WO2021227189A1 - 一种基于机器视觉的显微操作平台误差自主矫正算法 - Google Patents

一种基于机器视觉的显微操作平台误差自主矫正算法 Download PDF

Info

Publication number
WO2021227189A1
WO2021227189A1 PCT/CN2020/096364 CN2020096364W WO2021227189A1 WO 2021227189 A1 WO2021227189 A1 WO 2021227189A1 CN 2020096364 W CN2020096364 W CN 2020096364W WO 2021227189 A1 WO2021227189 A1 WO 2021227189A1
Authority
WO
WIPO (PCT)
Prior art keywords
error
platform
micromanipulation
machine vision
images
Prior art date
Application number
PCT/CN2020/096364
Other languages
English (en)
French (fr)
Inventor
汝长海
陈瑞华
岳春峰
郝淼
翟荣安
孙钰
朱军辉
Original Assignee
江苏集萃微纳自动化系统与装备技术研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏集萃微纳自动化系统与装备技术研究所有限公司 filed Critical 江苏集萃微纳自动化系统与装备技术研究所有限公司
Publication of WO2021227189A1 publication Critical patent/WO2021227189A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/74Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image
    • G06T3/40Scaling the whole image or part thereof
    • G06T3/4038Scaling the whole image or part thereof for image mosaicing, i.e. plane images composed of plane sub-images

