WO2021227858A1 - 基于专家系统的集装箱自动着箱装置及其控制方法 - Google Patents

基于专家系统的集装箱自动着箱装置及其控制方法 Download PDF

Info

Publication number
WO2021227858A1
WO2021227858A1 PCT/CN2021/089938 CN2021089938W WO2021227858A1 WO 2021227858 A1 WO2021227858 A1 WO 2021227858A1 CN 2021089938 W CN2021089938 W CN 2021089938W WO 2021227858 A1 WO2021227858 A1 WO 2021227858A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
container
spreader
groups
group
Prior art date
Application number
PCT/CN2021/089938
Other languages
English (en)
French (fr)
Inventor
陈环
邵恩
李献武
Original Assignee
上海驭矩信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海驭矩信息科技有限公司 filed Critical 上海驭矩信息科技有限公司
Priority to US17/922,202 priority Critical patent/US11713218B2/en
Publication of WO2021227858A1 publication Critical patent/WO2021227858A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/08Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for depositing loads in desired attitudes or positions
    • B66C13/085Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for depositing loads in desired attitudes or positions electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C1/00Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles
    • B66C1/10Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles by mechanical means
    • B66C1/101Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles by mechanical means for containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/48Automatic control of crane drives for producing a single or repeated working cycle; Programme control

