WO2021228023A1 - 空调机组的节能运行方法 - Google Patents

空调机组的节能运行方法 Download PDF

Info

Publication number
WO2021228023A1
WO2021228023A1 PCT/CN2021/092664 CN2021092664W WO2021228023A1 WO 2021228023 A1 WO2021228023 A1 WO 2021228023A1 CN 2021092664 W CN2021092664 W CN 2021092664W WO 2021228023 A1 WO2021228023 A1 WO 2021228023A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
outdoor
sub
load ratio
set time
Prior art date
Application number
PCT/CN2021/092664
Other languages
English (en)
French (fr)
Inventor
李旭
毛守博
刘晓凯
夏鹏
何建奇
冯维庆
焦华
宋年欢
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2021228023A1 publication Critical patent/WO2021228023A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements

Definitions

  • the invention belongs to the technical field of heat exchange equipment, and specifically relates to an energy-saving operation method of an air conditioning unit.
  • the refrigerant system of a central air conditioner usually includes multiple indoor units and one or more outdoor units. Since multiple indoor units are distributed in different rooms for air temperature adjustment, and the temperature adjustment requirements of each room are not exactly the same, the overall indoor unit operation of the central air conditioner is not fixed. When most of the outdoor units are in operation, the outdoor unit runs with certain output parameters to drive the normal operation of multiple indoor units. The power consumed by the outdoor unit is shared by multiple running indoor units. For users of air conditioners, they are more economical and energy-saving.
  • the present invention provides an energy-saving operation of an air-conditioning unit Method
  • the air conditioning unit includes an outdoor host, at least one outdoor sub-unit and a plurality of indoor units, the outdoor host and the at least one outdoor sub-unit are arranged in parallel, the multiple indoor units are arranged in parallel, wherein the outdoor The rated load of the host is greater than the rated load of the outdoor sub-unit
  • the energy-saving operation method includes: obtaining the operating internal unit load ratio of the air-conditioning unit when the air-conditioning unit is operating; judging the operation of the air-conditioning unit Whether the internal unit load ratio is less than the first preset load ratio; if the operating internal unit load ratio of the air conditioning unit is less than the first preset load ratio, it is determined whether the outdoor host is running; if the outdoor host is running If the outdoor host is running.
  • the step of "controlling the matched outdoor sub-unit to operate for the first set time” specifically includes: determining the matched outdoor sub-unit according to the load ratio of the operating internal unit; controlling the determined outdoor sub-unit The slave unit runs for the first set time; or the step of "controlling the matched outdoor slave unit to run for the second set time” specifically includes: determining the matched outdoor slave unit according to the load ratio of the operating internal unit; controlling the determined The outdoor slave unit operates for the second set time.
  • the step of "determining the matching outdoor sub-units according to the load ratio of the operating internal units" specifically includes: determining the All outdoor sub-units with a matching load ratio; determine the outdoor sub-unit with the smallest rated load among all outdoor sub-units as the matching outdoor sub-unit.
  • the step of "controlling the determined outdoor sub-unit to operate for the first set time” specifically includes: judging whether the outdoor sub-unit is currently operating in the air-conditioning unit; If the unit is currently running with the outdoor sub-unit, it is determined whether the currently operating outdoor sub-unit is the determined outdoor sub-unit; if the currently operating outdoor sub-unit is not the determined outdoor sub-unit, then the currently operating outdoor sub-unit will be turned off And control the determined outdoor sub-unit to operate for the first set time; if the currently operating outdoor sub-unit is the determined outdoor sub-unit, control the currently operating outdoor sub-unit to directly continue to operate for the first set time .
  • the step of "controlling the determined outdoor slave unit to operate for the second set time” specifically includes: judging whether the currently operating outdoor slave unit is the determined outdoor slave unit; If the outdoor sub unit is not the determined outdoor sub unit, turn off the currently operating outdoor sub unit and control the determined outdoor sub unit to operate for the second set time; if the currently operating outdoor sub unit is the determined outdoor sub unit Control the currently running outdoor sub-unit to directly continue to run for the second set time.
  • the first set time is equal to the second set time; or the first set time is less than the second set time.
  • the step of "controlling the matched outdoor sub-unit to operate for a first set time” specifically includes: controlling the compressor of the matched outdoor sub-unit to operate at the lowest frequency for the first set time
  • the step of "controlling the matched outdoor sub-unit to run for the second set time” specifically includes: controlling the compressor of the matched outdoor sub-unit to operate at the lowest frequency for the second set time.
  • the energy-saving operation method further includes: Obtain the operating internal machine load ratio of the air conditioning unit; determine whether the operating internal machine load ratio obtained again is less than the second preset load ratio; if the operating internal machine load ratio obtained again is not less than the second preset load Control the air-conditioning unit to execute the normal operation mode, otherwise, control the matched outdoor sub-unit to continue to operate, wherein the second preset load ratio is greater than the first preset load ratio; or in the “control the matched outdoor sub-unit”
  • the energy-saving operation method further includes: obtaining the operating internal machine load ratio of the air conditioning unit again; determining whether the obtained operating internal machine load ratio is less than the second preset time.
  • the difference between the second preset load ratio and the first preset load ratio is 5%-10%.
  • the energy-saving operation method further includes: obtaining the accumulated energy-saving operation time of the air conditioning unit; judging whether the accumulated energy-saving operation time reaches the set time; if the accumulated energy-saving operation time is long When the set time is reached, the air conditioning unit is controlled to return oil to the system.
  • the energy-saving operation method of the air-conditioning unit of the present invention can determine the overall operation of the current indoor unit according to the operating internal unit load ratio of the air-conditioning unit, so that the number of indoor units running in the air-conditioning unit is small, During low-load operation, shut down the outdoor host with a larger rated load, and drive the indoor unit to operate through an outdoor sub-unit with a smaller rated load and more matching the overall operation requirements of the current indoor unit to avoid the output load of the outdoor side of the air conditioning unit being more than
  • the actual demand load of the indoor unit can reduce the energy loss of the outdoor side output under the premise of meeting the current actual operation demand of the air conditioning unit. Electricity cost improves user experience.
  • Figure 1 is a flow chart of the main steps of the energy-saving operation method of the air conditioning unit of the present invention
  • Fig. 2 is a detailed step flowchart of a preferred embodiment of the energy-saving operation method of the air conditioning unit of the present invention.
  • the present invention provides an energy-saving operation method for an air-conditioning unit, which is aimed at Under low-load operating conditions, the output load on the outdoor side is reduced, the energy consumption parameters of the air conditioning unit are optimized, and the user's electricity cost is saved.
  • FIG. 1 is a flowchart of the main steps of the energy-saving operation method of the air conditioning unit of the present invention.
