WO2021227134A1 - 吸收性缺陷单光束光热测量装置和测量方法 - Google Patents

吸收性缺陷单光束光热测量装置和测量方法 Download PDF

Info

Publication number
WO2021227134A1
WO2021227134A1 PCT/CN2020/092785 CN2020092785W WO2021227134A1 WO 2021227134 A1 WO2021227134 A1 WO 2021227134A1 CN 2020092785 W CN2020092785 W CN 2020092785W WO 2021227134 A1 WO2021227134 A1 WO 2021227134A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
tested
light
computer
amplifier
Prior art date
Application number
PCT/CN2020/092785
Other languages
English (en)
French (fr)
Inventor
刘世杰
倪开灶
邵建达
王微微
徐天柱
李英甲
鲁棋
Original Assignee
中国科学院上海光学精密机械研究所
上海恒益光学精密机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海光学精密机械研究所, 上海恒益光学精密机械有限公司 filed Critical 中国科学院上海光学精密机械研究所
Publication of WO2021227134A1 publication Critical patent/WO2021227134A1/zh
Priority to US17/566,675 priority Critical patent/US12099002B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/171Systems in which incident light is modified in accordance with the properties of the material investigated with calorimetric detection, e.g. with thermal lens detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1717Systems in which incident light is modified in accordance with the properties of the material investigated with a modulation of one or more physical properties of the sample during the optical investigation, e.g. electro-reflectance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0016Technical microscopes, e.g. for inspection or measuring in industrial production processes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/082Condensers for incident illumination only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N2021/9511Optical elements other than lenses, e.g. mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts
    • G01N2201/0636Reflectors

