WO2021226957A1 - 一种超声成像设备及方法 - Google Patents

一种超声成像设备及方法 Download PDF

Info

Publication number
WO2021226957A1
WO2021226957A1 PCT/CN2020/090338 CN2020090338W WO2021226957A1 WO 2021226957 A1 WO2021226957 A1 WO 2021226957A1 CN 2020090338 W CN2020090338 W CN 2020090338W WO 2021226957 A1 WO2021226957 A1 WO 2021226957A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
echo signal
ultrasonic
vibration
vibrator
Prior art date
Application number
PCT/CN2020/090338
Other languages
English (en)
French (fr)
Inventor
李金洋
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to CN202080000803.0A priority Critical patent/CN113939232A/zh
Priority to PCT/CN2020/090338 priority patent/WO2021226957A1/zh
Publication of WO2021226957A1 publication Critical patent/WO2021226957A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves

Definitions

  • the invention relates to ultrasound imaging equipment and methods.
  • Liver fibrosis is a pathological process from various chronic liver diseases to cirrhosis.
  • Transient Elastography can reflect the degree of liver fibrosis by detecting liver stiffness.
  • instantaneous elasticity has the characteristics of non-invasive, simple, fast, easy to operate, reproducible, safe and tolerable. It has been approved by WHO, AASLD, EASL, Chinese Medical Association for liver disease. It is recommended by the academic committee as an important method for clinical evaluation of hepatitis B and C virus-related liver fibrosis.
  • the probe has air vibration or sliding, the operator's human factors, etc. make the preload change, and the preload is no longer suitable for measurement.
  • the probe will not stop vibrating, resulting in accelerated aging of the probe, and inaccurate measurement results, and the operator cannot detect that the preload is not appropriate at this time, so that adjustments cannot be made quickly.
  • the embodiments of the present invention provide an ultrasonic imaging device and method to solve at least one of the above-mentioned problems.
  • an ultrasonic imaging device may include a probe, a driving mechanism, a transmitting circuit, a receiving circuit, and a processor.
  • the vibration mechanism can drive the vibrator or the probe to vibrate to generate shear waves propagating in the target object.
  • the transmitting circuit can excite the probe to transmit ultrasonic waves to the target object to detect the shear wave propagating in the target object.
  • the receiving circuit can receive the ultrasonic echo returned from the target object through the probe to obtain the ultrasonic echo signal.
  • the processor may process the ultrasonic echo signal to obtain an ultrasonic image of the target object or a shear wave propagation parameter of a shear wave propagating in the target object.
  • the processor can also determine whether there is an abnormality in the vibration state of the vibrator or the probe according to the ultrasonic echo signal or the ultrasonic image or according to the obtained shear wave propagation parameters, and when it is determined that the vibration state of the vibrator or the probe is abnormal, Perform at least one of the following steps: prompt the vibrator or probe to be in an abnormal state; control the vibrator or probe to stop vibrating; do not output the shear wave propagation parameters obtained by the ultrasound imaging device during the current vibration; prompt the ultrasound imaging device obtained during the current vibration The propagation parameter of the shear wave is abnormal; stop obtaining the propagation parameter of the shear wave through the ultrasonic imaging device.
  • an ultrasonic imaging device may include a probe, a vibration mechanism, a transmitting circuit, a receiving circuit, and a processor.
  • the vibration mechanism can drive the vibrator or the probe to vibrate to generate shear waves propagating in the target object.
  • the transmitting circuit can excite the probe to transmit ultrasonic waves to the target object to detect shear waves propagating in the target object.
  • the receiving circuit can receive the ultrasonic echo returned from the target object through the probe to obtain the ultrasonic echo signal.
  • the processor may process the ultrasonic echo signal to obtain the ultrasonic image of the target object or the shear wave propagation parameters of the shear wave propagating in the target object.
  • the processor can also determine whether there is an abnormality in the vibration state of the vibrator or the probe according to the ultrasonic echo signal or the ultrasonic image or according to the obtained shear wave propagation parameters, and when it is determined that the vibration state of the vibrator or the probe is abnormal, perform at least one of the following Steps: prompting that the vibrator or probe is in an abnormal state; not outputting the shear wave propagation parameters obtained by the ultrasonic imaging equipment during the current vibration; prompting that the shear wave propagation parameters obtained by the ultrasonic imaging equipment during the current vibration are abnormal; stopping the acquisition of shear waves by the ultrasonic imaging equipment Cut wave propagation parameters.
  • the processor also determines whether the vibration state of the vibrator or probe returns to normal according to the ultrasonic echo signal or the ultrasonic image or the obtained shear wave propagation parameters, and when it is determined that the vibration state of the vibrator or probe returns to normal, execute At least one of the following steps: prompt the vibrator or probe to return to the normal state; restore the output of the shear wave propagation parameters obtained by the ultrasonic imaging device during the current vibration; prompt the shear wave propagation parameters obtained by the ultrasonic imaging device during the current vibration to return to normal; The imaging device obtains the shear wave propagation parameters.
  • an ultrasonic imaging device may include a probe, a vibration mechanism, a transmitting circuit, a receiving circuit, and a processor.
  • the vibration mechanism can drive the vibrator or the probe to vibrate to generate shear waves propagating in the target object.
  • the transmitting circuit can excite the probe to transmit ultrasonic waves to the target object to detect shear waves propagating in the target object.
  • the receiving circuit can receive the ultrasonic echo returned from the target object through the probe to obtain the ultrasonic echo signal.
  • the processor can process the ultrasonic echo signal to obtain the ultrasonic image or shear wave propagation parameter of the target object, and determine the vibration state of the vibrator or the probe according to the ultrasonic echo signal or the ultrasonic image or the obtained shear wave propagation parameter Whether there is an abnormality.
  • an ultrasonic imaging device may include a probe, a vibration mechanism, a transmitting circuit, a receiving circuit, and a processor.
  • the vibration mechanism can drive the vibrator or the probe to vibrate to generate shear waves that propagate in the target object.
  • the transmitting circuit can excite the probe to transmit ultrasonic waves to the target object.
  • the receiving circuit can receive the ultrasonic echo returned from the target object through the probe to obtain the ultrasonic echo signal.
  • the processor can obtain the ultrasonic echo signal obtained by the receiving circuit before the vibrator or the probe vibrates, obtain the pre-vibration echo signal, or obtain the pre-vibration ultrasound image obtained according to the pre-vibration echo signal, and according to the pre-vibration echo signal or the vibration
  • the front ultrasound image determines whether there is an abnormality in the contact state between the vibrator or the probe and the target object.
  • an ultrasonic imaging device may include a probe, a vibration mechanism, a transmitting circuit, a receiving circuit, and a processor.
  • the vibration mechanism can drive the vibrator or the probe to vibrate to generate shear waves that propagate in the target object.
  • the transmitting circuit can excite the probe to transmit ultrasonic waves to the target object to detect shear waves propagating in the target object.
  • the receiving circuit can receive the ultrasonic echo returned from the target object through the probe to obtain the ultrasonic echo signal.
  • the processor can process the ultrasonic echo signal to obtain an ultrasonic image of the target object or shear wave propagation parameters.
  • the processor may also obtain the ultrasonic echo signal before the vibrator or probe vibrates as the first ultrasonic echo signal, and obtain the ultrasonic echo signal after the vibrator or probe vibrates as the second ultrasonic echo signal. Then, the consistency between the first ultrasonic echo signal and the second ultrasonic echo signal is determined, and according to the consistency, it is determined whether the vibration of the vibrator or the probe is abnormal.
  • an ultrasonic imaging method may include: driving a vibrator or a probe to vibrate to generate a shear wave propagating in a target object; transmitting ultrasonic waves to the target object to detect the shear wave propagating in the target object ; Receive the ultrasonic echo returned from the target object to obtain the ultrasonic echo signal; process the ultrasonic echo signal to obtain the ultrasonic image or shear wave propagation parameter of the target object; According to the ultrasonic echo signal or ultrasonic image or according to the obtained shear Wave propagation parameters determine whether the vibration state of the vibrator or probe is abnormal, and when it is determined that the vibration state of the vibrator or probe is abnormal, perform at least one of the following steps: prompt the vibrator or probe to be in an abnormal state; control the vibrator or probe to stop vibrating; no Output the shear wave propagation parameters obtained by the ultrasound imaging device during the current vibration; prompt that the shear wave propagation parameters obtained by the ultrasound imaging device during the current vibration are abnormal; stop obtaining the shear wave propagation
  • an ultrasonic imaging method may include: driving a vibrator or a probe to vibrate to generate a shear wave propagating in a target object; transmitting ultrasonic waves to the target object to detect the shear wave propagating in the target object ; Receive the ultrasonic echo returned from the target object to obtain the ultrasonic echo signal; process the ultrasonic echo signal to obtain the ultrasonic image or shear wave propagation parameters of the target object, and according to the ultrasonic echo signal or ultrasonic image or according to the obtained shear
  • the shear wave propagation parameter determines whether the vibration state of the vibrator or probe is abnormal.
  • an ultrasonic imaging method may include: transmitting ultrasonic waves to a target object before the vibrator or probe vibrates; receiving ultrasonic echoes returned from the target object to obtain pre-vibration echo signals; and according to the pre-vibration echo The signal or the pre-vibration ultrasound image obtained from the pre-vibration echo signal determines whether there is an abnormality in the contact state between the vibrator or the probe and the target object.
  • an ultrasound imaging method may include: driving a vibrator or a probe to vibrate to generate a shear wave propagating in a target object; and exciting the probe to emit ultrasonic waves to the target object to detect the shear wave propagating in the target object.
  • Cut wave receive the ultrasonic echo returned from the target object through the probe to obtain the ultrasonic echo signal; process the ultrasonic echo signal to obtain the ultrasonic image or shear wave propagation parameters of the target object; obtain the ultrasonic echo before the vibrator or the probe vibrates The signal is used as the first ultrasonic echo signal; the ultrasonic echo signal after the vibrator or probe is obtained as the second ultrasonic echo signal; the consistency between the first ultrasonic echo signal and the second ultrasonic echo signal is determined; Consistency determines whether the vibration of the vibrator or probe is abnormal.
  • the ultrasonic imaging equipment and method of the embodiments of the present invention determine whether the probe has air vibration or sliding based on the ultrasonic image or ultrasonic echo signal, and whether the measurement result is valid, and prevent the probe air vibration from affecting the service life of the probe, and improve the elasticity measurement result. Effectiveness and accuracy.
  • Fig. 1 is a schematic structural block diagram of an ultrasonic imaging device according to an embodiment of the present invention
  • Figure 2 is a schematic principle diagram of an ultrasound imaging method according to an embodiment of the present invention.
  • Figure 3a is a schematic flow chart of instantaneous elasticity measurement
  • Figure 3b is a schematic schematic diagram of instantaneous elasticity measurement
  • FIG. 4 is a schematic flowchart of an ultrasound imaging method according to an embodiment of the present invention.
  • Fig. 5 is an example of a no-load echo signal and a normal echo signal according to an embodiment of the present invention
  • Fig. 6a is an example of a first ultrasonic echo signal according to an embodiment of the present invention.
  • Fig. 6b is an example of a second ultrasonic echo signal according to an embodiment of the present invention.
  • Fig. 6c is an example of the correlation spectrum of the first ultrasonic echo signal and the second ultrasonic echo signal according to an embodiment of the present invention.
  • Fig. 1 shows a schematic structural block diagram of an ultrasonic imaging device according to an embodiment of the present invention.
  • the ultrasonic imaging apparatus 10 may include:
  • the transmitting circuit 101 can excite the probe 100 to transmit ultrasonic waves to the target object; the vibration mechanism 102 can excite the probe 100 to generate shear waves in the target object; the receiving circuit 103 can receive the ultrasonic echo returned from the target object through the probe 100 to obtain the ultrasonic echo.
  • Wave signal/data; the processor 104 processes the ultrasonic echo signal/data to obtain an ultrasonic image of the target object.
  • the vibrating mechanism 102 may not use the vibrating probe 100 but a vibrator (not shown) provided separately to generate a shear wave propagating in the target object.
  • the probe 100 will not be used to generate shear waves, but only to obtain ultrasound images of the target object and/or track the propagation of shear waves in the target object.
  • the probe 100 may include a transducer and a vibration device.
  • the transducer is used to receive an instruction from the transmitting circuit 101 to transmit ultrasonic waves and/or to receive ultrasonic echoes, and the vibrating device is driven by the vibrating mechanism 102 to vibrate to generate shear waves in the target object.
  • the vibration mechanism 102 may include a motor. Further, the vibration mechanism 102 may be connected to the probe 100 through a transmission mechanism. The vibration mechanism 102 drives the transmission mechanism to move after obtaining the driving signal, and the transmission mechanism drives the vibration device to vibrate.
  • the vibration mechanism 102 may also directly drive the transducer to vibrate to generate a shear wave propagating in the target object, that is, the vibrating device may be the transducer itself.
  • the ultrasound imaging device 10 may further include: a display 105, which may be used to display the ultrasound image obtained by the processor 104.
  • the display 105 of the aforementioned ultrasonic imaging device 10 may be a touch display screen, a liquid crystal display, etc., or may be an independent display device such as a liquid crystal display, a television, etc., independent of the ultrasonic imaging device 10, or For display screens on mobile phones, tablet computers and other electronic devices, and so on.
  • the ultrasonic imaging device 10 may include a first display provided on the ultrasonic imaging device 10 and a second display independently provided outside the ultrasonic imaging device 10.
  • the first display obtains and displays an ultrasound image from the processor 104; the second display may communicate with the ultrasound imaging device 10, and obtain an ultrasound image from the ultrasound imaging device 10 for display.
  • the ultrasound imaging device 10 may further include: a memory 106, which may be used to store the ultrasound image obtained by the processor 104.
  • the memory 106 may be a volatile memory (volatile memory), such as a random access memory (Random Access Memory, RAM); or a non-volatile memory (non-volatile memory), such as a read-only memory ( Read Only Memory (ROM), flash memory (flash memory), hard disk (Hard Disk Drive, HDD) or solid-state drive (Solid-State Drive, SSD); or a combination of the above types of memory, and provide instructions and data.
  • volatile memory such as a random access memory (Random Access Memory, RAM)
  • non-volatile memory such as a read-only memory ( Read Only Memory (ROM), flash memory (flash memory), hard disk (Hard Disk Drive, HDD) or solid-state drive (Solid-State Drive, SSD); or a combination of the above types of memory, and provide instructions and data.
  • ROM Read Only Memory
  • flash memory flash memory
  • HDD Hard Disk Drive
  • SSD solid-state drive
  • the ultrasound imaging device 10 may further include: a transmission/reception selection switch 107, which is connected to the probe 100, the transmission circuit 101, the reception circuit 103, and the processor 104, which controls the transmission/reception selection switch 107 to turn the probe 100 is in communication with the transmitting circuit 101 or the receiving circuit 103.
  • a transmission/reception selection switch 107 which is connected to the probe 100, the transmission circuit 101, the reception circuit 103, and the processor 104, which controls the transmission/reception selection switch 107 to turn the probe 100 is in communication with the transmitting circuit 101 or the receiving circuit 103.
  • the ultrasound imaging device 10 may further include: a beam synthesis circuit 108, and the ultrasonic echo signal/data obtained by the receiving circuit 103 is sent to the processor 104 after beam synthesis processing is performed by the beam synthesis circuit 108.
  • the processor 104 can be implemented through software, hardware, firmware, or a combination thereof, and can use circuits, single or multiple specific integrated circuits (ASICs), digital signal processors (Digital Signal Processors, DSP), Digital Signal Processing Device (DSPD), Programmable Logic Device (PLD), Field Programmable Gate Array (FPGA), Central Processing Unit, At least one of a CPU), a controller, a microcontroller, and a microprocessor, so that the processor 104 can execute part or all of the steps in the ultrasound imaging in the various embodiments of the present application or any combination of the steps .
  • ASICs application specific integrated circuits
  • DSP Digital Signal Processors
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • CPU Central Processing Unit
  • the ultrasonic imaging device 10 When the ultrasonic imaging device 10 according to the embodiment of the present invention is running, it can provide a corresponding operation interface for the operator to operate.
  • the above operation interface it can include controls corresponding to each slice group, such as marking marquee or menu bar, etc. , So that the operator can input operation instructions on the operation interface according to the actual use situation, so as to realize the ultrasonic imaging by the ultrasonic imaging device 10.
  • FIG. 2 shows a schematic principle diagram of an ultrasound imaging method according to an embodiment of the present invention.
  • the ultrasound imaging method may include:
  • the target object is obtained by conventional two-dimensional B-mode imaging to obtain the basic image of the target object, and then the appropriate section and the appropriate pressure between the probe and the target object before vibration are selected through the operation interface;
  • the operator holds the probe in hand, makes the probe contact the surface position of the target object corresponding to the target area, and performs an operation (such as pressing the preset button on the probe) to trigger a single elastic measurement;
  • the front-end control and processing module in the processor receives After the operation instruction, a vibration instruction is sent to the vibration control module.
  • the vibration control module sends a drive signal to the vibration mechanism on the probe according to the vibration instruction.
  • the vibration mechanism starts to work after receiving the drive signal, and the transmission mechanism connected to the vibration mechanism starts to move.
  • the transmission mechanism drives the vibrating device to vibrate on the surface of the target object, generating shear waves propagating in the target object, and the shear waves cause the displacement of the tissue in the target area to change;
  • the front-end control and processing module is based on the real-time ultrasound imaging method of the present invention
  • the scanning control (timing or method) sends instructions to the transmitter circuit, and the transmitter circuit receives the instruction to excite the transducer on the probe to emit ultrasonic waves.
  • the ultrasonic waves track the propagation speed of the shear wave, and continuously track and record the shear wave in the target area.
  • the displacement of the tissue caused by the change, the ultrasonic wave is reflected by the target area to obtain the ultrasonic echo; the ultrasonic echo passes through the transducer on the probe to reach the receiving circuit, and the receiving circuit passes the obtained ultrasonic echo signal through the beam synthesis circuit for beam synthesis processing,
  • the front-end control and processing module sent to the processor; the front-end control and processing module processes the ultrasonic echo to obtain the basic image and shear wave propagation parameters such as shear wave velocity, shear wave modulus, and shear wave attenuation , Shear wave elasticity and shear wave viscosity, etc.; the front-end control and processing module can store the basic image and at least one propagation parameter of the shear wave and send it to the display for display.
  • the ultrasound probe can also be used to obtain images of other modes of the target object, such as B images, color blood flow images, etc., and these images can be displayed together with the propagation parameters of the shear wave.
  • the embodiment of the present invention also provides a computer-readable storage medium that stores a plurality of program instructions. After the plurality of program instructions are called and executed by the processor 104, the ultrasound in the various embodiments of the present application can be executed. Part or all of the steps in the imaging method or any combination of the steps.
  • FIG. 3a shows a schematic flow chart of a transient elasticity measurement.
  • the operator after the operator is ready for the test, by observing the basic image of the target object (for example, B image), select the appropriate detection area, namely the section, and select the appropriate preload based on the pressure detection, and then start the multi Second elasticity measurement, each elasticity measurement obtains a measurement result, each measurement result is relatively independent, the operator needs to compare the data to select reliable and effective data; then, judge the validity of the measurement result and the number of measurement results Whether the statistical result meets the clinical requirements, if it is met, the measurement is ended, if not, the elasticity measurement is repeated until the clinical requirements are met.
  • each instantaneous elasticity measurement is mainly performed by the vibration mechanism of the probe for external vibration, such as motor vibration, which generates shear waves in the tissue, and the shear waves propagate in the target object, and the ultrasonic transducer on the probe emits Ultrasound, and receive ultrasonic echo to track and observe the propagation process of shear wave in the tissue and detect the displacement of the tissue, calculate the propagation speed Cs (m/s) of the shear wave, and display the corresponding image on the monitor, and further Estimate the elastic modulus E (kPa) of the tissue to reflect the degree of tissue fibrosis.
  • the transmission speed of shear wave in the tissue is positively related to the hardness of liver tissue. The greater the hardness of the tissue, the faster the propagation speed of the shear wave and the greater the elastic modulus.
  • the external vibration is equivalent to the signal source of the shear wave, and the external vibration comes from the motor movement under the driving signal.
  • the motor drives the vibration mechanism of the probe through a series of mechanical transmission structures to move further on the target object.
  • the surface vibrates.
  • the vibration conditions are only related to the internal mechanical structure of the probe, which can remain stable during the vibration process and be consistent between multiple vibrations.
  • the actual vibration is a comprehensive result of the combined influence of the internal mechanical structure of the probe and the external environment.
  • the traditional elasticity measurement is based on the assumption that the external environment can remain relatively stable within a certain preload range, and the influence of the external environment on the actual vibration on multiple vibrations is also relatively consistent. Different target objects are fixed and the same drive is used. Signal, just make a simple pre-compression judgment before the probe vibrates. In practical applications, although the section and preload are selected before the probe vibrates to avoid air vibration to a certain extent, it needs to rely on the control of the operator to affect the measurement efficiency in multiple elastic measurements; moreover, even before the vibration After selecting the cut surface and preloading, there will still be probe hollow vibration after the probe vibration starts. The hollow vibration of the probe detached from the body surface will cause certain damage to the internal mechanical structure and accelerate the aging of the probe.