  • the air conditioning unit of the present invention includes an outdoor host, at least one outdoor sub-unit, and multiple indoor units. Wherein, the outdoor host and at least one outdoor sub-unit are arranged in parallel, and the rated load of the outdoor host is greater than the rated load of the outdoor sub-unit. Multiple indoor units are installed in parallel.
  • the energy-saving operation method of the air conditioning unit of the present invention includes the following main steps:
  • Step S1 Under the condition that the air conditioner unit is operating, obtain the operating internal machine load ratio of the air conditioner unit;
  • Step S2 Determine whether the operating internal unit load ratio of the air conditioning unit is less than the first preset load ratio
  • Step S3 If the operating internal unit load ratio of the air conditioning unit is less than the first preset load ratio, it is determined whether the outdoor host is running;
  • Step S4 If the outdoor host is running, turn off the outdoor host and control the matched outdoor slave to run for the first set time;
  • Step S5 If the outdoor main unit is not running, control the matched outdoor sub unit to run for the second set time.
  • the operating internal unit load ratio of the air conditioning unit is the ratio between the total load of the activated indoor units and the total load of all indoor units.
  • the air conditioning unit includes four indoor units and the rated loads of the four indoor units are 12kw, 8kw, 15kw, and 5kw respectively, the total load of all indoor units is 40kw.
  • the first preset load ratio is a set critical load value used to distinguish between the air conditioning unit in a low load condition or a normal operating condition in which the demand load is within the normal range. If the current actual operating internal unit load ratio of the air conditioning unit is less than the set first preset load ratio, it indicates that the number of indoor units currently operating by the air conditioning unit is not large and the rated load of each indoor unit is not large. At this time, the running The total rated load of all indoor units is small, and the air-conditioning unit is in a low-load condition. On the contrary, it means that the number of indoor units currently running by the air-conditioning unit is large, and the total rated load of all indoor units that are running is large, and the air-conditioning unit is in normal operation. Working conditions. Wherein, the above-mentioned first preset load ratio can be set according to actual energy-saving requirements. For example, the first preset load ratio is set to any percentage in the range of 10%-20%.
  • the matched outdoor slave unit is an outdoor slave unit with a smaller rated load whose actual output load can meet the current load demand on the indoor side.
  • steps S1-S5 by comparing the current actual operating internal machine load ratio of the air conditioning unit with the first preset load ratio, it is determined whether the air conditioning unit is in a low load condition, and when the air conditioning unit is in a low load condition, indoors
  • the demand load of the unit is small, it is determined that the outdoor main unit with a larger rated load should not continue to operate, and at the same time, the outdoor unit used for output load on the outdoor side is switched to an outdoor sub unit with a smaller rated load that matches the low-load conditions.
  • the operating time of the matching outdoor sub-unit is selected according to the operating condition of the outdoor host.
  • the first set time and the second set time may be equal or unequal.
  • Those skilled in the art can respectively set appropriate durations for the first set time and the second set time according to the actual load change frequency and amplitude on the indoor side of the air conditioning unit. For example, when the load on the indoor side does not change frequently in a short period of time, the first set time or the second set time can be set longer, such as 4 hours, if the frequency and amplitude of the load change on the indoor side If it is larger, the first setting time or the second setting time can be set shorter, such as 2 hours.
  • the outdoor host when the outdoor host is not running, it means that the previous demand load on the indoor side of the air conditioning unit is not large, and it can be driven only by the outdoor sub-unit with a small rated load, and the demand on the indoor side meets the situation of a large sudden change Less, so the second set time can be set to be greater than the first set time.
  • step S4 specifically includes:
  • step S5 specifically includes:
  • the matched outdoor sub-unit can be determined according to the current actual operating internal unit load ratio, and the current operating internal unit load ratio can be used to determine the air conditioning unit's load ratio.
  • Actual load demand and choose a more matching outdoor sub-unit according to actual load demand.
  • the actual output load of the selected outdoor slave unit can be approximately equal to the indoor side demand load, or it can be slightly larger than the indoor side demand load.
  • the step of "determining the matching outdoor sub-units according to the load ratio of the operating internal units" specifically includes:
  • the air conditioning unit has more than one outdoor sub-unit with a small rated load and suitable for low-load operation
  • the minimum rated load and the most current load demand are selected.
  • the matched outdoor sub-units are used as the matched outdoor sub-units to ensure that the gap between the output load and the required load is the smallest, and to avoid excessive output energy consumption to the greatest extent.
  • the step of controlling the determined outdoor sub-unit to operate for the first set time specifically includes:
  • the step of the outdoor sub-unit determined by the above control to operate for the second set time specifically includes:
  • the compressor of the matched outdoor sub-unit is a compressor that can drive the outdoor sub-unit to operate.
  • the outdoor side of the air-conditioning unit can be either the outdoor host and each outdoor sub-unit corresponds to a compressor, or it can be Multiple outdoor sub-units or outdoor host and some outdoor sub-units correspond to one compressor, as long as the compressor corresponding to the currently matched outdoor sub-unit is controlled to run at the lowest frequency.
  • the remaining operating parameters of the matched outdoor sub-unit can also be adjusted adaptively.
  • the step of "controlling the determined outdoor sub-unit to operate for the first set time" specifically includes:
  • the currently operating outdoor sub unit is not the determined outdoor sub unit, turn off the currently operating outdoor sub unit and control the determined outdoor sub unit to operate for the first set time;
  • the currently operating outdoor sub-unit is the determined outdoor sub-unit, the currently operating outdoor sub-unit is controlled to directly continue to run for the first set time.
  • the outdoor main unit and outdoor sub-unit of the air conditioning unit may operate at the same time. At this time, if there is a certain outdoor sub-unit in the operating outdoor sub-units, the outdoor sub-unit will be closed. Main unit (or turn off the outdoor main unit and other outdoor sub-units), and only reserve certain outdoor sub-units. If there is no definite outdoor slave in the running outdoor slave, turn off the outdoor master and the currently running outdoor slave, start the determined outdoor slave, and control the outdoor slave to run for the first set time.
  • the step of "controlling the determined outdoor sub-unit to operate for the second set time" specifically includes:
  • the currently operating outdoor sub unit is the determined outdoor sub unit, the currently operating outdoor sub unit is controlled to directly continue to run for the second set time.
  • At least one outdoor sub-unit of the air-conditioning unit is running. At this time, if there is a certain outdoor sub-unit among the operating outdoor sub-units, the other outdoor sub-units will be turned off. Only the determined outdoor handsets are reserved. If there is no definite outdoor sub unit in the operating outdoor sub unit, turn off all currently running outdoor sub units, start the determined outdoor sub unit, and control the outdoor sub unit to run for the second set time.
