WO2021227209A1 - 显示面板及其制作方法 - Google Patents

显示面板及其制作方法 Download PDF

Info

Publication number
WO2021227209A1
WO2021227209A1 PCT/CN2020/097928 CN2020097928W WO2021227209A1 WO 2021227209 A1 WO2021227209 A1 WO 2021227209A1 CN 2020097928 W CN2020097928 W CN 2020097928W WO 2021227209 A1 WO2021227209 A1 WO 2021227209A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
groove
light
display panel
sub
Prior art date
Application number
PCT/CN2020/097928
Other languages
English (en)
French (fr)
Inventor
施展
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/963,510 priority Critical patent/US20230120390A1/en
Publication of WO2021227209A1 publication Critical patent/WO2021227209A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays

Definitions

  • This application relates to the display field, and in particular to a display panel and a manufacturing method thereof.
  • OLED Organic Light-Emitting Diode
  • LCD liquid crystal display
  • the pixel definition layer is generally composed of organic matter, the pixel definition layer has the characteristics of oxygen affinity and hydrophilicity, that is, a large amount of water and oxygen still exist in the pixel definition layer of the existing OLED display panel.
  • the water and oxygen in the pixel definition layer may erode the pixel definition layer, anode layer or light-emitting material layer, reducing the service life of the OLED display panel.
  • the present application provides a display panel and a manufacturing method thereof to solve the technical problem of low service life of the existing OLED display panel.
  • the present application provides a display panel, which includes an array substrate, a light emitting device layer on the array substrate, and an encapsulation layer on the light emitting device layer.
  • the light emitting device layer includes pixels on the array substrate.
  • the pixel definition layer includes grooves arranged along the periphery of the sub-pixel area of the display panel, and at least one groove corresponds to one of the sub-pixel areas.
  • any of the grooves includes at least one sub-groove, and the sub-groove is continuously or discontinuously arranged along the periphery of the sub-pixel area.
  • the opening of any of the grooves faces the sub-pixel area corresponding to the groove
  • the depth of the groove gradually increases to gradually decrease, and the central region between the two adjacent sub-pixel regions corresponds to the recess
  • the groove depth is the largest.
  • any two adjacent grooves are connected by a first via hole.
  • the light-emitting device layer further includes an anode layer provided in the same layer as the pixel definition layer and a light-emitting layer located on the anode layer;
  • the maximum distance between the light-emitting layer and the array substrate is smaller than the minimum distance between the groove and the array substrate, and the groove is filled with the material of the light-emitting layer.
  • the light-emitting device layer further includes a cathode layer covering the pixel definition layer and the light-emitting layer in the light-emitting device layer;
  • the groove is filled with the material of the cathode layer.
  • This application also proposes a method for manufacturing a display panel, which includes:
  • a cathode layer is formed on the light-emitting layer and the pixel defining layer, so that the cathode layer covers the light-emitting layer and the pixel defining layer.
  • the step of forming a plurality of first openings and at least one groove provided along the first openings on the pixel definition layer by using a photomask process includes:
  • any one of the grooves includes at least one sub-groove, and the sub-groove is continuously or discontinuously arranged along the periphery of the sub-pixel area.
  • the step of filling the luminescent material in the first opening to form the luminescent layer of the display panel includes:
  • the luminescent material in the first opening and the luminescent material in the groove are arranged discontinuously.
  • the opening of any of the grooves faces the sub-pixel area corresponding to the groove
  • the depth of the groove gradually increases to gradually decrease, and the central region between the two adjacent sub-pixel regions corresponds to the recess
  • the groove depth is the largest.
  • any two adjacent grooves are connected by a first via hole.
  • the maximum distance between the light-emitting layer and the array substrate is smaller than the minimum distance between the groove and the array substrate, and the groove is filled with the material of the light-emitting layer.
  • the groove is filled with the material of the cathode layer.
  • the application also proposes a display device that includes a backlight module and a display panel on the backlight module, wherein the display panel includes an array substrate and a light emitting device on the array substrate Layer, an encapsulation layer located on the light emitting device layer, the light emitting device layer including a pixel definition layer located on the array substrate;
  • the pixel definition layer includes grooves arranged along the periphery of the sub-pixel area of the display panel, and at least one groove corresponds to one of the sub-pixel areas.
  • any of the grooves includes at least one sub-groove, and the sub-groove is continuously or discontinuously arranged along the periphery of the sub-pixel area.
  • the opening of any of the grooves faces the sub-pixel area corresponding to the groove
  • the depth of the groove gradually increases to gradually decrease, and the central region between the two adjacent sub-pixel regions corresponds to the recess
  • the groove depth is the largest.
  • any two adjacent grooves are connected by a first via hole.
  • the light-emitting device layer further includes an anode layer provided in the same layer as the pixel definition layer and a light-emitting layer located on the anode layer;
  • the maximum distance between the light-emitting layer and the array substrate is smaller than the minimum distance between the groove and the array substrate, and the groove is filled with the material of the light-emitting layer.
  • the light-emitting device layer further includes a cathode layer covering the pixel definition layer and the light-emitting layer in the light-emitting device layer;
  • the groove is filled with the material of the cathode layer
  • the groove increases the escape path of the pixel definition layer, so that the water and oxygen in the pixel definition layer can pass through the channel formed by the groove Escape, remove the water and oxygen in the pixel definition layer, and increase the service life of the OLED display panel.
  • Figure 1 is a schematic diagram of the structure of the display panel of the application.
  • FIG. 2 is the first top view of the display panel of this application
  • FIG. 3 is a second top view of the display panel of this application.
  • FIG. 4 is the first cross-sectional view of the display panel of this application.
  • FIG. 5 is a second cross-sectional view of the display panel of this application.
  • FIG. 6 is a third cross-sectional view of the display panel of this application.
  • FIG. 7 is a process flow of the manufacturing method of the display panel of this application.
  • the pixel definition layer is generally composed of organic matter, the pixel definition layer has the characteristics of oxygen affinity and hydrophilicity, that is, a large amount of water and oxygen still exist in the pixel definition layer of the existing OLED display panel.