  • the traditional elasticity measurement will still be driven according to the fixed signal, which may cause abnormality and inaccuracy of the measured value, and affect the accuracy of the elasticity measurement result obtained in the subsequent calculation. .
  • FIG. 4 shows a schematic flowchart of an ultrasound imaging method according to an embodiment of the present invention.
  • the ultrasound imaging method 400 provided by the embodiment of the present invention includes:
  • Step S410 Excite the probe or vibrator to vibrate to generate a shear wave propagating in the target object, and transmit ultrasonic waves to the target object to detect the shear wave propagating in the target object;
  • Step S420 controlling the probe to receive the ultrasonic echo returned from the target object to obtain the ultrasonic echo signal
  • Step S430 processing the ultrasonic echo signal to obtain an ultrasonic image of the target object or obtaining the shear wave propagation parameters of the shear wave propagating in the target object; and perform at least one of the following steps:
  • Step S431 judging whether the pressure between the probe and the target object is appropriate before the shear wave is generated according to the ultrasonic echo signal or the ultrasonic image,
  • step S432 judging the vibration state of the probe after the shear wave is generated according to the ultrasonic echo signal or the ultrasonic image
  • step S433 it is judged whether the ultrasound echo information or the ultrasound image before and after the vibration are consistent.
  • the method before step S410, the method further includes: receiving an operation instruction from an operator to trigger the elasticity measurement.
  • the processor 104 of the ultrasound imaging device 10 receives operation instructions.
  • the operation instruction may be a protocol (the protocol may be a corresponding workflow) trigger instruction of the operator after the ultrasound imaging device 10 is started, and the protocol trigger instruction may be a function displayed on the display interface (such as a touch screen).
  • the trigger command can also be a trigger command sent through the preset trigger button on the probe. When the operator presses the trigger button, the trigger command is sent to the processor 104 to start elastic measurement. The trigger command is not done here. limited.
  • stimulating the probe to generate shear waves in the target object for elasticity measurement may include:
  • the excitation probe generates external vibration on the target object, and the external vibration generates a shear wave that is transmitted to the target area in the target object.
  • the processor 104 After the processor 104 receives the trigger instruction from the operator, it sends a drive signal to the vibration mechanism 102, and the vibration mechanism 102 drives the vibrating device on the probe 100 to perform low-frequency pulsating mechanical motion on the target object, and then generates the vibration in the target object. Shear wave. The shear wave is transmitted from the surface of the target object into the target area in the deep tissue of the target object, causing the target area to produce elastic displacement.
  • the target area can be selected and determined by any applicable method, such as conventional two-dimensional B-mode imaging, conventional elastography E mode and other applicable basic imaging detection methods to determine after preliminary detection, or it can be selected according to the needs of elasticity measurement.
  • a shear wave is generated in the target object through external vibration at the surface position of the target object corresponding to the target area.
  • the target area can be the liver, or other tissues, and there is no limitation here.
  • the respective longitudinal depths or lateral positions of the multiple target regions may be different. It is understandable that when multiple target regions are measured at the same time, the average distance ratio between the multiple target regions can be obtained through subsequent steps, so as to reflect the difference in elasticity between the multiple target regions.
  • stimulating the probe to emit ultrasonic waves to the target object may include: stimulating the probe to emit ultrasonic waves to the target area of the target object to detect the propagation of shear waves in the target area.
  • the processor 104 in the ultrasonic imaging device 10 controls the transmission/reception selection switch 107, switches the probe to be connected to the transmission circuit 101, and controls the transmission circuit 101 to excite the transducer on the ultrasonic probe 100 to the target of the object under test.
  • the ultrasonic wave can be launched before the shear wave, or at the same time as the shear wave, and can also be launched at a preset time after the shear wave.
  • the preset time is when the shear wave enters the target object.
  • the time interval between back-distance ultrasonic generation, the preset time can be set according to needs, and there is no restriction here.
  • controlling the probe to receive the ultrasonic echo returned from the target object to obtain the ultrasonic echo signal may include:
  • the probe is switched to connect with the receiving circuit, and the receiving circuit receives the ultrasonic echo through the probe.
  • the processor 104 controls the transmit/receive selection switch 107 to switch the probe to be connected to the receiving circuit 103.
  • the ultrasonic wave returns from the surface of the target object to the target area, and the receiving circuit 103 passes through the transducer of the probe 100
  • the ultrasonic echo of the ultrasonic wave returned from the target area is received to obtain ultrasonic echo data.
  • the receiving circuit 103 sends the ultrasonic echo data to the processor 104 as measurement data.
  • processing the ultrasonic echo signal to obtain an ultrasonic image of the target object may include:
  • the ultrasonic echo signal is subjected to beam synthesis processing and then sent to the processor for processing to obtain an ultrasonic image.
  • the ultrasonic echo signal obtained by the receiving circuit 103 undergoes beam synthesis processing by the beam synthesis circuit 108, and then is sent to the processor 104; the processor 104 processes the ultrasonic echo signal, such as filtering, extracting useful data and converting it into a pre- Set the data format, etc., so as to obtain the ultrasound image and the elastic parameters of the target area.
  • the processor may send the ultrasonic echo signals of various stages to the memory for storage, such as the ultrasonic echo signals received by the processor, the processed ultrasonic echo signals, and so on.
  • the memory has a buffer function.
  • the processor is too late to process some ultrasonic echo signals, it can be temporarily stored in the memory.
  • the processor takes out the ultrasonic echo signals from the memory for processing, and sends the ultrasonic echo signals after processing. For storage. This can speed up the processing speed of the processor.
  • the processor is busy, the data is cached; when the processor is idle, the previously cached data is taken out for processing.
  • the data in the memory can be transmitted to the display in a preset period or in real time.
  • elastic parameter calculations can be performed on the ultrasonic echo signals collected multiple times at the same collection location.
  • step S431 judging whether the pressure between the probe and the target object before the shear wave is generated according to the ultrasonic echo signal or the ultrasonic image may include:
  • the traditional method only performs pressure detection before vibration, and then determines whether the pre-pressure before vibration is suitable for measurement by whether the detected pressure is within a certain range.
  • a probe without a pressure detection device it is impossible to make a pre-pressure judgment, and a probe with a pressure detection device will increase the volume and weight of the probe, which is not conducive to the operation of the operator and saves costs.
  • the ultrasonic imaging method provided by the embodiments of the present invention can determine whether the pressure between the probe and the target object is appropriate based on the ultrasonic echo or the ultrasonic image before the vibration, that is, before the shear wave is generated.
  • the probes of the detection device can be used for elasticity measurement, which increases the versatility between the probes, and the absence of a pressure detection device on the probe can further reduce the volume and weight of the probe, which is beneficial to the operator to control the probe and saves the cost. .
  • the operator contacts the probe with the target object, the ultrasonic imaging device transmits ultrasonic waves to the target object, and the probe receives the ultrasonic echo returned from the target object to obtain the ultrasonic echo Signal, the processor obtains the ultrasonic image of the target object by processing the ultrasonic echo signal. If the pressure between the probe and the target object at this time is appropriate, the obtained ultrasonic echo signal or ultrasonic image contains less noise. On the contrary, If the pressure between the probe and the target object is not appropriate, the ultrasound echo signal or ultrasound image obtained contains more noise. Referring to Fig. 5, Fig. 5 shows an example of a no-load echo signal and a normal echo signal according to an embodiment of the present invention.
  • the processor can further analyze and detect the ultrasound echo signal or ultrasound image, whether there is a lot of noise, and then determine whether the pressure between the probe and the target object at this time is appropriate. For example, when the pressure between the probe and the target object is too small, such as when the probe is empty, the ultrasonic echo signal received by the probe will be significantly smaller than normal, and there may even be no effective echo, which is almost noise.
  • the processor analyzes the time-domain characteristics or frequency-domain characteristics of the ultrasonic echo signal. If the time-domain characteristics or frequency-domain characteristics indicate that the proportion of noise in the ultrasonic echo signal exceeds the preset proportion, the ultrasonic echo signal is indicated There is a lot of noise in the sensor.
  • the time domain characteristics may include the amplitude or variance (i.e. energy) of the ultrasonic echo signal, and the frequency domain characteristics may include slope, bandwidth or peak value, and so on. For example, if the amplitude of the ultrasonic echo signal has not exceeded a certain threshold within a period of time, it can be judged that the pressure between the probe and the target object is inappropriate.
  • the processor also analyzes and detects the ultrasound image based on deep learning or machine learning, and whether there is a lot of noise in it, and then determines whether the pressure between the probe and the target object at this time is appropriate. For example, annotate the noise ratio of the training data (the annotation can also be that the pressure is appropriate or the pressure is not appropriate), and perform deep learning based on the annotated training data to obtain a noise ratio detection model.
  • the model can output the noise ratio in the ultrasound image Or whether the pressure is appropriate. When the noise ratio in the ultrasound image exceeds the preset ratio, it means that there is a lot of noise in the ultrasound image. It is determined that the pressure between the probe and the target object is too small, that is, the probe is empty.
  • the ultrasound image can also be used to determine whether the pressure between the probe and the target object is appropriate before the probe vibrates.
  • the ultrasound imaging equipment can display the ultrasound image on the display. The operator holds the probe and observes the ultrasound image on the display. If there are a lot of noise in the observed ultrasound image and the ultrasound image cannot meet the requirements, it can be judged at this time The pressure between the probe and the target object is not appropriate, and then adjust the pressure between the probe and the target object, such as increasing or reducing the pressure of the probe on the target object, etc., until the ultrasound image displayed on the monitor returns to the normal display, indicating that At this time, the pressure between the probe and the target object is suitable for subsequent elasticity measurement.
  • the operator can intuitively, quickly and accurately judge the pressure between the probe and the target object through the ultrasound image, and make rapid adjustments, which greatly improves the detection rate.
  • obtaining the ultrasound image is a necessary step in the elasticity measurement, so there is no extra operation for the operator, and the measurement efficiency of the operator is improved.
  • the vibration process of generating shear waves by exciting the probe not only stabilizes the pre-vibration link in the proper preload area, but also includes the vibration mechanism such as the mid-vibration link of the motor working, and the vibration mechanism stops working but continues
  • the ultrasonic imaging method of the embodiment of the present invention is based on the traditional method.
  • the vibration state of the probe after the shear wave is determined by measuring and determining the vibration state of the probe after the shear wave is generated, preventing the probe from being idle for a long time during vibration and/or after vibration. Pressure range to avoid damage to the probe caused by air vibration of the probe.
  • the method further includes: when it is determined that the pressure before the shear wave is not suitable, prompting the user that the pressure is not suitable for elasticity measurement.
  • step S432 judging the vibration state of the probe after the shear wave is generated according to the ultrasonic echo signal or the ultrasonic image includes:
  • the probe In the second preset time period after the shear wave is generated, if there is a noise signal greater than or equal to the preset ratio in the ultrasonic echo signal or the ultrasonic image, it is determined that the probe is in the empty vibration state.
  • the ultrasonic echo signal received by the receiving circuit may include a basic image signal or an elasticity measurement signal, where the basic image signal can be used to obtain an image of the target area of the target object, and the elasticity measurement signal can be used To obtain the measurement of shear wave propagation parameters in the target area, such as shear wave velocity, shear wave modulus, shear wave attenuation, shear wave elasticity, and shear wave viscosity.
  • the ultrasonic echo signal will be significantly smaller than under normal conditions (such as when the probe is under normal load), and there is even no effective echo, which is almost noise.
  • the presence of a noise signal greater than or equal to a preset ratio in the ultrasound echo includes: the time domain feature or the frequency domain feature of the ultrasound echo is continuously smaller than the preset threshold.
  • the method further includes at least one of the following: prompting the user that the probe is in the empty vibration state, controlling the probe to stop vibrating, or not outputting the measurement result of the elasticity measurement. Further, at this time, the next measurement may not be started, and/or the current measurement may be exited.
  • the user when it is determined that the probe is in the idle state after the shear wave is detected, the user may only be prompted that the probe is idle and/or needs to select an appropriate preload, and no other actions are performed at this time.
  • the operator can decide the next action according to the actual situation, whether to continue the test; also can stop the probe vibration to protect the probe while reminding the operator that the probe is empty This will have a greater impact on the current test result, making the test result inaccurate, and may not output the measurement result of the current elasticity measurement, and/or exit the current test.
  • the method further includes: when the user separates the probe from the target object, determining that the probe is in an empty vibration state according to the ultrasonic echo signal and the ultrasonic image and controlling the probe to stop vibration.
  • the operator can use the ultrasonic imaging method of the embodiment of the present invention to facilitate the actual operation.
  • the probe can be actively operated to separate the probe from the surface of the target object.
  • the probe stops vibrating, and the operator can quickly and conveniently stop the detection based on this function, which is convenient and easy to operate, which greatly improves the operator’s experience .
  • the probe may remain in a vibrating state until the processor receives the operator’s instruction to stop the vibration. At this time, not only will the probe be damaged due to its own hollow vibration, but also It is also because there is no effective detection at this time, which causes a waste of resources.
  • the preload before and after the vibration of the probe should be the same, but if there is an inconsistency before and after the vibration, it may be related to the sliding of the probe and the unstable holding during the vibration. This situation will cause the shear wave generated to be inconsistent with expectations, and may affect the final measurement results.
  • the high correlation of the ultrasonic echo signal before and after vibration indicates that the shear wave is relatively close to the expectation.
  • the low correlation of the ultrasonic echo signal before and after the vibration indicates that the shear wave is not consistent with the expectation.
  • the correlation of the echo signal is the same, so as to determine whether the probe is sliding and/or whether the current detection result is valid. If the correlation of the echo signal before and after the shear wave is low, the user can be prompted, and the user can determine whether Continue testing.
  • comparing the ultrasonic echo signals before and after vibration may include interpolation, correlation, and so on.
  • step S433 determining whether the ultrasound images before vibration and after vibration are consistent includes:
  • the peak value of the correlation spectrum is greater than or equal to the amplitude threshold, or the time corresponding to the peak value of the correlation spectrum is less than the time threshold, it is determined that the ultrasonic echo information before and after vibration is consistent;
  • the ultrasound echo information or the ultrasound image is inconsistent before and after the vibration.
  • acquiring at least part of the ultrasonic echo signal before vibration may include acquiring the ultrasonic echo signal of any time period before the probe vibration as the first ultrasonic echo signal, and acquiring at least part of the ultrasonic echo signal after the probe vibration may include acquiring vibration After the end, the ultrasonic echo signal of any period of time is used as the second ultrasonic echo signal.
  • calculating the correlation spectrum between the first ultrasonic echo signal and the second ultrasonic echo signal includes:
  • the correlation spectrum R(m) of the first ultrasonic echo signal s 1 and the second ultrasonic echo signal s 2 is calculated based on the following formula:
  • N is the signal length (such as the time length of the signal), * means transposition, m is time (that is, the time of the correlation spectrum), and n is a natural number.
  • Fig. 6a shows an example of a first ultrasonic echo signal according to an embodiment of the present invention
  • Fig. 6b shows an example of a second ultrasonic echo signal according to an embodiment of the present invention
  • FIG. 6c shows an example of the correlation spectrum of the first ultrasonic echo signal and the second ultrasonic echo signal according to an embodiment of the present invention.
  • the processor obtains the ultrasonic echo signal of a certain time length as the first ultrasonic echo signal s 1 before vibrating the probe, as shown in Fig.
  • the ultrasonic echo signal of the same time length is obtained
  • the wave signal is used as the second ultrasonic echo signal s 2 , as shown in Fig. 6b; the correlation spectrum R(m) is calculated according to formula (1), as shown in Fig. 6c. If the peak height of the correlation spectrum R(m) is less than the amplitude threshold, it means that the correlation between the first ultrasonic echo signal and the second ultrasonic echo signal is low, that is, the ultrasonic echo signals before and after the vibration are inconsistent.
  • step S433 determining whether the ultrasound images before vibration and after vibration are consistent includes:
  • acquiring the ultrasound image before vibration may include acquiring any one frame of ultrasound image before the probe vibration as the first ultrasound image, and acquiring the ultrasound image after the probe vibration may include acquiring any frame of ultrasound image after the end of the vibration as the second ultrasound image.
  • calculating the relative displacement between the first ultrasound image and the second ultrasound image includes:
  • the probe when the ultrasonic echo signals before and after the probe vibration of the elasticity measurement are inconsistent, the probe may slip and/or the measurement result is invalid. In this case, the user may be prompted that the ultrasonic echo signals before and after the probe vibration currently detected are inconsistent. , The probe may slip and/or the measurement results of the current detection are less reliable. Further, at this time, the probe can also be controlled to stop vibrating, and/or not output the measurement result of the elasticity measurement, and/or not start the next measurement, and/or exit the current measurement.
  • the method further includes: judging the validity of the measurement result of the elasticity measurement and/or whether the probe is sliding.
  • judging the validity of the measurement result of the elasticity measurement and/or whether the probe is sliding includes:
  • the processor determines that the measurement result is valid and/or the probe does not slide;
  • the processor determines that the measurement result is invalid and/or the probe slips.
  • the method further includes at least one of the following steps: prompting the user that the ultrasonic echo information or the ultrasonic image before and after the vibration measured by elasticity are consistent, the measurement result is invalid, or the probe Slippage occurs.
  • the processor 104 obtains the ultrasonic echo signal of any time period before the vibration of the probe as the first ultrasonic echo signal, and the ultrasonic echo signal of any time period after the end of the vibration is used as the second ultrasonic echo signal.
  • the correlation method calculates the correlation spectrum of the first ultrasonic echo signal and the second ultrasonic echo signal, and judges whether the peak height of the correlation spectrum or the corresponding time exceeds the preset range. If it is, the ultrasonic echo signals before and after the probe vibration are consistent. The validity of this measurement result is high. On the contrary, it means that the ultrasonic echo signals before and after the probe vibration are inconsistent. The validity of the current measurement result is low.
  • the probe may slip during the measurement process, or the probe 100 and the target before and after the probe vibration may be caused by other reasons. The pressure between the subjects is inconsistent.
  • step S431, step S432, and step S433 can be used in any combination, and specifically include:
  • step S431 or step S433 it is determined that the currently detected ultrasonic echo signals or ultrasonic images before and after the probe vibration are inconsistent.
  • the user can actively separate the probe 100 from the target object, and the processor 104 sends the vibration mechanism to the vibration mechanism.
  • 102 sends out a corresponding instruction, and the vibration mechanism 102 controls the probe 100 to stop vibrating according to the instruction, and this test ends.
  • the probe sliding and/or the measurement result may be invalid.
  • the pressure is inconsistent, the probe may slip and/or the measurement result of the current test is less reliable.
  • the probe can also be controlled to stop vibrating, and/or not output the measurement result of the elasticity measurement, and/or not start the next measurement, and/or exit the current measurement.
  • the method further includes: obtaining valid measurement results of multiple elasticity measurements, and using a median of the valid measurement results as the elasticity measurement result of the target object.
  • the ultrasonic echo signals or ultrasonic images before and after the vibration of the probe for each elasticity measurement are detected, and the ultrasonic echo signals or ultrasonic images before and after the vibration of the probe for each elasticity measurement are determined. Whether they are consistent; if the ultrasound echo signals or ultrasound images before and after the probe vibration of a certain elastic measurement are inconsistent, then the ultrasound echo signals or ultrasound images before and after these probe vibrations are inconsistent with the elasticity measurement, prompt the user of the probe The ultrasound echo signals or ultrasound images before and after the vibration are inconsistent, but the median of the measurement results of all n elastic measurements can still be used as the elastic measurement result of the target object.
  • the operator can also determine the measurement results involved in the calculation of the n elasticity measurement results. For example, the operator can determine whether the result is valid or not based on the ultrasonic echo signal before and after the probe vibration or the prompt of the ultrasonic image.
  • the effective measurement results of the n elasticity measurement results (the ultrasonic echo signal or ultrasonic image test results before and after the probe vibration are not prompted, and the operator determines the effective measurement results The median in) is taken as the elasticity measurement result of the target object.