  • the energy-saving operation method of the present invention also include:
  • the air conditioning unit is controlled to execute the normal operation mode; otherwise, the matched outdoor subunit is controlled to continue to operate, where the second preset load ratio is greater than the first preset load ratio.
  • Preset load ratio
  • the energy-saving operation method of the present invention also include:
  • the air conditioning unit is controlled to execute the normal operation mode; otherwise, the matched outdoor subunit is controlled to continue to operate, where the second preset load ratio is greater than the first preset load ratio.
  • the preset load ratio is not less than the second preset load ratio.
  • the "normal operation mode” specifically refers to the mode in which the air conditioning unit operates normally under normal operation conditions other than low-load conditions.
  • Control the matched outdoor sub-units to continue running may include the following situations: the current operating internal unit load ratio has not changed compared with the current operating internal unit load ratio, and the matched outdoor sub unit determined again is still the previously determined one.
  • the outdoor slave unit does not need to switch to the matching outdoor slave unit at this time, and directly controls the previously determined outdoor slave unit to continue to run for the second set time; or, the current operating internal unit load ratio and the current operating internal unit load The ratio becomes larger or smaller, and the matched outdoor sub-unit determined again is not the previously determined outdoor sub-unit. At this time, it is necessary to switch to the new matched outdoor sub-unit to run for the second set time.
  • the airlift unit can re-determine whether the current low-load demand of the air-conditioning unit has changed after the first set time or the second set time of energy-saving operation, and whether the number of indoor units turned on has increased. So that after a period of energy-saving operation, according to the actual working conditions of the air-conditioning unit, the energy-saving operation can be selectively operated again. On the one hand, it can timely adapt to the situation that the load demand of the air conditioning unit suddenly increases, and avoid the poor cooling/heating effect of the air conditioning unit when the new indoor unit has operating requirements.
  • the matched outdoor sub-units can be re-determined through the re-acquired operating internal unit load ratio, so that each time the energy-saving operation is determined, the operating outdoor sub-units can be highly matched with the actual load demand, and the energy-saving effect is better.
  • setting the second preset load ratio to be greater than the first preset load ratio can prevent the air-conditioning unit from repeatedly entering and exiting the energy-saving operation program when the compressor is running and its capacity control has a margin deviation, and increasing the operation of the air-conditioning unit stability.
  • the difference between the second preset load ratio and the first preset load ratio is 5%-10%.
  • the energy-saving operation method of the present invention further includes:
  • the air conditioning unit is controlled to return oil to the system.
  • the air conditioning unit continues to run energy-saving and controls the matching outdoor sub unit Continue to run for the second set time, and obtain the operating internal machine load ratio and compare with the second preset load ratio again after the second set time has been run, so as to selectively continue the energy-saving operation. That is to say, if the internal unit load ratio obtained repeatedly after several operations is always less than the second preset load ratio, the air conditioning unit will continue to perform energy-saving operation, and the outdoor side will always run the matched outdoor subunit.
  • the total energy-saving operation time of the air-conditioning unit is accumulated, and when the total energy-saving operation time of the air-conditioning unit reaches the set time, the air-conditioning unit is controlled to return oil to the system.
  • the specific method of system oil return is the same as that of conventional air conditioning units.
  • the purpose of system oil return is achieved by adjusting the compressor frequency on the outdoor side and the opening of the electronic expansion valve of the indoor unit. Expand too much.
  • FIG. 2 is a detailed step flowchart of a preferred embodiment of the energy-saving operation method of the air conditioning unit of the present invention.
  • the energy-saving operation method of the present invention specifically includes:
  • Step S100 Under the condition that the air-conditioning unit is operating, obtain the operating internal machine load ratio of the air-conditioning unit;
  • Step S101 Determine whether the acquired operating internal machine load ratio is less than a first preset load ratio
  • step S102 is executed, and if the acquired operating machine load ratio is less than the first preset load ratio, step S103 is executed;
  • Step S102 Control the air conditioning unit to execute the normal operation mode
  • Step S103 Determine whether the outdoor host is running
  • step S107 is executed, and if the outdoor host is not running, step S104 is executed;
  • Step S104 Determine whether the currently operating outdoor slave unit is a matching outdoor slave unit
  • step S105 is executed, and if the currently running outdoor slave unit is not a matching outdoor slave unit, then step S106 is executed;
  • Step S105 controlling the compressor of the currently running outdoor sub-unit to directly continue to run at the lowest frequency for the second set time
  • Step S106 Turn off the currently operating outdoor slave unit and control the compressor of the matched outdoor slave unit to run at the lowest frequency for a second set time;
  • Step S107 It is judged whether there is an outdoor sub-unit in addition to the outdoor main unit of the air-conditioning unit currently running;
  • step S108 If no outdoor slave unit of the air conditioning unit is currently running except for the outdoor host, step S108 is executed, and if there is currently an outdoor slave unit of the air conditioning unit that is running except for the outdoor host, step S109 is executed;
  • Step S108 Turn off the outdoor host and control the compressor of the matched outdoor slave to run at the lowest frequency for the first set time;
  • Step S109 Determine whether the currently operating outdoor slave unit is a matching outdoor slave unit
  • step S1010 is executed, and if the currently running outdoor slave unit is not a matching outdoor slave unit, then step S1011 is executed;
  • Step S1010 Turn off the outdoor host and control the compressor of the currently running outdoor sub-unit to continue to run at the lowest frequency for the first set time;
  • Step S1011 Turn off the outdoor host and the currently operating outdoor slave unit and control the compressor of the matched outdoor slave unit to run at the lowest frequency for the first set time;
  • step S1012 is executed: obtaining the operating internal machine load ratio of the air conditioning unit again;
  • Step S1013 Determine whether the re-acquired operating internal machine load ratio is less than a second preset load ratio
  • step 1014 is executed. If the re-acquired operating internal machine load ratio is less than the second preset load ratio, step 1014 is executed. If the re-acquired operating internal machine load ratio is greater than or equal to the second preset load ratio, then step S102 is executed, this time energy-saving operation End of program
  • Step S1014 Control the compressor of the matched outdoor slave unit to continue to run at the lowest frequency for the second set time.
  • the above-mentioned matched outdoor sub-unit is determined according to the load ratio of the in-operation unit acquired at the time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Thermal Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调机组的节能运行方法,该方法能够根据空调机组的运转内机负荷比来确定当前室内机的整体运行情况,从而在空调机组的室内机运行数量较少、低负荷运行时关闭额定负荷较大的室外主机,并通过与当前的室内机整体运行需求更匹配的室外子机来带动室内机运行,避免空调机组室外侧的输出负荷多于室内机的实际需求负荷,在满足空调机组当前的实际运行需求的前提下减少室外侧输出的能源损耗,不仅优化了空调机组的能耗参数、达到了节能环保的目的,还减少了用户的用电成本,提升了用户体验。

