion formula is used. It can also be used to convert another detection result into a saturation value. That is, the correspondence data may describe the correspondence between the value representing the amount of impurities remaining on the filter in some form and the actual blood bacterial concentration in the blood sample.
- the saturation value of the filter image was used to detect the red blood cells remaining in the filter.
- an optical sensor that detects absorption or reflection of a specific wavelength corresponding to red color can also be used. That is, by using an optical sensor capable of detecting at least the largest RGB component of impurities remaining on the filter, it is possible to obtain information similar to the saturation value of the image captured by the camera 106. In this case, it is necessary to describe the numerical value measured by the optical sensor instead of the saturation value in the correspondence data.
- a human may visually measure the amount of impurities based on the color sample, and refer to the correspondence data based on the measurement result.
- the color swatch itself may describe the correspondence between the color of the impurity and the concentration of bacteria in the blood.
- Example 1 the superiority of the pretreatment method according to the present invention will be described together with a comparative example.
- the concentration was adjusted to the recommended bacterial concentration range of the susceptibility test by the concentration adjustment using the turbidity measurement and the concentration adjustment according to the present invention, and the comparison was made.
- absorbance measurement with a wavelength of 600 nm was used.
- the concentration adjustment according to the present invention the pretreatment method shown in FIG. 1 was used.
- the bacteria used, the type and concentration of the surfactant, and the like are the same as those in the first embodiment.
- FIG. 7 shows the results of adjusting the bacterial concentration from the bacterial solution obtained by the pretreatment method shown in FIG. 1 by measuring the turbidity used in the conventional bacterial test pretreatment.
- the hatched area is the recommended bacterial concentration range for performing susceptibility testing as defined by the National Institute of Clinical Laboratory Standardization. The range of this hatch was in the region of 5 ⁇ 10 5 CFU / mL ( ⁇ 60%), and adjustments were made to achieve this median value of 5 ⁇ 10 5 CFU / mL.
- McFarland standards bacterial solution was adjusted to McFarland turbidity 0.5 the number of bacteria concentration corresponding to 1.5 ⁇ 10 8 CFU / mL was diluted 300-fold.
- FIG. 8 shows the result of adjusting the concentration from the estimated blood bacterial concentration using the method shown in FIG. Compared to FIG. 7, the bacterial density after adjustment even if the actual blood bacterial cell concentration in the blood samples of 10 6 ⁇ 10 7 CFU / mL does not decrease, and generally within the range of hatching ..
- FIG. 8 also shows the results of pretreatment with Escherichia coli and Staphylococcus aureus based on the same correspondence data. According to FIG. 8, it is possible to keep the adjusted bacterial concentration within a certain range based on one correspondence data even for gram-negative bacteria and gram-positive bacteria having significantly different properties. Is shown. When it is desired to adjust the concentration more accurately, it is preferable to hold the correspondence data for each bacterial species and refer to the correspondence data corresponding to the bacterial species.
- Example 2 of the present invention shows an example in which the bacterial concentration was adjusted from a blood culture positive sample by the pretreatment method according to the present invention using Escherichia coli.
- the degree of proliferation when a bacterial solution is prepared from a colony by isolation culture for one day and night is used.
- the bacterial concentration in the blood culture positive sample was adjusted to 5 ⁇ 10 5 CFU / mL by using three different bacterial concentrations from 10 7 to 10 9 CFU / mL. Even if you create a cell suspension from a colony it was adjusted using turbidity measurements as a final bacteria concentration of 5 ⁇ 10 5 CFU / mL.
- FIG. 9 shows the degree of proliferation of blood culture positive samples and samples prepared from colonies. Although there is a difference of about 0.5 hours in the time for the bacterial growth rate to rise between the blood culture positive _1 and the isolated culture _1, the final growth rates are almost the same. The same applies to blood culture positive _2 and blood culture positive _3. This indicates that even when the blood culture positive sample is pretreated, the concentration can be adjusted to the same level as the bacterial concentration adjusted from the colony, and there is no effect on the bacterial growth in the susceptibility test. ..
- Example 3 In Example 3 of the present invention, the result when the Escherichia coli of Example 2 is changed to Staphylococcus aureus will be described.