Definitions

  • the invention relates to the technical field of limit operation calculations, in particular to an algorithm for self-correcting errors of a micromanipulation platform based on machine vision.
  • Micromanipulation technology is an important technical means of modern bioengineering in the field of biological sciences. With the development of modern medical technology, microinjection technology is widely used in cell injection, cell segmentation, assisted reproduction, etc.
  • the purpose of the present invention is to provide a machine vision-based micromanipulation platform error self-correction algorithm that has wide applicability, can efficiently and accurately compensate for errors, and improve the precision of the micromanipulation system. It adopts the following technical solutions:
  • a machine vision-based micro-manipulation platform error self-correction algorithm which includes:
  • the system error in this direction is compensated autonomously, and the system error in this direction is corrected.
  • the all directions include X-axis positive, X-axis negative, Y-axis positive, and Y-axis negative.
  • the calculation of the systematic error of the micromanipulation platform in this direction specifically includes:
  • the calculating the pixel pitch specifically includes:
  • the calculation of the actual displacement distance of the two images before and after in the direction according to the pixel pitch specifically includes:
  • AA 1 S * AA 1 actually calculate the actual displacement distance; wherein, AA 1 is actually the actual displacement distance, the number of pixels for the longitudinal direction AA 1 relative displacement of the two images.
  • the obtaining the systematic error in this direction according to the actual displacement distance specifically includes:
  • is the deflection angle between the image coordinate system and the coordinate system of the microscope operating platform.
  • the autonomous compensation for the system error in the direction to correct the system error in the direction specifically includes:
  • Compensation calculation is carried out through computer closed-loop feedback, and the system error of this direction is compensated autonomously, and the system error of this direction is corrected.
  • it also includes: taking multiple sets of images, and performing multiple calculations to obtain the average value of the systematic error of the micromanipulation platform in the direction.
  • the scale is a two-dimensional plane scale.
  • the self-correction algorithm of micromanipulation platform error based on machine vision of the present invention abandons the traditional manual data collection and calibration of each possible error factor (such as: translational motion part, rotation motion part, rolling motion part), and manual compensation
  • each possible error factor such as: translational motion part, rotation motion part, rolling motion part
  • the present invention integrates and unifies the current mechanical errors, CCD installation errors, and pixel/micron conversion errors that affect the accuracy of microinjection based on the image stitching technology, without manual assistance, and can realize independent compensation and correction, and the errors can be corrected. Control at the pixel level.
  • system error self-compensation algorithm proposed by the present invention is not only suitable for the microscopic operating system, but also for error correction of other mobile platforms. It is not only simple to operate, but also has the characteristics of high efficiency and high precision.
  • Figure 1 is a flowchart of an algorithm for autonomous correction of errors of a micromanipulation platform based on machine vision in an embodiment of the present invention
  • Figure 2 is a schematic diagram of a scale in an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of two images before and after in an embodiment of the present invention.
  • FIG. 4 is a schematic view of stitching of two images before and after in an embodiment of the present invention.
  • Fig. 5 is a schematic view of the stitching of two images forward and backward on the X axis in an embodiment of the present invention.
  • the machine vision-based micromanipulation platform error autonomous correction algorithm in the embodiment of the present invention includes the following steps:
  • Step S10 Place the ruler on the micromanipulation platform, and move the micromanipulation platform in a fixed direction at a fixed step to obtain the ruler image, and ensure that the front and back images are partially overlapped.
  • the scale is a two-dimensional planar scale, as shown in FIG. 2.
  • the two images obtained before and after are shown in Figure 3, namely the front frame and the back frame.
  • Step S20 stitching the two images before and after in the direction.
  • the spliced image is shown in Figure 4.
  • Step S30 Calculate the systematic error of the micromanipulation platform in this direction. Specifically:
  • Step S31 Calculate the pixel pitch; specifically including:
  • Step S32 Calculate the actual displacement distance of the two images before and after in the direction according to the pixel pitch; specifically including:
  • AA 1 S * AA 1 actually calculate the actual displacement distance; wherein, AA 1 is actually the actual displacement distance, the number of pixels for the longitudinal direction AA 1 relative displacement of the two images.
  • Step S33 Obtain the systematic error of the direction according to the actual displacement distance. Specifically:
  • is the deflection angle between the image coordinate system and the coordinate system of the microscope operating platform.
  • +X ⁇ X and +X ⁇ y are the compensation values that need to be compensated when the X axis moves in the positive direction. In the same way, the compensation value when moving in other directions can be obtained.
  • Step S40 Perform autonomous compensation for the system error in the direction, and correct the system error in the direction. Specifically:
  • Compensation calculation is carried out through computer closed-loop feedback, and the system error of this direction is compensated autonomously, and the system error of this direction is corrected.
  • the algorithm also includes: using a fixed step to move the micromanipulation platform in other directions and obtain images respectively, calculate the system error of the micromanipulation platform in other directions, and measure the errors in other directions.
  • the system error is compensated autonomously, and the system error correction in all directions is completed.
  • all directions include X-axis positive, X-axis negative, Y-axis positive, and Y-axis negative.
  • the algorithm further includes: taking multiple sets of images and performing multiple calculations to obtain the average value of the systematic error of the micromanipulation platform in the direction. It can improve the accuracy of system error calculation, and finally improve the accuracy of error correction.
  • the self-correction algorithm of micromanipulation platform error based on machine vision of the present invention abandons the traditional manual data collection and calibration of each possible error factor (such as: translational motion part, rotation motion part, rolling motion part), and manual compensation
  • each possible error factor such as: translational motion part, rotation motion part, rolling motion part
  • the present invention integrates and unifies the current mechanical errors, CCD installation errors, and pixel/micron conversion errors that affect the accuracy of microinjection based on the image stitching technology, without manual assistance, and can realize independent compensation and correction, and the errors can be corrected. Control at the pixel level.
  • system error self-compensation algorithm proposed by the present invention is not only suitable for the microscopic operating system, but also for error correction of other mobile platforms. It is not only simple to operate, but also has the characteristics of high efficiency and high precision.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Manipulator (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

本发明公开了一种基于机器视觉的显微操作平台误差自主矫正算法,该方法包括:将标尺放置在显微操作平台上,以固定步进分别让显微操作平台沿固定方向移动并获取标尺图像,并保证前后两张图像有部分重叠;将该方向的前后两张图像进行拼接;计算显微操作平台在该方向的系统误差;对该方向的系统误差进行自主补偿,矫正该方向系统误差。本发明基于图像拼接技术对当前影响显微注射精度的机械误差、CCD安装误差以及像素/微米转换等误差进行集成统一,无须人工辅助,可实现自主补偿矫正,误差可控制在像素级别。此外,本发明提出的算法不仅适用于显微操作系统,也适用于其他移动平台的误差矫正,不仅操作简单,同时具备高效率、精度高等特点。