Description

空调机组的节能运行方法 技术领域
本发明属于换热设备技术领域,具体涉及一种空调机组的节能运行方法。
背景技术
随着经济的日益发展和人类生活水准的不断提高,空调的应用越来越普及,应用场所也越来越多。除家用空调器以外,公寓、写字楼、商厦等大型场所一般通过中央空调来进行制冷和制热。中央空调的冷媒系统中通常包括多个室内机以及一个或多个室外机。由于多个室内机分布在不同的房间进行空气调温,且每个房间的调温需求并不完全相同,因此中央空调的整体室内机运行情况并不是固定不变的。当大部分室外机均处于运行状态时,室外机以一定的输出参数运行以带动多个室内机正常运转,室外机所消耗的电量是由多个运行的室内机共同承担,对每个室内机空调的用户来说都是比较经济省电的。当只有少数室内机运行时,整个中央空调系统处于低负荷运转的状态,如果此时室外机仍然和多个室内机运行时一样输出运行,室外机所消耗的电量由当前运行的少数室内机共同承担,就会产生不必要的能源损耗,增加用户的使用成本。
相应地,本领域需要一种新的空调机组的节能运行方法来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有的空提机组在少数室内机运行时能源损耗较多、增加了用户的使用成本的问题,本发明提供了一种空调机组的节能运行方法,所述空调机组包括室外主机、至少一个室外子机和多个室内机,所述室外主机和所述至少一个室外子机并联设置,所述多个室内机并联设置,其中,所述室外主机的额定负荷大于所述室外子机的额定负荷,所述节能运行方法包括: 在所述空调机组运行的情形下,获取所述空调机组的运转内机负荷比;判断所述空调机组的运转内机负荷比是否小于第一预设负荷比;如果所述空调机组的运转内机负荷比小于所述第一预设负荷比,则判断所述室外主机是否正在运行;如果所述室外主机正在运行,则关闭所述室外主机并控制匹配的室外子机运行第一设定时间;如果所述室外主机未正在运行,则控制匹配的室外子机运行第二设定时间。
在上述节能运行方法的优选技术方案中,“控制匹配的室外子机运行第一设定时间”的步骤具体包括:根据所述运转内机负荷比确定匹配的室外子机;控制确定出的室外子机运行所述第一设定时间;或者“控制匹配的室外子机运行第二设定时间”的步骤具体包括:根据所述运转内机负荷比确定匹配的室外子机;控制确定出的室外子机运行所述第二设定时间。
在上述节能运行方法的优选技术方案中,所述室外子机的数量为多个,“根据所述运转内机负荷比确定匹配的室外子机”的步骤具体包括:确定与所述运转内机负荷比相匹配的所有室外子机;将所述所有室外子机中额定负荷最小的室外子机确定为匹配的室外子机。
在上述节能运行方法的优选技术方案中,“控制确定出的室外子机运行第一设定时间”的步骤具体包括:判断所述空调机组当前是否有所述室外子机运行;如果所述空调机组当前有所述室外子机运行,则判断当前运行的室外子机是否为确定出的室外子机;如果当前运行的室外子机非确定出的室外子机,则关闭当前运行的室外子机并控制确定出的室外子机运行所述第一设定时间;如果当前运行的室外子机是确定出的室外子机,则控制当前运行的室外子机直接继续运行所述第一设定时间。
在上述节能运行方法的优选技术方案中,“控制确定出的室外子机运行第二设定时间”的步骤具体包括:判断当前运行的室外子机是否为确定出的室外子机;如果当前运行的室外子机非确定出的室外子机,则关闭当前运行的室外子机并控制确定出的室外子机运行所述第二设定时间;如果当前运行的室外子机为确定出的室外子机,则控制当前运行的室外子机直接继续运行所述第二设定时间。
在上述节能运行方法的优选技术方案中,所述第一设定时间等于所述第二设定时间;或者所述第一设定时间小于所述第二设定时间。
在上述节能运行方法的优选技术方案中,“控制匹配的室外子机运行第一设定时间”的步骤具体包括:控制匹配的室外子机的压缩机以最低频率运行所述第一设定时间;或者“控制匹配的室外子机运行第二设定时间”的步骤具体包括:控制匹配的室外子机的压缩机以最低频率运行所述第二设定时间。
在上述节能运行方法的优选技术方案中,所述室外子机的数量为多个,在“控制匹配的室外子机运行第一设定时间”的步骤之后,所述节能运行方法还包括:再次获取所述空调机组的运转内机负荷比;判断再次获取到的运转内机负荷比是否小于第二预设负荷比;如果再次获取到的运转内机负荷比不小于所述第二预设负荷比,则控制所述空调机组执行常规运行模式,否则则控制匹配的室外子机继续运行,其中,所述第二预设负荷比大于第一预设负荷比;或者在“控制匹配的室外子机运行所述第二设定时间”的步骤之后,所述节能运行方法还包括:再次获取所述空调机组的运转内机负荷比;判断再次获取到的运转内机负荷比是否小于第二预设负荷比;如果再次获取到的运转内机负荷比不小于所述第二预设负荷比,则控制所述空调机组执行常规运行模式,否则则控制匹配的室外子机继续运行,其中,所述第二预设负荷比大于第一预设负荷比。
在上述节能运行方法的优选技术方案中,所述第二预设负荷比与所述第一预设负荷比的差值为5%-10%。
在上述节能运行方法的优选技术方案中,所述节能运行方法还包括;获取所述空调机组的累计节能运行时长;判断所述累计节能运行时长是否达到设定时长;如果所述累计节能运行时长达到所述设定时长,则控制所述空调机组进行系统回油。
本领域技术人员能够理解的是,本发明的空调机组的节能运行方法能够根据空调机组的运转内机负荷比来确定当前室内机的整体运行情况,从而在空调机组的室内机运行数量较少、低负荷运行时关闭额定负荷较大的室外主机,并通过额定负荷较小、与当前的室内机 整体运行需求更匹配的室外子机来带动室内机运行,避免空调机组室外侧的输出负荷多于室内机的实际需求负荷,在满足空调机组当前的实际运行需求的前提下减少室外侧输出的能源损耗,不仅优化了空调机组的能耗参数、达到了节能环保的目的,还减少了用户的用电成本,提升了用户体验。
附图说明
图1是本发明的空调机组的节能运行方法的主要步骤流程图;
图2是本发明的空调机组的节能运行方法的优选实施方式的详细步骤流程图。
具体实施方式
下面参照附图来描述本发明的优选实施方式。在本发明的描述中,尽管本申请中按照特定顺序描述了本发明的节能运行方法的各个步骤,但是这些顺序并不是限制性的,在不偏离本发明的基本原理的前提下,本领域技术人员可以按照不同的顺序来执行所述步骤。