Definitions

  • the invention relates to the field of defect detection, in particular to a measuring device and a measuring method for the surface absorptive defect of an optical element.
  • the damage of optical components used in high-power laser systems has always been the core factor that limits the increase in output flux of the device.
  • the metal impurities in the solution introduced during the growth of optical materials, the remaining polishing liquid, magnetorheological fluid and other metal and non-metal impurities on the surface after grinding, polishing, and modification, and the nodules in the film after coating are all Has higher absorption than the optical element itself. These defects act as light absorption centers. Under high-energy laser irradiation, they will strongly absorb the laser light, exceeding the tolerable range of the component and causing damage to the component.
  • the methods currently used for defect detection mainly include micro-scattering dark-field imaging method, fluorescence micro-imaging method and photothermal scanning imaging method.
  • the micro-scattered dark-field imaging method is mainly aimed at structural defects such as scratches and pits, and uses the scattered light generated by the defects for imaging detection.
  • the aforementioned impurity ions such as metals and non-metals hardly scatter incident light, and the micro-scattering dark-field imaging method cannot effectively detect these visually invisible defects.
  • Fluorescence microscopy imaging uses the fluorescence generated by defects under short-wavelength laser excitation. The detection sensitivity of fluorescence microscopy imaging is low, and it cannot detect absorptive defects that do not emit light under laser irradiation.
  • the traditional photothermal scanning imaging technology is based on the photothermal effect.
  • the pump light irradiates the surface of the element to cause thermal deformation, and the probe light measures the degree of thermal deformation of the area.
  • This method can detect the above-mentioned absorptive defects with high sensitivity, but the measurement optical path is complicated and difficult to adjust.
  • the degree of overlap of the two light spots has a great influence on the detection sensitivity, especially when scanning the surface of larger-sized components, environmental vibration and sample tilt will cause The degree of overlap of the two light spots changes significantly, and may not even overlap, resulting in uneven or no signal in the measurement signal, and it is easy to miss the detection or misidentify the absorptive defect.
  • the present invention provides an absorptive defect single-beam photothermal measurement device and measurement method.
  • the optical path structure of the measuring device is simple, which is convenient for installation and debugging.
  • the measurement result is stable, avoiding abnormal measurement signal caused by environmental vibration and sample tilt.
  • This method uses the difference in absorption between the defect and the material substrate, and can detect the abnormal absorption in the defect area with a single beam.
  • the single-beam photothermal measurement of absorptive defects of the present invention includes two types: common optical path type and non-common optical path type:
  • a common optical path type absorptive defect single-beam photothermal measurement device which is characterized in that it includes a laser, a beam expander, a power regulator, a beam splitter, a power meter, a chopper, a polarization beam splitter, and a quarter Wave plate, mirror, galvanometer scanner, scanning lens, convergent lens, baffle diaphragm, photodetector, lock-in amplifier, XYZ displacement platform and computer, and the sample to be tested is placed on the XYZ displacement platform;
  • the beam splitter divides the incident beam into weakly reflected light and strong transmitted light with different intensities.
  • the direction of the weakly reflected light is the power meter, and along the direction of the strong transmitted light are the chopper, polarization beam splitter, quarter wave plate, mirror, and galvanometer scanner. And scanning lens;
  • the strongly transmitted light beam is modulated by the chopper; the modulated incident light outputs p-polarized light after passing through the polarization beam splitter, and the p-polarized light outputs circularly polarized light after passing through the quarter wave plate.
  • the circularly polarized light passes through the galvanometer scanner and the scanning lens and then is focused and incident on the surface of the sample to be tested; the surface of the sample to be tested is thermally deformed under the laser irradiation; the reflected light modulated by the thermal deformation sequentially After passing through the scanning lens, galvanometer scanner, mirror and quarter wave plate, it becomes s-polarized light; after being reflected by the polarization beam splitter, the s-polarized light is focused by the converging lens ; After the focused beam passes through the baffle diaphragm, the beam at the edge of the spot is received by the photodetector;
  • the modulation frequency of the chopper is used as a reference signal, which is input to the second input terminal of the lock-in amplifier via a cable; the signal collected by the photodetector is used as a measurement signal and is input to the first input of the lock-in amplifier.
  • the control signal output terminal of the computer is respectively connected with the control terminal of the XYZ displacement platform and the control terminal of the galvanometer scanner, and the output terminal of the lock-in amplifier is connected with the input terminal of the computer.
  • a non-common optical path type absorptive defect single-beam photothermal measurement device which is characterized in that it includes a laser, a beam expander, a power regulator, a beam splitter, a power meter, a chopper, a converging lens, a baffle diaphragm, Photodetector, lock-in amplifier, XYZ displacement platform, computer and second converging lens, and the sample to be tested is placed on the XYZ displacement platform;
  • the beam splitter divides the incident beam into weakly reflected light and strong transmitted light with different intensities.
  • the direction of the weakly reflected light is the power meter
  • the strong transmitted light is the chopper
  • the strong transmitted light is modulated by the chopper and irradiated by the second converging lens to focus and illuminate the
  • the sample to be tested in the direction of the reflected light of the sample to be tested, are the baffle diaphragm, the condensing lens, and the photodetector in sequence.
  • the output terminal of the photodetector is connected to the first input of the lock-in amplifier.
  • the modulation frequency of the chopper is used as a reference signal
  • the reference signal output terminal is connected to the second input terminal of the lock-in amplifier via a cable
  • the output terminal of the lock-in amplifier is connected to the computer
  • the input end of the computer is connected, and the control signal output end of the computer is connected to the control end of the XYZ displacement platform.
  • the manufacturing method of the baffle diaphragm is as follows: a circular aluminum film or a chromium film is plated on the surface of a circular 0.5mm thick fused silica glass; the transmittance of the coating area is less than or equal to 0.01%; the radius of the coating area is larger than that of the incident barrier The beam waist radius of the spot at the plate diaphragm, so that the power of the light beam passing through is less than 1% of the power of the light beam incident on the baffle diaphragm;
  • a method for measuring absorptive defects on the surface of an optical element by using a single-beam photothermal measuring device for common optical path absorptive defects includes the following steps:
  • the computer drives the internal scanning mirror of the galvanometer scanner to move the focused spot on the sample surface along the X and Y directions to form a raster scan; the step size for the spot to move along the X and Y directions Is the diameter of the light spot focused on the surface of the sample to be tested;
  • the measurement signal of the photodetector is input to the lock-in amplifier, and the amplitude of the second harmonic (2f) is output to the computer after being demodulated by the lock-in amplifier ;
  • the computer records the amplitude of the measurement point in real time;
  • the XYZ displacement platform moves the sample to be tested to the next measurement area in the X or Y direction, and returns to step 3) until the completion of the sample to be tested All measurements
  • the computer draws the recorded signal amplitude into a two-dimensional distribution diagram of absorptive defects and analyzes it, gives an analysis report, and completes the absorptive defect test of the sample to be tested.
  • a method for measuring absorptive defects on the surface of an optical element by using a non-common optical path type absorptive defect single-beam photothermal measuring device includes the following steps:
  • the sample to be tested is placed on the XYZ displacement platform, and under the control of the computer, the sample to be tested is moved along the Z direction on the XYZ displacement platform, so that the surface of the sample to be tested is in the Near the focal point of the second converging lens;
  • the computer drives the XYZ displacement platform to move, so that the focused light spot output by the second converging lens moves along the X and Y directions on the surface of the sample to be tested, and the light spot is along the X and Y directions
  • the step of movement is the diameter of the light spot focused on the surface of the sample to be tested;