Description

一种基于机器视觉的显微操作平台误差自主矫正算法 技术领域
本发明涉及限位操作计算技术领域,特别涉及一种基于机器视觉的显微操作平台误差自主矫正算法。
背景技术
显微操作技术是生物科学领域中现代生物工程的重要技术手段。随着现代化医疗技术的发展,显微注射技术广泛应用于细胞注射、细胞分割、辅助生殖等。
无论是细胞注射还是细胞分割,在进行显微操作时,都需要先迅速的在显微镜视野中找到并精确定位到目标细胞,然后再进行后续一步的操作,由于显微操作的对象均在微米级,对操作平台的运动精度要求非常高。当前,显微操作的精度主要依赖于机械的精密度,但是,由于机械设备无法避免的会存在一定的自身误差以及安装误差,都会降低显微操作的精度,甚至直接影响到显微操作的结果,由此可见,对系统误差的补偿矫正对显微操作的精确度起着重要作用。
对于系统误差的补偿,当前多采用机械辅助仪器辅助安装来降低安装误差精度,这种误差补偿方式需要多次重复性测量,并伴有大量的数据处理,不仅工作量大、工作效率低,甚至在检测过程中还会附加额外误差。因此,由于尚未有有效的误差补偿方法,当前的显微操作无一例外的还是依赖于纯手工或者半自动化操作,但这显然已无法满足现代化智能医疗技术高效率、高质量的操作要求。
发明内容
针对现有技术的不足,本发明目的在于提供一种具有广泛适用性,可以高效精确的弥补误差,提高显微操作系统精度的基于机器视觉的显微操作平台误差自主矫正算法。其采用如下技术方案:
一种基于机器视觉的显微操作平台误差自主矫正算法,其包括:
将标尺放置在显微操作平台上,以固定步进分别让显微操作平台沿固定方向移动并获取标尺图像,并保证前后两张图像有部分重叠;
将该方向的前后两张图像进行拼接;
计算显微操作平台在该方向的系统误差;
对该方向的系统误差进行自主补偿,矫正该方向系统误差。
作为本发明的进一步改进,还包括:
以固定步进分别让显微操作平台沿其他方向移动并分别获取图像,计算显微操作平台在其他各个方向上的系统误差,并对其他各个方向的系统误差进行自主补偿,完成所有方向的系统误差矫正。
作为本发明的进一步改进,所述所有方向包括X轴正向、X轴负向、Y轴正向、Y轴负向。
作为本发明的进一步改进,所述计算显微操作平台在该方向的系统误差,具体包括:
计算像素间距;
根据像素间距计算该方向上前后两张图像的实际位移距离;
根据实际位移距离得到该方向的系统误差。
作为本发明的进一步改进,所述计算像素间距,具体包括:
采用公式S=M/N计算像素间距;其中,S为像素间距,M为标尺长度,N为M长度内的像素个数。
作为本发明的进一步改进,所述根据像素间距计算该方向上前后两张图像的实际位移距离,具体包括:
采用公式AA 1实际=S*AA 1计算实际位移距离;其中,AA 1实际为实际位移距离,AA 1为该方向的前后两张图像相对位移的像素个数。
作为本发明的进一步改进,所述根据实际位移距离得到该方向的系统误差,具体包括:
根据公式AA 1实际*cos(θ)和AA 1实际*sin(θ)得到该方向的系统误差的两个分量;其中,θ为图像坐标系与显微操作平台坐标系的偏角。
作为本发明的进一步改进,所述对该方向的系统误差进行自主补偿,矫正该方向系统误差,具体包括:
通过计算机闭环反馈进行补偿计算,对该方向的系统误差进行自主补偿,矫正该方向系统误差。
作为本发明的进一步改进,还包括:拍摄多组图像,并进行多次计算得到显微操作平台在该方向系统误差的平均值。
作为本发明的进一步改进,所述标尺为二维平面标尺。
本发明的有益效果:
本发明基于机器视觉的显微操作平台误差自主矫正算法摒弃了传统的人工对各个可能存在误差的因素(比如:平动运动部件、旋转运动部件、滚动运动部件)分别进行数据采集标定,手动补偿以进行误差矫正的方式,本发明基于图像拼接技术对当前影响显微注射精度的机械误差、CCD安装误差以及像素/微米转换等误差进行集成统一,无须人工辅助,可实现自主补偿矫正,误差可控制在像素级别。
