WO2021003802A1 - 显微散射偏振成像表面缺陷测量装置和测量方法 - Google Patents

显微散射偏振成像表面缺陷测量装置和测量方法 Download PDF

Info

Publication number
WO2021003802A1
WO2021003802A1 PCT/CN2019/101282 CN2019101282W WO2021003802A1 WO 2021003802 A1 WO2021003802 A1 WO 2021003802A1 CN 2019101282 W CN2019101282 W CN 2019101282W WO 2021003802 A1 WO2021003802 A1 WO 2021003802A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
light
polarized
sample
wave plate
Prior art date
Application number
PCT/CN2019/101282
Other languages
English (en)
French (fr)
Inventor
邵建达
刘世杰
倪开灶
王圣浩
周游
王微微
徐天柱
鲁棋
Original Assignee
中国科学院上海光学精密机械研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海光学精密机械研究所 filed Critical 中国科学院上海光学精密机械研究所
Priority to US17/037,606 priority Critical patent/US11175220B2/en
Publication of WO2021003802A1 publication Critical patent/WO2021003802A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8883Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges involving the calculation of gauges, generating models

Definitions

  • the invention relates to surface defect detection, in particular to a surface defect measuring device and a measuring method for microscopic scattering polarization imaging on the surface of an ultra-smooth element.
  • ultra-smooth components surface roughness root mean square value less than 1nm
  • high-end equipment such as photolithography systems, high-power laser systems, astronomical telescope systems, and very large-scale integrated circuits.
  • defects such as scratches and pits randomly distributed on the surface of the component modulate the incident light, which greatly enhances the local light field and exceeds the component damage threshold.
  • the metal ions and pollutants in the polishing liquid remaining in the scratches and pits strongly absorb the incident light, causing the component to burst locally, which directly threatens the safe operation of the entire system.
  • the current methods used for surface defect detection of ultra-smooth components mainly include visual methods, micro-scattering dark-field imaging methods, laser-scattering methods, and photothermal micro-imaging methods.
  • photothermal microscopy see Bertussi B, Natoli J Y, Command M. High-resolution photothermal microscope: a sensitive tool for the detection of isolated absorbing defects in optical coatings[J].
  • Applied optics, 2006, 45(7) ):1410-1415. is based on photothermal effect to detect absorptive defects, it is not sensitive to structural defects such as scratches and pitting, and because it is a single-point detection, the measurement efficiency is low, and it cannot be applied to the full-aperture of medium and large-diameter components Quick measurement.
  • the visual method relies on human eye observation: In the clean environment of the darkroom, the inspector holds a strong flashlight and illuminates the surface of the super smooth component obliquely. If there is a defect on the surface of the element, the defect will scatter the incident light. The human eye avoids the reflected light and observes the scattered light emitted by the defect.
  • the visual method is simple and easy to operate, it is still widely used in the surface defect inspection industry, but it has two shortcomings: on the one hand, it is physiological limitations, and eye fatigue prevents inspectors from working continuously for a long time. On the other hand, relying on subjective evaluation, the inspector cannot accurately give the size of the defect. The test results of different inspectors are often inconsistent and lack transferability.
  • the laser scattering method (refer to document US5798829), the laser is focused and incident on the wafer surface obliquely, and the scattered light generated by the defect is received by the detector. This method is single-point detection.
  • Micro-scattered dark-field imaging method uses a collimated light source to obliquely incident on the surface of the component to be tested, the reflected light is emitted from the other side, and the scattered light generated by surface defects is imaged by the microscope located on the normal line of the component surface The system collects and forms a bright image with a dark background on the camera to achieve super-resolution detection.
  • the present invention provides a surface defect measuring device and a measuring method for microscopic scattering polarization imaging.
  • This method uses a micro-polarizer array to realize real-time micro-scattering polarization imaging of surface defects.
  • the degree of polarization image By calculating the degree of polarization image, the sensitivity of detecting surface defects of ultra-smooth elements is improved, and the effective detection of surface defects of high-reflection film elements is realized, which can meet the requirements of meter-level large-diameter Need for rapid detection of surface defects of super smooth components.
  • a microscopic scattering polarization imaging surface defect measuring device comprising: a laser, a first converging lens, a rotating diffuser, a second converging lens, an aperture, a third converging lens, a pinhole, a fourth converging lens, a polarizer, and a half Wave plate, polarization beam splitter, XY displacement platform, sample, microscope lens, quarter wave plate, micro polarizer array, camera and computer.
  • the laser, the first convergent lens, the rotating diffuser, the second convergent lens, the diaphragm, the third convergent lens, the pinhole, the fourth convergent lens, the polarizer, the half-wave plate, and the polarization beam splitter have a common optical axis in sequence arrangement.
  • the optical axis forms a certain angle with the normal of the surface to be measured of the sample.
  • the first converging lens and the second converging lens are confocal, and the rotating diffuser is located at a confocal position.
  • the third converging lens and the fourth converging lens are confocal, and the pinhole is located at a confocal position.
  • the microscope head, quarter wave plate, micro-polarizer array and camera are arranged in sequence on a co-optical axis, and the optical axis is located in the incident plane and parallel to the normal of the sample surface to be measured.
  • the angle between the fast axis of the quarter wave plate and the polarization plane of the s-polarized (or p-polarized) light propagating along the optical axis of the microscope head is 45°.
  • the micro-polarizer array is periodically composed of a plurality of 2 ⁇ 2 unit micro-nano structures, and each 2 ⁇ 2 unit contains four polarization directions of transmitted light, which are 0°, 45°, 90° and 135° respectively.
  • the size of the micro-polarizer array is consistent with the size of the camera's photosensitive chip, the two are closely attached, and the position of each pixel overlaps.
  • the pixel size of the micro-polarizer array is consistent with the pixel size of the camera.