Definitions

  • the invention relates to the field of container loading and unloading, in particular to an automatic container loading device based on an expert system and a control method thereof.
  • the tire-type container gantry crane is a common container handling equipment at the terminal.
  • a key step that affects efficiency is the alignment and placement of the final stage of the loading, especially when the box is shaking due to movement or strong wind. This process is also a technical difficulty in a fully automated crane system.
  • Some existing solutions have some limitations. For example, camera-based solutions are easily affected by the weather, are inaccurate, have large delays, long waiting times, and affect efficiency; and the mechanical structure of the spreader can be changed to reduce shaking, but it cannot The shaking is completely removed, and the cost of improvement is also high. Therefore, the existing technology needs to be improved.
  • the technical problem to be solved by the present invention is to provide an automatic container loading device based on an expert system and a control method thereof. By arranging multiple sets of cameras and multiple single-point laser devices on a fixed bracket of the spreader, high-precision dynamics of the container are realized. Automatically move the box.
  • the technical solution adopted by the present invention to solve the above technical problems is to provide an automatic container landing device based on an expert system, at least four sets of cameras and at least six sets of single-point laser equipment, the at least four sets of cameras and the at least six sets of single-point laser equipment
  • the first, second, third, and fourth groups of single-point laser equipment in the group of single-point laser equipment are arranged at the four spreader corners of the spreader fixing bracket of the container, and the fifth group of the at least six groups of single-point laser equipment , Six groups of single-point laser equipment are respectively arranged on the outer sides of the two short sides of the spreader fixing bracket;
  • the front end of the spreader fixing bracket is lower than the rear end, and the first group of cameras and the second group of cameras and the first group of laser equipment and the second group of laser equipment in the at least four groups of cameras are arranged on the spreader
  • the front end of the fixed bracket, the third group of cameras and the fourth group of cameras, the third group of laser equipment and the fourth group of laser equipment among the at least four groups of cameras are arranged at the rear end of the spreader fixing bracket, the The fifth group of single-point laser equipment is arranged outside the short side of the front end of the spreader fixing bracket, the fifth group of single-point laser equipment is a low-point single-point laser equipment, and the sixth group of single-point laser equipment is arranged Outside the short side of the rear end of the spreader fixing bracket, the sixth group of single-point laser devices are high-point single-point laser devices.
  • it further includes a first inertial measurement unit, a second inertial measurement unit, a third inertial measurement unit, and a fourth inertial measurement unit that are arranged at the four spreader corners of the spreader fixing bracket of the container.
  • the first, second, third and fourth inertial measurement units are used to measure and calculate the angle, speed and relative displacement of the spreader.
  • the first, second, third, fourth, fifth, and sixth groups of single-point laser equipment are used to measure the height difference between the laser emission point and the laser reflection point to confirm the loading error of the operating container;
  • the first, second, third, and fourth groups of cameras obtain the distance between the spot of the corresponding single-point laser device and the side of the bottom container through images, or the first, second, third, and fourth groups of cameras pass The image captures the distance between the side of the working container and the side of the bottom container to confirm the landing error of the working container.
  • the first, second, third, fourth, fifth, and sixth groups of single-point laser equipment are measured by the first, second, third, and fourth groups of cameras to measure the spot and the side of the box body Adjust the position and angle of the first, second, third, fourth, fifth, and sixth group of single-point laser equipment to calibrate the first, second, third, fourth, 5.
  • the position and angle of the sixth group of single-point laser equipment such that the distance between the spot of the first, second, third, fourth, fifth, and sixth group of single-point laser equipment and the side of the operating container is set
  • the laser equipment is installed offset distance.
  • Another technical solution adopted by the present invention to solve the above-mentioned technical problems is to provide a method for controlling an automatic container loading device based on an expert system, which includes the following steps:
  • S11 Install the at least four sets of cameras and the at least six sets of single-point laser equipment;
  • controlling the spreader to drive the working container to move down and triggering dynamic loading includes triggering dynamic loading when the distance between the bottom of the working container and the top of the bottom container is less than or equal to a set first threshold. In the box.
  • the step S14 specifically includes the following steps:
  • S142 If at least one of the first and second groups of single-point laser devices, low-point and high-point single-point laser devices has a trigger signal and a low-point on-box signal, it passes through the first and second groups of single-point laser devices.
  • the group camera confirms that the low-point boxing error is greater than the offset distance of the laser equipment installation, and then controls the spreader to lift the first distance, and re-starts the low-point boxing;
  • the spreader is controlled to the first group of single-point lasers with the trigger signal along the width direction of the working container
  • the device or the second group of single-point laser devices move a second distance; if the low-point single-point laser device or the high-point single-point laser device continuously triggers longer than the second threshold, the spreader is controlled to trigger along the length of the operating container
  • the signal's low-point single-point laser device or high-point single-point laser device moves the third distance;
  • the second threshold is T/2
  • the T is the swing period of the spreader
  • the swing period T is determined by the formula It is calculated that l is the length of the spreader rope and ⁇ is the damping coefficient.
  • the step S15 specifically includes the following steps:
  • the step S11 further includes calibrating the at least four groups of cameras and the at least six groups of single-point laser equipment, and measuring the The distance between the spot of the first, second, third, fourth, fifth, and sixth group of single-point laser equipment and low-point and high-point single-point laser equipment and the side of the box is adjusted.
  • the positions and angles of the third, fourth, fifth, and sixth groups of single-point laser equipment and low-point and high-point single-point laser equipment to calibrate the first, second, third, fourth, fifth, The positions and angles of the sixth group of single-point laser devices and the low-point and high-point single-point laser devices are such that the first, second, third, fourth, fifth, and sixth groups of single-point laser and low-point,
  • the distance between the spot of the high-point single-point laser equipment and the side of the operation container is the set offset distance of the laser equipment installation.
  • the present invention has the following beneficial effects: the expert system-based automatic container loading device and control method thereof provided by the present invention are provided by setting multiple sets of cameras and multiple sets of single-point laser equipment on the spreader fixing brackets, through The spreader is controlled by the sensor signal, and the container is placed at the low point first, and then placed at the high point, which realizes the automatic dynamic loading of the container;
  • multiple sets of cameras and corresponding single-point laser equipment cooperate to perform high-precision measurement to ensure the accuracy range of the container, which is usually 3 to 5 cm, thereby improving the accuracy and efficiency of the automatic container loading operation.
  • Figure 1 is a schematic diagram of the installation of an automatic container loading device based on an expert system in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the installation of the first set of cameras and the first inertial measurement unit in the embodiment of the present invention
  • FIG. 3 is a flowchart of a method for controlling an automatic container loading device based on an expert system in an embodiment of the present invention
  • FIG. 4 is a schematic diagram of calibration of a single-point laser device in an embodiment of the present invention.
  • Figure 5 is a front view of the low-point box in the embodiment of the present invention.
  • Fig. 6 is a schematic diagram of the high-point boxing in the embodiment of the present invention.
  • 1 The first group of cameras; 2 The second group of cameras; 3 The third group of cameras; 4 The fourth group of cameras; 5 Low-point single-point laser equipment; 6 High-point single-point laser equipment; 7 First inertial measurement unit; 10 Spreader Fixed support; 11 operation container; 12 bottom container.
  • the expert system refers to the method of applying the loading method obtained by summarizing the experience of manual loading by manual experts to the mechanical structure of the tire crane for automatic loading.
  • the spreader When carrying the case manually, according to the driver's habit of carrying the case, generally, the spreader will be kept at a certain inclination when the spreader is installed, so that the front end of the spreader fixing bracket is slightly lower than the rear end to facilitate manual operations.
  • the two corners of the front end of the container corresponding to the spreader fixing bracket are low points, and the two corners of the rear end of the corresponding spreader fixing bracket are high points.
  • Fig. 1 is a schematic diagram of the installation of an automatic container landing device based on an expert system in an embodiment of the present invention
  • Fig. 2 is a schematic diagram of the installation of a first set of cameras and a first inertial measurement unit in an embodiment of the present invention.
  • the automatic container landing device based on an expert system in an embodiment of the present invention includes at least four sets of cameras and at least six sets of single-point laser equipment, the at least four sets of cameras and the at least six sets of single-point laser equipment
  • the first, second, third, and fourth groups of single-point laser equipment in the point laser equipment are arranged at the four spreader corners of the spreader fixing bracket 10 of the container, and the fifth group of the at least six groups of single-point laser equipment , Six groups of single-point laser equipment are respectively arranged on the outer sides of the two short sides of the spreader fixing bracket 10;