  • the water and oxygen in the pixel definition layer may erode the pixel definition layer, anode layer or light-emitting material layer, reducing the service life of the OLED display panel.
  • the present application provides a display panel 100, which includes an array substrate 10, a light emitting device layer 30 on the array substrate 10, and an encapsulation layer 40 on the light emitting device layer 30, so
  • the light emitting device layer 30 includes a pixel definition layer 20 on the array substrate 10;
  • the pixel definition layer 20 includes grooves 21 arranged along the periphery of the sub-pixel area 200 of the display panel 100, and at least one groove 21 corresponds to one of the sub-pixel areas 200.
  • At least one circle of grooves 21 arranged around the sub-pixel area 200 is provided on the pixel definition layer 20.
  • the grooves 21 increase the escape path of the pixel definition layer 20, so that the water and oxygen in the pixel definition layer 20 can escape from The channel formed by the groove 21 escapes, removes the water and oxygen in the pixel definition layer 20, and increases the service life of the OLED display panel 100.
  • the array substrate 10 includes a first substrate 11 and a driving circuit layer 12 on the first substrate 11.
  • the first substrate 11 may be one of a rigid substrate or a flexible substrate.
  • the material of the first substrate 11 may be made of glass, quartz and other materials.
  • the first substrate 11 may be a material such as polyimide.
  • the substrate structure is generally set as a flexible substrate, which will not be described in detail here.
  • the driving circuit layer 12 includes a plurality of thin film transistors.
  • the thin film transistor may be of an etch-stop type, a back-channel etch type, or a top-gate thin-film transistor type structure, which is not specifically limited.
  • the thin film transistor of the top gate thin film transistor type may include an active layer 121 on the first substrate 11, a gate insulating layer 122 on the active layer 121, and a gate insulating layer 122 on the gate insulating layer 122.
  • the light emitting device layer 30 includes a pixel defining layer 20 on the array substrate 10, an anode layer 31 provided on the same layer as the pixel defining layer 20, and a light emitting layer on the anode layer 31 32. And a cathode layer 33 located on the light-emitting layer 32.
  • the pixel definition layer 20, the anode layer 31, the light-emitting layer 32, and the cathode layer 33 are all conventional structures in the prior art, which are not described in detail in this application.
  • the pixel definition layer 20 includes a first opening 22, and the light-emitting layer 32 is located in the first opening 22, or the light-emitting layer 32 is located in the first opening 22 and two sides of the first opening 22.
  • the encapsulation layer 40 may be a thin-film encapsulation layer or a hard cover plate, etc.
  • the above two structures are conventional structures in the prior art, and this application does not specifically limit it.
  • the pixel definition layer 20 further includes a plurality of grooves 21.
  • any sub-pixel area 200 in the top view direction, includes a groove 21 provided along the periphery of the sub-pixel area 200.
  • any sub-pixel area 200 in the top view direction, includes two circles of the grooves 21 arranged along the periphery of the sub-pixel area 200.
  • any of the grooves 21 includes at least one sub-groove 211.
  • the sub-grooves 211 are continuously arranged along the periphery of the sub-pixel area 200.
  • the sub-groove 211 is discontinuously disposed along the periphery of the sub-pixel area 200.
  • the sub-groove 211 is a via hole with a certain aperture, and a plurality of via holes are distributed along the periphery of the sub-pixel area 200.
  • a plurality of the grooves 21 are provided on the pixel definition layer 20, so that the pixel definition layer 20 is in a fluffy state.
  • subsequent processes such as heating processes such as curing of the pixel definition layer 20, the remaining The water and oxygen in the pixel defining layer 20 escape from the groove 21, avoiding the corrosion of the anode layer 31 or the light-emitting layer 32 by the water and oxygen during the use of the OLED display panel 100, and improving the use of the OLED display panel 100 life.
  • the opening of any one of the grooves 21 faces the sub-pixel area 200 corresponding to the groove 21.
  • the opening of the groove 21 faces the sub-pixels, so that under the same vertical distance, the depth of the groove 21 can be further increased, and the escape channel of water and oxygen in the pixel definition layer 20 is increased.
  • the depth of the groove 21 gradually increases to gradually decrease, and the center between two adjacent sub-pixel regions 200
  • the depth of the groove 21 corresponding to the zone is the largest.
  • a groove 21 with the largest depth is provided on the pixel definition layer 20 far away from the sub-pixel area 200, which avoids that the pixel definition layer 20 cannot be well qualitative due to the existence of the groove 21, which makes the pixel definition layer 20
  • the function of partitioning each sub-pixel area 200 cannot be achieved, that is, the luminescent material may deform the pixel definition layer 20 due to extrusion. Therefore, the depth of the groove 21 close to the sub-pixel area 200 in the present application is relatively small.
  • any two adjacent grooves 21 are connected by a first via 212.
  • the first via 212 is arranged between two adjacent grooves 21 to increase the connectivity between the grooves 21, that is, to increase the escape path of water and oxygen in the pixel definition layer 20.
  • any one of the grooves 21 is filled with the material of the light-emitting layer 32.
  • the maximum distance between the light-emitting layer 32 and the array substrate 10 is smaller than the minimum distance between the groove 21 and the array substrate 10, and the light-emitting material in the first opening 22 and the groove 21
  • the luminescent materials inside are arranged non-continuously.
  • the luminescent material is a hydrophilic organic material
  • the luminescent material can be filled into the pixel defining layer 20 during the evaporation process to absorb the water and oxygen in the pixel defining layer 20, avoiding pixel definition
  • the water and oxygen in the layer 20 react with the luminescent material in the first opening 22 or the anode layer 31 to cause irreversible changes.
  • the technical solution of this embodiment can prevent the water and oxygen in the pixel definition layer 20 from entering the sub-pixel area 200 without adding additional processes.
  • the luminescent material filling the groove 21 can be replaced by other materials with strong water and oxygen absorption, but it adds an extra process. Therefore, manufacturers can consider specific solutions based on actual costs, which are not specifically limited in this application.
  • the groove 21 may also be filled with the material of the cathode layer 33.
  • the existence of the groove 21 in the present application is to remove the water and oxygen in the pixel definition layer 20 by a heating process, and in the subsequent agreement, the existence of the groove 21 may cause unevenness of the light-emitting device.
