WO2021227182A1 - 一种重载列车机车动力学监测装置 - Google Patents

一种重载列车机车动力学监测装置 Download PDF

Info

Publication number
WO2021227182A1
WO2021227182A1 PCT/CN2020/095973 CN2020095973W WO2021227182A1 WO 2021227182 A1 WO2021227182 A1 WO 2021227182A1 CN 2020095973 W CN2020095973 W CN 2020095973W WO 2021227182 A1 WO2021227182 A1 WO 2021227182A1
Authority
WO
WIPO (PCT)
Prior art keywords
locomotive
coupler
data
heavy
abnormal
Prior art date
Application number
PCT/CN2020/095973
Other languages
English (en)
French (fr)
Inventor
王渊
杨泓
王红强
朱文斌
原志红
李玉梅
宋面儿
吕晓明
吕燕军
郭小军
王鑫阳
张鑫亚
赵振辉
蔡元勋
张宏磊
朱晓东
Original Assignee
中铁三局集团有限公司
中铁三局集团有限公司运输工程分公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铁三局集团有限公司, 中铁三局集团有限公司运输工程分公司 filed Critical 中铁三局集团有限公司
Publication of WO2021227182A1 publication Critical patent/WO2021227182A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or vehicle train for signalling purposes ; On-board control or communication systems
    • B61L15/0054Train integrity supervision, e.g. end-of-train [EOT] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61GCOUPLINGS; DRAUGHT AND BUFFING APPLIANCES
    • B61G7/00Details or accessories
    • B61G7/14Safety devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or vehicle train for signalling purposes ; On-board control or communication systems
    • B61L15/0072On-board train data handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or vehicle train for signalling purposes ; On-board control or communication systems
    • B61L15/009On-board display devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning, or like safety means along the route or between vehicles or vehicle trains