  • the measurement signal of the photodetector is input to the lock-in amplifier, and the amplitude of the second harmonic (2f) is output to the computer after being demodulated by the lock-in amplifier ;
  • the computer records the amplitude of the measurement point in real time;
  • the XYZ displacement platform moves the sample to be tested to the next measurement point in the X or Y direction, and returns to step 4) until the completion of the sample to be tested All measurements
  • the computer draws the recorded signal amplitude into a two-dimensional distribution diagram of absorptive defects and analyzes it, gives an analysis report, and completes the absorptive defect test of the sample to be tested.
  • the optical path structure of the absorptive defect single-beam photothermal measuring device of the present invention is simple and convenient for installation and debugging.
  • the measurement result is stable, avoiding abnormal measurement signal caused by environmental vibration and sample tilt.
  • the measurement sensitivity of the system is significantly improved.
  • Fig. 1 is a schematic diagram of a single-beam photothermal measuring device with a common optical path type absorptive defect according to the present invention
  • FIG. 2 is a schematic diagram of the baffle diaphragm structure proposed by the present invention.
  • Fig. 3 is a schematic diagram of a single-beam photothermal measuring device for non-common optical path type absorptive defects according to the present invention
  • Figure 1 is a schematic diagram of a single-beam photothermal measurement device for a common optical path type absorptive defect in Example 1 of the present invention.
  • a common optical path type single-beam photothermal measurement device for an absorptive defect includes a laser 1, a beam expander 2, and a power adjustment. 3, beam splitter 4, power meter 5, chopper 6, polarization beam splitter 7, quarter wave plate 8, mirror 9, galvanometer scanner 10, scanning lens 11, converging lens 13, block Plate diaphragm 14, photodetector 15, lock-in amplifier 16, XYZ displacement platform 17, and computer 18, and the sample 12 to be tested is placed on the XYZ displacement platform 17;
  • the beam splitter 4 divides the incident light beam into weak reflected light and light beams with different intensities. Strongly transmitted light, along the weakly reflected light direction is the power meter 5, the power meter 5 is used to monitor the incident light power and stability, along the strong transmitted light direction is the chopper 6. Polarization beam splitter 7, quarter wave plate 8, mirror 9, galvanometer scanner 10 and scanning lens 11;
  • the strongly transmitted light beam is modulated by the chopper 6; the modulated incident light passes through the polarization beam splitter 7 and then outputs p-polarized light, and the p-polarized light passes through the quarter wave plate 8 Output circularly polarized light; the circularly polarized light passes through the galvanometer scanner 10 and the scanning lens 11 and then is focused and incident on the surface of the sample 12 to be tested; the surface of the sample 12 to be tested is thermally deformed under laser irradiation; The reflected light modulated by thermal deformation passes through the scanning lens 11, the galvanometer scanner 10, the mirror 9 and the quarter-wave plate 8 in turn to become s-polarized light; the s-polarized light passes through the polarization splitter After the reflector 7 is reflected, it is focused by the condenser lens 13; after the focused beam passes through the baffle aperture 14, the beam at the edge of the spot is received by the photodetector 15 as a measurement signal;
  • the modulation frequency of the chopper 6 is used as a reference signal and is input to the second input terminal of the lock-in amplifier 16 via a cable; the measurement signal output by the photodetector 15 is input to the lock-in amplifier 16 First input
  • the control signal output end of the computer 18 is respectively connected to the control end of the XYZ displacement platform 17 and the control end of the galvanometer scanner 10, and the output end of the lock-in amplifier 16 is connected to the control end of the computer 18 Input terminal connection.
  • Fig. 2 is a schematic diagram of the baffle diaphragm.
  • the manufacturing method of the baffle diaphragm 14 is to plate a circular aluminum film or a chromium film on the surface of a circular 0.5mm thick fused silica glass; Transmittance ⁇ 0.01%; the radius of the coating area is greater than the beam waist radius of the spot incident on the baffle aperture 14 so that the power of the passing beam is less than 1% of the power of the light beam incident on the baffle aperture 14.
  • the computer 18 drives the internal scanning mirror of the galvanometer scanner 10 to move the focused spot on the sample surface in the X and Y directions to form a raster scan; the spot moves in the X and Y directions. Intake is the diameter of the light spot focused on the surface of the sample 12 to be tested;
  • the measurement signal of the photodetector 15 is input to the lock-in amplifier 16, and after being demodulated by the lock-in amplifier 16, the second harmonic (2f) is output to the computer 18 ); the computer 18 records the amplitude of the measurement point in real time;
  • the XYZ displacement platform 17 moves the sample 12 to be tested to the next measurement area in the X or Y direction, and returns to step 3) until all measurements of the sample to be tested are completed;
  • the computer 18 draws the recorded signal amplitude into a two-dimensional distribution diagram of absorptive defects and analyzes it, gives an analysis report, and completes the absorptive defect test of the sample 12 to be tested.
  • Fig. 3 is a schematic diagram of a non-common optical path type absorptive defect single-beam photothermal measurement device of Example 2 of the present invention.
  • a non-common optical path type single-beam photothermal measurement device for absorptive defects includes a laser 1, a beam expander 2, and Power regulator 3, beam splitter 4, power meter 5, chopper 6, converging lens 13, baffle diaphragm 14, photodetector 15, lock-in amplifier 16, XYZ displacement platform 17, computer 18, and second convergence Lens 19, the sample 12 to be tested is placed on the XYZ displacement platform 17;
  • the beam splitter 4 divides the incident beam into weakly reflected light and strong transmitted light with different intensities.
  • Light, along the weakly reflected light direction is the power meter 5, which is used to monitor the incident light power and stability; along the strong transmitted light direction is the chopper 6, strong
  • the transmitted light is modulated by the chopper and irradiated by the second condensing lens 19 to focus and illuminate the sample 12 to be tested.
  • the reflected light direction of the sample 12 to be tested is the baffle diaphragm 14 in turn. , A converging lens 13 and a photodetector 15.
  • the output terminal of the photodetector 15 is connected to the first input terminal of the lock-in amplifier 16, the modulation frequency of the chopper 6 is used as a reference signal, and the reference signal output terminal It is connected to the second input end of the lock-in amplifier 16 through a cable, and the output end of the lock-in amplifier 16 is connected to the input end of the computer 18, and the control signal output end of the computer 18 is connected to the The control end of the XYZ displacement platform 17 is connected.
  • the manufacturing method of the baffle aperture 14 is to plate a round aluminum film or a chromium film on the surface of a round 0.5mm thick fused silica glass; the transmittance of the coated area is less than or equal to 0.01%; the radius of the coated area is larger than the incident
  • the beam waist radius of the spot at the baffle aperture 14 is such that the power of the light beam passing through is less than 1% of the power of the light beam incident on the baffle aperture 14;
  • the method for measuring absorptive defects on the surface of optical elements by using the single-beam photothermal measuring device for non-common optical path type absorptive defects includes the following steps:
  • the computer 18 drives the XYZ displacement platform 17 to move, so that the focused light spot output by the second condensing lens 19 moves along the X and Y directions on the surface of the sample to be tested, and the light spot moves along the X direction.
  • the step amount of movement in the Y direction is the diameter of the light spot focused on the surface of the sample 12 to be tested;
  • the measurement signal of the photodetector 15 is input to the lock-in amplifier 16, and after being demodulated by the lock-in amplifier 16, the second harmonic (2f) is output to the computer 18 ); the computer 18 records the amplitude of the measurement point in real time;
  • the XYZ displacement platform 17 moves the sample 12 to be tested to the next measurement point in the X or Y direction, and returns to step 4) until the test to be tested is completed All measurements of the sample;
  • the computer 18 draws the recorded signal amplitude into a two-dimensional distribution diagram of absorptive defects and analyzes it, gives an analysis report, and completes the absorptive defect test of the sample 12 to be tested.
  • the optical path structure of the single-beam photothermal measuring device for absorptive defects of the present invention is simple and easy to install and debug.
  • the measurement result is stable, avoiding abnormal measurement signal caused by environmental vibration and sample tilt.
  • the measurement sensitivity of the system is significantly improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

