WO2021224953A1 - 車輪装置 - Google Patents

車輪装置 Download PDF

Info

Publication number
WO2021224953A1
WO2021224953A1 PCT/JP2020/018483 JP2020018483W WO2021224953A1 WO 2021224953 A1 WO2021224953 A1 WO 2021224953A1 JP 2020018483 W JP2020018483 W JP 2020018483W WO 2021224953 A1 WO2021224953 A1 WO 2021224953A1
Authority
WO
WIPO (PCT)
Prior art keywords
intermediate member
tire
weight
vibration damping
respect
Prior art date
Application number
PCT/JP2020/018483
Other languages
English (en)
French (fr)
Inventor
雄也 江崎
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/018483 priority Critical patent/WO2021224953A1/ja
Publication of WO2021224953A1 publication Critical patent/WO2021224953A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B9/00Wheels of high resiliency, e.g. with conical interacting pressure-surfaces
    • B60B9/02Wheels of high resiliency, e.g. with conical interacting pressure-surfaces using springs resiliently mounted bicycle rims
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C9/00Locomotives or motor railcars characterised by the type of transmission system used; Transmission systems specially adapted for locomotives or motor railcars
    • B61C9/38Transmission systems in or for locomotives or motor railcars with electric motor propulsion
    • B61C9/46Transmission systems in or for locomotives or motor railcars with electric motor propulsion with motors forming parts of wheels