  • the sample is fixed on the XY displacement platform, and the surface to be measured of the sample is located on the imaging object surface of the microscope lens; the output end of the computer and the control end of the rotating diffuser, camera and XY displacement platform Connected, the output terminal of the camera is connected to the input terminal of the computer.
  • the measurement method for detecting surface defects of ultra-smooth components using the above-mentioned micro-scattering polarization imaging surface defect measurement device includes the following steps:
  • the light beam emitted by the laser passes through the first condensing lens, the rotating diffuser and the second condensing lens in sequence, and the coherence is reduced and the beam is expanded and collimated.
  • the aperture is fine-tuned to select a more uniform part of the outgoing light beam, and the selected uniform light beam sequentially passes through the filtering system composed of the third converging lens, pinhole and fourth converging lens to output a collimated beam; the collimated beam passes
  • the polarizer becomes linearly polarized light, and the linearly polarized light passes through the half-wave plate and the polarizing beam splitter in turn and becomes s-polarized (or p-polarized) light obliquely incident on the surface to be measured of the sample ;
  • the X-Y displacement platform moves according to the designed route to realize the full-aperture measurement of the sample surface to be measured;
  • the rotating diffuser, camera, and XY displacement platform work under the control of the computer. Each time the XY displacement platform moves one position, the camera acquires a scattered polarization image and inputs it to the computer , Until all sub-aperture scattering polarization images are obtained;
  • the transmitted light intensities of the four polarization directions of each 2 ⁇ 2 unit of the micro-polarizer array are respectively I 0 , I 45 , I 90 and I 135 ; camera capture
  • Each scattered polarization sub-aperture image contains M ⁇ N pixels, and the degree of linear polarization D (i,j) of each pixel (i,j) is determined by its adjacent three other pixels (i,j+1) ), (i+1,j) and (i+1,j+1) the light intensity I 0 , I 45 , I 90 and I 135 of the four pixels are calculated as follows:
  • the s-polarized (or p-polarized) light passes through the sample surface, and the polarization state of the scattered light generated by the smooth surface is almost unchanged in the incident plane. After passing through the quarter wave plate, the polarization state of the scattered light is close to a circle. Polarization, I 0 , I 45 , I 90 and I 135 are close, and the linear polarization calculated by the above formula is close to 0;
  • the s-polarized (or p-polarized) light undergoes multiple scattering when passing through the surface defects of the sample, and the polarization state of the generated scattered light changes, and the s-polarized (or p-polarized) light includes p-polarized (or s-polarized) light.
  • the polarization state of the scattered light deviates from the circular polarization, and the linear polarization calculated by the above formula changes significantly and is no longer 0; the more serious the sample surface defect, the greater the linear polarization; calculated by the above formula
  • the range of polarization degree of scattered light after passing through the quarter-wave plate is [0,1]; repeat the above calculation process to obtain polarization degree images of all subaperture scattered polarization images.
  • G (i, j) represents the gray value of the pixel (i, j) in a single polarization image after linear projection, and INT is the rounding function; after the above projection transformation, all sub-pixels suitable for digital image processing technology are obtained.
  • Grayscale image of aperture polarization degree The gray-scale image of the degree of polarization is an image with a dark background and a bright defect that does not depend on the light intensity distribution.
  • the invention collects and image the scattered light generated by surface defects, and maintains the advantages of high contrast and super-resolution measurement of dark field imaging.
  • the polarization degree image of scattered light that does not depend on the intensity distribution of the illumination light is calculated from the microscopic scattering polarization image. Regardless of the intensity of the illumination light, the polarization degree of the scattered light in the smooth surface area is close to 0, while the surface defect scattered light has a high degree of polarization, which can effectively overcome In traditional scattered dark-field imaging, the problem of weak scratches and other defects due to the uneven illumination source has low contrast and cannot be effectively extracted.
  • the intensity of scattered light on a smooth surface is When other parameters are the same, it is proportional to the reflectance R of the sample surface.
  • the background gray level of high-reflection film image is high and the defect contrast is low, which cannot be effectively extracted.
  • the invention calculates the polarization degree image from the scattered polarization image, and the polarization degree has nothing to do with factors such as illumination intensity and reflectance. After calculation, the high-brightness background polarization degree is close to 0, and the contrast of the defect map is improved. Therefore, the surface defect of the high-reflection film element can be effectively measured.
  • the micro-polarizer array is used to realize the camera to collect a single image to obtain the intensity values of the four polarization directions of 0°, 45°, 90° and 135°. There is no need to add polarizers and rotating mechanical structures, which simplifies the system component structure , Effectively improve the scanning measurement rate, so that the technology can meet the needs of rapid detection of surface defects of meter-level large-diameter ultra-smooth components.
  • Figure 1 is a schematic diagram of a surface defect measuring device for microscopic scattering polarization imaging of the present invention
  • Figure 2 is a schematic diagram of the micro-polarizer array of the present invention
  • Figure 3 is a schematic diagram of the present invention for calculating the polarization degree image of the surface defect from the scattered polarization image of the surface defect
  • Figure 1 is a schematic diagram of a surface defect measuring device for microscopic scattering and polarization imaging of the present invention. It can be seen from the figure that the device for measuring a surface defect of microscopic scattering and polarization imaging of the present invention includes a laser 1, a first converging lens 2, a rotating diffuser 3, and a second converging lens 4. Diaphragm 5, third convergent lens 6, pinhole 7, fourth convergent lens 8, polarizer 9, half-wave plate 10, polarization beam splitter 11, XY displacement stage 12, sample 13, microscope lens 14, four The quarter wave plate 15, the micro-polarizer array 16, the camera 17, and the computer 18.