一种吸收性缺陷单光束光热测量装置和测量方法,该装置包括共光路型和非共光路型结构。本发明光路结构简单,便于安装调试。测量结果稳定,避免环境振动、样品倾斜导致的测量信号异常。通过探测光斑边缘的光束的功率变化,系统的测量灵敏度得到显著提升。

Description

吸收性缺陷单光束光热测量装置和测量方法 技术领域
本发明涉及缺陷检测领域,特别是一种针对光学元件表面吸收性缺陷的测量装置和测量方法。
背景技术
强激光系统使用的光学元件的损伤问题一直是限制装置输出通量提升的核心因素。光学材料在生长过程中引入的溶液中的金属杂质,研磨、抛光、修形后表面残留的抛光液、磁流变液等金属、非金属杂质,以及镀膜后,膜层内的节瘤缺陷都具有比光学元件自身更高的吸收。这些缺陷作为光吸收中心,在高能量激光辐照下,对激光产生强烈吸收,超过元件的可承受范围,造成元件损伤。
目前用于缺陷探测的方法主要包括显微散射暗场成像法、荧光显微成像法和光热扫描成像法。显微散射暗场成像法主要针对划痕、麻点等结构性缺陷,利用缺陷产生的散射光进行成像探测。上述金属、非金属等杂质离子等缺陷对入射光几乎不产生散射,显微散射暗场成像法不能有效探测到这些视觉不可见的缺陷。荧光显微成像法利用缺陷在短波长激光激发下产生的荧光进行成像,荧光显微成像探测灵敏度低,且无法探测激光辐照下不发光的吸收性缺陷。传统的光热扫描成像技术基于光热效应,泵浦光照射元件表面使其产生热形变,探测光测量该区域的热形变程度。该方法能够探测上述吸收性缺陷,灵敏度高,但测量光路复杂,调节难度大,两个光斑重叠程度对探测灵敏度影响大,尤其是扫描较大尺寸元件的表面时,环境振动、样品倾斜都会让两个光斑重叠程度发生显著变化,甚至可能不重叠,导致测量信号不均匀或无信号,容易漏检或误识别吸收性缺陷。
发明内容
为克服上述现有技术的不足,本发明提供一种吸收性缺陷单光束光 热测量装置和测量方法。该测量装置的光路结构简单,便于安装调试。测量结果稳定,避免环境振动、样品倾斜导致的测量信号异常。通过探测光斑边缘的光束的功率变化,系统的测量灵敏度得到显著提升。
该方法利用缺陷与材料基底的吸收差异,通过单光束即可探测缺陷区域的吸收异常。
为达到上述目的,本发明采用的技术方案如下:
本发明吸收性缺陷单光束光热测量包括共光路型和非共光路型两种:
一种共光路型吸收性缺陷单光束光热测量装置,其特点在于,包括激光器、扩束器、功率调节器、分束器、功率计、斩波器、偏振分束器、四分之一波片、反射镜、振镜扫描器、扫描透镜、会聚透镜、挡板光阑、光电探测器、锁相放大器、XYZ位移平台和计算机,待测样品置于所述的XYZ位移平台上;
沿所述的激光器发出的光束的方向依次为所述的扩束器、功率调节器、分束器,所述的分束器将入射光束分为强度不同的弱反射光和强透射光,沿所述的弱反射光方向是所述的功率计,沿所述的强透射光方向依次是所述的斩波器、偏振分束器、四分之一波片、反射镜、振镜扫描器和扫描透镜;
所述的强透射光束被所述的斩波器调制;调制入射光经所述的偏振分束器后输出p偏振光,该p偏振光经过所述的四分之一波片后输出圆偏振光;该圆偏振光经过所述的振镜扫描器和扫描透镜后聚焦入射到待测样品表面;所述的待测样品的表面在激光照射下产生热形变;被热形变调制的反射光依次通过所述的扫描透镜、振镜扫描器、反射镜和四分之一波片后,成为s偏振光;该s偏振光经过所述的偏振分束器反射后,经所述的会聚透镜聚焦;该聚焦光束通过所述的挡板光阑后,光斑边缘的光束被所述的光电探测器接收;
所述的斩波器的调制频率作为参考信号,经过线缆输入所述的锁相放大器第二输入端;所述的光电探测器采集的信号作为测量信号,输入所述的锁相放大器第一输入端;
所述的计算机的控制信号输出端分别与所述的XYZ位移平台的控 制端及振镜扫描器的控制端连接,所述的锁相放大器的输出端与所述的计算机的输入端连接。
一种非共光路型吸收性缺陷单光束光热测量装置,其特点在于,包括激光器、扩束器、功率调节器、分束器、功率计、斩波器、会聚透镜、挡板光阑、光电探测器、锁相放大器、XYZ位移平台、计算机和第二会聚透镜,待测样品置于所述的XYZ位移平台上;
沿所述的激光器发出的光束的方向依次为所述的扩束器、功率调节器、分束器,该分束器将入射光束分为强度不同的弱反射光和强透射光,沿所述的弱反射光方向是所述的功率计,沿所述的强透射光方向是所述的斩波器,强透射光被该斩波器调制后经所述的第二会聚透镜聚焦照射所述的待测样品,在所述的待测样品的反射光方向依次是所述的挡板光阑、会聚透镜和光电探测器,该光电探测器的输出端与所述的锁相放大器第一输入端相连,所述的斩波器的调制频率作为参考信号,参考信号输出端经过线缆与所述的锁相放大器第二输入端相连,所述的锁相放大器的输出端与所述的计算机的输入端相连,该计算机的控制信号输出端与所述的XYZ位移平台的控制端相连。