  • the cathode layer 33 is formed, the cathode layer 33 is filled in the groove 21 to realize the flatness of the surface of the light-emitting device layer 30.
  • the cathode layer 33 located in the groove 21 can be regarded as a plurality of individually arranged resistance units, which are arranged in parallel with the cathode layer 33 to actually reduce the impedance of the cathode layer 33 and ensure The voltage uniformity of the cathode layer 33 improves the display uniformity of the display panel 100.
  • At least one circle of grooves 21 arranged around the sub-pixel area 200 is provided on the pixel definition layer 20.
  • the grooves 21 increase the escape path of the pixel definition layer 20, so that the water and oxygen in the pixel definition layer 20 can escape from The channel formed by the groove 21 escapes, removes the water and oxygen in the pixel definition layer 20, and increases the service life of the OLED display panel 100.
  • This application also proposes a manufacturing method of the display panel 100, which includes:
  • the array substrate 10 includes a first substrate 11 and a driving circuit layer 12 on the first substrate 11.
  • the first substrate 11 may be one of a rigid substrate or a flexible substrate.
  • the material of the first substrate 11 may be made of glass, quartz and other materials.
  • the first substrate 11 may be a material such as polyimide.
  • the substrate structure is generally set as a flexible substrate, which will not be described in detail here.
  • the driving circuit layer 12 includes a plurality of thin film transistors.
  • the thin film transistor may be of an etch-stop type, a back-channel etch type, or a top-gate thin-film transistor type structure, which is not specifically limited.
  • the thin film transistor of the top gate thin film transistor type may include an active layer 121 on the first substrate 11, a gate insulating layer 122 on the active layer 121, and a gate insulating layer 122 on the gate insulating layer 122.
  • step S30 may specifically include:
  • a plurality of first openings 22 and at least one groove 21 provided along the first opening 22 are simultaneously formed on the pixel definition layer 20 by using the first photomask process.
  • any sub-pixel area 200 in the top view direction, includes a groove 21 provided along the periphery of the sub-pixel area 200.
  • any sub-pixel area 200 in the top view direction, includes two circles of the grooves 21 arranged along the periphery of the sub-pixel area 200.
  • any of the grooves 21 includes at least one sub-groove 211.
  • the sub-grooves 211 are continuously arranged along the periphery of the sub-pixel area 200.
  • the sub-groove 211 is discontinuously disposed along the periphery of the sub-pixel area 200.
  • the sub-groove 211 is a via hole with a certain aperture, and a plurality of via holes are distributed along the periphery of the sub-pixel area 200.
  • the arrangement of the groove 21 in the pixel defining layer 20 is mainly used in the application to make the water and oxygen in the pixel defining layer 20 have escape channels in the subsequent heating process, so that the water and oxygen can escape. It can escape through the channel, so that the water and oxygen remaining in the pixel definition layer 20 escape from the groove 21, which prevents the water and oxygen from affecting the anode layer 31 or the light-emitting layer 32 during the use of the OLED display panel 100. Corrosion increases the service life of the OLED display panel 100.
  • the heating treatment may be in an annealing process or baking, and the specific heating temperature may be set by itself under the premise that the organic material does not lose activity, which is not limited in this application.
  • S50 Fill the first opening 22 with a light-emitting material to form the light-emitting layer 32 of the display panel 100;
  • step S50 may specifically include:
  • the first opening 22 and the groove 21 are filled with the light-emitting material, so that the light-emitting material located in the first opening 22 forms the light-emitting layer 32 of the display panel 100 and is located in the groove
  • the luminescent material in 21 forms a compensation layer
  • the luminescent material in the first opening 22 and the luminescent material in the groove 21 are arranged discontinuously.
  • the luminescent material is a hydrophilic organic material
  • the luminescent material can be filled into the pixel defining layer 20 during the evaporation process to absorb the water and oxygen in the pixel defining layer 20, avoiding pixel definition
  • the water and oxygen in the layer 20 react with the luminescent material in the first opening 22 or the anode layer 31 to cause irreversible changes.
  • the technical solution of this embodiment can prevent the water and oxygen in the pixel definition layer 20 from entering the sub-pixel area 200 without adding additional processes.
  • the luminescent material filling the groove 21 can be replaced by other materials with strong water and oxygen absorption, but it adds an extra process. Therefore, manufacturers can consider specific solutions based on actual costs, which are not specifically limited in this application.
  • the existence of the groove 21 in the present application is to remove the water and oxygen in the pixel definition layer 20 by a heating process, and in the subsequent agreement, the existence of the groove 21 may cause unevenness of the light-emitting device.
  • the cathode layer 33 is formed, the cathode layer 33 is filled in the groove 21 to realize the flatness of the surface of the light-emitting device layer 30.
  • the cathode layer 33 located in the groove 21 can be regarded as a plurality of individually arranged resistance units, which are arranged in parallel with the cathode layer 33 to actually reduce the impedance of the cathode layer 33 and ensure The voltage uniformity of the cathode layer 33 improves the display uniformity of the display panel 100.
  • the opening of any of the grooves 21 faces the sub-pixel area 200 corresponding to the groove 21.
  • the depth of the groove 21 gradually increases to gradually decrease, and the depth between two adjacent sub-pixel regions 200
  • the groove 21 corresponding to the central area has the largest depth.
  • any two adjacent grooves 21 are connected by a first via 212.
  • FIGS. 5 to 6 please refer to FIGS. 5 to 6, which will not be described in detail here.
  • the application also proposes a display device, wherein the display device includes a backlight module and the above-mentioned display panel on the backlight module.
  • the working principle of the display device in this embodiment is the same as or similar to the working principle of the above-mentioned display panel, and will not be repeated here.
  • the display panel includes an array substrate, a light-emitting device layer on the array substrate, and an encapsulation layer on the light-emitting device layer.
  • the light-emitting device layer includes The pixel definition layer on the array substrate; the pixel definition layer includes grooves arranged along the periphery of the sub-pixel area of the display panel, and at least one groove corresponds to one of the sub-pixel areas.
  • the groove increases the escape path of the pixel definition layer, so that the water and oxygen in the pixel definition layer can pass through the channel formed by the groove Escape, remove the water and oxygen in the pixel definition layer, and increase the service life of the OLED display panel.