  • the device for measuring a surface defect of microscopic scattering and polarization imaging of the present invention includes a laser 1, a first converging lens 2, a rotating diffuser 3, and a second converging lens 4. Diaphragm 5, third convergent lens 6, pinhole 7, fourth convergent lens 8, polarizer 9, half-wave plate 10, polarization beam splitter 11, XY displacement stage
  • the polarization beam splitters 11 are arranged in sequence on the common optical axis. The optical axis is at a certain angle with the normal of the surface to be measured of the sample 13.
  • the first condenser lens 2 and the second condenser lens 4 are confocal, and the rotating diffuser 3 is located at a confocal position.
  • the third converging lens 6 and the fourth converging lens 8 are confocal, and the pinhole 7 is located at a confocal position.
  • the microscope head 14, the quarter wave plate 15, the micro-polarizer array 16 and the camera 17 are located in the incident plane with a common optical axis, and the optical axis coincides with the normal line of the sample 13 to be measured.
  • the angle between the fast axis of the quarter wave plate 15 and the polarization plane of the s-polarized (or p-polarized) light propagating along the optical axis of the microscope lens 14 is 45°.
  • the micro-polarizer array 16 is shown in FIG. 2 and is composed of a plurality of 2 ⁇ 2 unit micro-nano structures periodically, and each 2 ⁇ 2 unit contains four polarization directions of transmitted light, which are 0° and 45° respectively. , 90° and 135°.
  • the size of the micro-polarizer array 16 is the same as the size of the photosensitive chip of the camera 17, the two are closely attached, and the position of each pixel overlaps.
  • the pixel size of the micro-polarizer array 16 is consistent with the pixel size of the camera 17 described above.
  • the sample 13 is fixed on the XY displacement platform 12, the surface to be measured of the sample 13 is located on the imaging object surface of the microscope lens 14; the output end of the computer 18 and the rotating diffuser 3, the camera 17 It is connected to the control terminal of the XY displacement platform 12, and the output terminal of the camera 17 is connected to the input terminal of the computer 18.
  • a measurement method for detecting surface defects of ultra-smooth components by using the above-mentioned microscopic scattering polarization imaging surface defect measurement device includes the following steps:
  • the light beam emitted by the laser 1 passes through the first condensing lens 2, the rotating diffuser 3 and the second condensing lens 4 in sequence, and then is reduced in coherence and expanded and collimated.
  • the aperture 5 is fine-tuned to select a more uniform part of the emitted light beam, and the selected uniform light beam sequentially passes through the filter system composed of the third converging lens 6, the pinhole 7 and the fourth converging lens 8 to output a collimated beam;
  • the collimated light beam passes through the polarizer 9 and becomes linearly polarized light.
  • the linearly polarized light passes through the half-wave plate 10 and the polarizing beam splitter 11 and then becomes s-polarized (or p-polarized) light obliquely incident.
  • the X-Y displacement platform 12 moves according to a raster scanning route to achieve full-aperture measurement of the surface to be measured on the sample 13;
  • the rotating diffuser 3, the camera 17 and the XY displacement platform 12 work under the control of the computer 18. Each time the XY displacement platform 12 moves one position, the camera 17 acquires a scattered polarization image And input into the computer 18 until all sub-aperture scattering polarization images are obtained;
  • the computer 18 performs the following data processing on each sub-aperture scattering polarization image:
  • Each scattered polarization sub-aperture image collected by the camera 17 contains M ⁇ N pixels, and the linear polarization degree D of each pixel (i, j) (i,j) is determined by the light intensity of four pixels (i,j+1), (i+1,j) and (i+1,j+1) adjacent to the surrounding four pixels I 0 , I 45 , I 90 and I 135 are calculated as follows:
  • the s-polarized (or p-polarized) light passes through the surface of the sample 13, and the polarization state of the scattered light generated by the smooth surface is almost unchanged in the incident plane.
  • the polarization state of the scattered light is close to Circular polarization, I 0 , I 45 , I 90 and I 135 are close, the linear polarization calculated by the above formula is close to 0;
  • the s-polarized (or p-polarized) light undergoes multiple scattering by surface defects of the sample, and the polarization state of the generated scattered light changes, and the s-polarized (or p-polarized) light includes p-polarized (or s-polarized) light.
  • the polarization state of the scattered light deviates from the circular polarization, and the linear polarization calculated by the above formula changes significantly and is no longer 0; the more serious the surface defect of sample 13, the greater the linear polarization;
  • the value range of the polarization degree of the scattered light after passing through the quarter wave plate 15 calculated by the formula is [0,1]; the polarization degree images of all sub-aperture scattered polarization images are obtained by repeating the above calculation process.
  • G (i, j) represents the gray value of the pixel (i, j) in a single polarization image after linear projection, and INT is the rounding function; after the above projection transformation, all sub-pixels suitable for digital image processing technology are obtained.
  • Grayscale image of aperture polarization degree The gray-scale image of the degree of polarization is an image with a dark background and a bright defect that does not depend on the light intensity distribution.
  • the present invention uses a micro-polarizer array to realize real-time micro-scattering polarization imaging of surface defects.
  • the degree of polarization image By calculating the degree of polarization image, the sensitivity of detection of surface defects of ultra-smooth elements is improved, and the effective detection of surface defects of high-reflection film elements can be achieved. Requirements for rapid detection of surface defects of super-smooth, large-diameter components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种显微散射偏振成像表面缺陷测量装置和测量方法,该装置主要包括激光器(1)、第一会聚透镜(2)、旋转扩散器(3)、第二会聚透镜(4)、光阑(5)、第三会聚透镜(6)、针孔(7)、第四会聚透镜(8)、偏振片(9)、半波片(10)、偏振分束器(11)、X-Y位移平台(12)、样品(13)、显微镜头(14)、四分之一波片(15)、微偏振片阵列(16)、相机(17)和计算机(18)。该装置采用微偏振片阵列(16)实现表面缺陷实时显微散射偏振成像,通过计算偏振度图像,提升了超光滑元件表面缺陷探测的灵敏度,实现高反膜元件表面缺陷有效检测,能够满足米级大口径超光滑元件表面缺陷快速检测需求。