  • an ultrasonic imaging device may include a probe, a driving mechanism, a transmitting circuit, a receiving circuit, and a processor.
  • the vibration mechanism can drive the vibrator or the probe to vibrate to generate shear waves propagating in the target object.
  • the transmitting circuit can excite the probe to transmit ultrasonic waves to the target object to detect the shear wave propagating in the target object.
  • the receiving circuit can receive the ultrasonic echo returned from the target object through the probe to obtain the ultrasonic echo signal.
  • the processor may process the ultrasonic echo signal to obtain an ultrasonic image of the target object or a shear wave propagation parameter of a shear wave propagating in the target object.
  • the processor can also determine whether there is an abnormality in the vibration state of the vibrator or the probe according to the ultrasonic echo signal or the ultrasonic image or according to the obtained shear wave propagation parameters, and when it is determined that the vibration state of the vibrator or the probe is abnormal, Perform at least one of the following steps:
  • the processor may detect the ultrasonic echo signal or the noise signal in the ultrasonic image, and when the detected noise signal is greater than or equal to a preset ratio, determine that the vibration state of the vibrator or the probe is abnormal.
  • the processor may also detect the time domain feature or the frequency domain feature of the ultrasound echo signal or the ultrasound image, and when the time domain feature or the frequency domain feature is less than a preset threshold, determine the vibrator or the probe The vibration state is abnormal.
  • the time-domain feature or the frequency-domain feature of the ultrasound echo signal or the ultrasound image may be a time-domain statistical feature or a frequency-domain statistical feature.
  • it may include at least one of the amplitude, variance, mean value, slope, bandwidth, etc. of the ultrasound echo signal or the image data of the ultrasound image.
  • the processor may also come from the same location or the same area in the target object through two or more different time points or time periods (for example, a certain time point or time period before and after a certain time).
  • the correlation between the echo signals to determine whether the vibration state of the vibrator or the probe is abnormal may select at least two echo signal subsets from the same position or the same area in the target object from the ultrasonic echo signals, where each echo signal subset is a time or Obtain the ultrasonic echo signal in a period of time, and calculate the correlation between the echo signal subsets in the at least two echo signal subsets, and then determine whether the vibration state of the vibrator or the probe exists according to the correlation abnormal. For example, when the correlation is less than a correlation threshold, it can be determined that the vibration state of the vibrator or the probe is abnormal.
  • the processor may determine whether the vibration state of the vibrator or the probe is abnormal or determine whether the obtained shear wave propagation parameters are valid according to the obtained shear wave propagation parameters. For example, the processor may determine whether the shear wave propagation parameters obtained by the current calculation meet the preset conditions, and when the obtained shear wave propagation parameters do not meet the preset conditions, determine that the vibration state of the vibrator or the probe is abnormal, or determine The obtained shear wave propagation parameters have problems and are invalid.
  • the preset condition here can be set in advance, for example, it can be a range that the usual shear wave propagation parameters should fall into based on experience.
  • the shear wave propagation parameter used to determine whether the shear wave propagation parameter is valid or whether the vibration state of the vibrator or the probe is abnormal can be any suitable shear wave propagation parameter, such as shear wave amplitude, shear wave The frequency of the shear wave, the propagation speed of the shear wave, the propagation trajectory of the shear wave, and so on.
  • the shear wave propagation parameters obtained at this time are problematic and invalid, or that the shear wave propagation parameters correspond to The vibration state of the vibrator or probe is abnormal; or, when the frequency of the shear wave is too high, such as higher than a certain shear wave frequency threshold, the shear wave propagation parameters obtained at this time can be considered to be problematic and invalid , Or that the vibration state of the vibrator or probe corresponding to the shear wave propagation parameter is abnormal; etc.
  • the frequency of the shear wave should be in the range of 25 Hz to 75 Hz. If the shear wave propagation parameters obtained at this time, the frequency of the shear wave is not in the range of 25 Hz to 75 Hz. , It can be considered that the currently obtained shear wave propagation parameter is invalid, or the vibration state of the vibrator or probe corresponding to the shear wave propagation parameter is abnormal. Or, in some cases, in the instantaneous elastography mode, the amplitude of the shear wave should meet the attenuation of 10dB and the length should exceed 6.5cm.
  • the amplitude of the shear wave does not meet this condition, it can be considered that the currently obtained shear wave propagation parameter is invalid, or the vibration state of the vibrator or probe corresponding to the shear wave propagation parameter There is an exception.
  • the several examples listed here are merely illustrative, but the preset conditions mentioned here are not limited to this, but can be flexibly set according to the needs of the actual situation.
  • the amplitude of the shear wave and the frequency of the shear wave can be intuitively observed in the elastography image obtained by the ultrasonic imaging equipment.
  • a similar method can also be used to determine the currently obtained shear based on the ultrasound echo signal or ultrasound image. Whether the wave propagation parameters are valid.
  • the processor may detect the ultrasonic echo signal or the noise signal in the ultrasonic image, and when the detected noise signal is greater than or equal to a preset ratio, determine that the currently obtained shear wave propagation parameter is invalid; or, the processor It is also possible to detect the time domain feature or frequency domain feature of the ultrasound echo signal or the ultrasound image, and when the time domain feature or frequency domain feature is less than a preset threshold, it is determined that the currently obtained shear wave propagation parameters are invalid; or The processor may select at least two echo signal subsets from the same position or the same area in the target object from the ultrasonic echo signals, where each echo signal subset is the ultrasound obtained at a time or within a period of time.
  • Echo signals and calculate the correlation between the echo signal subsets in the at least two echo signal subsets, and then determine whether the currently obtained shear wave propagation parameters are valid according to the correlation. For example, when the correlation is less than a correlation threshold, it can be determined that the currently obtained shear wave propagation parameters are invalid; and so on.
  • the processor may also determine whether the vibration state of the vibrator or the probe is abnormal or determine the obtained shear wave according to the combination of the foregoing ultrasonic echo signal, ultrasonic image, and obtained shear wave propagation parameters. Whether the cut wave propagation parameters are valid.
  • an ultrasonic imaging device may include a probe, a vibration mechanism, a transmitting circuit, a receiving circuit, and a processor.
  • the vibration mechanism can drive the vibrator or the probe to vibrate to generate shear waves propagating in the target object.
  • the transmitting circuit can excite the probe to transmit ultrasonic waves to the target object to detect shear waves propagating in the target object.
  • the receiving circuit can receive the ultrasonic echo returned from the target object through the probe to obtain the ultrasonic echo signal.
  • the processor may process the ultrasonic echo signal to obtain the ultrasonic image of the target object or the shear wave propagation parameters of the shear wave propagating in the target object.
  • the processor can also determine whether there is an abnormality in the vibration state of the vibrator or the probe according to the ultrasonic echo signal or the ultrasonic image or according to the obtained shear wave propagation parameters, and when it is determined that the vibration state of the vibrator or the probe is abnormal, perform at least one of the following Steps: prompting that the vibrator or probe is in an abnormal state; not outputting the shear wave propagation parameters obtained by the ultrasonic imaging equipment during the current vibration; prompting that the shear wave propagation parameters obtained by the ultrasonic imaging equipment during the current vibration are abnormal; stopping the acquisition of shear waves by the ultrasonic imaging equipment Cut wave propagation parameters.
  • the processor also determines whether the vibration state of the vibrator or probe returns to normal according to the ultrasonic echo signal or the ultrasonic image or the obtained shear wave propagation parameters, and when it is determined that the vibration state of the vibrator or probe returns to normal, execute At least one of the following steps: prompt the vibrator or probe to return to the normal state; restore the output of the shear wave propagation parameters obtained by the ultrasonic imaging device during the current vibration; prompt the shear wave propagation parameters obtained by the ultrasonic imaging device during the current vibration to return to normal; The imaging device obtains the shear wave propagation parameters.
  • the processor may detect the ultrasonic echo signal or the noise signal in the ultrasonic image, and when the detected noise signal is less than a preset ratio, determine that the vibration state of the vibrator or the probe returns to normal.
  • the processor may also detect the time domain feature or frequency domain feature of the ultrasound echo signal or ultrasound image, and when the time domain feature or frequency domain feature is greater than or equal to the preset threshold, it is determined that the vibration state of the vibrator or probe is restored normal.
  • the time-domain feature or frequency-domain feature of the ultrasound echo signal or ultrasound image may include at least one of the amplitude, variance, mean value, slope, bandwidth, etc. of the ultrasound echo signal or image data of the ultrasound image.
  • the processor may select at least two echo signal subsets from the same position or the same area in the target object from the ultrasound echo signals, wherein each echo signal subset is a time or a time period Calculate the correlation between the echo signal subsets in the at least two echo signal subsets, and determine whether the vibration state of the vibrator or the probe returns to normal according to the correlation. For example, when the correlation is greater than or equal to the correlation threshold, it can be determined that the vibration state of the vibrator or the probe returns to normal.
  • the processor may determine whether the currently obtained shear wave propagation parameters meet a preset condition, and when the obtained shear wave propagation parameters meet the preset condition, determine that the vibration state of the vibrator or the probe returns to normal.
  • an ultrasonic imaging device may include a probe, a vibration mechanism, a transmitting circuit, a receiving circuit, and a processor.
  • the vibration mechanism can drive the vibrator or the probe to vibrate to generate shear waves propagating in the target object.
  • the transmitting circuit can excite the probe to transmit ultrasonic waves to the target object to detect shear waves propagating in the target object.
  • the receiving circuit can receive the ultrasonic echo returned from the target object through the probe to obtain the ultrasonic echo signal.
  • the processor can process the ultrasonic echo signal to obtain the ultrasonic image or shear wave propagation parameter of the target object, and determine the vibration state of the vibrator or the probe according to the ultrasonic echo signal or the ultrasonic image or the obtained shear wave propagation parameter Whether there is an abnormality.
  • an ultrasonic imaging device may include a probe, a vibration mechanism, a transmitting circuit, a receiving circuit, and a processor.
  • the vibration mechanism can drive the vibrator or the probe to vibrate to generate shear waves that propagate in the target object.
  • the transmitting circuit can excite the probe to transmit ultrasonic waves to the target object.
  • the receiving circuit can receive the ultrasonic echo returned from the target object through the probe to obtain the ultrasonic echo signal.
  • the processor can obtain the ultrasonic echo signal obtained by the receiving circuit before the vibrator or the probe vibrates, obtain the pre-vibration echo signal, or obtain the pre-vibration ultrasound image obtained according to the pre-vibration echo signal, and according to the pre-vibration echo signal or the vibration
  • the front ultrasound image determines whether there is an abnormality in the contact state between the vibrator or the probe and the target object.
  • the processor may detect the pre-vibration echo signal or the noise signal in the pre-vibration ultrasound image, and when the detected noise signal is greater than or equal to a preset ratio, it is determined that the contact state between the vibrator or the probe and the target object exists abnormal.
  • the processor can detect the time domain feature or frequency domain feature of the pre-vibration echo signal or the pre-vibration ultrasound image, and when the time domain feature or the frequency domain feature is less than a preset threshold, determine the distance between the vibrator or the probe and the target object.
  • the contact status of is abnormal.
  • the time domain feature or frequency domain feature of the pre-vibration echo signal or the pre-vibration ultrasound image may include at least one of the amplitude, variance, mean value, slope, bandwidth, etc. of the pre-vibration echo signal or the pre-vibration ultrasound image.
  • the processor may select at least two echo signal subsets from the same position or the same area in the target object from the pre-vibration echo signals, where each echo signal subset is a moment or a time period. Calculate the correlation between the echo signal subsets in the at least two echo signal subsets, and determine whether the contact state between the vibrator or probe and the target object exists according to the correlation abnormal. For example, when the correlation is less than the correlation threshold, it can be determined that there is an abnormality in the contact state between the vibrator or the probe and the target object.
  • the processor when it is determined that the contact state between the vibrator or the probe and the target object is abnormal, the processor also prompts that the contact state between the vibrator or the probe and the target object is abnormal.
  • the processor may activate the ultrasound imaging device to start elastography.
  • the processor can control the vibrating mechanism to drive the vibrator or the probe to vibrate to generate shear waves propagating in the target object, control the transmitting circuit to excite the probe to emit ultrasonic waves to the target object to detect the shear waves propagating in the target object, and control the receiving circuit
  • the ultrasonic echo returned from the target object is received by the probe to obtain the ultrasonic echo signal, and the ultrasonic echo signal is processed to obtain the ultrasonic image or shear wave propagation parameter of the target object.
  • an ultrasonic imaging device may include a probe, a vibration mechanism, a transmitting circuit, a receiving circuit, and a processor.
  • the vibration mechanism can drive the vibrator or the probe to vibrate to generate shear waves that propagate in the target object.
  • the transmitting circuit can excite the probe to transmit ultrasonic waves to the target object to detect shear waves propagating in the target object.
  • the receiving circuit can receive the ultrasonic echo returned from the target object through the probe to obtain the ultrasonic echo signal.
  • the processor can process the ultrasonic echo signal to obtain an ultrasonic image of the target object or shear wave propagation parameters.
  • the processor may also obtain the ultrasonic echo signal before the vibrator or probe vibrates as the first ultrasonic echo signal, and obtain the ultrasonic echo signal after the vibrator or probe vibrates as the second ultrasonic echo signal. Then, the consistency between the first ultrasonic echo signal and the second ultrasonic echo signal is determined, and the vibration of the vibrator or probe is determined according to the consistency (that is, the first ultrasonic echo signal and the second ultrasonic echo signal are obtained). Whether the vibration of the vibrator or the probe between the echo signals is abnormal.
  • the processor may determine the consistency between the first ultrasonic echo signal and the second ultrasonic echo signal according to the correlation, and determine whether the vibration of the vibrator or the probe is abnormal according to the consistency. For example, the processor may calculate the correlation between the first ultrasonic echo signal and the second ultrasonic echo signal, and determine whether the vibration of the vibrator or the probe is abnormal based on the correlation. For example, when the correlation is less than the correlation threshold, it can be determined that the vibration of the vibrator or the probe is abnormal.
  • the processor may obtain first ultrasound image data according to the first ultrasound echo signal, obtain second ultrasound image data according to the second ultrasound echo signal, and obtain the second ultrasound image data according to the first ultrasound image data and the second ultrasound image.
  • the data calculates the relative displacement between the first ultrasound image data and the second ultrasound image data, and then determines whether the vibration of the vibrator or the probe is abnormal based on the relative displacement. For example, when the relative displacement is greater than a preset threshold, it can be determined that the vibration of the vibrator or the probe is abnormal.
  • an ultrasonic imaging method may include: driving a vibrator or a probe to vibrate to generate a shear wave propagating in a target object; transmitting an ultrasonic wave to the target object to detect the shear wave propagating in the target object; The ultrasonic echo returned by the target object to obtain the ultrasonic echo signal; the ultrasonic echo signal is processed to obtain the ultrasonic image or the shear wave propagation parameter of the target object; according to the ultrasonic echo signal or the ultrasonic image or the obtained shear wave propagation parameter Determine whether the vibration state of the vibrator or probe is abnormal, and when it is determined that the vibration state of the vibrator or probe is abnormal, perform at least one of the following steps: prompt the vibrator or probe to be in an abnormal state; control the vibrator or probe to stop vibrating; do not output the current vibration When the shear wave propagation parameters obtained by the ultrasound imaging device are displayed; prompt that the shear wave propagation parameters obtained by the ultrasound imaging device are abnormal when the ultrasound imaging device is currently vibrating; stop obtaining the shear
  • the ultrasonic echo signal or the noise signal in the ultrasonic image may be detected, and when the detected noise signal is greater than or equal to a preset ratio, it is determined that the vibration state of the vibrator or the probe is abnormal.
  • the time domain feature or frequency domain feature of the ultrasound echo signal or ultrasound image can be detected, and when the time domain feature or the frequency domain feature is less than a preset threshold, it is determined that the vibration state of the vibrator or probe is abnormal.
  • the time-domain feature or frequency-domain feature of the ultrasound echo signal or ultrasound image may include at least one of the amplitude, variance, mean value, slope, bandwidth, etc. of the ultrasound echo signal or image data of the ultrasound image.
  • At least two echo signal subsets from the same position or the same area in the target object can be selected from the ultrasonic echo signals, wherein each echo signal subset is a set of echo signals at a time or within a period of time.
  • the correlation between the echo signal subsets in the at least two echo signal subsets is calculated, and whether the vibration state of the vibrator or the probe is abnormal is determined according to the correlation. For example, when the correlation is less than the correlation threshold, it can be determined that the vibration state of the vibrator or the probe is abnormal.
  • an ultrasonic imaging method may include: driving a vibrator or a probe to vibrate to generate a shear wave propagating in a target object; transmitting an ultrasonic wave to the target object to detect the shear wave propagating in the target object; The ultrasonic echo returned by the object obtains the ultrasonic echo signal; the ultrasonic echo signal is processed to obtain the ultrasonic image or the shear wave propagation parameter of the target object, and the ultrasonic echo signal, the ultrasonic image and the obtained shear wave are processed according to the ultrasonic echo signal. At least one of the wave propagation parameters determines whether the vibration state of the vibrator or the probe is abnormal or whether the obtained shear wave propagation parameters are valid.
  • an ultrasonic imaging method may include: transmitting ultrasonic waves to a target object before the vibrator or probe vibrates; receiving the ultrasonic echo returned from the target object to obtain a pre-vibration echo signal; according to the pre-vibration echo signal or by vibration
  • the pre-vibration ultrasound image obtained by the pre-echo signal determines whether the contact state between the vibrator or the probe and the target object is abnormal.
  • the pre-vibration echo signal or the noise signal in the pre-vibration ultrasound image can be detected, and when the detected noise signal is greater than or equal to a preset ratio, it is determined that the contact state between the vibrator or the probe and the target object is abnormal.
  • the time domain feature or frequency domain feature of the pre-vibration echo signal or the pre-vibration ultrasound image can be detected, and when the time domain feature or the frequency domain feature is less than a preset threshold, the contact between the vibrator or the probe and the target object can be determined The status is abnormal.
  • At least two echo signal subsets from the same position or the same area in the target object can be selected from the pre-vibration echo signals, wherein each echo signal subset is a set of echo signals at a time or within a period of time.
  • the obtained ultrasonic echo signals calculate the correlation between the echo signal subsets in the at least two echo signal subsets, and determine whether the contact state between the vibrator or the probe and the target object is abnormal according to the correlation. For example, when the correlation is less than the correlation threshold, it can be determined that there is an abnormality in the contact state between the vibrator or the probe and the target object.
  • the vibrator or the probe when it is determined that there is no abnormality in the contact state between the vibrator or the probe and the target object, the vibrator or the probe may be driven to vibrate to generate shear waves propagating in the target object, and the probe may be excited to emit ultrasonic waves to the target object.
  • the shear wave propagating in the target object is detected, the ultrasonic echo returning from the target object is received through the probe to obtain the ultrasonic echo signal, and the ultrasonic echo signal is processed to obtain the ultrasonic image or shear wave propagation parameter of the target object.
  • an ultrasound imaging method may include: driving a vibrator or a probe to vibrate to generate a shear wave propagating in the target object; exciting the probe to emit ultrasonic waves to the target object to detect the shear wave propagating in the target object; The probe receives the ultrasonic echo returned from the target object to obtain the ultrasonic echo signal; processes the ultrasonic echo signal to obtain the ultrasonic image or shear wave propagation parameters of the target object; obtains the ultrasonic echo signal before the vibrator or the probe vibrates as the first Ultrasonic echo signal; Obtain the ultrasonic echo signal after the vibrator or probe vibrates as the second ultrasonic echo signal; Determine the consistency between the first ultrasonic echo signal and the second ultrasonic echo signal; Determine the vibrator according to the consistency Or whether the vibration of the probe is abnormal.
  • the correlation between the first ultrasonic echo signal and the second ultrasonic echo signal may be calculated, and whether the vibration of the vibrator or the probe is abnormal is determined according to the correlation.
  • the ultrasonic imaging equipment and method of the embodiments of the present invention determine whether the probe has air vibration or sliding based on the ultrasonic image or ultrasonic echo signal, and whether the measurement result is valid, and prevent the probe air vibration from affecting the service life of the probe, and improve the elasticity measurement result. Effectiveness and accuracy.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种超声成像设备(10)及方法,通过振动机构(102)激励探头(100)在目标对象中产生剪切波进行弹性测量,以及发射电路(101)激励探头(100)向目标对象发射超声波,并接收和处理超声回波以获得目标对象的超声图像;并根据超声回波信号或超声图像判断剪切波产生前探头(100)与目标对象的压力是否合适,探头(100)的振动状态,以及判断振动之前和振动之后超声回波信息或超声图像是否一致。基于超声图像或超声回波信号判断探头(100)是否出现空振或滑动,以及测量结果是否有效,防止探头(100)空振影响探头(100)的使用寿命,提高了弹性测量结果的有效性和准确度。