  • the front end of the spreader fixing bracket 10 is lower than the rear end, and the first group of cameras 1 and the second group of cameras 2 and the first group of laser equipment and the second group of laser equipment of the at least four groups of cameras are arranged on the hanging With the front end of the fixed bracket 10, the third group of cameras 3 and the fourth group of cameras 4, the third group of laser equipment and the fourth group of laser equipment in the at least four groups of cameras are arranged on the spreader fixed support 10 At the rear end, the fifth group of single-point laser devices are arranged outside the short side of the front end of the spreader fixing bracket, the fifth group of single-point laser devices is a low-point single-point laser device 5, and the sixth group of single-point laser devices is a low-point single-point laser device 5. A group of single-point laser devices are arranged outside the short side of the rear end of the spreader fixing bracket 10, and the sixth group of single-point laser devices is a high-point single-point laser device 6.
  • the first group of cameras 1, the second group of cameras 2, the third group of cameras 3, and the fourth group of cameras 4 are arranged at the four corners of the spreader, preferably on the outside of the short side of the spreader, or can be set On the inner side of the short side of the spreader, the first group of single-point laser equipment, the second group of single-point laser equipment, the third group of single-point laser equipment, and the fourth group of single-point laser equipment (not shown in the figure) are arranged in four The corners of the spreader are preferably arranged on the inner side of the short side of the spreader, and can also be arranged on the outer side of the short side of the spreader.
  • the low-point single-point laser device 5 and the high-point single-point laser device 6 are arranged on the outside of the short side of the spreader, preferably at the center of the outer side of the short side of the spreader, or at the end of the outer side of the short side of the spreader, as long as It is sufficient to meet the testing requirements.
  • the first group of cameras 1, the second group of cameras 2, the third group of cameras 3, and the fourth group of cameras 4 are preferably arranged completely symmetrically along the short side and the long side of the spreader.
  • the first group of cameras 1 and the first group of single-point laser equipment and the second group of cameras 2 and the second group of single-point laser equipment are preferably arranged completely symmetrically along the short and long sides of the spreader, and the third group of cameras 3 and The third group of single-point laser devices, the fourth group of cameras 4 and the fourth group of single-point laser devices preferably have a completely symmetrical layout, the first group of cameras 1 and the first group of single-point laser devices, the second group of cameras 2 and the second group of single-point laser devices Group single-point laser equipment, the third group of cameras 3 and the third group of single-point laser equipment, the fourth group of cameras 4 and the fourth group of single-point laser equipment are used together, and the camera and laser equipment can be set on the same short side of the spreader.
  • first group of cameras 1 and the first group of single-point laser devices and the second group of cameras 2 and the second group of single-point laser devices may not be completely symmetrical, and the third group of cameras 3 and third The group of single-point laser devices, the fourth group of cameras 4 and the fourth group of single-point laser devices may also not be arranged completely symmetrically, which will not be repeated here.
  • first inertial measurement unit 7 a second inertial measurement unit, a third inertial measurement unit, and a fourth inertial measurement unit that are arranged at the four spreader corners of the spreader fixing bracket of the container.
  • the first, second, third, and fourth inertial measurement units are used to measure and calculate the angle, speed, and relative displacement of the spreader.
  • the numbers of the second, third, and fourth inertial measurement units are not shown in the drawings. In the logo.
  • the first group of cameras 1 and the first inertial measurement unit 7 are arranged in the same sensor box, and the first group of laser devices can be arranged in the same sensor box or outside the sensor box.
  • the second group of cameras 2 and the second inertial measurement unit, the third group of cameras 3 and the third inertial measurement unit, the fourth group of cameras 4 and the fourth inertial measurement unit are respectively arranged in the same sensor box, and the second group of laser
  • the equipment, the third group of laser equipment, and the fourth group of laser equipment can be arranged in the corresponding same sensor box, or can be arranged outside the corresponding sensor box.
  • the first, second, third, fourth, fifth and sixth groups of single-point laser equipment are used to measure the height difference between the laser emission point and the laser reflection point to confirm the loading error of the operating container;
  • the first, second, third, and fourth groups of cameras obtain the distance between the spot of the corresponding single-point laser device and the side of the bottom container 12 through images, or the first, second, third, and fourth groups of cameras pass through images
  • the distance between the side of the work container 11 and the side of the bottom container 12 is obtained to confirm the landing error of the work container.
  • the distance between the side of the working container 11 and the side of the bottom container 12 can be obtained to confirm the box error
  • the camera acquires the distance between the spot of the single-point laser device on the ground and the side of the operation container 11 through the image, and adjusts the position and angle of the single-point laser device for calibration, so that the spot of the single-point laser device on the ground is aligned with the operation container.
  • the distance on the side of the box is the set offset distance of the laser equipment installation.
  • the first, second, third, fourth, fifth, and sixth groups of single-point laser equipment are measured with the first, second, third, and fourth groups of cameras to measure the spot and the side of the box. Adjust the position and angle of the first, second, third, fourth, fifth, and sixth group of single-point laser equipment to calibrate the first, second, third, fourth, 5. The position and angle of the sixth group of single-point laser equipment such that the distance between the spot of the first, second, third, fourth, fifth, and sixth group of single-point laser equipment and the side of the operating container is set The laser equipment is installed offset distance.
  • the method for controlling an automatic container loading device based on an expert system includes the following steps:
  • S11 Install the at least four sets of cameras and the at least six sets of single-point laser equipment;
  • Figure 2 Please refer to Figure 2, Figure 4 and Figure 5, taking the first group of cameras 1 and the first group of single-point laser equipment (not shown in the figure) as an example, when performing the first group of single-point laser equipment and the first group of cameras 1
  • the working container 11 When calibrating, the working container 11 is held by the spreader, suspended from the ground and kept still, and the distance d between the light spot of the first group of single-point laser equipment and the side of the bottom container 12 is measured.
  • the position and angle are fine-tuned so that the distance d is equal to the set offset distance D of the laser device installation.
  • the range of the offset distance D of the laser device installation is 2 ⁇ 5cm;
  • the distance d of the side of the working container 11 is obtained by image measurement of the first set of cameras 1.
  • the step S13 controlling the spreader to drive the working container to move down and triggering dynamic loading includes triggering dynamic loading when the distance between the bottom of the working container and the top of the bottom container is less than or equal to a set first threshold.
  • the first threshold is usually 2-3cm.
  • the step S14 specifically includes the following steps:
  • S142 If at least one of the first and second groups of single-point laser devices, low-point and high-point single-point laser devices has a trigger signal, and has a low-point on-box signal, it passes through the first and second groups of single-point laser devices.
  • the group camera confirms that the low-point boxing error is greater than the offset distance of the laser equipment installation, and then controls the spreader to lift the first distance, and re-starts the low-point boxing;
  • the spreader is controlled to the first group of single-point lasers with the trigger signal along the width direction of the working container
  • the device or the second group of single-point laser devices move a second distance; if the low-point single-point laser device or the high-point single-point laser device continuously triggers longer than the second threshold, the spreader is controlled to trigger along the length of the operating container
  • the signal's low-point single-point laser device or high-point single-point laser device moves the third distance;
  • the first speed threshold can be set to 0.1 m/s, and those skilled in the art can understand that the first speed threshold can be set according to empirical values.
  • the second threshold is T/2
  • the T is the swing period of the spreader
  • the swing period T is determined by the formula It is calculated that l is the length of the spreader rope and ⁇ is the damping coefficient.
  • the second distance is usually 2-5 cm
  • the third distance is usually 2-5 cm.
  • the single-point laser equipment ranging trigger threshold is DL
  • take DL d1+d2+d3
  • d1 is the laser equipment installation position and operation
  • d2 is the height of the operating container 11
  • d3 is the dynamic container threshold D3;
  • the value of the dynamic ranging of the single-point laser device L1 is dl1
  • the value of the dynamic ranging of the single-point laser device L2 is dl2
  • the value of the single-point laser device L2 is dl2.
  • the step S15 specifically includes the following steps:
  • the fourth distance is usually 5-10 cm.
  • the second speed threshold can be set to 0.1 m/s. Those skilled in the art can understand that the second speed threshold can be set according to empirical values.
  • the step S11 further includes calibrating the at least four groups of cameras and the at least six groups of single-point laser equipment, and measuring the The distance between the spot of the first, second, third, fourth, fifth, and sixth group of single-point laser equipment and low-point and high-point single-point laser equipment and the side of the box is adjusted.
  • the positions and angles of the third, fourth, fifth, and sixth groups of single-point laser equipment and low-point and high-point single-point laser equipment to calibrate the first, second, third, fourth, fifth, The positions and angles of the sixth group of single-point laser devices and the low-point and high-point single-point laser devices are such that the first, second, third, fourth, fifth, and sixth groups of single-point laser devices and the low-point ,
  • the distance between the spot of the high-point single-point laser equipment and the side of the operation container is the set offset distance of the laser equipment installation.
  • the expert system-based automatic container loading device and control method thereof in the embodiments of the present invention control the spreader through sensing signals by setting multiple sets of cameras and multiple sets of single-point laser equipment on the spreader fixing bracket , Carry out the low point of the container first, and then carry out the high point of the container, which realizes the automatic dynamic loading of the container;
  • multiple sets of cameras and corresponding single-point laser equipment cooperate to perform high-precision measurement to ensure the accuracy range of the container, which is usually 3 to 5 cm, thereby improving the accuracy and efficiency of the automatic container loading operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control And Safety Of Cranes (AREA)
  • Load-Engaging Elements For Cranes (AREA)