Definitions

  • the invention belongs to the technical field of heavy-load train operation safety, and specifically relates to a heavy-load train locomotive dynamics monitoring device.
  • the coupler of the multi-line locomotive will bear a greater pressure hook force. Because the coupler connection is a swing connection, when the coupler bears the hook pressure force, the greater the hook pressure force, The greater the swing angle of the coupler, the greater the dislocation of the car body, the greater the lateral force on the locomotive, and the greater the risk factor of derailment of the locomotive.
  • Optimizing the operation method is currently the most feasible method to improve the stability and safety of the 20,000-ton heavy-haul train.
  • the biggest difficulty in optimizing the operation now lies in the safety and stability of the 20,000-ton heavy-duty train. Accurate quantitative measurement.
  • the present invention provides a heavy-duty train locomotive dynamics monitoring device.
  • the invention provides a heavy-duty train locomotive dynamics monitoring device, including:
  • the data acquisition module is used to measure the coupler stress, car body dislocation and acceleration of the locomotive when the heavy-duty train is running according to the preset sampling frequency;
  • the data transmission module is used to write the collected data into the memory to facilitate subsequent data recall and in-depth analysis
  • the data analysis and processing module is used to analyze, alarm and display the transmitted data in real time.
  • the data acquisition module includes:
  • the coupler force data collection unit is used to collect the deformation data of the locomotive coupler generated by the strain gauges provided on the locomotive coupler;
  • the coupler swing angle data collection unit is used to collect the coupler offset data generated by the cable sensor provided on the locomotive coupler;
  • the vibration data collection unit is used to collect the locomotive running acceleration data generated by the acceleration sensors arranged on the longitudinal and lateral positions of the locomotive bogie and the wheelset axle head;
  • the car body dislocation data acquisition unit is used to collect the locomotive body dislocation data generated by the cable sensor and the laser displacement sensor arranged in the center of the multi-linked locomotive reconnection ferry plate.
  • the data analysis processing module includes:
  • the coupler stress analysis unit is used to calculate the real-time stress of the coupler of the locomotive according to the deformation data of the coupler of the locomotive, compare it with the preset stress threshold of the coupler of the locomotive, and judge whether the stress of the coupler of the locomotive is abnormal;
  • the coupler swing angle analysis unit is used to calculate the real-time locomotive coupler offset angle according to the locomotive coupler offset data, and compare it with the preset locomotive coupler offset angle threshold to determine whether the locomotive coupler offset angle is abnormal;
  • the vibration degree analysis unit is used to compare the locomotive operation acceleration threshold with the preset locomotive operation acceleration threshold according to the locomotive operation acceleration data to determine whether the locomotive vibration degree is abnormal;
  • the car body dislocation analysis unit is used to calculate the real-time car body dislocation amount between the multiple car bodies based on the car body dislocation data generated between the multiple car bodies of the multi-linked locomotive, and the preset locomotive body
  • the misalignment threshold value is compared to determine whether the locomotive body misalignment is abnormal.
  • the coupler stress analysis unit calculates the real-time locomotive coupler stress, it obtains the original offset of the static calibration of the strain gauge fixed at the locomotive coupler, the coefficient of change between the strain voltage change during static calibration and the given locomotive force, and The actual value of the strain voltage in the dynamic operation of the coupler, the stress F of the coupler of the locomotive is expressed as:
  • a represents the original offset of the strain gauge during static calibration
  • b represents the coefficient of variation between the strain voltage change during static calibration and the given force of the locomotive
  • L represents the actual value of the strain voltage in the dynamic operation of the coupler
  • the coupler swing angle analysis unit calculates the coupler offset angle, it collects the coupler offset data L1 and L2 of the first cable displacement sensors installed on the couplers at both ends of the locomotive, and the locomotive coupler offset angle r is expressed as:
  • a and b are the constants of the first cable displacement sensors provided on the couplers at both ends of the locomotive, and c is the distance between the two first cable displacement sensors;
  • the coupler swing angle analysis unit calculates the coupler deflection angle, it collects the coupler deflection angle r of the two-axis inclination angle sensor set on the coupler at both ends of the locomotive;
  • the impulse degree analysis unit analyzes the impulse degree, the real-time locomotive running acceleration a is obtained. If -2m/s 2 ⁇ a ⁇ +2m/s 2 , the vibration degree of the locomotive is judged to be normal, otherwise it is judged to be abnormal.
  • the car body dislocation analysis unit judges the dislocation of the locomotive car body, it obtains the second cable displacement sensor and the laser displacement set at the center of the reconnection ferry plate arranged between the multiple car bodies.
  • the displacement amount a'and b'produced by the sensor, the displacement l'of the vehicle body is recorded as:
  • a' represents the displacement actually collected by the cable displacement sensor
  • b' represents the displacement collected by the laser displacement sensor
  • an alarm signal is sent to an abnormal alarm module to give a corresponding sound and light alarm.
  • the data analysis and processing module also includes a display unit to display the data transmitted by the data transmission module in real time.
  • the heavy-duty train locomotive dynamics monitoring device of the present invention is equipped with acceleration sensors, displacement sensors, strain gauges and other equipment, which solves the problem that the dynamic state of heavy-duty trains cannot be quantified during operation, and provides optimization for locomotive operation.
  • Data support provides a basis for further optimizing the smooth locomotive operation plan; through data collection, real-time monitoring of the locomotive coupler force, impulse size and car body dislocation value, and combined with the operation plan for data analysis, continuous optimization and improvement of the locomotive smooth operation plan to improve the locomotive Flight attendant operation level;
  • the data acquisition equipment of the present invention is accurate in type selection, strong in anti-interference ability, and reliable and stable in the power supply circuit. It only needs to be installed on the locomotive before leaving the warehouse. After the locomotive is parked, the data is read through the data U disk for system analysis. It realizes the dynamic monitoring and dynamic data analysis of the whole process of the heavy-duty train operation without additional personnel, and the volume is small and does not take up space.
  • Fig. 1 is a schematic structural diagram of a heavy-duty train locomotive dynamics monitoring device provided by the present invention.
