WO2021226837A1 - 天线、天线阵列和通信装置 - Google Patents

天线、天线阵列和通信装置 Download PDF

Info

Publication number
WO2021226837A1
WO2021226837A1 PCT/CN2020/089831 CN2020089831W WO2021226837A1 WO 2021226837 A1 WO2021226837 A1 WO 2021226837A1 CN 2020089831 W CN2020089831 W CN 2020089831W WO 2021226837 A1 WO2021226837 A1 WO 2021226837A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
vibrators
vibrator
connecting body
reflector
Prior art date
Application number
PCT/CN2020/089831
Other languages
English (en)
French (fr)
Inventor
刘祥龙
唐朝阳
张关喜
尚鹏
金黄平
沈龙
张碧军
陈大庚
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/089831 priority Critical patent/WO2021226837A1/zh
Priority to CN202080098860.7A priority patent/CN115315850A/zh
Publication of WO2021226837A1 publication Critical patent/WO2021226837A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems

Definitions

  • This application relates to the field of antenna technology, and more specifically, to antennas, antenna arrays, and communication devices.
  • MIMO multiple-input multiple-output
  • a dual-polarized antenna can provide the freedom of two antenna ports.
  • the antenna ports it may be necessary to increase the number of antennas, which means that the dimensions of the antenna array need to be increased.
  • the antenna spacing is limited by the operating frequency, the size of the antenna panel also increases. This is not conducive to the deployment of communication equipment (such as base stations).
  • the present application provides an antenna, an antenna array, and a communication device, in order to build more freedom of ports under a limited antenna panel size.
  • an antenna in a first aspect, includes: a plurality of elements, the plurality of elements correspond to a plurality of independent feeding points one-to-one, and each element of the plurality of elements is connected to a corresponding one Feeding point; wherein each vibrator includes two bending bodies, each bending body includes a vibrator arm and a connecting body, the first end of the connecting body is grounded at the launch plate, and the second end of the connecting body is connected to the vibrator arm The ends of the connecting body intersect, and the second end of the connecting body is connected to the corresponding feeding point.
  • the connecting body intersects with one end of the vibrator arm, and the second end of the connecting body is connected to the corresponding feed point, it can be understood that one end of the vibrator arm is connected to the corresponding feed point Or, the connecting body and the vibrator arm are connected to the corresponding feeding point at the intersection.
  • the multiple vibrators connected to the multiple feeding points can work independently based on the feeding from the feeding points. That is, one vibrator connected to each feed point can realize single-port operation. In other words, a vibrator connected to each feed point can provide a degree of freedom of a port.
  • the multiple vibrators may provide the degrees of freedom of multiple ports based on the feeding from the multiple feeding points, respectively. This helps to improve system throughput.
  • the two bending bodies of each of the multiple vibrators are symmetrically arranged.
  • the connecting body is used for balanced feeding.
  • the connecting body can be understood as a balun structure to realize the function of balanced feeding.
  • the length of the connector is ⁇ /4, which is the working wavelength.
  • the connecting body is diagonally arranged between the vibrator arm and the reflector.
  • a connector with a certain length for example, the above-mentioned ⁇ /4
  • setting it obliquely can reduce its height in the direction perpendicular to the reflector, that is, the height of the antenna can be reduced.
  • arranging the connector obliquely can also improve the cross-polarization ratio of the antenna.
  • the multiple vibrators are distributed around the center of the antenna, and the connecting body of each of the multiple vibrators runs along the first end The direction to the second end radiates from inside to outside, and the vibrator arms of the plurality of vibrators surround the connecting body of the plurality of vibrators to form a bowl shape.
  • the multiple vibrators are distributed around the center of the antenna, and the connecting body of each of the multiple vibrators runs along the second end It radiates inward and outward in the direction to the first end, and the dipole arms of the plurality of dipoles are located near the center of the antenna.
  • the above-mentioned multiple vibrators may be evenly distributed.
  • the multiple vibrators may be evenly distributed around the center of the antenna.
  • the other end of the vibrator arm includes a bent portion facing the reflector.
  • bending a part of its length in the direction of the reflector can reduce the area of the vibrator arm in the direction parallel to the reflector, which is conducive to the miniaturization of the antenna.
  • the vibrator corresponding to each port is relatively smaller, which is beneficial to reduce the coupling between the ports.
  • the vibrator arm has a comb-tooth structure, and the teeth of the comb-tooth structure face the reflector.
  • the comb-tooth structure of the vibrator arm is also conducive to miniaturization of the antenna, so that the vibrator corresponding to each port is relatively smaller, which is beneficial to reduce the coupling between the ports.
  • the antenna further includes a parasitic structure, and the parasitic structure is a metal plate-shaped structure arranged perpendicular to the reflector; wherein, the parasitic structure A partition is included, and the partition is used to isolate the multiple vibrators in different spaces.
  • the partition can isolate multiple vibrators in different spaces, which is equivalent to isolating each port in different spaces. This helps to improve the isolation between ports.
  • the parasitic structure further includes an enclosure, and the enclosure surrounds the plurality of vibrators.
  • a parasitic structure By introducing a parasitic structure, it can be used as a part of the antenna to lengthen the current distribution path, realize the downward shift of the antenna's working frequency, increase the effective aperture of the antenna, and increase the equivalent distance between the ports, so the antenna can be further miniaturized .
  • a parasitic structure inside the antenna it can cause perturbation to the electromagnetic wave emitted by the antenna, realize the phase disturbance of the electromagnetic wave transmission, and increase the slope of the phase difference between the ports, thereby helping to improve the spatial resolution of the antenna.
  • the enclosure plate is connected end to end at the periphery of the plurality of vibrators to form a closed polygon.
  • the enclosure plate is separately provided on the outer side of the plurality of vibrators, and is not closed in the vicinity of each vibrator.
  • the antenna further includes one or more layers of conductors located above the plurality of vibrators and parallel to the reflector, and each layer of conductors includes more than one layer of conductors. A conductor.
  • the plurality of conductors in each layer of conductors may be uniformly distributed or non-uniformly distributed.
  • the multilayer conductor may be printed on a printed circuit board (printed circuit board, PCB). Multiple conductors in each layer can be independent of each other.
  • PCB printed circuit board
  • multiple conductors in the same layer have different sizes and/or shapes to couple different electromagnetic energies.
  • the plurality of conductors may be non-uniformly distributed. Since conductors of different sizes are coupled with different electromagnetic energy, and conductors of different shapes are coupled with different electromagnetic energy, the current can be redistributed through the difference in coupling amplitude and phase, and thus the slope of the phase difference between ports can be changed.
  • the one or more layers of conductors include at least one resonant structure.
  • the polarization characteristics of the antenna can be improved, and the cross polarization ratio of the antenna can be improved.
  • the resonant structure is a split resonant ring
  • the multiple vibrators correspond to one or more split resonant rings
  • the split resonant rings corresponding to the same vibrator have the same opening orientation, and are different from different vibrators.
  • the corresponding split resonant ring has different opening directions.
  • each vibrator By aligning each vibrator with one or more open resonant rings, the strength of the antenna in a certain polarization direction can be enhanced.
  • the polarization purity of the ports provided by the multiple vibrators can be improved.
  • the resonant structure can be combined with the above-mentioned parasitic structure to further improve the polarization purity of the port.
  • the one or more layers of conductors are obtained by metamaterial technology.
  • the antenna further includes a plurality of guiding units corresponding to the plurality of vibrators, and each of the plurality of guiding units is directed
  • the unit includes one or more directors.
  • the beam can be narrowed and antenna gain can be obtained.
  • each guide unit includes a plurality of guides, and the plurality of guides are sequentially arranged in a direction gradually away from the reflecting plate.
  • the antenna further includes a medium, and the medium is located between the multiple dipoles; Surrounded by the plurality of vibrators; or located above the plurality of vibrators.
  • the propagation phase velocity of the electromagnetic wave can be changed, so that the propagation of the electromagnetic wave in the space is not uniform. In this way, the equivalent phase distance between the ports is enlarged, which is beneficial to obtain a higher spatial resolution.
  • the plurality of vibrators are four vibrators, and the plurality of feeding points are four feeding points.
  • the above-mentioned antenna can provide four ports of freedom.
  • an antenna array in a second aspect, includes a plurality of antenna elements, and each antenna element includes one or more antennas as in any one of the implementation manners in the first aspect.
  • At least two antenna units of the plurality of antenna units have different azimuths, so that two antenna units with different azimuths have different polarization directions.
  • the phase pattern of each port in the entire antenna array is evenly distributed, which is beneficial to maximize the side lobe suppression.
  • an antenna array in a third aspect, includes a first antenna element and a second antenna element, the first antenna element includes one or more antennas as in any one of the implementation manners in the first aspect,
  • the second antenna unit includes one or more dual-polarized antennas.
  • a communication device is provided, and the communication device is deployed with an antenna as in any implementation manner of the first aspect.
  • the communication device is deployed with the antenna array as described in the second aspect or the third aspect.
  • the communication device is a base station.
  • FIG. 1 is a schematic diagram of an application scenario suitable for an antenna unit provided by an embodiment of the present application
  • Fig. 2 is a schematic diagram of an antenna provided by an embodiment of the present application.
  • FIG. 3 and 4 are schematic diagrams of vibrators provided by embodiments of the present application.
  • 5 to 7 are schematic diagrams of antennas provided by embodiments of the present application.
  • Figure 8 is a top view of a parasitic structure provided by an embodiment of the present application.
  • 9 to 15 are schematic diagrams of antennas provided by embodiments of the present application.
  • Figure 16 is a top view of a conductor provided by an embodiment of the present application.
  • 17 and 18 are schematic diagrams of antennas provided by embodiments of the present application.
  • FIG. 19 is a top view of a split resonant ring provided by an embodiment of the present application.
  • FIG. 20 is a schematic diagram of an antenna provided by an embodiment of the present application.
  • FIG. 21 is a top view of a split resonant ring provided by an embodiment of the present application.
  • FIG. 22 is a schematic diagram of an antenna provided by an embodiment of the present application.
  • FIG. 23 is a top view of a split resonant ring provided by an embodiment of the present application.
  • FIG. 36 is a schematic diagram of the corresponding relationship between the spiral arm and the radio frequency channel in the antenna unit provided by the embodiment of the present application;
  • FIGS 37 to 47 are schematic diagrams of antenna arrays provided by embodiments of the present application.
  • Antenna port It can also be abbreviated as a port.
  • the port can be understood as an independent transceiver unit (transceiver unit, TxRU).
  • An antenna unit can provide one or more degrees of freedom for antenna ports.
  • an antenna unit may include one or more antenna elements, and each antenna element corresponds to an independent radio frequency channel (RF channel), which is driven by the corresponding radio frequency channel.
  • RF channel radio frequency channel
  • an antenna unit may also include one or more groups of antenna elements, each group of antenna elements includes multiple antenna elements, and each group of antenna elements may correspond to a radio frequency channel and be driven by the corresponding radio frequency channel.
  • Multiple antenna elements can form an antenna system in the form of an array.
  • the antenna system may be called an antenna array, or an antenna array.
  • Antenna vibrator abbreviation, vibrator. It is the radiating unit that constitutes the antenna, which has the function of guiding and amplifying electromagnetic waves.
  • Feeding power supply. In the field of antennas, power feeding can be directed to the antenna to supply power, or in other words, to provide energy.
  • Working wavelength ⁇ It is inversely proportional to the working frequency f.
  • the working wavelength ⁇ (unit: meter) can be the reciprocal of the working frequency f (unit: megahertz (MHz)).
  • Antenna aperture It is a parameter that indicates the efficiency of the antenna to receive radio wave power.
  • the aperture is defined as the area perpendicular to the direction of the incident radio wave and effectively intercepts the energy of the incident radio wave.
  • the effective aperture of an antenna can also be referred to as an antenna effective area, which can be a parameter used to characterize the antenna's ability to receive electromagnetic waves in space.
  • the effective aperture of the antenna may be the ratio of the power at the output end of the antenna to the radio current density of the incident plane wave.
  • Beam width The angle between the two half-power points of the beam.
  • the difference in reception phase corresponding to the two antenna elements can be used to identify the direction of arrival.
  • the change trend of the receiving phase difference with the radiation angle (that is, the slope of the phase pattern difference) reflects the minimum interval of the spatial position that the antenna array can distinguish, that is, reflects the spatial resolution of the antenna array.
  • the spatial resolution of the antenna array in the horizontal direction and the maximum slope of the phase pattern difference between any two ports in the horizontal direction (usually the phase direction of the leftmost column of antenna elements and the rightmost column of antenna elements)
  • the slope of the difference in the figure is related;
  • the spatial resolution of the antenna array in the vertical direction is the maximum slope of the phase pattern difference between any two ports in the vertical direction (usually the top row of antenna elements and the bottom row of antennas).
  • the slope of the difference of the phase pattern of the unit) is related.
  • the maximum slope of the above-mentioned phase pattern difference is simply referred to as the slope of the phase difference.
  • Metamaterial An artificial composite structure or composite material with ultra-long physical properties that the natural materials in nature do not have. Metamaterials have some properties, such as allowing light and electromagnetic waves to change their general properties. Metamaterials usually have periodic or non-periodic artificial microstructures.
  • FIG. 1 shows several possible schematic architecture diagrams of a base station applicable to the antenna unit provided in the embodiments of the present application.
  • Figure 1 shows the evolution of the base station architecture according to several architectures shown in the order from a) to c).
  • the architecture of the base station can be a macro base station + antenna architecture, as shown in Figure 1 a); it can also be a separate base station + antenna architecture, as shown in Figure 1 b); Or, it may also be an active antenna unit (AAU) + base band unit (BBU) architecture, as shown in c) in Figure 1.
  • AAU active antenna unit
  • BBU base band unit
  • the macro base station shown in a) in the figure may include a built-in radio frequency unit (RFU) and BBU.
  • RFID radio frequency unit
  • the distributed base station shown in b) in Figure 1 may include a built-in baseband unit (BBU) and a remote radio unit (RRU).
  • BBU built-in baseband unit
  • RRU remote radio unit
  • the BBU can be connected to the RRU through a common public radio interface (CPRI) or enhanced CPRI (enhance CPRI, eCPRI), and the RRU can be connected to an antenna through a feeder.
  • CPRI common public radio interface
  • eCPRI enhanced CPRI
  • the antenna shown in FIG. 1 may be a passive antenna, which is separate from the RRU and can be connected by a cable.
  • BBU can be mainly used to complete baseband signal processing, such as channel encoding and decoding, modulation and demodulation, etc.
  • a BBU can include multiple baseband boards.
  • RRU can be mainly used to complete signal intermediate frequency processing, radio frequency processing, and duplex functions.
  • the intermediate frequency processing includes functions such as up-conversion, down-conversion, digital-to-analog conversion, and analog-to-digital conversion
  • the radio frequency processing includes the power amplification function of the received and received radio frequency signals.
  • the RRU may not include intermediate frequency processing functions, such as a zero-IF system.
  • the architecture of the base station shown in FIG. 1 is only an example, and should not constitute any limitation to this application.
  • the base station may include an active antenna system (AAS), and the antenna of the AAS and the radio frequency module are integrated.
  • AAS active antenna system
  • the base station may also include a centralized unit (CU) and a distributed unit (DU).
  • DU can be used to realize the transmission and reception of radio frequency signals, the conversion of radio frequency signals and baseband signals, and part of the baseband processing.
  • the CU can be used for baseband processing, control of the base station, and so on.
  • the DU may include at least one antenna. At least one antenna in the DU may adopt, for example, the antenna array provided in the embodiment of the present application.
  • the CU and DU may be physically set together or physically separated, which is not limited in this application.
  • base station architecture can refer to various possible base station architectures in the prior art, and is not limited to the base station architectures listed above. For the sake of brevity, the drawings are not illustrated here.
  • the above-mentioned antenna may specifically include a radiating unit (ie, an antenna element, an element, etc.), a reflector (or a bottom plate, an antenna panel), and a power distribution network ( Or called the feeder network) and the radome.
  • a radiating unit ie, an antenna element, an element, etc.
  • a reflector or a bottom plate, an antenna panel
  • a power distribution network Or called the feeder network
  • a dual-polarized antenna can provide the freedom of two ports. Compared with a single-polarized antenna, it can increase the degree of freedom of polarization and increase the capacity of spatial multiplexing while maintaining the same area. The number is doubled, which increases the throughput of the system.
  • the antenna's spatial resolution can be maximized through the design of the antenna.
  • the spacing of the antenna elements is set to half the wavelength of the operating frequency point. This is because the spatial resolution of the antenna array at this time is excellent, and the sidelobe suppression capability is strong.
  • the dimensions of the antenna array increase, the number of antenna elements increases, the area of the antenna array also increases, and the antenna panel also increases, which is not conducive to the deployment of communication devices.
  • the distance between two adjacent dual-polarized antennas is 0.5 wavelength. If the dimension of the antenna array is 8 ⁇ 8, that is, 8 rows and 8 columns, the antenna array The total antenna spacing is about 3.5 (0.5 ⁇ 7) wavelengths. Considering the area of the antenna itself, the width of the antenna array is about 4 wavelengths. In the frequency band with a center frequency of 1.8 gigahertz (GHz), the width of the corresponding antenna array is about 667 millimeters (mm), which greatly exceeds the conventional size of the antenna panel. If the dimension of the antenna array is further increased, for example, the number of rows and/or the number of columns is increased, the size of the corresponding antenna array will be further increased. This may lead to an increase in the size of the communication equipment, which is not conducive to deployment.
  • the present application provides an antenna. Compared with a dual-polarized antenna, the antenna can provide more freedom of ports, and multiple ports can be independent of each other. Therefore, more ports can be deployed in a limited antenna panel area to improve system throughput without affecting the antenna's spatial resolution.
  • FIGS. 37 to 47 are antenna arrays including the antenna 200 shown in any one of FIGS. 2 to 35. It should be understood that the antenna 200 shown in FIGS. 2 to 35 can be used as an independent antenna unit, or as a part of the antenna unit, and one or more antennas 200 with the same structure form an antenna unit. Not limited.
  • the antenna panel may be tilted, turned or rotated, and the orientation of the antenna array may change, but this will not affect the relative positional relationship between the antenna elements in the antenna array.
  • “left” and “right” are opposite, corresponding to columns; “up” and “down” are opposite, corresponding to rows.
  • “left” and “right” can be exchanged for “up” and “down”
  • “column” can be exchanged for "row”;
  • up” and “down” can be exchanged Is swapped for "left” and “right”
  • “row” can be swapped for "column”.
  • the antenna array is rotated 180° with the center as the axis, “left” and “right” can be reversed, and “up” and “down” can be reversed.
  • FIG. 2 is a schematic diagram of an antenna 200 provided by an embodiment of the present application.
  • the antenna 200 includes a plurality of vibrators 211-214, and the plurality of vibrators 211-214 can correspond to a plurality of independent feeding points in a one-to-one correspondence.
  • Each of the multiple vibrators 211-214 may be connected to a corresponding feeding point.
  • the antenna 200 shown in FIG. 2 specifically includes four dipoles 211-214, which correspond to four independent feeding points one-to-one. Since the four feeding points are independent of each other, the antenna 200 can realize the freedom of four ports.
  • the antenna 200 including four elements shown in FIG. 2 and the following in conjunction with multiple drawings is only an example of the antenna provided by the embodiment of the present application.
  • the antenna provided by the embodiment of the present application may further include more or less vibrators, corresponding to more or less independent feeding points one-to-one, so as to achieve more or less degrees of freedom of ports. This application does not limit this.
  • the antenna 200 including four elements 211-214 is taken as an example below to describe the antenna provided in the embodiment of the present application in more detail.
  • Each of the four vibrators 211-214 may include two bending bodies.
  • Each bending body includes a vibrator arm and a connecting body.
  • One end of the connecting body can be grounded, and the other end can be connected to electricity.
  • the grounded end of the connecting body can be marked as the first end of the connecting body, which can also be referred to as the grounding end;
  • the end of the connecting body that is connected to electricity can be marked as the second end of the connecting body, which can also be called the electrical connection end , Or the feed end.
  • the second end of the connecting body is also connected to one end of the vibrator arm.
  • the connecting body and the vibrator arm intersect near the feeding end. Or it can be said that one end of the vibrator arm is connected to electricity.
  • the one end of the vibrator arm that is connected to electricity can be recorded as the first end of the vibrator arm, and the other end is recorded as the second end of the vibrator arm.
  • the vibrator arm and the connecting body are bent at the intersection to form a bent shape.
  • the bent body 2111 and the bent body 2112 of the vibrator 211 are marked. It can be seen that the bent body 2111 and the bent body 2112 have a connection relationship near the power-on position.
  • Fig. 2 further identifies the vibrator arm 2111a and the connecting body 2111b of the bending body 2111. It can be seen that the vibrator arm 2111a and the connecting body 2111b are bent at the intersection to form a bent shape, and the bent shape shown in the figure is approximately an "L" shape.
  • the bent shape shown in FIG. 2 is only an example, and should not constitute any limitation to this application.
  • the above-mentioned bending body may be integrally formed, or may be obtained by connecting the vibrator arm and the connecting body by welding, assembling, or the like. This application does not limit this.
  • the antenna 200 may further include a reflection plate 220.