Definitions

  • the present disclosure relates to a wheel device having an annular tire.
  • a wheel device in which a drive device is housed inside an annular tire is known in order to lower the floor of the vehicle body of a railway vehicle.
  • the impact force from the rail is easily transmitted to the drive device via the tire when the railway vehicle is traveling.
  • the wheel device passes through the seam between two consecutive rails, or when abnormal wear occurs on the outer peripheral surface of the tire, the impact force received by the drive device housed inside the tire becomes large. .. Therefore, in the conventional wheel device, there is a concern that the drive device is likely to break down.
  • an annular intermediate member is provided between the drive device housed inside the tire and the tire, and a plurality of intermediate members are provided for each of the drive device and the tire.
  • a wheel device that is connected by a spring element of the above has been proposed (see, for example, Non-Patent Document 1).
  • Non-Patent Document 1 a phenomenon in which the intermediate member swings significantly with respect to the tire, that is, the swing of the intermediate member occurs when the tire rotates, and the wheel device tends to vibrate as a whole. It ends up.
  • the present disclosure has been made to solve the above problems, and an object of the present disclosure is to obtain a wheel device capable of suppressing vibration.
  • the wheel device includes a main body having a rotatable rotating portion, an annular intermediate member surrounding the rotating portion, an annular tire surrounding the intermediate member, and an intermediate member along a first virtual straight line orthogonal to the axis of the intermediate member.
  • the intermediate member rotates along the first elastic body that connects the intermediate member and the tire to each other so as to be movable with respect to the tire, and the second virtual straight line that is orthogonal to the axis of the intermediate member and intersects the first virtual straight line.
  • the direction of movement of the intermediate member with respect to the tire is opposite to that of the second elastic body, the first weight, and the intermediate member that connect the intermediate member and the rotating portion to each other so as to be movable with respect to the tire.
  • a first vibration damping mechanism having a first interlocking portion that moves the first weight with respect to the intermediate member in the direction, and a movement of the intermediate member with respect to the rotating portion according to the movement of the second weight and the intermediate member with respect to the rotating portion. It is provided with a second vibration damping mechanism having a second interlocking portion that moves the second weight with respect to the intermediate member in the direction opposite to the direction.
  • vibration of the wheel device can be suppressed.
  • FIG. FIG. 5 is a cross-sectional view taken along the line II-II of FIG.
  • FIG. 3 is a cross-sectional view taken along the line III-III of FIG.
  • FIG. 5 is a schematic explanatory view showing a change in the state of the wheel device when the wheel device of FIG. 12 moves while rotating on the rail.
  • FIG. 5 is a schematic explanatory view showing a change in the state of the wheel device when the wheel device of FIG. 12 moves while rotating on the rail.
  • FIG. 5 is a cross-sectional view showing a state when the wheel device according to the second embodiment is cut by an XY plane.
  • FIG. 6 is a cross-sectional view showing a state when the wheel device of FIG. 26 is cut by a YZ plane. It is sectional drawing which shows the state when the modification of the wheel device by Embodiment 2 is cut by the XY plane. It is sectional drawing which shows the state when the wheel device of FIG. 28 is cut by the YZ plane.
  • FIG. 5 is a cross-sectional view showing a state when the wheel device according to the third embodiment is cut by an XY plane.
  • FIG. 30 shows the state when the wheel device of FIG. 30 is cut by the YZ plane. It is sectional drawing which shows the state when the modification of the wheel device by Embodiment 3 is cut by the XY plane. It is sectional drawing which shows the state when the wheel device of FIG. 32 is cut by the YZ plane. It is a perspective view which shows the wheel device by Embodiment 4.
  • FIG. It is sectional drawing which shows the state when the wheel device of FIG. 34 is cut by the XY plane.
  • FIG. 5 is a front view showing a state when the first vibration damping mechanism of the wheel device according to the fifth embodiment is viewed from the radial outside of the tire.
  • FIG. 5 is a front view showing a state of a modified example of the first vibration damping mechanism of the wheel device according to the fifth embodiment when viewed from the radial outside of the tire.
  • FIG. 5 is a front view showing a state when the first vibration damping mechanism of the wheel device according to the sixth embodiment is viewed from the radial outside of the tire.
  • FIG. 1 is a front view showing a wheel device according to the first embodiment.
  • FIG. 2 is a cross-sectional view taken along the line II-II of FIG.
  • FIG. 3 is a cross-sectional view taken along the line III-III of FIG.
  • the wheel device 1 includes a tire 2, an electric motor 3, an intermediate member 4, a first connecting structure portion 5, a second connecting structure portion 6, a plurality of first vibration damping mechanisms 7, and a plurality of first vibration damping mechanisms 7. It has two vibration damping mechanisms 8.
  • a railroad vehicle wheel device provided on the vehicle body of the railroad vehicle is used as the wheel device 1.
  • the shape of the tire 2 is an annular shape centered on the axis P.
  • the inner peripheral surface 21 of the tire 2 is a cylindrical surface centered on the axis P.
  • the tire 2 is made of a metal such as iron.
  • the wheel device 1 is mounted on the rail with the outer peripheral surface of the tire 2 in contact with the rail. The wheel device 1 mounted on the rail moves along the rail according to the rotation of the tire 2.
  • the motor 3 is arranged as a main body inside the tire 2.
  • the dimensions of the motor 3 in the axial direction of the tire 2 are in the axial direction of the tire 2, as shown in FIGS. 2 and 3. It has the same dimensions as the tire 2.
  • the motor 3 has a stator 3a as an armature, an annular rotor 3b that surrounds the outer circumference of the stator 3a, and a support member (not shown) that supports the stator 3a and the rotor 3b.
  • the support member of the electric motor 3 is attached to the vehicle body of the railway vehicle.