  • the present invention provides a heavy-duty train locomotive dynamics monitoring device, including:
  • the data collection module 110 is used to measure the coupler stress, car body dislocation, acceleration, and acceleration of the locomotive when a heavy-duty train is running according to a preset sampling frequency;
  • the data transmission module 120 is used to write the collected data into the memory to facilitate subsequent data recall and in-depth analysis;
  • the data analysis and processing module 130 is used to analyze, alarm and display the transmitted data in real time.
  • the data collection module 110 includes:
  • the coupler force data collection unit 111 is used to collect the deformation data of the locomotive coupler generated by the strain gauges provided on the locomotive coupler;
  • the coupler swing angle data collection unit 112 is used to collect coupler offset data generated by the pull-wire sensor provided on the locomotive coupler;
  • the vibration data collection unit 113 is used to collect locomotive operating acceleration data generated by acceleration sensors arranged on the longitudinal and lateral positions of the locomotive bogie and wheelset axle heads;
  • the car body dislocation data acquisition unit 114 is used to collect the locomotive body dislocation data generated by the cable sensor and the laser displacement sensor arranged in the center of the multi-linked locomotive reconnection ferry plate.
  • the data analysis and processing module 130 includes:
  • the coupler stress analysis unit 131 is used to calculate the real-time stress of the coupler of the locomotive according to the deformation data of the coupler of the locomotive, compare it with the preset stress threshold of the coupler of the locomotive, and judge whether the stress of the coupler of the locomotive is abnormal;
  • the coupler swing angle analysis unit 132 is used to calculate the real-time locomotive coupler offset angle according to the locomotive coupler offset data, compare it with the preset locomotive coupler offset angle threshold, and determine whether the locomotive coupler offset angle is abnormal;
  • the vibration degree analysis unit 133 is configured to compare the locomotive operation acceleration threshold with the preset locomotive operation acceleration threshold according to the locomotive operation acceleration data to determine whether the locomotive vibration degree is abnormal;
  • the car body dislocation analysis unit 134 is used to calculate the real-time car body dislocation amount between the multiple car bodies based on the car body dislocation data generated between the multiple car bodies of the multi-linked locomotive, and the preset locomotive
  • the body dislocation amount threshold is compared to determine whether the locomotive body dislocation is abnormal.
  • the coupler stress analysis unit 131 obtains the original offset of the static calibration of the strain gauge fixed at the coupler of the locomotive and the coefficient of change between the strain voltage change during static calibration and the given locomotive force when calculating the real-time stress of the locomotive coupler. And the actual value of the strain voltage in the dynamic operation of the coupler, the stress F of the coupler of the locomotive is expressed as:
  • a represents the original offset of the strain gauge during static calibration
  • b represents the coefficient of variation between the strain voltage change during static calibration and the given force of the locomotive
  • L represents the actual value of the strain voltage in the dynamic operation of the coupler
  • the coupler swing angle analysis unit 132 calculates the coupler offset angle, it collects the coupler offset data L1 and L2 of the first cable displacement sensors provided on the couplers at both ends of the locomotive, and the locomotive coupler offset angle r is expressed as:
  • a and b are the constants of the first cable displacement sensors provided on the couplers at both ends of the locomotive, and c is the distance between the two first cable displacement sensors;
  • the coupler swing angle analysis unit 132 collects the coupler deflection angle r of the two-axis inclination angle sensors provided on the coupler at both ends of the locomotive when calculating the deflection angle of the coupler;
  • the impulse degree analysis unit 133 analyzes the degree of impulse, the real-time locomotive running acceleration a is obtained. If -2m/s 2 ⁇ a ⁇ +2m/s 2 , the vibration degree of the locomotive is determined to be normal, otherwise it is determined to be abnormal.
  • the car body dislocation analysis unit 134 determines the position of the locomotive car body, it obtains the second cable displacement sensor and the laser set at the center of the reconnection ferry plate arranged between the multiple car bodies.
  • the displacement amount a'and b'produced by the displacement sensor, the displacement l'of the vehicle body is recorded as:
  • a' represents the displacement actually collected by the cable displacement sensor
  • b' represents the displacement collected by the laser displacement sensor
  • an alarm signal is sent to an abnormal alarm module 140 to perform corresponding sound and light alarms.
  • voice signals containing the words of the type name are sent out to prompt the technicians.
  • the data analysis processing module 130 also includes a display unit 135 to display the data transmitted by the data transmission module 120 and the analysis results of the units to which the data analysis processing module 130 belongs in real time.
  • the display unit 135 actually uses an industrial control integrated computer, which can display the collected data in real time and generate a waveform output.
  • Heavy-duty trains usually include locomotives and vehicles, where locomotives are used to provide power to drive multiple sections of vehicles along the rails. Take a 20,000-ton heavy-duty train as an example. Its train structure includes two locomotives and 216 vehicles. One of the two locomotives is used as the master locomotive, and the other is a multiple-connected slave locomotive. One end of the master locomotive is connected in series. The 108-carriage vehicles are then connected to one end of the reconnection slave-controlled locomotive, and the other end of the reconnection slave-controlled locomotive is connected to another 108-carriage in series. Among them, the master locomotive and the reconnected slave locomotive both include two sections AB, which are connected by couplers.
  • the device of the present invention is used to detect and pre-warn the locomotive coupler stress, the deflection angle of the locomotive coupler, the degree of vibration of the locomotive, and the dislocation of the locomotive body of the two connected locomotives of the double-connected slave control locomotive, especially for the double-connected slave control locomotive Perform testing.
  • the embodiment of the present invention takes the detection of the reconnection slave control locomotive as an example.
  • the reconnection slave control locomotive mainly detects the couplers connected to the AB section and the vehicle and the couplers connected to each other. Strain gauges and the first pull-wire displacement sensor are installed on the three couplers to monitor the strain of the couplers.
  • the strain gauge uses a full-bridge wiring method to eliminate temperature interference; the acceleration sensor range is 2.5g; when the train is running, the data of each set sensor is collected and calculated in real time, and the preset threshold is compared to determine whether If abnormal, an alarm signal will be issued to remind the staff to deal with it.