- FIG. 10 shows the degree of proliferation of blood culture positive samples and samples prepared from colonies. Similar to Example 2, the final degree of proliferation is consistent between the positive blood culture and the isolated culture. Therefore, as in Example 2, even when the blood culture positive sample is pretreated, the concentration can be adjusted to the same level as the bacterial concentration adjusted from the colony, and there is no influence on the bacterial growth in the susceptibility test. Is shown.
- Example 4 the results of performing a drug susceptibility test on both a blood culture positive sample and a sample prepared from a colony are shown.
- the lowest concentration minimum inhibitory concentration, Minimum Inhibitory Concentration: MIC
- the trace liquid dilution method was used for the susceptibility test. The MIC was determined by mixing the bacterial solution and agents of different concentrations and visually determining the turbidity of each well of the cultured 96-well plate after 18 hours.
- FIG. 11 shows the results of performing a drug susceptibility test.
- cefepime (CFPM), cefotaxim (CTX), gentamicin (GM), and levofloxacin (LVFX) are allowed to act on Escherichia coli, and erythromycin (EM), oxacillin (MPIPC), and penicillin are allowed to act on Staphylococcus aureus.
- G (PCG) and vancomycin (VCM) were allowed to act.
- the MIC when the blood culture sample is pretreated is within ⁇ 1 tube (double or half) of the MIC in the case of the sample prepared from the colony, and the blood culture sample is pretreated. It shows that the susceptibility test can be performed correctly even from the sample.
- FIG. 11 shows an example of determining the MIC by using the trace liquid dilution method
- the MIC may be determined by a rapid susceptibility test using a microscopic image as obtained in FIGS. 8 to 9.
- a rapid sensitivity test using a laser beam may be performed.
- the correspondence data is referred to by using the average value of the saturation values of the filter region 20, but the maximum value or the mode value may be used instead of the average value.
- the amount of impurities remaining on the filter may be represented by a feature amount represented by at least two of hue / lightness / saturation.
- the present invention can also be used in other bacterial samples. That is, the present invention can be used as long as the sample has a correspondence relationship between the image information obtained by imaging the impurities remaining on the filter and the bacterial concentration in the sample.