  • Each of the above-mentioned multiple vibrators 211-214 may be grounded at the reflector.
  • the reflector is a PCB.
  • the PCB can provide a ground plane so that the connecting body can be grounded on the PCB.
  • the PCB may also provide multiple independent feeding points, and the multiple oscillators correspond to the multiple feeding points one-to-one. The feeding end of each vibrator can be connected to the multiple feeding points through a feeding line.
  • the second end of the connecting body can be higher than the first end.
  • the vibrator arm can be located above the reflector and extend in different directions.
  • the second end of the connecting body is higher than the first end, and the area occupied by the length of the connecting body on the plane of the reflector can be reduced, that is, the area occupied by the antenna panel can be reduced.
  • the two vibrator arms of the same vibrator are parallel to the reflector and have the same height.
  • the two vibrator arms of the same vibrator are designed to be parallel to the reflector and have the same height, that is, the vertical distance between the two vibrator arms of the same vibrator and the reflector is the same. Therefore, the possible height of the vibrator arm in the direction perpendicular to the reflector can be reduced.
  • the heights of the vibrator arms of the plurality of vibrators are the same.
  • the dipole arms of multiple dipoles in the antenna are designed to have the same height, so that the overall height of the antenna can be controlled.
  • the bent bodies in the multiple vibrators in the above-mentioned antenna may have the same specifications. That is, the multiple bending bodies constituting multiple vibrators in the same antenna may have the same specifications, for example, the shape and length of the connecting body are the same; the shape and length of the vibrator arm are the same; and the clamp between the connecting body and the vibrator arm The angles are the same, and so on.
  • the above-mentioned antenna is obtained by combining multiple bent bodies of the same specification.
  • the connecting body can be grounded obliquely. That is, there is an inclination angle between the connecting body in each vibrator and the reflecting plate.
  • the connecting body is diagonally connected between the vibrator arm and the reflector, as shown in FIG. 2.
  • a connector with a certain length for example, the above-mentioned ⁇ /4
  • setting it obliquely can reduce its height in the direction perpendicular to the reflector, that is, the height of the antenna can be reduced.
  • designing the connector obliquely can also improve the cross-polarization ratio of the antenna.
  • each vibrator can also be arranged symmetrically.
  • the two bending bodies in each vibrator may have the same specifications, for example, including the same shape, size, and angle between the connecting body and the vibrator arm.
  • Two symmetrically arranged vibrator arms can form a symmetrical radiation field.
  • each connecting body may be a balun structure for achieving balanced power feeding.
  • the length of the connecting body can be designed to be about ⁇ /4, where ⁇ is the working wavelength.
  • the length of the connecting body may refer to, for example, the linear distance between the first end and the second end of the connecting body, such as the length L of the connecting body as shown in FIG. 2.
  • the antenna 200 shown in Figure 2 multiple elements 211-214 are distributed around the center of the antenna 200, and the connecting body of each element radiates from the inside to the outside along the direction from the first end to the second end, forming Radial.
  • the vibrator arms of the multiple vibrators are not connected, they can form a polygon, such as a quadrilateral as shown in FIG. 2, and the polygon can enclose the connecting body of the multiple vibrators. On the whole, it has a bowl shape. Therefore, the antenna shown in Figure 2 can be called a bowl antenna.
  • the multiple vibrators 211-214 may be evenly distributed around the center of the antenna 200.
  • the center of the antenna may be located at the center of the square.
  • the second end of the vibrator arm includes a bent portion facing the reflector.
  • bending a part of its length in the direction of the reflector can reduce the length of the vibrator arm in the direction parallel to the reflector. If the same treatment is applied to the dipole arms of each dipole in the antenna, the distance between the dipoles can be reduced, thereby reducing the plane size of the antenna; at the same time, because it is bent in the direction of the reflector, the height There is no impact, so it is further conducive to miniaturization of the antenna.
  • the vibrator corresponding to each port is relatively smaller, which is beneficial to reduce the coupling between the ports.
  • Fig. 3 shows a schematic diagram of a vibrator provided in an embodiment of the present application.
  • the vibrator shown in FIG. 3 may be any one of the above-mentioned multiple vibrators 211-214.
  • a) and b) in FIG. 3 respectively show a vibrator from two different viewing angles.
  • the second end of the vibrator arm in the vibrator has a bent portion facing the reflector. Bend 1 as indicated in Figure 3.
  • the vibrator arm may be directly formed in a shape that already includes the bending part, or may be bent in a later stage, which is not limited in this application.
  • the vibrator arm has a comb-tooth structure, and the teeth of the comb-tooth structure face the reflector.
  • FIG. 4 shows another schematic diagram of a vibrator provided by an embodiment of the present application.
  • the vibrator shown in FIG. 4 may be any one of the above-mentioned multiple vibrators 211-214.
  • a) and b) in FIG. 4 respectively show a vibrator from two different viewing angles.
  • the vibrator arm in the vibrator has a comb-tooth structure, the base is on the top, and the teeth face the reflector. And there is a tooth at the end of the second end of the vibrator arm, which is similar to the bent part shown in FIG. 3 above.
  • comb-tooth structure described above may be integrally formed, or may be obtained by welding, assembling, etc. after the teeth and the base are obtained separately, which is not limited in this application.
  • the connecting body includes one or more bends.
  • the height dimension can be further reduced.
  • a bend can be provided near the middle of the connecting body to make the connecting body into two parts with different inclination angles.
  • the indicated bend 2 in FIG. 3 shows an example of a connecting body with a bend.
  • the connector is a balun structure that can be used to achieve balanced feeding.
  • the length of the balun structure is about ⁇ /4.
  • the length of the balun structure can still be defined as the linear distance from the first end to the second end.
  • the design of the length of the balun structure can allow a certain error range. Therefore, in the case of bending of the connecting body, the length of the balun structure can also be defined as the length of the two parts of the connecting body Sum. This application does not limit the definition of the length of the balun structure.
  • the connecting body may be integrally formed, or may be obtained by welding or assembling the above two parts with different inclination angles, which is not limited in this application.
  • FIG. 5 shows another schematic diagram of an antenna 200 provided by an embodiment of the present application.
  • the antenna 200 shown in FIG. 5 includes four dipoles 211-214 and a reflector 220. In order to show the shape of the vibrator more clearly, not all the reflector 220 is shown in FIG. 7.
  • each vibrator includes two bending bodies, and each bending body includes a vibrator arm and a connecting body. The first end of each connecting body is grounded at the reflector 220, and the second end is electrically connected.
  • the vibrator arm of each bending body has a comb-tooth structure to realize the miniaturization of the antenna and reduce the coupling between the ports.
  • the antenna 200 shown in FIG. 5 is also bowl-shaped. Therefore, the antenna 200 shown in FIG. 5 may also be referred to as a bowl-shaped antenna.
  • the four elements in the antenna 200 shown in FIG. 5 can also correspond to four independent feeding points one-to-one, so that single-port independent operation can be realized, and the freedom of four ports can be realized.
  • the antenna 200 including four elements shown in FIG. 5 is only an example of the antenna provided in the embodiment of the present application.
  • the antenna provided in the present application may also include more or less vibrators, corresponding to more or less independent feeding points one-to-one, so as to achieve more or less degrees of freedom of ports. This application does not limit this.
  • the multiple vibrators 211-214 shown in FIG. 5 may be evenly distributed around the center of the antenna 200.
  • the plurality of dipoles are evenly distributed around the center of the antenna 300, the plurality of dipole arms are connected end to end, and an approximate square can be obtained.
  • the center of the antenna may be located at the center of the square.
  • FIG. 6 is another schematic diagram of the antenna 200 provided by an embodiment of the present application.
  • the structure of the antenna 200 shown in FIG. 6 is basically similar to that of the antenna 200 shown in FIG. 5, except that the comb tooth structure on the vibrator arm is slightly different. Compared with the comb-tooth structure shown in FIG. 5, the comb-tooth structure shown in FIG. 6 has fewer, larger, and sparser teeth.
  • the antennas 200 shown in FIG. 2, FIG. 5, and FIG. 6 are all bowl-shaped antennas, they should not constitute any limitation to the present application.
  • the bowl antenna is only one possible form of the antenna provided in the embodiment of the present application.
  • the antenna provided in this application may also have other forms.
  • multiple elements of the antenna are distributed around the center of the antenna, and the connecting body of each element of the multiple elements radiates from the inside to the outside along the direction from the first end to the second end.
  • the dipole arm is located near the center of the antenna, and the ground terminal of the connecting body is farther from the center of the antenna than the dipole arm.
  • the vicinity of the center of the antenna may refer to an area closer to the center of the antenna.
  • the center of the antenna can be taken as the axis, and a certain preset value radius can be used to define a range, and the area falling within the range can be defined as the area close to the center of the antenna, or in other words, near the center of the antenna.
  • the preset value can be set according to the size of the antenna. This application does not limit the size of the preset value.
  • FIG. 7 is another schematic diagram of the antenna 200 provided by an embodiment of the present application.
  • the antenna 200 includes four elements 211-214 and a reflector 220.
  • each vibrator includes two bending bodies, and each bending body includes a vibrator arm and a connecting body. The first end of each connecting body is grounded at the reflector 220, and the second end is electrically connected.
  • the four vibrators 211-214 can correspond to four independent feeding points one-to-one, which can realize the independent operation of a single port and the freedom of multiple ports.
  • the vibrator arm of each of the vibrators 211-214 shown in FIG. 7 has a bend at the second end, which is used to realize the miniaturization of the antenna and reduce the interference between the ports. coupling.
  • the antenna 200 including four elements shown in FIG. 5 is only an example of the antenna provided in the embodiment of the present application.
  • the antenna provided by the embodiment of the present application may further include more or less vibrators, corresponding to more or less independent feeding points in a one-to-one correspondence, so as to achieve more or less degrees of freedom of ports. This application does not limit this.
  • the multiple elements of the antenna are evenly distributed around the center of the antenna. For example, as shown in Figure 7. If the grounding ends of the connecting body of the four vibrators in FIG. 7 are connected with a straight line, an approximate square can be obtained.
  • the center of the antenna may be located at the center of the square.
  • the antenna may also include a parasitic structure.
  • the parasitic structure can be realized by parasitic structure loading technology.
  • the parasitic structure may be, for example, a metal plate-like structure arranged perpendicular to the reflector.
  • the parasitic structure includes partitions for isolating multiple vibrators in different spaces.
  • the partition can isolate multiple vibrators in different spaces, which is equivalent to isolating each port in different spaces. This helps to improve the isolation between ports.
  • the parasitic structure further includes an enclosure, and the enclosure may surround the multiple vibrators.
  • a parasitic structure By introducing a parasitic structure, it can be used as a part of the antenna to lengthen the current distribution path, realize the downward shift of the antenna's working frequency, increase the effective aperture of the antenna, and increase the equivalent distance between the ports, so the antenna can be further miniaturized .
  • a parasitic structure inside the antenna it can cause perturbation to the electromagnetic wave emitted by the antenna, realize the phase disturbance of the electromagnetic wave transmission, and increase the slope of the phase difference between the ports, thereby helping to improve the spatial resolution of the antenna.
  • the enclosure plate is connected end to end on the periphery of multiple vibrators to form a closed polygon.
  • Another possible design is that the enclosure is separately arranged on the outer side of the multiple vibrators, and is not closed in the vicinity of each vibrator.
  • FIG. 8 schematically show the parasitic structure, respectively.
  • Figure 8 shows a top view of an antenna loaded with a parasitic structure.
  • the outer enclosures of the four vibrators are connected end to end to form a closed quadrilateral.
  • the internal partition separates the four vibrators from each other in different spaces. As shown in the figure, the hoarding and partitions form a "Tian" shape.
  • the outer enclosures of the four vibrators are not closed, leaving a gap near each vibrator.
  • the internal partition also isolates the four vibrators in different spaces.
  • FIG. 9 is a schematic diagram of an antenna 200 including a parasitic structure provided by an embodiment of the present application.
  • the antenna 200 shown in FIG. 9 adds a parasitic structure to the antenna 200 shown in the figure.
  • the antenna 200 includes a parasitic structure 230 in addition to the four elements 211-214 and the reflector 220 mentioned above.
  • the parasitic structure 230 shown in FIG. 9 includes a partition 2301 and an enclosure 2302. Wherein, the enclosure plate 2302 is connected end to end on the periphery of the four vibrators 211-214, which can form a closed polygon.
  • the parasitic structure loaded on the antenna 200 is not limited to the partitions and enclosures listed above, and the parasitic structure can also be loaded at other positions.
  • a parasitic structure can be loaded on the above-mentioned partition.
  • FIG. 10 is another schematic diagram of an antenna 200 including a parasitic structure provided by an embodiment of the present application.
  • the antenna 200 includes a parasitic structure 230 in addition to the four elements 211-214 and the reflector 220 described above.
  • the parasitic structure 230 shown in FIG. 10 includes a partition 2301, an enclosure 2302, and a metal plate 2303 above the partition.
  • the enclosure plate 2302 shown in FIG. 10 is not closed on the outside of the four vibrators 211-214, leaving a gap near each vibrator.
  • the metal plate 2303 shown in FIG. 10 is located above the partition 2301 and has a "cross" shape.
  • the antenna further includes one or more layers of conductors located above the vibrator and parallel to the reflector.
  • Each layer of conductors may include multiple conductors.
  • the multiple conductors in each layer of conductors can be evenly distributed or non-uniformly distributed. This application does not limit this.
  • the multilayer conductor can be printed on the PCB.
  • the conductors of each layer can be independent of each other.
  • Multiple conductors in each layer can be independent of each other.
  • multiple conductors in the same layer have different sizes and/or shapes to couple different electromagnetic energies.
  • the size mentioned here is different, specifically, it may be that the area of the guide body in the direction parallel to the reflector is different.
  • the multiple conductors on the same layer have different sizes, and/or the multiple conductors on the same layer have different shapes. Therefore, the plurality of conductors are non-uniformly distributed. Since conductors of different sizes or shapes are coupled with different electromagnetic energy, the current can be redistributed through the difference in coupling amplitude and phase, and thus the slope of the phase difference between the ports can be changed. .
  • FIG. 11 and 12 are schematic diagrams of an antenna 200 including a layer of conductor provided by an embodiment of the present application.
  • the antenna 200 shown in FIG. 11 and FIG. 12 includes a layer of conductor 240 in addition to the four elements 211-214, the reflector 220 and the parasitic structure 230 described above.
  • the conductors shown in Figure 11 and Figure 12 are different.
  • the conductor shown in Fig. 11 is square, and the conductor shown in Fig. 12 is circular, but this does not affect the change in the propagation characteristics of electromagnetic waves.
  • the one-layer conductor 240 shown in FIG. 11 and FIG. 12 includes conductors of different sizes, so both of them can redistribute the current energy and realize the slope amplification of the port phase difference.
  • FIG. 13 is a schematic diagram of an antenna 200 including multilayer conductors provided by an embodiment of the present application.
  • the antenna 200 shown in FIG. 13 is similar to the conductors included in the antenna 200 shown in FIG. 11, except that the antenna 200 shown in FIG. 13 includes two layers of conductors 240. That is, an example of an antenna including a multilayer conductor.
  • the antenna 200 may also include more layers of conductors; or, the antenna 200 may also include multiple layers of circular conductors as shown in FIG. 12, etc., for the sake of brevity, the drawings are not described here.
  • the antenna shown in FIGS. 11 to 13 includes both a parasitic structure 230 and one or more layers of conductors 240.
  • the above-mentioned parasitic structure and one or more layers of conductors can be used in combination in the antenna to increase the slope of the phase difference between the ports, thereby increasing the spatial resolution of the antenna.
  • the multilayer conductors completely overlap in the horizontal direction.
  • the number, size, position, etc. of the conductors included in the multilayer conductor may all be the same, and the projections on the reflector are overlapped.
  • the multilayer conductors do not completely overlap in the horizontal direction.
  • At least one of the number, size, and position of the conductors included in the at least two layers of the multilayer conductors is different, which makes the projections of the multilayer conductors on the reflector do not completely overlap.
  • the above-mentioned one or more layers of conductors include at least one resonant structure.
  • the antenna 200 may also include at least one resonator.
  • the polarization characteristics of the antenna can be improved, and the cross polarization ratio of the antenna can be improved.
  • FIGS. 14 and 15 are schematic diagrams of an antenna 200 including a resonant structure provided by an embodiment of the present application.
  • the antenna 200 shown in FIGS. 14 and 15 not only includes the four elements 211-214 and the reflector 220, but also includes a layer of conductor 240 located above the four elements 211-214.
  • the four vibrators shown in Figure 14 and Figure 15 are different, but the conductors included are the same.
  • the conductors included in FIGS. 14 and 15 are different from the conductors shown in FIGS. 11 to 13, and the conductors shown in FIGS. 14 and 15 are resonant structures.
  • FIG. 16 shows a top view of the resonant structure in the antenna 200 shown in FIG. 14 and FIG. 15. As shown in the figure, the resonant structure shown in the figure is approximately an enclosed " ⁇ ", but there are openings in various directions to achieve polarization in different directions. The multiple resonant structures shown in FIG. 16 are uniformly distributed and have the same size.
  • FIG. 16 shows only one possible shape, and should not constitute any limitation to the application.
  • the resonant structure may also have other shapes.
  • FIG. 17 shows another schematic diagram of an antenna including a resonant structure. This application does not limit the specific form of the resonant structure.
  • the resonant structure is a split-ring resonator (SRR), which may also be referred to as a split-ring resonator.
  • SRR split-ring resonator
  • the above-mentioned multiple vibrators correspond to one or more split resonant rings, split resonant rings corresponding to the same vibrator have the same opening direction, and split resonant rings corresponding to different vibrators have different opening directions.
  • each vibrator By aligning each vibrator with one or more open resonant rings, the strength of the antenna in a certain polarization direction can be enhanced.
  • the polarization purity of the ports provided by the multiple vibrators can be improved.
  • FIG. 18 is a schematic diagram of an antenna 200 including a split resonant ring provided by an embodiment of the present application.
  • the antenna 200 includes a layer of conductor 240 in addition to the four elements 211-214 and the reflector 220 described above.
  • the conductors in the one-layer conductor 240 are all open resonant rings. As shown in the figure, the openings of the split resonant ring are not completely consistent.
  • the opening direction of the open resonant ring near the upper part of the vibrator 211 is directed
  • the opening direction of the open resonant ring near the upper part of the vibrator 212 is directed
  • the opening of the open resonant ring near the upper part of the vibrator 213 is directed
  • the opening near the upper part of the vibrator 214 resonates.
  • the opening of the ring faces. Designing the orientation of the split resonant ring close to different vibrators to different directions can further enhance the strength of the antenna in each polarization direction, so that the polarization purity of each port can be improved.
  • the antenna 200 further includes a parasitic structure 230. That is, the resonant structure is used in combination with the parasitic structure, thereby further improving the polarization purity of the port.
  • FIG. 19 shows a top view of the split resonant ring in the antenna 200 shown in FIG. 18.
  • a split resonant ring with 6 rows and 6 columns is shown in the figure.
  • Each split resonant ring is composed of two rings with openings, one of which is surrounded by the other, and the openings of the two rings have different directions.
  • the resonant rings with different opening directions are shown by different dashed frames.
  • FIG. 19 shows four dashed frames, corresponding to the open resonant ring with four different opening directions, that is, corresponding to the four vibrators 211-214.
  • FIG. 20 and FIG. 21 are another schematic diagrams of an antenna 200 including a multi-layer split resonant ring provided by an embodiment of the present application.
  • the antenna 200 shown in FIG. 20 includes two layers of conductors 240 in addition to the four elements 211-214, the reflector 220 and the parasitic structure 230 described above.
  • Each layer of conductor includes a plurality of open resonant rings.
  • FIG. 21 is a top view of the split resonant ring of the antenna 200 shown in FIG. 20. It can be seen from FIG. 21 that the projections of the two-layer split resonant ring on the reflector shown in FIG. 20 do not completely overlap.
  • one layer is arranged closely, and the other layer is arranged sparsely.
  • FIGS. 22 and FIG. 23 are another schematic diagrams of an antenna 200 including a multi-layer split resonant ring provided by an embodiment of the present application.
  • the antenna 200 shown in FIGS. 22 and 23 includes a multi-layer split resonant ring, specifically two layers.
  • FIG. 23 is a top view of the split resonant ring of the antenna 200 shown in FIG. 22. It can be seen from FIG. 23 that the projections of the two-layer split resonant ring on the reflector shown in FIG. 22 are completely overlapped.
  • split resonant ring in the antenna 200 shown in FIGS. 18 to 23 is only an example, and the split resonant ring may be a circular ring or a square ring, and so on. This application does not limit this.
  • the antenna 200 shown in FIGS. 18 to 23 is only an example, and the antenna 200 may also include more layers of split resonant rings.
  • the drawings are not illustrated here. However, this application does not limit the number of layers of the split resonant ring.
  • the above-mentioned one or more layers of conductors are obtained by metamaterial technology.
  • the above-mentioned one or more layers of conductors are obtained by metamaterial technology, it can be considered that the above-mentioned one or more layers of conductors are distributed periodically or non-periodically.
  • the unevenly distributed conductors shown in FIG. 11 to FIG. 13 can be understood as non-periodic distribution, or in other words, gradual distribution.
  • the conductors shown in FIGS. 14 to 23 can be understood as being periodically distributed.
  • the antenna may further include a plurality of guide units corresponding to the plurality of vibrators, and each guide unit includes one or more guides. And in the case where each guide unit includes a plurality of guides, the plurality of guides may be sequentially arranged in a direction gradually away from the reflecting plate. The multiple guides in the same guide unit can be located on the same plane and extend upwards in a direction away from the reflector.