Description

一种超声成像设备及方法 技术领域
本发明涉及超声成像设备及方法。
背景技术
肝纤维化是各种慢性肝脏疾病向肝硬化发展的病理过程,瞬时弹性成像(Transient Elastography,TE)通过检测肝脏硬度值,从而反应肝纤维化程度。相对于有创的肝脏活检病理学检测,瞬时弹性具有无创、简便、快速、易于操作、可重复性、安全性和耐受性好的特点,目前已被WHO、AASLD、EASL、中华医学会肝病学分会等推荐为乙型、丙型肝炎病毒相关肝纤维化临床评估的重要手段。传统的瞬时弹性检测一般是在在做好测试准备后,通过观察基础图像,选择合适切面和预压后,启动探头振动以进行瞬时弹性测量。但是上述传统的瞬时弹性检测只在探头振动前进行简单的预压判断并使用固定的驱动信号进行驱动。
而在实际的弹性测量过程中,可能会有很多原因导致预压发生变化,例如探头出现空振或滑动,操作者的人为因素等等使得预压发生变化,预压不再适用于测量,此时探头不会停止振动,导致探头加速老化,以及测量结果不准确,且操作人员也不能察觉到此时的预压不合适,从而无法快速做出调整。
发明内容
本发明实施例提供一种超声成像设备及方法,以至少解决上述的问题之一。
一个实施例中,提供了一种超声成像设备,其可以包括探头、驱动机构、发射电路、接收电路和处理器。该振动机构可以驱动振子或探头振动以产生在目标对象中传播的剪切波。该发射电路可以激励该探头向该目标对象发射超声波以检测在该目标对象中传播的所述剪切波。接收电路可以通过探头接收从目标对象返回的超声回波以获得超声回波信号。处理器可以处理该超声回波信号 以获得该目标对象的超声图像或在该目标对象中传播的剪切波的剪切波传播参数。该处理器还可以根据超声回波信号或该超声图像或根据所获得的剪切波传播参数确定该振子或该探头的振动状态是否存在异常,并且当确定振子或探头的振动状态存在异常时,执行如下至少一种步骤:提示振子或探头处于异常状态;控制振子或探头停止振动;不输出当前振动时该超声成像设备获得的剪切波的传播参数;提示当前振动时该超声成像设备获得的剪切波的传播参数异常;停止通过该超声成像设备获取剪切波的传播参数。
一个实施例中,提供了一种超声成像设备,其可以包括探头、振动机构、发射电路、接收电路和处理器。该振动机构可以驱动振子或探头振动以产生在目标对象中传播的剪切波。该发射电路可以激励该探头向目标对象发射超声波以检测在该目标对象中传播的剪切波。接收电路可以通过该探头接收从目标对象返回的超声回波以获得超声回波信号。处理器可以处理该超声回波信号以获得目标对象的超声图像或在目标对象中传播的剪切波的剪切波传播参数。
该处理器还可以根据超声回波信号或超声图像或根据获得的剪切波传播参数确定振子或探头的振动状态是否存在异常,并且当确定振子或探头的振动状态存在异常时,执行如下至少一种步骤:提示振子或探头处于异常状态;不输出当前振动时超声成像设备获得的剪切波传播参数;提示当前振动时超声成像设备获得的剪切波传播参数异常;停止通过超声成像设备获取剪切波传播参数。并且,该处理器还根据该超声回波信号或该超声图像或根据获得的剪切波传播参数确定振子或探头的振动状态是否恢复正常,并且当确定振子或探头的振动状态恢复正常时,执行如下至少一种步骤:提示振子或探头恢复正常状态;恢复输出当前振动时超声成像设备获得的剪切波传播参数;提示当前振动时超声成像设备获得的剪切波传播参数恢复正常;恢复通过超声成像设备获取剪切波传播参数。
一个实施例中,提供了一种超声成像设备,其可以包括探头、振动机构、发射电路、接收电路和处理器。该振动机构可以驱动振子或探头振动以产生在目标对象中传播的剪切波。该发射电路可以激励探头向目标对象发射超声波以检测在目标对象中传播的剪切波。该接收电路可以通过探头接收从目标对象返回的超声回波以获得超声回波信号。处理器可以处理超声回波信号以获得目标 对象的超声图像或剪切波传播参数,并根据该超声回波信号或该超声图像或根据所获得的剪切波传播参数确定振子或探头的振动状态是否存在异常。
一个实施例中,提供了一种超声成像设备,其可以包括探头、振动机构、发射电路、接收电路和处理器。振动机构可以驱动振子或探头振动以产生在目标对象中传播的剪切波。发射电路可以激励探头向目标对象发射超声波。接收电路可以通过探头接收从目标对象返回的超声回波以获得超声回波信号。该处理器可以获取振子或探头振动之前接收电路获得的超声回波信号,获得振前回波信号,或者获得根据该振前回波信号获得的振前超声图像,并且根据该振前回波信号或该振前超声图像确定振子或探头与目标对象之间的接触状态是否存在异常。
一个实施例中,提供了一种超声成像设备,其可以包括探头、振动机构、发射电路、接收电路和处理器。振动机构可以驱动振子或探头振动以产生在目标对象中传播的剪切波。发射电路可以激励探头向目标对象发射超声波以检测在目标对象中传播的剪切波。接收电路可以通过探头接收从目标对象返回的超声回波以获得超声回波信号。处理器,处理器可以处理超声回波信号以获得目标对象的超声图像或剪切波传播参数。本实施例中,处理器还可以获取振子或探头振动之前的超声回波信号作为第一超声回波信号,以及获取振子或探头振动之后的超声回波信号作为第二超声回波信号。然后,确定该第一超声回波信号和第二超声回波信号之间的一致性,并根据该一致性确定振子或探头的振动是否存在异常。
一个实施例中,提供了一种超声成像方法,其可以包括:驱动振子或探头振动以产生在目标对象中传播的剪切波;向目标对象发射超声波以检测在目标对象中传播的剪切波;接收从目标对象返回的超声回波以获得超声回波信号;处理超声回波信号以获得目标对象的超声图像或剪切波传播参数;根据超声回波信号或超声图像或根据获得的剪切波传播参数确定振子或探头的振动状态是否存在异常,并且当确定振子或探头的振动状态存在异常时,执行如下至少一种步骤:提示振子或探头处于异常状态;控制振子或探头停止振动;不输出当前振动时超声成像设备获得的剪切波的传播参数;提示当前振动时超声成像设备获得的剪切波的传播参数异常;停止通过超声成像设备获取剪切波的传播 参数。
一个实施例中,提供了一种超声成像方法,其可以包括:驱动振子或探头振动以产生在目标对象中传播的剪切波;向目标对象发射超声波以检测在目标对象中传播的剪切波;接收从目标对象返回的超声回波以获得超声回波信号;处理超声回波信号以获得目标对象的超声图像或剪切波传播参数,并根据超声回波信号或超声图像或根据获得的剪切波传播参数确定振子或探头的振动状态是否存在异常。
一个实施例中,提供了一种超声成像方法,其可以包括:在振子或者探头振动之前,向目标对象发射超声波;接收从目标对象返回的超声回波以获得振前回波信号;根据振前回波信号或者由振前回波信号获得的振前超声图像确定振子或探头与目标对象之间的接触状态是否存在异常。
一个实施例中,提供了一种超声成像方法,其可以包括:驱动振子或探头振动以产生在目标对象中传播的剪切波;激励探头向目标对象发射超声波以检测在目标对象中传播的剪切波;通过探头接收从目标对象返回的超声回波以获得超声回波信号;处理超声回波信号以获得目标对象的超声图像或剪切波传播参数;获取振子或探头振动之前的超声回波信号作为第一超声回波信号;获取振子或探头振动之后的超声回波信号作为第二超声回波信号;确定第一超声回波信号和第二超声回波信号之间的一致性;根据该一致性确定振子或探头的振动是否存在异常。
本发明实施例的超声成像设备及方法,基于超声图像或超声回波信号判断探头是否出现空振或滑动,以及测量结果是否有效,防止探头空振影响探头的使用寿命,提高了弹性测量结果的有效性和准确度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例的超声成像设备的结构框图示意图;
图2是根据本发明实施例的超声成像方法的示意性原理图;
图3a是一种瞬时弹性测量的示意性流程图;
图3b是一种瞬时弹性测量的示意性原理图;
图4是根据本发明实施例的超声成像方法的示意性流程图;
图5是根据本发明实施例的空载回波信号和正常回波信号的示例;
图6a是根据本发明实施例的第一超声回波信号的示例;
图6b是根据本发明实施例的第二超声回波信号的示例;
图6c是根据本发明实施例的第一超声回波信号和第二超声回波信号的相关谱的示例。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1示出了本发明实施例的超声成像设备的结构框图示意图。参见图1,超声成像设备10可以包括:
探头100、发射电路101、振动机构102、接收电路103、处理器104。发射电路101可以激励探头100向目标对象发射超声波;振动机构102可以激励探头100在目标对象中产生剪切波;接收电路103可以通过探头100接收从目标对象返回的超声回波,从而获得超声回波信号/数据;处理器104对该超声回波信号/数据进行处理,以获得目标对象的超声图像。
一个实施例中,振动机构102也可以不通过振动探头100、而是振动另外设置的振子(未图示)来产生在目标对象中传播的剪切波。在这种实施例中,探头100将不用于产生剪切波,而只用于获得目标对象的超声图像和/或跟踪剪切波在目标对象中的传播。
可选地,探头100可以包括换能器和振动器件。其中,换能器用于接收发射电路101的指令发射超声波和/或接收超声回波,振动器件在振动机构102的驱动下振动以在目标对象中产生剪切波。
可选地,振动机构102可以包括电机。进一步地,振动机构102可以通过传动机构与探头100连接。振动机构102获取驱动信号后驱动传动机构运动,传动机构带动振动器件振动。
一个实施例中,振动机构102也可以直接驱动换能器振动以产生在目标对象中传播的剪切波,即,振动器件可以是换能器本身。
可选地,超声成像设备10还可以包括:显示器105,可以用于显示处理器104获得的超声图像。
在一些实施例中,前述的超声成像设备10的显示器105可为触摸显示屏、液晶显示屏等,也可以是独立于超声成像设备10之外的液晶显示器、电视机等独立显示设备,也可为手机、平板电脑等电子设备上的显示屏,等等。
在一些实施例中,超声成像设备10可以包括设置于超声成像设备10上的第一显示器,以及独立设置于超声成像设备10之外第二显示器。第一显示器从处理器104获取超声图像并进行显示;第二显示器可以与超声成像设备10进行通信,从超声成像设备10处获取超声图像进行显示。
可选地,超声成像设备10还可以包括:存储器106,可以用于存储处理器104获得的超声图像。
在一些实施例中,存储器106可以是易失性存储器(volatile memory),例如随机存取存储器(Random Access Memory,RAM);或者非易失性存储器(non-volatile memory),例如只读存储器(Read Only Memory,ROM),快闪存储器(flash memory),硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD);或者以上种类的存储器的组合,并向处理器提供指令和数据。
可选地,超声成像设备10还可以包括:发射/接收选择开关107,分别连接至探头100,发射电路101,接收电路103,和处理器104,处理器104控制发射/接收选择开关107将探头100与发射电路101或接收电路103连通。
可选地,超声成像设备10还可以包括:波束合成电路108,接收电路103获得的超声回波信号/数据经过波束合成电路108进行波束合成处理后,送入处理器104。
实际应用中,处理器104可以通过软件、硬件、固件或者其组合实现,可以使用电路、单个或多个为特定用途集成电路(Application Specific  Integrated Circuit,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理装置(Digital Signal Processing Device,DSPD)、可编程逻辑装置(Programmable Logic Device,PLD)、现场可编程门阵列(Field Programmable Gate Array,FPGA)、中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理器中的至少一种,从而使得该处理器104可以执行本申请的各个实施例中的超声成像中的部分步骤或全部步骤或其中步骤的任意组合。
根据本发明实施例的超声成像设备10在运行时,可以提供相应的操作界面供操作人员进行操作,在上述操作界面中,可以包括各个切面组对应的控件,如,标识选框或者菜单栏等,使操作人员可以根据实际使用情况在操作界面上输入操作指令,以实现通过超声成像设备10进行超声成像。
在一些实施例中,参见图2,图2示出了根据本发明实施例的超声成像方法的示意性原理图,超声成像方法可以包括:
操作人员完成弹性测量的准备后,对目标对象采用常规二维B模式成像得到目标对象的基础图像后,通过操作界面选择合适的切面以及探头在振动前与目标对象之间的合适压力;
操作人员手持探头,使得探头与目标区域对应的目标对象表面位置接触,执行一操作(如按下探头上的预设按钮)以触发单次弹性测量;处理器中的前端控制及处理模块接收到该操作的指令后,向振动控制模块发送一振动指令,振动控制模块根据振动指令向探头上的振动机构发出驱动信号,振动机构接收驱动信号后开始工作,与振动机构连接的传动机构开始运动,传动机构带动振动器件在目标对象的表面产生振动,产生在目标对象中传播的剪切波,剪切波引起目标区域的组织的位移改变;前端控制及处理模块根据本发明实时例超声成像方法中的扫描控制(时序或方法)向发射电路发送指令,发射电路接收该指令激励探头上的换能器发射超声波,该超声波追踪剪切波的传播速度,持续地追踪和记录目标区域内剪切波引起的组织的位移改变,超声波经过目标区域反射得到超声回波;超声回波经过探头上的换能器到达接收电路,接收电路将获得的超声回波信号经过波束合成电路进行波束合成处理后,送入处理器中的前端控制及处理模块;前端控制及处理模块对超声回波进行处理,得到基础图 像和剪切波的传播参数如剪切波速度、剪切波模量、剪切波衰减、剪切波弹性和剪切波粘性等;前端控制及处理模块可以将基础图像和剪切波的至少一个传播参数存储并发送至显示器进行显示。此外,超声探头还可以用来获得目标对象的其他模式的图像,比如B图像、彩色血流图像等等,并且这些图像可以与剪切波的传播参数一起显示。
本发明实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有多条程序指令,该多条程序指令被处理器104调用执行后,可执行本申请各个实施例中的超声成像方法中的部分步骤或全部步骤或其中步骤的任意组合。
参见图3a,图3a示出了一种瞬时弹性测量的示意性流程图。如图3a所示,操作人员在做好测试准备后,通过观察目标对象的基础图像(例如,B图像),选择合适的检测区域即切面,并基于压力检测选择合适的预压,然后启动多次弹性测量,每次弹性测量得到一个测量结果,每次测量结果相对独立,操作人员需要对数据进行比较以选择可靠有效的数据;然后,判断该次测量结果的有效性和多个测量结果的统计结果是否满足临床要求,如果满足则结束测量,如果不满足则重复进行弹性测量直至满足临床要求后结束。
参见图3b,图3b示出了一种瞬时弹性测量的示意性原理图。如图3b所示,每一次瞬时弹性测量主要通过探头的振动机构进行外部振动,如电机振动,在组织中产生剪切波,剪切波在目标对象体内传播,探头上的超声换能器发射超声波,并接收超声回波跟踪和观察剪切波在组织中传播过程并检测组织的位移,计算剪切波的传播速度Cs(m/s),还可以在显示器上显示相应的图像,并进一步估算组织的弹性模量E(kPa),从而反映组织纤维化程度。剪切波在组织中的传递速度与肝组织硬度正相关,组织硬度越大,剪切波的传播速度则越快,弹性模量越大。
上述瞬时弹性测量的过程中,外部振动相当于剪切波的信号源,而外部振动来源于驱动信号下的电机运动,电机通过一系列机械传动结构带动探头的振动机构运动,进一步在目标对象的表面产生振动。理想条件下,振动条件仅与探头内部机械结构有关,能够在振动过程中保持稳定并且在多次振动间保持一致,但实际振动是探头内部机械结构和外部环境共同影响下的综合结果。
传统的弹性测量是基于在一定的预压范围内,外部环境能够保持相对稳定,多次振动上外部环境对实际振动的影响也比较一致的假设进行,对于不同的目标对象均采用固定相同的驱动信号,仅在探头振动前进行简单的预压判断。在实际应用中,尽管在探头振动之前进行切面和预压选择,在一定程度上避免空振,但需要依赖于操作人员的控制,在多次弹性测量中影响测量效率;而且,即使在振动之前进行切面和预压选择,在探头振动开始后也仍然存在探头空振的情况,探头脱离体表空振会对内部机械结构造成一定伤害,加速探头老化。在振动过程中如果出现意外情形,如探头滑动时,传统的弹性测量仍会按照固定信号进行驱动,这可能会导致测量值的异常和不准确,影响后续计算中得到的弹性测量结果的准确度。
此外,实际临床应用中,受制于操作人员的握持预压或目标对象的肋间距、体表脂肪厚度等因素,对于不同的目标对象,产生的实际振动难以一致,导致产生的剪切波也不一致,对最终测试结果有较大影响。
基于上述考虑,参见图4,图4示出了本发明实施例的超声成像方法的示意性流程图。如图4所示,本发明实施例提供的超声成像方法400包括:
步骤S410,激励探头或振子振动以产生在目标对象中传播的剪切波,以及向目标对象发射超声波以检测在目标对象中传播的该剪切波;
步骤S420,控制探头接收从目标对象返回的超声回波以获得超声回波信号;
步骤S430,处理超声回波信号以获得目标对象的超声图像或者获得在目标对象中传播的该剪切波的剪切波传播参数;以及执行如下至少一个步骤:
步骤S431,根据该超声回波信号或超声图像判断剪切波产生前探头与目标对象的压力是否合适,
或步骤S432,根据超声回波信号或超声图像判断剪切波产生后探头的振动状态;
或步骤S433,判断振动之前和振动之后超声回波信息或超声图像是否一致。
在一些实施例中,在步骤S410之前还包括:接收操作人员的操作指令以触发弹性测量。
