WO2021227210A1 - 一种能够还原金属的设备及还原工艺 - Google Patents

一种能够还原金属的设备及还原工艺 Download PDF

Info

Publication number
WO2021227210A1
WO2021227210A1 PCT/CN2020/097935 CN2020097935W WO2021227210A1 WO 2021227210 A1 WO2021227210 A1 WO 2021227210A1 CN 2020097935 W CN2020097935 W CN 2020097935W WO 2021227210 A1 WO2021227210 A1 WO 2021227210A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace body
metal
reduction process
reducing
reduced
Prior art date
Application number
PCT/CN2020/097935
Other languages
English (en)
French (fr)
Inventor
刘虎才
刘竞阳
Original Assignee
刘虎才
刘竞阳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘虎才, 刘竞阳 filed Critical 刘虎才
Publication of WO2021227210A1 publication Critical patent/WO2021227210A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0033In fluidised bed furnaces or apparatus containing a dispersion of the material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/12Dry methods smelting of sulfides or formation of mattes by gases
    • C22B5/14Dry methods smelting of sulfides or formation of mattes by gases fluidised material

Definitions

  • the invention belongs to the field of metallurgy, and specifically relates to a device capable of reducing metal and a reduction process.
  • Blast furnace ironmaking is the mainstay of ironmaking production.
  • its technology has become very mature, but it also has inherent shortcomings, namely The strong dependence on metallurgical coke has a particularly prominent impact on areas lacking coking coal resources.
  • the abundant and cheap non-coking coal is not fully utilized in ironmaking production.
  • people have been seeking ways to replace metallurgical coke with other fuels, including pulverized coal injection and heavy oil injection.
  • Natural gas injection are more effective measures, but the effects of these measures are limited after all, and they cannot replace the skeletal effect of coke in the blast furnace.
  • blast furnace ironmaking is the mainstream of pig iron production in the world today.
  • the most typical process flow of modern steel production is: blast furnace iron material (lumps, pellets, sintered ore) + metallurgical coke (coking coal ⁇ coke oven ⁇ metallurgical coke)+
  • the bulk flux is mixed into the blast furnace ⁇ molten iron ⁇ converter ⁇ converter steel.
  • non-blast furnace ironmaking In order to find an ironmaking process that does not require or requires a small amount of coke, non-blast furnace ironmaking was produced.
  • Today’s mainstream non-blast furnace ironmaking process consists of direct reduction and smelting reduction processes, which are also modern non-blast furnace ironmaking processes. main body.
  • the product produced by direct reduction of non-blast furnace ironmaking is sponge iron, which is a high-quality raw material for electric furnace steelmaking. It is of great significance to the development of short steel metallurgical processes.
  • the main equipment for industrial production “shaft furnace” and “reaction tank”. "Rotary kiln" "fluidized bed”. Smelting reduction is equivalent to blast furnace ironmaking in the production of iron and steel metallurgy. Its product is liquid pig iron.
  • the essence of its process is: a combination of direct reduction and smelting reduction.
  • the main equipment for industrial production is: corex c-3000, Finex, HIsmeh, HIsarna.
  • the main disadvantages of these two non-blast furnace ironmaking processes compared to traditional blast furnace ironmaking are: high energy consumption, low efficiency, the quality of molten iron cannot reach the standard of traditional blast furnace molten iron, and some coke must be used in the production process.
  • the present invention provides a device capable of reducing metals and a reduction process.
  • the equipment capable of reducing metals can replace blast furnace ironmaking and other equipment for producing sponge iron, and the reducing gas raw materials used in the reduction process can also replace the skeleton function of metallurgical coke, and remove iron fine powder sintering, coking coal coking,