Abstract

一种重载列车机车动力学监测装置,包括数据采集模块(110)、数据传输模块(120)和数据分析处理模块(130),通过设置加速度传感器、位移传感器、应变片,解决了重载列车运行中动力学状态无法量化的问题,为机车操纵优化提供数据支持,为优化机车平稳操纵方案提供了依据;通过数据的采集,实时监测机车车钩力、冲动大小及车体错位数值,并结合操纵方案进行数据分析,不断优化完善机车平稳操纵方案;数据采集设备选型精准、抗干扰能力强、供电电路可靠稳定,只需要在机车出库前安装到机车上,机车停车后通过数据U盘读取数据进行系统分析,实现了重载列车运行全程的动力学监测和动力学数据分析,不用人员添乘,且体积小巧不占空间。

Description

一种重载列车机车动力学监测装置 技术领域
本发明属于重载列车运行安全技术领域,具体涉及一种重载列车机车动力学监测装置。
背景技术
两万吨重载列车在连续长大下坡道运行时,由于重载列车调速过程中空气制动的波动性,使得列车在各车辆车钩状态拉伸-压缩,压缩-拉伸交互变化后会产生较大的车钩力、纵向冲动及车体错位量。重联机车位于列车中部,是整列车受应力最大且安全最薄弱的环节,在列车调速的过程中承受巨大的车钩力及纵向冲动,容易产生较大的车体错位,给重载列车运行的安全、平稳带来较大的影响。
机车车钩力、冲动及车体错位的危害性
(1)机车运行中因环境、乘务员操纵等原因导致机车发生冲动时,机车会受到一个瞬间的、剧烈的冲击力,而作为机车连接装置的车钩及缓冲吸能装置的车钩缓冲器,往往会因为这一瞬间的冲击力而导致失效或裂损,严重时断钩分离,给运输安全带来很大的隐患。
(2)机车发生冲动时,因机车CCU黏着程序的保护,会出现黏着破坏到重新建立的一个过程,此时由于机车运行中,黏着重新建立机车牵引或电制力会重新由0开始上升,此时列车动力全部由主控机车提供,由于列车动力的部分丢失,列车将不能按照模式化操纵办法运行,必须选择停车缓风的作业方式,机车途停将会严重影响运输组织,降低运输效率。
(3)在长大下坡道或机车制动过程中,重联机车车钩会承受较大的压钩力,因车钩连接是可摆动连接,车钩承受压钩力时,压钩力越大,车钩摆角就会越大,车体错位就会越大,机车所受横向力就会 越大,机车脱轨的危险系数就会越大。
(4)机车发生冲动时,轮轨间的黏着瞬时破坏,在这个时间内机车轮轨摩擦将不会发挥作用,造成机车轮对的非正常磨耗,轮对非正常磨耗一方面加大了机车镟轮费用及轮对异常磨耗的成本支出,另一方面将会使机车震动进一步加剧,形成恶性循环。
通过优化操纵方式是目前可行的最能提高两万吨重载列车平稳性及安全性的一种手段,而当下优化操纵的最大难点就在于对两万吨重载列车运行安全性及平稳性的准确量化测量。
发明内容
为解决上述技术问题,本发明提供了一种重载列车机车动力学监测装置。
本发明提供了一种重载列车机车动力学监测装置,包括:
数据采集模块,用于按照预设采样频率对重载列车运行时,机车的车钩应力、车体错位、加速度及进行测量;
数据传输模块,用于将采集到的数据写入到存储器中,便于后续的数据调出及深度分析;
数据分析处理模块,用于对传输的数据进行分析、报警及实时显示。
其中,数据采集模块包括:
车钩力数据采集单元,用于对设置于机车车钩的应变片生成的机车车钩形变数据进行采集;
车钩摆角数据采集单元,用于对设置于机车车钩的拉线传感器产生的车钩偏移量数据进行采集;
震动度数据采集单元,用于对设置于机车转向架及轮对轴头的纵向及横向位置的加速度传感器产生的机车运行加速度数据进行采集;
车体错位数据采集单元,用于对设置于多节联动的机车重联渡板中心的拉线传感器及激光位移传感器产生的机车车体错位数据进行 采集。
其中,数据分析处理模块包括:
车钩应力分析单元,用于根据机车车钩的形变数据,计算实时的机车车钩受应力情况,与预设的机车车钩应力阈值进行比较,判断机车车钩受应力是否异常;
车钩摆角分析单元,用于根据机车车钩偏移量数据,计算实时的机车车钩偏移角度,与预设的机车车钩偏移角度阈值进行比较,判断机车车钩偏移角度是否异常;
震动度分析单元,用于根据机车运行加速度数据,与预设的机车运行加速度阈值进行比较,判断机车震动度是否异常;
车体错位分析单元,用于根据多节联动的机车的多节车体之间产生的车体错位数据,计算实时的多节车体之间的车体错位量,与预设的机车车体错位量阈值进行比较,判断机车车体错位是否异常。