  • the beam can be narrowed and antenna gain can be obtained. And, the more directors, the sharper the direction and the higher the gain.
  • FIG. 24 is a schematic diagram of an antenna 200 including multiple steering units provided by an embodiment of the present application.
  • the antenna 200 shown in FIG. 24 not only includes the four elements 211-214 and the reflector 220 described above, but also includes four guiding units 251-254.
  • the four guiding units 251-254 correspond to the four vibrators 211-214 one-to-one.
  • Each guide unit includes one or more guides.
  • Each square box in the figure is a director.
  • Each guide unit in the figure includes three guides. It can be seen that the multiple guides in each guide unit are sequentially arranged in a direction gradually away from the reflecting plate 220.
  • FIG. 25 and FIG. 26 are two other schematic diagrams of an antenna 200 including multiple steering units provided by an embodiment of the present application.
  • the antenna 200 shown in FIG. 25 and FIG. 26 not only includes the four elements 211-214 and the reflector 200, but also includes a parasitic structure 230 and four guiding units 251-254.
  • the parasitic structure and the guiding unit can be used in combination in the antenna to obtain the effect of increasing the slope of the phase difference between the ports.
  • each guide unit shown in FIG. 25 is different from the guide unit shown in FIG. 24 in that the guide in the guide unit shown in FIG. 25 is a square open resonant ring.
  • each guide unit shown in FIG. 25 includes an open resonant ring.
  • the plane of the split resonant ring shown in FIG. 25 is different from the plane of the split resonant ring shown in FIGS. 18 to 23.
  • the split resonator ring shown in Figs. 18 to 23 is located on a plane parallel to the reflector.
  • the open resonant ring in each guide unit shown in FIG. 25 has an angle between the plane and the reflector.
  • each guide unit shown in FIG. 25 The plane of the opening resonant ring in each guide unit shown in FIG. 25 is almost perpendicular to the reflector. It can be understood that the four guiding units shown in FIG. 25 exist on four planes, and there are angles between the four planes and the reflector.
  • the director in the guide unit shown in FIG. 26 is also a split resonant ring.
  • each guide unit in FIG. 26 includes a plurality of circular open resonant rings. Similar to FIG. 25, where the split resonant ring shown in FIG. 26 is located.
  • split resonant ring as a director can improve the antenna gain and at the same time use its higher polarization purity to improve the cross-polarization level of the antenna.
  • FIGS. 24 to 26 are only examples. This application does not limit the shape and number of the guides included in each guide unit.
  • FIG. 27 shows another example of the antenna 200 including the steering unit. The director shown in Figure 27 is an "H" type. For the sake of brevity, the drawings are not listed here.
  • FIGS. 24 to 26 the direction in which the guides in each guide unit shown in FIGS. 24 to 26 are arranged is perpendicular to the reflector, but this should not constitute any limitation to the present application.
  • the director can also be inclined to the reflector.
  • FIG. 28 shows another example of an antenna including the director. The plane of the director in each guide unit shown in FIG. 28 is inclined to the reflector.
  • the antenna further includes a medium.
  • the propagation phase velocity of the electromagnetic wave can be changed, so that the propagation of the electromagnetic wave in the space is not uniform.
  • the equivalent phase distance between the ports is enlarged, which is beneficial to obtain a higher spatial resolution.
  • the medium may be located between the multiple vibrators, or the medium may be located outside the multiple vibrators and surround the multiple vibrators, or the medium may also be located above the multiple vibrators.
  • Figures 29 to 33 show schematic diagrams of an antenna containing a medium.
  • the antenna 200 shown in FIG. 29 includes a parasitic structure 230 and a medium 260 in addition to the four elements 211-214 and the reflector 220 described above.
  • the parasitic structure 230 and the medium 260 can be used in combination to obtain the effect of increasing the slope of the phase difference between the ports.
  • the medium 260 shown in FIG. 29 has a cylindrical shape and is located between the four vibrators 211-214.
  • the medium 260 surrounds the four elements 211-214 and the reflector 220 from the outside, so only a part of the reflector 220 and the medium 260 are shown in the figure.
  • the medium 260 is located above the four elements 211-214.
  • the medium 260 shown in FIG. 31 has a three-dimensional annular shape.
  • the antenna 200 shown in FIG. 32 includes a medium 260.
  • the medium 260 is located above the vibrators 211-214.
  • the medium shown in the figure is cylindrical.
  • the antenna 200 shown in FIG. 33 also includes a medium 260.
  • the medium 260 is located above the vibrators 211-214.
  • the medium shown in the figure is in the shape of a truncated cone.
  • FIG. 34 and FIG. 35 are two further schematic diagrams of the antenna 200 provided by the embodiment of the present application.
  • the antenna 200 shown in FIG. 34 includes a parasitic structure 230, four guiding units 250, and a medium 260 in addition to the vibrators 211-214 and the reflector 220.
  • the parasitic structure 230 includes partitions and enclosures.
  • the four leading units 250 are connected end to end, so there is no distinguishing mark in the figure.
  • Each guide unit includes four guides.
  • the four guides in each guide unit extend sequentially in a direction gradually away from the reflecting plate.
  • the medium 260 is also located above the four vibrators 211-214, and is sequentially stacked in a direction gradually moving away from the reflector.
  • the cylindrical shape located in the center direction of the antenna 200 is shown. A total of five media are shown in the figure.
  • the antenna 200 shown in FIG. 35 includes a parasitic structure 230, four guiding units 251-254, and a medium 260 in addition to the vibrators 211-214 and the reflector 220.
  • the parasitic structure includes partitions, enclosures, and those located above the vibrators 211-214.
  • the four guide units are similar to the guide unit shown in FIG. 24.
  • the medium 260 is similar to the medium shown in FIG. 29. For the sake of brevity, the description will not be repeated here.
  • the antenna 200 provided by the embodiment of the present application is described in detail above with reference to multiple drawings. It should be understood that although the above multiple drawings take an antenna containing four elements as an example for detailed description, this should not constitute any limitation to the present application.
  • the antenna 200 provided by the embodiment of the present application may include more or fewer elements, corresponding to more or fewer feed points in a one-to-one manner.
  • the feeding points can be independent of each other, which can provide more or less degrees of freedom of the ports.
  • the multiple elements in the antenna 200 provided in conjunction with multiple drawings above may correspond to multiple independent feeding points in a one-to-one correspondence, so as to realize single-port independent operation. But this should not constitute a limitation to this application. Some or all of the multiple feeding points may also have a connection relationship, so as to realize the joint operation of some or all of the ports. For example, among the four vibrators shown in the above figures in conjunction with the drawings, the feed points of the two diagonal vibrators can be connected to realize the joint work of the two ports.
  • the antenna 200 shown in FIGS. 2 to 35 can be used as an independent antenna unit, and each spiral arm is connected to a feed point corresponding to an independent radio frequency channel.
  • the antenna 200 shown in FIG. 2 to FIG. 35 can also be used as a part of an antenna unit, which forms one antenna unit with more antennas of the same structure.
  • each antenna may have a structure as shown in FIGS. 2 to 35.
  • the vibrators in the multiple antennas can be divided into four groups, each group of vibrators can realize single-port independent operation, and the four groups of vibrators can provide four ports of freedom.
  • FIG. 36 shows the corresponding relationship between the vibrator and the radio frequency channel in the antenna unit.
  • the antenna in Fig. 36 is shown with " ⁇ ".
  • each " ⁇ " in the figure represents an antenna, and the antenna may be, for example, the antenna shown in any one of the drawings in FIGS. 2 to 35.
  • Each black dot in the figure represents a vibrator, and the vibrator can be, for example, the vibrator shown in any one of the drawings in FIGS. 2 to 4.
  • Each vibrator in the antenna unit is driven by an independent radio frequency channel.
  • the antenna unit can include four vibrators, and each vibrator is driven by an independent radio frequency channel.
  • the feed point to which each vibrator is connected can correspond to a radio frequency channel.
  • each group of vibrators in the antenna unit is driven by a radio frequency channel
  • the correspondence between each group of vibrators in the antenna unit and the radio frequency channel can refer to b) in FIG. 36. It can be seen that each group of dipoles in the antenna unit includes four dipoles, and each group of this inverse can be driven by a radio frequency channel.
  • Each group of vibrators can also be called a sub-array. In this case, the feed points connected to each group of vibrators can correspond to the same radio frequency channel.
  • FIG. 36 is only an example, and should not constitute any limitation to the application.
  • Each radio frequency channel can also correspond to two, three or other numbers of vibrators. This application does not limit this.
  • the antenna unit is used as the granularity for description.
  • the antenna unit may be, for example, one antenna 200 as described above, or may include multiple antennas 200. This application does not limit this.
  • the present application also provides an antenna array.
  • the antenna array may include one or more antenna elements.
  • FIGS. 37 to 47 show several examples of antenna arrays provided by embodiments of the present application. It should be understood that the antenna array shown in FIGS. 37 to 47 may be, for example, a complete antenna array or a part of it. This application does not limit this.
  • the antenna array may include the antenna unit described above, or in other words, may include the antenna described above.
  • the antenna unit composed of the antennas listed above in conjunction with FIG. 2 to FIG. 35 is marked as a bowl-shaped antenna unit to distinguish it from a dual-polarized antenna unit.
  • Figure 37 shows an antenna array with 8 rows and 8 columns.
  • the antenna elements in the antenna array may all be antenna elements. Therefore, the antenna array can be called a bowl-shaped antenna array.
  • Each " ⁇ " in the figure represents an antenna unit.
  • the leftmost and rightmost antenna elements are bowl-shaped antenna elements.
  • the leftmost antenna element and the rightmost antenna The slope of the difference between the phase patterns of the elements is larger than the slope of the difference between the phase patterns when both sides are dual-polarized antenna elements. Therefore, the spatial resolution of the antenna array in the horizontal direction can be improved.
  • the uppermost and lowermost antenna elements are also bowl-shaped antenna elements.
  • the spatial resolution of the antenna array in the vertical direction can be improved.
  • the spatial resolution of the antenna array can be improved, which is conducive to improving the throughput of the system, and the gain is obvious.
  • the antenna array may also include more or fewer rows, and may also include more or fewer columns.
  • the column of the antenna may be 12 rows and 8 columns, 16 rows and 8 columns, 12 rows and 12 columns, 16 rows and 12 columns, 16 rows and 16 columns, etc. For the sake of brevity, we will not list them all here.
  • the antenna array may include a first antenna element and a second antenna element.
  • the first antenna unit and the second antenna unit are antenna units of different forms.
  • the first antenna unit is a bowl-shaped antenna unit
  • the second antenna unit is a dual-polarized antenna unit.
  • Figures 38 to 46 show several examples of antenna arrays including antenna elements of different forms.
  • the first antenna unit and the second antenna unit are antenna units with different azimuths and have different polarization directions. For example, there is a deflection angle between the first antenna unit and the second antenna unit.
  • Fig. 47 shows an example of an antenna array including antenna elements of different azimuths.
  • Fig. 38 shows an antenna array with 8 rows and 12 columns, that is, the dimension of the antenna array is 8 ⁇ 12.
  • the antenna array may include a plurality of bowl-shaped antenna elements (ie, an example of a first antenna element) and a plurality of dual-polarized antenna elements (ie, an example of a second antenna element). That is, two antennas of different structures are mixed. Therefore, the antenna array can be called a hybrid array.
  • each " ⁇ ” represents a dual-polarized antenna unit
  • each " ⁇ ” represents a bowl-shaped antenna unit.
  • the left two columns and the right two columns of the antenna array are bowl-shaped antenna units
  • the middle eight columns are dual-polarized antenna units.
  • the dual-polarized antenna unit is an example of a two-port antenna unit, and can also be replaced with other two-port antenna units. This application does not limit this.
  • the leftmost and rightmost antenna units are bowl-shaped antenna units, which can provide more port freedom.
  • the slope of the difference between the phase patterns of the leftmost antenna element and the rightmost antenna element is compared to the phase when both sides are dual-polarized antenna elements
  • the slope of the difference in the pattern should be large. Therefore, the spatial resolution of the antenna array in the horizontal direction can be improved. Therefore, it is beneficial to improve the throughput of the system, and the gain is obvious.
  • the throughput of the system is related to the spatial resolution of the antenna array, so the system throughput can be improved by maximizing the spatial resolution of the antenna array.
  • the phase pattern of all ports in the antenna array can be obtained by using the same position reference point. Then, the maximum slope of the difference between the spatial resolution of the antenna array in a certain direction (such as the horizontal direction and the vertical direction) and the phase pattern of any two antenna elements in the same direction in the antenna array (that is, as the radiation The slope of the angle change) is related.
  • the bowl-shaped antenna unit can provide four ports of freedom, that is, a four-port antenna unit, then under the same panel size, the four-port antenna unit has the largest difference in the phase pattern between the ports compared to the two-port antenna unit The slope is greater than the maximum slope of the difference between the phase patterns of the two-port antenna unit. Therefore, the spatial resolution of the four-port antenna unit is greater than that of the two-port antenna unit.
  • the angle areas of the phase radiation patterns of the ports of the two adjacent four-port antenna elements may overlap.
  • the antenna array can be called a bowl-shaped antenna array.
  • the angle area of the phase pattern of the bowl-shaped antenna unit in the middle area of the antenna array will overlap in a large interval, so the gain brought to the antenna array is limited.
  • the antenna unit in the middle area of the antenna array is set as a two-port antenna unit, such as the dual-polarized antenna unit described above, and the antenna unit at the edge is set as a bowl-shaped antenna unit, the gain and all the settings will be The gain brought to the antenna array is comparable. From the perspective of ports, setting the antenna unit in the middle area of the antenna array as a two-port antenna unit can reduce the number of ports, that is, reduce the antenna cost and pilot overhead. Therefore, the antenna unit and the two-port antenna unit can be mixed and arranged in the antenna array to obtain a larger gain.
  • the above-mentioned gain may specifically refer to an antenna array with the same dimensions formed by dual-polarized antenna units.
  • the antenna array may also include more or fewer rows, and may also include more or fewer columns.
  • the antenna array may have 12 rows and 12 columns, as shown in FIG. 39; the antenna array may also have 16 rows and 12 columns, as shown in FIG. 40.
  • the drawings are not listed here.
  • the antenna array shown in FIGS. 38 to 40 can also be rotated 90° clockwise or counterclockwise to improve the vertical spatial resolution.
  • the hybrid matrix shown above in conjunction with FIG. 38 to FIG. 40 is only an example.
  • the number of columns of antenna units and the number of columns of two-port antenna units can also be adjusted.
  • Fig. 41 shows an antenna array with 8 rows and 10 columns, that is, the dimension of the antenna array is 8 ⁇ 10.
  • the antenna array is also a hybrid array.
  • each " ⁇ " represents a dual-polarized antenna unit
  • each " ⁇ " represents a bowl-shaped antenna unit.
  • the left three columns and the right three columns of the antenna array are antenna elements
  • the middle four columns are dual-polarized antenna elements.
  • the dual-polarized antenna unit is an example of a two-port antenna unit, and can also be replaced with other two-port antenna units. This application is not limited.
  • Fig. 42 shows an antenna array with 12 rows and 10 columns, that is, the dimension of the antenna array is 12 ⁇ 10.
  • the antenna array is also a hybrid array.
  • the arrangement of each row of the antenna array is the same as that shown in Fig. 41, except that the number of rows is increased.
  • Fig. 43 shows an antenna array with 16 rows and 10 columns, that is, the dimension of the antenna array is 16 ⁇ 10.
  • the antenna array is also a hybrid array.
  • the arrangement of each row of the antenna array is the same as that shown in Fig. 41, except that the number of rows is increased.
  • the antenna array shown in FIGS. 41 to 43 is similar to the antenna array shown in FIGS. 38 to 40.
  • the spatial resolution of the antenna array in the horizontal direction can be improved, so it is beneficial to improve the throughput of the system, and the gain is obvious.
  • FIGS. 41 to 43 reference may be made to the above related descriptions in conjunction with FIGS. 38 to 40. For the sake of brevity, I won't repeat them here.
  • the dimensions of the antenna array shown in FIGS. 41 to 43 are only examples, and the antenna array may also include more or fewer rows, and may also include more or fewer columns. This application does not limit this. For the sake of brevity, the drawings are not listed here.
  • the antenna arrays shown in FIGS. 41 to 43 can also be rotated 90° clockwise or counterclockwise to improve the spatial resolution in the vertical direction.
  • the above-mentioned antenna array can be further modified.
  • Fig. 44 shows an antenna array with 8 rows and 10 columns, that is, the dimension of the antenna array is 8 ⁇ 10.
  • the antenna array is also a hybrid array.
  • each " ⁇ " represents a dual-polarized antenna unit, and each " ⁇ " represents an antenna unit.
  • the left five columns of the antenna array are obtained by staggering three rows of bowl-shaped antenna elements and two rows of dual-polarized antenna elements.
  • the right five columns of the antenna array are also composed of three rows of bowl-shaped antenna elements and two columns.
  • the dual-polarized antenna units are arranged in staggered arrangement. Therefore, the leftmost and rightmost columns of the mixed array are both bowl-shaped antenna elements.
  • Fig. 45 shows an antenna array with 12 rows and 10 columns, that is, the dimension of the antenna array is 12 ⁇ 10.
  • the antenna array is also a hybrid array.
  • the arrangement of each row of the antenna array is the same as that shown in Fig. 45, except that the number of rows is increased.
  • Fig. 46 shows an antenna array with 16 rows and 10 columns, that is, the dimension of the antenna array is 16 ⁇ 10.
  • the antenna array is also a hybrid array.
  • the arrangement of each row of the antenna array is the same as that shown in Fig. 45, except that the number of rows is increased.
  • the antenna arrays shown in FIGS. 44 to 46 and the antenna arrays shown in FIGS. 38 to 40 are also relatively similar. Based on the same principle as described above, the spatial resolution of the antenna array in the horizontal direction can be improved, which is beneficial to increase the system throughput, and the gain is obvious.
  • FIGS. 44 to 46 reference may be made to the relevant descriptions above in conjunction with FIGS. 38 to 40. For the sake of brevity, I won't repeat them here.
  • the dimensions of the antenna array shown in FIGS. 44 to 46 are only examples, and the antenna array may also include more or fewer rows, and may also include more or fewer columns. This application does not limit this. For the sake of brevity, the drawings are not listed here.
  • the antenna arrays shown in FIGS. 44 to 46 can also be rotated 90° clockwise or counterclockwise to improve the spatial resolution in the vertical direction.
  • Fig. 47 shows an antenna array with 8 rows and 8 columns, that is, the dimension of the antenna array is 8 ⁇ 8.
  • the antenna elements in the antenna array are all bowl-shaped antenna elements, but the bowl-shaped antenna elements in the antenna array have two different radiation characteristics.
  • the radiation characteristics mentioned here can refer to the radiation field formed by the antenna element in space when the antenna element is at a certain position in the antenna array, regardless of the possible influence of other antenna elements around it.
  • Polarization direction That is to say, regardless of the changes in the radiation characteristics of the space due to the influence of other antenna elements around, two antenna elements with different azimuths have different polarization directions.
  • the antenna elements in the antenna array can be divided into two parts, and the orientation of the two parts of the antenna elements in the antenna array is different.
  • the figure is distinguished by “ ⁇ ” and " ⁇ ".
  • the azimuths of the two antenna elements are different, which may mean that when the centers of two antenna elements with different azimuths coincide, for example, two antennas coincide, one of the antenna elements has a deflection angle relative to the other antenna element. This is analogous to the fact that some of the antenna elements are obtained after a center rotation is made relative to the other part of the antenna elements.
  • the second antenna unit may also include multiple antenna units with the same azimuth.
  • the phase distribution pattern in space may not be uniform, and there is a hollow in a certain area, and by introducing a deflection angle
  • the antenna unit (such as the second antenna unit) can make up for this part of the hollow.
  • the spatial phase distribution pattern area between the first antenna unit and the second antenna unit tends to be uniform. This helps suppress side lobes, which in turn improves system performance.
  • the deflection angle is 45°. It can be obtained through simulation that when the deflection angle between the first antenna element and the second antenna element is designed to be 45°, the phase pattern distribution corresponding to each port in the array is the most uniform, so that the maximum resolution of the antenna array is consistent This maximizes the sidelobe suppression capability, which in turn helps improve system performance.
  • the first antenna element and the second antenna element are alternately arranged; in each column of the antenna column, the first antenna element and the second antenna element are also alternately arranged.
  • the four antenna elements adjacent to each first antenna element are all second antenna elements, and the four antenna elements adjacent to each second antenna element are all first antennas. unit.
  • the spatial resolution of the antenna array is not changed. Therefore, the spatial resolution of the antenna array shown in FIG. 47 in both the vertical direction and the horizontal direction can be improved.
  • the phase pattern of each port in the entire antenna array is evenly distributed, which is beneficial to maximize the side lobe suppression capability and improve the system performance.
  • the dimensions of the antenna array shown in FIG. 47 are only examples.
  • the antenna array may also include more or fewer rows, and may also include more or fewer columns. This application does not limit this. For the sake of brevity, the drawings are not listed here.
  • the application also provides a communication device.
  • the communication device may include the antenna shown in any one of the above-mentioned embodiments, for example, Figure 2, Figure 5 to Figure 7, Figure 9 to Figure 15, Figure 17, Figure 18, Figure 20, Figure 22
  • the antenna 200 shown in any one of FIGS. 24 to 35 may be an antenna obtained by simple changes or equivalent replacements based on the same concept.
  • the communication device may also include the antenna array shown in any one of the above multiple embodiments, such as the antenna array shown in any one of the drawings in FIG. 37 to FIG. 47, or a simple change based on the same concept or Equivalently replace the resulting antenna array.
  • the communication device is a base station.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供了一种天线、天线阵列和通信装置。该天线包括:多个振子,该多个振子与相互独立的多个馈电点一一对应,该多个振子中的每个振子连接于所对应的一个馈电点;其中,每个振子包括两个弯折体,每个弯折体包括振子臂和连接体,该连接体的第一端在发射板接地,该连接体的第二端与振子臂的一端相交,且该连接体的第二端与所对应的馈电点相连。其中,连接体可以是用于实现平衡馈电的巴伦结构。通过将多个振子与多个相互独立的馈电点一一对应,可以实现单端口的独立工作,也可以实现更多个端口的自由度。因此,可以在有限的天线面板尺寸下,构建更多端口的自由度,从而提高天线的空间分辨率,提升系统吞吐。

