WO2021227356A1 - 一种制备污水/废水混凝剂的装置、污水/废水混凝剂及其制备方法 - Google Patents

一种制备污水/废水混凝剂的装置、污水/废水混凝剂及其制备方法 Download PDF

Info

Publication number
WO2021227356A1
WO2021227356A1 PCT/CN2020/121422 CN2020121422W WO2021227356A1 WO 2021227356 A1 WO2021227356 A1 WO 2021227356A1 CN 2020121422 W CN2020121422 W CN 2020121422W WO 2021227356 A1 WO2021227356 A1 WO 2021227356A1
Authority
WO
WIPO (PCT)
Prior art keywords
sewage
sulfuric acid
coagulant
tank
slurry
Prior art date
Application number
PCT/CN2020/121422
Other languages
English (en)
French (fr)
Inventor
陈躬
李庆永
Original Assignee
陈躬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陈躬 filed Critical 陈躬
Publication of WO2021227356A1 publication Critical patent/WO2021227356A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/245Spouted-bed technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents

Definitions

  • the present invention relates to the technical field of sewage/waste water coagulant, in particular to a device for preparing a sewage/waste water coagulant, a sewage/waste water coagulant and a preparation method thereof.
  • sewage/wastewater contains a large amount of organic matter, and the decomposition of microorganisms consumes a large amount of oxygen, which can easily lead to the death of aquatic organisms and cause ecological imbalance; Sewage/waste water contains heavy metals, which may enter the human table through the food chain and endanger human health; the odor generated by the sewage/waste water pollutes the atmosphere and harms the environment.
  • copper smelting slag is the main waste in the refined copper production process. Its chemical composition and metallographic structure mainly include iron-silicon combination, trace iron-silicon calcium combination and a small amount of trivalent free iron. Therefore, how to effectively treat the waste slag of copper smelting and produce a coagulant that can effectively treat sewage without pollution is a topic that has not been solved by the copper smelting industry at home and abroad and has been researched.
  • the technical problem/object to be solved by the present invention at least includes: providing a device for preparing sewage/waste water coagulant, a sewage/waste water coagulant and a preparation method thereof.
  • the present invention provides a device for preparing sewage/waste water coagulant.
  • the device for preparing sewage/waste water coagulant can realize the instantaneous collision reaction of by-product concentrated sulfuric acid and copper smelting waste slag slurry, and produce it at one time. Sewage/waste water coagulant, which has a good effect on sewage/waste water treatment.
  • the present invention provides a device for preparing sewage/waste water coagulant, which includes a copper smelting waste residue conveying device 27, a scraper conveyor 1, a screw feeder 24, a stirring tank 25, an atomizing mixing reactor 12, and a tower reactor 8. , Coil cooler 19 and sulfuric acid storage tank 7;
  • the copper smelting waste slag conveying device 27, the scraper conveyor 1, the screw feeder 24, the stirring tank 25, the atomizing mixing reactor 12, the tower reactor 8 and the coil cooler 19 are connected in sequence;
  • the sulfuric acid storage tank 7, the atomization mixing reactor 12, the tower reactor 8 and the coil cooler 19 are connected in sequence.
  • the discharge port of the mixing tank 25 is provided with a weighing sensor 26;
  • a slurry intermediate tank 10, a cam metering pump 4, a first stabilizer tube 2 and a second electromagnetic flowmeter 20 are sequentially connected between the stirring tank 25 and the atomizing mixing reactor 12;
  • the sulfuric acid storage tank 7 and the atomization mixing reactor 12 are sequentially connected with a sulfuric acid metering pump 3, a second voltage stabilizing tube 6 and a first electromagnetic flowmeter 5;
  • the atomization mixing reactor 12 is sequentially connected with an electric heater 9 and a blower 11;
  • the electric heater 9 is connected in parallel with the sulfuric acid storage tank 7 and the slurry intermediate tank 10 respectively.
  • a high-efficiency cyclone 13 and a rotary discharge valve 18 are sequentially connected between the tower reactor 8 and the coil cooler 19; the tower reactor 8 and the high-efficiency cyclone separator 13 connection; the coil cooler 19 is connected to the rotary discharge valve 18;
  • the coil cooler 19 is connected with a cam decelerating discharge motor 21, a circulating water tank 22 and a circulating water pump 23.
  • the high-efficiency cyclone separator 13 is sequentially connected with an induced draft fan 15, an exhaust gas scrubber 14, and a circulating pump 16;
  • the induced draft fan 15 is connected in parallel with the rotary discharge valve 18.
  • it also includes an electrical instrument control system 17;
  • the electrical instrument control system 17 is respectively connected with the copper smelting waste slag conveying device 27, the scraper conveyor 1, the screw feeder 24, the stirring tank 25, the atomizing mixing reactor 12, the tower reactor 8, and the coil cooler. 19.
  • the circulating pumps 16 are electrically connected.
  • the invention also provides a method for preparing a sewage/waste water coagulant, which includes the following steps:
  • the slurry and the concentrated sulfuric acid in the sulfuric acid storage tank 7 are simultaneously transported to the atomizing mixing reactor 12, and combined in the tower reactor 8 in the form of spray, and after a catalytic reaction occurs, it passes through the pan
  • the pipe cooler 19 performs cooling to obtain the sewage/waste water coagulant.
  • the composite catalyst includes ionic rare earth oxide and iron powder atomized spherical alloy powder.
  • the mass ratio of the ionic rare earth oxide and the atomized spherical alloy powder of iron powder is (5.5-6.5): (3.5-4.5).
  • the solid content of the slurry is 60-75%.
  • the mass ratio of the copper smelting waste slag to the composite catalyst is (25-43): (0.6-2.5).
  • the ratio of the conveying flow rate of the slurry to the concentrated sulfuric acid is (0.25-0.5): (0.5-0.75).
  • the transportation of the slurry and the concentrated sulfuric acid is high-pressure transportation;
  • the delivery pressure of the concentrated sulfuric acid is 7-9MPa
  • the conveying pressure of the slurry is 0.5-3 MPa.
  • the present invention provides a device for preparing sewage coagulant, including a copper smelting waste slag conveying device 27, a scraper conveyor 1, a screw feeder 24, a stirring tank 25, an atomizing mixing reactor 12, and a tower reactor 8.