所述的挡板光阑制作方式为,在圆形0.5mm厚的熔石英玻璃表面镀圆形的铝膜或铬膜;镀膜区域的透过率≤0.01%;镀膜区域的半径大于入射到挡板光阑处的光斑的束腰半径,使通过的光束的功率小于入射到挡板光阑处的光束的功率的1%;
利用共光路型吸收性缺陷单光束光热测量装置进行光学元件表面吸收性缺陷的测量方法,该方法包括下列步骤:
1)将所述的待测样品置于XYZ位移平台上,所述的计算机驱动所述的XYZ位移平台沿Z方向移动待测样品,使待测样品的表面处于所述的扫描透镜的焦点附近;
2)将所述的斩波器的调制频率设置为f,将所述的锁相放大器的解调频率设置为所述的斩波器的调制频率的2倍,即2f;
3)所述的计算机驱动所述的振镜扫描器的内部扫描反射镜使聚焦光斑在所述的样品表面沿X和Y方向移动,形成光栅扫描;光斑沿X和Y方向移动的步进量为聚焦到待测样品表面的光斑的直径;
4)在测量点,所述的光电探测器的测量信号输入所述的锁相放大器,经所述的锁相放大器解调后向所述的计算机输出其二次谐波(2f)的幅值;所述的计算机实时记录该测量点的幅值;
5)在所述的计算机的控制下,所述的XYZ位移平台将所述的待测样品沿X或Y方向移动到下一个测量区域,返回步骤3),直至完成所述的待测样品的全部测量;
6)所述的计算机将记录的信号幅值绘制成吸收性缺陷二维分布图并进行分析,给出分析报告,完成该待测样品吸收性缺陷测试。
利用非共光路型吸收性缺陷单光束光热测量装置进行光学元件表面吸收性缺陷的测量方法,该方法包括下列步骤:
1)将所述的待测样品置于XYZ位移平台上,在所述的计算机的控制下,所述的XYZ位移平台上沿Z方向移动待测样品,使待测样品的表面处于所述的第二会聚透镜的焦点附近;
2)将所述的斩波器的调制频率设置为f,将所述的锁相放大器的解调频率设置为所述的斩波器的调制频率的2倍,即2f;
3)所述的计算机驱动所述的XYZ位移平台运动,使经所述的第二会聚透镜输出的聚焦光斑在所述的待测样品的表面沿X和Y方向移动,光斑沿X和Y方向移动的步进量为聚焦到待测样品表面的光斑的直径;
4)在测量点,所述的光电探测器的测量信号输入所述的锁相放大器,经所述的锁相放大器解调后向所述的计算机输出其二次谐波(2f)的幅值;所述的计算机实时记录该测量点的幅值;
5)在所述的计算机的控制下,所述的XYZ位移平台将所述的待测样品沿X或Y方向移动到下一个测量点,返回步骤4),直至完成所述的待测样品的全部测量;
6)所述的计算机将记录的信号幅值绘制成吸收性缺陷二维分布图并进行分析,给出分析报告,完成该待测样品吸收性缺陷测试。
本发明的优点如下:
本发明吸收性缺陷单光束光热测量装置的光路结构简单,便于安装调试。测量结果稳定,避免环境振动、样品倾斜导致的测量信号异常。 通过探测光斑边缘的光束的功率变化,系统的测量灵敏度得到显著提升。
附图说明
图1是本发明共光路型吸收性缺陷单光束光热测量装置示意图
图2是本发明提出的挡板光阑结构示意图
图3是本发明非共光路型吸收性缺陷单光束光热测量装置示意图
图中:1-激光器;2-扩束器;3-功率调节器;4-分束器;5-功率计;6-斩波器;7-偏振分束器;8-四分之一波片;9-反射镜;10-振镜扫描器;11-扫描透镜;12-样品;13-会聚透镜;14-挡板光阑;15-光电探测器;16-锁相放大器;17-XYZ位移平台;18-计算机;19-第二会聚透镜。
具体实施方式
下面结合附图和实施例对本发明作进一步详细阐述,但不应以此限制本发明的保护范围。
实施例1
图1为本发明实施例1共光路型吸收性缺陷单光束光热测量装置示意图,由图可见,共光路型吸收性缺陷单光束光热测量装置,包括激光器1、扩束器2、功率调节器3、分束器4、功率计5、斩波器6、偏振分束器7、四分之一波片8、反射镜9、振镜扫描器10、扫描透镜11、会聚透镜13、挡板光阑14、光电探测器15、锁相放大器16、XYZ位移平台17和计算机18,待测样品12置于所述的XYZ位移平台17上;
沿所述的激光器1发出的光束的方向依次是所述的扩束器2、功率调节器3、分束器4,所述的分束器4将入射光束分为强度不同的弱反射光和强透射光,沿所述的弱反射光方向是所述的功率计5,该功率计5用于监控入射光功率和稳定性,沿所述的强透射光方向依次是所述的斩波器6、偏振分束器7、四分之一波片8、反射镜9、振镜扫描器10和扫描透镜11;
所述的强透射光束被所述的斩波器6调制;调制入射光经过所述的偏振分束器7后输出p偏振光,该p偏振光经过所述的四分之一波片8 后输出圆偏振光;该圆偏振光经过所述的振镜扫描器10和扫描透镜11后聚焦入射到待测样品12表面;所述的待测样品12的表面在激光照射下产生热形变;被热形变调制的反射光依次通过所述的扫描透镜11、振镜扫描器10、反射镜9和四分之一波片8后,成为s偏振光;该s偏振光经过所述的偏振分束器7反射后,经所述的会聚透镜13聚焦;该聚焦光束通过所述的挡板光阑14后,光斑边缘的光束被所述的光电探测器15接收作为测量信号;
所述的斩波器6的调制频率作为参考信号,经过线缆输入所述的锁相放大器16第二输入端;所述的光电探测器15输出的测量信号,输入所述的锁相放大器16第一输入端;