Description

显微散射偏振成像表面缺陷测量装置和测量方法 技术领域
本发明涉及表面缺陷检测,特别是一种针对超光滑元件表面的显微散射偏振成像表面缺陷测量装置和测量方法。
背景技术
大口径超光滑元件(表面粗糙度均方根值小于1nm)广泛应用在光刻系统、高功率强激光系统、天文望远系统以及超大规模集成电路等高端装备中。在强激光系统中,随机分布在元件表面的划痕、麻点等缺陷对入射光产生调制,使局部光场极大增强,超出元件损伤阈值。划痕、麻点中残留的抛光液中的金属离子和污染物对入射光产生强烈吸收,导致元件局部炸裂,直接威胁整个系统的安全运行。另外,表面缺陷对入射光产生的散射会引起成像系统中成像光束能量损耗,杂散光成为噪声,进一步降低系统信噪比,造成目标信号无法提取与分析。在半导体领域,开口气泡、划痕等缺陷是影响晶圆产量的关键因素,对芯片性能造成十分严重的影响,甚至导致芯片直接报废,被视为“晶圆杀手”。
当前用于超光滑元件表面缺陷检测的方法主要包括目视法、显微散射暗场成像法、激光散射法以及光热显微成像法等。其中,光热显微成像法(参见Bertussi B,Natoli J Y,CommandréM.High-resolution photothermal microscope:a sensitive tool for the detection of isolated absorbing defects in optical coatings[J].Applied optics,2006,45(7):1410-1415.)是基于光热效应探测吸收性缺陷,对划痕、麻点等结构性缺陷不灵敏,而且由于是单点探测,测量效率低,无法应用于中、大口径元件全口径快速测量。目视法依靠人眼观察:在暗室洁净环境中,检测员手持强光手电筒,倾斜照射超光滑元件表面。若元件表面存在缺陷,则缺陷对入射光产生散射。人眼避开反射光,观测缺陷发出的散射光。由于目视法简单易操作,目前仍广泛应用于表面缺陷检测行业,但其存在两方面不足:一方面是生理限制,眼睛疲劳导致检验员不能长时间连续工作。另一方面依赖主观评价,检验员不能准确给出缺陷的尺寸。不同的检验员之间的检测结果经常不一致,缺乏传递性。激光散射法(参 考文献US5798829)是激光聚焦后倾斜入射到晶圆表面,缺陷产生的散射光被探测器接收。该方法为单点探测,为实现全口径快速测量,将晶圆固定在承载台上,承载台沿其中心轴高速旋转,同时在水平面内沿径向移动。该方法不适用于大口径、大重量的超光滑光学元件表面的缺陷检测。显微散射暗场成像法(参考文献CN1563957A)是采用准直光源斜入射到待测元件表面,反射光从另一侧出射,表面缺陷产生的散射光被位于元件表面法线上的显微成像系统收集,在相机上成暗背景亮像,实现超分辨探测。结合数字图像处理技术,提取表面缺陷的位置和尺寸信息。该方法在表面弱划痕检测效果上,有待进一步提升。此外,该方法在测量高反膜元件时,背景灰度急剧升高,图像对比度降低,表面缺陷无法被有效提取。
发明内容
为克服上述现有技术的不足,本发明提供了一种显微散射偏振成像表面缺陷测量装置和测量方法。该方法采用微偏振片阵列实现表面缺陷实时显微散射偏振成像,通过计算偏振度图像,提升了超光滑元件表面缺陷探测的灵敏度,实现高反膜元件表面缺陷有效检测,能够满足米级大口径超光滑元件表面缺陷快速检测需求。
为达到上述目的,本发明采用的技术方案如下:
一种显微散射偏振成像表面缺陷测量装置,包括:激光器、第一会聚透镜、旋转扩散器、第二会聚透镜、光阑、第三会聚透镜、针孔、第四会聚透镜、偏振片、半波片、偏振分束器、X-Y位移平台、样品、显微镜头、四分之一波片、微偏振片阵列、相机和计算机。
所述的激光器、第一会聚透镜、旋转扩散器、第二会聚透镜、光阑、第三会聚透镜、针孔、第四会聚透镜、偏振片、半波片、偏振分束器依次共光轴排列。该光轴与所述的样品的待测表面的法线成一定角度。
所述的第一会聚透镜与第二会聚透镜共焦,所述的旋转扩散器位于共焦位置。
所述的第三会聚透镜与第四会聚透镜共焦,所述的针孔位于共焦位置。
所述的显微镜头、四分之一波片、微偏振片阵列和相机依次共光轴排列,该光轴位于入射面内,与所述的样品待测表面法线平行。
所述的四分之一波片的快轴与沿所述的显微镜头的光轴传播的s偏振(或p偏振)光的偏振面的夹角为45°。
所述的微偏振片阵列由多个2×2单元的微纳结构周期性构成,每一个2×2单元包含四个透射光偏振方向,分别为0°、45°、90°和135°。所述的微偏振片阵列的尺寸与所述的相机感光芯片的尺寸一致,两者紧密贴合,每一个像素位置重合。所述的微偏振片阵列的像元尺寸与所述的相机的像元尺寸一致。
所述的样品固定在X-Y位移平台上,所述的样品的待测表面位于显微镜头成像物面上;所述的计算机的输出端与所述的旋转扩散器、相机和X-Y位移平台的控制端相连,所述的相机的输出端与所述的计算机的输入端相连。
利用上述显微散射偏振成像表面缺陷测量装置进行超光滑元件表面缺陷检测的测量方法,包括下列步骤:
1)将所述的样品固定在所述的X-Y位移平台上;