此外,本发明提出的系统误差自主补偿算法不仅适用于显微操作系统,同时也适用于其他移动平台的误差矫正,不仅操作简单,同时具备高效率、精度高等特点。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
附图说明
图1是本发明实施例中基于机器视觉的显微操作平台误差自主矫正算法的流程图;
图2是本发明实施例中标尺的示意图;
图3是本发明实施例中前后两张图像的示意图;
图4是本发明实施例中前后两张图像的拼接示意图;
图5是本发明实施例中X轴正向前后两张图像的拼接示意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
如图1所示,本发明实施例中的基于机器视觉的显微操作平台误差自主矫正算法,包括以下步骤:
步骤S10、将标尺放置在显微操作平台上,以固定步进分别让显微操作平台沿固定方向移动并获取标尺图像,并保证前后两张图像有部分重叠。
在本实施例中,标尺为二维平面标尺,如图2所示。获取的前后两张图像如图3所示,即前帧和后帧。
步骤S20、将该方向的前后两张图像进行拼接。拼接后的图像如图4所示。
步骤S30、计算显微操作平台在该方向的系统误差。具体包括:
步骤S31、计算像素间距;具体包括:
采用公式S=M/N计算像素间距;其中,S为像素间距,M为标尺长度,N为M长度内的像素个数。
步骤S32、根据像素间距计算该方向上前后两张图像的实际位移距离;具体包括:
采用公式AA 1实际=S*AA 1计算实际位移距离;其中,AA 1实际为实际位移距离,AA 1为该方向的前后两张图像相对位移的像素个数。
步骤S33、根据实际位移距离得到该方向的系统误差。具体包括:
根据公式AA 1实际*cos(θ)和AA 1实际*sin(θ)得到该方向的系统误差的两个分量;其中,θ为图像坐标系与显微操作平台坐标系的偏角。
如图5所示,当显微操作平台运行方向为X轴正向,此时该方向的系统误差为+XΔ,可分为+XΔ X,+XΔ y两个分量,满足以下公式:
+XΔ X=AA 1实际*cos(θ);
+XΔ y=AA 1实际*sin(θ);
+XΔ X与+XΔ y即为X轴正向运动时需要补偿的补偿值。同理可得其它方向运动时的补偿值。
步骤S40、对该方向的系统误差进行自主补偿,矫正该方向系统误差。具体包括:
通过计算机闭环反馈进行补偿计算,对该方向的系统误差进行自主补偿,矫正该方向系统误差。
在本实施例中,该算法还包括:以固定步进分别让显微操作平台沿其他方向移动并分别获取图像,计算显微操作平台在其他各个方向上的系统误差,并对其他各个方向的系统误差进行自主补偿,完成所有方向的系统误差矫正。其中,所有方向包括X轴正向、X轴负向、Y轴正向、Y轴负向。
在本实施例中,该算法还包括:拍摄多组图像,并进行多次计算得到显微操作平台在该方向系统误差的平均值。可以提高系统误差计算精度,并最终提高误差矫正的精度。
本发明基于机器视觉的显微操作平台误差自主矫正算法摒弃了传统的人工对各个可能存在误差的因素(比如:平动运动部件、旋转运动部件、滚动运动部件)分别进行数据采集标定,手动补偿以进行误差矫正的方式,本发明基于图像拼接技术对当前影响显微注射精度的机械误差、CCD安装误差以及像素/微米转换等误差进行集成统一,无须人工辅助,可实现自主补偿矫正,误差可控制在像素级别。
此外,本发明提出的系统误差自主补偿算法不仅适用于显微操作系统,同时也适用于其他移动平台的误差矫正,不仅操作简单,同时具备高效率、精度高等特点。
以上实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (10)