  • the process of granulating coke simplifies the production process and optimizes the utilization rate of fuel.
  • the solution of the present invention is to provide a device capable of reducing metal, including a furnace body, a spray gun, an exhaust hole and a collecting part; the exhaust hole is connected to the top of the furnace body and extends inward to the furnace.
  • the inside of the body; the spray gun is connected to the upper part of the side of the furnace body; the collecting part is connected to the bottom of the furnace body; the collecting part includes a slag hole and a molten metal outlet hole; the furnace body includes a cone structure And the area where the longitudinal section of the cone structure gradually decreases is the bottom of the furnace body.
  • the furnace body further comprises a cylindrical structure, and the cylindrical structure is in communication with the cone structure.
  • the slag hole is located above the molten metal outlet hole.
  • the present invention also proposes a reduction process using the equipment capable of reducing metals, which includes the following steps:
  • the obtained reduced metal is any one of iron, copper, tin or lead.
  • the heating temperature is greater than the melting point of the reduced metal.
  • the reducing agent is pulverized coal, hydrogen or carbon monoxide.
  • the combustion-supporting gas is oxygen
  • the flux is calcium oxide or magnesium oxide.
  • the process arrangement of the equipment for reducing metal is used in parallel or in series.
  • the furnace body is heated first, and then the reducing agent (such as hydrogen, carbon monoxide or coal powder), the combustion-supporting gas (oxygen or air), the flux and the metal compound to be reduced (such as iron fine powder) are mixed, and then the spray gun
  • the tangential direction is sprayed into the inside of the furnace body (it needs to be emphasized that the spray guns can be arranged at multiple points "radially" along the wall of the furnace body.
  • the diameter of the body; spray guns are arranged at multiple points along the "axial" wall of the furnace body, which can reduce the initial velocity of the furnace body at one time, increase the length of the furnace body, and increase the reduction time of the iron fine powder) .
  • the average particle size is controlled at about 50 ⁇ m, so it can be injected into the furnace body with reducing gas and combustion-supporting gas, and the furnace body has a cone design, and the gas is inside the furnace body.
  • the working principle of the cyclone can be used to rotate in a "tornado" mode.
  • the high-temperature gas acts as the "skeleton" of the coke in the blast furnace, and the powder particles can also be mixed into the airflow and evenly distributed in the furnace body.
  • the inside of the furnace body is in a high temperature state, and the fine iron fine powder will be instantly liquefied, and will gradually gather and be reduced like "raindrops" in the high-speed rotating gas vortex, and due to centrifugal force, the iron that is instantly liquefied
  • the fine powder droplets will be thrown to the wall of the furnace body with a certain taper, and will gradually gather, and finally flow into the collection part under the action of gravity (the iron fine powder droplets will continue to be reduced when they are inside the furnace body).
  • the limit reduction time of iron concentrate powder with a particle size of 50 ⁇ m is 29s.
  • the molten iron collected in the collecting part can be discharged through the molten metal outlet hole, and the reaction slag with a lighter density is taken out from the slag hole.
  • the described equipment can be called a "cyclone furnace” because it cleverly uses the working principle of the "cyclone” and the principle of the formation of "raindrops” to reduce powdered metal oxides; and at the same time, the "cyclone furnace”
  • the process layout can be used in either “parallel” or “series”.