2)所述的激光器发出的光束依次通过第一会聚透镜、旋转扩散器和第二会聚透镜后被降低相干性并扩束准直。微调所述的光阑选取出射光束中较均匀部分,选取的均匀光束依次通过所述的第三会聚透镜、针孔和第四会聚透镜组成的滤波系统后输出准直光束;该准直光束经过所述的偏振片后成为线偏振光,该线偏振光依次经过所述的半波片和偏振分束器后变成s偏振(或p偏振)光斜入射到所述的样品的待测表面;
3)旋转所述的半波片,使通过所述的偏振分束器输出的s偏振(或p偏振)光强度最大;该s偏振(或p偏振)光照射在所述的样品的待测表面上;所述的样品的光滑表面和表面缺陷产生的散射光依次通过所述的显微镜头、四分之一波片和微偏振片阵列后,在所述的相机上成像,得到单个子孔径散射偏振图像;
4)所述的X-Y位移平台按设计的路线移动,实现所述的样品待测表面全口径测量;
5)所述的旋转扩散器、相机和X-Y位移平台在所述的计算机控制 下工作,所述的X-Y位移平台每移动一个位置,所述的相机获取一幅散射偏振图像并输入所述的计算机,直到获得所有子孔径散射偏振图像;
6)所述的计算机对所述的每一幅散射偏振图像进行下列数据处理:
①计算所有子孔径散射偏振图像的偏振度:所述的微偏振片阵列每一个2×2单元的四个偏振方向的透射光强分别为I 0、I 45、I 90和I 135;相机采集的每一幅散射偏振子孔径图像包含M×N个像素,每一个像素(i,j)的线偏振度D (i,j)由其与周围相邻另外三个像素(i,j+1)、(i+1,j)及(i+1,j+1)共四个像素的光强I 0、I 45、I 90和I 135按下式计算得到:
Figure PCTCN2019101282-appb-000001
所述的s偏振(或p偏振)光经过样品表面,光滑表面产生的散射光偏振态在入射面内几乎不变,通过所述的四分之一波片后,散射光的偏振态接近圆偏振,I 0、I 45、I 90和I 135接近,由上式计算的线偏振度接近0;
所述的s偏振(或p偏振)光经过样品表面缺陷时发生多重散射,产生的散射光偏振态发生改变,s偏振(或p偏振)光中包含p偏振(或s偏振)光。经过四分之一波片后,散射光偏振态偏离圆偏振,由上式计算的线偏振度发生显著变化,不再为0;样品表面缺陷越严重,线偏振度越大;由上式计算的经过四分之一波片后的散射光线偏振度取值范围为[0,1];重复上述计算过程得到所有子孔径散射偏振图像的偏振度图像。
②计算偏振度灰度图像:将值在[0,1]的偏振度图像线性投影到值在[0,255]的灰度图像,即:
G (i,j)=INT(D (i,j)·255)
其中,G (i,j)表示单幅偏振度图像中像素(i,j)经过线性投影后的灰度值,INT为取整函数;经过上述投影变换得到适合数字图像处理技术处理的所有子孔径偏振度灰度图像。偏振度灰度图像为不依赖光强分布的背景均匀的暗背景亮缺陷图像。
③利用现有的子孔径图像拼接、中值滤波、二值化、形态学孔洞填充和特征提取方法(请参见Gonzalez,R.C.,Woods,R.,Eddins,S..Digital  image processing using MATLAB,2nd ed..Gatesmark Publishing:Knoxville,U.S.,2009)提取表面缺陷的尺寸和位置信息。
本发明的优点如下:
(1)实现光学元件表面缺陷高灵敏度测量。本发明对表面缺陷产生的散射光进行收集成像,保持了暗场成像的高对比度、超分辨测量优点。由显微散射偏振图像计算得到不依赖照明光强分布的散射光偏振度图像,无论照明光强强弱,光滑表面区域散射光线偏振度均接近0,而表面缺陷散射光线偏振度高,有效克服传统散射暗场成像中由于照明光源不均匀导致弱划痕等缺陷图像对比度低,无法有效提取的问题。
(2)实现高反膜元件表面缺陷有效测量。光滑表面的散射光强度为
Figure PCTCN2019101282-appb-000002
其它参数一致时,与样品表面反射率R成正比。传统的散射暗场成像技术测量高反膜表面缺陷时,由于高反膜反射率远高于基片反射率,造成高反膜图像背景灰度高,缺陷对比度低,无法有效提取。本发明由散射偏振图像计算偏振度图像,偏振度与照明强度、反射率等因素无关。经过计算,高亮度背景偏振度接近0,缺陷图对比度提高,因此,能有效测量高反膜元件表面缺陷。
(3)采用微偏振片阵列实现相机采集单幅图像即可获得0°、45°、90°和135°四个偏振方向的强度值,无需添加偏振片和旋转机械结构,简化了系统部件结构,有效提高扫描测量速率,使该技术满足米级大口径超光滑元件表面缺陷快速检测需求。
附图说明
图1是本发明显微散射偏振成像表面缺陷测量装置示意图
图2是本发明微偏振片阵列示意图
图3是本发明由表面缺陷散射偏振图像计算表面缺陷偏振度图像原理图
具体实施方式
下面结合具体附图和实施例对本发明作进一步详细阐述,但不应以此限制本发明的保护范围。
实施例
图1为本发明显微散射偏振成像表面缺陷测量装置示意图,由图可见,本发明显微散射偏振成像表面缺陷测量装置包括激光器1、第一会聚透镜2、旋转扩散器3、第二会聚透镜4、光阑5、第三会聚透镜6、针孔7、第四会聚透镜8、偏振片9、半波片10、偏振分束器11、X-Y位移平台12、样品13、显微镜头14、四分之一波片15、微偏振片阵列16、相机17和计算机18。