  1. 一种基于机器视觉的显微操作平台误差自主矫正算法,其特征在于,包括:
    将标尺放置在显微操作平台上,以固定步进分别让显微操作平台沿固定方向移动并获取标尺图像,并保证前后两张图像有部分重叠;
    将该方向的前后两张图像进行拼接;
    计算显微操作平台在该方向的系统误差;
    对该方向的系统误差进行自主补偿,矫正该方向系统误差。
  2. 如权利要求1所述的一种基于机器视觉的显微操作平台误差自主矫正算法,其特征在于,还包括:
    以固定步进分别让显微操作平台沿其他方向移动并分别获取图像,计算显微操作平台在其他各个方向上的系统误差,并对其他各个方向的系统误差进行自主补偿,完成所有方向的系统误差矫正。
  3. 如权利要求2所述的一种基于机器视觉的显微操作平台误差自主矫正算法,其特征在于,所述所有方向包括X轴正向、X轴负向、Y轴正向、Y轴负向。
  4. 如权利要求1所述的一种基于机器视觉的显微操作平台误差自主矫正算法,其特征在于,所述计算显微操作平台在该方向的系统误差,具体包括:
    计算像素间距;
    根据像素间距计算该方向上前后两张图像的实际位移距离;
    根据实际位移距离得到该方向的系统误差。
  5. 如权利要求4所述的一种基于机器视觉的显微操作平台误差自主矫正算法,其特征在于,所述计算像素间距,具体包括:
    采用公式S=M/N计算像素间距;其中,S为像素间距,M为标尺长度,N为M长度内的像素个数。
  6. 如权利要求5所述的一种基于机器视觉的显微操作平台误差自主矫正算法,其特征在于,所述根据像素间距计算该方向上前后两张图像的实际位移 距离,具体包括:
    采用公式AA 1实际=S*AA 1计算实际位移距离;其中,AA 1实际为实际位移距离,AA 1为该方向的前后两张图像相对位移的像素个数。
  7. 如权利要求6所述的一种基于机器视觉的显微操作平台误差自主矫正算法,其特征在于,所述根据实际位移距离得到该方向的系统误差,具体包括:
    根据公式AA 1实际*cos(θ)和AA 1实际*sin(θ)得到该方向的系统误差的两个分量;其中,θ为图像坐标系与显微操作平台坐标系的偏角。
  8. 如权利要求1所述的一种基于机器视觉的显微操作平台误差自主矫正算法,其特征在于,所述对该方向的系统误差进行自主补偿,矫正该方向系统误差,具体包括:
    通过计算机闭环反馈进行补偿计算,对该方向的系统误差进行自主补偿,矫正该方向系统误差。
  9. 如权利要求1所述的一种基于机器视觉的显微操作平台误差自主矫正算法,其特征在于,还包括:拍摄多组图像,并进行多次计算得到显微操作平台在该方向系统误差的平均值。
  10. 如权利要求1所述的一种基于机器视觉的显微操作平台误差自主矫正算法,其特征在于,所述标尺为二维平面标尺。
PCT/CN2020/096364 2020-05-09 2020-06-16 一种基于机器视觉的显微操作平台误差自主矫正算法 WO2021227189A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010387435.1A CN111768445A (zh) 2020-05-09 2020-05-09 一种基于机器视觉的显微操作平台误差自主矫正算法
CN202010387435.1 2020-05-09

Publications (1)

Publication Number Publication Date
WO2021227189A1 true WO2021227189A1 (zh) 2021-11-18