Abstract

一种基于专家系统的集装箱自动着箱装置及其控制方法,装置包括至少四组相机及至少六组单点激光设备,至少四组相机和至少六组单点机关设备中的四组单点激光设备设置在吊具固定支架(10)的四个吊具角处,至少六组单点激光设备中的两组单点激光设备分别设置在吊具固定支架(10)的两条短边的外侧;吊具固定支架(10)的前端低于后端,至少四组相机中的第一组(1)、第二组相机(2)和第一组、第二组激光设备以及第三组(3)、第四组相机(4)和第三组、第四组激光设备分别设置在吊具固定支架(10)前端和后端。所述基于专家系统的集装箱自动着箱装置通过多种传感器集合人工着箱的经验,通过传感信号控制吊具,进行集装箱的低点、高点着箱,实现了集装箱的自动动态着箱,相机配合单点激光设备的高精度测量,提高了着箱作业的精度和效率。

Description

基于专家系统的集装箱自动着箱装置及其控制方法 技术领域
本发明涉及集装箱装卸领域,尤其涉及一种基于专家系统的集装箱自动着箱装置及其控制方法。
背景技术
随着我国进出口贸易的不断增长,港口集装箱装箱业务对吞吐量和效率的要求也不断提高,其中轮胎式集装箱门式起重机是码头上常见的集装箱装卸设备。在人工着箱的情况下,一个影响效率的关键步骤是着箱最后阶段的对齐和着放,尤其在箱体由于运动或者大风引起的晃动下。该过程在全自动化起重机系统中也是一个技术难点。现有的一些方案都有一些局限性,例如基于相机的方案容易受天气影响,不准确,延迟也较大,等待时间长,影响效率;还有通过改变吊具机械结构减少晃动,但也不能完全去除晃动,同时改进成本也很高。因此,现有技术有待改进。
发明内容
本发明要解决的技术问题是提供一种基于专家系统的集装箱自动着箱装置及其控制方法,通过在吊具固定支架上设置多组相机以及多个单点激光设备,实现集装箱的高精度动态自动着箱。
本发明为解决上述技术问题而采用的技术方案是提供一种基于专家系统的集装箱自动着箱装置,至少四组相机以及至少六组单点激光设备,所述至少四组相机和所述至少六组单点激光设备中的第一、二、三、四组单点激光设备设置在所述集装箱的吊具固定支架的四个吊具角处,所述至少六组单点激光中的第五、六组单点激光设备分别设置在所述吊具固定支架的两条短边的外侧;
所述吊具固定支架的前端低于后端,所述至少四组相机中的第一组相机和第二组相机以及所述第一组激光设备和第二组激光设备设置在所述吊具固定支架的前端,所述至少四组相机中的第三组相机和第四组相机以及所述第三组激光设备和第四组激光设备设置在所述吊具固定支架的后端,所述第五组单点激光设备设置在所述吊具固定支架的前端的短边的外侧,所述第五组单点激光设备是低点单点激光设备,所述第六组单点激光设备设置在所述吊具固定支架的后端的短边的外侧,所述第六 组单点激光设备是高点单点激光设备。
优选地,还包括设置在所述集装箱的吊具固定支架的四个吊具角处的第一惯性测量单元、第二惯性测量单元、第三惯性测量单元以及第四惯性测量单元,所述第一、第二、第三、第四惯性测量单元用于测量和计算所述吊具的角度、速度及相对位移。
优选地,所述第一、第二、第三、第四、第五、第六组单点激光设备用于测量激光发射点与激光反射点的高度差,以确认作业集装箱的着箱误差;
所述第一、第二、第三、第四组相机通过影像获取相应的单点激光设备的光斑与底层集装箱侧面的距离,或者所述第一、第二、第三、第四组相机通过影像获取作业集装箱侧面与底层集装箱侧面的距离,以确认作业集装箱的着箱误差。
优选地,通过所述第一、第二、第三、第四组相机测量所述第一、第二、第三、第四、第五、第六组单点激光设备的光斑与箱体侧面的距离,调整所述第一、第二、第三、第四、第五、第六组单点激光设备的位置和角度,以校准所述第一、第二、第三、第四、第五、第六组单点激光设备的位置和角度,使得所述第一、第二、第三、第四、第五、第六组单点激光设备的光斑与作业集装箱侧面的距离为设定的激光设备安装偏移距离。
本发明为解决上述技术问题而采用的另一技术方案是提供一种基于专家系统的集装箱自动着箱装置的控制方法,包括如下步骤:
S11:安装所述至少四组相机和所述至少六组单点激光设备;
S12:控制吊具带动作业集装箱移动到底层集装箱上方;
S13:控制吊具带动作业集装箱下移触发动态着箱,进入动态着箱模式;
S14:进入低点着箱,完成低点着箱后进入高点着箱;
S15:进行高点着箱,完成作业集装箱的着箱。
优选地,所述步骤S13中所述的控制吊具带动作业集装箱下移触发动态着箱包括当所述作业集装箱的底部与底层集装箱的顶部的距离小于等于设定的第一阈值时,触发动态着箱。
优选地,所述步骤S14具体包括以下步骤:
S141:若所述第一、第二组单点激光设备、低点和高点单点激光设备无触发信号,所述第一和第二惯性测量单元计算所得水平移动速度小于设定的第一速度阈值,且无低点着箱信号,则控制吊具下降,所述低点着箱信号为所述作业集装箱对 应于所述吊具固定支架前端的底部与底层集装箱的顶部完整接触时产生的机械限位信号;
S142:若所述第一、第二组单点激光设备、低点和高点单点激光设备中的至少一个有触发信号,且有低点着箱信号,并通过所述第一、第二组相机确认低点着箱误差大于激光设备安装偏移距离,则控制吊具起升第一距离,重新进行低点着箱;
S143:若所述第一、第二组单点激光设备、低点和高点单点激光设备中至少一个有触发信号,且无低点着箱信号,则停止吊具下降动作并获取所述触发信号的触发时长,如果第一组单点激光设备或第二组单点激光设备连续触发时长超过第二阈值,则控制吊具沿作业集装箱宽度方向向有触发信号的第一组单点激光设备或第二组单点激光设备移动第二距离;如果低点单点激光设备或高点单点激光设备连续触发时长超过所述第二阈值,则控制吊具沿作业集装箱长度方向向有触发信号的低点单点激光设备或高点单点激光设备移动第三距离;
S144:若所述第一、第二组单点激光设备、低点和高点单点激光设备无触发信号,且有低点着箱信号,则低点着箱完成,进入高点着箱。
优选地,所述第二阈值为T/2,所述T为吊具的摆动周期,摆动周期T通过公式
Figure PCTCN2021089938-appb-000001
计算得到,其中l为吊具绳长,α为阻尼系数。
优选地,所述步骤S15具体包括以下步骤:
S151:若所述第三、第四组单点激光设备无触发信号,所述第三和第四惯性测量单元计算所得水平移动速度小于设定的第二速度阈值,且无高点着箱信号,则控制吊具下降,直到获取高点着箱信号;所述高点着箱信号为所述作业集装箱对应于吊具固定支架后端的底部与底层集装箱的顶部完整接触时产生的机械限位信号;
S152:若所述第三、第四组单点激光设备有触发信号,且无高点着箱信号或松绳信号,则停止吊具下降,并通过所述第三、第四组相机得到对齐偏差,控制吊具沿所述作业集装箱宽度方向向有触发信号的所述第三、第四组单点激光设备移动相应的距离;
S153:若所述第三、第四组单点激光设备有触发信号,且有高点着箱信号或松绳信号,并通过所述第三、第四组相机确认高点着箱误差大于设定的着箱精度Dt,则控制吊具起升第四距离,重新进行高点着箱;