  • the cooler 19 is connected in sequence; the sulfuric acid storage tank 7, the atomizing mixing reactor 12, the tower reactor 8 and the coil cooler 19 are connected in sequence.
  • the atomization mixing reactor 12 and the tower reactor 8 are arranged to make the copper smelting waste containing ferrosilicon micropowder and concentrated sulfuric acid realize the high-speed and high-pressure collision instantaneous reaction in the form of spray, and then obtain 7-9 crystals.
  • the solid form of water sewage/waste water coagulant so that the prepared sewage/waste water coagulant can better reduce the treatment of harmful pollutants such as COD Mn , CODcr, BOD 5 , Kjeldahl nitrogen and non-ionic ammonia in the sewage/waste water. Effect.
  • harmful pollutants such as COD Mn , CODcr, BOD 5 , Kjeldahl nitrogen and non-ionic ammonia
  • the present invention also provides a method for preparing a sewage coagulant, which includes the following steps: the preparation method is carried out in the device described in the above technical solution; After the conveyor 1 and the screw feeder 24 are added to the mixing tank 25, water and the composite catalyst are sequentially added to the mixing tank 25 to obtain a slurry; the slurry and the concentrated sulfuric acid in the sulfuric acid storage tank 7 are simultaneously transported to After the atomization mixing reactor 12 is combined in the tower reactor 8 in the form of spray instantaneously and the catalytic reaction occurs, it is cooled by the coil cooler 19 to obtain the sewage coagulant.
  • the present invention utilizes the reaction between the iron-silicon composition of copper smelting waste residue and concentrated sulfuric acid: SiFe ⁇ FeSiO 2 +H 2 SO 4 ⁇ [Fe 2 (SiO 3 ) 3 (SO 4 ) 3 ⁇ nH 2 O] m +Fe 2 (SiO 3 ) 3 (SO 4 ) 3 ⁇ nH 2 O+FeSO 4 ⁇ nH 2 O to prepare a sewage coagulant, which has a good sewage treatment effect.
  • Figure 1 is a device for preparing sewage coagulant according to the present invention
  • 1-scraper conveyor 2-the first stabilizing tube, 3-sulfuric acid metering pump, 4-cam metering pump, 5-first electromagnetic flow meter, 6-second stabilizing tube, 7-sulfuric acid storage tank , 8-tower reactor, 9-electric heater, 10-slurry intermediate tank, 11-blower, 12-atomized mixing reactor, 13-high-efficiency cyclone separator, 14-exhaust gas scrubber, 15-induced draft fan , 16-circulating pump, 17-electrical instrument control system, 18-rotating discharge valve, 19-coil cooler, 20-second electromagnetic flowmeter, 21-cam deceleration discharge motor, 22-circulating water tank, 23- Circulating water pump, 24-screw feeder, 25-mixing tank, 26-weighing sensor, 27-copper smelting waste conveying device.
  • the present invention provides a device for preparing sewage coagulant, including a copper smelting waste slag conveying device 27, a scraper conveyor 1, a screw feeder 24, a stirring tank 25, an atomizing mixing reactor 12, a tower type Reactor 8, coil cooler 19 and sulfuric acid storage tank 7;
  • the copper smelting waste slag conveying device 27, the scraper conveyor 1, the screw feeder 24, the stirring tank 25, the atomizing mixing reactor 12, the tower reactor 8 and the coil cooler 19 are connected in sequence;
  • the sulfuric acid storage tank 7, the atomization mixing reactor 12, the tower reactor 8 and the coil cooler 19 are connected in sequence.
  • the spray head of the atomizing mixing reactor 12 includes a first spiral nozzle and a second spiral nozzle; the first spiral nozzle and the second spiral nozzle spray concentrated sulfuric acid and copper smelting waste residue respectively. Of slurry.
  • the height of the tower reactor 8 is 8 meters.
  • a weighing sensor 26 is provided at the discharge port of the mixing tank 25; the mixing tank 25 includes two mixing tanks to ensure continuous operation without stopping during the feeding process. ;
  • a slurry intermediate tank 10, a cam metering pump 4, a first stabilizer tube 2 and a second electromagnetic flowmeter 20 are sequentially connected between the stirring tank 25 and the atomizing mixing reactor 12;
  • the sulfuric acid storage tank 7 and the atomization mixing reactor 12 are sequentially connected with a sulfuric acid metering pump 3, a second voltage stabilizing tube 6 and a first electromagnetic flowmeter 5;
  • the atomization mixing reactor 12 is sequentially connected with an electric heater 9 and a blower 11;
  • the electric heater 9 is connected in parallel with the sulfuric acid storage tank 7 and the slurry intermediate tank 10 respectively.
  • a high-efficiency cyclone 13 and a rotary discharge valve 18 are sequentially connected between the tower reactor 8 and the coil cooler 19; the tower reactor 8 Connected to the high-efficiency cyclone separator 13; the coil cooler 19 is connected to the rotary discharge valve 18;
  • the coil cooler 19 is connected with a cam decelerating discharge motor 21, a circulating water tank 22 and a circulating water pump 23.
  • the high-efficiency cyclone separator 13 is preferably connected to an induced draft fan 15, an exhaust gas scrubber 14, and a circulating pump 16 in sequence;
  • the induced draft fan 15 is connected in parallel with the rotary discharge valve 18.
  • the device for preparing sewage/waste water coagulant preferably further includes an electrical instrument control system 17; the electrical instrument control system 17 and the copper smelting waste conveying device 27 and scraper conveyor Machine 1, screw feeder 24, stirring tank 25, atomization mixing reactor 12, tower reactor 8, coil cooler 19, sulfuric acid storage tank 7, weighing sensor 26, slurry intermediate tank 10, cam metering pump 4.
  • the discharge valve 18, the cam deceleration discharge motor 21, the circulating water tank 22, the circulating water pump 23, the induced draft fan 15, the exhaust gas scrubber 14 and the circulating pump 16 are electrically connected.
  • the effluent (washing water) in the tail gas scrubber 14 can be used as the stirring water in the stirring tank 25 for reuse, which can avoid the discharge of waste gas, waste water and waste residue.
  • the invention also provides a method for preparing a sewage coagulant, which includes the following steps:
  • the slurry and the concentrated sulfuric acid in the sulfuric acid storage tank 7 are simultaneously transported to the atomizing mixing reactor 12, and combined in the tower reactor 8 in the form of spray, and after a catalytic reaction occurs, it passes through the pan
  • the pipe cooler 19 performs cooling to obtain the sewage/waste water coagulant.