所述的计算机18的控制信号输出端分别与所述的XYZ位移平台17的控制端及振镜扫描器10的控制端连接,所述的锁相放大器16的输出端与所述的计算机18的输入端连接。
图2是所述的挡板光阑的示意图,所述的挡板光阑14的制作方式为,在圆形0.5mm厚的熔石英玻璃表面镀圆形的铝膜或铬膜;镀膜区域的透过率≤0.01%;镀膜区域的半径大于入射到挡板光阑14处的光斑的束腰半径,使通过的光束的功率小于入射到挡板光阑14处的光束的功率的1%。
利用所述的共光路型吸收性缺陷单光束光热测量装置进行光学元件表面吸收性缺陷的测量方法,其特征在于该方法包括下列步骤:
1)将所述的待测样品12置于XYZ位移平台17上,在所述的计算机的控制下,所述的XYZ位移平台17沿Z方向移动所述的待测样品12,使待测样品12的表面处于所述的扫描透镜11的焦点附近,调整所述的扩束器2,使经扩束器2扩束后的光束直径满足振镜扫描器10的入瞳要求;
2)将所述的斩波器6的调制频率设置为f,将所述的锁相放大器16的解调频率设置为所述的斩波器6的调制频率的2倍,即2f;
3)所述的计算机18驱动所述的振镜扫描器10的内部扫描反射镜使聚焦光斑在所述的样品表面沿X和Y方向移动,形成光栅扫描;光斑沿X和Y方向移动的步进量为聚焦到待测样品12表面的光斑的直径;
4)在测量点,所述的光电探测器15的测量信号输入所述的锁相放大器16,经所述的锁相放大器16解调后向所述的计算机18输出其二次谐波(2f)的幅值;所述的计算机18实时记录该测量点的幅值;
5)所述的XYZ位移平台17将所述的待测样品12沿X或Y方向移动到下一个测量区域,返回步骤3),直至完成所述的待测样品的全部测量;
6)所述的计算机18将记录的信号幅值绘制成吸收性缺陷二维分布图并进行分析,给出分析报告,完成该待测样品12吸收性缺陷测试。
实施例2
图3为本发明实施例2非共光路型吸收性缺陷单光束光热测量装置示意图,由图可见,非共光路型吸收性缺陷单光束光热测量装置,包括激光器1、扩束器2、功率调节器3、分束器4、功率计5、斩波器6、会聚透镜13、挡板光阑14、光电探测器15、锁相放大器16、XYZ位移平台17、计算机18和第二会聚透镜19,待测样品12置于所述的XYZ位移平台17上;
沿所述的激光器1发出的光束的方向依次为所述的扩束器2、功率调节器3、分束器4,该分束器4将入射光束分为强度不同的弱反射光和强透射光,沿所述的弱反射光方向是所述的功率计5,该功率计5用于监控入射光功率和稳定性;沿所述的强透射光方向是所述的斩波器6,强透射光被该斩波器调制后经所述的第二会聚透镜19聚焦照射所述的待测样品12,在所述的待测样品12的反射光方向依次是所述的挡板光阑14、会聚透镜13和光电探测器15,该光电探测器15的输出端与所述的锁相放大器16第一输入端相连,所述的斩波器6的调制频率作为参考信号,参考信号输出端经过线缆与所述的锁相放大器16第二输入端相连,所述的锁相放大器16的输出端与所述的计算机18的输入端相连,该计算机18的控制信号输出端与所述的XYZ位移平台17的控制端相连。
所述的挡板光阑14制作方式为,在圆形0.5mm厚的熔石英玻璃表面镀圆形的铝膜或铬膜;镀膜区域的透过率≤0.01%;镀膜区域的半径大于入射到挡板光阑14处的光斑的束腰半径,使通过的光束的功率小于入射到挡板光阑14处的光束的功率的1%;
利用所述的非共光路型吸收性缺陷单光束光热测量装置进行光学元件表面吸收性缺陷的测量方法,包括下列步骤:
1)将所述的待测样品12置于XYZ位移平台17上,在所述的计算机的控制下,所述的XYZ位移平台17沿Z方向移动待测样品12,使待测样品12的表面处于所述的第二会聚透镜19的焦点附近;
2)将所述的斩波器6的调制频率设置为f,将所述的锁相放大器16的解调频率设置为所述的斩波器6的调制频率的2倍,即2f;
3)所述的计算机18驱动所述的XYZ位移平台17运动,使经所述的第二会聚透镜19输出的聚焦光斑在所述的待测样品的表面沿X和Y方向移动,光斑沿X和Y方向移动的步进量为聚焦到待测样品12表面的光斑的直径;
4)在测量点,所述的光电探测器15的测量信号输入所述的锁相放大器16,经所述的锁相放大器16解调后向所述的计算机18输出其二次谐波(2f)的幅值;所述的计算机18实时记录该测量点的幅值;
5)在所述的计算机的控制下,所述的XYZ位移平台17将所述的待测样品12沿X或Y方向移动到下一个测量点,返回步骤4),直至完成所述的待测样品的全部测量;
6)所述的计算机18将记录的信号幅值绘制成吸收性缺陷二维分布图并进行分析,给出分析报告,完成该待测样品12吸收性缺陷测试。
实验表明,本发明吸收性缺陷单光束光热测量装置的光路结构简单,便于安装调试。测量结果稳定,避免环境振动、样品倾斜导致的测量信号异常。通过探测光斑边缘的光束的功率变化,系统的测量灵敏度得到显著提升。