所述的激光器1、第一会聚透镜2、旋转扩散器3、第二会聚透镜4、光阑5、第三会聚透镜6、针孔7、第四会聚透镜8、偏振片9、半波片10、偏振分束器11依次共光轴排列。该光轴与所述的样品13的待测表面的法线成一定角度。
所述的第一会聚透镜2与第二会聚透镜4共焦,所述的旋转扩散器3位于共焦位置。
所述的第三会聚透镜6与第四会聚透镜8共焦,所述的针孔7位于共焦位置。
所述的显微镜头14、四分之一波片15、微偏振片阵列16和相机17位于入射面内,共光轴,该光轴与样品13待测表面法线重合。
所述的四分之一波片15的快轴与沿所述的显微镜头14的光轴传播的s偏振(或p偏振)光的偏振面的夹角为45°。
所述的微偏振片阵列16如图2所示,由多个2×2单元的微纳结构周期性构成,每一个2×2单元包含四个透射光偏振方向,分别为0°、45°、90°和135°。所述的微偏振片阵列16的尺寸与所述的相机17的感光芯片的尺寸一致,两者紧密贴合,每一个像素位置重合。微偏振片阵列16的像元尺寸与所述的相机17的像元尺寸一致。
所述的样品13固定在X-Y位移平台12上,所述的样品13的待测表面位于显微镜头14成像物面上;所述的计算机18的输出端与所述的旋转扩散器3、相机17和X-Y位移平台12的控制端相连,所述的相机17的输出端与所述的计算机18的输入端相连。
利用上述显微散射偏振成像表面缺陷测量装置进行超光滑元件表面缺陷检测的测量方法,该方法包括下列步骤:
1)将所述的样品13固定在所述的X-Y位移平台12上;
2)所述的激光器1发出的光束依次通过所述的第一会聚透镜2、旋转扩散器3和第二会聚透镜4后被降低相干性和扩束准直。微调所述的光阑5选取出射光束中较均匀部分,选取的均匀光束依次通过所述的第三会聚透镜6、针孔7和第四会聚透镜8组成的滤波系统后输出准直光束;该准直光束经过所述的偏振片9后成为线偏振光,该线偏振光依次经过所述的半波片10和偏振分束器11后变成s偏振(或p偏振)光斜入射到所述的样品13表面的待测表面;
3)旋转所述的半波片10,使通过所述的偏振分束器11输出的s偏振(或p偏振)光强度最大;s偏振(或p偏振)照射在所述的样品13的待测表面上;所述的样品13的光滑表面和表面缺陷产生的散射光依次通过显微镜头14、四分之一波片15和微偏振片阵列16后,在相机17上成像,得到单个子孔径散射偏振图像;
4)所述的X-Y位移平台12按光栅扫描方式的路线移动,实现对所述的样品13待测表面全口径测量;
5)所述的旋转扩散器3、相机17和X-Y位移平台12在所述的计算机18控制下工作,所述的X-Y位移平台12每移动一个位置,所述的相机17获取一幅散射偏振图像并输入所述的计算机18,直到获得所有子孔径散射偏振图像;
6)所述的计算机18对所述的每一幅子孔径散射偏振图像进行下列数据处理:
①计算所有子孔径散射偏振图像的偏振度图像:所述的微偏振片阵列16每一个2×2单元的四个偏振方向的透射光强分别为I 0、I 45、I 90和I 135。由散射偏振图像计算表面缺陷偏振度图像的方式如图3所示,相机17采集的每一幅散射偏振子孔径图像包含M×N个像素,每一个像素(i,j)的线偏振度D (i,j)由其与周围相邻另外三个像素(i,j+1)、(i+1,j)及(i+1,j+1)共四个像素的光强I 0、I 45、I 90和I 135按下式计算得到:
Figure PCTCN2019101282-appb-000003
所述的s偏振(或p偏振)光经过样品13表面,光滑表面产生的散射光偏振态在入射面内几乎不变,通过所述的四分之一波片15后,散射光偏振态接近圆偏振,I 0、I 45、I 90和I 135接近,由上式计算的线偏振度接近0;
所述的s偏振(或p偏振)光经过样品表面缺陷发生多重散射,产生的散射光偏振态发生改变,s偏振(或p偏振)光中包含p偏振(或s偏振)光。经过四分之一波片15后,散射光偏振态偏离圆偏振,由上式计算的线偏振度发生显著变化,不再为0;样品13表面缺陷越严重,线偏振度越大;由上式计算的经过四分之一波片15后的散射光线偏振度取值范围为[0,1];重复上述计算过程得到所有子孔径散射偏振图像的偏振度图像。
②计算偏振度灰度图像:将值在[0,1]的偏振度图像线性投影到值在[0,255]的灰度图像,即:
G (i,j)=INT(D (i,j)·255)
其中,G (i,j)表示单幅偏振度图像中像素(i,j)经过线性投影后的灰度值,INT为取整函数;经过上述投影变换得到适合数字图像处理技术处理的所有子孔径偏振度灰度图像。偏振度灰度图像为不依赖光强分布的背景均匀的暗背景亮缺陷图像。
③利用子孔径图像拼接、中值滤波、二值化、形态学孔洞填充和特征提取等数字图像处理技术提取表面缺陷的尺寸和位置信息。
实验表明,本发明采用微偏振片阵列实现表面缺陷实时显微散射偏振成像,通过计算偏振度图像,提升了超光滑元件表面缺陷探测的灵敏度,实现高反膜元件表面缺陷有效检测,能够满足米级大口径超光滑元件表面缺陷快速检测需求。