Description

天线、天线阵列和通信装置 技术领域
本申请涉及天线技术领域,并且更具体地,涉及天线、天线阵列和通信装置。
背景技术
随着多输入多输出(multiple-input multiple-output,MIMO)对容量的需求提升,希望在有限的天线面板尺寸下构建更多端口的自由度。目前较为常见的天线为双极化天线。一个双极化天线可以提供两个天线端口的自由度。若要增加天线端口,可能需要增加天线数量,也就需要增加天线阵列的维度。但由于天线间距受限于工作频点,因此天线面板的尺寸也就随之增大。这不利于通信设备(如基站)的部署。
发明内容
本申请提供一种天线、天线阵列和通信装置,以期在有限的天线面板尺寸下,构建更多端口的自由度。
第一方面,提供了一种天线,该天线包括:多个振子,该多个振子与相互独立的多个馈电点一一对应,该多个振子中的每个振子连接于所对应的一个馈电点;其中,每个振子包括两个弯折体,每个弯折体包括振子臂和连接体,该连接体的第一端在发射板接地,该连接体的第二端与振子臂的一端相交,且该连接体的第二端与所对应的馈电点相连。
由于连接体的第二端与振子臂的一端相交,而连接体的第二端与所对应的馈电点相连,因此也就可以理解为,该振子臂的一端与所对应的馈电点相连,或者,连接体与振子臂在相交处与所对应的馈电点相连。
由于该多个馈电点之间相互独立,该多个馈电点所连接的多个振子分别可以基于来自馈电点的馈电独立工作。即,每个馈电点所连接的一个振子可以实现单端口工作。或者说,每个馈电点所连接的一个振子可以提供一个端口的自由度。多个振子可以基于分别来自多个馈电点的馈电提供多个端口的自由度。从而有利于提高系统吞吐。
在一种可能的设计中,该多个振子中每个振子的两个弯折体对称设置。
结合第一方面,在第一方面的某些可能的实现方式中,该连接体用于平衡馈电。
也就是说,该连接体可理解为一个巴伦结构,以实现平衡馈电的功能。
在一种可能的设计中,该连接体的长度为λ/4,为工作波长。
结合第一方面,在第一方面的某些可能的实现方式中,该连接体与反射板之间具有一倾角。
也就是说,该连接体是斜向设置在振子臂和反射板之间。对于一个长度一定(例如上述λ/4)的连接体来说,将其斜向设置,可以减小其在垂直于反射板方向上的高度,也即可以减小天线高度。另一方面,将该连接体斜向设置,还可以改善天线的交叉极化比。
结合第一方面,在第一方面的某些可能的实现方式中,所述多个振子围绕所述天线的 中心分布,所述多个振子中每个振子的连接体顺着所述第一端至所述第二端的方向由内向外辐射,所述多个振子的振子臂将所述多个振子的连接体包围在其中,形成碗状。
结合第一方面,在第一方面的某些可能的实现方式中,所述多个振子围绕所述天线的中心分布,所述多个振子中每个振子的连接体顺着所述第二端至所述第一端的方向内向外辐射,所述多个振子的振子臂位于在所述天线的中心附近。
在一种可能的设计中,上述多个振子可以均匀分布。如,该多个振子可以围绕天线的中心均匀分布。
结合第一方面,在第一方面的某些可能的实现方式中,所述振子臂的另一端包括朝向所述反射板的弯折部。
对于一个长度一定的振子臂来说,将其一部分长度向反射板方向弯折,可以减小该振子臂在平行于反射板方向上的面积,有利于获得天线的小型化。由此,与各端口对应的振子也就相对变小,这有利于降低端口间的耦合。
结合第一方面,在第一方面的某些可能的实现方式中,所述振子臂为梳齿结构,所述梳齿结构的齿部朝向所述反射板。
采用梳齿结构的振子臂同样有利于获得天线的小型化,使得各端口对应的振子也就相对变小,这有利于降低端口间的耦合。
结合第一方面,在第一方面的某些可能的实现方式中,所述天线还包括寄生结构,所述寄生结构为垂直于所述反射板设置的金属板状结构;其中,所述寄生结构包括隔板,所述隔板用于将所述多个振子隔离在不同的空间内。
隔板可以将多个振子隔离在不同的空间内,也就相当于将各个端口隔离在不同的空间内。这有利于提升端口间的隔离度。
进一步地,所述寄生结构还包括围板,所述围板包围所述多个振子。
通过引入寄生结构,可以作为天线的一部分,将电流分布路径拉长,实现天线的工作频率下移,增大天线的有效口径,拉大端口间的等效距离,因此可以实现天线的进一步小型化。此外,通过在天线内部引入寄生结构,可以对天线发射的电磁波造成微扰,实现电磁波传输的相位扰动,提升端口间的相位差斜率,从而有利于提升天线的空间分辨率。
可选地,所述围板在所述多个振子的外围首尾相接,形成闭合的多边形。
可选地,所述围板分离地设置在所述多个振子的外侧,且在每个振子的附近不闭合。
结合第一方面,在第一方面的某些可能的实现方式中,所述天线还包括位于所述多个振子上方且平行于所述反射板的一层或多层导体,每层导体包括多个导体。
该每层导体中的多个导体可以呈均匀分布或非均匀分布。
在一种可能的设计中,该多层导体可以印刷在印刷电路板(printed c board,PCB)上。每层的多个导体之间可以相互独立。
可选地,处于同一层的多个导体大小不同和/或形状不同,以耦合不同的电磁能量。
该多个导体可以是非均匀分布的。由于大小不同的导体耦合的电磁能量不同,形状不同的导体耦合的电磁能量也不同,因此可通过耦合幅度和相位的不同,实现电流的再分布,进而实现端口间相位差的斜率的改变
可选地,所述一层或多层导体包括至少一个谐振结构体。
通过在振子的上方设置谐振结构体,可以改善天线的极化特性,改善天线的交叉极化 比。
在一种可能的设计中,该谐振结构体为开口谐振环,所述多个振子与一个或多个开口谐振环对应,与同一个振子对应的开口谐振环具有相同的开口朝向,与不同振子对应的开口谐振环具有不同的开口方向。
通过将每个振子与一个或多个开口谐振环对应,可以增强天线在某一极化方向上的强度。当多个振子各自对应多个不同开口朝向的开口谐振环时,可以使得该多个振子各自提供的端口的极化纯度得以提升。
进一步地,该谐振结构体与上述寄生结构可以结合,以进一步提升端口的极化纯度。
结合第一方面,在第一方面的某些可能的实现方式中,所述一层或多层导体由超材料技术获得。
当上述一层或多层导体由超材料技术获得时,可以认为上述一层或多层导体呈周期分布或非周期分布。
结合第一方面,在第一方面的某些可能的实现方式中,所述天线还包括与所述多个振子对应的多个引向单元,所述多个引向单元中的每个引向单元包括一个或多个引向器。
通过引入多个引向单元,可以使得收窄波束,获得天线增益。
可选地,每个引向单元包括多个引向器,所述多个引向器在逐渐远离所述反射板的方向上依次排布。
结合第一方面,在第一方面的某些可能的实现方式中,所述天线还包括介质,所述介质位于所述多个振子之间;或,位于所述多个振子外部,以将所述多个振子包围;或,位于所述多个振子的上方。
通过引入介质,可以改变电磁波的传播相速,使得电磁波在空间的传播不均匀。从而拉大端口间的等效相位距离,从而有利于获得更高的空间分辨率。
通过引入多种不同介电常数的介质,也即引入了介电常数不均匀的介质,从而对电磁波的传输造成空间微扰,实现端口间的相位差斜率的改变。
结合第一方面,在第一方面的某些可能的实现方式中,所述多个振子为四个振子,所述多个馈电点为四个馈电点。
即,上述天线可以提供四个端口的自由度。
第二方面,提供了一种天线阵列,该天线阵列包括多个天线单元,每个天线单元包括一个或多个如第一方面中任意一种实现方式中的天线。
通过在天线阵列中使用上述天线,可以在有限的天线面板面积内构建更多个端口的自由度,有利于提供系统吞吐,获得增益。
结合第二方面,在第二方面的某些可能的实现方式中,所述多个天线单元中的至少两个天线单元的方位不同,以使得方位不同的两个天线单元的极化方向不同。
因此,在提高空间分布率的基础上,由于具有不同极化方向的两个天线单元交替排布,使得整个天线阵列中各端口的相位方向图均匀分布,有利于最大程度地提高获得旁瓣抑制能力,提升系统性能。
第三方面,提供了一种天线阵列,该天线阵列包括第一天线单元和第二天线单元,所述第一天线单元包括一个或多个如第一方面中任意一种实现方式中的天线,所述第二天线单元包括一个或多个双极化天线。
由此,可以在有限的天线面板提供更多端口的自由度。从而有利于提高天线阵列的空间分辨率,提高系统吞吐。
第四方面,提供了一种通信装置,该通信装置部署有如第一方面中任意一种实现方式中的天线。或者,该通信装置部署有如第二方面或第三方面中所述的天线阵列。
可选地,该通信装置为基站。
附图说明
图1是适用于本申请实施例提供的天线单元的应用场景的示意图;
图2是本申请实施例提供的天线的示意图;
图3和图4是本申请实施例提供的振子的示意图;
图5至图7是本申请实施例提供的天线的示意图;
图8是本申请实施例提供的寄生结构的俯视图;
图9至图15是本申请实施例提供的天线的示意图;
图16是本申请实施例提供的导体的俯视图;
图17和图18是本申请实施例提供的天线的示意图;
图19是本申请实施例提供的开口谐振环的俯视图;
图20是本申请实施例提供的天线的示意图;
图21是本申请实施例提供的开口谐振环的俯视图;
图22是本申请实施例提供的天线的示意图;
图23是本申请实施例提供的开口谐振环的俯视图;
图24至图35是本申请实施例提供的天线的示意图;
图36是本申请实施例提供的天线单元中螺旋臂与射频通道的对应关系的示意图;
图37至图47是本申请实施例提供的天线阵列的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
为了便于理解本申请实施例,首先对本申请中涉及到的几个术语做简单说明。
天线端口(antenna port):也可简称端口。端口可以理解为独立的收发单元(transceiver unit,TxRU)。
天线单元:一个天线单元可以提供一个或多个天线端口的自由度。
可选地,一个天线单元可以包括一个或多个天线振子,每个天线振子对应一个独立的射频通道(radio frequency channel,RF channel),由所对应的射频通道驱动。
可选地,一个天线单元也可以包括一组或多组天线振子,每组天线振子包括多个天线振子,每组天线振子可以对应一个射频通道,由所对应的射频通道驱动。
多个天线单元可以以阵列的形式组成天线系统。该天线系统可以称为天线阵列(antenna array),或者称,天线阵。
天线振子:简称,振子。是构成天线的辐射单元,具有导向和放大电磁波的作用。
馈电:即供电。在天线领域,馈电可以是指向天线供电,或者说,提供能量。
工作波长λ:与工作频率f成反比。如,工作波长λ(单位:米)可以为工作频率f(单 位:兆赫兹(MHz))的倒数。
天线口径:是表示天线接收无线电波功率的效率的参数。口径被定义为垂直于入射无线电波方向,并且有效截获入射无线电波能量的面积。天线有效口径也可以称为天线有效面积(antenna effective area),可以是用来表征天线接收空间电磁波能力的参数。天线有效口径可以是天线输出端的功率与入射的平面波的射电流量密度的比值。
波束宽度:波束两个半功率点之间的夹角。
空间分辨率:第一零点波束宽度的一半。
具体而言,当天线阵列中的两个天线单元接收某个来波方向的信号时,可以利用两个天线单元对应的接收相位差异来识别来波方向。而接收相位差异随着辐射角度的变化趋势(也就是相位方向图之差的斜率)则反映了该天线阵列能够区分的空间位置的最小间隔,也即,反映了天线阵列的空间分辨率。因此,天线阵列在水平方向的空间分辨率与水平方向上任意两个端口之间的相位方向图差异的最大斜率(通常为最左侧的一列天线单元和最右侧的一列天线单元的相位方向图的差异的斜率)相关;天线阵列在垂直方向的空间分辨率与垂直方向上任意两个端口之间的相位方向图差异的最大斜率(通常为最上面的一行天线单元和最下面的一行天线单元的相位方向图的差异的斜率)相关。下文中为方便说明,将上述相位方向图差异的最大斜率简称为相位差的斜率。
超材料(metamaterial):具有自然界的天然材料所不具备的超长物理性质的人工复合结构或复合材料。超材料具有一些特性,例如可以让光、电磁波改变它们的通常性质。超材料通常具有周期性或非周期性人造微结构。
为了便于理解本申请实施例,首先结合图1对本申请实施例所提供的天线单元的应用场景做简单说明。图1示出了适用于本申请实施例所提供的天线单元的基站的几种可能的示意性架构图。图1按照由a)至c)的顺序所示出的几种架构示出了基站架构的演进。如图1所示,该基站的架构可以是宏基站+天线的架构,如图1中的a)所示;也可以是分离式基站+天线的架构,如图1中的b)所示;或者还可以是有源天线单元(active antenna unit,AAU)+基带单元(base band unit,BBU)的架构,如图1中的c)所示。本申请对此不作限定。
其中,图中的a)所示宏基站可以包括内置的射频单元(radio frequency unit,RFU)和BBU。
图1中的b)所示分布式基站可以包括内置的基带单元(base band unit,BBU)和射频拉远单元(remote radio unit,RRU)。BBU可以通过公共无线接口(common public radio interface,CPRI)或增强的CPRI(enhance CPRI,eCPRI)等与RRU相连,RRU可以通过馈线与天线相连。图1中所示的天线可以为无源天线,其与RRU是分离的,之间可以通过电缆连接。
BBU主要可用于完成基带信号的处理,如信道编解码、调制解调等。一个BBU中可以包括多块基带板。RRU主要可用于完成信号的中频处理、射频处理以及双工等功能。其中,中频处理包括上变频、下变频、数模转换和模数转换等功能,射频处理包括对收发的射频信号的功率放大功能。在某些场景下,可能RRU中不包括中频的处理功能,如零中频系统。
应理解,图1所示的基站的架构仅为示例,不应对本申请构成任何限定。在另一种可 能的设计中,该基站可以包括有源天线系统(active antenna system,AAS),AAS的天线与射频模块是集成在一起的。
在又一种可能的设计中,该基站也可以包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)。DU可用于实现射频信号的收发,射频信号与基带信号的转换,以及部分基带处理。CU可用于进行基带处理,对基站进行控制等。其中,DU可以包括至少一个天线。DU中的至少一个天线例如可以采用本申请实施例所提供的天线阵列。CU和DU可以是物理上设置在一起的,也可以是物理上分离的,本申请对此不作限定。
应理解,基站的架构可以参考现有技术中各种可能的基站架构,而并不仅限于上文所列举的基站架构。为了简洁,这里不一一附图说明。
图1中虽未示出,但本领域的技术人员可以理解,上述天线具体可以包括辐射单元(即,天线振子、振子等)、反射板(或者称,底板、天线面板)、功率分配网络(或者称,馈电网络)以及天线罩。
目前,应用于蜂窝通信网络的天线多为双极化天线,或者也可以称为交叉极化天线。一个双极化天线可以提供两个端口的自由度,相比于单极化天线而言,可以在面积不变的情况下,通过增加极化自由度,增加了空间复用的能力,并且端口数加倍,从而使得系统的吞吐量增大。
为了获得较大的系统吞吐,希望通过对天线的设计,使得天线的空间分辨率达到最大。在一种可能的设计中,天线单元的间距被设置为工作频点的半波长。这是因为此时的天线阵列的空间分辨率表现优秀,并且旁瓣抑制能力较强。
然而,随着多天线技术的发展,天线阵列的维度增大,天线单元数增多,天线阵列的面积也随之增大,天线面板也随之增大,这不利于通信设备的部署。
以上文所述的双极化天线为例,相邻的两个双极化天线之间的间距为0.5个波长,若天线阵列的维度为8×8,即8行8列,则天线阵列中的天线间距共计约为3.5(0.5×7)个波长。再考虑天线本身的面积,该天线阵列的宽度约为4个波长左右。在中心频点为1.8吉赫兹(GHz)的频段,对应的天线阵列的宽度约为667毫米(mm),这大大超过了天线面板的常规尺寸。若进一步增大天线阵列的维度,例如增加行数和/或列数,则对应的天线阵列的尺寸会进一步增大。这可能会导致通信设备的体积增大,不利于部署。
因此,希望能够提供一种天线,能够在有限的面积内提供更多端口的自由度。
本申请提供了一种天线,相比于双极化天线,该天线可以提供更多个端口的自由度,且多个端口可以相互独立。从而能够在有限的天线面板的面积内部署更多的端口,以提高系统吞吐,同时不影响天线的空间分辨率。