基于背景技术中指出的现有的空提机组在少数室内机运行时能源损耗较多、增加了用户的使用成本的问题,本发明提供了一种空调机组的节能运行方法,旨在在空调机组处于低负荷运行工况时减少室外侧的输出负荷,优化空调机组的能耗参数,节省用户的用电成本。
首先参阅图1,图1是本发明的空调机组的节能运行方法的主要步骤流程图。如图1所示,本发明的空调机组包括室外主机、至少一个室外子机和多个室内机。其中,室外主机和至少一个室外子机并联设置,并且室外主机的额定负荷大于室外子机的额定负荷。多个室内机并联设置。针对上述空调机组,本发明的空调机组的节能运行方法包括以下主要步骤:
步骤S1:在空调机组运行的情形下,获取空调机组的运转内机负荷比;
步骤S2:判断空调机组的运转内机负荷比是否小于第一预设负荷比;
步骤S3:如果空调机组的运转内机负荷比小于第一预设负荷比,则判断室外主机是否正在运行;
步骤S4:如果室外主机正在运行,则关闭室外主机并控制匹配的室外子机运行第一设定时间;
步骤S5:如果室外主机未正在运行,则控制匹配的室外子机运行第二设定时间。
在上述步骤S1中,空调机组的运转内机负荷比为已经启动的室内机的总负荷与所有室内机的总负荷之间的比值。例如,当空调机组包含四个室内机且该四个室内机的额定负荷分别为12kw、8kw、15kw和5kw时,所有室内机的总负荷为40kw。在额定负荷为5kw和15kw的两个室内机同时运行时,已经启动的室内机的总负荷为20kw,此时的运转内机负荷比则为:20/40=50%。
在上述步骤S2中,第一预设负荷比为设定的、用于区分空调机组处于低负荷工况还是需求负荷处于常规范围内的正常运行工况的临界负荷值。如果空调机组当前的实际运转内机负荷比小于设定的第一预设负荷比,则表明空调机组当前运行的室内机数量不多且各室内机的额定负荷不大,此时,正在运行的所有室内机的总额定负荷较小,空调机组处于低负荷工况,反之则说明空调机组当前运行的室内机数量较多、正在运行的所有室内机的总额定负荷较大,空调机组处于正常运行工况。其中,上述第一预设负荷比可以根据实际节能需求进行设定。例如,将第一预设负荷比设置成10%-20%范围内的任一个百分比。
在步骤S4或S5中,匹配的室外子机为实际输出负荷能够满足室内侧当前的负荷需求的、额定负荷较小的室外子机。
在上述步骤S1-S5中,通过比对空调机组当前的实际运转内机负荷比和第一预设负荷比来确定空调机组是否处于低负荷工况,并在空调机组处于低负荷工况、室内机的需求负荷较小时确定额定负荷较大的室外主机不要再继续运行,同时将室外侧用于输出负荷的外机 切换至与低负荷工况相匹配的、额定负荷较小的室外子机。其中,根据室外主机的运行情况,选择匹配的室外子机的运行时长。
在上述实施方式中,上述第一设定时间和第二设定时间可以相等,也可以不相等。本领域技术人员可以根据空调机组的室内侧的实际负载变化频率及幅度来为第一设定时间和第二设定时间分别设定合适的时长。例如,当室内侧的负载不会在短时间内发生频繁变化时,可将第一设定时间或第二设定时间设置得较长一些,如4小时,如果室内侧的负载变化频率和幅度较大,可将第一设定时间或第二设定时间设置得较短一些,如2小时。示例性地,当室外主机未运行时,则说明空调机组室内侧之前的需求负荷不大、仅通过额定负荷较小的室外子机就可带动,且室内侧的需求符合发生大幅度突变的情况较少,因此可将第二设定时间设置得大于第一设定时间。
进一步地,当室外主机正在运行、需要控制匹配的室外子机运行第一设定时间时,上述步骤S4具体包括:
根据空调机组当前的运转内机负荷比确定匹配的室外子机;
控制确定出的室外子机运行第一设定时间。
或者,当室外主机未正在运行、需要控制匹配的室外子机运行第二设定时间时,上述步骤S5具体包括:
根据空调机组当前的运转内机负荷比确定匹配的室外子机;
控制确定出的室外子机运行第二设定时间。
在上述实施方式中,无论是室外主机运行或者未运行的情形,匹配的室外子机均可根据当前的实际的运转内机负荷比来确定,通过当前的运转内机负荷比来确定空调机组的实际负荷需求,并根据实际负荷需求选择更加匹配的室外子机。选择的室外子机的实际输出负荷既可以与室内侧的需求负荷近似相等,也可以小幅度大于室内侧的需求负荷。例如,当空调机组室内侧的实际需求负荷为5kw时,可以关掉额定负荷远大于5kw的室外主机,并控制室外子机中更匹配当前低负荷工况的、额定负荷为5kw或者略大于5kw的室外子机运行。
更进一步地,上述空调机组的室外子机的数量为多个,上述“根据运转内机负荷比确定匹配的室外子机”的步骤具体包括:
确定与获取到的运转内机负荷比相匹配的所有室外子机;
将所有室外子机中额定负荷最小的室外子机确定为匹配的室外子机。
在上述实施方式中,当室外子机的数量为多个、空调机组存在多于一个额定负荷较小、适合低负荷工况运行的室外子机时,选择额定负荷最小、与当前的负荷需求最匹配的室外子机作为匹配的室外子机,以便确保输出负荷与需求的负荷之间的差距最小,最大程度地避免输出能耗过多。
优选地,当室外主机正在运行、需要控制匹配的室外子机运行第一设定时间时,上述控制确定出的室外子机运行第一设定时间的步骤具体包括:
控制匹配的室外子机的压缩机以最低频率运行第一设定时间;
或者,当室外主机未正在运行、需要控制匹配的室外子机运行第二设定时间时,上述控制确定出的室外子机运行第二设定时间的步骤具体包括:
控制匹配的室外子机的压缩机以最低频率运行第二设定时间。
在上述步骤中,匹配的室外子机的压缩机为能够带动该室外子机运行的压缩机,空调机组的室外侧既可以是室外主机和每个室外子机分别对应一个压缩机,也可以是多个室外子机或室外主机和部分室外子机对应一个压缩机,只要在控制当前匹配的室外子机对应的压缩机以最低频率运行即可。
当然,在空调机组实际运行时,在相应的压缩机以最低频率运行的情形下,匹配的室外子机的其余运行参数也可以进行适应性地下调调整。
当室外子机的数量为多个时,在一种可能的情形下,“控制确定出的室外子机运行第一设定时间”的步骤具体包括:
判断空调机组当前是否有室外子机运行;
如果空调机组当前有室外子机运行,则判断当前运行的室外子机是否为确定出的室外子机;