  • the copper smelting waste slag in the copper smelting waste slag conveying device 27 is sequentially added to the stirring tank 25 through the scraper conveyor 1 and the screw feeder 24, and then water and the composite catalyst are sequentially added to the stirring tank 25 to obtain a slurry .
  • the composite catalyst preferably includes ionic rare earth oxides and iron powder atomized spherical alloy powder; the present invention does not have any special restrictions on the types of ionic rare earth oxides, which are well known to those skilled in the art. Just type.
  • the particle size of the ionic rare earth oxide is preferably >400 mesh, more preferably >600 mesh; the particle diameter of the iron powder atomized spherical alloy powder is preferably 1000 mesh.
  • the valence state of iron in the iron powder atomized spherical alloy powder is preferably zero valence.
  • the mass ratio of the ionic rare earth oxide and the iron powder atomized spherical alloy powder is preferably (5.5-6.5): (3.5-4.5), more preferably 6:4.
  • the composite catalyst can strengthen the oxidation effect of concentrated sulfuric acid on the copper smelting waste residue (for example, increase the price of iron, which is beneficial to the polymerization of silicon-iron).
  • the solid content of the slurry is preferably 60-75%.
  • the mass ratio of the copper smelting waste residue to the composite catalyst is preferably (25-43): (0.6-2.5).
  • the added amounts of the copper smelting waste residue, water and composite catalyst are preferably controlled by a load cell 26.
  • the water, composite catalyst, and copper smelting waste slag are sequentially added to the stirring tank 25.
  • the stirring tank 25 is preferably in a state of stirring.
  • the present invention does not have any special restrictions on the stirring rate. It suffices to obtain a uniformly mixed slurry.
  • the present invention simultaneously transports the slurry and the concentrated sulfuric acid in the sulfuric acid storage tank 7 to the atomization mixing reactor 12, and combines them in the tower reactor 8 in the form of spray. After the catalytic reaction occurs, it is cooled by the coil cooler 19 to obtain the sewage coagulant.
  • the mass concentration of the concentrated sulfuric acid is preferably 98%.
  • the transportation of the slurry and the concentrated sulfuric acid is preferably high-pressure transportation, the transportation pressure of the concentrated sulfuric acid is preferably 7-9 MPa; the transportation pressure of the slurry is preferably 0.5-3 MPa.
  • the volume flow ratio of the slurry to the concentrated sulfuric acid is preferably 1.1:1.
  • the present invention does not have any special restrictions on the specific flow rate for conveying the slurry or conveying the concentrated sulfuric acid, and the flow rate well known to those skilled in the art may be used for conveying.
  • the temperature of the catalytic reaction is preferably room temperature, and the catalytic reaction is preferably completed in an instant.
  • the present invention also preferably separates the materials in the tower reactor 8 through the high-efficiency cyclone separator 13, and transports the solid materials to the coil cooler 19 through the rotary discharge valve 18 After cooling, the sewage/waste water coagulant is obtained; the exhaust gas scrubber 14 and the circulating pump 16 absorb the exhaust gas and discharge it to the pool, and then be pumped into the mixing tank for reuse.
  • the cooling is preferably achieved by connecting a cam decelerating discharge motor 21, a circulating water tank 22 and a circulating water pump 23 to the coil cooler 19 to realize circulating water cooling.
  • the [Fe 2 (SiO 3 ) 3 (SO 4 ) 3 ⁇ nH 2 O] m , Fe 2 (SiO 3 ) 3 (SO 4 ) 3 ⁇ nH 2 O and FeSO 4 ⁇ nH 2 O The mass ratio of is preferably 4.5:2.5:3.
  • cerium oxide, samarium oxide, europium oxide and yttrium oxide It is a mixture of cerium oxide, samarium oxide, europium oxide and yttrium oxide, and the mass ratio of the cerium oxide, samarium oxide, europium oxide and yttrium oxide is 1:1.5:0.8:0.9; ionic rare earth oxide and iron powder are atomized
  • the mass ratio of the spherical alloy powder is 6:4) to obtain a slurry (the solid content is 72%, and the mass ratio of the copper smelting slag to the composite catalyst in the slurry is 1:0.03);
  • the slurry and the concentrated sulfuric acid in the sulfuric acid storage tank 7 are simultaneously transported (the volume flow ratio of the slurry and the concentrated sulfuric acid is 1.1:1, where the transport pressure of the concentrated sulfuric acid is 7MPa, and the transport pressure of the slurry is 3MPa) to After the atomization mixing reactor 12 is combined in the tower reactor 8 in the form of spray and the catalytic reaction occurs, the material in the tower reactor 8 is passed through the high-efficiency cyclone separator 13 After separation, the remaining materials are discharged through the induced draft fan 15, tail gas scrubber 14 and circulating pump 16 connected to the high-efficiency cyclone separator 13, and then discharged; the solid materials are conveyed to the coil for cooling through the rotary discharge valve 18 Cooling in the device 19 to obtain sewage coagulant ([Fe 2 (SiO 3 ) 3 (SO 4 ) 3 ⁇ nH 2 O] m , Fe 2 (SiO 3 ) 3 (SO 4 ) 3 ⁇ nH 2 O and FeSO 4 ⁇
  • cerium oxide, samarium oxide, europium oxide and yttrium oxide It is a mixture of cerium oxide, samarium oxide, europium oxide and yttrium oxide, and the mass ratio of the cerium oxide, samarium oxide, europium oxide and yttrium oxide is 1:1.5:0.8:0.9; ionic rare earth oxide and iron powder are atomized
  • the mass ratio of the spherical alloy powder is 6:4) to obtain a slurry (the solid content is 72%, and the mass ratio of the copper smelting slag to the composite catalyst in the slurry is 1:0.03);
  • the slurry and the concentrated sulfuric acid in the sulfuric acid storage tank 7 are simultaneously transported (the flow ratio of the slurry and the concentrated sulfuric acid is 1.1:1, where the transport pressure of the concentrated sulfuric acid is 7 MPa, and the transport pressure of the slurry is 3 MPa).
  • Example 1 According to the ratio of sewage coagulant to sewage mass ratio of 1:1000, the sewage coagulant prepared in Example 1 was added to the sewage to be treated 1 (Zhejiang Shaoxing Zhonghuan Printing and Dyeing Co., Ltd.), and Example 2 was prepared The obtained sewage coagulant was added to the sewage to be treated 2 (Zhejiang Shaoxing Zhonghuan Printing and Dyeing Co., Ltd.), and the sewage treated with the sewage coagulant and the treated sewage were tested:

Abstract

一种制备污水/废水混凝剂的装置、污水/废水混凝剂及其制备方法。制备污水/废水混凝剂的装置通过设置雾化混合反应器(12)和塔式反应器(8)使含有硅铁微粉的炼铜废渣浆和浓硫酸以涡流喷雾的形式实现高速高压的对撞式瞬间反应,进而得到含7~9个结晶水的固体形态混凝剂,使制备得到的混凝剂具有较好的降低污水及废水中COD Mn、COD Cr、BOD 5、凯氏氮非离子氨等有害污染物质的处理效果,并且整个连续生产的过程中没有废气、废水和废渣。同时还避免了硅铁微粉一般情况下只能形成糊状物质,经过干燥处理后会引起变性的问题。

Description

一种制备污水/废水混凝剂的装置、污水/废水混凝剂及其制备方法
本申请要求于2020年05月09日提交中国专利局、申请号为202010387611.1、发明名称为“一种制备污水/废水混凝剂的装置、污水/废水混凝剂及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及污水/废水混凝剂技术领域,尤其涉及了一种制备污水/废水混凝剂的装置、污水/废水混凝剂及其制备方法。
背景技术
本发明背景技术中公开的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
目前对于污水/废水的治理对人类的生存具有重要的意义,其主要原因包括以下几方面:污水/废水中含有大量的有机质,微生物分解消耗大量的氧气容易导致水中生物死亡,会引起生态失衡;污水/废水中含有重金属,有可能会通过食物链进入人类餐桌,危害人类健康;污水/废水会产生的臭气,污染大气,危害环境。
同时,炼铜废渣是精铜生产过程中的主要废弃物,其化学成分和金相结构主要包括铁-硅组合、微量铁-硅钙组合和少量的三价游离铁。因此,如何在炼铜废渣进行有效处理的同时还能够有效无污染生产出有效处理污水的混凝剂,是国内外炼铜业至今没有解决,并一直在研究的课题。
发明内容
本发明要解决的技术问题/达到的目的至少包括:提供一种制备污水/废水混凝剂的装置、污水/废水混凝剂及其制备方法。
为此,本发明提供一种制备污水/废水混凝剂的装置,所述制备污水/废水混凝剂的装置可以实现副产品浓硫酸与炼铜废渣浆的对撞式瞬间反应,并一次性生产出污水/废水混凝剂,所述污水/废水混凝剂对污水/废水处理具有很好的效果。
为实现上述目的,本发明公开了下述技术方案:
本发明提供一种制备污水/废水混凝剂的装置,包括炼铜废渣输送装置27、刮板式输送机1、螺旋加料器24、搅拌罐25、雾化混合反应器12、塔式反应器8、盘管冷却器19和硫酸存储罐7;
所述炼铜废渣输送装置27、刮板式输送机1、螺旋加料器24、搅拌罐25、雾化混合反应器12、塔式反应器8和盘管冷却器19顺次连接;
所述硫酸存储罐7、雾化混合反应器12、塔式反应器8和盘管冷却器19顺次连接。
优选的,所述搅拌罐25的出料口设置有称重传感器26;
所述搅拌罐25与所述雾化混合反应器12之间顺次连接有料浆中间槽10、凸轮计量泵4、第一稳压管2和第二电磁流量计20;
所述硫酸存储罐7与所述雾化混合反应器12之间顺次连接有硫酸计量泵3、第二稳压管6和第一电磁流量计5;
所述雾化混合反应器12顺次连接有电加热器9和鼓风机11;
所述电加热器9分别与所述硫酸存储罐7和所述料浆中间槽10并联。
优选的,所述塔式反应器8与所述盘管冷却器19之间顺次连接有高效旋风分离器13和旋转排料阀18;所述塔式反应器8与所述高效旋风分离器13连接;所述盘管冷却器19与所述旋转排料阀18连接;
所述盘管冷却器19连接有凸轮减速排料电机21、循环水箱22和循环水泵23。
优选的,所述高效旋风分离器13顺次连接有引风机15、尾气洗涤器14和循环泵16;
所述引风机15与所述旋转排料阀18并联。
优选的,还包括电器仪表控制系统17;
所述电器仪表控制系统17分别与所述炼铜废渣输送装置27、刮板式输送机1、螺旋加料器24、搅拌罐25、雾化混合反应器12、塔式反应器8、盘管冷却器19、硫酸存储罐7、称重传感器26、料浆中间槽10、凸轮计量泵4、第一稳压管2、第二电磁流量计20、硫酸计量泵3、第二稳压管6、第一电磁流量计5、电加热器9、鼓风机11、高效旋风分离器13、 旋转排料阀18、凸轮减速排料电机21、循环水箱22、循环水泵23、引风机15、尾气洗涤器14和循环泵16之间电气连接。
本发明还提供了一种污水/废水混凝剂的制备方法,包括以下步骤:
所述制备方法在上述技术方案所述的装置中进行;
将炼铜废渣输送装置27中的炼铜废渣依次通过刮板式输送机1和螺旋加料器24加入至搅拌罐25中后,在所述搅拌罐25中依次加水和复合催化剂,得到浆料;
将所述浆料和硫酸存储罐7中的浓硫酸同时输送至所述雾化混合反应器12中,并以喷雾的形式在所述塔式反应器8中结合并发生催化反应后,经过盘管冷却器19进行冷却,得到所述污水/废水混凝剂。
优选的,所述复合催化剂包括离子型稀土氧化物和铁粉雾化球形合金粉。
优选的,所述离子型稀土氧化物和铁粉雾化球形合金粉的质量比为(5.5~6.5):(3.5~4.5)。
优选的,所述浆料的固含量为60~75%。
优选的,所述炼铜废渣与所述复合催化剂的质量比为(25~43):(0.6~2.5)。
优选的,所述浆料和所述浓硫酸的输送流量之比为(0.25~0.5):(0.5~0.75)。
优选的,所述浆料与所述浓硫酸的输送为高压输送;
所述浓硫酸的输送压力为7~9MPa;
所述浆料的输送压力为0.5~3MPa。
本发明还提供了上述技术方案所述的制备方法制备得到的污水/废水混凝剂,所述污水混凝剂包括[Fe 2(SiO 3) 3(SO 4) 3·nH 2O] m、Fe 2(SiO 3) 3(SO 4) 3·nH 2O和FeSO 4·nH 2O,其中,n=1~3,m=7~9。
本发明提供了一种制备污水混凝剂的装置,包括炼铜废渣输送装置27、刮板式输送机1、螺旋加料器24、搅拌罐25、雾化混合反应器12、塔式反应器8、盘管冷却器19和硫酸存储罐7;所述炼铜废渣输送装置 27、刮板式输送机1、螺旋加料器24、搅拌罐25、雾化混合反应器12、塔式反应器8和盘管冷却器19顺次连接;所述硫酸存储罐7、雾化混合反应器12、塔式反应器8和盘管冷却器19顺次连接。本发明通过设置雾化混合反应器12和塔式反应器8使含有硅铁微粉的炼铜废渣和浓硫酸以喷雾的形式实现高速高压的对撞式瞬间反应,进而得到含7~9个结晶水的固体形态污水/废水混凝剂,使制备得到的污水/废水混凝剂具有较好的降低污水/废水中COD Mn、CODcr、BOD 5、凯氏氮非离子氨等有害污染物质的处理效果。并且整个连续生产的过程中没有废气、废水和废渣,同时还避免了硅铁微粉一般情况下只能形成糊状物质,经过干燥处理后会引起变性的问题。