Claims (5)

  1. 一种吸收性缺陷单光束光热测量装置,其特征在于,包括激光器(1)、扩束器(2)、功率调节器(3)、分束器(4)、功率计(5)、斩波器(6)、偏振分束器(7)、四分之一波片(8)、反射镜(9)、振镜扫描器(10)、扫描透镜(11)、会聚透镜(13)、挡板光阑(14)、光电探测器(15)、锁相放大器(16)、XYZ位移平台(17)和计算机(18),待测样品(12)置于所述的XYZ位移平台(17)上;
    沿所述的激光器(1)发出的光束的方向依次为所述的扩束器(2)、功率调节器(3)、分束器(4),所述的分束器(4)将入射光束分为强度不同的弱反射光和强透射光,沿所述的弱反射光方向是所述的功率计(5),沿所述的强透射光方向依次是所述的斩波器(6)、偏振分束器(7)、四分之一波片(8)、反射镜(9)、振镜扫描器(10)和扫描透镜(11);
    所述的强透射光束被所述的斩波器(6)调制;调制入射光经过所述的偏振分束器(7)后输出p偏振光,该p偏振光经过所述的四分之一波片(8)后输出圆偏振光;该圆偏振光经过所述的振镜扫描器(10)和扫描透镜(11)后聚焦入射到待测样品(12)表面;所述的待测样品(12)的表面在激光照射下产生热形变;被热形变调制的反射光依次通过所述的扫描透镜(11)、振镜扫描器(10)、反射镜(9)和四分之一波片(8)后,成为s偏振光;该s偏振光经过所述的偏振分束器(7)反射后,经所述的会聚透镜(13)聚焦;该聚焦光束通过所述的挡板光阑(14)后,光斑边缘的光束被所述的光电探测器(15)接收;
    所述的斩波器(6)的调制频率作为参考信号,经过线缆输入所述的锁相放大器(16)第二输入端;所述的光电探测器(15)采集的信号作为测量信号,输入所述的锁相放大器(16)第一输入端;
    所述的计算机(18)的控制信号输出端分别与所述的XYZ位移平台(17)的控制端及振镜扫描器(10)的控制端连接,所述的锁相放大器(16)的输出端与所述的计算机(18)的输入端连接。
  2. 一种吸收性缺陷单光束光热测量装置,其特征在于,包括激光器(1)、扩束器(2)、功率调节器(3)、分束器(4)、功率计(5)、斩波器(6)、会聚透镜(13)、挡板光阑(14)、光电探测器(15)、 锁相放大器(16)、XYZ位移平台(17)、计算机(18)和第二会聚透镜(19),待测样品(12)置于所述的XYZ位移平台(17)上;
    沿所述的激光器(1)发出的光束的方向依次为所述的扩束器(2)、功率调节器(3)、分束器(4),该分束器(4)将入射光束分为强度不同的弱反射光和强透射光,沿所述的弱反射光方向是所述的功率计(5),沿所述的强透射光方向是所述的斩波器(6),强透射光被该斩波器(6)调制后经所述的第二会聚透镜(19)聚焦照射所述的待测样品(12),在所述的待测样品(12)的反射光方向依次是所述的挡板光阑(14)、会聚透镜(13)和光电探测器(15),该光电探测器(15)的输出端与所述的锁相放大器(16)第一输入端相连,所述的斩波器(6)的调制频率作为参考信号,参考信号输出端经过线缆与所述的锁相放大器(16)第二输入端相连,所述的锁相放大器(16)的输出端与所述的计算机(18)的输入端相连,该计算机(18)的控制信号输出端与所述的XYZ位移平台(17)的控制端相连。
  3. 根据权利要求1或2所述的收性缺陷单光束光热测量装置,其特征在于所述的挡板光阑(14)制作方式为,在圆形0.5mm厚的熔石英玻璃表面镀圆形的铝膜或铬膜;镀膜区域的透过率≤0.01%;镀膜区域的半径大于入射到挡板光阑(14)处的光斑的束腰半径,使通过的光束的功率小于入射到挡板光阑(14)处的光束的功率的1%;
  4. 利用权利要求1所述的吸收性缺陷单光束光热测量装置进行光学元件表面吸收性缺陷的测量方法,其特征在于该方法包括下列步骤:
    1)将所述的待测样品(12)置于XYZ位移平台(17)上,沿Z方向移动待测样品(12),使待测样品(12)的表面处于所述的扫描透镜(11)的焦点附近;
    2)将所述的斩波器(6)的调制频率设置为f,将所述的锁相放大器(16)的解调频率设置为所述的斩波器(6)的调制频率的2倍,即2f;
    3)所述的计算机(18)驱动所述的振镜扫描器(10)的内部扫描反射镜使聚焦光斑在所述的样品表面沿X和Y方向移动,形成光栅扫描;光斑沿X和Y方向移动的步进量为聚焦到待测样品(12)表面的光斑的直径;
    4)在测量点,所述的光电探测器(15)的测量信号输入所述的锁相放大器(16),经所述的锁相放大器(16)解调后向所述的计算机(18)输出其二次谐波(2f)的幅值;所述的计算机(18)实时记录该测量点的幅值;
    5)所述的XYZ位移平台(17)将所述的待测样品(12)沿X或Y方向移动到下一个测量区域,返回步骤3),直至完成所述的待测样品的全部测量;
    6)所述的计算机(18)将记录的信号幅值绘制成吸收性缺陷二维分布图并进行分析,给出分析报告,完成该待测样品(12)吸收性缺陷测试。
  5. 利用权利要求2所述的吸收性缺陷单光束光热测量装置进行光学元件表面吸收性缺陷的测量方法,其特征在于该方法包括下列步骤:
    1)将所述的待测样品(12)置于XYZ位移平台(17)上,在所述的计算机的控制下,所述的XYZ位移平台(17)沿Z方向移动待测样品(12),使待测样品(12)的表面处于所述的第二会聚透镜(19)的焦点附近;
    2)将所述的斩波器(6)的调制频率设置为f,将所述的锁相放大器(16)的解调频率设置为所述的斩波器(6)的调制频率的2倍,即2f;
    3)所述的计算机(18)驱动所述的XYZ位移平台(17)运动,使经所述的第二会聚透镜(19)输出的聚焦光斑在所述的待测样品的表面沿X和Y方向移动,光斑沿X和Y方向移动的步进量为聚焦到待测样品(12)表面的光斑的直径;
    4)在测量点,所述的光电探测器(15)的测量信号输入所述的锁相放大器(16),经所述的锁相放大器(16)解调后向所述的计算机(18)输出其二次谐波(2f)的幅值;所述的计算机(18)实时记录该测量点的幅值;
    5)在所述的计算机的控制下,所述的XYZ位移平台(17)将所述的待测样品(12)沿X或Y方向移动到下一个测量点,返回步骤4),直至完成所述的待测样品的全部测量;
    6)所述的计算机(18)将记录的信号幅值绘制成吸收性缺陷二维分 布图并进行分析,给出分析报告,完成该待测样品(12)吸收性缺陷测试。
PCT/CN2020/092785 2020-05-11 2020-05-28 吸收性缺陷单光束光热测量装置和测量方法 WO2021227134A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/566,675 US12099002B2 (en) 2020-05-11 2021-12-30 Single-beam photothermal measurement apparatus and measurement method for absorptive defects

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010391287.0 2020-05-11
CN202010391287.0A CN111426700B (zh) 2020-05-11 2020-05-11 吸收性缺陷单光束光热测量装置和测量方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/566,675 Continuation US12099002B2 (en) 2020-05-11 2021-12-30 Single-beam photothermal measurement apparatus and measurement method for absorptive defects