具体来说,超声成像设备10的处理器104接收操作指令。其中,该操作指令可以是操作人员在超声成像设备10启动后的协议(该协议可以是对应的工作流)触发指令,该协议触发指令可以是显示界面(例如触摸屏)上显示的某个功能的触发指令,还可以是通过探头上预设的触发按钮发送的触发指令,当操作人员按下触发按钮则向处理器104发送的触发指令,进而开始弹性测量,触发指令的方式在此处不做限定。
根据本发明实施例,在步骤S410中,激励探头在目标对象中产生剪切波进行弹性测量,可以包括:
激励探头在目标对象上产生外部振动,外部振动产生剪切波传入目标对象中的目标区域。
具体来说,处理器104接收到操作人员的触发指令后,发送驱动信号至振动机构102,振动机构102带动探头100上的振动器件在目标对象上进行低频脉动机械运动,进而在目标对象中产生剪切波。剪切波从目标对象的表面传入目标对象的组织深部的目标区域,使目标区域产生弹性位移。
其中,目标区域可通过任意适用方式选择确定,如可采用常规二维B模式成像、常规弹性成像E模式等各类适用基础成像检测方式初步检测后确定,也可根据弹性测量的需求选定。基于目标对象的上述基础图像选择合适的目标区域后,在目标区域对应的目标对象表面位置通过外部振动在目标对象中产生剪切波。例如,目标区域可以是肝脏,或其他组织,在此不做限制。
在一些实施例中,目标区域可以为一个或者多个。当目标区域的数量为多个时,多个目标区域的各自纵向深度或横向位置可以不同。可以理解的是,当同时对多个目标区域进行测量时,可通过后续步骤获取多个目标区域之间的平均距离比值,从而反映多个目标区域之间的弹性差异。
根据本发明实施例,在步骤S410中,激励探头向目标对象发射超声波,可以包括:激励探头向目标对象的目标区域发射超声波以检测剪切波在目标区域的传播。
具体来说,超声成像设备10中的处理器104控制发射/接收选择开关107,将探头切换至与发射电路101连接,控制发射电路101激励超声探头100上的换能器向被测对象的目标区域发射超声波,超声波跟踪检测剪切波在目标区 域中的传播过程,对剪切波进行传播参数的测量,如剪切波速度、剪切波模量、剪切波衰减、剪切波弹性和剪切波粘性等。
应了解,超声波可以在剪切波之前发射,也可以与剪切波同时发射,还可以在剪切波之后预设时间发射,在此不做限制;预设时间为剪切波进入到目标对象后距离超声波产生的时间间隔,预设时间可根据需要进行设置,在此不做限制。
根据本发明实施例,在步骤S420中,控制探头接收从目标对象返回的超声回波以获得超声回波信号,可以包括:
将探头切换至与接收电路连接,接收电路通过探头接收超声回波。
具体来说,发射超声波之后,处理器104控制发射/接收选择开关107,将探头切换至与接收电路103连接,超声波从目标对象表面到达目标区域后返回,接收电路103通过探头100的换能器接收到从目标区域返回的超声波的超声回波以获得超声回波数据。接收电路103接收超声回波数据后,将该超声回波数据作为测量数据发送给处理器104。
根据本发明实施例,在步骤S430中,处理超声回波信号以获得目标对象的超声图像可以包括:
将超声回波信号经过进行波束合成处理后发送至处理器进行处理得到超声图像。
具体来说,接收电路103获得的超声回波信号经过波束合成电路108进行波束合成处理后,送入处理器104;处理器104对超声回波信号进行处理,如滤波提取有用数据并转换成预设数据格式等,从而得到超声图像和目标区域的弹性参数。
此外,处理器可以将各个阶段的超声回波信号发送给存储器保存,如处理器接收到的超声回波信号、处理后的超声回波信号等。此外,存储器具有缓存功能,当处理器来不及处理某些超声回波信号时可以暂存于存储器内,空闲时处理器从存储器中取出超声回波信号进行处理,得到处理后超声回波信号再发送给存储器存储。这样可以加快处理器的处理速度,当处理器忙时,缓存数据;当处理器空闲时,取出之前缓存的数据进行处理。存储器中的数据可以在预设周期内或实时传输到显示器。
在一些实施例中,可以对同一采集位置多次采集返回的超声回波信号进行弹性参数计算。
根据本发明实施例,在步骤S431中,根据超声回波信号或超声图像判断剪切波产生前探头与目标对象的压力是否合适可以包括:
在剪切波产生前的第一预设时间段内,如果超声回波或超声图像中存在大于或等于预设比例的噪声信号则确定压力不合适。
其中,如前,传统方法仅在振动之前进行压力检测,进而通过检测到的压力是否在一定范围来判断振动前的预压是否适合用于进行测量。但是,对于对于没有压力检测装置的探头则无法进行预压判断,而且具备压力检测装置的探头会增大探头的体积和重量,不利于操作人员操作和节约成本。基于上述考虑,本发明实施例提供的超声成像方法中可以在振动前即剪切波产生前基于超声回波或超声图像来判断探头与目标对象之间的压力是否合适,这样,无论是否具备压力检测装置的探头均可以用于弹性测量,增加了探头之间的通用性,而且探头上不设置压力检测装置可以进一步减小探头的体积和重量,利于操作人员对探头的操控,且节约了成本。
具体来说,操作人员在控制探头在目标对象中产生剪切波之前,将探头与目标对象接触,超声成像设备向目标对象发射超声波,探头接收从目标对象返回的超声回波以获得超声回波信号,处理器通过处理超声回波信号以获得目标对象的超声图像,如果此时探头与目标对象之间的压力合适,那么得到的超声回波信号或超声图像中包含的噪音比较少,反之,如果探头与目标对象之间的压力不合适,那么得到的超声回波信号或超声图像中包含的噪音比较多。参见图5,图5示出了根据本发明实施例的空载回波信号和正常回波信号的示例。
因此,处理器可以进一步地对超声回波信号或超声图像进行分析检测,其中是否存在大量噪音,进而判断此时探头与目标对象之间的压力是否合适。例如,当探头与目标对象之间的压力过小时如探头空载时,探头接收到的超声回波信号会比正常情形明显偏小,甚至没有有效回波,近乎为噪声。处理器对超声回波信号的时域特征或频域特征进行分析,如果时域特征或频域特征表明噪声在超声回波信号中的所占的比例超过预设比例,则说明超声回波信号中存在大量的噪声,确定探头与目标对象之间的压力过小即探头空载。其中,时域特 征可以包括超声回波信号的幅度或方差(即能量),频域特征可以包括斜率、带宽或峰值等等。例如,在一段时间内超声回波信号的幅值一直没有超过一定的阈值,则可以判断探头与目标对象之间的压力不合适。
可替代地,处理器还基于深度学习或机器学习对超声图像进行分析检测,其中是否存在大量噪音,进而判断此时探头与目标对象之间的压力是否合适。例如,对训练数据进行噪声比例标注(该标注还可以是压力合适或压力不合适),并基于标注后的训练数据进行深度学习得到一个噪声比例检测的模型,模型可以输出超声图像中的噪音比例或压力是否合适的结果,当超声图像中的噪音比例超过预设比例,则说明超声图像中存在大量的噪声,确定探头与目标对象之间的压力过小即探头空载。
在一些实施例中,还可以通过超声图像来判断探头振动前探头与目标对象之间的压力是否合适。探头振动前,超声成像设备可以在显示器上显示超声图像,操作人员手持探头且观察显示器上的超声图像,如果观察到的超声图像中存在很多噪点导致得到超声图像无法满足要求,则可以判断此时探头与目标对象之间的压力不合适,然后调整探头和目标对象之间的压力,如加大或减小探头对目标对象的压力等等,直至显示器上显示的超声图像恢复正常显示,则说明此时探头与目标对象之间的压力适于进行后续的弹性测量。操作人员通过超声图像可以直观、快速且准确地判断探头与目标对象之间的压力,并作出迅速的调整,极大提高了检测速率。同时,得到超声图像是弹性测量中必须进行的步骤,因此对操作人员也没有增加多余的操作,提高了操作人员的测量效率。
同时,在实际应用中,通过激励探头产生剪切波的振动过程,除了稳定处于合适预压区域的振前环节,还包括振动机构如电机工作的振中环节、振动机构停止工作但还在继续振动的余振环节和振动基本结束的振后环节;其中,当探头空振时的空载压力范围的上限值比探头正常振动时的合适压力范围的下限值小。本发明实施例的超声成像方法在传统方法的基础上,在剪切波产生后持测判断剪切波产生后探头的振动状态,防止探头在振动中和/或振动后长时间处于空载的压力范围,避免探头空振对探头造成损害。
根据本发明实施例,方法还包括:确定剪切波产生前压力不合适时,提示用户压力不适于进行弹性测量。
根据本发明实施例,在步骤S432中,根据超声回波信号或超声图像判断剪切波产生后探头的振动状态,包括:
在剪切波产生后的第二预设时间段内,如果超声回波信号或超声图像中存在大于或等于预设比例的噪声信号则确定探头为空振状态。
其中,在剪切波产生后,接收电路接收到的超声回波信号可以包括基础图像信号或弹性测量信号,其中基础图像信号可以用于得到目标对象的目标区域的图像,而弹性测量信号可以用于得到剪切波在目标区域的进行传播参数的测量,如剪切波速度、剪切波模量、剪切波衰减、剪切波弹性和剪切波粘性等。当测量过程中,探头脱离目标对象时超声回波信号与正常情况下(如探头正常负载时)会明显偏小,甚至没有有效回波,近乎噪声。
可选地,超声回波中存在大于或等于预设比例的噪声信号包括:超声回波的时域特征或频域特征持续小于预设阈值。
可选地,当在剪切波产生后确定探头处于空振状态时,方法还包括如下至少一种:提示用户探头处于空振状态,控制探头停止振动,或不输出弹性测量的测量结果。进一步地,此时还可以不启动下一次测量,和/或退出当前次检测。
在一些实施例中,在检测到剪切波产生后确定探头处于空振状态时,可以仅提示用户此时探头发生空振和/或需要选择合适的预压,而不执行其他动作,此时,可以由操作人员根据实际情况决定下一步动作,是否继续进行检测;也可以在提示操作人员此时探头发生空振的同时,停止探头振动以保护探头;进一步地,由于探头发生空振可能会对当次检测结果造成较大的影响,使得检测结果不准确,可以不输出当次弹性测量的测量结果,和/或退出当次检测。
根据本发明实施例,方法还包括:当用户将探头与目标对象分离时,根据超声回波信号和超声图像确定探头处于空振状态且控制探头停止振动。
在一些实施例中,操作人员可以利用本发明实施例的超声成像方法为实际操作提供便利,在弹性检测的操作过程中,当操作人员因为各种原因(例如重新选择切面等)需要结束当前的弹性检测时,可以主动地操作探头,使探头与目标对象表面分离,此时,探头停止振动,操作人员可以基于此功能快速便捷地停止检测,方便易操作,极大提升了操作人员的使用体验。而传统的方法中, 即使探头与目标对象分离,在处理器没有接收到操作人员的停止振动的指令之前,探头可能一直处于振动状态,此时不仅会因为探头自身空振造成探头的损坏,而且还因为此时并没有进行有效的检测而造成资源的浪费。
在理想情况下,探头振动前后的预压应该一致,但若出现振动前后不一致的情形,可能与振动过程中探头滑动、握持不稳有关。这种情况会使产生的剪切波和预期不一致,可能会对最终测量结果造成影响。振动前后超声回波信号相关性高则说明剪切波与预期比较相近,振动前后超声回波信号相关性低则说明剪切波与预期不一致,本发明实施例的超声成像方法通过检测振动前后超声回波信号相关性的高低即是否一致,从而判断探头是否发生滑动和/或当次的检测结果是否有效,如果剪切波产生前后的回波信号相关性低可以向用户提示,由用户确定是否继续进行检测。其中,比较振动前后的超声回波信号可以包括插值法、相关法等等。
根据本发明实施例,在步骤S433中,判断振动之前和振动之后超声图像是否一致包括:
获取振动之前的至少部分超声回波信号作为第一超声回波信号;
获取振动之后的至少部分超声回波信号作为第二超声回波信号;
计算第一超声回波信号和第二超声回波信号之间的相关谱;
如果满足相关谱的峰值大于或等于幅值阈值,或相关谱的峰值对应的时间小于时间阈值,则确定振动之前和振动之后超声回波信息一致;
如果满足相关谱的峰值小于幅值阈值,或相关谱的峰值对应的时间大于或等于时间阈值,则确定振动之前和振动之后超声回波信息或超声图像不一致。
其中,获取振动之前的至少部分超声回波信号可以包括获取探头振动之前任意一个时间段的超声回波信号作为第一超声回波信号,获取探头振动之后的至少部分超声回波信号可以包括获取振动结束之后任意一个时间段的超声回波信号作为第二超声回波信号。
在一些实施例中,计算第一超声回波信号和第二超声回波信号之间的相关谱包括:
基于如下公式计算第一超声回波信号s 1和第二超声回波信号s 2相关谱R(m):
Figure PCTCN2020090338-appb-000001
其中,N为信号长度(如信号的时间长度),*表示转置,m为时间(即相关谱的时间),n为自然数。
在一些实施例中,参见图6a-6c,图6a示出了根据本发明实施例的第一超声回波信号的示例,图6b示出了根据本发明实施例的第二超声回波信号的示例,图6c示出了根据本发明实施例的第一超声回波信号和第二超声回波信号的相关谱的示例。具体来说,处理器在进行探头振动之前获取某一时间长度的超声回波信号作为第一超声回波信号s 1,如图6a所示;在探头振动结束后,获取相同时间长度的超声回波信号作为第二超声回波信号s 2,如图6b所示;根据式(1)计算相关谱R(m),如图6c所示。如果相关谱R(m)的峰值高度小于幅度阈值,则说明第一超声回波信号和第二超声回波信号的相关性低,即振动前后的超声回波信号不一致。
根据本发明实施例,在步骤S433中,判断振动之前和振动之后超声图像是否一致包括:
获取振动之前的超声图像作为第一超声图像;
获取振动之后的超声图像作为第二超声图像;
计算第一超声图像和超声图像之间的相对位移;
如果满足相对位移小于位移阈值,则确定振动之前和振动之后超声图像一致;
如果满足相对位移大于或等于位移阈值,则确定振动之前和振动之后超声图像不一致。
其中,获取振动之前的超声图像可以包括获取探头振动之前任意一帧超声图像作为第一超声图像,获取探头振动之后的超声图像可以包括获取振动结束之后任意一帧超声图像作为第二超声图像。
在一些实施例中,计算第一超声图像和第二超声图像之间的相对位移,包括:
获取目标区域中预设目标点在第一超声图像中的第一位置和第二超声图像的第二位置;
计算第一位置和第二位置在水平方向或垂直方向的距离作为相对位移。
在一些实施例中,当弹性测量的探头振动前后的超声回波信号不一致时,可能发生探头滑动和/或测量结果无效,此时,可以提示用户当前检测的探头振动前后的超声回波信号不一致,探头可能出现滑动和/或当前检测的测量结果可信度较低。进一步地,此时还可以控制探头停止振动,和/或不输出弹性测量的测量结果,和/或不启动下一次测量,和/或退出当前次检测。
可选地,方法还包括:判断弹性测量的测量结果的有效性和/或探头是否滑动。
可选地,判断弹性测量的测量结果的有效性和/或探头是否滑动包括:
如果振动之前和振动之后超声回波信号或超声图像一致,则处理器确定测量结果有效和/或探头没有发生滑动;
如果振动之前和振动之后超声回波信息或超声图像不一致,则处理器确定测量结果无效和/或探头发生滑动。
可选地,当确定测量结果无效和/或探头发生滑动时,方法还包括如下至少一个步骤:提示用户弹性测量的振动之前和振动之后超声回波信息或超声图像一致,测量结果无效,或探头发生滑动。
具体来说,处理器104获取探头振动之前任意一个时间段的超声回波信号作为第一超声回波信号,以及振动结束之后任意一个时间段的超声回波信号作为第二超声回波信号,采用相关法计算第一超声回波信号和第二超声回波信号的相关谱,判断相关谱的峰值高度或对应的时间是否超过预设范围,如果是则说明探头振动前后超声回波信号一致,当次测量结果的有效性高,反之,说明探头振动前后超声回波信号不一致,当次测量结果的有效性低,探头在测量过程中可能发生滑动,或者由于其他原因导致探头振动前后探头100和目标对象之间的压力不一致。
进一步地,步骤S431、步骤S432和步骤S433中的至少两个可以任意结合使用,具体包括:
当处理器执行步骤S431或步骤S433后,确定当前检测的探头振动前后的 超声回波信号或超声图像不一致,在提示用户之后,用户可以主动将探头100与目标对象分离,处理器104向振动机构102发出相应的指令,振动机构102根据该指令以控制探头100停止振动,结束本次检测。
在一些实施例中,当弹性测量的探头振动前后的超声回波信号或超声图像不一致时,可能发生探头滑动和/或测量结果无效,此时,可以提示用户当前检测的剪切波产生前后的压力不一致,探头可能出现滑动和/或当前检测的测量结果可信度较低。进一步地,此时还可以控制探头停止振动,和/或不输出弹性测量的测量结果,和/或不启动下一次测量,和/或退出当前次检测。
可选地,方法还包括:获取多次弹性测量中的有效的测量结果,将有效的测量结果中的中位数作为目标对象的弹性测量结果。
在一些实施例中,进行n次弹性测量时,对每一次弹性测量的探头振动前后的超声回波信号或超声图像进行检测,判断每一次弹性测量的探头振动前后的超声回波信号或超声图像是否一致;如果当某一次或某几次弹性测量的探头振动前后的超声回波信号或超声图像不一致,那么在这些探头振动前后的超声回波信号或超声图像不一致的弹性测量时,提示用户探头振动前后的超声回波信号或超声图像不一致,但是仍可将所有n次弹性测量的测量结果的中位数作为目标对象的弹性测量结果。可替代地,还可以将n次弹性测量结果中被提示探头振动前后的超声回波信号或超声图像不一致的测试结果去除,不参与弹性测量结果的计算,即仅将n次弹性测量结果中没有被提示探头振动前后的超声回波信号或超声图像不一致的测试结果的中位数作为目标对象的弹性测量结果。可替代地,还可以由操作人员决定n次弹性测量结果中参与计算的测量结果,例如操作人员可以基于探头振动前后的超声回波信号或超声图像的提示,自行判断该次结果是否有效,是否可以参与目标对象的弹性测量结果的计算,然后将n次弹性测量结果中的有效的测量结果(没有被提示探头振动前后的超声回波信号或超声图像的测试结果以及操作人员决定有效的测量结果)中的中位数作为目标对象的弹性测量结果。
一个实施例中,一种超声成像设备可以包括探头、驱动机构、发射电路、接收电路和处理器。该振动机构可以驱动振子或探头振动以产生在目标对象中传播的剪切波。该发射电路可以激励该探头向该目标对象发射超声波以检测在 该目标对象中传播的所述剪切波。接收电路可以通过探头接收从目标对象返回的超声回波以获得超声回波信号。处理器可以处理该超声回波信号以获得该目标对象的超声图像或在该目标对象中传播的剪切波的剪切波传播参数。