Abstract

一种显示面板(100)及其制作方法,该显示面板(100)包括阵列基板(10)、位于阵列基板(10)上的发光器件层(30)、位于发光器件层(30)上的封装层(40),发光器件层(30)包括位于阵列基板(10)上的像素定义层(20);像素定义层(20)包括沿显示面板(100)的子像素区(200)外围设置的凹槽(21),至少一凹槽(21)与一子像素区(200)对应。通过在像素定义层(20)上设置环绕子像素区(200)设置的至少一圈凹槽(21),该凹槽(21)增加了像素定义层(20)的逸出路径,使得像素定义层(20)中的水氧气能够从该凹槽(21)形成的通道逸出,去除了像素定义层(20)内的水氧气,增加了OLED显示面板(100)的使用寿命。

Description

显示面板及其制作方法 技术领域
本申请涉及显示领域,特别涉及一种显示面板及其制作方法。
背景技术
在显示技术中,有机发光二极管(Organic Light-Emitting Diode,OLED)显示器具有轻薄、主动发光、响应速度快、可视角大、色域宽、亮度高和功耗低等众多优点,逐渐成为继液晶显示器(LCD)后的第三代显示技术。
在现有OLED显示面板中,由于像素定义层一般由有机物构成,导致像素定义层具备亲氧亲水等特性,即现有OLED显示面板的像素定义层中还存在大量的水氧气。随着OLED显示面板的使用,位于像素定义层中水氧气可能会侵蚀像素定义层、阳极层或者发光材料层,降低了OLED显示面板的使用寿命。
因此,亟需一种显示面板以解决上述技术问题。
技术问题
本申请提供一种显示面板及其制作方法,以解决现有OLED显示面板的使用寿命低的技术问题。
技术解决方案
本申请提供了一种显示面板,其包括阵列基板、位于所述阵列基板上的发光器件层、位于所述发光器件层上的封装层,所述发光器件层包括位于所述阵列基板上的像素定义层;
其中,所述像素定义层包括沿所述显示面板的子像素区外围设置的凹槽,至少一凹槽与一所述子像素区对应。
在本申请的显示面板中,任一所述凹槽包括至少一子凹槽,所述子凹槽沿所述子像素区外围连续或非连续设置。
在本申请的显示面板中,任一所述凹槽的开口朝向该凹槽所对应的子像素区;
其中,在相邻两个所述子像素区之间,所述凹槽的深度呈逐渐增加至逐渐减小的趋势,相邻两个所述子像素区之间的中心区对应的所述凹槽深度最大。
在本申请的显示面板中,任意相邻两个所述凹槽之间通过第一过孔连接。
在本申请的显示面板中,所述发光器件层还包括与所述像素定义层同层设置的阳极层及位于所述阳极层上的发光层;
其中,所述发光层与阵列基板的最大间距小于所述凹槽与所述阵列基板的最小间距,以及所述凹槽被所述发光层的材料所填充。
在本申请的显示面板中,所述发光器件层还包括覆盖所述像素定义层及所述发光器件层中发光层的阴极层;
其中,所述凹槽被所述阴极层的材料所填充。
本申请还提出了一种显示面板的制作方法,其包括:
在阵列基板上形成像素定义层;
利用光罩工艺在所述像素定义层上形成多个第一开口、及沿所述第一开口设置的至少一凹槽;
对所述像素定义层进行加热处理;
在所述第一开口内填充发光材料以形成所述显示面板的发光层;
在所述发光层及所述像素定义层上形成阴极层,以使所述阴极层覆盖所述发光层及所述像素定义层。
在本申请的显示面板的制作方法中,利用光罩工艺在所述像素定义层上形成多个第一开口、及沿所述第一开口设置的至少一凹槽的步骤包括:
利用第一光罩工艺在所述像素定义层上形成多个第一开口;
利用第二光罩工艺在所述像素定义层上形成沿所述第一开口设置的至少一所述凹槽;或者,
利用第一光罩工艺在所述像素定义层上同时形成多个第一开口、及沿所述第一开口设置的至少一所述凹槽;
其中,任一所述凹槽包括至少一子凹槽,所述子凹槽沿所述子像素区外围连续或非连续设置。
在本申请的显示面板的制作方法中,在所述第一开口内填充发光材料以形成所述显示面板的发光层的步骤包括:
在所述第一开口及所述凹槽内填充所述发光材料,以使得位于所述第一开口内的发光材料形成所述显示面板的发光层、以及位于所述凹槽内的发光材料形成补偿层;
其中,所述第一开口内的发光材料与所述凹槽内的发光材料非连续设置。
在本申请的显示面板的制作方法中,任一所述凹槽的开口朝向该凹槽所对应的子像素区;
其中,在相邻两个所述子像素区之间,所述凹槽的深度呈逐渐增加至逐渐减小的趋势,相邻两个所述子像素区之间的中心区对应的所述凹槽深度最大。
在本申请的显示面板的制作方法中,任意相邻两个所述凹槽之间通过第一过孔连接。
在本申请的显示面板的制作方法中,所述发光层与阵列基板的最大间距小于所述凹槽与所述阵列基板的最小间距,以及所述凹槽被所述发光层的材料所填充。
在本申请的显示面板的制作方法中,所述凹槽被所述阴极层的材料所填充。
本申请还提出了一种显示装置,所述显示装置包括背光模组、及位于所述背光模组上的显示面板,其中,所述显示面板包括阵列基板、位于所述阵列基板上的发光器件层、位于所述发光器件层上的封装层,所述发光器件层包括位于所述阵列基板上的像素定义层;
其中,所述像素定义层包括沿所述显示面板的子像素区外围设置的凹槽,至少一凹槽与一所述子像素区对应。
在本申请的显示面板中,任一所述凹槽包括至少一子凹槽,所述子凹槽沿所述子像素区外围连续或非连续设置。
在本申请的显示面板中,任一所述凹槽的开口朝向该凹槽所对应的子像素区;
其中,在相邻两个所述子像素区之间,所述凹槽的深度呈逐渐增加至逐渐减小的趋势,相邻两个所述子像素区之间的中心区对应的所述凹槽深度最大。
在本申请的显示面板中,任意相邻两个所述凹槽之间通过第一过孔连接。
在本申请的显示面板中,所述发光器件层还包括与所述像素定义层同层设置的阳极层及位于所述阳极层上的发光层;
其中,所述发光层与阵列基板的最大间距小于所述凹槽与所述阵列基板的最小间距,以及所述凹槽被所述发光层的材料所填充。
在本申请的显示面板中,所述发光器件层还包括覆盖所述像素定义层及所述发光器件层中发光层的阴极层;
其中,所述凹槽被所述阴极层的材料所填充
有益效果
本申请通过在像素定义层上设置环绕子像素区设置的至少一圈凹槽,该凹槽增加了像素定义层的逸出路径,使得像素定义层中的水氧气能够从该凹槽形成的通道逸出,去除了像素定义层内的水氧气,增加了OLED显示面板的使用寿命。
附图说明
图1为本申请显示面板的结构简图;
图2为本申请显示面板的第一种俯视图;
图3为本申请显示面板的第二种俯视图;