本发明还提供了一种污水混凝剂的制备方法,包括以下步骤:所述制备方法在上述技术方案所述的装置中进行;将炼铜废渣输送装置27中的炼铜废渣依次通过刮板式输送机1和螺旋加料器24加入至搅拌罐25中后,在所述搅拌罐25中依次加水和复合催化剂,得到浆料;将所述浆料和硫酸存储罐7中的浓硫酸同时输送至所述雾化混合反应器12中,并以喷雾的形式在所述塔式反应器8中瞬间结合并发生催化反应后,经过盘管冷却器19进行冷却,得到所述污水混凝剂。本发明利用炼铜废渣的铁-硅组合物与浓硫酸的反应:SiFe·FeSiO 2+H 2SO 4→[Fe 2(SiO 3) 3(SO 4) 3·nH 2O] m+Fe 2(SiO 3) 3(SO 4) 3·nH 2O+FeSO 4·nH 2O,制备得到了污水混凝剂,所述污水混凝剂具有较好的污水处理效果。
说明书附图
图1为本发明所述制备污水混凝剂的装置;
其中,1-刮板式输送机,2-第一稳压管,3-硫酸计量泵,4-凸轮计量泵,5-第一电磁流量计,6-第二稳压管,7-硫酸存储罐,8-塔式反应器,9-电加热器,10-料浆中间槽,11-鼓风机,12-雾化混合反应器,13-高效旋风分离器,14-尾气洗涤器,15-引风机,16-循环泵,17-电器仪表控制系统,18-旋转排料阀,19-盘管冷却器,20-第二电磁流量计,21-凸轮减速排料电机,22-循环水箱,23-循环水泵,24-螺旋加料器,25-搅拌罐,26-称重传感器,27-炼铜废渣输送装置。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如,在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
本发明提供了本发明提供了一种制备污水混凝剂的装置,包括炼铜废渣输送装置27、刮板式输送机1、螺旋加料器24、搅拌罐25、雾化混合反应器12、塔式反应器8、盘管冷却器19和硫酸存储罐7;
所述炼铜废渣输送装置27、刮板式输送机1、螺旋加料器24、搅拌罐25、雾化混合反应器12、塔式反应器8和盘管冷却器19顺次连接;
所述硫酸存储罐7、雾化混合反应器12、塔式反应器8和盘管冷却器19顺次连接。
在本发明的具体实施例中,所述雾化混合反应器12的喷头包括第一螺旋喷嘴和第二螺旋喷嘴;所述第一螺旋喷嘴和第二螺旋喷嘴分别喷射浓硫酸和含有炼铜废渣的浆料。
在本发明的具体实施例中,所述塔式反应器8的高度为8米。
在本发明的具体实施例中,所述搅拌罐25的出料口处设置有称重传感器26;所述搅拌罐25包括两个搅拌罐可以保证在供料过程中,可以连续工作,不停顿;
所述搅拌罐25与所述雾化混合反应器12之间顺次连接有料浆中间槽10、凸轮计量泵4、第一稳压管2和第二电磁流量计20;
所述硫酸存储罐7与所述雾化混合反应器12之间顺次连接有硫酸计量泵3、第二稳压管6和第一电磁流量计5;
所述雾化混合反应器12顺次连接有电加热器9和鼓风机11;
所述电加热器9分别与所述硫酸存储罐7和所述料浆中间槽10并联。
在本发明的具体实施例中,所述塔式反应器8与所述盘管冷却器19之间通过顺次连接有高效旋风分离器13和旋转排料阀18;所述塔式反应器8与所述高效旋风分离器13连接;所述盘管冷却器19与所述旋转排料阀18连接;
所述盘管冷却器19连接有凸轮减速排料电机21、循环水箱22和循环水泵23。
在本发明的具体实施例中,所述高效旋风分离器13优选顺次连接有引风机15、尾气洗涤器14和循环泵16;
所述引风机15与所述旋转排料阀18并联。
在本发明的具体实施例中,所述制备污水/废水混凝剂的装置优选还包括电器仪表控制系统17;所述电器仪表控制系统17分别与所述炼铜废渣输送装置27、刮板式输送机1、螺旋加料器24、搅拌罐25、雾化混合反应器12、塔式反应器8、盘管冷却器19、硫酸存储罐7、称重传感器26、料浆中间槽10、凸轮计量泵4、第一稳压管2、第二电磁流量计20、硫酸计量泵3、第二稳压管6、第一电磁流量计5、电加热器9、鼓风机11、高效旋风分离器13、旋转排料阀18、凸轮减速排料电机21、循环水箱22、循环水泵23、引风机15、尾气洗涤器14和循环泵16之间电气连接。所述尾气洗涤器14中的出水(洗涤水)可用作搅拌罐25中的搅拌用水进行回用,可以避免废气、废水和废渣的排放。
本发明还提供了一种污水混凝剂的制备方法,包括以下步骤:
所述制备方法在上述技术方案所述的装置中进行;
将炼铜废渣输送装置27中的炼铜废渣依次通过刮板式输送机1和螺旋加料器24加入至搅拌罐25中后,在所述搅拌罐25中依次加水和复合催化剂,得到浆料;
将所述浆料和硫酸存储罐7中的浓硫酸同时输送至所述雾化混合反应器12中,并以喷雾的形式在所述塔式反应器8中结合并发生催化反应后,经过盘管冷却器19进行冷却,得到所述污水/废水混凝剂。
本发明将炼铜废渣输送装置27中的炼铜废渣依次通过刮板式输送机 1和螺旋加料器24加入至搅拌罐25中后,在所述搅拌罐25中依次加水和复合催化剂,得到浆料。
在本发明中,所述复合催化剂优选包括离子型稀土氧化物和铁粉雾化球形合金粉;本发明对所述离子型稀土氧化物的种类没有任何特殊的限定,采用本领域技术人员熟知的种类即可。在本发明中,所述离子型稀土氧化物的粒径优选>400目,更优选>600目;所述铁粉雾化球形合金粉的粒径优选为1000目。在本发明中,所述铁粉雾化球形合金粉中铁的价态优选为0价。在本发明中,所述离子型稀土氧化物和铁粉雾化球形合金粉的质量比优选为(5.5~6.5):(3.5~4.5),更优选为6:4。在本发明中,所述复合催化剂可以强化浓硫酸对炼铜废渣的氧化作用(如提升铁的价位,利于硅-铁的聚合)。
在本发明中,所述浆料的固含量优选为60~75%。在本发明中,所述炼铜废渣与所述复合催化剂的质量比优选为(25~43):(0.6~2.5)。
在本发明中,所述炼铜废渣、水和复合催化剂的加入量优选通过称重传感器26进行控制。
在本发明中,所述水、复合催化剂、炼铜废渣依次加入所述搅拌罐25中。