S154:若所述第三、第四组单点激光设备无触发信号,且有高点着箱信号或松绳信号,则高点着箱完成,完成作业集装的着箱。
优选地,所述步骤S11中,还包括对所述至少四组相机和所述至少六组单点激光设备进行校准,通过所述第一、第二、第三、第四组相机测量所述第一、第二、第三、第四、第五、第六组单点激光设备以及低点、高点单点激光设备的光斑与箱体侧面的距离,调整所述第一、第二、第三、第四、第五、第六组单点激光设备以及低点、高点单点激光设备的位置和角度,以校准所述第一、第二、第三、第四、第五、第六组单点激光设备以及低点、高点单点激光设备的位置和角度,使得所述第一、第二、第三、第四、第五、第六组单点激光以及低点、高点单点激光设备的光斑与作业集装箱侧面的距离为设定的激光设备安装偏移距离。
本发明对比现有技术有如下的有益效果:本发明提供的基于专家系统的集装箱自动着箱装置及其控制方法,通过在吊具固定支架上设置多组相机以及多组单点激光设备,通过传感信号控制吊具,先进行集装箱的低点着箱,再进行高点着箱,实现了集装箱的自动动态着箱;
进一步地,多组相机和相应的单点激光设备相配合进行高精度测量,保证着箱的精度范围,所述精度范围通常为3~5cm,从而提高了集装箱自动着箱作业的精度和效率。
附图说明
图1为本发明实施例中基于专家系统的集装箱自动着箱装置安装示意图;
图2为本发明实施例中第一组相机和第一惯性测量单元的安装示意图;
图3为本发明实施例中基于专家系统的集装箱自动着箱装置控制方法流程图;
图4为本发明实施例中单点激光设备校准示意图;
图5为本发明实施例中低点着箱正视图;
图6为本发明实施例中高点着箱示意图。
其中:
1第一组相机;2第二组相机;3第三组相机;4第四组相机;5低点单点激光设备;6高点单点激光设备;7第一惯性测量单元;10吊具固定支架;11作业集装箱;12底层集装箱。
具体实施方式
下面结合附图和实施例对本发明作进一步的描述。
专家系统是指将归纳了人工专家进行人工着箱的经验得到的着箱方法应用于轮胎吊机械结构进行自动着箱的方式。进行人工着箱时,按照司机着箱作业的习惯,一般在吊具安装的时候会保持吊具一定的倾角,使得吊具固定支架的前端略低于后端,以方便人工作业。吊装作业集装箱时,集装箱对应吊具固定支架的前端的两个角为低点,对应吊具固定支架的后端的两个角为高点,先进行低点着箱,再进行高点着箱。
图1为本发明实施例中基于专家系统的集装箱自动着箱装置安装示意图,图2为本发明实施例中第一组相机和第一惯性测量单元的安装示意图。
请参见图1和图2,本发明实施例的基于专家系统的集装箱自动着箱装置,包括至少四组相机以及至少六组单点激光设备,所述至少四组相机和所述至少六组单点激光设备中的第一、二、三、四组单点激光设备设置在所述集装箱的吊具固定支架10的四个吊具角处,所述至少六组单点激光设备中的第五、六组单点激光设备分别设置在所述吊具固定支架10的两条短边的外侧;
所述吊具固定支架10的前端低于后端,所述至少四组相机中的第一组相机1和第二组相机2以及第一组激光设备和第二组激光设备设置在所述吊具固定支架10的前端,所述至少四组相机中的第三组相机3和第四组相机4以及所述第三组激光设备和第四组激光设备设置在所述吊具固定支架10的后端,所述第五组单点激光设备设置在所述吊具固定支架的前端的短边的外侧,所述第五组单点激光设备是低点单点激光设备5,所述第六组单点激光设备设置在所述吊具固定支架10的后端的短边的外侧,所述第六组单点激光设备是高点单点激光设备6。
在具体实施中,第一组相机1、第二组相机2、第三组相机3以及第四组相机4设置在四个吊具角处,优选设置在吊具短边的外侧,也可以设置在吊具短边的内侧,第一组单点激光设备、第二组单点激光设备、第三组单点激光设备以及第四组单点激光设备(图中未示出),设置在四个吊具角处,优选设置在吊具短边的内侧,也可以设置在吊具短边的外侧。低点单点激光设备5和高点单点激光设备6设置在吊具短边的外侧,优选设置在吊具短边的外侧的中心,也可以设置在吊具短边的外侧的一端,只要能够满足检测的需求即可。在具体实施中,第一组相机1、第二组相机2、第三组相机3以及第四组相机4优选为沿着吊具的短边和长边完全对称的布局。第一组相机1和第一组单点激光设备与第二组相机2和第二组单点激光设备优选为沿着吊具的短边和长边完全对称的布局,第三组相机3和第三组单点激光设 备与第四组相机4和第四组单点激光设备优选为完全对称的布局,第一组相机1和第一组单点激光设备、第二组相机2和第二组单点激光设备、第三组相机3和第三组单点激光设备、第四组相机4和第四组单点激光设备分别配合使用,相机和激光设备可以设置在吊具短边的同侧或不同侧。本领域的技术人员应该理解,第一组相机1和第一组单点激光设备与第二组相机2和第二组单点激光设备也可以不完全对称布局,第三组相机3和第三组单点激光设备与第四组相机4和第四组单点激光设备也可以不完全对称布局,在此不再赘述。
在具体实施中,还包括设置在所述集装箱的吊具固定支架的四个吊具角处的第一惯性测量单元7、第二惯性测量单元、第三惯性测量单元以及第四惯性测量单元,所述第一、第二、第三、第四惯性测量单元用于测量和计算所述吊具的角度、速度及相对位移,第二、第三、第四惯性测量单元的标号未在附图中标识。如图2所示,第一组相机1和第一惯性测量单元7设置在同一传感器盒中,第一组激光设备可以设置在同一传感器盒中,也可以设置在传感器盒外。相应地,第二组相机2和第二惯性测量单元、第三组相机3和第三惯性测量单元、第四组相机4和第四惯性测量单元分别设置在同一传感器盒中,第二组激光设备、第三组激光设备、第四组激光设备可以设置在相应的同一传感器盒中,也可以设置在相应的传感器盒外。
第一、第二、第三、第四、第五、第六组单点激光设备用于测量激光发射点与激光反射点的高度差,以确认作业集装箱的着箱误差;
第一、第二、第三、第四组相机通过影像获取相应的单点激光设备的光斑与底层集装箱12侧面的距离,或者所述第一、第二、第三、第四组相机通过影像获取作业集装箱11侧面与底层集装箱12侧面的距离,以确认作业集装箱的着箱误差。在光线较强的白天,由于光线的影响,相机捕捉单点激光设备的光斑比较困难,且比较容易分辨集装箱的侧面边缘,因此获取作业集装箱11侧面与底层集装箱12侧面的距离来确认着箱误差;在光线较暗的夜晚,相机捕捉单点激光设备的光斑比较容易,且比较难分辨集装箱的侧面边缘,因此获取单点激光设备的光斑与底层集装箱12侧面的距离来确认着箱误差。相机通过影像获取单点激光设备射在地面的光斑与作业集装箱11箱体侧面的距离,调整所述单点激光设备的位置和角度进行校准,使得单点激光设备射在地面的光斑与作业集装箱11箱体侧面的距离为设定的激光设备安装偏移距离。