图4为本申请显示面板的第一种剖面图;
图5为本申请显示面板的第二种剖面图;
图6为本申请显示面板的第三种剖面图;
图7为本申请显示面板制作方法的步骤流程。
本发明的实施方式
为使本申请的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本申请进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
在现有OLED显示面板中,由于像素定义层一般由有机物构成,导致像素定义层具备亲氧亲水等特性,即现有OLED显示面板的像素定义层中还存在大量的水氧气。随着OLED显示面板的使用,位于像素定义层中水氧气可能会侵蚀像素定义层、阳极层或者发光材料层,降低了OLED显示面板的使用寿命。本申请基于上述技术问题提出了下列技术方案:
请参阅图1~5,本申请提供了一种显示面板100,其包括阵列基板10、位于所述阵列基板10上的发光器件层30、位于所述发光器件层30上的封装层40,所述发光器件层30包括位于所述阵列基板10上的像素定义层20;
其中,所述像素定义层20包括沿所述显示面板100的子像素区200外围设置的凹槽21,至少一凹槽21与一所述子像素区200对应。
本申请通过在像素定义层20上设置环绕子像素区200设置的至少一圈凹槽21,该凹槽21增加了像素定义层20的逸出路径,使得像素定义层20中的水氧气能够从该凹槽21形成的通道逸出,去除了像素定义层20内的水氧气,增加了OLED显示面板100的使用寿命。
现结合具体实施例对本申请的技术方案进行描述。
请参阅图1,所述阵列基板10包括第一衬底11及位于所述第一衬底11上的驱动电路层12。所述第一衬底11可以为刚性衬底或柔性衬底中的一种。当所述第一衬底11为刚性衬底时,所述第一衬底11的材料可以为玻璃、石英等材料制备。当所述第一衬底11为柔性衬底时,所述第一衬底11可以为聚酰亚胺等材料。而在OLED显示面板100中,衬底结构一般均设置为柔性衬底,此处不对其作详细介绍。
所述驱动电路层12包括多个薄膜晶体管。所述薄膜晶体管可以为蚀刻阻挡型、背沟道蚀刻型或顶栅薄膜晶体管型等结构,具体没有限制。例如顶栅薄膜晶体管型的所述薄膜晶体管可以包括位于所述第一衬底11上的有源层121、位于所述有源层121上的栅绝缘层122、位于所述栅绝缘层122上的栅极层123、位于所述栅极层123上的间绝缘层124、位于所述间绝缘层124上的源漏极层125、及位于所述源漏极层125上的平坦层126。
请参阅图1,所述发光器件层30包括位于所述阵列基板10上的像素定义层20、与所述像素定义层20同层设置的阳极层31、位于所述阳极层31上的发光层32、及位于所述发光层32上的阴极层33。
在本实施例中,所述像素定义层20、所述阳极层31、所述发光层32、及所述阴极层33均为现有技术中的常规结构,本申请不作详细介绍。
所述像素定义层20包括第一开口22,所述发光层32位于所述第一开口22内,或者所述发光层32位于所述第一开口22及所述第一开口22两侧对应的像素定义层20上,此处不作具体限定。
在本实施例中,所述封装层40可以为薄膜封装层或者硬质盖板等,上述两种结构均为现有技术中的常规结构,本申请不作具体限定。
在本实施例中,所述像素定义层20还包括多个所述凹槽21。
请参阅图2,在俯视图方向,任一子像素区200包括沿所述子像素区200外围的设置的一所述凹槽21。或者,请参阅图3,在俯视图方向,任一子像素区200包括沿所述子像素区200外围的设置的两圈所述凹槽21。
在本实施例中,任一所述凹槽21包括至少一子凹槽211。请参阅图2,所述子凹槽211沿所述子像素区200外围连续设置。请参阅图3,所述子凹槽211沿所述子像素区200外围非连续设置。或者,所述子凹槽211为具有一定孔径的过孔,多个过孔沿所述子像素区200外围分布。
本实施例通过在像素定义层20上设置多个所述凹槽21,使所述像素定义层20处于蓬松状态,而在后续工艺中,例如像素定义层20的固化等加热工艺,使得残留在像素定义层20中的水氧从所述凹槽21中逸出,避免了在OLED显示面板100在使用过程中水氧气对阳极层31或发光层32的侵蚀,提高了OLED显示面板100的使用寿命。
请参阅图4,任一所述凹槽21的开口朝向该凹槽21所对应的子像素区200。该凹槽21的开口朝向子像素,可以使得在相同的垂直距离情况下,凹槽21的深度可以进一步提高,增加了像素定义层20中水氧气的逸出通道。
请参阅图5,在相邻两个所述子像素区200之间,所述凹槽21的深度呈逐渐增加至逐渐减小的趋势,相邻两个所述子像素区200之间的中心区对应的所述凹槽21深度最大。本实施例在远离子像素区200的像素定义层20上设置了深度最大的凹槽21,其避免了因凹槽21的存在导致像素定义层20无法很好的定性,而使得像素定义层20无法起到为各子像素区200分区的作用,即发光材料可能因挤压使得像素定义层20变形。因此,本申请的靠近子像素区200的凹槽21的深度较小。
请参阅图4,任意相邻两个所述凹槽21之间通过第一过孔212连接。相邻两个所述凹槽21之间设置所述第一过孔212,增加了凹槽21之间的联通性,即增加了像素定义层20中的水氧气的逸出路径。
请参阅图6,任一所述凹槽21被所述发光层32的材料所填充。
在本实施例中,所述发光层32与阵列基板10的最大间距小于所述凹槽21与所述阵列基板10的最小间距,所述第一开口22内的发光材料与所述凹槽21内的发光材料非连续设置。
由于发光材料为亲水性的有机材料,在制程工艺中,可以在蒸镀过程中将发光材料填充至像素定义层20中,以将像素定义层20中的水氧气所吸收,避免了像素定义层20中的水氧气与所述第一开口22内的发光材料或阳极层31等反应,造成不可逆的变化。本实施例的技术方案可以无需增加额外的工艺来避免像素定义层20中的水氧气进入子像素区200。
另外,考虑到发光材料的昂贵,填充凹槽21的发光材料可以通过其他吸水氧性较强的材料替代,但是其增加了额外一道工艺。因此,厂家可以根据实际成本考虑具体方案,本申请不作具体限定。
请参阅图1,所述凹槽21还可以被所述阴极层33的材料所填充。
本申请凹槽21的存在是为了利用加热工艺将像素定义层20中的水氧气清除,而在后续同意中,凹槽21的存在可能导致发光器件的不平整性。此处,本申请通过在形成阴极层33时,将阴极层33填充于所述凹槽21内,实现了发光器件层30表面的平整。