下文结合图2至图35详细说明本申请实施例提供的天线的具体结构。图37至图47是包含了如图2至图35中任意一个附图中所示天线200的天线阵列。应理解,图2至图35所示的天线200可以作为一个独立的天线单元,也可以作为天线单元中的一部分,和一个或更多个相同结构的天线200组成一个天线单元,本申请对此不做限定。
需要说明的是,下文在结合附图(如图2至图35)描述天线时,为了方便描述,引入了“上”、“下”等方位。对于一个天线来说,反射板处于下方,振子处于上方。天线可以设置在反射板上方,反射板可以位于振子的下方。应理解,这只是为了方便描述而引入的, 不以对本申请构成任何限定。比如,若将天线做180°的翻转,反射板就处于上方,振子就处于上方。反射板就位于振子的上方,振子就位于反射板的下方。本领域的技术人员可以理解,下文关于天线的描述中,“上”和“下”是可以对调的。
还需要说明的是,下文在结合附图(如图37至图47)描述天线阵列时,为了方便描述,引入了“左”、“右”、“上”、“下”等方位。在描述列时,可以通过“左”、“右”来限定位置关系;在描述行时,可以通过“上”、“下”来限定位置关系。“左”、“右”、“上”、“下”都是相对于一个方位确定的天线阵列而言的。可以理解,在实际使用过程中,天线阵列可以被部署在通信装置中,例如被安装到支架上。在安装过程中,天线面板可能发生倾斜、翻转或旋转等,天线阵列的方位可能变化,但这并不会对天线阵列中各天线单元之间的相对位置关系造成影响。其中,“左”与“右”相对,对应于列;“上”与“下”相对,对应于行。比如将天线阵列以中心为轴旋转90°,“左”与“右”可以被调换为“上”与“下”,“列”可以被调换为“行”;“上”与“下”可以被调换为“左”与“右”,“行”可以被调换为“列”。又比如,将天线阵列以中心为轴旋转180°时,“左”与“右”可以对调,“上”与“下”可以对调。
下面将结合附图详细说明本申请实施例提供的天线和天线阵列。
图2是本申请实施例提供的天线200的一示意图。如图2所示,该天线200包括多个振子211-214,该多个振子211-214可以与相互独立的多个馈电点一一对应。该多个振子211-214中的每个振子可以连接于所对应的一个馈电点。
图2所示的天线200具体包括了四个振子211-214,与四个相互独立的馈电点一一对应。由于四个馈电点相互独立,该天线200可以实现四个端口的自由度。
但应理解,图2以及后文结合多个附图所示的包含四个振子的天线200仅为本申请实施例提供的天线的一例。本申请实施例提供的天线还可以包括更多或更少的振子,与更多或更少的相互独立的馈电点一一对应,实现更多或更少的端口的自由度。本申请对此不做限定。
为方便说明,下文中以包含四个振子211-214的天线200为例来对本申请实施例提供的天线做更详细的说明。
该四个振子211-214中的每个振子可以包括两个弯折体。每个弯折体包括振子臂和连接体。连接体的一端可以接地,另一端可以接电。为便于区分,可以将连接体接地的一端记为连接体的第一端,也可以称为接地端;将连接体接电的一端记为连接体的第二端,也可以称为接电端,或馈电端。连接体的第二端还与振子臂的一端相连。换言之,连接体与振子臂在馈电端附近相交。或者也可以说,振子臂的一端接电。为便于区分,可以将振子臂接电的一端记为振子臂的第一端,另一端记为振子臂的第二端。振子臂与连接体在相交处弯折,以形成弯折状。
图2中为避免混淆,标识出了振子211的弯折体2111和弯折体2112。可以看到,弯折体2111和弯折体2112在接电的位置附近有连接关系。图2中并进一步标识出了弯折体2111的振子臂2111a和连接体2111b。可以看到,振子臂2111a和连接体2111b在相交处弯折,形成弯折状,图中所示的弯折状近似为“L”型。当然,图2所示的弯折状仅为示例,不应对本申请构成任何限定。
应理解,上述弯折体可以是一体成型的,也可以是通过焊接、装配等方式将振子臂与连接体连接在一起得到的。本申请对此不做限定。
该天线200还可以包括反射板220。上述多个振子211-214中的各个连接体可以在反射板接地。
在一种可能的设计中,反射板为PCB。PCB可提供接地层,以便连接体在PCB上实现接地。PCB还可提供相互独立的多个馈电点,上述多个振子与该多个馈电点一一对应。各振子的馈电端可以通过馈线与该多个馈电点连接。
若将反射板作为水平基准,连接体的第二端可以高于第一端。换句话说,基于连接体的支撑,振子臂可以处于反射板上方,向不同的方向伸展。连接体的第二端高于第一端,可以减小连接体的长度在反射板的平面上所占用的面积,也即可以减小对天线面板的占用面积。同一个振子的两个振子臂之间可以存在一夹角。该两个振子臂可以在不同方向上形成辐射场。
可选地,同一个振子的两个振子臂平行于反射板,且高度相同。
将同一个振子的两个振子臂设计为与反射板平行,且高度相同,也即,同一个振子的两个振子臂与反射板间的垂直距离相同。从而可以减小振子臂在垂直于反射板方向上可能产生的高度。
进一步地,上述多个振子的振子臂高度相同。将天线中多个振子的振子臂设计为高度相同,可以使得该天线的整体高度得以控制。
一种可能的设计是,上述天线中的多个振子中的弯折体可以具有相同的规格。即,同一天线中构成多个振子的多个弯折体可以是相同的规格,比如,连接体的形状、长度相同;振子臂的形状、长度相同;以及,连接体与振子臂之间的夹角相同,等等。使用相同规格的多个弯折体来组合得到上述天线。
为了进一步减小该天线的高度,可以将连接体斜向接地。即,各振子中的连接体与反射板之间具有一倾角。
也就是说,该连接体是斜向连接在振子臂和反射板之间,如图2中所示。对于一个长度一定(例如上述λ/4)的连接体来说,将其斜向设置,可以减小其在垂直于反射板方向上的高度,也即可以减小天线高度。另一方面,将连接体斜向设计,还可以改善天线的交叉极化比。
此外,对每个振子中的两个弯折体还可以对称设置。
也就是说,每个振子中的两个弯折体可以具有相同的规格,比如包括相同的形状、大小、连接体与振子臂的夹角等。对称设置的两个振子臂可以形成对称的辐射场。
在本申请实施例中,各连接体可以是用于实现平衡馈电的巴伦结构。为了实现平衡馈电,该连接体的长度可以设计为约λ/4,λ为工作波长。这里,连接体的长度例如可以是指该连接体的第一端与第二端之间的直线距离,如图2中所示的连接体长度L。
再看图2,图2所示的天线200中,多个振子211-214围绕天线200的中心分布,且每个振子的连接体顺着第一端至第二端的方向由内向外辐射,形成辐射状。多个振子的振子臂虽然未相接,但可以围成一个多边形,如图2中所示的四边形,该多边形可以将多个振子的连接体包围在其中。从整体上看呈现出碗状。因此图2所示的天线可以称为碗状天线。
可选地,该多个振子211-214可以围绕该天线200的中心均匀分布。例如图2中所示。若将图中的四个振子211-214的振子臂首尾相接,可以得到一个近似的正方形。该天线的 中心可以位于该正方形的中心。
对于其他数量的振子来说也是如此。例如,当振子的数量为六个时,将六个振子的振子臂首尾相接,可以得到一个以天线的中心为中心的近似的六边形;当振子的数量为八个时,将八个振子的振子臂首尾相接,可以得到一个以天线的中心为中心的近似的八边形。以此类推,这里不一一举例说明。
为了进一步减小天线的平面尺寸,可以对振子作出改进。
可选地,振子臂的第二端包括朝向所述反射板的弯折部。
对于一个长度一定的振子臂来说,将其一部分长度向反射板方向弯折,可以减小该振子臂在平行于反射板方向上的长度。若对天线中每个振子的振子臂都作出相同的处理,也即可以减小各振子之间的间距,从而可以减小天线平面尺寸;同时,由于是向反射板的方向弯折,对高度也未产生影响,因此进一步有利于获得天线的小型化。此外,与各端口对应的振子相对变小,这有利于降低端口间的耦合。
图3示出了本申请实施例提供的振子的一示意图。图3所示的振子可以是上述多个振子211-214中的任意一个。为便于理解,图3中的a)和b)分别从两个不同的视角示出了一个振子。该振子中的振子臂的第二端具有一个朝向反射板的弯折部。如图3中所标识的弯折1。
应理解,上文所述在振子臂的第二端,将一部分长度向反射板方向弯折,只是为了便于理解而做出的描述。在实际成型过程中,该振子臂可以是直接按照已经包含了弯折部的形态成型的,或者也可以是在后期进行了弯折处理的,本申请对此不做限定。
可选地,振子臂为梳齿结构,该梳齿结构的齿部朝向反射板。
采用梳齿结构同样也有利于天线的小型化,降低端口间的耦合。其具体原因在上文中已经做了说明,为了简洁,这里不再重复。
图4示出了本申请实施例提供的振子的另一示意图。图4所示的振子可以是上述多个振子211-214中的任意一个。为便于理解,图4中的a)和b)分别从两个不同的视角示出了一个振子。该振子中的振子臂为梳齿结构,基部在上,齿部朝向反射板。且在振子臂的第二端的端部具有一个齿,类似于上文结合图3所示的弯折部。
应理解,上文所述的梳齿结构可以是一体成型的,也可以是将齿部和基部分别获得后再通过焊接、装配等方式获得的,本申请对此不做限定。
可选地,连接体包括一处或多处弯折。
通过对连接体的改进,可进一步减小高度尺寸。例如,可以在连接体的中部附近设置一弯折,使连接体成为具有不同倾角的两部分。图3中的所标识的弯折2示出了具有弯折的连接体的一例。
前已述及,连接体是可用于实现平衡馈电的巴伦结构。而巴伦结构的长度约为λ/4。在连接体存在弯折的情况下,仍可将该巴伦结构的长度定义为第一端至第二端的直线距离。但应理解,对巴伦结构的长度的设计可以允许一定的误差范围的存在,故,在连接体存在弯折的情况下,也可以将巴伦结构的长度定义为该连接体两部分的长度之和。本申请对于巴伦结构的长度的定义并不作限定。
应理解,该连接体可以是一体成型的,也可以是将上述具有不同倾角的两部分通过焊接、装配等方式获得的,本申请对此不做限定。
图5示出了本申请实施例提供的天线200的另一示意图。图5所示的天线200包括四个振子211-214以及反射板220。为了更清楚地展示振子的形态,图7中未将该反射板220全部示出。在该四个振子211-214中,每个振子都包括两个弯折体,每个弯折体都包括振子臂和连接体。每个连接体的第一端在反射板220接地,在第二端接电。每个弯折体的振子臂都具有梳齿结构,以用于实现该天线的小型化,且可以减小端口间的耦合。
由图可以看到,图5所示的天线200也呈碗状。因此图5所示的天线200也可以称为碗状天线。
图5所示的天线200中的四个振子也可以与四个相互独立的馈电点一一对应,从而可以实现单端口独立工作,并可以实现四个端口的自由度。
应理解,图5所示的包含四个振子的天线200仅为本申请实施例提供的天线的一例。本申请提供的天线还可以包括更多或更少的振子,与更多或更少的相互独立的馈电点一一对应,实现更多或更少的端口的自由度。本申请对此不做限定。
可选地,图5所示的多个振子211-214可以围绕该天线200的中心均匀分布。当该多个振子均匀地分布在天线300的中心的四周时,多个振子臂首尾相接,可以得到一个近似的正方形。该天线的中心可以位于该正方形的中心。
对于其他数量的振子来说也是如此。由于上文已经对此作了详细说明,为了简洁,这里不再赘述。
图6是本申请实施例提供的天线200的又一示意图。图6所示的天线200与图5所示的天线200的结构基本相似,只是振子臂上的梳齿结构略有不同。相比于图5所示的梳齿结构,图6所示的梳齿结构齿更少、更大、更稀疏。
关于图6所示的天线200的相关说明可以参照上文结合图5的相关描述,为了简洁,这里不再重复。
应理解,图2、图5和图6所示的天线200虽然都为碗状天线,但不应对本申请构成任何限定。碗状天线仅为本申请实施例提供的天线的一种可能的形态。本申请提供的天线还可以具有其他形态。
可选地,该天线的多个振子围绕天线的中心分布,该多个振子的每个振子的连接体顺着第一端至第二端的方向由内向外辐射。也就是说,振子臂位于天线的中心附近,而连接体的接地端较振子臂更加远离天线的中心。
这里,天线的中心附近,可以是指较靠近天线的中心的区域。比如,可以以天线的中心为轴,以某一预设值为半径划定一个范围,落入该范围内的区域可以被定义为是靠近天线的中心的区域,或者说,天线的中心附近。其中,该预设值可以根据天线的大小来设定。本申请对该预设值的大小不做限定。
图7是本申请实施例提供的天线200的再一示意图。如图7所示,天线200包括四个振子211-214以及反射板220。在该四个振子中,每个振子都包括两个弯折体,每个弯折体都包括振子臂和连接体。每个连接体的第一端在反射板220接地,在第二端接电。为了更清楚地展示振子的形态,图7中未将该反射板220全部示出。该四个振子211-214可以与四个相互独立的馈电点一一对应,既可以实现单端口独立工作,又可以实现多个端口的自由度。
由图可以看到,图7所示的振子211-214中的每个振子的振子臂在第二端都具有一个 弯折,以用于实现该天线的小型化,且可以减小端口间的耦合。
应理解,图5所示的包含四个振子的天线200仅为本申请实施例提供的天线的一例。本申请实施例提供的天线还可以包括更多或更少的振子,与更多或更少的相互独立的馈电点一一对应,以实现更多或更少的端口的自由度。本申请对此不做限定。
可选地,该天线的多个振子围绕天线的中心均匀分布。例如图7中所示。若将图7中的四个振子的连接体的接地端用直线连接,可以得到一个近似的正方形。该天线的中心可以位于该正方形的中心。
对于其他数量的振子来说也是如此。例如,当振子的数量为六个时,将六个振子的连接体的接地端用直线连接,可以得到一个以天线的中心为中心的近似的六边形;当振子的数量为八个时,将八个振子的连接体的接地端用直线连接,可以得到一个以天线的中心为中心的近似的八边形。以此类推,这里不一一举例说明。
应理解,上文结合图2、图5至图7所示的天线仅为示例,不应对本申请构成任何限定。基于相同的构思,还可以对上述天线的某一部分进行简单变形或等价替换,这些简单变形或等价替换均应落入本申请的保护范围内。
为了获得较好的性能,还可以进一步对上文列举的天线做进一步的改进。下文中将会结合更多的附图加以说明。应理解,下文附图仅为便于示例,上文结合图2、图5至图7所示的天线200中的任意一个以及基于相同的构思进行了简单变化或者等价替换所得到的天线均可应用于下文列举的任意一种实现方式。
在一种实现方式中,该天线还可以包括寄生结构。该寄生结构可通过寄生结构加载技术来实现。
该寄生结构例如可以是垂直于反射板设置的金属板状结构。
可选地,该寄生结构包括隔板,用于将多个振子隔离在不同的空间内。
隔板可以将多个振子隔离在不同的空间内,也就相当于将各个端口隔离在不同的空间内。这有利于提升端口间的隔离度。
可选地,该寄生结构还包括围板,围板可以将上述多个振子包围。
通过引入寄生结构,可以作为天线的一部分,将电流分布路径拉长,实现天线的工作频率下移,增大天线的有效口径,拉大端口间的等效距离,因此可以实现天线的进一步小型化。此外,通过在天线内部引入寄生结构,可以对天线发射的电磁波造成微扰,实现电磁波传输的相位扰动,提升端口间的相位差斜率,从而有利于提升天线的空间分辨率。
一种可能的设计是,围板在多个振子的外围首尾相接,形成闭合的多边形。另一种可能的设计是,围板分离地设置在多个振子的外侧,且在每个振子的附近不闭合。
图8中的a)和b)分别示意性地示出了寄生结构。图8所示为加载了寄生结构的天线的俯视图。图8的a)中,四个振子外侧的围板首尾相接,形成闭合的四边形。内部的隔板在将四个振子相互隔离在不同的空间内。如图中所示,围板和隔板形成了“田”字型。图8中的b)中,四个振子的外侧的围板并未闭合,在各振子附近留有空隙。内部的隔板也将四个振子隔离在不同的空间内。
图9是本申请实施例提供的包含寄生结构的天线200的一示意图。图9所示的天线200在图所示的天线200的基础上增加了寄生结构。如图9所示,该天线200除了包括上述四个振子211-214和反射板220之外,还包括寄生结构230。图9所示的寄生结构230 包括隔板2301和围板2302。其中,围板2302在四个振子211-214的外围首尾相接,可以形成闭合的多边形。
应理解,对天线200加载的寄生结构并不仅限于上文所列举的隔板和围板,还可以在其他位置加载寄生结构。例如可以在上述隔板上方加载寄生结构。