其中,车钩应力分析单元在计算实时的机车车钩受应力情况时,获取固定于机车车钩处的应变片静态标定原始偏移量、静态标定时应变电压变化与机车给定力之间的变化系数及车钩动态运行中的应变电压实际值,则机车车钩受应力F表示为:
F=a+b×L
其中,a表示静态标定时应变片原始偏移量;b表示静态标定时应变电压变化与机车给定力之间的变化系数;L表示车钩动态运行中的应变电压实际值;
且在-1800N<F<+1800N时,判定为机车车钩受应力正常,反之判定为异常。
其中,车钩摆角分析单元在计算机车车钩偏移角度时,采集机车两端车钩上设置的第一拉线位移传感器的车钩偏移数据L1和L2,则机车车钩偏移角度r表示为:
Figure PCTCN2020095973-appb-000001
其中,a和b为机车两端车钩上设置的第一拉线位移传感器的常量,c为两第一拉线位移传感器之间的距离;
且在r小于等于6°时,判定机车车钩偏移角度正常,反之判定为异常。
车钩摆角分析单元在计算机车车钩偏移角度时,采集机车两端车钩上设置的双轴倾角传感器的车钩偏移角度r;
且在r小于等于6°时,判定机车车钩偏移角度正常,反之判定为异常。
其中,在冲动度分析单元分析冲动度时,获取实时的机车运行加速度a,若-2m/s 2<a<+2m/s 2,判定机车震动度正常,反之判定为异常。
其中,对于机车包含多节车体的情况,车体错位分析单元判断机车车体错位情况时,获取设置于多节车体之间的重联渡板中心设置的第二拉线位移传感器和激光位移传感器产生的位移量a’和b’,则车体错位量l’记为:
Figure PCTCN2020095973-appb-000002
其中,a’表示拉线位移传感器实际采集到的位移量;b’表示激光位移传感器采集到的位移量;
且在-200mm<L<+200mm时,判定为机车车体错位正常,反之判定为异常。
其中,若机车车钩受应力、机车车钩偏移角度、机车震动度、机车车体错位其中一者或几者判定为异常时,发送警报信号至一异常警报模块,以进行相应的声光警报。
其中,数据分析处理模块还包括一显示单元,以将数据传输模块传输的数据进行实时显示。
区别于现有技术,本发明的重载列车机车动力学监测装置通过设置加速度传感器、位移传感器、应变片等设备,解决了重载列车运行中动力学状态无法量化的问题,为机车操纵优化提供数据支持,为进 一步优化机车平稳操纵方案提供了依据;通过数据的采集,实时监测机车车钩力、冲动大小及车体错位数值,并结合操纵方案进行数据分析不断优化完善机车平稳操纵方案,提高机车乘务员操纵水平;本发明设备数据采集设备选型精准、抗干扰能力强、供电电路可靠稳定,只需要在机车出库前安装到机车上,机车停车后通过数据U盘读取数据进行系统分析,实现了重载列车运行全程的动力学监测和动力学数据分析,不用人员添乘,且体积小巧不占空间。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明提供的一种重载列车机车动力学监测装置的结构示意图。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
如图1所示,本发明提供了一种重载列车机车动力学监测装置,包括:
数据采集模块110,用于按照预设采样频率对重载列车运行时,机车的车钩应力、车体错位、加速度及进行测量;
数据传输模块120,用于将采集到的数据写入到存储器中,便于后续的数据调出及深度分析;
数据分析处理模块130,用于对传输的数据进行分析、报警及实时显示。
其中,数据采集模块110包括:
车钩力数据采集单元111,用于对设置于机车车钩的应变片生成的机车车钩形变数据进行采集;
车钩摆角数据采集单元112,用于对设置于机车车钩的拉线传感 器产生的车钩偏移量数据进行采集;
震动度数据采集单元113,用于对设置于机车转向架及轮对轴头的纵向及横向位置的加速度传感器产生的机车运行加速度数据进行采集;
车体错位数据采集单元114,用于对设置于多节联动的机车重联渡板中心的拉线传感器及激光位移传感器产生的机车车体错位数据进行采集。
其中,数据分析处理模块130包括:
车钩应力分析单元131,用于根据机车车钩的形变数据,计算实时的机车车钩受应力情况,与预设的机车车钩应力阈值进行比较,判断机车车钩受应力是否异常;
车钩摆角分析单元132,用于根据机车车钩偏移量数据,计算实时的机车车钩偏移角度,与预设的机车车钩偏移角度阈值进行比较,判断机车车钩偏移角度是否异常;