该处理器还可以根据超声回波信号或该超声图像或根据所获得的剪切波传播参数确定该振子或该探头的振动状态是否存在异常,并且当确定振子或探头的振动状态存在异常时,执行如下至少一种步骤:
提示振子或探头处于异常状态;
控制振子或探头停止振动;
不输出当前振动时该超声成像设备获得的剪切波的传播参数;
提示当前振动时该超声成像设备获得的剪切波的传播参数异常;
停止通过该超声成像设备获取剪切波的传播参数。
一个实施例中,该处理器可以检测该超声回波信号或该超声图像中的噪声信号,并且当检测的噪声信号大于或等于预设比例时,确定该振子或者该探头的振动状态存在异常。
一个实施例中,处理器也可以检测该超声回波信号或该超声图像的时域特征或频域特征,并且当该时域特征或频域特征小于预设阈值时,确定该振子或该探头的振动状态存在异常。这里,该超声回波信号或该超声图像的时域特征或频域特征可以是时域统计特征或频域统计特征。例如,可以包括该超声回波信号或该超声图像的图像数据的幅度、方差、均值、斜率、带宽等等中的至少一个。
一个实施例中,处理器还可以通过两个或多个不同时间点或时间段(例如,某个时刻之前和之后的某个时间点或时间段)内来自于目标对象中相同位置或者相同区域的回波信号之间的相关性来确定振子或探头的振动状态是否存在异常。例如,一个实施例中,处理器可以从该超声回波信号中选择来自于目标对象中相同位置或相同区域的至少两个回波信号子集,其中每个回波信号子集为一个时刻或一个时间段内所获得的超声回波信号,并计算该至少两个回波信号子集中的回波信号子集之间的相关性,然后根据该相关性来确定振子或探头的振动状态是否存在异常。例如,当该相关性小于一个相关性阈值时,可以确定该振子或该探头的振动状态存在异常。
一个实施例中,处理器可以根据获得的剪切波传播参数来确定该振子或该探头的振动状态是否存在异常或者确定该获得的剪切波传播参数是否有效。例如,处理器可以确定当前计算获得的剪切波传播参数是否满足预设条件,当获得的剪切波传播参数不满足预设条件时,确定该振子或该探头的振动状态存在异常,或者确定该获得的剪切波传播参数有问题,是无效的。这里的预设条件可以预先设定,例如可以是根据经验确定的通常的剪切波传播参数所应该落入的范围。如果当前计算获得的剪切波传播参数与剪切波传播参数通常的值偏离过大,可以认为振子或探头的振动状态存在异常,或者直接认为该获得的剪切波传播参数是不准确的,是无效的。这里,用来确定剪切波传播参数是否有效或者确定振子或探头的振动状态是否存在异常的剪切波传播参数可以是任何适合的剪切波传播参数,比如剪切波的幅度、剪切波的频率、剪切波的传播速度、剪切波的传播轨迹等等。例如,当剪切波的幅度过小,比如小于某个剪切波幅度阈值,可以认为此时获得的剪切波传播参数是有问题的,是无效的,或者认为该剪切波传播参数对应的振子或探头的振动状态存在异常;或者,当剪切波的频率过高,比如高于某个剪切波频率阈值,可以认为此时获得的剪切波传播参数是有问题的,是无效的,或者认为该剪切波传播参数对应的振子或探头的振动状态存在异常;等等。
例如,当振子或探头的振动频率为50Hz时,剪切波的频率应该在25Hz至75Hz的范围内,如果此时获得的剪切波传播参数中,剪切波的频率不在25Hz至75Hz的范围内,则可以认为当前获得的剪切波传播参数是无效的,或者该剪切波传播参数对应的振子或探头的振动状态存在异常。或者,在一些情况下,在瞬时弹性成像模式下,剪切波的幅度应该满足衰减10dB的长度应该超过6.5cm。如果获得的剪切波传播参数中,剪切波的幅度不满足这个条件,则可以认为当前获得的剪切波传播参数是无效的,或者该剪切波传播参数对应的振子或探头的振动状态存在异常。但是,应该理解,这里列举的几个实例仅仅是起举例说明的作用,但是这里所说的预设条件不限于此,而是可以根据实际情况的需要而灵活设定。
剪切波的幅度和剪切波的频率在超声成像设备获得的弹性成像图像中能够直观的观察到。
与前文所述的根据超声回波信号或者超声图像来确定振子或探头的振动状态是否存在异常的方法类似,也可以使用类似的方法根据该超声回波信号或超声图像来确定当前获得的剪切波传播参数是否有效。例如,该处理器可以检测该超声回波信号或该超声图像中的噪声信号,并且当检测的噪声信号大于或等于预设比例时,确定当前获得的剪切波传播参数无效;或者,处理器也可以检测该超声回波信号或该超声图像的时域特征或频域特征,并且当该时域特征或频域特征小于预设阈值时,确定确定当前获得的剪切波传播参数无效;或者处理器可以从超声回波信号中选择来自于目标对象中相同位置或相同区域的至少两个回波信号子集,其中每个回波信号子集为一个时刻或一个时间段内所获得的超声回波信号,并计算该至少两个回波信号子集中的回波信号子集之间的相关性,然后根据该相关性来确定当前获得的剪切波传播参数是否有效。例如,当该相关性小于一个相关性阈值时,可以确定当前获得的剪切波传播参数无效;等等。
一个实施例中,处理器也可以根据前述的超声回波信号、超声图像和获得的剪切波传播参数中的多个的组合来确定振子或探头的振动状态是否存在异常或者确定该获得的剪切波传播参数是否有效。
一个实施例中,一种超声成像设备可以包括探头、振动机构、发射电路、接收电路和处理器。该振动机构可以驱动振子或探头振动以产生在目标对象中传播的剪切波。该发射电路可以激励该探头向目标对象发射超声波以检测在该目标对象中传播的剪切波。接收电路可以通过该探头接收从目标对象返回的超声回波以获得超声回波信号。处理器可以处理该超声回波信号以获得目标对象的超声图像或在目标对象中传播的剪切波的剪切波传播参数。
该处理器还可以根据超声回波信号或超声图像或根据获得的剪切波传播参数确定振子或探头的振动状态是否存在异常,并且当确定振子或探头的振动状态存在异常时,执行如下至少一种步骤:提示振子或探头处于异常状态;不输出当前振动时超声成像设备获得的剪切波传播参数;提示当前振动时超声成像设备获得的剪切波传播参数异常;停止通过超声成像设备获取剪切波传播参数。并且,该处理器还根据该超声回波信号或该超声图像或根据获得的剪切波传播参数确定振子或探头的振动状态是否恢复正常,并且当确定振子或探头的 振动状态恢复正常时,执行如下至少一种步骤:提示振子或探头恢复正常状态;恢复输出当前振动时超声成像设备获得的剪切波传播参数;提示当前振动时超声成像设备获得的剪切波传播参数恢复正常;恢复通过超声成像设备获取剪切波传播参数。
一个实施例中,处理器可以检测超声回波信号或超声图像中的噪声信号,并且当检测的噪声信号小于预设比例时,确定振子或探头的振动状态恢复正常。
一个实施例中,处理器也可以检测超声回波信号或超声图像的时域特征或频域特征,并且当时域特征或频域特征大于或等于预设阈值时,确定振子或探头的振动状态恢复正常。该超声回波信号或超声图像的时域特征或频域特征可以包括超声回波信号或超声图像的图像数据的幅度、方差、均值、斜率、带宽等等中的至少一个。
一个实施例中,处理器可以从超声回波信号中选择来自于目标对象中相同位置或相同区域的至少两个回波信号子集,其中每个回波信号子集为一个时刻或一个时间段内所获得的超声回波信号,计算该至少两个回波信号子集中的回波信号子集之间的相关性,并根据该相关性确定振子或探头的振动状态是否恢复正常。例如,可以当该相关性大于或等于相关性阈值时,确定振子或探头的振动状态恢复正常。
一个实施例中,处理器可以确定当前所获得的剪切波传播参数是否满足预设条件,当获得的剪切波传播参数满足预设条件时,确定振子或探头的振动状态恢复正常。
一个实施例中,一种超声成像设备可以包括探头、振动机构、发射电路、接收电路和处理器。该振动机构可以驱动振子或探头振动以产生在目标对象中传播的剪切波。该发射电路可以激励探头向目标对象发射超声波以检测在目标对象中传播的剪切波。该接收电路可以通过探头接收从目标对象返回的超声回波以获得超声回波信号。处理器可以处理超声回波信号以获得目标对象的超声图像或剪切波传播参数,并根据该超声回波信号或该超声图像或根据所获得的剪切波传播参数确定振子或探头的振动状态是否存在异常。
一个实施例中,一种超声成像设备可以包括探头、振动机构、发射电路、 接收电路和处理器。振动机构可以驱动振子或探头振动以产生在目标对象中传播的剪切波。发射电路可以激励探头向目标对象发射超声波。接收电路可以通过探头接收从目标对象返回的超声回波以获得超声回波信号。
该处理器可以获取振子或探头振动之前接收电路获得的超声回波信号,获得振前回波信号,或者获得根据该振前回波信号获得的振前超声图像,并且根据该振前回波信号或该振前超声图像确定振子或探头与目标对象之间的接触状态是否存在异常。
一个实施例中,处理器可以检测振前回波信号或振前超声图像中的噪声信号,并且当检测的噪声信号大于或等于预设比例时,确定振子或探头与目标对象之间的接触状态存在异常。
一个实施例中,处理器可以检测振前回波信号或振前超声图像的时域特征或频域特征,并且当时域特征或频域特征小于预设阈值时,确定振子或探头与目标对象之间的接触状态存在异常。该振前回波信号或振前超声图像的时域特征或频域特征可以包括振前回波信号或振前超声图像的幅度、方差、均值、斜率、带宽等等中的至少一个。
一个实施例中,处理器可以从振前回波信号中选择来自于目标对象中相同位置或相同区域的至少两个回波信号子集,其中每个回波信号子集为一个时刻或一个时间段内所获得的超声回波信号,计算该至少两个回波信号子集中的回波信号子集之间的相关性,并根据该相关性确定振子或探头与目标对象之间的接触状态是否存在异常。例如,可以当相关性小于相关性阈值时,确定振子或探头与目标对象之间的接触状态存在异常。
一个实施例中,当确定振子或探头与目标对象之间的接触状态存在异常,处理器还提示振子或探头与目标对象之间的接触状态存在异常。
一个实施例中,当确定振子或探头与目标对象之间的接触状态不存在异常时(例如,检测到的振前回波信号或振前超声图像中的噪声信号小于预设比例,检测到的振前回波信号或振前超声图像的时域特征或频域特征大于预设阈值,等等),处理器可以启动该超声成像设备开始进行弹性成像。例如,处理器可以控制振动机构驱动振子或探头振动以产生在目标对象中传播的剪切波,控制发射电路激励探头向目标对象发射超声波以检测在目标对象中传播的剪切波, 控制接收电路通过探头接收从目标对象返回的超声回波以获得超声回波信号,并处理超声回波信号以获得目标对象的超声图像或剪切波传播参数。
一个实施例中,一种超声成像设备可以包括探头、振动机构、发射电路、接收电路和处理器。振动机构可以驱动振子或探头振动以产生在目标对象中传播的剪切波。发射电路可以激励探头向目标对象发射超声波以检测在目标对象中传播的剪切波。接收电路可以通过探头接收从目标对象返回的超声回波以获得超声回波信号。处理器,处理器可以处理超声回波信号以获得目标对象的超声图像或剪切波传播参数。
本实施例中,处理器还可以获取振子或探头振动之前的超声回波信号作为第一超声回波信号,以及获取振子或探头振动之后的超声回波信号作为第二超声回波信号。然后,确定该第一超声回波信号和第二超声回波信号之间的一致性,并根据该一致性确定振子或探头的该振动(即获得该第一超声回波信号和获得第二超声回波信号之间的振子或探头的振动)是否存在异常。
一个实施例中,处理器可以根据相关性来确定第一超声回波信号和第二超声回波信号之间的一致性并根据一致性确定振子或探头的振动是否存在异常。例如,处理器可以计算第一超声回波信号和第二超声回波信号之间的相关性,并根据该相关性确定振子或探头的振动是否存在异常。例如,可以当相关性小于相关性阈值时,确定振子或探头的振动存在异常。
一个实施例中,处理器可以根据该第一超声回波信号获得第一超声图像数据,根据该第二超声回波信号获得第二超声图像数据,并根据第一超声图像数据和第二超声图像数据计算第一超声图像数据和第二超声图像数据之间的相对位移,然后根据该相对位移确定振子或探头的振动是否存在异常。例如,可以当该相对位移大于预设阈值时,确定振子或探头的振动存在异常。
一个实施例中,一种超声成像方法,可以包括:驱动振子或探头振动以产生在目标对象中传播的剪切波;向目标对象发射超声波以检测在目标对象中传播的剪切波;接收从目标对象返回的超声回波以获得超声回波信号;处理超声回波信号以获得目标对象的超声图像或剪切波传播参数;根据超声回波信号或超声图像或根据获得的剪切波传播参数确定振子或探头的振动状态是否存在异常,并且当确定振子或探头的振动状态存在异常时,执行如下至少一种步骤: 提示振子或探头处于异常状态;控制振子或探头停止振动;不输出当前振动时超声成像设备获得的剪切波的传播参数;提示当前振动时超声成像设备获得的剪切波的传播参数异常;停止通过超声成像设备获取剪切波的传播参数。
一个实施例中,可以检测超声回波信号或超声图像中的噪声信号,并且当检测的噪声信号大于或等于预设比例时,确定振子或探头的振动状态存在异常。
一个实施例中,可以检测超声回波信号或超声图像的时域特征或频域特征,并且当时域特征或频域特征小于预设阈值时,确定振子或探头的振动状态存在异常。该超声回波信号或超声图像的时域特征或频域特征可以包括超声回波信号或超声图像的图像数据的幅度、方差、均值、斜率、带宽等等中的至少一个。
一个实施例中,可以从超声回波信号中选择来自于目标对象中相同位置或相同区域的至少两个回波信号子集,其中每个回波信号子集为一个时刻或一个时间段内所获得的超声回波信号,计算该至少两个回波信号子集中的回波信号子集之间的相关性,并根据该相关性确定振子或探头的振动状态是否存在异常。例如,可以当相关性小于相关性阈值时,确定振子或探头的振动状态存在异常。
一个实施例中,可以确定所获得的剪切波传播参数是否满足预设条件,当获得的剪切波传播参数不满足预设条件时,确定振子或探头的振动状态存在异常。
一个实施例中,一种超声成像方法可以包括:驱动振子或探头振动以产生在目标对象中传播的剪切波;向目标对象发射超声波以检测在目标对象中传播的剪切波;接收从目标对象返回的超声回波以获得超声回波信号;处理超声回波信号以获得目标对象的超声图像或剪切波传播参数,并根据所述超声回波信号、所述超声图像和获得的剪切波传播参数中的至少一个确定所述振子或所述探头的振动状态是否存在异常或者确定获得的剪切波传播参数是否有效。
一个实施例中,一种超声成像方法可以包括:在振子或者探头振动之前,向目标对象发射超声波;接收从目标对象返回的超声回波以获得振前回波信号;根据振前回波信号或者由振前回波信号获得的振前超声图像确定振子或探 头与目标对象之间的接触状态是否存在异常。
一个实施例中,可以检测振前回波信号或振前超声图像中的噪声信号,并且当检测的噪声信号大于或等于预设比例时,确定振子或探头与目标对象之间的接触状态存在异常。
一个实施例中,可以检测振前回波信号或振前超声图像的时域特征或频域特征,并且当时域特征或频域特征小于预设阈值时,确定振子或探头与目标对象之间的接触状态存在异常。
一个实施例中,可以从振前回波信号中选择来自于目标对象中相同位置或相同区域的至少两个回波信号子集,其中每个回波信号子集为一个时刻或一个时间段内所获得的超声回波信号,计算该至少两个回波信号子集中的回波信号子集之间的相关性,并根据该相关性确定振子或探头与目标对象之间的接触状态是否存在异常。例如,可以当相关性小于相关性阈值时,确定振子或探头与目标对象之间的接触状态存在异常。
一个实施例中,当确定振子或探头与目标对象之间的接触状态不存在异常时,还可以驱动振子或探头振动以产生在目标对象中传播的剪切波,激励探头向目标对象发射超声波以检测在目标对象中传播的剪切波,通过探头接收从目标对象返回的超声回波以获得超声回波信号,处理超声回波信号以获得目标对象的超声图像或剪切波传播参数。
一个实施例中,一种超声成像方法可以包括:驱动振子或探头振动以产生在目标对象中传播的剪切波;激励探头向目标对象发射超声波以检测在目标对象中传播的剪切波;通过探头接收从目标对象返回的超声回波以获得超声回波信号;处理超声回波信号以获得目标对象的超声图像或剪切波传播参数;获取振子或探头振动之前的超声回波信号作为第一超声回波信号;获取振子或探头振动之后的超声回波信号作为第二超声回波信号;确定第一超声回波信号和第二超声回波信号之间的一致性;根据该一致性确定振子或探头的振动是否存在异常。
例如,一个实施例中,可以计算第一超声回波信号和第二超声回波信号之间的相关性,并根据该相关性确定振子或探头的振动是否存在异常。
本发明实施例的超声成像设备及方法,基于超声图像或超声回波信号判断 探头是否出现空振或滑动,以及测量结果是否有效,防止探头空振影响探头的使用寿命,提高了弹性测量结果的有效性和准确度。
本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本实用新型的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本发明实施例中所使用的技术术语仅用于说明特定实施例而并不旨在限定本发明。在本文中,单数形式“一”、“该”及“”用于同时包括复数形式,除非上下文中明确另行说明。进一步地,在说明书中所使用的用于“包括”和/或“包含”是指存在特征、整体、步骤、操作、元件和/或构件,但是并不排除存在或增加一个或多个其它特征、整体、步骤、操作、元件和/或构件。
在所附权利要求中对应结构、材料、动作以及所有装置或者步骤以及功能元件的等同形式(如果存在的话)旨在包括结合其他明确要求的元件用于执行该功能的任何结构、材料或动作。本发明的描述出于实施例和描述的目的被给出,但并不旨在是穷举的或者将被发明限制在所公开的形式。在不偏离本发明的范围和精神的情况下,多种修改和变形对于本领域的一般技术人员而言是显而易见的。本发明中所描述的实施例能够更好地揭示本发明的原理与实际应用,并使本领域的一般技术人员可了解本发明。
本发明中所描述的流程图仅仅为一个实施例,在不偏离本发明的精神的情况下对此图示或者本发明中的步骤可以有多种修改变化。比如,可以不同次序的执行这些步骤,或者可以增加、删除或者修改某些步骤。本领域的一般技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (44)