在具体实施中,通过第一、第二、第三、第四组相机测量所述第一、第二、 第三、第四、第五、第六组单点激光设备的光斑与箱体侧面的距离,调整所述第一、第二、第三、第四、第五、第六组单点激光设备的位置和角度,以校准所述第一、第二、第三、第四、第五、第六组单点激光设备的位置和角度,使得所述第一、第二、第三、第四、第五、第六组单点激光设备的光斑与作业集装箱侧面的距离为设定的激光设备安装偏移距离。
请参见图3,本发明实施例的基于专家系统的集装箱自动着箱装置的控制方法,包括如下步骤:
S11:安装所述至少四组相机和所述至少六组单点激光设备;
S12:控制吊具带动作业集装箱移动到底层集装箱上方;
S13:控制吊具带动作业集装箱下移触发动态着箱,进入动态着箱模式;
S14:进入低点着箱,完成低点着箱后进入高点着箱;
S15:进行高点着箱,完成作业集装箱的着箱。
请参见图2、图4和图5,以第一组相机1和第一组单点激光设备(图中未示出)为例,当进行第一组单点激光设备和第一组相机1的校准时,通过吊具抓住作业集装箱11,悬空脱离地面保持静止,测量第一组单点激光设备射在地面的光斑与底层集装箱12侧面的距离d,对第一组单点激光设备的位置和角度进行微调,使得距离d等于设定的激光设备安装偏移距离D,通常取激光设备安装偏移距离D的范围为2~5cm;第一组单点激光设备射在地面的光斑与作业集装箱11箱体侧面的距离d通过第一组相机1的影像测量得到。
在具体实施中,步骤S13中所述的控制吊具带动作业集装箱下移触发动态着箱包括当所述作业集装箱的底部与底层集装箱的顶部的距离小于等于设定的第一阈值时,触发动态着箱,第一阈值通常为2-3cm。
优选地,所述步骤S14具体包括以下步骤:
S141:若所述第一、第二组单点激光设备、低点和高点单点激光设备无触发信号,所述第一和第二惯性测量单元计算所得水平移动速度小于设定的第一速度阈值,且无低点着箱信号,则控制吊具下降,所述低点着箱信号为所述作业集装箱对应于所述吊具固定支架前端的底部与底层集装箱的顶部完整接触时产生的机械限位信号;
S142:若所述第一、第二组单点激光设备、低点和高点单点激光设备中的至少一个有触发信号,且有低点着箱信号,并通过所述第一、第二组相机确认低点着 箱误差大于激光设备安装偏移距离,则控制吊具起升第一距离,重新进行低点着箱;
S143:若所述第一、第二组单点激光设备、低点和高点单点激光设备中至少一个有触发信号,且无低点着箱信号,则停止吊具下降动作并获取所述触发信号的触发时长,如果第一组单点激光设备或第二组单点激光设备连续触发时长超过第二阈值,则控制吊具沿作业集装箱宽度方向向有触发信号的第一组单点激光设备或第二组单点激光设备移动第二距离;如果低点单点激光设备或高点单点激光设备连续触发时长超过所述第二阈值,则控制吊具沿作业集装箱长度方向向有触发信号的低点单点激光设备或高点单点激光设备移动第三距离;
S144:若所述第一、第二组单点激光设备、低点和高点单点激光设备无触发信号,且有低点着箱信号,则低点着箱完成,进入高点着箱。
优选地,第一速度阈值可以设置为0.1m/s,本领域技术人员可以理解,第一速度阈值可以根据经验值进行设定。
优选地,所述第二阈值为T/2,所述T为吊具的摆动周期,摆动周期T通过公式
Figure PCTCN2021089938-appb-000002
计算得到,其中l为吊具绳长,α为阻尼系数。
在具体实施中,第二距离通常为2-5cm,第三距离通常为2-5cm。设单点激光设备Lx(x=1…6)动态测距的值为dlx,单点激光设备测距触发阈值为DL,取DL=d1+d2+d3,其中d1为激光设备安装位置与作业集装箱11箱顶的垂直距离,d2为作业集装箱11的高,d3取动态着箱阈值D3;
当相机Cam x(x=1…4)检测到作业集装箱11的对齐偏差大于激光设备安装偏移距离D,且单点激光设备的光斑打在底层集装箱12的箱顶时,则dlx小于DL,对应的单点激光设备产生触发信号,反之dlx大于DL,对应的单点激光设备无触发信号。
在具体实施中,以图5中的作业集装箱11和底层集装箱12为例,单点激光设备L1动态测距的值为dl1,单点激光设备L2动态测距的值为dl2,单点激光设备测距触发阈值为DL,取DL=d1+d2+d3,其中d1为激光设备安装位置与作业集装箱11箱顶的垂直距离,d2为作业集装箱11的高,d3取动态着箱阈值D3。当相机检测到作业集装箱11的对齐偏差大于激光设备安装偏移距离D,且单点激光设备的光斑打在底层集装箱12的箱顶时,则dl1小于DL,对应的单点激光设备产生触发信号,反之dl1大于DL,对应的单点激光设备无触发信号。
优选地,所述步骤S15具体包括以下步骤:
S151:若所述第三、第四组单点激光设备无触发信号,所述第三和第四惯性测量单元计算所得水平移动速度小于设定的第二速度阈值,且无高点着箱信号,则控制吊具下降,直到获取高点着箱信号;所述高点着箱信号为所述作业集装箱对应于吊具固定支架后端的底部与底层集装箱的顶部完整接触时产生的机械限位信号;
S152:若所述第三、第四组单点激光设备有触发信号,且无高点着箱信号或松绳信号,则停止吊具下降,并通过所述第三、第四组相机得到对齐偏差,控制吊具沿所述作业集装箱宽度方向向有触发信号的所述第三、第四组单点激光设备移动相应的距离;
S153:若所述第三、第四组单点激光设备有触发信号,且有高点着箱信号或松绳信号,并通过所述第三、第四组相机确认高点着箱误差大于设定的着箱精度Dt,则控制吊具起升第四距离,重新进行高点着箱;
S154:若所述第三、第四组单点激光设备无触发信号,且有高点着箱信号或松绳信号,则高点着箱完成,完成作业集装的着箱。
在具体实施中,第四距离通常为5-10cm。优选地,第二速度阈值可以设置为0.1m/s,本领域技术人员可以理解,第二速度阈值可以根据经验值进行设定。
优选地,所述步骤S11中,还包括对所述至少四组相机和所述至少六组单点激光设备进行校准,通过所述第一、第二、第三、第四组相机测量所述第一、第二、第三、第四、第五、第六组单点激光设备以及低点、高点单点激光设备的光斑与箱体侧面的距离,调整所述第一、第二、第三、第四、第五、第六组单点激光设备以及低点、高点单点激光设备的位置和角度,以校准所述第一、第二、第三、第四、第五、第六组单点激光设备以及低点、高点单点激光设备的位置和角度,使得所述第一、第二、第三、第四、第五、第六组单点激光设备以及低点、高点单点激光设备的光斑与作业集装箱侧面的距离为设定的激光设备安装偏移距离。
综上所述,本发明实施例的基于专家系统的集装箱自动着箱装置及其控制方法,通过在吊具固定支架上设置多组相机以及多组单点激光设备,通过传感信号控制吊具,先进行集装箱的低点着箱,再进行高点着箱,实现了集装箱的自动动态着箱;
进一步地,多组相机和相应的单点激光设备相配合进行高精度测量,保证着箱的精度范围,所述精度范围通常为3~5cm,从而提高了集装箱自动着箱作业的精度和效率。
虽然本发明已以较佳实施例揭示如上,然其并非用以限定本发明,任何本领域技术人员,在不脱离本发明的精神和范围内,当可作些许的修改和完善,因此本发明的保护范围当以权利要求书所界定的为准。