Claims (2)

  1. 一种显微散射偏振成像表面缺陷测量装置,其特征在于,包括激光器(1)、第一会聚透镜(2)、旋转扩散器(3)、第二会聚透镜(4)、光阑(5)、第三会聚透镜(6)、针孔(7)、第四会聚透镜(8)、偏振片(9)、半波片(10)、偏振分束器(11)、X-Y位移平台(12)、样品(13)、显微镜头(14)、四分之一波片(15)、微偏振片阵列(16)、相机(17)和计算机(18);
    所述的激光器(1)、第一会聚透镜(2)、旋转扩散器(3)、第二会聚透镜(4)、光阑(5)、第三会聚透镜(6)、针孔(7)、第四会聚透镜(8)、偏振片(9)、半波片(10)、偏振分束器(11)依次共光轴排列,该光轴与所述的样品(13)的待测表面的法线成一定角度;
    所述的第一会聚透镜(2)与第二会聚透镜(4)共焦,所述的旋转扩散器(3)位于共焦位置;
    所述的第三会聚透镜(6)与第四会聚透镜(8)共焦,所述的针孔(7)位于共焦位置;
    所述的显微镜头(14)、四分之一波片(15)、微偏振片阵列(16)和相机(17)依次共光轴排列,该光轴位于入射面内,与所述的样品(13)待测表面的法线平行;
    所述的四分之一波片(15)的快轴与沿所述的显微镜头(14)的光轴传播的s偏振(或p偏振)光的偏振面的夹角为45°;
    所述的微偏振片阵列(16)由多个2×2单元的微纳结构周期性构成,每一个2×2单元包含四个透射光偏振方向,分别为0°、45°、90°和135°,所述的微偏振片阵列(16)的尺寸与所述的相机(17)感光芯片的尺寸一致,两者紧密贴合,每一个像素位置重合;所述的微偏振片阵列(16)的像元尺寸与所述的相机(17)的像元尺寸一致;
    所述的样品(13)固定在所述的X-Y位移平台(12)上,所述的样品(13)的待测表面位于所述的显微镜头(14)的成像物面上;所述的计算机(18)的输出端与所述的旋转扩散器(3)、相机(17)和X-Y位移平台(12)的控制端相连,所述的相机(17)的输出端与所述的计算机(18)的输入端相连。
  2. 利用权利要求1所述的显微散射偏振成像表面缺陷测量装置进行超光滑元件表面缺陷检测的测量方法,其特征在于,该方法包括下列步骤:
    1)将所述的样品(13)固定在所述的X-Y位移平台(12)上;
    2)所述的激光器(1)发出的光束依次通过所述的第一会聚透镜(2)、旋转扩散器(3)和第二会聚透镜(4)后被降低相干性和扩束准直,微调所述的光阑(5)选取出射光束中较均匀部分,选取的均匀光束依次通过所述的第三会聚透镜(6)、针孔(7)和第四会聚透镜(8)组成的滤波系统后输出准直光束;该准直光束经过所述的偏振片(9)后成为线偏振光,该线偏振光依次经过所述的半波片(10)和偏振分束器(11)后变成s偏振(或p偏振)光斜入射到所述的样品(13)的待测表面;
    3)旋转所述的半波片(10),使通过所述的偏振分束器(11)输出的s偏振(或p偏振)光强度最大;该s偏振(或p偏振)光照射在所述的样品(13)的待测表面上;所述的样品(13)的光滑表面和表面缺陷产生的散射光依次通过所述的显微镜头(14)、四分之一波片(15)和微偏振片阵列(16)后,在所述的相机(17)上成像,得到单个子孔径散射偏振图像;
    4)所述的X-Y位移平台(12)按设计的路线移动,实现所述的样品(13)待测表面的全口径测量;
    5)所述的旋转扩散器(3)、相机(17)和X-Y位移平台(12)在所述的计算机(18)控制下工作,所述的X-Y位移平台(12)每移动一个位置,所述的相机(17)获取一幅散射偏振图像并输入所述的计算机(18);
    6)所述的计算机(18)对所述的每一幅散射偏振图像进行如下数据处理:
    ①计算所有子孔径散射偏振图像的偏振度图像:所述的微偏振片阵列(16)每一个2×2单元的四个偏振方向的透射光强分别为I 0、I 45、I 90和I 135;所述的相机(17)采集的每一幅散射偏振子孔径图像包含M×N个像素,每一个像素(i,j)的线偏振度D (i,j)由其与周围相邻另外三个像素(i,j+1)、(i+1,j)及(i+1,j+1)共四个像素的光强I 0、I 45、I 90和I 135按下式计算 得到:
    Figure PCTCN2019101282-appb-100001
    所述的s偏振(或p偏振)光经过样品(13)表面,光滑表面产生的散射光偏振态在入射面内几乎不变,通过所述的四分之一波片(15)后,散射光的偏振态接近圆偏振,I 0、I 45、I 90和I 135接近,由上式计算的线偏振度接近0;
    所述的s偏振(或p偏振)光经过样品表面缺陷发生多重散射,产生的散射光偏振态发生改变,s偏振(或p偏振)光中包含p偏振(或s偏振)光;经过四分之一波片(15)后,散射光偏振态偏离圆偏振,由上式计算的线偏振度发生显著变化,不再为0;所述的样品(13)表面缺陷越严重,线偏振度越大;由上式计算的经过四分之一波片(15)后的散射光线偏振度的取值范围为[0,1];重复上述计算过程得到所有子孔径散射偏振图像的偏振度图像;
    ②计算偏振度灰度图像:将值在[0,1]的偏振度图像线性投影到值在[0,255]的灰度图像,即:
    G (i,j)=INT(D (i,j)·255)
    其中,G (i,j)表示单幅偏振度图像中像素(i,j)经过线性投影后的灰度值,INT为取整函数;经过上述投影变换得到适合数字图像处理的所有子孔径偏振度灰度图像;偏振度灰度图像为不依赖光强分布的背景均匀的暗背景亮缺陷图像;
    ③利用现有的子孔径图像拼接、中值滤波、二值化、形态学孔洞填充和特征提取方法提取表面缺陷的尺寸和位置信息。
PCT/CN2019/101282 2019-07-08 2019-08-19 显微散射偏振成像表面缺陷测量装置和测量方法 WO2021003802A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/037,606 US11175220B2 (en) 2019-07-08 2020-09-29 Surface defect measuring apparatus and method by microscopic scattering polarization imaging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910609670.6A CN110441309B (zh) 2019-07-08 2019-07-08 显微散射偏振成像表面缺陷测量装置和测量方法
CN201910609670.6 2019-07-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/037,606 Continuation US11175220B2 (en) 2019-07-08 2020-09-29 Surface defect measuring apparatus and method by microscopic scattering polarization imaging