本实施例的技术方案,可以把位于凹槽21内的阴极层33当作多个单独设置的电阻单元,其通过与阴极层33并联设置,实际上减小了阴极层33的阻抗,保证了阴极层33的电压均一性,提高了显示面板100的显示均一性。
本申请通过在像素定义层20上设置环绕子像素区200设置的至少一圈凹槽21,该凹槽21增加了像素定义层20的逸出路径,使得像素定义层20中的水氧气能够从该凹槽21形成的通道逸出,去除了像素定义层20内的水氧气,增加了OLED显示面板100的使用寿命。
请参阅图7,本申请还提出了一种显示面板100的制作方法,其包括:
S10、提供一阵列基板10;
请参阅图1,所述阵列基板10包括第一衬底11及位于所述第一衬底11上的驱动电路层12。所述第一衬底11可以为刚性衬底或柔性衬底中的一种。当所述第一衬底11为刚性衬底时,所述第一衬底11的材料可以为玻璃、石英等材料制备。当所述第一衬底11为柔性衬底时,所述第一衬底11可以为聚酰亚胺等材料。而在OLED显示面板100中,衬底结构一般均设置为柔性衬底,此处不对其作详细介绍。
所述驱动电路层12包括多个薄膜晶体管。所述薄膜晶体管可以为蚀刻阻挡型、背沟道蚀刻型或顶栅薄膜晶体管型等结构,具体没有限制。例如顶栅薄膜晶体管型的所述薄膜晶体管可以包括位于所述第一衬底11上的有源层121、位于所述有源层121上的栅绝缘层122、位于所述栅绝缘层122上的栅极层123、位于所述栅极层123上的间绝缘层124、位于所述间绝缘层124上的源漏极层125、及位于所述源漏极层125上的平坦层126。
S20、在阵列基板10上形成像素定义层20;
S30、利用光罩工艺在所述像素定义层20上形成多个第一开口22、及沿所述第一开口22设置的至少一凹槽21;
在本实施例中,步骤S30具体可以包括:
S301、利用第一光罩工艺在所述像素定义层20上形成多个第一开口22;
S302、利用第二光罩工艺在所述像素定义层20上形成沿所述第一开口22设置的至少一所述凹槽21;
或者,利用第一光罩工艺在所述像素定义层20上同时形成多个第一开口22、及沿所述第一开口22设置的至少一所述凹槽21。
在本实施例中,请参阅图2,在俯视图方向,任一子像素区200包括沿所述子像素区200外围的设置的一所述凹槽21。或者,请参阅图3,在俯视图方向,任一子像素区200包括沿所述子像素区200外围的设置的两圈所述凹槽21。
在本实施例中,任一所述凹槽21包括至少一子凹槽211。请参阅图2,所述子凹槽211沿所述子像素区200外围连续设置。请参阅图3,所述子凹槽211沿所述子像素区200外围非连续设置。或者,所述子凹槽211为具有一定孔径的过孔,多个过孔沿所述子像素区200外围分布。
S40、对所述像素定义层20进行加热处理;
在上述实施例中,本申请在所述像素定义层20进行凹槽21的设置,主要为了在后续的加热处理中,使所述像素定义层20中的水氧气存在逸出通道,使得水氧气能够通过该通道逸出,使得残留在像素定义层20中的水氧从所述凹槽21中逸出,避免了在OLED显示面板100在使用过程中水氧气对阳极层31或发光层32的侵蚀,提高了OLED显示面板100的使用寿命。
在本实施例中,所述加热处理可以退火工艺或者烘烤内,具体加热温度可以根据有机材料不丧失活性的前提下自行设定,本申请不作限定。
S50、在所述第一开口22内填充发光材料以形成所述显示面板100的发光层32;
在本实施例中,步骤S50具体可以包括:
在所述第一开口22及所述凹槽21内填充所述发光材料,以使得位于所述第一开口22内的发光材料形成所述显示面板100的发光层32、以及位于所述凹槽21内的发光材料形成补偿层;
其中,所述第一开口22内的发光材料与所述凹槽21内的发光材料非连续设置。
由于发光材料为亲水性的有机材料,在制程工艺中,可以在蒸镀过程中将发光材料填充至像素定义层20中,以将像素定义层20中的水氧气所吸收,避免了像素定义层20中的水氧气与所述第一开口22内的发光材料或阳极层31等反应,造成不可逆的变化。本实施例的技术方案可以无需增加额外的工艺来避免像素定义层20中的水氧气进入子像素区200。
另外,考虑到发光材料的昂贵,填充凹槽21的发光材料可以通过其他吸水氧性较强的材料替代,但是其增加了额外一道工艺。因此,厂家可以根据实际成本考虑具体方案,本申请不作具体限定。
S60、在所述发光层32及所述像素定义层20上形成阴极层33,以使所述阴极层33覆盖所述发光层32及所述像素定义层20。
本申请凹槽21的存在是为了利用加热工艺将像素定义层20中的水氧气清除,而在后续同意中,凹槽21的存在可能导致发光器件的不平整性。此处,本申请通过在形成阴极层33时,将阴极层33填充于所述凹槽21内,实现了发光器件层30表面的平整。
本实施例的技术方案,可以把位于凹槽21内的阴极层33当作多个单独设置的电阻单元,其通过与阴极层33并联设置,实际上减小了阴极层33的阻抗,保证了阴极层33的电压均一性,提高了显示面板100的显示均一性。
在本实施例中,任一所述凹槽21的开口朝向该凹槽21所对应的子像素区200。
在本实施例中,在相邻两个所述子像素区200之间,所述凹槽21的深度呈逐渐增加至逐渐减小的趋势,相邻两个所述子像素区200之间的中心区对应的所述凹槽21深度最大。
在本实施例中,任意相邻两个所述凹槽21之间通过第一过孔212连接。
上述实施例的具体结构可以参阅图5~6,此处不再具体赘述。
本申请还提出了一种显示装置,其中,所述显示装置包括背光模组、及位于所述背光模组上的上述显示面板。本实施例中的所述显示装置的工作原理与上述显示面板的工作原理相同或相似,此处不再赘述。
本申请提出了一种显示面板及其制作方法,该显示面板包括阵列基板、位于所述阵列基板上的发光器件层、位于所述发光器件层上的封装层,所述发光器件层包括位于所述阵列基板上的像素定义层;所述像素定义层包括沿所述显示面板的子像素区外围设置的凹槽,至少一凹槽与一所述子像素区对应。本申请通过在像素定义层上设置环绕子像素区设置的至少一圈凹槽,该凹槽增加了像素定义层的逸出路径,使得像素定义层中的水氧气能够从该凹槽形成的通道逸出,去除了像素定义层内的水氧气,增加了OLED显示面板的使用寿命。
可以理解的是,对本领域普通技术人员来说,可以根据本申请的技术方案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本申请所附的权利要求的保护范围。