在本发明中,上述制备浆料的过程中,所述搅拌罐25优选处于搅拌的状态,本发明对所述搅拌的速率没有任何特殊的限定,采用本领域技术人员熟知的速率进行搅拌并能够得到混料均匀的浆料即可。
得到浆料后,本发明将所述浆料和硫酸存储罐7中的浓硫酸同时输送至所述雾化混合反应器12中,并以喷雾的形式在所述塔式反应器8中结合并发生催化反应后,经过盘管冷却器19进行冷却,得到所述污水混凝剂。在本发明中,所述浓硫酸的质量浓度优选为98%。在本发明中,所述浆料与所述浓硫酸的输送优选为高压输送,所述浓硫酸的输送压力优选为7~9MPa;所述浆料的输送压力优选为0.5~3MPa。在本发明中,输送所述浆料与所述浓硫酸的体积流量比优选为1.1:1。本发明对输送所述浆料或输送所述浓硫酸的具体流速没有任何特殊的限定,采用本领域技术人 员熟知的流速进行输送即可。
在本发明中,所述催化反应的温度优选为室温,所述催化反应优选在瞬间完成。
所述催化反应完成后,本发明还优选将所述塔式反应器8中的物料通过高效旋风分离器13对物料进行分离,将固体物料通过旋转排料阀18输送至盘管冷却器19中进行冷却,得到污水/废水混凝剂;将尾气洗涤器14和循环泵16吸收废气处理后排至水池,待泵入搅拌罐中回用。
在本发明中,所述冷却优选通过与所述盘管冷却器19连接凸轮减速排料电机21、循环水箱22和循环水泵23实现循环水冷却。
本发明还提供了上述技术方案所述的制备方法制备得到的污水混凝剂,所述污水混凝剂包括[Fe 2(SiO 3) 3(SO 4) 3·nH 2O] m、Fe 2(SiO 3) 3(SO 4) 3·nH 2O和FeSO 4·nH 2O,其中,n=1~3,m=7~9。在本发明中,所述[Fe 2(SiO 3) 3(SO 4) 3·nH 2O] m、Fe 2(SiO 3) 3(SO 4) 3·nH 2O和FeSO 4·nH 2O的质量比优选为4.5:2.5:3。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
污水混凝土的生产过程在图1所述的装置中进行,具体过程如下:
将炼铜废渣输送装置27中的炼铜废渣依次通过刮板式输送机1和螺旋加料器24加入至搅拌罐25中后,在所述搅拌罐25中依次加水和复合催化剂(离子型稀土氧化物为氧化铈、氧化钐、氧化铕和氧化钇的混合物,所述氧化铈、氧化钐、氧化铕和氧化钇的质量比为1:1.5:0.8:0.9;离子型稀土氧化物和铁粉雾化球形合金粉的质量比为6:4),得到浆料(固含量为72%,所述浆料中炼铜废渣与复合催化剂的质量比为1:0.03);
将所述浆料和硫酸存储罐7中的浓硫酸同时输送(浆料和浓硫酸的体积流量比为1.1:1,其中,浓硫酸的输送压力为7MPa,浆料的输送压力为3MPa)至所述雾化混合反应器12中,并以喷雾的形式在所述塔式 反应器8中结合并发生催化反应后,将所述塔式反应器8中的物料通过高效旋风分离器13对物料进行分离,将其余物料通过与所述高效旋风分离器13连接的引风机15、尾气洗涤器14和循环泵16进行废气处理后,排出;将固体物料通过旋转排料阀18输送至盘管冷却器19中进行冷却,得到污水混凝剂([Fe 2(SiO 3) 3(SO 4) 3·nH 2O] m、Fe 2(SiO 3) 3(SO 4) 3·nH 2O和FeSO 4·nH 2O,其中,n=1~3,m=7~9。所述[Fe 2(SiO 3) 3(SO 4) 3·nH 2O] m、Fe 2(SiO 3) 3(SO 4) 3·nH 2O和FeSO 4·nH 2O的质量比4.5:2.5:3)。
实施例2
污水混凝土的生产过程在图1所述的装置中进行,具体过程如下:
将炼铜废渣输送装置27中的炼铜废渣依次通过刮板式输送机1和螺旋加料器24加入至搅拌罐25中后,在所述搅拌罐25中依次加水和复合催化剂(离子型稀土氧化物为氧化铈、氧化钐、氧化铕和氧化钇的混合物,所述氧化铈、氧化钐、氧化铕和氧化钇的质量比为1:1.5:0.8:0.9;离子型稀土氧化物和铁粉雾化球形合金粉的质量比为6:4),得到浆料(固含量为72%,所述浆料中炼铜废渣与复合催化剂的质量比为1:0.03);
将所述浆料和硫酸存储罐7中的浓硫酸同时输送(浆料和浓硫酸的流量比为1.1:1,其中,浓硫酸的输送压力为7MPa,浆料的输送压力为3MPa)至所述雾化混合反应器12中,并以喷雾的形式在所述塔式反应器8中结合并发生催化反应后,将所述塔式反应器8中的物料通过高效旋风分离器13对物料进行分离,将其余物料通过与所述高效旋风分离器13连接的引风机15、尾气洗涤器14和循环泵16进行废气处理后,排出;将固体物料通过旋转排料阀18输送至盘管冷却器19中进行冷却,得到污水混凝剂([Fe 2(SiO 3) 3(SO 4) 3·nH 2O] m、Fe 2(SiO 3) 3(SO 4) 3·nH 2O和FeSO 4·nH 2O,其中,n=1~3,m=7~9。所述[Fe 2(SiO 3) 3(SO 4) 3·nH 2O] m、Fe 2(SiO 3) 3(SO 4) 3·nH 2O和FeSO 4·nH 2O的质量比4.5:2.5:3)。
测试例
按照污水混凝剂与污水的质量比为1:1000的配比,将实施例1制备得到的污水混凝剂加入至待处理污水1(浙江绍兴中环印染有限公司)中, 将实施例2制备得到的污水混凝剂加入至待处理污水2(浙江绍兴中环印染有限公司)中,对未加所述污水混凝剂处理的污水和处理后的污水进行测试:
pH值的测定:玻璃电极法GB/T6920-1986;
化学需氧量的测定:重铬酸盐法HJ828-2017;
氨氮的测定:纳氏试剂分光光度法HJ535-2009;
总氮的测定:碱性过硫酸钾消解紫外分光光度法HJ636-2012;
悬浮物的测定:重量法GB/T11901-1989;
总磷的测定:钼酸铵分光光度法GB/T11893-1989;
五日生化需氧量的测定:稀释与接种法HJ505-2009。
测试结果如表1所示:
表1污水在未处理前和处理后的成分测试结果
Figure PCTCN2020121422-appb-000001
Figure PCTCN2020121422-appb-000002
由表1可知,利用本发明所述的制备方法制备得到的污水混凝剂对污水处理具有较好的效果,上述检测指标已优于浙江省工业废水纳管标准。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (13)