Claims (10)

  1. 一种基于专家系统的集装箱自动着箱装置,其特征在于,包括:
    至少四组相机以及至少六组单点激光设备,所述至少四组相机和所述至少六组单点激光设备中的第一、二、三、四组单点激光设备设置在所述集装箱的吊具固定支架的四个吊具角处,所述至少六组单点激光设备中的第五、六组单点激光设备分别设置在所述吊具固定支架的两条短边的外侧;
    所述吊具固定支架的前端低于后端,所述至少四组相机中的第一组相机和第二组相机以及第一组单点激光设备和第二组单点激光设备设置在所述吊具固定支架的前端,所述至少四组相机中的第三组相机和第四组相机以及第三组单点激光设备和第四组单点激光设备设置在所述吊具固定支架的后端,第五组单点激光设备设置在所述吊具固定支架的前端的短边的外侧,所述第五组单点激光设备是低点单点激光设备,第六组单点激光设备设置在所述吊具固定支架的后端的短边的外侧,所述第六组单点激光设备是高点单点激光设备;多组相机和相应的单点激光设备相配合;
    若所述第一、第二组单点激光设备、低点和高点单点激光设备无触发信号,且有低点着箱信号,则低点着箱完成,进入高点着箱;所述低点着箱信号为作业集装箱对应于所述吊具固定支架前端的底部与底层集装箱的顶部完整接触时产生的机械限位信号;
    若所述第三、第四组单点激光设备无触发信号,且有高点着箱信号或松绳信号,则高点着箱完成,完成作业集装箱的着箱;所述高点着箱信号为所述作业集装箱对应于吊具固定支架后端的底部与底层集装箱的顶部完整接触时产生的机械限位信号。
  2. 如权利要求1所述的基于专家系统的集装箱自动着箱装置,其特征在于,还包括设置在所述集装箱的吊具固定支架的四个吊具角处的第一惯性测量单元、第二惯性测量单元、第三惯性测量单元以及第四惯性测量单元,第一、第二、第三、第四惯性测量单元用于测量和计算吊具的角度、速度及相对位移。
  3. 如权利要求1所述的基于专家系统的集装箱自动着箱装置,其特征在于,
    所述第一、第二、第三、第四、第五、第六组单点激光设备用于测量激光发射点与激光反射点的高度差,以确认作业集装箱的着箱误差;
    所述第一、第二、第三、第四组相机通过影像获取相应的单点激光设备的光斑与底层集装箱侧面的距离,或者所述第一、第二、第三、第四组相机通过影像获 取作业集装箱侧面与底层集装箱侧面的距离,以确认作业集装箱的着箱误差。
  4. 如权利要求1所述的基于专家系统的集装箱自动着箱装置,其特征在于,
    通过所述第一、第二、第三、第四组相机测量所述第一、第二、第三、第四、第五、第六组单点激光设备的光斑与箱体侧面的距离,调整所述第一、第二、第三、第四、第五、第六组单点激光设备的位置和角度,以校准所述第一、第二、第三、第四、第五、第六组单点激光设备的位置和角度,使得所述第一、第二、第三、第四、第五、第六组单点激光设备的光斑与作业集装箱侧面的距离为设定的激光设备安装偏移距离。
  5. 一种基于专家系统的集装箱自动着箱装置的控制方法,应用于如权利要求1-4任一项所述的基于专家系统的集装箱自动着箱装置,其特征在于,包括如下步骤:
    S11:安装所述至少四组相机和所述至少六组单点激光设备;
    S12:控制吊具带动作业集装箱移动到底层集装箱上方;
    S13:控制吊具带动作业集装箱下移触发动态着箱,进入动态着箱模式;
    S14:进入低点着箱,完成低点着箱后进入高点着箱;
    S15:进行高点着箱,完成作业集装箱的着箱。
  6. 如权利要求5所述的基于专家系统的集装箱自动着箱装置的控制方法,其特征在于,所述步骤S13中所述的控制吊具带动作业集装箱下移触发动态着箱包括当所述作业集装箱的底部与底层集装箱的顶部的距离小于等于设定的第一阈值时,触发动态着箱。
  7. 一种基于专家系统的集装箱自动着箱装置的控制方法,应用于如权利要求2所述的基于专家系统的集装箱自动着箱装置,其特征在于,包括如下步骤:
    S11:安装所述至少四组相机和所述至少六组单点激光设备;
    S12:控制吊具带动作业集装箱移动到底层集装箱上方;
    S13:控制吊具带动作业集装箱下移触发动态着箱,进入动态着箱模式;
    S14:进入低点着箱,完成低点着箱后进入高点着箱;
    S15:进行高点着箱,完成作业集装箱的着箱;
    所述步骤S13中所述的控制吊具带动作业集装箱下移触发动态着箱包括当所述作业集装箱的底部与底层集装箱的顶部的距离小于等于设定的第一阈值时,触发动态着箱;
    所述步骤S14具体包括以下步骤:
    S141:若所述第一、第二组单点激光设备、低点和高点单点激光设备无触发信号,所述第一和第二惯性测量单元计算所得水平移动速度小于设定的第一速度阈值,且无低点着箱信号,则控制吊具下降;
    S142:若所述第一、第二组单点激光设备、低点和高点单点激光设备中的至少一个有触发信号,且有低点着箱信号,并通过所述第一、第二组相机确认低点着箱误差大于激光设备安装偏移距离,则控制吊具起升第一距离,重新进行低点着箱;
    S143:若所述第一、第二组单点激光设备、低点和高点单点激光设备中至少一个有触发信号,且无低点着箱信号,则停止吊具下降动作并获取所述触发信号的触发时长,如果第一组单点激光设备或第二组单点激光设备连续触发时长超过第二阈值,则控制吊具沿作业集装箱宽度方向向有触发信号的第一组单点激光设备或第二组单点激光设备移动第二距离;如果低点单点激光设备或高点单点激光设备连续触发时长超过所述第二阈值,则控制吊具沿作业集装箱长度方向向有触发信号的低点单点激光设备或高点单点激光设备移动第三距离;
    S144:若所述第一、第二组单点激光设备、低点和高点单点激光设备无触发信号,且有低点着箱信号,则低点着箱完成,进入高点着箱。
  8. 如权利要求7所述的基于专家系统的集装箱自动着箱装置的控制方法,其特征在于,所述第二阈值为T/2,T为吊具的摆动周期,摆动周期T通过公式
    Figure PCTCN2021089938-appb-100001
    计算得到,其中l为吊具绳长,α为阻尼系数。
  9. 一种基于专家系统的集装箱自动着箱装置的控制方法,应用于如权利要求2所述的基于专家系统的集装箱自动着箱装置,其特征在于,包括如下步骤:
    S11:安装所述至少四组相机和所述至少六组单点激光设备;
    S12:控制吊具带动作业集装箱移动到底层集装箱上方;
    S13:控制吊具带动作业集装箱下移触发动态着箱,进入动态着箱模式;
    S14:进入低点着箱,完成低点着箱后进入高点着箱;
    S15:进行高点着箱,完成作业集装箱的着箱;
    所述步骤S13中所述的控制吊具带动作业集装箱下移触发动态着箱包括当所述作业集装箱的底部与底层集装箱的顶部的距离小于等于设定的第一阈值时,触发动态着箱;
    所述步骤S15具体包括以下步骤:
    S151:若所述第三、第四组单点激光设备无触发信号,所述第三和第四惯性测量单元计算所得水平移动速度小于设定的第二速度阈值,且无高点着箱信号,则控制吊具下降,直到获取高点着箱信号;
    S152:若所述第三、第四组单点激光设备有触发信号,且无高点着箱信号或松绳信号,则停止吊具下降,并通过所述第三、第四组相机得到对齐偏差,控制吊具沿所述作业集装箱宽度方向向有触发信号的所述第三、第四组单点激光设备移动相应的距离;
    S153:若所述第三、第四组单点激光设备有触发信号,且有高点着箱信号或松绳信号,并通过所述第三、第四组相机确认高点着箱误差大于设定的着箱精度Dt,则控制吊具起升第四距离,重新进行高点着箱;
    S154:若所述第三、第四组单点激光设备无触发信号,且有高点着箱信号或松绳信号,则高点着箱完成,完成作业集装箱的着箱。
  10. 如权利要求6所述的基于专家系统的集装箱自动着箱装置的控制方法,其特征在于,
    所述步骤S11中,还包括对所述至少四组相机和所述至少六组单点激光设备进行校准,通过所述第一、第二、第三、第四组相机测量所述第一、第二、第三、第四、第五、第六组单点激光设备以及低点、高点单点激光设备的光斑与箱体侧面的距离,调整所述第一、第二、第三、第四、第五、第六组单点激光设备以及低点、高点单点激光设备的位置和角度,以校准所述第一、第二、第三、第四、第五、第六组单点激光设备以及低点、高点单点激光设备的位置和角度,使得所述第一、第二、第三、第四、第五、第六组单点激光设备以及低点、高点单点激光设备的光斑与作业集装箱侧面的距离为设定的激光设备安装偏移距离。
PCT/CN2021/089938 2020-05-11 2021-04-26 基于专家系统的集装箱自动着箱装置及其控制方法 WO2021227858A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/922,202 US11713218B2 (en) 2020-05-11 2021-04-26 Automatic container landing device based on expert system and control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010389831.8A CN111302226B (zh) 2020-05-11 2020-05-11 基于专家系统的集装箱自动着箱装置及其控制方法
CN202010389831.8 2020-05-11