Claims (19)

  1. 一种显示面板,其包括阵列基板、位于所述阵列基板上的发光器件层、位于所述发光器件层上的封装层,所述发光器件层包括位于所述阵列基板上的像素定义层;
    其中,所述像素定义层包括沿所述显示面板的子像素区外围设置的凹槽,至少一凹槽与一所述子像素区对应。
  2. 根据权利要求1所述的显示面板,其中,任一所述凹槽包括至少一子凹槽,所述子凹槽沿所述子像素区外围连续或非连续设置。
  3. 根据权利要求1所述的显示面板,其中,任一所述凹槽的开口朝向该凹槽所对应的子像素区;
    其中,在相邻两个所述子像素区之间,所述凹槽的深度呈逐渐增加至逐渐减小的趋势,相邻两个所述子像素区之间的中心区对应的所述凹槽深度最大。
  4. 根据权利要求3所述的显示面板,其中,任意相邻两个所述凹槽之间通过第一过孔连接。
  5. 根据权利要求3所述的显示面板,其中,所述发光器件层还包括与所述像素定义层同层设置的阳极层及位于所述阳极层上的发光层;
    其中,所述发光层与阵列基板的最大间距小于所述凹槽与所述阵列基板的最小间距,以及所述凹槽被所述发光层的材料所填充。
  6. 根据权利要求1所述的显示面板,其中,所述发光器件层还包括覆盖所述像素定义层及所述发光器件层中发光层的阴极层;
    其中,所述凹槽被所述阴极层的材料所填充。
  7. 一种显示面板的制作方法,其包括:
    在阵列基板上形成像素定义层;
    利用光罩工艺在所述像素定义层上形成多个第一开口、及沿所述第一开口设置的至少一凹槽;
    对所述像素定义层进行加热处理;
    在所述第一开口内填充发光材料以形成所述显示面板的发光层;
    在所述发光层及所述像素定义层上形成阴极层,以使所述阴极层覆盖所述发光层及所述像素定义层。
  8. 根据权利要求7所述的显示面板的制作方法,其中,利用光罩工艺在所述像素定义层上形成多个第一开口、及沿所述第一开口设置的至少一凹槽的步骤包括:
    利用第一光罩工艺在所述像素定义层上形成多个第一开口;
    利用第二光罩工艺在所述像素定义层上形成沿所述第一开口设置的至少一所述凹槽;或者,
    利用第一光罩工艺在所述像素定义层上同时形成多个第一开口、及沿所述第一开口设置的至少一所述凹槽;
    其中,任一所述凹槽包括至少一子凹槽,所述子凹槽沿所述子像素区外围连续或非连续设置。
  9. 根据权利要求7所述的显示面板的制作方法,其中,在所述第一开口内填充发光材料以形成所述显示面板的发光层的步骤包括:
    在所述第一开口及所述凹槽内填充所述发光材料,以使得位于所述第一开口内的发光材料形成所述显示面板的发光层、以及位于所述凹槽内的发光材料形成补偿层;
    其中,所述第一开口内的发光材料与所述凹槽内的发光材料非连续设置。
  10. 根据权利要求7所述的显示面板的制作方法,其中,任一所述凹槽的开口朝向该凹槽所对应的子像素区;
    其中,在相邻两个所述子像素区之间,所述凹槽的深度呈逐渐增加至逐渐减小的趋势,相邻两个所述子像素区之间的中心区对应的所述凹槽深度最大。
  11. 根据权利要求10所述的显示面板的制作方法,其中,任意相邻两个所述凹槽之间通过第一过孔连接。
  12. 根据权利要求10所述的显示面板的制作方法,其中,所述发光层与阵列基板的最大间距小于所述凹槽与所述阵列基板的最小间距,以及所述凹槽被所述发光层的材料所填充。
  13. 根据权利要求7所述的显示面板的制作方法,其中,所述凹槽被所述阴极层的材料所填充。
  14. 一种显示装置,所述显示装置包括背光模组、及位于所述背光模组上的显示面板,其中,所述显示面板包括阵列基板、位于所述阵列基板上的发光器件层、位于所述发光器件层上的封装层,所述发光器件层包括位于所述阵列基板上的像素定义层;
    其中,所述像素定义层包括沿所述显示面板的子像素区外围设置的凹槽,至少一凹槽与一所述子像素区对应。
  15. 根据权利要求1所述的显示面板,其中,任一所述凹槽包括至少一子凹槽,所述子凹槽沿所述子像素区外围连续或非连续设置。
  16. 根据权利要求1所述的显示面板,其中,任一所述凹槽的开口朝向该凹槽所对应的子像素区;
    其中,在相邻两个所述子像素区之间,所述凹槽的深度呈逐渐增加至逐渐减小的趋势,相邻两个所述子像素区之间的中心区对应的所述凹槽深度最大。
  17. 根据权利要求16所述的显示面板,其中,任意相邻两个所述凹槽之间通过第一过孔连接。
  18. 根据权利要求16所述的显示面板,其中,所述发光器件层还包括与所述像素定义层同层设置的阳极层及位于所述阳极层上的发光层;
    其中,所述发光层与阵列基板的最大间距小于所述凹槽与所述阵列基板的最小间距,以及所述凹槽被所述发光层的材料所填充。
  19. 根据权利要求14所述的显示面板,其中,所述发光器件层还包括覆盖所述像素定义层及所述发光器件层中发光层的阴极层;
    其中,所述凹槽被所述阴极层的材料所填充。
PCT/CN2020/097928 2020-05-15 2020-06-24 显示面板及其制作方法 WO2021227209A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/963,510 US20230120390A1 (en) 2020-05-15 2020-06-24 Display panel and fabrication method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010413221.7A CN111584583B (zh) 2020-05-15 2020-05-15 显示面板及其制作方法
CN202010413221.7 2020-05-15