  1. 一种制备污水/废水混凝剂的装置,其特征在于,包括炼铜废渣输送装置(27)、刮板式输送机(1)、螺旋加料器(24)、搅拌罐(25)、雾化混合反应器(12)、塔式反应器(8)、盘管冷却器(19)和硫酸存储罐(7);
    所述炼铜废渣输送装置(27)、刮板式输送机(1)、螺旋加料器(24)、搅拌罐(25)、雾化混合反应器(12)、塔式反应器(8)和盘管冷却器(19)顺次连接;
    所述硫酸存储罐(7)、雾化混合反应器(12)、塔式反应器(8)和盘管冷却器(19)顺次连接。
  2. 如权利要求1所述的装置,其特征在于,所述搅拌罐(25)的出料口设置有称重传感器(26);
    所述搅拌罐(25)与所述雾化混合反应器(12)之间顺次连接有料浆中间槽(10)、凸轮计量泵(4)、第一稳压管(2)和第二电磁流量计(20);
    所述硫酸存储罐(7)与所述雾化混合反应器(12)之间顺次连接有硫酸计量泵(3)、第二稳压管(6)和第一电磁流量计(5);
    所述雾化混合反应器(12)顺次连接有电加热器(9)和鼓风机(11);
    所述电加热器(9)分别与所述硫酸存储罐(7)和所述料浆中间槽(10)并联。
  3. 如权利要求1所述的装置,其特征在于,所述塔式反应器(8)与所述盘管冷却器(19)之间顺次连接有高效旋风分离器(13)和旋转排料阀(18);所述塔式反应器(8)与所述高效旋风分离器(13)连接;所述盘管冷却器(19)与所述旋转排料阀(18)连接;
    所述盘管冷却器(19)连接有凸轮减速排料电机(21)、循环水箱(22)和循环水泵(23)。
  4. 如权利要求3所述的装置,其特征在于,所述高效旋风分离器(13)顺次连接有引风机(15)、尾气洗涤器(14)和循环泵(16);
    所述引风机(15)与所述旋转排料阀(18)并联。
  5. 如权利要求1~4任一项所述的装置,其特征在于,还包括电器仪表控制系统(17);
    所述电器仪表控制系统(17)分别与所述炼铜废渣输送装置(27)、刮板式输送机(1)、螺旋加料器(24)、搅拌罐(25)、雾化混合反应器(12)、塔式反应器(8)、盘管冷却器(19)、硫酸存储罐(7)、称重传感器(26)、料浆中间槽(10)、凸轮计量泵(4)、第一稳压管(2)、第二电磁流量计(20)、硫酸计量泵(3)、第二稳压管(6)、第一电磁流量计(5)、电加热器(9)、鼓风机(11)、高效旋风分离器(13)、旋转排料阀(18)、凸轮减速排料电机(21)、循环水箱(22)、循环水泵(23)、引风机(15)、尾气洗涤器(14)和循环泵(16)之间电气连接。
  6. 一种污水/废水混凝剂的制备方法,其特征在于,包括以下步骤:
    所述制备方法在权利要求1所述的装置中进行;
    将炼铜废渣输送装置(27)中的炼铜废渣依次通过刮板式输送机(1)和螺旋加料器(24)加入至搅拌罐(25)中后,在所述搅拌罐(25)中依次加水和复合催化剂,得到浆料;
    将所述浆料和硫酸存储罐(7)中的浓硫酸同时输送至所述雾化混合反应器(12)中,并以喷雾的形式在所述塔式反应器(8)中瞬间结合并发生催化反应后,经过盘管冷却器(19)进行冷却,得到所述污水/废水混凝剂。
  7. 如权利要求6所述的制备方法,其特征在于,所述复合催化剂包括离子型稀土氧化物和铁粉雾化球形合金粉。
  8. 如权利要求7所述的制备方法,其特征在于,所述离子型稀土氧化物和铁粉雾化球形合金粉的质量比为(5.5~6.5):(3.5~4.5)。
  9. 如权利要求6所述的制备方法,其特征在于,所述浆料的固含量为60~75%。
  10. 如权利要求6所述的制备方法,其特征在于,所述炼铜废渣与所 述复合催化剂的质量比为(25~43):(0.6~2.5)。
  11. 如权利要求9所述的制备方法,其特征在于,所述浆料和所述浓硫酸的输送流量之比为(0.25~0.5):(0.5~0.75)。
  12. 如权利要求11所述的制备方法,其特征在于,所述浆料与所述浓硫酸的输送为高压输送;
    所述浓硫酸的输送压力为7~9MPa;
    所述浆料的输送压力为0.5~3MPa。
  13. 权利要求6~12任一项所述的制备方法制备得到的污水/废水混凝剂,所述污水混凝剂包括[Fe 2(SiO 3) 3(SO 4) 3·nH 2O] m、Fe 2(SiO 3) 3(SO 4) 3·nH 2O和FeSO 4·nH 2O,其中,n=1~3,m=7~9。
PCT/CN2020/121422 2020-05-09 2020-10-16 一种制备污水/废水混凝剂的装置、污水/废水混凝剂及其制备方法 WO2021227356A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010387611.1A CN111686658A (zh) 2020-05-09 2020-05-09 一种制备污水/废水混凝剂的装置、污水/废水混凝剂及其制备方法
CN202010387611.1 2020-05-09