- the substance added to destroy the impurities may be appropriately changed depending on the type of impurities.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Toxicology (AREA)
- Pathology (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Medicinal Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
本発明の実施形態1では、細菌が含まれた血液試料から所望の値に調整された細菌濃度を有する試料を得る方法を示す。なお、本実施形態はあくまで一例であり、この構成に限定したものではない。大腸菌および黄色ブドウ球菌を含む血液試料を用いてS10~S12の前処理を実施した。血液試料は次の手順に従って作製した。薬剤吸着ビーズ入りの血液培養ボトルに、健常ボランティア由来の血液10mLおよび事前にコロニーから約150CFU/mLに濃度調整された菌液0.1mLを導入し、実際の敗血症患者と同等の血液を作製した。その後、試料を血液培養装置に導入および培養し、血液培養が陽性となったところで取り出し、実験に用いた。また、菌液を導入せずに培養した血中細菌濃度が0CFU/mLのネガティブコントロール相当の試料も作製し、適宜希釈することによって細菌濃度を変化させた。
本実施形態1において、血球を破壊した後の試料をろ過フィルタによってフィルタリングし、フィルタ上に残った不純物の画像の色成分と実際の血中細菌濃度との間の対応関係データを参照することにより、推定される血中細菌濃度を算出する。これにより、分離培養を実施することなく、所望の細菌濃度を有する試料を作成することができる。従って、通常1昼夜程度を要する分離培養工程を例えば30分程度に短縮することができる。
実施形態2では、細菌が含まれた血液試料から所望の値に調整された細菌濃度を有する試料を得るための自動分析装置に関して示す。なお、本実施形態はあくまで一例であり、この構成に限定したものではない。
実施形態1~2で説明した、血液試料内の血中細菌濃度を調整する方法は、元の血液中に含まれる赤血球の量によってある程度の影響を受けると考えられる。ヒトの赤血球の濃度は、性別や健康状態によっても異なるが、3×109~6×109個/mL程度であり、細菌の濃度範囲106~1010個/mLと比較すると、その変動は極めて小さい。従って推定した血中細菌濃度の結果に対する影響は少ないと考えられる。ただし、別の血球分析等により事前に赤血球濃度やヘマトクリット値などのように不純物量の別検出結果が求められている場合には、その値を用いてステップS51の結果を補正することもできる。これによりさらに正確に推定された血中細菌濃度を算出できる。補正手順としては例えば以下のようなものが考えられる。
本発明の実施例1では、本発明に係る前処理方法の優位性に関して、比較例とともに説明する。本実施例1では、濁度計測を用いた濃度調整と本発明による濃度調整で、感受性検査の推奨細菌濃度範囲に調整を行い比較した。濁度計測の場合には波長600nmの吸光度計測を用いた。本発明による濃度調整の場合には図1に示した前処理方法を用いた。使用した細菌、界面活性剤の種類および濃度などは実施形態1と同じである。
本発明の実施例2では、大腸菌を用いて、血液培養陽性試料から本発明に係る前処理法により細菌濃度調整を行った例を示す。比較例として、1昼夜の分離培養によりコロニーから菌液を作成した場合の増殖度を用いる。血液培養陽性試料内の菌濃度は107~109CFU/mLまでの3種類の異なるものを用い、最終的な菌濃度が5×105CFU/mLとなるように調整した。コロニーから菌液を作成した場合にも、最終的な菌濃度が5×105CFU/mLとなるように濁度計測を用いて調整した。試料を96穴プレートに50μL分注し、2倍の濃さで調整したミューラーヒントン培地も50μL分注した。その後、96穴プレートを35~37℃のインキュベータの中に入れ、増殖の様子を明視野顕微鏡で観察した。増殖度に関しては、顕微鏡画像中の細菌と判定された領域の面積を増殖度の指標として用い、増殖度の経時変化を算出した。
本発明の実施例3では、実施例2の大腸菌を黄色ブドウ球菌に変更した場合の結果について説明する。
本発明の実施例4では、血液培養陽性試料およびコロニーから作成した試料の両者で薬剤感受性検査を実施した結果を示す。感受性検査においては、薬剤が細菌に抗菌作用を示す濃度のうち最も低い濃度(最小発育阻止濃度、Minimum Inhibitory Concentration:MIC)を測定する。ここでは、感受性検査には微量液体希釈法を用いた。菌液および異なる濃度の薬剤を混合し、培養した96穴プレートの各ウェルの18時間後の濁度を目視判定することによりMICを判定した。
以上の実施形態において、フィルタ領域20の彩度値の平均値を用いて対応関係データを参照することを説明したが、平均値に代えて最大値または最頻値を用いてもよい。あるいは彩度値に代えて、色相/明度/彩度のうち少なくとも2つによって表される特徴量によって、フィルタ上に残った不純物量を表してもよい。
101:導入装置
102:遠心分離器
103:洗浄部
104:洗浄用ピペット
105:ろ過フィルタ部
106:カメラ
107:記憶部
108:希釈部
109:希釈用ピペット
110:コンピュータ
Claims (13)
- 細菌と不純物を含む試料を分析する自動分析方法であって、
前記不純物を破壊する物質を前記試料に対して導入するステップ、
前記物質を導入した前記試料内における前記不純物と前記細菌を互いに分離するステップ、
前記不純物と前記細菌を分離した前記試料から前記細菌を取り出すフィルタを用いて前記試料から前記細菌を取り出すステップ、
前記フィルタ上に残る前記不純物の量を表す数値と前記試料内の前記細菌の濃度との間の対応関係を記述した対応関係データを格納する記憶部から前記対応関係データを読み取るステップ、