Publications (1)

Publication Number Publication Date
WO2021003802A1 true WO2021003802A1 (zh) 2021-01-14

Family

ID=68429583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101282 WO2021003802A1 (zh) 2019-07-08 2019-08-19 显微散射偏振成像表面缺陷测量装置和测量方法

Country Status (2)

Country Link
CN (1) CN110441309B (zh)
WO (1) WO2021003802A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113029960A (zh) * 2021-04-18 2021-06-25 中国人民解放军空军工程大学 一种测量航空部件表面微缺陷的高精度实时三维测量系统及方法
CN113125436A (zh) * 2021-04-22 2021-07-16 华中科技大学 基于光学暗场显微技术的检测系统和方法
CN114047190A (zh) * 2021-11-08 2022-02-15 上海御微半导体技术有限公司 一种表面缺陷的检测装置及检测方法
CN114324185A (zh) * 2022-01-04 2022-04-12 浙江大学 一种基于Stokes矢量的水下偏振探测装置
CN114384020A (zh) * 2022-01-20 2022-04-22 深圳铭毅智造科技有限公司 一种大视野显微成像方法
CN114544498A (zh) * 2022-02-21 2022-05-27 中国科学院上海光学精密机械研究所 一种光刻样品及微纳结构跟踪装置及方法
US20220317041A1 (en) * 2021-04-01 2022-10-06 Corning Incorporated Light source intensity control systems and methods for improved light scattering polarimetry measurements
CN117871424A (zh) * 2024-03-11 2024-04-12 长春理工大学 一种分布式植物目标spBRDF协同探测装置及方法
CN117871424B (zh) * 2024-03-11 2024-05-24 长春理工大学 一种分布式植物目标spBRDF协同探测装置及方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111007016A (zh) * 2019-12-09 2020-04-14 暨南大学 一种检测透明材料表面微小颗粒杂质的装置及使用方法
WO2021131508A1 (ja) * 2019-12-25 2021-07-01 ソニーグループ株式会社 表面欠陥検出装置と表面欠陥検出方法とプログラムおよび表面欠陥検出システム
CN111202497B (zh) * 2020-01-08 2022-08-30 中国科学院上海光学精密机械研究所 基于微偏振片阵列的偏振成像皮肤病变检测方法和检测装置
CN112229854B (zh) * 2020-09-03 2022-10-11 中国科学院上海光学精密机械研究所 一种球面光学元件表面缺陷测量装置和测量方法
CN112697800B (zh) * 2020-12-09 2022-08-26 上海御微半导体技术有限公司 一种缺陷检测装置及方法
CN112924028B (zh) * 2021-01-25 2023-11-07 长春理工大学 一种面向海面溢油的光场偏振成像探测系统
CN113640221B (zh) * 2021-07-20 2022-11-08 中国科学院上海光学精密机械研究所 大口径光栅表面激光诱导损伤在线检测装置及方法
CN114324369B (zh) * 2022-03-11 2022-06-07 北京新研创能科技有限公司 双极板表面划痕检测系统及方法
CN115308216B (zh) * 2022-10-12 2023-03-10 山东创新精密科技有限公司 在线检测铝型材表面缺陷的装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283633A (ja) * 2008-05-21 2009-12-03 Hitachi High-Technologies Corp 表面検査装置及び表面検査方法
CN104034426A (zh) * 2014-06-11 2014-09-10 中国科学技术大学 一种基于像素偏振片阵列的实时偏振态和相位测量方法
CN104062233A (zh) * 2014-06-26 2014-09-24 浙江大学 精密表面缺陷散射三维显微成像装置
CN105300272A (zh) * 2015-10-27 2016-02-03 中国科学院上海光学精密机械研究所 基于微偏振片阵列的动态点衍射干涉仪
CN106442564A (zh) * 2016-10-17 2017-02-22 中国科学院上海光学精密机械研究所 大口径超光滑表面缺陷的检测装置和检测方法
CN108036737A (zh) * 2017-12-12 2018-05-15 南京信息工程大学 一种全场照明快照式检测反射面面形的装置及方法
CN109060659A (zh) * 2018-08-08 2018-12-21 西安工业大学 一种光学元件表面疵病三维信息的检测系统及检测方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6134009A (en) * 1997-11-07 2000-10-17 Lucid, Inc. Imaging system using polarization effects to enhance image quality
CN1313821C (zh) * 2004-04-09 2007-05-02 浙江大学 光滑表面疵病的自动化检测方法及其系统
JP5216752B2 (ja) * 2009-11-18 2013-06-19 株式会社日立ハイテクノロジーズ 欠陥検出方法及び欠陥検出装置並びにこれを備えた欠陥観察装置
JP2015206642A (ja) * 2014-04-18 2015-11-19 株式会社日立ハイテクノロジーズ 欠陥観察方法及びその装置
CN109099859B (zh) * 2018-09-26 2021-07-27 中国科学院上海光学精密机械研究所 大口径光学元件表面缺陷三维形貌测量装置和方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283633A (ja) * 2008-05-21 2009-12-03 Hitachi High-Technologies Corp 表面検査装置及び表面検査方法
CN104034426A (zh) * 2014-06-11 2014-09-10 中国科学技术大学 一种基于像素偏振片阵列的实时偏振态和相位测量方法
CN104062233A (zh) * 2014-06-26 2014-09-24 浙江大学 精密表面缺陷散射三维显微成像装置
CN105300272A (zh) * 2015-10-27 2016-02-03 中国科学院上海光学精密机械研究所 基于微偏振片阵列的动态点衍射干涉仪
CN106442564A (zh) * 2016-10-17 2017-02-22 中国科学院上海光学精密机械研究所 大口径超光滑表面缺陷的检测装置和检测方法
CN108036737A (zh) * 2017-12-12 2018-05-15 南京信息工程大学 一种全场照明快照式检测反射面面形的装置及方法
CN109060659A (zh) * 2018-08-08 2018-12-21 西安工业大学 一种光学元件表面疵病三维信息的检测系统及检测方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11860090B2 (en) * 2021-04-01 2024-01-02 Corning Incorporated Light source intensity control systems and methods for improved light scattering polarimetry measurements
US20220317041A1 (en) * 2021-04-01 2022-10-06 Corning Incorporated Light source intensity control systems and methods for improved light scattering polarimetry measurements
CN113029960A (zh) * 2021-04-18 2021-06-25 中国人民解放军空军工程大学 一种测量航空部件表面微缺陷的高精度实时三维测量系统及方法
CN113125436B (zh) * 2021-04-22 2022-08-30 华中科技大学 基于光学暗场显微技术的检测系统和方法
CN113125436A (zh) * 2021-04-22 2021-07-16 华中科技大学 基于光学暗场显微技术的检测系统和方法
CN114047190A (zh) * 2021-11-08 2022-02-15 上海御微半导体技术有限公司 一种表面缺陷的检测装置及检测方法
CN114324185A (zh) * 2022-01-04 2022-04-12 浙江大学 一种基于Stokes矢量的水下偏振探测装置
CN114384020A (zh) * 2022-01-20 2022-04-22 深圳铭毅智造科技有限公司 一种大视野显微成像方法
CN114384020B (zh) * 2022-01-20 2024-01-30 深圳铭毅智造科技有限公司 一种大视野显微成像方法
CN114544498A (zh) * 2022-02-21 2022-05-27 中国科学院上海光学精密机械研究所 一种光刻样品及微纳结构跟踪装置及方法
CN114544498B (zh) * 2022-02-21 2024-04-12 中国科学院上海光学精密机械研究所 一种光刻样品及微纳结构跟踪装置及方法
CN117871424A (zh) * 2024-03-11 2024-04-12 长春理工大学 一种分布式植物目标spBRDF协同探测装置及方法
CN117871424B (zh) * 2024-03-11 2024-05-24 长春理工大学 一种分布式植物目标spBRDF协同探测装置及方法

Also Published As

Publication number Publication date
CN110441309A (zh) 2019-11-12
CN110441309B (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
WO2021003802A1 (zh) 显微散射偏振成像表面缺陷测量装置和测量方法
US11175220B2 (en) Surface defect measuring apparatus and method by microscopic scattering polarization imaging
CN106442564B (zh) 大口径超光滑表面缺陷的检测装置和检测方法
TWI724144B (zh) 用於極化晶圓檢查之方法及裝置
US6597446B2 (en) Holographic scatterometer for detection and analysis of wafer surface deposits
JP6594345B2 (ja) ウェーハエッジ検出および検査
JP5032114B2 (ja) パターン化ウェハまたは非パターン化ウェハおよびその他の検体の検査システム
JP5390853B2 (ja) 表面検査システム
JP5676419B2 (ja) 欠陥検査方法およびその装置
USRE49651E1 (en) Apparatus for characterizing particles and method for use in characterizing particles
WO2007100615A2 (en) High-sensitivity surface detection system and method
US20090323052A1 (en) Dynamic Illumination in Optical Inspection Systems
KR20190049890A (ko) 반도체 웨이퍼 검사를 위한 결함 마킹
CN104483099B (zh) 一种大视场光学系统像面一致性的检测方法
CN106442565B (zh) 高速激光线扫描的表面缺陷检测装置
US7397553B1 (en) Surface scanning
JP2013029438A (ja) 欠陥検査装置および欠陥検査方法
US7924517B2 (en) Spatial filter, a system and method for collecting light from an object
WO2021227134A1 (zh) 吸收性缺陷单光束光热测量装置和测量方法
US8436997B2 (en) Optical inspection system with polarization isolation of detection system reflections
JP2023504151A (ja) 反射フーリエプティコグラフィによる大型表面の撮像
JPWO2013118543A1 (ja) 表面計測装置
JP2015079009A (ja) 欠陥検査方法およびその装置
JP6142996B2 (ja) ビア形状測定装置及びビア検査装置
JP2011209271A (ja) 検査装置及び欠陥分類方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936593

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19936593

Country of ref document: EP

Kind code of ref document: A1