Publications (1)

Publication Number Publication Date
WO2021227858A1 true WO2021227858A1 (zh) 2021-11-18

Family

ID=71159450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089938 WO2021227858A1 (zh) 2020-05-11 2021-04-26 基于专家系统的集装箱自动着箱装置及其控制方法

Country Status (3)

Country Link
US (1) US11713218B2 (zh)
CN (1) CN111302226B (zh)
WO (1) WO2021227858A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111302226B (zh) * 2020-05-11 2020-08-25 上海驭矩信息科技有限公司 基于专家系统的集装箱自动着箱装置及其控制方法
CN111766882B (zh) * 2020-07-03 2021-04-23 上海振华重工(集团)股份有限公司 一种适用于agv的集装箱检测方法及自动化码头管理系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1338421A (zh) * 2000-07-25 2002-03-06 理化学研究所 集装箱位置检测系统
US20050103738A1 (en) * 2003-11-14 2005-05-19 Alois Recktenwald Systems and methods for sway control
DE102004041938A1 (de) * 2004-08-30 2006-03-09 Liebherr-Werk Nenzing Gmbh, Nenzing Stapelgerät, insbesondere Reachstacker, und Verfahren zum Greifen und Stapeln von Containern
CN203699702U (zh) * 2013-08-27 2014-07-09 徐州重型机械有限公司 集装箱正面吊运起重机吊具缓冲油缸的控制系统及起重机
CN105492365A (zh) * 2013-05-31 2016-04-13 科恩起重机环球公司 通过吊具的货物装卸
CN110171779A (zh) * 2019-06-26 2019-08-27 中国铁道科学研究院集团有限公司运输及经济研究所 正面吊安全起吊控制系统及控制方法
CN111302226A (zh) * 2020-05-11 2020-06-19 上海驭矩信息科技有限公司 基于专家系统的集装箱自动着箱装置及其控制方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100624008B1 (ko) * 2004-03-08 2006-09-18 부산대학교 산학협력단 크레인용 스프레더의 자동제어를 위한 자동착지시스템 및그 방법
KR101058594B1 (ko) * 2010-09-27 2011-08-22 광진정보기술(주) 컨테이너 하역 시스템 및 그 방법
KR20140134588A (ko) * 2013-05-14 2014-11-24 서호전기주식회사 스프레더 카메라 영상을 이용한 컨테이너 적재 장치의 자동 랜딩 시스템 및 방법
CN205709438U (zh) * 2016-05-04 2016-11-23 湖南科天健光电技术有限公司 一种用于集装箱的自动检测抓箱和码放位置的装置
CN105905809B (zh) * 2016-06-28 2017-06-30 浙江华叉搬运设备有限公司 一种集装箱搬运小车控制方法
JP6838782B2 (ja) * 2017-05-30 2021-03-03 株式会社三井E&Sマシナリー コンテナクレーンの制御システム及びコンテナクレーンの制御方法
CA3066891A1 (en) * 2017-07-04 2019-01-10 Psa International Pte Ltd Apparatus and method for remote crane control
CN111587215A (zh) * 2017-11-24 2020-08-25 东芝三菱电机工业系统有限公司 用于产生集装箱在着陆表面上的着陆解决方案的方法和系统
CN110142805A (zh) 2019-05-22 2019-08-20 武汉爱速达机器人科技有限公司 一种基于激光雷达的机器人末端校准方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1338421A (zh) * 2000-07-25 2002-03-06 理化学研究所 集装箱位置检测系统
US20050103738A1 (en) * 2003-11-14 2005-05-19 Alois Recktenwald Systems and methods for sway control
DE102004041938A1 (de) * 2004-08-30 2006-03-09 Liebherr-Werk Nenzing Gmbh, Nenzing Stapelgerät, insbesondere Reachstacker, und Verfahren zum Greifen und Stapeln von Containern
CN105492365A (zh) * 2013-05-31 2016-04-13 科恩起重机环球公司 通过吊具的货物装卸
CN203699702U (zh) * 2013-08-27 2014-07-09 徐州重型机械有限公司 集装箱正面吊运起重机吊具缓冲油缸的控制系统及起重机
CN110171779A (zh) * 2019-06-26 2019-08-27 中国铁道科学研究院集团有限公司运输及经济研究所 正面吊安全起吊控制系统及控制方法
CN111302226A (zh) * 2020-05-11 2020-06-19 上海驭矩信息科技有限公司 基于专家系统的集装箱自动着箱装置及其控制方法

Also Published As

Publication number Publication date
CN111302226B (zh) 2020-08-25
US11713218B2 (en) 2023-08-01
CN111302226A (zh) 2020-06-19
US20230131592A1 (en) 2023-04-27

Similar Documents

Publication Publication Date Title
WO2021227858A1 (zh) 基于专家系统的集装箱自动着箱装置及其控制方法
TWI235134B (en) Crane and method for controlling the crane
TWI360515B (en) Load control device for a crane
US7506545B1 (en) Balancing device
US20160325968A1 (en) Apparatus and method for aligning guide rails and landing doors in an elevator shaft
EP1894881A2 (en) Load control device for a crane
JP5535370B2 (ja) 工場内飛行
CN112368229B (zh) 起重机
WO2018085649A4 (en) Platform twist detection and mitigation method and apparatus
CN116409736B (zh) 高空作业平台的调平控制方法及高空作业平台
KR20090031275A (ko) 슬라브 벤딩에 따른 크레인의 통 위치 제어장치 및 그 제어방법
CN110790142B (zh) 起重机变幅挠度补偿方法、系统及起重机
JP4585303B2 (ja) ヤードクレーン制御装置
JP5521743B2 (ja) 金属スラブの加熱炉装入方法および加熱炉抽出方法
CN110498369A (zh) 特种车辆底盘调平方法
CN114873401A (zh) 一种基于重力储能的升降电梯定位系统及方法
JP2017030945A (ja) 搬送車への移載データのティーチング方法とティーチングシステム
EP4038010B1 (en) Spreader position control
JPH09156716A (ja) スタッカクレーンの操作方法
CN112469658A (zh) 起重机
KR102490822B1 (ko) 항공기의 중량 및 무게중심 측정 시스템
JP2000016757A (ja) 振れ検出装置の校正方法
CN110963410B (zh) 高空作业设备的控制方法及装置、高空作业设备
JP2009126596A (ja) スタッカクレーンの昇降体の高低差補正方法
CN213265423U (zh) 距离获取装置、起重机变幅挠度补偿系统及起重机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803058

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/11/2023)