  • the reduction temperature of the "cyclone furnace” connected in series after the reduction of the fine iron powder can be higher than the 830°C of the "bonding loss", so that the particle size of the reduced sponge iron powder can be "growth".
  • This method can not only reduce iron, but also reduce any of copper, tin, or lead.
  • the principle is the same.
  • the chemical reaction equations that may occur inside the furnace are listed, as shown in formulas (a) to (m).
  • the amount ratio of the required raw materials can be calculated by the chemical reaction equation to calculate the theoretical value, and then combined with the actual production conditions, the theoretical value can be corrected to the actual value as needed.
  • FeO+CO Fe+CO 2 ⁇ ⁇ (D)
  • FeO+H 2 Fe+H 2 O ⁇ ⁇ (H)
  • the equipment capable of reducing metals of the present invention can replace blast furnace ironmaking and other equipment for producing sponge iron, and the reducing gas raw materials used in the reduction process can also replace the skeleton effect of metallurgical coke, and remove the iron powder sintering , Coking coal coking, coke pelletizing and other processes, simplify the production process and optimize the utilization rate of fuel.
  • the reduction process of the present invention improves the productivity of ironmaking.
  • the iron fine powder is reduced within 29 seconds in a high-temperature reducing gas atmosphere, and the speed is much higher than the reduction of blast furnace pellets, sintered ore, and lump ore.
  • Speed which greatly reduces the cost of ironmaking (cost of blast furnace construction, sintering cost of fine iron powder, coking cost of using steam coal instead of coke); at the same time, because the particle size of the powder raw materials are small, they can be mixed in the gas inside the furnace body It is very uniform, which makes the automatic control of the ironmaking process easier and more accurate, and can start the furnace, stop, overhaul and maintain at any time.
  • the reducing agent When the reducing agent is hydrogen or carbon monoxide, it can minimize the ash and harmful elements (sulfur, lead, potassium, sodium) entering the furnace.
  • Fig. 1 is a schematic diagram of the first structure of the device capable of reducing metals according to the present invention.
  • Fig. 2 is a schematic diagram of the first structure of the device capable of reducing metals according to the present invention.
  • 1-furnace body 11-cone structure; 12-cylinder structure; 2-spray gun; 3-exhaust hole; 4-collection part; 41-slag hole; 42-metal liquid outlet hole.
  • a device capable of reducing metal includes a furnace body 1, a spray gun 2, an exhaust hole 3, and a collecting part 4;
  • the exhaust hole 3 is connected to the top of the furnace body 1 and extends inward to The inside of the furnace body 1;
  • the spray gun 2 is connected to the upper part of the side of the furnace body 1;
  • the collecting part 4 is connected to the bottom of the furnace body 1;
  • the collecting part 4 includes a slag hole 41 and a molten metal outlet Hole 42;
  • the furnace body 1 includes a cone structure 11, and the area where the longitudinal section of the cone structure 11 gradually decreases is the bottom of the furnace body 1.
  • the furnace body 1 further includes a cylindrical structure 12, and the cylindrical structure 12 is in communication with the cone structure 11.
  • the slag hole 41 is located above the molten metal outlet hole 42.
  • the slag hole 41 is located above the molten metal outlet hole 42.
  • This embodiment provides a reduction process, which includes the following steps:
  • This embodiment provides a reduction process, which includes the following steps:
  • This embodiment provides a reduction process, which includes the following steps:
  • This embodiment provides a reduction process, which includes the following steps:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种能够还原金属的设备及还原工艺。设备包括炉体、喷枪、排气孔和收集部;炉体包含锥体结构,且所述锥体结构纵截面逐步减小的区域为所述炉体的底部。可代替高炉炼铁和其他生产海绵铁的设备,还原工艺中所用的还原性气体原料还可取代冶金焦的骨架作用,简化了生产工艺,提高了燃料的利用率。