前記試料から前記細菌を取り出した後に前記フィルタ上に残った前記不純物の量を表す数値を用いて前記対応関係データを参照することにより前記試料内の前記細菌の濃度を推定するステップ、
を有することを特徴とする自動分析方法。 - 前記試料は、前記不純物として血球を含んでおり、
前記物質は、界面活性剤であり、
前記界面活性剤は、
親水性部分と疎水性部分を有し、前記疎水性部分が鎖状炭化水素である陰イオン性界面活性剤、
親水性部分と疎水性部分を有し、前記疎水性部分が環状炭化水素を有する界面活性剤、
のうち少なくともいずれか一方を含む
ことを特徴とする請求項1記載の自動分析方法。 - 前記フィルタは、前記試料をろ過することにより前記不純物と前記細菌を分離するろ過フィルタであり、
前記細菌の濃度を推定するステップにおいては、前記フィルタ上に残った前記不純物を染色せずに撮像することにより取得した画像を用いて、前記フィルタ上に残った前記不純物の量を検出し、
前記細菌の濃度を推定するステップにおいては、前記画像を用いて検出した前記不純物の量を用いて前記対応関係データを参照する
ことを特徴とする請求項1記載の自動分析方法。 - 前記自動分析方法はさらに、前記画像としてRGB画像を撮像するステップを有し、
前記細菌の濃度を推定するステップにおいては、前記RGB画像をHSV色空間画像へ変換し、
前記細菌の濃度を推定するステップにおいては、前記フィルタ上に残った前記不純物の量を表す数値として、前記フィルタ上に残った前記不純物の前記HSV色空間画像上における彩度値を用いる
ことを特徴とする請求項3記載の自動分析方法。 - 前記自動分析方法はさらに、前記画像としてRGB画像を撮像するステップを有し、
前記細菌の濃度を推定するステップにおいては、前記RGB画像をHSV色空間画像へ変換し、
前記細菌の濃度を推定するステップにおいては、前記フィルタ上に残った前記不純物の量を表す数値として、前記フィルタ上に残った前記不純物の前記HSV色空間画像上における色相値、彩度値、および明度値によって表される特徴量を用いる
ことを特徴とする請求項3記載の自動分析方法。 - 前記細菌の濃度を推定するステップにおいては、前記不純物が有するRGB色成分のうち最も大きいものを少なくとも検出する光学センサから、前記不純物を検出した結果を取得し、
前記細菌の濃度を推定するステップにおいては、前記フィルタ上に残った前記不純物の量を表す数値として、前記フィルタ上に残った前記不純物を前記光学センサが検出した結果を用いる
ことを特徴とする請求項1記載の自動分析方法。 - 前記フィルタは、前記試料をろ過することにより前記不純物と前記細菌をろ過するろ過フィルタであり、
前記自動分析方法はさらに、前記フィルタ上に残った前記不純物の量を検出するステップを有し、
前記細菌の濃度を推定するステップにおいては、前記フィルタ上に残った前記不純物の量を検出するステップにおいて検出した前記不純物の量とは別に、前記試料内の前記不純物の量を検出した別検出結果を取得し、
前記細菌の濃度を推定するステップにおいては、前記別検出結果を用いて、前記フィルタ上に残った前記不純物の量を検出するステップにおいて検出した前記不純物の量を補正し、その補正した前記不純物の量を用いて前記対応関係データを参照する
ことを特徴とする請求項1記載の自動分析方法。 - 前記自動分析方法はさらに、薬剤に対する前記細菌の薬剤感受性検査を実施するステップを有し、
前記薬剤感受性検査を実施するステップにおいては、前記試料内の前記細菌の濃度を推定した後、前記試料内の前記細菌を培養することなく、前記試料内の前記細菌に対する薬剤感受性検査を実施する
ことを特徴とする請求項1記載の自動分析方法。 - 前記自動分析方法はさらに、前記試料を希釈するステップを有し、
前記希釈するステップにおいては、前記試料内の前記細菌の濃度を推定した後、前記試料を希釈することにより、前記薬剤感受性検査を実施するために必要な前記細菌の濃度を有する検査試料を作成し、
前記薬剤感受性検査を実施するステップにおいては、前記希釈するステップにおいて作成した前記検査試料に対して、前記薬剤感受性検査を実施する
ことを特徴とする請求項8記載の自動分析方法。 - 前記薬剤感受性検査を実施するステップにおいては、35~37℃に保持したインキュベータ内に設置された試料の画像を撮像装置によって撮像し、
前記薬剤感受性検査を実施するステップにおいては、前記撮像装置が撮像した前記試料の画像を用いて前記細菌の増殖度を測定することにより、前記薬剤の最小発育阻止濃度を判定する
ことを特徴とする請求項8記載の自動分析方法。 - 前記フィルタのろ過孔径は1~40μmであり、前記フィルタの材料は疎水性材料である
ことを特徴とする請求項1記載の自動分析方法。 - 前記試料は血液試料であり、前記不純物は少なくとも血液内の赤血球を含む
ことを特徴とする請求項1記載の自動分析方法。 - 細菌と不純物を含む試料を分析する自動分析装置であって、
前記不純物を破壊する物質を導入した前記試料内における前記不純物と前記細菌を互いに分離する分離器、
前記不純物と前記細菌を分離した前記試料から前記細菌を取り出すフィルタ、
前記フィルタ上に残る前記不純物の量を表す数値と前記試料内の前記細菌の濃度との間の対応関係を記述した対応関係データを格納する記憶部、
前記試料から前記細菌を取り出した後に前記フィルタ上に残った前記不純物の量を表す数値を用いて前記対応関係データを参照することにより前記試料内の前記細菌の濃度を推定する演算部、
を備えることを特徴とする自動分析装置。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022522125A JP7371245B2 (ja) | 2020-05-12 | 2020-05-12 | 自動分析装置、自動分析方法 |
KR1020227036942A KR20220158051A (ko) | 2020-05-12 | 2020-05-12 | 자동 분석 장치, 자동 분석 방법 |
US17/996,962 US20230167480A1 (en) | 2020-05-12 | 2020-05-12 | Automatic analyzer and automatic analysis method |