如果当前运行的室外子机非确定出的室外子机,则关闭当前运行的室外子机并控制确定出的室外子机运行第一设定时间;
如果当前运行的室外子机是确定出的室外子机,则控制当前运行的室外子机直接继续运行第一设定时间。
在上述情形中,在切换至确定的室外子机之前,空调机组的室外主机和室外子机有可能在同时运行,此时,如果运行的室外子机中有确定的室外子机,则关闭室外主机(或关闭室外主机和其他室外子机),仅保留确定的室外子机。如果运行的室外子机中没有确定的室外子机,则关闭室外主机和当前正在运行的室外子机,并启动确定的室外子机,控制该室外子机运行第一设定时间。
当室外子机的数量为多个时,在另一种可能的情形下,“控制确定出的室外子机运行第二设定时间”的步骤具体包括:
判断当前运行的室外子机是否为确定出的室外子机;
如果当前运行的室外子机非确定出的室外子机,则关闭当前运行的室外子机并控制确定出的室外子机运行第二设定时间;
如果当前运行的室外子机为确定出的室外子机,则控制当前运行的室外子机直接继续运行第二设定时间。
在上述情形中,在切换至确定的室外子机之前,空调机组的至少一个室外子机在运行,此时,如果运行的室外子机中有确定的室外子机,则关闭其他室外子机,仅保留确定的室外子机。如果运行的室外子机中没有确定的室外子机,则关闭当前所有正在运行的室外子机,并启动确定的室外子机,控制该室外子机运行第二设定时间。
优选地,当室外主机正在运行、需要控制匹配的室外子机运行第一设定时间时,在“控制匹配的室外子机运行第一设定时间”的步骤之后,本发明的节能运行方法还包括:
再次获取空调机组的运转内机负荷比;
判断再次获取到的运转内机负荷比是否小于第二预设负荷比;
如果再次获取到的运转内机负荷比不小于第二预设负荷比,则控制空调机组执行常规运行模式,否则则控制匹配的室外子机继续运行,其中,第二预设负荷比大于第一预设负荷比;
或者,当室外主机未正在运行、需要控制匹配的室外子机运行第二设定时间时,在“控制匹配的室外子机运行第二设定时间”的步骤之后,本发明的节能运行方法还包括:
再次获取空调机组的运转内机负荷比;
判断再次获取到的运转内机负荷比是否小于第二预设负荷比;
如果再次获取到的运转内机负荷比不小于第二预设负荷比,则控制空调机组执行常规运行模式,否则则控制匹配的室外子机继续运行,其中,第二预设负荷比大于第一预设负荷比。
在上述优选实施方式的两种情形中,“常规运行模式”具体是指空调机组在非低负荷工况的常规运行工况下正常运行的模式。“控制匹配的室外子机继续运行”可以包括以下情形:当前的运转内机负荷比和当一次获取的运转内机负荷比相比没有变化,再次确定出的匹配的室外子机仍是之前确定的室外子机,此时不需要切换匹配的室外子机,直接控制之前确定的室外子机继续运行第二设定时间;或者,当前的运转内机负荷比和当一次获取的运转内机负荷比相比变大或变小,再次确定出的匹配的室外子机不是之前确定的室外子机,此时需要切换成新的匹配的室外子机运行第二设定时间。
通过设置第二预设负荷比,能够使空提机组在节能运行第一设定时间或第二设定时间后再次确定空调机组当前的低负荷需求是否有变,室内机的开启数量是否增多,以便在节能运行一段时间后根据空调机组的实际工况需求再次选择性地节能运行。一方面,能够及时适应空调机组的负荷需求突然变大的情形,避免在新的室内机具有运行需求时空调机组的制冷/制热效果不佳。另一方面,能够通过再次获取的运转内机负荷比重新确定匹配的室外子机,使得每次确定节能运行时所运行的室外子机都能够与实际的负荷需求高度匹配,节能效果更好。此外,将第二预设负荷比设置为大于第一预设负荷比,能够在压缩机运行、其容量控制存在裕量偏差时避免空调机组重复进入、退出节能运行程序,增大空调机组的运行稳定性。
作为示例,第二预设负荷比与第一预设负荷比的差值为5%-10%。
优选地,本发明的节能运行方法还包括:
获取空调机组的累计节能运行时长;
判断累计节能运行时长是否达到设定时长;
如果累计节能运行时长达到设定时长,则控制空调机组进行系统回油。
在上述实施方式中,在首次获取完运转内机负荷比进入节能模式后,当再次获取的运转内机负荷比小于第二预设负荷比时,空调机组持续节能运行,控制匹配的室外子机继续运行第二设定时间,并在运行完第二设定时间后再次获取运转内机负荷比与第二预设负荷比进行比较,以便选择性地持续节能运行。也就是说,如果后续重复获取的若干次运转内机负荷比始终小于第二预设负荷比,则空调机组会持续进行节能运行,室外侧始终运行匹配的室外子机。在此情形下,累计空调机组进行节能运行的总时长,并在空调机组节能运行的总时长达到设定时长时,控制空调机组进行系统回油。其中,系统回油的具体方式则与常规空调机组进行系统回油的方式相同,如通过调节室外侧的压缩机频率和室内机的电子膨胀阀的开度达到系统回油的目的,此处不再过多展开。
接下来再参阅图2,图2是本发明的空调机组的节能运行方法的优选实施方式的详细步骤流程图。如图2所示,本发明的节能运行方法具体包括:
步骤S100:在空调机组运行的情形下,获取空调机组的运转内机负荷比;
步骤S101:判断获取的运转内机负荷比是否小于第一预设负荷比;
如果获取的运转内机负荷比大于或等于第一预设负荷比,则执行步骤S102,如果获取的运转内机负荷比小于第一预设负荷比,则执行步骤S103;
步骤S102:控制空调机组执行常规运行模式;
步骤S103:判断室外主机是否正在运行;
如果室外主机是否正在运行,则执行步骤S107,如果室外主机未正在运行,则执行步骤S104;
步骤S104:判断当前运行的室外子机是否为匹配的室外子机;
如果当前运行的室外子机为匹配的室外子机,则执行步骤S105,如果当前运行的室外子机非匹配的室外子机,则执行步骤S106;
步骤S105:控制当前运行的室外子机的压缩机以最低频率直接继续运行第二设定时间;
步骤S106:关闭当前运行的室外子机并控制匹配的室外子机的压缩机以最低频率运行第二设定时间;
步骤S107:判断空调机组当前除室外主机外是否还有室外子机正在运行;
如果空调机组当前除室外主机外没有室外子机正在运行,则执行步骤S108,如果空调机组当前除室外主机外有室外子机正在运行,则执行步骤S109;
步骤S108:关闭室外主机并控制匹配的室外子机的压缩机以最低频率运行第一设定时间;
步骤S109:判断当前运行的室外子机是否为匹配的室外子机;