Description

一种能够还原金属的设备及还原工艺 技术领域
本发明属于冶金领域,具体涉及一种能够还原金属的设备及还原工艺。
背景技术
以钢铁为例,世界90%以上的钢铁是通过高炉炼铁得到的,高炉炼铁是炼铁生产的主体,经过长时期发展,它的技术已经非常成熟,但它也存在固有的不足,即对冶金焦的强烈依赖这一点对那些缺乏焦煤资源的地区影响格外突出。与此相反,蕴藏丰富的廉价非焦煤在炼铁生产中则得不到充分利用,为了降低炼铁成本,人们一直在寻求以其他燃料代替冶金焦的途径,其中煤粉喷吹、重油喷吹、天然气喷吹都是较有效的措施,但这些措施的效果毕竟是有限度的,不能代替焦炭在高炉中的骨架作用。因此,高炉炼铁是当今世界生铁生产的主流,现代化钢铁生产最典型的工艺流程是:高炉铁料(块矿、球团、烧结矿)+冶金焦炭(炼焦煤→焦炉→冶金焦)+块状熔剂,混合进入高炉→铁水→转炉→转炉钢。
为了找到一种不需要或者须少量焦炭的炼铁工艺,非高炉炼铁便产生了,当今非高炉炼铁的主流工艺由直接还原和熔融还原两种工艺流程,也是现代化非高炉炼铁工艺的主体。非高炉炼铁直接还原的生产的产品是海绵铁,产品是电炉炼钢的优质原料,它对发展钢铁冶金短流程具有重要意义,其工业化生产的主要设备:“竖炉”“反应罐”“回转窑”“流化床”。熔融还原在钢铁冶金生产中相当于高炉炼铁,它的产品是液态生铁,其工艺流程实质是:直接还原加熔融还原两种工艺流程的组合。其工业化生产的主要设备是:corex c-3000、Finex、HIsmeh、HIsarna。这两种非高炉炼铁工艺相对于传统的高炉 炼铁的主要缺点是:能耗高、效率低、铁水的质量不能达到传统高炉铁水的标准、生产过程中还必须使用一些焦炭。
故,在非高炉炼铁设备及工艺中,还需进行深入探究。
发明内容
为了解决现有技术存在的问题,本发明提供了一种能够还原金属的设备及还原工艺。所述能够还原金属的设备可以代替高炉炼铁和其他生产海绵铁的设备,且还原工艺中所用的还原性气体原料还可取代冶金焦的骨架作用,并去掉了铁精粉烧结、焦煤炼焦、焦炭整粒等过程,简化了生产工艺,使燃料的利用率达到最优。
本发明的方案是,提供一种能够还原金属的设备,包括炉体、喷枪、排气孔和收集部;所述排气孔连接设置于所述炉体顶部,且向内延伸至所述炉体内部;所述喷枪连接设置于所述炉体侧面上部;所述收集部连接设置于所述炉体底部;所述收集部包括渣孔和金属液出孔;所述炉体包含锥体结构,且所述锥体结构纵截面逐步减小的区域为所述炉体的底部。
优选地,所述炉体还包含圆柱体结构,所述圆柱体结构与所述锥体结构相连通。
优选地,所述渣孔位于所述金属液出孔上部。
基于相同的技术构思,本发明还提出一种利用所述能够还原金属的设备进行的还原工艺,,包括如下步骤:
(i)将所述炉体进行加热;
(ii)将还原剂、助燃气体、熔剂、待还原金属化合物混合,经所述喷枪喷入所述炉体内部;
(iii)当待还原金属化合物完成还原反应,并经所述收集部进行初步收集,再由所述金属液出孔流出,即得所需的还原金属。
优选地,得到的还原金属为铁、铜、锡或铅中的任意一种。
优选地,步骤(i)中,所述加热的温度大于被还原金属的熔点。
优选地,步骤(ii)中,所述还原剂为煤粉、氢气或一氧化碳。
优选地,步骤(ii)中,所述助燃气体为氧气。
优选地,步骤(ii)中,所述熔剂为氧化钙或氧化镁。
优选地,所述还原金属的设备工艺布置采用并联或串联使用。
结合所述设备和所述工艺对原理进行说明:
先对所述炉体进行加热,再将还原剂(如氢气、一氧化碳或煤粉)、助燃气体(氧气或空气)、熔剂和待还原金属化合物(如铁精粉)混合,经所述喷枪沿切线方向喷入所述炉体内部(需要强调的是,所述喷枪可以沿所述炉体器壁“径向”多点布置,如此能够降低一次混合喷入的初速度,增大所述炉体的直径;喷枪沿所述炉体器壁“轴向”多点布置,可以降低所述炉体一次混合喷入的初速度,增加所述炉体的长度,增加铁精粉的还原时间)。由于固体原料在选择时均为细小颗粒的粉末,平均粒度控制在50μm左右,故完全可以随还原气体和助燃气体喷入炉体内部,且所述炉体呈锥体设计,气体在炉体内部能够利用旋流器的工作原理以“龙卷风”的方式进行旋转,此时高温的气体充当了焦炭在高炉中的“骨架”作用,粉末颗粒也能混入气流中,均匀的分布于炉体内。
而此时炉体内部处于高温状态,粒度细小的铁精粉会被瞬间液化,并在高速旋转的气体旋涡中像“雨滴”一样,逐渐聚集并被还原,且由于离心力,瞬间被液化的铁精粉液滴会被甩至具有一定锥度的炉体壁上,通过逐渐汇集,最后在重力作用下流入所述收集部(铁精粉液滴在炉体内部时持续被还原),反应过程中生成的水蒸气或二氧化碳(还原剂不使用一氧化碳时,则不会产生二氧化碳)则会通过所述排气孔排出;且由于排气孔向内延伸至炉体内部,可以避免还原性气体和助燃气体在喷入炉体时直接排出所造成的损失。