Publications (1)

Publication Number Publication Date
WO2021227134A1 true WO2021227134A1 (zh) 2021-11-18

Family

ID=71552697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092785 WO2021227134A1 (zh) 2020-05-11 2020-05-28 吸收性缺陷单光束光热测量装置和测量方法

Country Status (2)

Country Link
CN (1) CN111426700B (zh)
WO (1) WO2021227134A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114384081A (zh) * 2021-12-22 2022-04-22 西安工程大学 纺织布匹缺陷检测装置及其检测方法
CN115356263A (zh) * 2022-08-12 2022-11-18 大连理工大学 一种高效检测石英玻璃加工亚表面损伤的装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115436326B (zh) * 2022-08-31 2024-04-12 中国科学院上海光学精密机械研究所 测量材料防护阈值的方法及其装置
CN118010318B (zh) * 2024-02-27 2024-09-13 浙江大学 一种大口径光学元件光热特性检测装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101082537A (zh) * 2007-07-12 2007-12-05 中国科学院光电技术研究所 一种测量光学薄膜吸收损耗的方法
US8264693B2 (en) * 2007-12-06 2012-09-11 The Regents Of The University Of Michigan Method and system for measuring at least one property including a magnetic property of a material using pulsed laser sources
CN106769881A (zh) * 2016-12-16 2017-05-31 中国科学院工程热物理研究所 一种基于抽运探测热反射技术的热导率扫描系统
CN111122599A (zh) * 2019-12-25 2020-05-08 电子科技大学 一种大口径反射薄膜元件吸收型缺陷快速成像的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3168480B2 (ja) * 1992-04-13 2001-05-21 株式会社ニコン 異物検査方法、および異物検査装置
CN106248585B (zh) * 2016-07-18 2019-04-19 中国科学院上海光学精密机械研究所 光学材料三维光热吸收的测量装置及方法
CN106442564B (zh) * 2016-10-17 2019-12-03 中国科学院上海光学精密机械研究所 大口径超光滑表面缺陷的检测装置和检测方法
CN106442565B (zh) * 2016-10-26 2019-06-21 中国科学院上海光学精密机械研究所 高速激光线扫描的表面缺陷检测装置
CN106932374A (zh) * 2017-04-17 2017-07-07 大连理工大学 基于锁相放大的显微镜
CN107843560B (zh) * 2017-10-27 2021-01-29 中国人民解放军国防科技大学 一种高空间分辨的泵浦-探测微区测量装置、系统及方法
CN212646516U (zh) * 2020-05-11 2021-03-02 中国科学院上海光学精密机械研究所 吸收性缺陷单光束光热测量装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101082537A (zh) * 2007-07-12 2007-12-05 中国科学院光电技术研究所 一种测量光学薄膜吸收损耗的方法
US8264693B2 (en) * 2007-12-06 2012-09-11 The Regents Of The University Of Michigan Method and system for measuring at least one property including a magnetic property of a material using pulsed laser sources
CN106769881A (zh) * 2016-12-16 2017-05-31 中国科学院工程热物理研究所 一种基于抽运探测热反射技术的热导率扫描系统
CN111122599A (zh) * 2019-12-25 2020-05-08 电子科技大学 一种大口径反射薄膜元件吸收型缺陷快速成像的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114384081A (zh) * 2021-12-22 2022-04-22 西安工程大学 纺织布匹缺陷检测装置及其检测方法
CN114384081B (zh) * 2021-12-22 2023-07-28 西安工程大学 纺织布匹缺陷检测装置及其检测方法
CN115356263A (zh) * 2022-08-12 2022-11-18 大连理工大学 一种高效检测石英玻璃加工亚表面损伤的装置

Also Published As

Publication number Publication date
US20220120675A1 (en) 2022-04-21
CN111426700A (zh) 2020-07-17
CN111426700B (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
WO2021227134A1 (zh) 吸收性缺陷单光束光热测量装置和测量方法
WO2021003802A1 (zh) 显微散射偏振成像表面缺陷测量装置和测量方法
US7161668B2 (en) Wafer edge inspection
US7656519B2 (en) Wafer edge inspection
US7161669B2 (en) Wafer edge inspection
WO2020007370A1 (zh) 一种检测设备及方法
CN105510347A (zh) 基于光热检测和光学显微的光学材料缺陷实时成像装置
CN110044929B (zh) 一种基于暗场照明的曲面玻璃次表面缺陷检测装置
CN203745385U (zh) 激光超声光学干涉检测装置
CN114440800B (zh) 一种激光损伤阈值测试中光斑有效面积准确测定方法
WO2019042208A1 (zh) 光学测量系统及方法
US7286229B1 (en) Detecting multi-domain states in perpendicular magnetic media
CN111504958B (zh) 一种软脆光学晶体加工表层荧光性缺陷检测方法
CN212646516U (zh) 吸收性缺陷单光束光热测量装置
CN110470639A (zh) 一种基于激光诱导光热效应的多模式扫描显微镜成像系统
WO2021143525A1 (zh) 一种横向差动暗场共焦显微测量装置及其方法
CN110044415B (zh) 错位差动共焦干涉元件多参数测量方法与装置
CN205280608U (zh) 基于光热检测和光学显微的光学材料缺陷实时成像装置
US12099002B2 (en) Single-beam photothermal measurement apparatus and measurement method for absorptive defects
US7295300B1 (en) Detecting surface pits
CN111239155B (zh) 一种轴向差动暗场共焦显微测量装置及其方法
CN109612942B (zh) 一种椭偏仪以及基于该椭偏仪的检测方法
JPH07167793A (ja) 位相差半導体検査装置および半導体装置の製造方法
JP3432273B2 (ja) 異物検査装置及び異物検査方法
US7289200B1 (en) Confocal reflectommeter/ellipsometer to inspect low-temperature fusion seals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934926

Country of ref document: EP

Kind code of ref document: A1