Publications (1)

Publication Number Publication Date
WO2021227209A1 true WO2021227209A1 (zh) 2021-11-18

Family

ID=72110883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097928 WO2021227209A1 (zh) 2020-05-15 2020-06-24 显示面板及其制作方法

Country Status (3)

Country Link
US (1) US20230120390A1 (zh)
CN (1) CN111584583B (zh)
WO (1) WO2021227209A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1649453A (zh) * 2005-02-07 2005-08-03 铼宝科技股份有限公司 有机电激发光显示面板
US20160260928A1 (en) * 2015-03-06 2016-09-08 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
CN107068715A (zh) * 2017-03-28 2017-08-18 上海天马微电子有限公司 一种有机发光显示面板、有机发光显示装置以及有机发光显示面板的制备方法
CN108336109A (zh) * 2018-01-02 2018-07-27 厦门天马微电子有限公司 有机发光显示面板、显示装置和有机发光显示母板
CN109755287A (zh) * 2019-02-25 2019-05-14 武汉华星光电半导体显示技术有限公司 一种柔性oled器件及其制备方法
CN109671859B (zh) * 2018-12-12 2020-05-12 武汉华星光电半导体显示技术有限公司 显示面板及显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4439589B2 (ja) * 2007-12-28 2010-03-24 パナソニック株式会社 有機elデバイスおよび有機elディスプレイパネル、ならびにそれらの製造方法
TWI511282B (zh) * 2013-08-05 2015-12-01 Ye Xin Technology Consulting Co Ltd 有機發光二極體面板
JP6242121B2 (ja) * 2013-09-02 2017-12-06 株式会社ジャパンディスプレイ 発光素子表示装置及び発光素子表示装置の製造方法
CN103887261B (zh) * 2014-03-03 2016-08-31 京东方科技集团股份有限公司 一种柔性显示器及其制备方法
KR20160066650A (ko) * 2014-12-02 2016-06-13 삼성디스플레이 주식회사 표시 장치의 제조 방법 및 표시 장치
JP2018006067A (ja) * 2016-06-29 2018-01-11 株式会社ジャパンディスプレイ 表示装置及び表示装置の製造方法
CN106373493A (zh) * 2016-09-27 2017-02-01 京东方科技集团股份有限公司 一种拼接屏、拼接屏的驱动方法、装置及显示设备
CN107068721A (zh) * 2017-04-20 2017-08-18 京东方科技集团股份有限公司 像素单元及其制作方法和显示装置
CN108807494B (zh) * 2018-07-06 2021-09-14 云谷(固安)科技有限公司 显示基板及其制作方法、显示面板和显示装置
CN109065596B (zh) * 2018-08-17 2022-07-01 京东方科技集团股份有限公司 阵列基板、显示面板及显示装置
CN109378328B (zh) * 2018-09-28 2021-07-09 广州国显科技有限公司 Oled显示面板及oled显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1649453A (zh) * 2005-02-07 2005-08-03 铼宝科技股份有限公司 有机电激发光显示面板
US20160260928A1 (en) * 2015-03-06 2016-09-08 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
CN107068715A (zh) * 2017-03-28 2017-08-18 上海天马微电子有限公司 一种有机发光显示面板、有机发光显示装置以及有机发光显示面板的制备方法
CN108336109A (zh) * 2018-01-02 2018-07-27 厦门天马微电子有限公司 有机发光显示面板、显示装置和有机发光显示母板
CN109671859B (zh) * 2018-12-12 2020-05-12 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN109755287A (zh) * 2019-02-25 2019-05-14 武汉华星光电半导体显示技术有限公司 一种柔性oled器件及其制备方法

Also Published As

Publication number Publication date
US20230120390A1 (en) 2023-04-20
CN111584583A (zh) 2020-08-25
CN111584583B (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
US10950632B2 (en) Array substrate, method for fabricating the same and display panel
KR101157262B1 (ko) 유기 전계 발광 표시 장치 및 이의 제조 방법
WO2016179875A1 (zh) Amoled背板结构及其制作方法
KR100741968B1 (ko) 유기 전계 발광 표시 소자 및 그 제조방법
US9893321B2 (en) Display device and method of manufacturing a display device
US20160035802A1 (en) Light-emitting device, array substrate, display device and manufacturing method of light-emitting device
US10431638B2 (en) Array substrate and OLED display device
KR101271521B1 (ko) 유기전계발광소자
US11004911B2 (en) Active-matrix organic light emitting diode display panel structure
US20140091291A1 (en) Array substrate and manufacturing method thereof, oled display device
WO2016132954A1 (ja) エレクトロルミネッセンス装置
WO2020228195A1 (zh) 显示面板及制作方法
KR20090073478A (ko) 유기전계발광표시장치 및 그의 제조방법
KR20050104926A (ko) 유기전계발광 소자 및 그 제조방법
KR101050290B1 (ko) 유기전계발광 소자 및 그 제조방법
WO2021227209A1 (zh) 显示面板及其制作方法
KR20050052309A (ko) 유기 전계 발광 표시 장치
KR100681133B1 (ko) 유기전계발광소자 및 그 제조방법
KR100705266B1 (ko) 유기전계발광 소자 및 그 제조방법
JP2004362938A (ja) エレクトロルミネッセンス表示装置及びその製造方法
KR101070534B1 (ko) 유기전계발광 소자 및 그 제조방법
JP4415174B2 (ja) 表示装置およびその製造方法
US11837610B2 (en) Array substrate and display device
KR20040015934A (ko) 유기전계발광 소자 및 그의 제조방법
US20240090296A1 (en) Display panel with pixel layout capable of improving graininess of pixel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20936032

Country of ref document: EP

Kind code of ref document: A1