如果当前运行的室外子机为匹配的室外子机,则执行步骤S1010,如果当前运行的室外子机非匹配的室外子机,则执行步骤S1011;
步骤S1010;关闭室外主机并控制当前运行的室外子机的压缩机以最低频率继续运行第一设定时间;
步骤S1011:关闭室外主机和当前运行的室外子机并控制匹配的室外子机的压缩机以最低频率运行第一设定时间;
在执行步骤S105/步骤S106/步骤S108/步骤S1010/步骤S1011之后,执行步骤S1012:再次获取空调机组的运转内机负荷比;
步骤S1013:判断再次获取的运转内机负荷比是否小于第二预设负荷比;
如果再次获取的运转内机负荷比小于第二预设负荷比,则执行步骤1014,如果再次获取的运转内机负荷比大于或等于第二预设负荷比,则执行步骤S102,本次节能运行程序结束;
步骤S1014:控制匹配的室外子机的压缩机以最低频率继续运行第二设定时间。
其中,上述匹配的室外子机根据当次获取的运转内机负荷比进行确定。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种空调机组的节能运行方法,其特征在于,所述空调机组包括室外主机、至少一个室外子机和多个室内机,所述室外主机和所述至少一个室外子机并联设置,所述多个室内机并联设置,其中,所述室外主机的额定负荷大于所述室外子机的额定负荷,所述节能运行方法包括:
    在所述空调机组运行的情形下,获取所述空调机组的运转内机负荷比;
    判断所述空调机组的运转内机负荷比是否小于第一预设负荷比;
    如果所述空调机组的运转内机负荷比小于所述第一预设负荷比,则判断所述室外主机是否正在运行;
    如果所述室外主机正在运行,则关闭所述室外主机并控制匹配的室外子机运行第一设定时间;
    如果所述室外主机未正在运行,则控制匹配的室外子机运行第二设定时间。
  2. 根据权利要求1所述的节能运行方法,其特征在于,
    “控制匹配的室外子机运行第一设定时间”的步骤具体包括:
    根据所述运转内机负荷比确定匹配的室外子机;
    控制确定出的室外子机运行所述第一设定时间;或者
    “控制匹配的室外子机运行第二设定时间”的步骤具体包括:
    根据所述运转内机负荷比确定匹配的室外子机;
    控制确定出的室外子机运行所述第二设定时间。
  3. 根据权利要求2所述的节能运行方法,其特征在于,所述室外子机的数量为多个,“根据所述运转内机负荷比确定匹配的室外子机”的步骤具体包括:
    确定与所述运转内机负荷比相匹配的所有室外子机;
    将所述所有室外子机中额定负荷最小的室外子机确定为匹配的室外子机。
  4. 根据权利要求3所述的节能运行方法,其特征在于,“控制确定出的室外子机运行第一设定时间”的步骤具体包括:
    判断所述空调机组当前是否有所述室外子机运行;
    如果所述空调机组当前有所述室外子机运行,则判断当前运行的室外子机是否为确定出的室外子机;
    如果当前运行的室外子机非确定出的室外子机,则关闭当前运行的室外子机并控制确定出的室外子机运行所述第一设定时间;
    如果当前运行的室外子机是确定出的室外子机,则控制当前运行的室外子机直接继续运行所述第一设定时间。
  5. 根据权利要求3所述的节能运行方法,其特征在于,“控制确定出的室外子机运行第二设定时间”的步骤具体包括:
    判断当前运行的室外子机是否为确定出的室外子机;
    如果当前运行的室外子机非确定出的室外子机,则关闭当前运行的室外子机并控制确定出的室外子机运行所述第二设定时间;
    如果当前运行的室外子机为确定出的室外子机,则控制当前运行的室外子机直接继续运行所述第二设定时间。
  6. 根据权利要求1所述的节能运行方法,其特征在于,所述第一设定时间等于所述第二设定时间;或者
    所述第一设定时间小于所述第二设定时间。
  7. 根据权利要求1所述的节能运行方法,其特征在于,
    “控制匹配的室外子机运行第一设定时间”的步骤具体包括:
    控制匹配的室外子机的压缩机以最低频率运行所述第一设定时间;或者
    “控制匹配的室外子机运行第二设定时间”的步骤具体包括:
    控制匹配的室外子机的压缩机以最低频率运行所述第二设定时间。
  8. 根据权利要求1所述的节能运行方法,其特征在于,
    在“控制匹配的室外子机运行第一设定时间”的步骤之后,所述节能运行方法还包括:
    再次获取所述空调机组的运转内机负荷比;
    判断再次获取到的运转内机负荷比是否小于第二预设负荷比;
    如果再次获取到的运转内机负荷比不小于所述第二预设负荷比,则控制所述空调机组执行常规运行模式,否则则控制匹配的室外子机继续运行,其中,
    所述第二预设负荷比大于第一预设负荷比;或者
    在“控制匹配的室外子机运行所述第二设定时间”的步骤之后,所述节能运行方法还包括:
    再次获取所述空调机组的运转内机负荷比;
    判断再次获取到的运转内机负荷比是否小于第二预设负荷比;
    如果再次获取到的运转内机负荷比不小于所述第二预设负荷比,则控制所述空调机组执行常规运行模式,否则则控制匹配的室外子机继续运行,其中,
    所述第二预设负荷比大于第一预设负荷比。
  9. 根据权利要求8所述的节能运行方法,其特征在于,所述第二预设负荷比与所述第一预设负荷比的差值为5%-10%。
  10. 根据权利要求8所述的节能运行方法,其特征在于,所述节能运行方法还包括;
    获取所述空调机组的累计节能运行时长;
    判断所述累计节能运行时长是否达到设定时长;
    如果所述累计节能运行时长达到所述设定时长,则控制所述空调机组进行系统回油。
PCT/CN2021/092664 2020-07-01 2021-05-10 空调机组的节能运行方法 WO2021228023A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010626170.6A CN111928426B (zh) 2020-07-01 2020-07-01 空调机组的节能运行方法
CN202010626170.6 2020-07-01