经过实际测试,粒度为50μm的铁精粉极限还原时间为29s,于收集部收集得到的铁水,再经金属液出孔流出即可,而密度较轻的反应渣,则从渣孔取出。
另外,所述的设备可称之为“旋风炉”,因为其巧妙利用了“旋流器”的工作原理和“雨滴”形成的原理来还原粉状金属氧化物;且同时“旋风炉”的工艺布置既可以“并联”,也可以“串联”使用。例如海绵铁的生产,在完成铁精粉还原后串联的“旋风炉”的还原温度可以高于“粘结失流”的830℃,使已经还原的海绵铁粉的粒度“长大”,便于后续加工。
该方法不仅能够还原铁,同时还能够还原铜、锡或铅中的任一种,原理是相同的。
其中,列举出炉体内部所可能发生的化学反应方程式,如式(a)~(m)所示。所需原料的用量比,均可通过化学反应方程式计算出理论值,再结合实际生产的条件,按需将理论值矫正为实际值即可。
3Fe 2O 3+CO=2Fe 3O 4+CO 2········································(a)
Fe 3O 4+CO=3FeO+CO 2···········································(b)
Fe 3O 4+4CO=3Fe+4CO 2··········································(c)
FeO+CO=Fe+CO 2·················································(d)
3Fe 2O 3+H 2=2Fe 3O 4+H 2O·········································(e)
Fe 3O 4+H 2=3FeO+H 2O·············································(f)
Fe 3O 4+4H 2=3Fe+4H 2O············································(g)
FeO+H 2=Fe+H 2O···················································(h)
CuO+H 2=Cu+H 2O··················································(i)
CuO+CO=Cu+CO 2·················································(j)
SnO 2+2CO=Sn+2CO 2··············································(k)
PbO+CO=Pb+CO 2··················································(l)
Pb 2O 3+3CO=2Pb+3CO 2············································(m)
本发明的有益效果为:
1、本发明所述能够还原金属的设备可以代替高炉炼铁和其他生产海绵铁的设备,且还原工艺中所用的还原性气体原料还可取代冶金焦的骨架作用,并去掉了铁精粉烧结、焦煤炼焦、焦炭整粒等过程,简化了生产工艺,使燃料的利用率达到最优。
2、本发明所述的还原工艺,提高了炼铁的生产率、铁精粉在高温还原性气体氛围中29秒之内被还原,速度远远高于高炉球团、烧结矿、块矿的还原速度,极大地降低了炼铁成本(高炉建设的成本、铁精粉烧结成本、用动力煤代替焦炭炼焦成本);同时,由于粉末原料的粒度均较小,在炉体内部的气体中能够混合得非常均匀,使炼铁过程的自动化控制更容易、更精确,且可以随时点炉、停车、检修、维护。
3、当还原气体为氢气时,能够达到二氧化碳的零排放,更加环保。
本发明的优选方案还有如下有益效果:
当还原剂为氢气或一氧化碳时,可以最大限度的减少入炉的灰渣和有害元素(硫、铅、钾、钠)。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明所述能够还原金属的设备的第一种结构示意图。
图2为本发明所述能够还原金属的设备的第一种结构示意图。
图中的附图标记为:
1-炉体;11-锥体结构;12-圆柱体结构;2-喷枪;3-排气孔;4-收集部;41-渣孔;42-金属液出孔。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将对本发明的技术方案进行详细的描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施方式,都属于本发明所保护的范围。
实施例1