震动度分析单元133,用于根据机车运行加速度数据,与预设的机车运行加速度阈值进行比较,判断机车震动度是否异常;
车体错位分析单元134,用于根据多节联动的机车的多节车体之间产生的车体错位数据,计算实时的多节车体之间的车体错位量,与预设的机车车体错位量阈值进行比较,判断机车车体错位是否异常。
其中,车钩应力分析单元131在计算实时的机车车钩受应力情况时,获取固定于机车车钩处的应变片静态标定原始偏移量、静态标定时应变电压变化与机车给定力之间的变化系数及车钩动态运行中的应变电压实际值,则机车车钩受应力F表示为:
F=a+b×L
其中,a表示静态标定时应变片原始偏移量;b表示静态标定时应变电压变化与机车给定力之间的变化系数;L表示车钩动态运行中的应变电压实际值;
且在-1800N<F<+1800N时,判定为机车车钩受应力正常,反之判定为异常。
其中,车钩摆角分析单元132在计算机车车钩偏移角度时,采集机车两端车钩上设置的第一拉线位移传感器的车钩偏移数据L1和L2,则机车车钩偏移角度r表示为:
Figure PCTCN2020095973-appb-000003
其中,a和b为机车两端车钩上设置的第一拉线位移传感器的常量,c为两第一拉线位移传感器之间的距离;
且在r小于等于6°时,判定机车车钩偏移角度正常,反之判定为异常。
在本发明另一实施方式中,车钩摆角分析单元132在计算机车车钩偏移角度时,采集机车两端车钩上设置的双轴倾角传感器的车钩偏移角度r;
且在r小于等于6°时,判定机车车钩偏移角度正常,反之判定为异常。
其中,在冲动度分析单元133分析冲动度时,获取实时的机车运行加速度a,若-2m/s 2<a<+2m/s 2,判定机车震动度正常,反之判定为异常。
其中,对于机车包含多节车体的情况,车体错位分析单元134判断机车车体错位情况时,获取设置于多节车体之间的重联渡板中心设置的第二拉线位移传感器和激光位移传感器产生的位移量a’和b’,则车体错位量l’记为:
Figure PCTCN2020095973-appb-000004
其中,a’表示拉线位移传感器实际采集到的位移量;b’表示激光位移传感器采集到的位移量;
且在-200mm<L<+200mm时,判定为机车车体错位正常,反之判 定为异常。
其中,若机车车钩受应力、机车车钩偏移角度、机车震动度、机车车体错位其中一者或几者判定为异常时,发送警报信号至一异常警报模块140,以进行相应的声光警报。比如,针对不同数据类型的异常,分别发出包含给类型名称字眼的语音信号,对技术人员进行提示。
数据分析处理模块130还包括一显示单元135,以将数据传输模块120传输的数据,以及数据分析处理模块130所属的各单元的分析结果进行实时显示。显示单元135实际采用工控一体机,能够将采集到的数据进行实时显示,并生成波形输出。
重载列车通常包括机车和车辆,其中,机车用于提供动力带动多节车辆沿铁轨行驶。以两万吨重载列车为例,其列车结构包括2辆机车和216节车辆,2辆机车中一辆作为主控机车,另一辆为重联从控机车,主控机车一端连接串联的108节车辆,然后接至重联从控机车的一端,重联从控机车的另一端连接另外的串联的108节车辆。其中,主控机车和重联从控机车都包括AB两节,二者之间通过车钩连接。本发明的装置用于对重联从控机车AB两节连接的机车车钩受应力、机车车钩偏移角度、机车震动度、机车车体错位情况进行检测预警,尤其用于对重联从控机车进行检测。
本发明实施方式以对重联从控机车检测为例。在实际实施过程中,重联从控机车主要对AB节与车辆连接的车钩以及相互连接的车钩进行检测,分别在此三个车钩上设置应变片和第一拉线式位移传感器,以监测车钩应变力和偏移角度;在监测偏移角度的实施方式中,另一种更简便的方式是直接在车钩上设置双轴倾角传感器,直接可读取车钩的偏移角度;在重联从控机车转向架及轮对轴头的纵向及横向位置安装加速度传感器,在重联从控机车的渡板中心位置设置第二拉线式位移传感器和激光位移传感器。其中,应变片采用全桥式接线方式,排除温度干扰;加速度传感器量程选用2.5g;在列车行驶过程中,采 集设置的各个传感器数据,并实时进行计算,通过与预设阈值进行对比,确定是否异常,若异常,则发出警报信号,提醒工作人员处理。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (10)