EP20935377.0A EP4151744A4 (en) | 2020-05-12 | 2020-05-12 | AUTOMATED ANALYZER AND AUTOMATIC ANALYSIS METHOD |
PCT/JP2020/018899 WO2021229667A1 (ja) | 2020-05-12 | 2020-05-12 | 自動分析装置、自動分析方法 |
CN202080100175.3A CN115461466A (zh) | 2020-05-12 | 2020-05-12 | 自动分析装置、自动分析方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/018899 WO2021229667A1 (ja) | 2020-05-12 | 2020-05-12 | 自動分析装置、自動分析方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021229667A1 true WO2021229667A1 (ja) | 2021-11-18 |
Family
ID=78525467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/018899 WO2021229667A1 (ja) | 2020-05-12 | 2020-05-12 | 自動分析装置、自動分析方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230167480A1 (ja) |
EP (1) | EP4151744A4 (ja) |
JP (1) | JP7371245B2 (ja) |
KR (1) | KR20220158051A (ja) |
CN (1) | CN115461466A (ja) |
WO (1) | WO2021229667A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH078292A (ja) * | 1991-01-24 | 1995-01-13 | Orion Corp | グラム陰性細菌の検出方法 |
JP2005503803A (ja) * | 2001-09-13 | 2005-02-10 | ヘモシステム | 血液製剤及び/又はその派生物からの病原菌の濃縮及び検出装置及び方法 |
JP2007006709A (ja) * | 2005-06-28 | 2007-01-18 | Matsushita Electric Ind Co Ltd | 発光物の判別方法 |
JP2013512685A (ja) * | 2009-12-08 | 2013-04-18 | バイオカルティス、ソシエテ、アノニム | 細胞の選択的溶解 |
JP2014235076A (ja) * | 2013-06-03 | 2014-12-15 | 株式会社日立ハイテクノロジーズ | 血球破壊試薬及びそれを用いる血球破壊方法 |
WO2019097752A1 (ja) * | 2017-11-15 | 2019-05-23 | 国立大学法人 富山大学 | 血液検体の前処理方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10059975B2 (en) * | 2008-10-31 | 2018-08-28 | Biomerieux, Inc. | Methods for the isolation and identification of microorganisms |
-
2020
- 2020-05-12 US US17/996,962 patent/US20230167480A1/en active Pending
- 2020-05-12 EP EP20935377.0A patent/EP4151744A4/en active Pending
- 2020-05-12 CN CN202080100175.3A patent/CN115461466A/zh active Pending
- 2020-05-12 JP JP2022522125A patent/JP7371245B2/ja active Active
- 2020-05-12 KR KR1020227036942A patent/KR20220158051A/ko unknown
- 2020-05-12 WO PCT/JP2020/018899 patent/WO2021229667A1/ja unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH078292A (ja) * | 1991-01-24 | 1995-01-13 | Orion Corp | グラム陰性細菌の検出方法 |
JP2005503803A (ja) * | 2001-09-13 | 2005-02-10 | ヘモシステム | 血液製剤及び/又はその派生物からの病原菌の濃縮及び検出装置及び方法 |
JP2007006709A (ja) * | 2005-06-28 | 2007-01-18 | Matsushita Electric Ind Co Ltd | 発光物の判別方法 |
JP2013512685A (ja) * | 2009-12-08 | 2013-04-18 | バイオカルティス、ソシエテ、アノニム | 細胞の選択的溶解 |
JP2014235076A (ja) * | 2013-06-03 | 2014-12-15 | 株式会社日立ハイテクノロジーズ | 血球破壊試薬及びそれを用いる血球破壊方法 |
WO2019097752A1 (ja) * | 2017-11-15 | 2019-05-23 | 国立大学法人 富山大学 | 血液検体の前処理方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4151744A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN115461466A (zh) | 2022-12-09 |