参考图1,一种能够还原金属的设备,包括炉体1、喷枪2、排气孔3和收集部4;所述排气孔3连接设置于所述炉体1顶部,且向内延伸至所述炉体1内部;所述喷枪2连接设置于所述炉体1侧面上部;所述收集部4连接设置于所述炉体1底部;所述收集部4包括渣孔41和金属液出孔42;所述炉体1包含锥体结构11,且所述锥体结构11纵截面逐步减小的区域为所述炉体1的底部。
参考图2,作为可选的实施方式,所述炉体1还包含圆柱体结构12,所述圆柱体结构12与所述锥体结构11相连通。
参考图1、图2,作为可选的实施方式,所述渣孔41位于所述金属液出孔42上部。原料在炉体内进行反应时,由于原料的纯度,难免会有反应渣残余,且残渣密度小于铁水,其会在铁水表面富集,故当所述渣孔41位于所述金属液出孔42上部时,更易排渣。
实施例2
本实施例提供一种还原工艺,包括如下步骤:
(i)将所述炉体1进行加热至1450℃;
(ii)将煤粉、氢气、氧气、氧化钙粉末和铁精粉混合,经所述喷枪2喷入所述炉体1内部;
(iii)当铁精粉完成还原反应,并经所述收集部4进行初步收集铁水,再由所述金属液出孔42流出,即得已完成还原的纯铁。
实施例3
本实施例提供一种还原工艺,包括如下步骤:
(i)将所述炉体1进行加热至1500℃以上;
(ii)将氧化铜粉末、氢气、一氧化碳、氧气、氧化钙粉末混合,经所述喷枪2喷入所述炉体1内部;
(iii)当铁精粉完成还原反应,并经所述收集部4进行初步收集铜水,再由所述金属液出孔42流出,即得已完成还原的纯铜。
实施例4
本实施例提供一种还原工艺,包括如下步骤:
(i)将所述炉体1进行加热至240℃以上;
(ii)将氧化锡粉末、一氧化碳、氧气、氧化钙粉末混合,经所述喷枪2喷入所述炉体1内部;
(iii)当铁精粉完成还原反应,并经所述收集部4进行初步收集锡水,再由所述金属液出孔42流出,即得已完成还原的纯锡。
实施例5
本实施例提供一种还原工艺,包括如下步骤:
(i)将所述炉体1进行加热至330℃以上;
(ii)将氧化铅粉末、三氧化二铅粉末、一氧化碳、氧气、氧化镁粉末混合,经所述喷枪2喷入所述炉体1内部;
(iii)当铁精粉完成还原反应,并经所述收集部4进行初步收集铅水,再由所述金属液出孔42流出,即得已完成还原的纯铅。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种能够还原金属的设备,其特征在于,包括炉体(1)、喷枪(2)、排气孔(3)和收集部(4);所述排气孔(3)连接设置于所述炉体(1)顶部,且向内延伸至所述炉体(1)内部;所述喷枪(2)连接设置于所述炉体(1)侧面上部;所述收集部(4)连接设置于所述炉体(1)底部;所述收集部(4)包括渣孔(41)和金属液出孔(42);所述炉体(1)包含锥体结构(11),且所述锥体结构(11)纵截面逐步减小的区域为所述炉体(1)的底部。
  2. 根据权利要求1所述能够还原金属的设备,其特征在于,所述炉体(1)还包含圆柱体结构(12),所述圆柱体结构(12)与所述锥体结构(11)相连通。
  3. 根据权利要求1所述能够还原金属的设备,其特征在于,所述渣孔(41)位于所述金属液出孔(42)上部。
  4. 利用权利要求1~3任一所述能够还原金属的设备进行的还原工艺,其特征在于,包括如下步骤:
    (i)将所述炉体(1)进行加热;
    (ii)将还原剂、助燃气体、熔剂、待还原金属化合物混合,经所述喷枪(2)喷入所述炉体(1)内部;
    (iii)当待还原金属化合物完成还原反应,并经所述收集部(4)进行初步收集,再由所述金属液出孔(42)流出,即得所需的还原金属。
  5. 根据权利要求4所述的还原工艺,其特征在于,得到的还原金属为铁、铜、锡或铅中的任意一种。
  6. 根据权利要求4所述的还原工艺,其特征在于,步骤(i)中,所述加热的温度大于被还原金属的熔点。
  7. 根据权利要求4所述的还原工艺,其特征在于,步骤(ii)中,所述还原剂为煤粉、氢气或一氧化碳。
  8. 根据权利要求4所述的还原工艺,其特征在于,步骤(ii)中,所述助燃气体为氧气。
  9. 根据权利要求4所述的还原工艺,其特征在于,步骤(ii)中,所述熔剂为氧化钙或氧化镁。
  10. 根据权利要求4所述的还原工艺,其特征在于,所述还原金属的设备工艺布置采用并联或串联使用。
PCT/CN2020/097935 2020-05-09 2020-06-24 一种能够还原金属的设备及还原工艺 WO2021227210A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010384822.X 2020-05-09
CN202010384822.XA CN111411185A (zh) 2020-05-09 2020-05-09 一种能够还原金属的设备及还原工艺