  1. 一种重载列车的机车动力学监测装置,其特征在于,包括:
    数据采集模块,用于按照预设采样频率对重载列车运行时,机车的车钩应力、车体错位、加速度及车钩摆角数据进行测量;
    数据传输模块,用于将采集到的数据写入到存储器中,便于后续的数据调出及深度分析;
    数据分析处理模块,用于对传输的数据进行分析、报警及实时显示。
  2. 根据权利要求1所述的重载列车机车动力学监测装置,其特征在于,数据采集模块包括:
    车钩力数据采集单元,用于对设置于机车车钩的应变片生成的机车车钩形变数据进行采集;
    车钩摆角数据采集单元,用于对设置于机车车钩的拉线传感器或双轴倾角传感器的车钩偏移角产生的车钩偏移量数据进行采集;
    震动度数据采集单元,用于对设置于机车转向架及轮对轴头的纵向及横向位置的加速度传感器产生的机车运行加速度数据进行采集;
    车体错位数据采集单元,用于对设置于多节联动的机车重联渡板中心的拉线传感器及激光位移传感器产生的机车车体错位数据进行采集。
  3. 根据权利要求2所述的重载列车机车动力学监测装置,其特征在于,数据分析处理模块包括:
    车钩应力分析单元,用于根据机车车钩的形变数据,计算实时的机车车钩受应力情况,与预设的机车车钩应力阈值进行比较,判断机车车钩受应力是否异常;
    车钩摆角分析单元,用于根据机车车钩偏移量数据,计算实时的机车车钩偏移角度,与预设的机车车钩偏移角度阈值进行比较,判断机车车钩偏移角度是否异常;
    震动度分析单元,用于根据机车运行加速度数据,与预设的机车运行加速度阈值进行比较,判断机车震动度是否异常;
    车体错位分析单元,用于根据多节联动的机车的多节车体之间产生的车体错位数据,计算实时的多节车体之间的车体错位量,与预设的机车车体错位量阈值进行比较,判断机车车体错位是否异常。
  4. 根据权利要求3所述的重载列车机车动力学监测装置,其特征在于,车钩应力分析单元在计算实时的机车车钩受应力情况时,获取固定于机车车钩处的应变片静态标定原始偏移量、静态标定时应变电压变化与机车给定力之间的变化系数及车钩动态运行中的应变电压实际值,则机车车钩受应力F表示为:
    F=a+b×L
    其中,a表示静态标定时应变片原始偏移量;b表示静态标定时应变电压变化与机车给定力之间的变化系数;L表示车钩动态运行中的应变电压实际值;
    且在-1800N<F<+1800N时,判定为机车车钩受应力正常,反之判定为异常。
  5. 根据权利要求3所述的重载列车机车动力学监测装置,其特征在于,车钩摆角分析单元在计算机车车钩偏移角度时,采集机车两端车钩上设置的第一与第二拉线位移传感器的车钩偏移数据L1和L2,则机车车钩偏移角度r表示为:
    Figure PCTCN2020095973-appb-100001
    其中,a和b为机车两端车钩上设置的第一与第二拉线位移传感器的常量,c为两第一与第二拉线位移传感器之间的距离;
    且在r小于等于6°时,判定机车车钩偏移角度正常,反之判定为异常。
  6. 根据权利要求3所述的重载列车机车动力学监测装置,其特征在于,车钩摆角分析单元在计算机车车钩偏移角度时,采集机车两端车钩上设置的双轴倾角传感器的车钩偏移角度r;
    且在r小于等于6°时,判定机车车钩偏移角度正常,反之判定为异常。
  7. 根据权利要求3所述的重载列车机车动力学监测装置,其特征在于,在冲动度分析单元分析冲动度时,获取实时的机车运行加速度a,若-2m/s 2<a<+2m/s 2,判定机车震动度正常,反之判定为异常。
  8. 根据权利要求3所述的重载列车机车动力学监测装置,其特征在于,对于机车包含多节车体的情况,车体错位分析单元判断机车车体错位情况时,获取设置于多节车体之间的重联渡板中心设置的第二拉线位移传感器和激光位移传 感器产生的位移量a’和b’,则车体错位量l’记为:
    Figure PCTCN2020095973-appb-100002
    其中,a’表示拉线位移传感器实际采集到的位移量;b’表示激光位移传感器采集到的位移量;
    且在-200mm<L<+200mm时,判定为机车车体错位正常,反之判定为异常。
  9. 根据权利要求3-8任意一项所述的重载列车机车动力学监测装置,其特征在于,若机车车钩受应力、机车车钩偏移角度、机车震动度、机车车体错位其中一者或几者判定为异常时,发送警报信号至一异常警报模块,以进行相应的声光警报。
  10. 根据权利要求3所述的重载列车机车动力学监测装置,其特征在于,数据分析处理模块还包括一显示单元,以将数据传输模块传输的数据进行实时显示。
PCT/CN2020/095973 2020-05-12 2020-06-12 一种重载列车机车动力学监测装置 WO2021227182A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010397468.4A CN111591318A (zh) 2020-05-12 2020-05-12 一种重载列车机车动力学监测装置
CN202010397468.4 2020-05-12