  1. 一种超声成像设备,其特征在于,包括:
    探头;
    振动机构,所述振动机构驱动振子或所述探头振动以产生在目标对象中传播的剪切波;
    发射电路,所述发射电路激励所述探头向所述目标对象发射超声波以检测在所述目标对象中传播的所述剪切波;
    接收电路,所述接收电路通过所述探头接收从所述目标对象返回的超声回波以获得超声回波信号;
    处理器,所述处理器处理所述超声回波信号以获得所述目标对象的超声图像或剪切波传播参数;
    其中,所述处理器还根据所述超声回波信号或所述超声图像或根据获得的剪切波传播参数确定所述振子或所述探头的振动状态是否存在异常,并且当确定所述振子或所述探头的振动状态存在异常时,执行如下至少一种步骤:
    提示所述振子或所述探头处于异常状态;
    控制所述振子或所述探头停止振动;
    不输出当前振动时所述超声成像设备获得的剪切波的传播参数;
    提示当前振动时所述超声成像设备获得的剪切波的传播参数异常;
    停止通过所述超声成像设备获取剪切波的传播参数。
  2. 根据权利要求1所述的设备,其特征在于,所述处理器根据所述超声回波信号或所述超声图像确定所述振子或所述探头的振动状态是否存在异常包括:
    检测所述超声回波信号或所述超声图像中的噪声信号,并且当检测的噪声信号大于或等于预设比例时,确定所述振子或所述探头的振动状态存在异常。
  3. 根据权利要求1所述的设备,其特征在于,所述处理器根据所述超声回波信号或所述超声图像确定所述振子或所述探头的振动状态是否存在异常包括:
    检测所述超声回波信号或所述超声图像的时域特征或频域特征,并且当所述时域特征或频域特征小于预设阈值时,确定所述振子或所述探头的振动状态存在异常。
  4. 根据权利要求3所述的设备,其特征在于:所述超声回波信号或所述超声图像的时域特征或频域特征包括所述超声回波信号或所述超声图像的图像数据的幅度、方差、均值、斜率、带宽中的至少一个。
  5. 根据权利要求1所述的设备,其特征在于,所述处理器根据所述超声回波信号确定所述振子或所述探头的振动状态是否存在异常包括:
    从所述超声回波信号中选择来自于所述目标对象中相同位置或相同区域的至少两个回波信号子集,其中每个回波信号子集为一个时刻或一个时间段内所获得的超声回波信号;
    计算所述至少两个回波信号子集中的回波信号子集之间的相关性;
    根据所述相关性确定所述振子或所述探头的振动状态是否存在异常。
  6. 根据权利要求5所述的设备,其特征在于,根据所述相关性确定所述振子或所述探头的振动状态是否存在异常包括:当所述相关性小于相关性阈值时,确定所述振子或所述探头的振动状态存在异常。
  7. 根据权利要求1所述的设备,其特征在于,所述处理器根据获得的剪切波传播参数确定所述振子或所述探头的振动状态是否存在异常包括:
    确定获得的剪切波传播参数是否满足预设条件,当获得的剪切波传播参数不满足预设条件时,确定所述振子或所述探头的振动状态存在异常。
  8. 一种超声成像设备,其特征在于,包括:
    探头;
    振动机构,所述振动机构驱动振子或所述探头振动以产生在目标对象中传播的剪切波;
    发射电路,所述发射电路激励所述探头向所述目标对象发射超声波以检测在所述目标对象中传播的所述剪切波;
    接收电路,所述接收电路通过所述探头接收从所述目标对象返回的超声回波以获得超声回波信号;
    处理器,所述处理器处理所述超声回波信号以获得所述目标对象的超声图像或剪切波传播参数;
    其中,所述处理器还根据所述超声回波信号或所述超声图像或根据获得的剪切波传播参数确定所述振子或所述探头的振动状态是否存在异常,并且当确定所述振子或所述探头的振动状态存在异常时,执行如下至少一种步骤:
    提示所述振子或所述探头处于异常状态;
    不输出当前振动时所述超声成像设备获得的剪切波传播参数;
    提示当前振动时所述超声成像设备获得的剪切波传播参数异常;
    停止通过所述超声成像设备获取剪切波传播参数;
    以及
    所述处理器还根据所述超声回波信号或所述超声图像或根据获得的剪切波传播参数确定所述振子或所述探头的振动状态是否恢复正常,并且当确定所述振子或所述探头的振动状态恢复正常时,执行如下至少一种步骤:
    提示所述振子或所述探头恢复正常状态;
    恢复输出当前振动时所述超声成像设备获得的剪切波传播参数;
    提示当前振动时所述超声成像设备获得的剪切波传播参数恢复正常;
    恢复通过所述超声成像设备获取剪切波传播参数。
  9. 根据权利要求8所述的设备,其特征在于,所述处理器根据所述超声回波信号或所述超声图像确定所述振子或所述探头的振动状态是否恢复正常包括:
    检测所述超声回波信号或所述超声图像中的噪声信号,并且当检测的噪声信号小于预设比例时,确定所述振子或所述探头的振动状态恢复正常。
  10. 根据权利要求8所述的设备,其特征在于,所述处理器根据所述超声 回波信号或所述超声图像确定所述振子或所述探头的振动状态是否恢复正常包括:
    检测所述超声回波信号或所述超声图像的时域特征或频域特征,并且当所述时域特征或频域特征大于或等于预设阈值时,确定所述振子或所述探头的振动状态恢复正常。
  11. 根据权利要求10所述的设备,其特征在于:所述超声回波信号或所述超声图像的时域特征或频域特征包括所述超声回波信号或所述超声图像的图像数据的幅度、方差、均值、斜率、带宽中的至少一个。
  12. 根据权利要求8所述的设备,其特征在于,所述处理器根据所述超声回波信号确定所述振子或所述探头的振动状态是否恢复正常包括:
    从所述超声回波信号中选择来自于所述目标对象中相同位置或相同区域的至少两个回波信号子集,其中每个回波信号子集为一个时刻或一个时间段内所获得的超声回波信号;
    计算所述至少两个回波信号子集中的回波信号子集之间的相关性;
    根据所述相关性确定所述振子或所述探头的振动状态是否恢复正常。
  13. 根据权利要求12所述的设备,其特征在于,根据所述相关性确定所述振子或所述探头的振动状态是否恢复正常包括:当所述相关性大于或等于相关性阈值时,确定所述振子或所述探头的振动状态恢复正常。
  14. 根据权利要求8所述的设备,其特征在于,所述处理器根据获得的剪切波传播参数确定所述振子或所述探头的振动状态是否恢复正常包括:
    确定获得的剪切波传播参数是否满足预设条件,当获得的剪切波传播参数满足预设条件时,确定所述振子或所述探头的振动状态恢复正常。
  15. 一种超声成像设备,其特征在于,包括:
    探头;
    振动机构,所述振动机构驱动振子或所述探头振动以产生在目标对象中传播的剪切波;
    发射电路,所述发射电路激励所述探头向所述目标对象发射超声波以检测在所述目标对象中传播的所述剪切波;
    接收电路,所述接收电路通过所述探头接收从所述目标对象返回的超声回波以获得超声回波信号;
    处理器,所述处理器处理所述超声回波信号以获得所述目标对象的超声图像或剪切波传播参数;
    其中,所述处理器还根据所述超声回波信号、所述超声图像和获得的剪切波传播参数中的至少一个确定所述振子或所述探头的振动状态是否存在异常或者确定获得的剪切波传播参数是否有效。
  16. 一种超声成像设备,其特征在于,包括:
    探头;
    振动机构,所述振动机构驱动振子或所述探头振动以产生在目标对象中传播的剪切波;
    发射电路,所述发射电路激励所述探头向所述目标对象发射超声波;
    接收电路,所述接收电路通过所述探头接收从所述目标对象返回的超声回波以获得超声回波信号;
    处理器,所述处理器:
    获取所述振子或所述探头振动之前所述接收电路获得的超声回波信号,获得振前回波信号,或者获得根据振前回波信号获得的振前超声图像;
    根据所述振前回波信号或所述振前超声图像确定所述振子或所述探头与所述目标对象之间的接触状态是否存在异常。
  17. 根据权利要求16所述的设备,其特征在于,所述处理器根据所述振前回波信号或所述振前超声图像确定所述振子或所述探头与所述目标对象之间的接触状态是否存在异常包括:
    检测所述振前回波信号或所述振前超声图像中的噪声信号,并且当检测的 噪声信号大于或等于预设比例时,确定所述振子或所述探头与所述目标对象之间的接触状态存在异常。
  18. 根据权利要求16所述的设备,其特征在于,所述处理器根据所述振前回波信号或所述振前超声图像确定所述振子或所述探头与所述目标对象之间的接触状态是否存在异常包括:
    检测所述振前回波信号或所述振前超声图像的时域特征或频域特征,并且当所述时域特征或频域特征小于预设阈值时,确定所述振子或所述探头与所述目标对象之间的接触状态存在异常。
  19. 根据权利要求18所述的设备,其特征在于:所述振前回波信号或所述振前超声图像的时域特征或频域特征包括所述振前回波信号或所述振前超声图像的幅度、方差、均值、斜率、带宽中的至少一个。
  20. 根据权利要求16所述的设备,其特征在于,所述处理器根据所述振前回波信号确定所述振子或所述探头与所述目标对象之间的接触状态是否存在异常包括:
    从所述振前回波信号中选择来自于所述目标对象中相同位置或相同区域的至少两个回波信号子集,其中每个回波信号子集为一个时刻或一个时间段内所获得的超声回波信号;
    计算所述至少两个回波信号子集中的回波信号子集之间的相关性;
    根据所述相关性确定所述振子或所述探头与所述目标对象之间的接触状态是否存在异常。
  21. 根据权利要求20所述的设备,其特征在于,根据所述相关性确定所述振子或所述探头与所述目标对象之间的接触状态是否存在异常包括:当所述相关性小于相关性阈值时,确定所述振子或所述探头与所述目标对象之间的接触状态存在异常。
  22. 根据权利要求16至21中任意一项所述的设备,其特征在于,当确定所述振子或所述探头与所述目标对象之间的接触状态存在异常,所述处理器还提示所述振子或所述探头与所述目标对象之间的接触状态存在异常。
  23. 根据权利要求16至21中任意一项所述的设备,其特征在于,当确定所述振子或所述探头与所述目标对象之间的接触状态不存在异常时,所述处理器:
    控制所述振动机构驱动振子或所述探头振动以产生在目标对象中传播的剪切波;
    控制所述发射电路激励所述探头向所述目标对象发射超声波以检测在所述目标对象中传播的所述剪切波;
    控制所述接收电路通过所述探头接收从所述目标对象返回的超声回波以获得超声回波信号;
    处理所述超声回波信号以获得所述目标对象的超声图像或剪切波传播参数。
  24. 一种超声成像设备,其特征在于,包括:
    探头;
    振动机构,所述振动机构驱动振子或所述探头振动以产生在目标对象中传播的剪切波;
    发射电路,所述发射电路激励所述探头向所述目标对象发射超声波以检测在所述目标对象中传播的所述剪切波;
    接收电路,所述接收电路通过所述探头接收从所述目标对象返回的超声回波以获得超声回波信号;
    处理器,所述处理器处理所述超声回波信号以获得所述目标对象的超声图像或剪切波传播参数;
    其中,所述处理器还:
    获取所述振子或所述探头振动之前的超声回波信号作为第一超声回波信号;
    获取所述振子或所述探头振动之后的超声回波信号作为第二超声回波信号;
    确定所述第一超声回波信号和所述第二超声回波信号之间的一致性;
    根据所述一致性确定所述振子或所述探头的所述振动是否存在异常。
  25. 根据权利要求24所述的设备,其特征在于,确定所述第一超声回波信号和所述第二超声回波信号之间的一致性并根据所述一致性确定所述振子或所述探头的所述振动是否存在异常包括:
    计算所述第一超声回波信号和所述第二超声回波信号之间的相关性;
    根据所述相关性确定所述振子或所述探头的所述振动是否存在异常。
  26. 根据权利要求25所述的设备,其特征在于,根据所述相关性确定所述振子或所述探头的所述振动是否存在异常包括:当所述相关性小于相关性阈值时,确定所述振子或所述探头的所述振动存在异常。
  27. 根据权利要求24所述的设备,其特征在于,确定所述第一超声回波信号和所述第二超声回波信号之间的一致性并根据所述一致性确定所述振子或所述探头的所述振动是否存在异常包括:
    根据所述第一超声回波信号获得第一超声图像数据;
    根据所述第二超声回波信号获得第二超声图像数据;
    根据所述第一超声图像数据和所述第二超声图像数据计算所述第一超声图像数据和所述第二超声图像数据之间的相对位移;
    根据所述相对位移确定所述振子或所述探头的所述振动是否存在异常。
  28. 根据权利要求27所述的设备,其特征在于,根据所述相对位移确定所述振子或所述探头的所述振动是否存在异常包括:当所述相对位移大于预设阈值时,确定所述振子或所述探头的所述振动存在异常。
  29. 一种超声成像方法,其特征在于,包括:
    驱动振子或探头振动以产生在目标对象中传播的剪切波;
    向所述目标对象发射超声波以检测在所述目标对象中传播的所述剪切波;
    接收从所述目标对象返回的超声回波以获得超声回波信号;
    处理所述超声回波信号以获得所述目标对象的超声图像或剪切波传播参数;
    根据所述超声回波信号或所述超声图像或根据获得的剪切波传播参数确定所述振子或所述探头的振动状态是否存在异常,并且当确定所述振子或所述探头的振动状态存在异常时,执行如下至少一种步骤:
    提示所述振子或所述探头处于异常状态;
    控制所述振子或所述探头停止振动;
    不输出当前振动时所述超声成像设备获得的剪切波的传播参数;
    提示当前振动时所述超声成像设备获得的剪切波的传播参数异常;
    停止通过所述超声成像设备获取剪切波的传播参数。
  30. 根据权利要求29所述的方法,其特征在于,根据所述超声回波信号或所述超声图像确定所述振子或所述探头的振动状态是否存在异常包括:
    检测所述超声回波信号或所述超声图像中的噪声信号,并且当检测的噪声信号大于或等于预设比例时,确定所述振子或所述探头的振动状态存在异常。
  31. 根据权利要求29所述的方法,其特征在于,根据所述超声回波信号或所述超声图像确定所述振子或所述探头的振动状态是否存在异常包括:
    检测所述超声回波信号或所述超声图像的时域特征或频域特征,并且当所述时域特征或频域特征小于预设阈值时,确定所述振子或所述探头的振动状态存在异常。
  32. 根据权利要求31所述的方法,其特征在于:所述超声回波信号或所述超声图像的时域特征或频域特征包括所述超声回波信号或所述超声图像的图像数据的幅度、方差、均值、斜率、带宽中的至少一个。
  33. 根据权利要求29所述的方法,其特征在于,根据所述超声回波信号确定所述振子或所述探头的振动状态是否存在异常包括:
    从所述超声回波信号中选择来自于所述目标对象中相同位置或相同区域的至少两个回波信号子集,其中每个回波信号子集为一个时刻或一个时间段内所获得的超声回波信号;
    计算所述至少两个回波信号子集中的回波信号子集之间的相关性;
    根据所述相关性确定所述振子或所述探头的振动状态是否存在异常。
  34. 根据权利要求33所述的方法,其特征在于,根据所述相关性确定所述振子或所述探头的振动状态是否存在异常包括:当所述相关性小于相关性阈值时,确定所述振子或所述探头的振动状态存在异常。
  35. 根据权利要求29所述的方法,其特征在于,根据获得的剪切波传播参数确定所述振子或所述探头的振动状态是否存在异常包括:
    确定获得的剪切波传播参数是否满足预设条件,当获得的剪切波传播参数不满足预设条件时,确定所述振子或所述探头的振动状态存在异常。
  36. 一种超声成像方法,其特征在于,包括:
    驱动振子或探头振动以产生在目标对象中传播的剪切波;
    向所述目标对象发射超声波以检测在所述目标对象中传播的所述剪切波;
    接收从所述目标对象返回的超声回波以获得超声回波信号;
    处理所述超声回波信号以获得所述目标对象的超声图像或剪切波传播参数,并根据所述超声回波信号、所述超声图像和获得的剪切波传播参数中的至少一个确定所述振子或所述探头的振动状态是否存在异常或者确定获得的剪切波传播参数是否有效。
  37. 一种超声成像方法,其特征在于,包括:
    在振子或者探头振动之前,向目标对象发射超声波;
    接收从所述目标对象返回的超声回波以获得振前回波信号;
    根据所述振前回波信号或者由所述振前回波信号获得的振前超声图像确定所述振子或所述探头与所述目标对象之间的接触状态是否存在异常。
  38. 根据权利要求37所述的方法,其特征在于,根据所述振前回波信号或所述振前超声图像确定所述振子或所述探头与所述目标对象之间的接触状态是否存在异常包括:
    检测所述振前回波信号或所述振前超声图像中的噪声信号,并且当检测的噪声信号大于或等于预设比例时,确定所述振子或所述探头与所述目标对象之间的接触状态存在异常。
  39. 根据权利要求37所述的方法,其特征在于,根据所述振前回波信号或所述振前超声图像确定所述振子或所述探头与所述目标对象之间的接触状态是否存在异常包括:
    检测所述振前回波信号或所述振前超声图像的时域特征或频域特征,并且当所述时域特征或频域特征小于预设阈值时,确定所述振子或所述探头与所述目标对象之间的接触状态存在异常。
  40. 根据权利要求37所述的方法,其特征在于,根据所述振前回波信号确定所述振子或所述探头与所述目标对象之间的接触状态是否存在异常包括:
    从所述振前回波信号中选择来自于所述目标对象中相同位置或相同区域的至少两个回波信号子集,其中每个回波信号子集为一个时刻或一个时间段内所获得的超声回波信号;
    计算所述至少两个回波信号子集中的回波信号子集之间的相关性;
    根据所述相关性确定所述振子或所述探头与所述目标对象之间的接触状态是否存在异常。
  41. 根据权利要求40所述的方法,其特征在于,根据所述相关性确定所述振子或所述探头与所述目标对象之间的接触状态是否存在异常包括:当所述相关性小于相关性阈值时,确定所述振子或所述探头与所述目标对象之间的接 触状态存在异常。
  42. 根据权利要求37至41中任意一项所述的方法,其特征在于,当确定所述振子或所述探头与所述目标对象之间的接触状态不存在异常时,还包括:
    驱动所述振子或所述探头振动以产生在所述目标对象中传播的剪切波;
    激励所述探头向所述目标对象发射超声波以检测在所述目标对象中传播的所述剪切波;
    通过所述探头接收从所述目标对象返回的超声回波以获得超声回波信号;
    处理所述超声回波信号以获得所述目标对象的超声图像或剪切波传播参数。
  43. 一种超声成像方法,其特征在于,包括:
    驱动振子或探头振动以产生在目标对象中传播的剪切波;
    激励所述探头向所述目标对象发射超声波以检测在所述目标对象中传播的所述剪切波;
    通过所述探头接收从所述目标对象返回的超声回波以获得超声回波信号;
    处理所述超声回波信号以获得所述目标对象的超声图像或剪切波传播参数;
    获取所述振子或所述探头振动之前的超声回波信号作为第一超声回波信号;
    获取所述振子或所述探头振动之后的超声回波信号作为第二超声回波信号;
    确定所述第一超声回波信号和所述第二超声回波信号之间的一致性;
    根据所述一致性确定所述振子或所述探头的所述振动是否存在异常。
  44. 根据权利要求43所述的设备,其特征在于,确定所述第一超声回波信号和所述第二超声回波信号之间的一致性并根据所述一致性确定所述振子或所述探头的所述振动是否存在异常包括:
    计算所述第一超声回波信号和所述第二超声回波信号之间的相关性;
    根据所述相关性确定所述振子或所述探头的所述振动是否存在异常。
PCT/CN2020/090338 2020-05-14 2020-05-14 一种超声成像设备及方法 WO2021226957A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080000803.0A CN113939232A (zh) 2020-05-14 2020-05-14 一种超声成像设备及方法
PCT/CN2020/090338 WO2021226957A1 (zh) 2020-05-14 2020-05-14 一种超声成像设备及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/090338 WO2021226957A1 (zh) 2020-05-14 2020-05-14 一种超声成像设备及方法