Publications (1)

Publication Number Publication Date
WO2021227210A1 true WO2021227210A1 (zh) 2021-11-18

Family

ID=71490350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097935 WO2021227210A1 (zh) 2020-05-09 2020-06-24 一种能够还原金属的设备及还原工艺

Country Status (2)

Country Link
CN (1) CN111411185A (zh)
WO (1) WO2021227210A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115466852A (zh) * 2022-09-19 2022-12-13 西安交通大学 一种梯度气液雾化强化PbO还原零碳化方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116516094A (zh) * 2023-03-09 2023-08-01 中国恩菲工程技术有限公司 一种悬浮态直接还原-侧吹炉熔分低碳炼铁方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86102198A (zh) * 1986-04-03 1987-12-23 李世原 旋流式二段直接还原熔融炼铁工艺及设备
JPH05320727A (ja) * 1992-05-22 1993-12-03 Sumitomo Metal Ind Ltd 煉瓦保持機能を備えたステーブクーラ
CN1168925A (zh) * 1996-10-04 1997-12-31 孙秉权 一种射流还原冶炼方法及设备
JPH11181510A (ja) * 1997-12-17 1999-07-06 Kawasaki Heavy Ind Ltd 流動層還元炉および粉粒体鉱石の還元方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3210061A (en) * 1960-02-08 1965-10-05 Nogiwa Yukio Connecting apparatus for a plurality of cyclone type furnaces in series
JPH0796690B2 (ja) * 1988-03-31 1995-10-18 住友金属鉱山株式会社 自熔製錬炉
ES2442222T3 (es) * 2004-05-31 2014-02-10 Outotec Oyj Proceso de reducción directa
CN101665848B (zh) * 2008-09-04 2011-06-22 莱芜钢铁集团有限公司 一种铁矿石直接炼钢工艺
CN102534259B (zh) * 2011-09-26 2013-04-03 抚顺钛业有限公司 一种无筛板沸腾氯化炉
CN104634100B (zh) * 2015-02-13 2017-01-18 阳谷祥光铜业有限公司 一种旋浮熔炼方法、喷嘴和冶金设备
CN207016812U (zh) * 2017-06-29 2018-02-16 北京闪铁科技有限公司 煤制气一体化闪速炼铁炉
CN109666771A (zh) * 2019-02-21 2019-04-23 前海红波(深圳)科技有限公司 高效全氧炼铁炉

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86102198A (zh) * 1986-04-03 1987-12-23 李世原 旋流式二段直接还原熔融炼铁工艺及设备
JPH05320727A (ja) * 1992-05-22 1993-12-03 Sumitomo Metal Ind Ltd 煉瓦保持機能を備えたステーブクーラ
CN1168925A (zh) * 1996-10-04 1997-12-31 孙秉权 一种射流还原冶炼方法及设备
JPH11181510A (ja) * 1997-12-17 1999-07-06 Kawasaki Heavy Ind Ltd 流動層還元炉および粉粒体鉱石の還元方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115466852A (zh) * 2022-09-19 2022-12-13 西安交通大学 一种梯度气液雾化强化PbO还原零碳化方法及装置
CN115466852B (zh) * 2022-09-19 2023-07-25 西安交通大学 一种梯度气液雾化强化PbO还原零碳化方法及装置

Also Published As

Publication number Publication date
CN111411185A (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
CN101624638B (zh) 燃气还原炼铁炉及其一步还原炼铁法
CN112410494B (zh) 一种可应用细粒度粉矿的悬浮熔融还原炼铁装置及炼铁方法
WO2021035821A1 (zh) 一种旋风闪速还原直接炼钢系统及工艺
WO2021227210A1 (zh) 一种能够还原金属的设备及还原工艺
CN111733330B (zh) 利用回转窑进行锌富集回收的方法
CN108374067A (zh) 一种飞速还原直接炼钢的装置及方法
CN109371189A (zh) 铁矿粉和煤粉y型气流床分级还原气化炼铁工艺
CN101724721A (zh) 一种生产热铁水工艺
CN102399922B (zh) 高炉炼铁方法
CN108085511A (zh) 一种利用高炉瓦斯灰提锌窑渣生产金属化炉料的方法
CN217869018U (zh) 一种钢铁厂固体废料的处理装置
CN86102198A (zh) 旋流式二段直接还原熔融炼铁工艺及设备
CN109207664A (zh) 煤制气一体化闪速炼铁炉及其工艺
CN113088611B (zh) 一种纯氧两段式预热还原炼铁工艺
CN109536662A (zh) 一种回转窑气基还原-全氧熔池熔炼炼铁装置
CN103194557A (zh) 一种新型煤气熔融冶炼炉
CN101956035A (zh) 一种含铁物料渣浴熔融还原炼钢工艺方法及装置
CN107043836A (zh) 一种高炉炼铁的方法
CN103667564B (zh) 制备金属单质的方法
CN109536663A (zh) 一种回转窑气基还原-全氧熔池熔炼炼铁方法
CN114990274A (zh) 一种粉状铁矿气基/氢基悬浮还原粉状dri装置系统
CN109929957B (zh) 一种预还原铁矿石高温熔炼生产铁水的装置及方法
JP3388014B2 (ja) コークス改質法
CN218232524U (zh) 一种锌铁熔融还原分离装置
WO2023015752A1 (zh) 一种含铁粉料在还原性气氛中直接炼钢装置及使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935004

Country of ref document: EP

Kind code of ref document: A1