Publications (1)

Publication Number Publication Date
WO2021227182A1 true WO2021227182A1 (zh) 2021-11-18

Family

ID=72183620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095973 WO2021227182A1 (zh) 2020-05-12 2020-06-12 一种重载列车机车动力学监测装置

Country Status (2)

Country Link
CN (1) CN111591318A (zh)
WO (1) WO2021227182A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114954569A (zh) * 2022-07-19 2022-08-30 北京交大思诺科技股份有限公司 一种货运列车运行平稳度监测系统
CN115901299A (zh) * 2023-02-15 2023-04-04 慧铁科技有限公司 一种列车车钩钩缓部件故障分析处理的方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112896227B (zh) * 2021-02-08 2022-09-13 中车青岛四方车辆研究所有限公司 车钩缓冲装置的状态监测方法及系统
CN113954901B (zh) * 2021-09-28 2022-10-14 中车株洲电力机车有限公司 一种车钩摆角主动控制系统及控制方法
CN113859309A (zh) * 2021-10-27 2021-12-31 湖南润伟智能机器有限公司 车钩状态监测系统
CN114633780B (zh) * 2021-12-30 2022-11-25 中南大学 重载列车及其纵向动力学牵引运行优化控制系统
CN115130701A (zh) * 2022-08-30 2022-09-30 长沙润伟机电科技有限责任公司 一种机车车钩力监测方法
CN115503785A (zh) * 2022-10-28 2022-12-23 中车长春轨道客车股份有限公司 一种列车安全监测系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070203621A1 (en) * 2004-11-23 2007-08-30 Lioyd Haugen Rail track evaluation system
CN103552579A (zh) * 2013-11-18 2014-02-05 南车洛阳机车有限公司 货运重载铁路综合检测列车
CN104679938A (zh) * 2015-01-21 2015-06-03 中国神华能源股份有限公司 用于评估重载列车及轨道耦合系统动态性能的方法
CN107014626A (zh) * 2017-03-08 2017-08-04 中车工业研究院有限公司 基于gprs数据传输的高速列车动应力测试实时数据监控系统
CN108458858A (zh) * 2017-12-04 2018-08-28 嘉兴博感科技有限公司 一种火车车钩结构健康监测系统
CN109657339A (zh) * 2018-12-17 2019-04-19 西南交通大学 一种铁道车辆坡道运行综合性能的评估方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008034160A1 (de) * 2008-07-22 2010-03-18 Siemens Aktiengesellschaft Vorrichtung zur Überwachung eines räumlichen Bereichs, insbesondere in der Umgebung oder innerhalb eines Fahrzeugs
CN104742936A (zh) * 2015-04-16 2015-07-01 济南轨道交通装备有限责任公司 一种智能化铁路货车
CN205905989U (zh) * 2016-07-26 2017-01-25 西南交通大学 一种轨道交通用主动控制的横向止挡装置
CN207741730U (zh) * 2018-01-03 2018-08-17 中车青岛四方机车车辆股份有限公司 一种车钩与车体间摆角的测量装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070203621A1 (en) * 2004-11-23 2007-08-30 Lioyd Haugen Rail track evaluation system
CN103552579A (zh) * 2013-11-18 2014-02-05 南车洛阳机车有限公司 货运重载铁路综合检测列车
CN104679938A (zh) * 2015-01-21 2015-06-03 中国神华能源股份有限公司 用于评估重载列车及轨道耦合系统动态性能的方法
CN107014626A (zh) * 2017-03-08 2017-08-04 中车工业研究院有限公司 基于gprs数据传输的高速列车动应力测试实时数据监控系统
CN108458858A (zh) * 2017-12-04 2018-08-28 嘉兴博感科技有限公司 一种火车车钩结构健康监测系统
CN109657339A (zh) * 2018-12-17 2019-04-19 西南交通大学 一种铁道车辆坡道运行综合性能的评估方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114954569A (zh) * 2022-07-19 2022-08-30 北京交大思诺科技股份有限公司 一种货运列车运行平稳度监测系统
CN114954569B (zh) * 2022-07-19 2024-04-05 北京交大思诺科技股份有限公司 一种货运列车运行平稳度监测系统
CN115901299A (zh) * 2023-02-15 2023-04-04 慧铁科技有限公司 一种列车车钩钩缓部件故障分析处理的方法
CN115901299B (zh) * 2023-02-15 2023-06-06 慧铁科技有限公司 一种列车车钩钩缓部件故障分析处理的方法

Also Published As

Publication number Publication date
CN111591318A (zh) 2020-08-28

Similar Documents

Publication Publication Date Title
WO2021227182A1 (zh) 一种重载列车机车动力学监测装置
CN101376394B (zh) 基于钢轨形变/应力参数的车辆脱轨预警方法
US8473128B2 (en) Optimizing rail track performance
CN106383247B (zh) 一种地铁车辆轮对在线动态检测系统及车速检测方法
CN101138983A (zh) 无线传感器网络的铁路溜车自动监测和报警控制系统
CN111417553B (zh) 用于确定轨道车辆的车轮-轨道附着力值的系统及其相应方法
CN101377433B (zh) 基于钢轨形变/应力参数的车辆减载检测方法
CN214028661U (zh) 地铁车辆运行品质监测系统
CN1724300A (zh) 列车脱轨报警系统
DK2696904T3 (en) Rail vessel with a tracking monitor
KR101205964B1 (ko) 철도차량용 주행안정성 측정 시스템
CN104006978A (zh) 一种铁道车辆轮轨之间作用力的间接测量方法
JP3537804B2 (ja) 輪重取得装置、輪重取得方法、鉄道車両、鉄道車両の保守方法、軌道の保守方法
Peng et al. Wayside wheel-rail vertical contact force continuous detecting method and its application
CN110595995B (zh) 铁道车辆制动下黏着系数与滑移率关系测量方法及试验台
KR100946232B1 (ko) 수직변위와 정상횡가속도를 이용한 탈선계수 측정장치 및그 방법
JP3449976B2 (ja) 輪重偏在度取得方法および装置、鉄道車両、鉄道車両および軌道の保守方法
CN112428754A (zh) 一种跨座式单轨列车水平橡胶轮胎胎压在线检测装置
Oba et al. Condition monitoring for Shinkansen bogies based on vibration analysis
CN213812376U (zh) 一种运营车车载式轨道检测系统
CN211086051U (zh) 铁道车辆制动下黏着系数与滑移率关系试验台
CN205344911U (zh) 基于承载鞍定位检测的防脱轨转向架
CN113804239A (zh) 一种运营车车载式轨道检测系统
CN115092196B (zh) 用于自动驾驶轨道车辆的拖车转向架及自动驾驶轨道车辆
CN117022360A (zh) 一种动力学性能在线监测转向架及轨道车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934998

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934998

Country of ref document: EP

Kind code of ref document: A1