Publications (1)

Publication Number Publication Date
WO2021227356A1 true WO2021227356A1 (zh) 2021-11-18

Family

ID=72477499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121422 WO2021227356A1 (zh) 2020-05-09 2020-10-16 一种制备污水/废水混凝剂的装置、污水/废水混凝剂及其制备方法

Country Status (2)

Country Link
CN (1) CN111686658A (zh)
WO (1) WO2021227356A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111686658A (zh) * 2020-05-09 2020-09-22 陈躬 一种制备污水/废水混凝剂的装置、污水/废水混凝剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101249987A (zh) * 2008-03-17 2008-08-27 李绍通 聚合硫酸铁的合成方法
JP2016160110A (ja) * 2015-02-27 2016-09-05 独立行政法人国立高等専門学校機構 銅スラグの処理方法
CN207108517U (zh) * 2017-07-12 2018-03-16 南京云泰化工总厂 一种硫铁矿渣制备聚合硫酸铁净水剂的装置
CN107876538A (zh) * 2017-10-17 2018-04-06 广西金川有色金属有限公司 一种将铜冶炼尾矿综合利用制备铁盐的装置及工艺
CN111072071A (zh) * 2019-12-13 2020-04-28 潘爱芳 一种利用铁尾矿生产聚合硫酸铝铁净水剂和硅胶的方法
CN111686658A (zh) * 2020-05-09 2020-09-22 陈躬 一种制备污水/废水混凝剂的装置、污水/废水混凝剂及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2407027A1 (fr) * 1977-10-25 1979-05-25 Air Ind Procede de depoussierage de particules
CN100395013C (zh) * 2005-04-29 2008-06-18 中国石油化工股份有限公司 改进的石油烃催化裂化反应器
CN203683121U (zh) * 2013-11-28 2014-07-02 重庆蓝洁广顺净水材料有限公司 一种使用密封耐酸聚合反应池的聚氯化铝生产聚合反应系统
CN104353405B (zh) * 2014-11-24 2017-11-14 沈阳化工大学 一种水平三向撞击流混合反应器
CN105692828B (zh) * 2016-02-03 2019-04-12 长沙矿冶研究院有限责任公司 用铌钽铁矿废渣制备聚硅酸硫酸铁絮凝剂的方法和应用
CN107162134A (zh) * 2017-05-27 2017-09-15 江苏省冶金设计院有限公司 一种铜尾渣制取无机高分子絮凝剂聚硅酸铁锌的方法
CN108238647A (zh) * 2017-10-21 2018-07-03 成都莫尼塔科技有限公司 混凝剂聚合硫酸铁的生产装置
CN110961047A (zh) * 2018-09-30 2020-04-07 中国石油天然气股份有限公司 一种催化裂化装置用喷嘴

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101249987A (zh) * 2008-03-17 2008-08-27 李绍通 聚合硫酸铁的合成方法
JP2016160110A (ja) * 2015-02-27 2016-09-05 独立行政法人国立高等専門学校機構 銅スラグの処理方法
CN207108517U (zh) * 2017-07-12 2018-03-16 南京云泰化工总厂 一种硫铁矿渣制备聚合硫酸铁净水剂的装置
CN107876538A (zh) * 2017-10-17 2018-04-06 广西金川有色金属有限公司 一种将铜冶炼尾矿综合利用制备铁盐的装置及工艺
CN111072071A (zh) * 2019-12-13 2020-04-28 潘爱芳 一种利用铁尾矿生产聚合硫酸铝铁净水剂和硅胶的方法
CN111686658A (zh) * 2020-05-09 2020-09-22 陈躬 一种制备污水/废水混凝剂的装置、污水/废水混凝剂及其制备方法

Also Published As

Publication number Publication date
CN111686658A (zh) 2020-09-22

Similar Documents

Publication Publication Date Title
CN105692860B (zh) 催化臭氧化-类芬顿耦合反应器及有毒难降解废水处理方法
CN104789789B (zh) 一种黄金冶炼过程中含氰矿渣的处理方法
CN105645633B (zh) 一种高浓硝基苯类废水预处理装置及处理方法
CN104445750B (zh) 一种含氰废水回收治理方法
CN106517478B (zh) 一种提高零价铁还原去除污染物的方法
CN104710000B (zh) 一种超重力场中催化臭氧降解硝基苯类废水的方法及装置
WO2021227356A1 (zh) 一种制备污水/废水混凝剂的装置、污水/废水混凝剂及其制备方法
CN105692717A (zh) 一种聚合硫酸铁及其制备方法
CN109264892A (zh) 含重金属、毒性有机物的液体危险废物的处理方法
CN105540931A (zh) 一种工业废水多元组合催化零价铁类芬顿处理方法及其装置
CN107572565A (zh) 一种管式反应连续制备氢氧化镁的方法和装置
CN103058480A (zh) 一种处理污泥的设备及方法
CN109364926A (zh) 用于脱硫废水类芬顿反应去除氨氮的催化剂的制备方法
CN109809652A (zh) 一种化学镍废水电催化氧化处理方法及系统
CN106517670B (zh) 一种废水的深度处理工艺
CN105384286B (zh) 一种工业废水循环回收利用的处理方法
CA2739043A1 (en) Mixer and method for mixing a gas and solution
CN208869460U (zh) 一种应用双金属类芬顿催化剂的污水处理装置
CN107417010B (zh) 一种高浓度含盐有机废水催化氧化处理工艺及系统
CN111068476A (zh) 硝酸溶解金属过程中nox尾气的处理装置、方法及终端
CN106111102A (zh) 易于重复反应的高效类芬顿工艺
CN209456139U (zh) 一种臭氧催化氧化反应装置
CN204958680U (zh) 工业废水的处理装置
CN106396187A (zh) 一种含氰废水处理和回用的方法
CN206204101U (zh) 一种节能高效的一体化废水处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935851

Country of ref document: EP

Kind code of ref document: A1