Publications (1)

Publication Number Publication Date
WO2021228023A1 true WO2021228023A1 (zh) 2021-11-18

Family

ID=73317457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092664 WO2021228023A1 (zh) 2020-07-01 2021-05-10 空调机组的节能运行方法

Country Status (2)

Country Link
CN (1) CN111928426B (zh)
WO (1) WO2021228023A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111928426B (zh) * 2020-07-01 2022-10-25 青岛海尔空调电子有限公司 空调机组的节能运行方法
CN114353282B (zh) * 2021-12-28 2023-06-20 青岛海尔空调电子有限公司 一种多联机控制方法及多联机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003343898A (ja) * 2002-05-23 2003-12-03 Toshiba Kyaria Kk 空気調和機
CN101435614A (zh) * 2007-11-12 2009-05-20 三星电子株式会社 多联型空调机及其控制方法
CN102538144A (zh) * 2012-02-14 2012-07-04 美的集团有限公司 多联式空调机组的控制方法
CN107990499A (zh) * 2017-11-15 2018-05-04 广东美的暖通设备有限公司 空调系统控制方法和空调系统
CN111928426A (zh) * 2020-07-01 2020-11-13 青岛海尔空调电子有限公司 空调机组的节能运行方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102367980B (zh) * 2011-10-19 2014-04-30 深圳市奥宇控制系统有限公司 一种中央空调多维度集成优化控制系统及方法
JP6327558B2 (ja) * 2014-06-04 2018-05-23 パナソニックIpマネジメント株式会社 空気調和装置
JP6433598B2 (ja) * 2015-08-11 2018-12-05 三菱電機株式会社 空調システム
JP2018096582A (ja) * 2016-12-09 2018-06-21 ダイキン工業株式会社 冷凍装置
CN209355522U (zh) * 2018-11-22 2019-09-06 大连春澜机电设备工程有限公司 分体式节能型高温空调器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003343898A (ja) * 2002-05-23 2003-12-03 Toshiba Kyaria Kk 空気調和機
CN101435614A (zh) * 2007-11-12 2009-05-20 三星电子株式会社 多联型空调机及其控制方法
CN102538144A (zh) * 2012-02-14 2012-07-04 美的集团有限公司 多联式空调机组的控制方法
CN107990499A (zh) * 2017-11-15 2018-05-04 广东美的暖通设备有限公司 空调系统控制方法和空调系统
CN111928426A (zh) * 2020-07-01 2020-11-13 青岛海尔空调电子有限公司 空调机组的节能运行方法

Also Published As

Publication number Publication date
CN111928426B (zh) 2022-10-25
CN111928426A (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
CN103388879B (zh) 一种空调器的控制方法
CN106440241B (zh) 一种空调室外风机的调速控制方法
WO2021228023A1 (zh) 空调机组的节能运行方法
CN102297491B (zh) 简化的空调器控制方法
CN109059195B (zh) 用于削减电网负荷峰值的中央空调的控制方法及控制系统
CN111237995B (zh) 一种空调冷机的控制方法
CN108895601B (zh) 基于磁悬浮主机的中央空调群控方法
CN110986289B (zh) 一种空调风机盘管与模块化变频空调主机联动控制方法
CN112361537B (zh) 多联机系统及其回油控制方法、装置、存储介质及处理器
CN108119990A (zh) 空气源热泵及其控制方法和装置
WO2023005242A1 (zh) 空调节能控制方法、控制装置及空调器
CN113587405A (zh) 一种基于温度修正的空调控制方法与系统
CN110793135A (zh) 一种地暖空调一体机
CN108019890B (zh) 空调能效控制方法、装置及空调系统
JP2003116219A (ja) 使用電力量制御システムと使用電力量制御方法と使用電力量制御プログラムを記録したコンピュータ読み取り可能な記録媒体
CN113865059A (zh) 多联机空调器制热运行控制方法
CN117404761A (zh) 一种模块化空调机组及其控制方法、控制装置
CN1991263B (zh) 一种空调器的控制方法及空调器
WO2024066340A1 (zh) 空调及其限电控制方法、存储介质
JP2023065680A (ja) 冷凍サイクル装置
CN111720979B (zh) 空调器及其节能控制方法
JP5062555B2 (ja) 省エネ空調制御システム
CN113659584A (zh) 设备的用电控制方法及设备
KR100715996B1 (ko) 공기조화기 및 그 제어방법
CN117367026B (zh) 温度控制方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803775

Country of ref document: EP

Kind code of ref document: A1