Family

ID=72719192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096364 WO2021227189A1 (zh) 2020-05-09 2020-06-16 一种基于机器视觉的显微操作平台误差自主矫正算法

Country Status (2)

Country Link
CN (1) CN111768445A (zh)
WO (1) WO2021227189A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112433355A (zh) * 2020-11-13 2021-03-02 江苏集萃微纳自动化系统与装备技术研究所有限公司 一种误差自动校正的显微操作系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040044431A1 (en) * 2002-08-28 2004-03-04 Joseph Pellegrini Methods and systems for controlling reticle-induced errors
CN102842117A (zh) * 2012-07-13 2012-12-26 浙江工业大学 显微视觉系统中运动误差矫正方法
CN105444699A (zh) * 2015-11-11 2016-03-30 苏州大学附属儿童医院 一种显微操作系统坐标与位移误差检测和补偿的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103455993B (zh) * 2013-09-30 2016-09-21 电子科技大学 一种自动视觉检测中基于光栅定位的二维图像拼接方法
CN109848986B (zh) * 2019-01-08 2020-09-15 北京市城市管理研究院(北京市环境卫生监测中心) 基于机器视觉的目标物体高度不确定时的定位方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040044431A1 (en) * 2002-08-28 2004-03-04 Joseph Pellegrini Methods and systems for controlling reticle-induced errors
CN102842117A (zh) * 2012-07-13 2012-12-26 浙江工业大学 显微视觉系统中运动误差矫正方法
CN105444699A (zh) * 2015-11-11 2016-03-30 苏州大学附属儿童医院 一种显微操作系统坐标与位移误差检测和补偿的方法

Also Published As

Publication number Publication date
CN111768445A (zh) 2020-10-13

Similar Documents

Publication Publication Date Title
CN110276806B (zh) 用于四自由度并联机器人立体视觉手眼系统的在线手眼标定和抓取位姿计算方法
CN112223285B (zh) 一种基于组合测量的机器人手眼标定方法
CN110666798A (zh) 一种基于透视变换模型的机器人视觉标定方法
CN108508680B (zh) 一种摄像头模组自动对焦装置标定板中心与感光芯片中心对齐的方法
CN105066884A (zh) 一种机器人末端定位偏差校正方法及系统
CN109191527B (zh) 一种基于最小化距离偏差的对位方法及装置
CN109465829B (zh) 一种基于转换矩阵误差模型的工业机器人几何参数辨识方法
CN116643393B (zh) 基于显微图像偏转的处理方法及系统
CN113211431B (zh) 基于二维码修正机器人系统的位姿估计方法
WO2021227189A1 (zh) 一种基于机器视觉的显微操作平台误差自主矫正算法
EP3998580B1 (en) Camera calibration method and apparatus, electronic device, storage medium, program product, and road side device
CN105444699A (zh) 一种显微操作系统坐标与位移误差检测和补偿的方法
CN111426270A (zh) 一种工业机器人位姿测量靶标装置和关节位置敏感误差标定方法
CN106023237B (zh) 一种双目摄像机定位校准方法
CN106376230A (zh) 贴片头偏移量的校正方法
CN114627166A (zh) 基于点云配准icp算法的机器人云台伺服控制方法
WO2022095082A1 (zh) 一种用于细胞注射的显微操作平台三维定位方法
CN104698694A (zh) 一种液晶面板对合设备及方法
CN110421406A (zh) 基于偏心差控制的刀具动态自适应补偿方法
CN111975756B (zh) 一种3d视觉测量系统的手眼标定系统及方法
CN116109686A (zh) 一种点云配准方法、设备及介质
CN112577463B (zh) 姿态参数修正的航天器单目视觉测距方法
CN112971984B (zh) 一种基于一体化手术机器人的坐标配准方法
CN114559153A (zh) 二维同轴补偿振镜追踪焊缝偏移的系统及纠偏方法
CN210689549U (zh) 一种3d四轮定位装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935261

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.06.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20935261

Country of ref document: EP

Kind code of ref document: A1