Publications (1)

Publication Number Publication Date
WO2021226957A1 true WO2021226957A1 (zh) 2021-11-18

Family

ID=78526293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090338 WO2021226957A1 (zh) 2020-05-14 2020-05-14 一种超声成像设备及方法

Country Status (2)

Country Link
CN (1) CN113939232A (zh)
WO (1) WO2021226957A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008073144A (ja) * 2006-09-20 2008-04-03 Aloka Co Ltd 超音波診断装置
CN101999907A (zh) * 2009-08-26 2011-04-06 Ge医疗系统环球技术有限公司 超声诊断设备
US20120316407A1 (en) * 2011-06-12 2012-12-13 Anthony Brian W Sonographer fatigue monitoring
JP5371199B2 (ja) * 2007-04-10 2013-12-18 株式会社日立メディコ 超音波診断装置
CN104739452A (zh) * 2013-12-30 2015-07-01 深圳迈瑞生物医疗电子股份有限公司 一种超声成像装置及方法
CN106264605A (zh) * 2016-08-04 2017-01-04 无锡海斯凯尔医学技术有限公司 超声装置及产生机械振动的装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008073144A (ja) * 2006-09-20 2008-04-03 Aloka Co Ltd 超音波診断装置
JP5371199B2 (ja) * 2007-04-10 2013-12-18 株式会社日立メディコ 超音波診断装置
CN101999907A (zh) * 2009-08-26 2011-04-06 Ge医疗系统环球技术有限公司 超声诊断设备
US20120316407A1 (en) * 2011-06-12 2012-12-13 Anthony Brian W Sonographer fatigue monitoring
CN104739452A (zh) * 2013-12-30 2015-07-01 深圳迈瑞生物医疗电子股份有限公司 一种超声成像装置及方法
CN106264605A (zh) * 2016-08-04 2017-01-04 无锡海斯凯尔医学技术有限公司 超声装置及产生机械振动的装置

Also Published As

Publication number Publication date
CN113939232A (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
US10426433B2 (en) Method and device for detecting elasticity of viscous elastic medium
US20200093465A1 (en) Method and device for measuring a mean value of visco-elasticity of a region of interest
US8147410B2 (en) Method and apparatus for ultrasound imaging and elasticity measurement
WO2017071605A1 (zh) 弹性检测方法和设备
JP5478129B2 (ja) 非接触式超音波眼圧計
CN108158610B (zh) 一种弹性成像方法、装置、设备及超声成像探头
WO2019205167A1 (zh) 一种超声瞬时弹性测量设备及方法
US11826202B2 (en) Ultrasound elasticity measurement device and method
CN108065964B (zh) 一种超声成像方法、装置、设备及超声成像探头
WO2020113397A1 (zh) 一种超声成像方法以及超声成像系统
WO2019075697A1 (zh) 一种超声弹性测量装置及弹性对比测量方法
WO2019218669A1 (zh) 一种剪切波传播速度的确定方法及装置
WO2021226957A1 (zh) 一种超声成像设备及方法
JP2011072522A (ja) 超音波診断装置及び方法
WO2021226958A1 (zh) 一种超声成像设备及方法
JP2012019804A (ja) 超音波診断装置
JP5851549B2 (ja) 超音波診断装置
WO2021128083A1 (zh) 超声粘弹性测量方法、装置和存储介质
JP7288550B2 (ja) 超音波診断装置、超音波診断装置の制御方法および超音波診断装置用プロセッサ
WO2019210479A1 (zh) 剪切波弹性成像方法及超声成像设备
WO2017152629A1 (zh) 自动触发弹性检测的方法和装置
JP2024078034A (ja) 超音波診断装置および方法
JP2007020998A (ja) 超音波診断装置
JPWO2023047876A5 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935452

Country of ref document: EP

Kind code of ref document: A1