JPWO2021229667A1 (ja) | 2021-11-18 |
EP4151744A1 (en) | 2023-03-22 |
EP4151744A4 (en) | 2024-01-10 |
US20230167480A1 (en) | 2023-06-01 |
JP7371245B2 (ja) | 2023-10-30 |
KR20220158051A (ko) | 2022-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gulati et al. | In vitro culturing and screening of Candida albicans biofilms | |
JP6186414B2 (ja) | 固体又は半固体培地上の微生物のキャラクタリゼーション方法 | |
US20210189321A1 (en) | Test Apparatus | |
US20200299748A1 (en) | Method for determining the concentration of intact microorganisms in a sample | |
US20210032674A1 (en) | Method for determining microorganism concentration | |
US6803208B2 (en) | Automated epifluorescence microscopy for detection of bacterial contamination in platelets | |
EP0944733B1 (en) | Rapid microbiological assay | |
JP2010213598A (ja) | 抗菌薬の微生物に対する有効性の検査方法 | |
US20240344106A1 (en) | Rapid antimicrobial susceptibility testing by video-based object scattering intensity detection | |
JP5814259B2 (ja) | 診断解析の方法及び装置 | |
WO2021229667A1 (ja) | 自動分析装置、自動分析方法 | |
JP5600603B2 (ja) | 微生物自動分析装置および微生物自動分析方法 | |
KR20140020835A (ko) | 감염도 결정 방법 | |
US20240036029A1 (en) | Interfering flag to reduce falses diagnosis due to interfering conditions in microscopic morphology based sediment urinalysis | |
JP2001149091A (ja) | 微生物測定方法及び装置 | |
Iyengar et al. | Spectral analysis and sorting of microbial organisms using a spectral sorter | |
Phillips et al. | Potential clinical application of an automated fluorescent microbial cell counter in the detection of urinary tract infection | |
EP3645734B1 (en) | A method for quantifying the cultivability of individual bacterial cells using culture independent parameters | |
Isbilen et al. | Comparison of Urine Culture and Flow Cytometric Methods for Detecting Bacteriuria by Using a Simulation Model | |
US20170314057A1 (en) | Method, device and system for testing drug sensitivity | |
Fujinami et al. | Comparisons of the fully automated urine particle analyzer (uf-1000i) to quantitative urine culture and nitrite reaction in urinary tract infection test | |
Schreiner | Detection of bacterial contaminations in platelet concentrates using Raman spectroscopy and flow cytometry | |
WO2023118906A1 (en) | Dyes and uses thereof | |
CN118451477A (zh) | 微生物图像解析方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20935377 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022522125 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20227036942 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020935377 Country of ref document: EP Effective date: 20221212 |