图10是本申请实施例提供的包含寄生结构的天线200的另一示意图。如图10所示,该天线200除了包括上述四个振子211-214和反射板220之外,还包括寄生结构230。图10所示的寄生结构230包括隔板2301、围板2302和处于隔板上方的金属板2303。图10所示的围板2302在四个振子211-214的外侧未闭合,在各振子附近留有空隙。图10所示的金属板2303位于隔板2301的上方,呈“十”字型。
应理解,上文结合附图列举的寄生结构仅为示例,不应对本申请构成任何限定。本领域的技术人员基于相同的构思,可以作出简单变形或等价替换,以达到与本申请实施例所提供的寄生结构相同的效果,这些简单变形或等价替换均应落入本申请的保护范围内。
在另一种实现方式中,该天线还包括位于振子上方且平行于反射板的一层或多层导体。每层导体可以包括多个导体。每层导体中的多个导体可以是均匀分布的,也可以是非均匀分布的。本申请对此不做限定。
在一种可能的设计中,该多层导体可以印刷在PCB上。各层导体之间可以相互独立。每层的多个导体之间可以相互独立。
可选地,处于同一层的多个导体大小不同和/或形状不同,以耦合不同的电磁能量。
这里所述的大小不同,具体可以是指导体在平行于反射板方向上的面积不同。
由于同一层的多个导体大小不同,和/或,同一层的多个导体形状不同。因此该多个导体是非均匀分布的。由于大小不同或形状不同的导体所耦合的电磁能量不同,因此可通过耦合幅度和相位的不同,实现电流的再分布,进而实现端口间相位差的斜率的改变。。
图11和图12是本申请实施例提供的包含一层导体的天线200的示意图。图11和图12所示的天线200除了包括上述四个振子211-214、反射板220和寄生结构230之外,还包括一层导体240。
可以看到,图11和图12所示的导体有所不同。图11所示的导体为方形,图12所示的导体为圆形,但这并不影响其对电磁波的传播特性的改变。图11和图12所示的一层导体240中,包括了大小不同的导体,因此均可以使得电流能量重新分布,实现端口相位差的斜率放大。
图13是本申请实施例提供的包含多层导体的天线200的示意图。图13所示的天线200与图11所示的天线200中所包含的导体相似,所不同的是,图13所示的天线200中包含了两层导体240。即,包含了多层导体的天线的一例。
应理解,图13所示仅为示例,不应对本申请构成任何限定。该天线200还可以包括更多层的导体;或者,该天线200还可以包括多层如图12中所示的圆形导体,等,为了简洁,这里不一一附图说明。
需要说明的是,图11至图13中所示的天线既包含了寄生结构230,又包含了一层或多层导体240。也就是说,上述寄生结构和一层或多层导体可以结合使用在天线中,以提高端口间相位差的斜率,进而提升天线的空间分辨率。
可选地,该多层导体在水平方向上完全重合。
也即,多层导体包含的导体的数量、大小、位置等均可以是相同的,在反射板的投影是重合的。
可选地,该多层导体在水平方向不完全重合。
也即,多层导体中至少两层导体包含的导体的数量、大小、位置等至少一项不同,这使得该多层导体在反射板的投影不完全重合。
可选地,上述一层或多层导体包括至少一个谐振结构体。换言之,该天线200还可以包括至少一个谐振体。
在本申请实施例中,通过在振子的上方设置谐振结构体,可以改善天线的极化特性,改善天线的交叉极化比。
图14和图15是本申请实施例提供的包含谐振结构体的天线200的示意图。图14和图15所示的天线200除了包括上述四个振子211-214和反射板220之外,还分别包括一层导体240位于四个振子211-214的上方。图14和图15所示的四个振子不同,但所包含的导体是相同的。此外,图14和图15所包含的导体与图11至图13所示的导体不同,图14和图15所示的导体为谐振结构体。
图16示出了图14和图15所示天线200中的谐振结构体的俯视图。如图所示,图中示出的谐振结构体近似一个被包围的“×”,但在各个方向上又存在开口,以实现不同方向上的极化强度。图16所示的多个谐振结构体均匀分布、大小相同。
应理解,图16所示的谐振结构体仅为一种可能的形状,不应对本申请构成任何限定。谐振结构体还可以是其他形状。例如,图17示出了包含谐振结构体的天线的另一示意图。本申请对于谐振结构体的具体形态不做限定。
在一种可能的设计中,谐振结构体为开口环式谐振器(split-ring resonator,SRR),也可简称开口谐振环。上述多个振子与一个或多个开口谐振环对应,与同一个振子对应的开口谐振环具有相同的开口朝向,与不同振子对应的开口谐振环具有不同的开口方向。
通过将每个振子与一个或多个开口谐振环对应,可以增强天线在某一极化方向上的强度。当多个振子各自对应多个不同开口朝向的开口谐振环时,可以使得该多个振子各自提供的端口的极化纯度得以提升。
图18是本申请实施例提供的包含了开口谐振环的天线200的一示意图。如图所示,该天线200除了包括上述四个振子211-214和反射板220之外,还包括一层导体240。该一层导体240中的导体均为开口谐振环。如图所示,该开口谐振环的开口并不是完全一致的。图中在靠近振子211的上方的开口谐振环的开口朝向,靠近振子212的上方的开口谐振环的开口朝向,靠近振子213的上方的开口谐振环的开口朝向,靠近振子214的上方的开口谐振环的开口朝向。将靠近不同振子的开口谐振环的朝向设计为不同的方向,可以进一步增强天线在各个极化方向上强度,使得各端口的极化纯度得以提升。
进一步地,如图所示,该天线200还包括寄生结构230。即,谐振结构体与寄生结构结合使用,由此可以进一步提升端口的极化纯度。
图19示出了图18所示天线200中的开口谐振环的俯视图。如图所示,图中示出了6行6列的开口谐振环。每个开口谐振环为两个带有开口的圆环组成,其中一个被另一个包围在其中,且两个圆环的开口朝向不同。图19中将开口朝向不同的开口谐振环通过不同的虚线框示出。图19示出了四个虚线框,与具有四个不同的开口朝向的开口谐振环对应, 也即与四个振子211-214对应。由此可以增强天线在四个极化方向上的强度,使得各端口的极化纯度得以提升。
图20和图21是本申请实施例提供的包含多层开口谐振环的天线200的另一示意图。图20所示的天线200除了包括上述四个振子211-214、反射板220和寄生结构230之外,还包括两层导体240。每层导体包括多个开口谐振环。图21为图20所示天线200的开口谐振环的俯视图。由图21可以看到,图20所示的两层开口谐振环在反射板的投影不完全重合。如图所示,图21所示的两层开口谐振环中,一层排列较紧密,另一层排列较稀疏。
图22和图23是本申请实施例提供的包含多层开口谐振环的天线200的另一示意图。图22和图23所示的天线200包含了多层开口谐振环,具体为两层。图23为图22所示天线200的开口谐振环的俯视图。由图23可以看到,图22所示的两层开口谐振环在反射板的投影完全重合。
应理解,图18至图23所示的天线200中的开口谐振环仅为示例,开口谐振环可以为圆环,也可以为方形环,等等。本申请对此不做限定。
还应理解,图18至图23所示的天线200仅为示例,该天线200还可以包括更多层的开口谐振环。为了简洁,这里未一一附图说明。但本申请对于开口谐振环的层数不做限定。
在一种可能的实现方式中,上述一层或多层导体由超材料技术获得。
当上述一层或多层导体由超材料技术获得时,可以认为上述一层或多层导体呈周期分布或非周期分布。例如,图11至图13所示的不均匀分布的导体可以理解为是非周期分布的,或者说,是渐变分布的。图14至图23所示的导体可以理解为是周期分布的。
应理解,上述导体也可以是基于其他技术获得。本申请对此不做限定。
在又一种实现方式中,该天线还可以包括与多个振子对应的多个引向单元,每个引向单元包括一个或多个引向器。并且在每个引向单元包括多个引向器的情况下,该多个引向器可以在逐渐远离反射板的方向上依次排布。同一个引向单元中的多个引向器可以位于在同一个平面上,在远离反射板的方向上依次往上延伸。
通过引入多个引向单元,与多个振子对应,可以收窄波束,获得天线增益。并且,引向器越多,方向越尖锐、增益越高。
图24是本申请实施例提供的包含多个引向单元的天线200的一示意图。图24所示的天线200除了包括上述四个振子211-214和反射板220,还包括四个引向单元251-254。该四个引向单元251-254与四个振子211-214一一对应。每个引向单元包括一个或多个引向器。图中每个方形框为一个引向器。图中的每个引向单元包括三个引向器。可以看到,每个引向单元中的多个引向器在逐渐远离反射板220的方向上依次排布。
图25和图26是本申请实施例提供的包含多个引向单元的天线200的另两个示意图。图25和图26所示的天线200除了包括上述四个振子211-214和反射板200,还包括寄生结构230和四个引向单元251-254。换言之,寄生结构和引向单元可以结合使用在天线中,以得到提升端口间的相位差斜率的效果。
此外,图25中所示的引向单元与图24所示的引向单元所不同的是,图25所示的引向单元中的引向器为方形的开口谐振环。且,图25所示的每个引向单元包括一个开口谐振环。与前文图18至图23所示的开口谐振环不同,图25所示的开口谐振环所在的平面与图18至图23所示的开口谐振环所在的平面不同。如前所述,图18至图23所示的开口 谐振环位于与反射板平行的平面上。而图25所示的每个引向单元中的开口谐振环则所在的平面则与反射板间有夹角。图25中所示的每个引向单元中的开口谐振环所在的平面几乎与反射板垂直。可以理解,图25所示的四个引向单元存在于四个平面上,该四个平面分别与反射板间存在夹角。
图26中所示的引向单元中的引向器也为开口谐振环。但与图25所不同,图26中的每个引向单元包括多个圆形的开口谐振环。与图25相似,图26中所示的开口谐振环所在的此外,图26所示的每个引向单元包括一个引向器,较图25中所示的引向单元所包括的引向器少。
将开口谐振环作为引向器可以在提高天线增益的同时,利用其较高的极化纯度特性提升天线的交叉极化水平。
应理解,图24至图26所示仅为示例。本申请对于每个引向单元中包含的引向器的形状及数量均不做限定。图27示出了包含了引向单元的天线200的又一例。图27所示的引向器为“H”型。为了简洁,这里未一一附图列举。
还应理解,图24至图26中所示的每个引向单元中的引向器所排布的方向是垂直于反射板的,但这不应对本申请构成任何限定。引向器也可以是倾斜于反射板的,图28示出了包含引向器的天线的又一例,图28所示的每个引向单元中的引向器所在平面倾斜于反射板。
在再一种实现方式中,该天线还包括介质。通过引入介质,可以改变电磁波的传播相速,使得电磁波在空间的传播不均匀。从而拉大端口间的等效相位距离,有利于获得更高的空间分辨率。
该介质可以位于多个振子之间,或,该介质也可以位于多个振子外部,将该多个振子包围,或,该介质还可以位于多个振子的上方。
图29至图33示出了包含介质的天线的示意图。
图29所示的天线200除了包括上述四个振子211-214和反射板220,还包括寄生结构230和介质260。也就是说,寄生结构230和介质260可结合使用,以得到提升端口间的相位差的斜率的效果。图29所示的介质260呈圆柱形,位于四个振子211-214之间。
图30所示的天线200中,介质260从外部将四个振子211-214以及反射板220包围,因此图中所示仅看到了反射板220的一部分以及介质260。
图31所示的天线200中,介质260位于四个振子211-214的上方。图31所示的介质260呈立体的圆环状。
图32所示的天线200中包含介质260。该介质260位于振子211-214的上方。图中所示的介质呈圆柱形。
图33所示的天线200中也包含介质260。该介质260位于振子211-214的上方。图中所示的介质呈圆台状。上文结合图29至图33示出了包含介质的天线的几例。但应理解,图中所示仅为示例,不应对本申请构成任何限定。
上文结合附图所示出的寄生结构、引向单元、导体、介质等用于提升端口间的相位差斜率的实现方式仅为示例。上述多种实现方式在不发生冲突的情况下可以结合使用。上文部分附图示出了将寄生结构与导体、引向单元、介质等结合使用的示例,为了简洁,这里不再列举。下面列举几种实现方式的结合的示例。
图34和图35是本申请实施例提供的天线200的又两个示意图。
图34所示的天线200除了包括振子211-214和反射板220之外,还包括寄生结构230、四个引向单元250和介质260。其中,寄生结构230包括隔板和围板。四个引向单元250首尾相接,故图中未区分标记。每个引向单元包括四个引向器。每个引向单元中的四个引向器在逐渐远离反射板的方向上依次延伸。介质260也位于四个振子211-214的上方,在逐渐远离反射板的方向上依次层叠。如图中位于天线200的中心方向上的圆柱形所示。图中共示出了五个介质。
图35所示的天线200除了包括振子211-214和反射板220之外,还包括寄生结构230、四个引向单元251-254和介质260。其中,寄生结构包括隔板、围板以及位于振子211-214上方的。四个引向单元与图24中所示的引向单元相似。介质260与图29中所示的介质相似。为了简洁,这里不再重复说明。
上文结合多个附图详细说明了本申请实施例提供的天线200。应理解,上文多个附图虽然以包含了四个振子的天线为例来做详细说明,但这不应对本申请构成任何限定。本申请实施例提供的天线200可以包括更多或更少的振子,与更多或更少的馈电点一一对应。各馈电点之间可以相互独立,从而可以提供更多或更少的端口的自由度。
应理解,上文结合多个附图提供的天线200中多个振子可以与相互独立的多个馈电点一一对应,以实现单端口独立工作。但这不应对本申请构成限定。该多个馈电点中的部分或全部也可以具有连接关系,以实现其中的部分或全部端口联合工作。例如,在上文结合附图示出的四个振子中,将对角两个振子的馈电点连接,可以实现两个端口的联合工作。
此外,前已述及,图2至图35所示的天线200可以作为一个独立的天线单元,每个螺旋臂连接一个馈电点,对应一个独立的射频通道。图2至图35所示的天线200也可以作为天线单元的一部分,与更多个相同结构的天线构成一个天线单元。一个天线单元中的多个天线中,每个天线都可以具有如图2至图35中所示的结构。按照各振子所对应的射频通道,可以将该多个天线中的振子分为四组,每组振子可实现单端口独立工作,四组振子可提供四个端口的自由度。
为便于理解,图36示出了天线单元中振子与射频通道的对应关系。图36中的天线以“□”示出。为便于区分,图中每个“□”表示一个天线,该天线例如可以是图2至图35中任意一个附图所示的天线。图中的每个黑点表示一个振子,该振子例如可以是图2至图4中任意一个附图所示的振子。
该天线单元中的每个振子由一个独立的射频通道驱动,可以参考图36中的a)。可以看到,该天线单元可以包括四个振子,每个振子由一个独立的射频通道驱动。此情况下,每个振子所连接的馈电点可以对应于一个射频通道。
若天线单元中的每组振子由一个射频通道驱动,该天线单元中的每组振子与射频通道的对应关系可以参照图36中的b)。可以看到,该天线单元中的每组振子包括四个振子,每组这种逆可以由一个射频通道驱动。每组振子也可以称为一个子阵。此情况下,每组振子所连接的馈电点可以对应于同一个射频通道。
应理解,图36所示仅为示例,不应对本申请构成任何限定。每个射频通道还可以与两个、三个或者其他数量的振子对应。本申请对此不作限定。
还应理解,图36所示的振子与射频通道的对应关系仅为示例,不应对本申请构成任 何限定。后文所列举的天线阵列中,并不限制振子与射频通道的对应关系,也不限制端口与射频通道的对应关系。
下文中为方便说明,以天线单元为粒度来说明。该天线单元例如可以是上文所述的一个天线200,也可以包括多个天线200。本申请对此不做限定。
基于上文所提供的天线单元,本申请还提供了一种天线阵列。该天线阵列可以包括一个或多个天线单元。
图37至图47示出了本申请实施例提供的天线阵列的几例。应理解,图37至图47中所示的天线阵列例如可以是一个完整的天线阵列,也可以是其中的一部分。本申请对此不做限定。
如图37至图47中所示,该天线阵列可以包括上文所述的天线单元,或者说,可以包括上文所述的天线。下文中为便于区分和说明,将上文结合图2至图35所列举的天线构成的天线单元记为碗状天线单元,以便与双极化天线单元区分。
图37所示为8行8列的天线阵列。该天线阵列中的天线单元可以都为天线单元。故该天线阵列可以称为碗状天线阵。图中每个“□”表示一个天线单元。
在该天线阵列中,水平方向上,最左边和最右边的天线单元均为碗状天线单元,当阵列所有端口在同一参考坐标下下生成相位方向图,最左边的天线单元与最右边的天线单元的相位方向图之差的斜率,相比于两侧均为双极化天线单元时的相位方向图之差的斜率要大。因此,该天线阵列在水平方向的空间分辨率得以提高。同理,垂直方向上,最上边和最下边的天线单元也为碗状天线单元,当阵列所有端口在同一参考坐标下下生成相位方向图,最上边的天线单元与最右边的天线单元的相位方向图之差的斜率,相比于上、下均为双极化天线单元时的相位方向图之差的斜率要大。因此,该天线阵列在垂直方向的空间分辨率得以提高。综上,该天线阵列的空间分辨率得以提高,这有利于提高系统的吞吐,增益明显。
应理解,图37所示的天线阵列的维度仅为示例,不应对本申请构成任何限定。该天线阵列还可以包括更多或更少的行,也可以包括更多或更少的列。例如,该天线这列可以是12行8列、16行8列、12行12列、16行12列、16行16列,等等,为了简洁,这里不一一列举。
可选地,天线阵列可以包括第一天线单元和第二天线单元。
在一种可能的设计中,第一天线单元和第二天线单元是不同形态的天线单元。比如,第一天线单元为碗状天线单元,第二天线单元为双极化天线单元。图38至图46示出了包含不同形态的天线单元的天线阵列的几例。
在另一种可能的设计中,第一天线单元和第二天线单元是不同方位的天线单元,具有不同的极化方向。比如,第一天线单元与第二天线单元之间具有一偏转角度。图47示出了包含不同方位的天线单元的天线阵列的一例。
图38所示为8行12列的天线阵列,即,天线阵列的维度为8×12。该天线阵列可以包括多个碗状天线单元(即,第一天线单元的一例)和多个双极化天线单元(即,第二天线单元的一例)。也即,混合了两种不同结构的天线。因此该天线阵列可以称为混合阵。
图中每个“×”表示一个双极化天线单元,每个“□”表示一个碗状天线单元。如图所示,该天线阵列的左侧二列和右侧二列为碗状天线单元,中间八列为双极化天线单元。应理解, 双极化天线单元为二端口天线单元的一例,也可以替换为其他二端口天线单元。本申请对此不做限定。
由于该天线阵列中,水平方向上,最左边和最右边的天线单元为碗状天线单元,可以提供更多端口的自由度。当阵列所有端口在同一参考坐标系下生成相位方向图,最左边的天线单元与最右边的天线单元的相位方向图之差的斜率,相比于两侧均为双极化天线单元时的相位方向图之差的斜率要大。因此,该天线阵列在水平方向的空间分辨率得以提高。因此有利于提高系统的吞吐,增益明显。
需要说明的是,系统的吞吐与天线阵列的空间分辨率相关,因此可以通过对天线阵列的空间分辨率的最大化来提升系统吞吐。天线阵列中所有端口的相位方向图可以采用同一位置参考点获得。继而,天线阵列在某一个方向上(如水平方向、垂直方向)的空间分辨率与该天线阵列中同一方向上的任意两个天线单元的相位方向图之差的最大斜率(即,随着辐射角度变化的斜率)相关。
若该碗状天线单元可提供四个端口的自由度,即为四端口天线单元,那么在相同面板尺寸下,四端口天线单元相比于二端口天线单元的端口间相位方向图之差的最大斜率大于二端口天线单元的相位方向图之差的最大斜率。因此四端口天线单元的空间分辨率大于二端口天线单元的空间分辨率。但是天线单元组阵时,由于相邻的两个四端口天线单元中的端口的相位辐射方向图夹角区域可能会发生重叠。
若将整个天线阵列中的天线单元均设置为碗状天线单元,该天线阵列可以称为碗状天线阵列。该天线阵列中间区域的碗状天线单元的相位方向图的夹角区域会有很大区间的重叠,因此给该天线阵列所带来的增益有限。若将天线阵列中处于中间区域的天线单元设置为二端口天线单元,如上文所述的双极化天线单元,而处于边缘的天线单元设置为碗状天线单元,其带来的增益与全部设置为天线阵列带来的增益相当。而从端口的角度来说,将天线阵列中处于中间区域的天线单元设置为二端口天线单元,可以减少端口数,即减少了天线成本和导频开销。因此,可以将天线单元与二端口天线单元混合排布在天线阵列中,以获得较大的增益。
应理解,上文所述的增益具体可以是指相对于双极化天线单元构成的维度相同的天线阵列而言的。
应理解,图38所示的天线阵列的维度仅为示例,不应对本申请构成任何限定。该天线阵列还可以包括更多或更少的行,也可以包括更多或更少的列。例如,该天线阵列可以是12行12列,如图39所示;该天线阵列还可以是16行12列,如图40所示。为了简洁,这里不一一附图列举说明。
基于上文所述相同的原理,图38至图40所示的天线阵列也可以顺时针或逆时针旋转90°,以提高垂直方向的空间分辨率。
上文结合图38至图40所示的混合阵仅为示例。其中天线单元的列数和二端口天线单元的列数也可以调整。
图41所示为8行10列的天线阵列,即,天线阵列的维度为8×10。该天线阵列也为混合阵,图中每个“×”表示一个双极化天线单元,每个“□”表示一个碗状天线单元。如图所示,该天线阵列的左侧三列和右侧三列为天线单元,中间四列为双极化天线单元。应理解,双极化天线单元为二端口天线单元的一例,也可以替换为其他二端口天线单元。本申 请对此不做限定。
图42所示为12行10列的天线阵列,即,天线阵列的维度为12×10。该天线阵列也为混合阵。该天线阵列每一行的排布与图41所示相同,只是行数有所增加。
图43所示为16行10列的天线阵列,即,天线阵列的维度为16×10。该天线阵列也为混合阵。该天线阵列每一行的排布与图41所示相同,只是行数有所增加。
图41至图43所示的天线阵列与图38至图40所示的天线阵列相似。可以提高该天线阵列在水平方向的空间分辨率,因此有利于提高系统的吞吐,增益明显。关于图41至图43的具体说明可以参考上文结合图38至图40的相关说明。为了简洁,这里不再赘述。
应理解,图41至图43所示的天线阵列的维度仅为示例,该天线阵列还可以包括更多或更少的行,也可以包括更多或更少的列。本申请对此不作限定。为了简洁,这里不一一附图列举说明。
此外,基于相同的原理,图41至图43所示的天线阵列也可以顺时针或逆时针旋转90°,以提高垂直方向的空间分辨率。
上述天线阵列还可以做进一步的变形。
图44所示为8行10列的天线阵列,即,天线阵列的维度为8×10。该天线阵列也为混合阵。图中每个“×”表示一个双极化天线单元,每个“□”表示一个天线单元。如图所示,该天线阵列的左边五列由三列碗状天线单元和两列双极化天线单元交错排布得到,该天线阵列的右边五列也由三列碗状天线单元和两列双极化天线单元交错排布得到。因此混合得到的阵列的最左侧和最右侧的一列都为碗状天线单元。
图45所示为12行10列的天线阵列,即,天线阵列的维度为12×10。该天线阵列也为混合阵。该天线阵列每一行的排布与图45所示相同,只是行数有所增加。
图46所示为16行10列的天线阵列,即,天线阵列的维度为16×10。该天线阵列也为混合阵。该天线阵列每一行的排布与图45所示相同,只是行数有所增加。
图44至图46所示的天线阵列与图38至图40所示的天线阵列也较为相似。基于上文所述相同的原理,可以提高该天线阵列水平方向的空间分辨率,有利于提高系统吞吐,增益明显。关于图44至图46的具体说明可以参考上文结合图38至图40的相关说明。为了简洁,这里不再赘述。
应理解,图44至图46所示的天线阵列的维度仅为示例,该天线阵列还可以包括更多或更少的行,也可以包括更多或更少的列。本申请对此不作限定。为了简洁,这里不一一附图列举说明。
此外,基于相同的原理,图44至图46所示的天线阵列也可以顺时针或逆时针旋转90°,以提高垂直方向的空间分辨率。
图47所示为8行8列的天线阵列,即,天线阵列的维度为8×8。该天线阵列中的天线单元均为碗状天线单元,但该天线阵列中的碗状天线单元具有两种不同的辐射特性。这里所述的辐射特性可以是指,当天线单元处于天线阵列中的某一位置时,在不考虑周围其他天线单元可能对其产生的影响的情况下,该天线单元在空间形成的辐射场的极化方向。也就是说,不考虑因周围其他天线单元的影响可能使其在空间的辐射特性发生的变化的情况下,两个不同方位的天线单元具有不同的极化方向。
为了获得不同的辐射特性,可以将天线阵列中的天线单元分为两部分,该两部分天线 单元在该天线阵列中的方位不同。图中以“□”和“◇”来区分。
应注意,两个天线单元的方位不同,可以是指,当两个不同方位的天线单元的中心重合时,比如两个天线重合,其中一个天线单元相对于另一个天线单元具有一偏转角度。这就好比,其中一部分天线单元是相对于另一部分天线单元做了中心旋转之后得到的。
为便于区分,可以将其中方位相同的一部分天线单元记为第一天线单元,将另一部分相对于第一天线单元具有一偏转角度的天线单元记为第二天线单元。可以理解,第二天线单元也可以包括方位相同的多个天线单元。
由于相同方位的天线单元(如第一天线单元)在天线阵列中相邻排布时,在空间的相位分布图可能并不均匀,在某一区域上存在镂空,而通过引入具有一偏转角度的天线单元(如第二天线单元),可以弥补此部分镂空。从而使得第一天线单元和第二天线单元之间的空间相位分布图区域趋于均匀。这有利于抑制旁瓣,继而提升系统性能。
可选地,该偏转角度为45°。通过仿真可以得到,将第一天线单元和第二天线单元之间的偏转角度设计为45°时,阵列中每个端口对应的相位方向图分布最均匀,从而在天线阵列最大分辨率一致的情况下,最大化了旁瓣抑制能力,继而有利于提升系统性能。
可选地,在该天线阵列的每一行中,第一天线单元与第二天线单元交替排布;在该天线这列的每一列中,第一天线单元也与第二天线单元交替排布。换句话说,在该天线阵列中,与每个第一天线单元相邻的四个天线单元均为第二天线单元,与每个第二天线单元相邻的四个天线单元均为第一天线单元。
由于将天线阵列中的两行或两列进行对调,并不改变天线阵列的空间分辨率。因此图47所示的天线阵列在垂直方向和水平方向的空间分辨率都得以提升。另一方面,由于第一天线单元和第二天线单元的交替排布,使得整个天线阵列中各端口的相位方向图均匀分布,有利于最大程度地提高获得旁瓣抑制能力,提升系统性能。
应理解,图47所示的天线阵列的维度仅为示例。天线阵列还可以包括更多或更少的行,也可以包括更多或更少的列。本申请对此不作限定。为了简洁,这里不一一附图列举说明。
还应理解,上文仅为便于理解,示例性地给出了几个天线阵列的示意图。但这些示例不应对本申请构成任何限定。例如,天线阵列的维度、方向等均可以根据通信需求等调整。本申请对此并不限定。
还应理解,上文结合多个附图示出了本申请实施例提供的天线和天线阵列。但这些示意图仅为示例,不应对本申请构成任何限定。这些实施例及附图只是为了帮助本领域技术人员更好地理解本申请的技术方案,而并非是对本申请技术方案的限制。在受益于前述描述和相关附图中呈现的指导启示下,本领域技术人员将会想到本申请的许多改进和其他实施例。因此,本申请不限于所公开的特定实施例。
本申请还提供了一种通信装置。该通信装置可以包括上文所述多个实施例中任意一个实施例所示的天线,例如图2、图5至图7、图9至图15、图17、图18、图20、图22、图24至图35中任意一个附图所示的天线200,或者基于相同的构思进行了简单变化或者等价替换所得到的天线。该通信装置也可以包括上文多个实施例中任意一个实施例所示的天线阵列,例如图37至图47中任意一个附图所示的天线阵列,或者基于相同的构思进行了简单变化或者等价替换所得到的天线阵列。可选地,该通信装置为基站。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种天线,其特征在于,包括多个振子,所述多个振子与相互独立的多个馈电点一一对应,所述多个振子中的每个振子连接于所对应的一个馈电点;
    其中,每个振子包括两个弯折体,每个弯折体包括振子臂和连接体,所述连接体的第一端在反射板接地,所述连接体的第二端与所述振子臂的一端相交,且所述连接体的第二端与所对应的馈电点相连。
  2. 如权利要求1所述的天线,其特征在于,所述连接体用于平衡馈电。
  3. 如权利要求1或2或所述的天线,其特征在于,所述连接体与所述反射板间具有一倾角。
  4. 如权利要求1至3中任一项所述的天线,其特征在于,所述多个振子围绕所述天线的中心分布,所述多个振子中每个振子的连接体顺着所述第一端至所述第二端的方向由内向外辐射,所述多个振子的振子臂将所述多个振子的连接体包围在其中,形成碗状。
  5. 如权利要求1至3中任一项所述的天线,其特征在于,所述多个振子围绕所述天线的中心分布,所述多个振子中每个振子的连接体顺着所述第二端至所述第一端的方向内向外辐射,所述多个振子的振子臂位于在所述天线的中心附近。
  6. 如权利要求1至5中任一项所述的天线,其特征在于,所述振子臂的另一端包括朝向所述反射板的弯折部。
  7. 如权利要求1至6中任一项所述的天线,其特征在于,所述振子臂为梳齿结构,所述梳齿结构的齿部朝向所述反射板。
  8. 如权利要求1至7中任一项所述的天线,其特征在于,所述多个振子中每个振子的两个弯折体对称设置。
  9. 如权利要求1至8中任一项所述的天线,其特征在于,所述天线还包括寄生结构,所述寄生结构为垂直于所述反射板设置的金属板状结构;
    其中,所述寄生结构包括隔板,所述隔板用于将所述多个振子隔离在不同的空间内。
  10. 如权利要求9所述的天线,其特征在于,所述寄生结构还包括围板,所述围板包围所述多个振子。
  11. 如权利要求10所述的天线,其特征在于,所述围板在所述多个振子的外围首尾相接,形成闭合的多边形。
  12. 如权利要求10所述的天线,其特征在于,所述围板分离地设置在所述多个振子的外侧,且在每个振子的附近不闭合。
  13. 如权利要求1至12中任一项所述的天线,其特征在于,所述天线还包括位于所述多个振子上方且平行于所述反射板的一层或多层导体,每层导体包括多个导体。
  14. 如权利要求13所述的天线,其特征在于,处于同一层的多个导体大小不同,以耦合不同的电磁能量。
  15. 如权利要求13所述的天线,其特征在于,所述一层或多层导体包括至少一个谐振结构体。
  16. 如权利要求15所述的天线,其特征在于,所述谐振结构体为开口谐振环,所述 多个振子与一个或多个开口谐振环对应,与同一个振子对应的开口谐振环具有相同的开口朝向,与不同振子对应的开口谐振环具有不同的开口方向。
  17. 如权利要求13至16中任一项所述的天线,其特征在于,所述一层或多层导体由超材料技术获得。
  18. 如权利要求1至17中任一项所述的天线,其特征在于,所述天线还包括与所述多个振子对应的多个引向单元,所述多个引向单元中的每个引向单元包括一个或多个引向器。
  19. 如权利要求18所述的天线,其特征在于,每个引向单元包括多个引向器,所述多个引向器在逐渐远离所述反射板的方向上依次排布。
  20. 如权利要求1至19中任一项所述的天线,其特征在于,所述天线还包括介质,所述介质位于所述多个振子之间;或,位于所述多个振子外部,以将所述多个振子包围;或,位于所述多个振子的上方。
  21. 一种天线阵列,其特征在于,包括多个天线单元,所述多个天线单元中的每个天线单元包括一个或多个如权利要求1至20中任一项所述的天线。
  22. 如权利要求21所述的天线阵列,其特征在于,所述多个天线单元中的至少两个天线单元的方位不同,以使得方位不同的两个天线单元的极化方向不同。
  23. 一种天线阵列,其特征在于,包括第一天线单元和第二天线单元,所述第一天线单元包括一个或多个如权利要求1至20中任一项所述的天线,所述第二天线单元包括一个或多个双极化天线。
PCT/CN2020/089831 2020-05-12 2020-05-12 天线、天线阵列和通信装置 WO2021226837A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/089831 WO2021226837A1 (zh) 2020-05-12 2020-05-12 天线、天线阵列和通信装置
CN202080098860.7A CN115315850A (zh) 2020-05-12 2020-05-12 天线、天线阵列和通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/089831 WO2021226837A1 (zh) 2020-05-12 2020-05-12 天线、天线阵列和通信装置

Publications (1)

Publication Number Publication Date
WO2021226837A1 true WO2021226837A1 (zh) 2021-11-18

Family

ID=78526112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089831 WO2021226837A1 (zh) 2020-05-12 2020-05-12 天线、天线阵列和通信装置

Country Status (2)

Country Link
CN (1) CN115315850A (zh)
WO (1) WO2021226837A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102834968A (zh) * 2012-05-29 2012-12-19 华为技术有限公司 双极化天线辐射单元及基站天线
CN203056083U (zh) * 2013-01-10 2013-07-10 华为技术有限公司 双极化天线辐射单元及基站天线
WO2015168845A1 (zh) * 2014-05-05 2015-11-12 广东通宇通讯股份有限公司 超宽带双极化辐射单元和基站天线
CN205828654U (zh) * 2016-07-08 2016-12-21 东莞市云通通讯科技有限公司 低频双极化振子及具有该振子的基站天线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102834968A (zh) * 2012-05-29 2012-12-19 华为技术有限公司 双极化天线辐射单元及基站天线
CN203056083U (zh) * 2013-01-10 2013-07-10 华为技术有限公司 双极化天线辐射单元及基站天线
WO2015168845A1 (zh) * 2014-05-05 2015-11-12 广东通宇通讯股份有限公司 超宽带双极化辐射单元和基站天线
CN205828654U (zh) * 2016-07-08 2016-12-21 东莞市云通通讯科技有限公司 低频双极化振子及具有该振子的基站天线

Also Published As

Publication number Publication date
CN115315850A (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
CN106876982B (zh) 改善多天线系统性能的超表面及采用超表面的多天线系统
US10256552B2 (en) Radio-frequency transceiver system
US9871296B2 (en) Mixed structure dual-band dual-beam three-column phased array antenna
EP3686991B1 (en) Compact omnidirectional antennas having stacked reflector structures
WO2017031980A1 (zh) 一种微波毫米波双频天线
US20180145400A1 (en) Antenna
US11973273B2 (en) High performance folded dipole for multiband antennas
KR20160023302A (ko) 이동통신 서비스용 옴니 안테나
CN105474462A (zh) 一种混合结构双频双波束三列相控阵天线
WO2024146248A1 (zh) 阵列天线
CN111684653B (zh) 产生具有全向方位角图案的天线波束的带透镜的基站天线
WO2021223118A1 (zh) 天线、天线阵列和通信装置
US20210351505A1 (en) Dual-beam antenna array
WO2024104087A1 (zh) 天线辐射单元和天线
CN112133999A (zh) 基站天线
CN114843742A (zh) 具有方位面中的全向覆盖的波束赋形天线
WO2022105999A1 (en) A low profile device comprising layers of coupled resonance structures
US20230163462A1 (en) Antenna device with improved radiation directivity
EP4243206A2 (en) Metasurface antenna
WO2024039929A2 (en) Antennas having lenses formed of light weight dielectric rods and/or meta-material, unit cell structures comprising meta-material and methods of forming lenses
WO2021226837A1 (zh) 天线、天线阵列和通信装置
JP7500777B2 (ja) アンテナ装置及び無線通信装置
CN112909506B (zh) 天线结构及天线阵列
EP0751582B1 (en) Multifunction antenna assembly with radiating horns
KR102601186B1 (ko) 다중 대역 다중 배열 기지국 안테나

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935105

Country of ref document: EP

Kind code of ref document: A1