  • the stator 3a is fixed to the support member as a fixing portion of the motor 3.
  • the rotor 3b is rotatably supported by a support member as a rotating portion of the motor 3.
  • the respective axes of the stator 3a and the rotor 3b coincide with the axes of the motor 3.
  • the electric motor 3 is arranged coaxially with the tire 2.
  • the outer peripheral surface 31 of the rotor 3b is a cylindrical surface centered on the axis of the motor 3.
  • the outer diameter of the rotor 3b is smaller than the inner diameter of the tire 2.
  • the rotor 3b rotates with respect to the stator 3a about the axis of the electric motor 3 by supplying power to the stator 3a. As a result, the electric motor 3 generates a torque for rotating the tire 2.
  • the intermediate member 4 is an annular member that surrounds the rotor 3b of the motor 3.
  • the intermediate member 4 is arranged inside the tire 2. That is, the tire 2 is an annular member that surrounds the intermediate member 4. Therefore, in this example, the in-wheel motor in which the electric motor 3 is arranged inside the tire 2 is the wheel device 1.
  • the intermediate member 4 is a separate member from each of the tire 2 and the motor 3. In this example, as shown in FIGS. 2 and 3, the intermediate member 4 is arranged at the same position as the tire 2 in the axial direction of the tire 2.
  • the axis of the intermediate member 4 coincides with the axis P of the tire 2. That is, the intermediate member 4 is arranged coaxially with the tire 2.
  • Each of the inner peripheral surface 41 and the outer peripheral surface 42 of the intermediate member 4 is a cylindrical surface centered on the axis of the intermediate member 4.
  • the outer diameter of the intermediate member 4 is smaller than the inner diameter of the tire 2. Further, the inner diameter of the intermediate member 4 is larger than the outer diameter of the rotor 3b. Therefore, the annular intermediate member 4 is arranged in the space between the tire 2 and the electric motor 3.
  • the first connecting structure portion 5 is provided between the tire 2 and the intermediate member 4. Further, the first connecting structure portion 5 has a pair of first elastic plates 51 as first elastic bodies that connect the tire 2 and the intermediate member 4 to each other.
  • the second connecting structure portion 6 is provided between the intermediate member 4 and the rotor 3b. Further, the second connecting structure portion 6 has a pair of second elastic plates 61 as a second elastic body that connects the intermediate member 4 and the rotor 3b to each other.
  • a pair of XYZ orthogonal coordinate systems whose Y axis coincides with the axis P of the tire 2 and an angle ⁇ in the circumferential direction of the tire 2 with respect to the reference position A set on the Z axis of the XYZ orthogonal coordinate system are used.
  • the configurations of the first elastic plate 51 and the pair of second elastic plates 61 will be described.
  • each of the pair of first elastic plates 51 is arranged at a position where it intersects with the first virtual straight line.
  • the first virtual straight line coincides with a straight line along the X-axis direction.
  • the pair of first elastic plates 51 are arranged at positions opposite to each other with respect to the axis of the intermediate member 4 in the direction along the first virtual straight line, that is, in the X-axis direction.
  • FIG. 4 is a perspective view showing the first elastic plate 51 of FIG.
  • Each first elastic plate 51 is a rectangular flat plate.
  • the direction along the short side of the rectangle of the first elastic plate 51 is the width direction of the first elastic plate 51.
  • the direction along the long side of the rectangle of the first elastic plate 51 is the longitudinal direction of the first elastic plate 51.
  • the direction orthogonal to both the width direction and the longitudinal direction of the first elastic plate 51 is the thickness direction of the first elastic plate 51.
  • each first elastic plate 51 is arranged orthogonal to the first virtual straight line. That is, the thickness direction of each first elastic plate 51 coincides with the direction along the first virtual straight line, that is, the X-axis direction. Further, the width direction of each first elastic plate 51 coincides with the axial direction of the tire 2, that is, the Y-axis direction. As a result, the longitudinal direction of each first elastic plate 51 coincides with the Z-axis direction orthogonal to both the X-axis direction and the Y-axis direction. That is, the pair of first elastic plates 51 are arranged in parallel with the YZ plane orthogonal to the X-axis direction.
  • each first elastic plate 51 Both ends 511 in the longitudinal direction of each first elastic plate 51 are fixed to the inner peripheral surface 21 of the tire 2 as a pair of fixing ends.
  • the longitudinal intermediate portion 512 of each first elastic plate 51 is fixed to the outer peripheral surface 42 of the intermediate member 4 as a single fixing plate portion.
  • the rigidity in the direction orthogonal to the thickness direction of the first elastic plate 51 is the rigidity in the thickness direction of the first elastic plate 51, that is, the out-of-plane rigidity of the first elastic plate 51. It is sufficiently higher than.
  • the first elastic plate 51 is elastically deformed in the thickness direction of the first elastic plate 51. It is possible.
  • the intermediate member 4 can move with respect to the tire 2 in the direction along the first virtual straight line, that is, in the X-axis direction by elastically deforming each of the first elastic plates 51 in the thickness direction of the first elastic plate 51. It has become. That is, each of the first elastic plates 51 connects the intermediate member 4 and the tire 2 to each other so that the intermediate member 4 can move with respect to the tire 2 along the first virtual straight line.
  • the tire 2 and the intermediate member 4 have a degree of freedom that allows relative movement only in the direction along the first virtual straight line, that is, in the X-axis direction due to the elastic deformation of each of the first elastic plates 51 in the thickness direction. ing.
  • the outer peripheral flat surface portion 421 is formed at a position where the longitudinal intermediate portion 512 of each first elastic plate 51 is fixed as a single fixing plate portion.
  • two outer peripheral plane portions 421 are formed on the outer peripheral surface 42 of the intermediate member 4.
  • Each outer peripheral plane portion 421 is a plane portion orthogonal to the direction along the first virtual straight line, that is, the X-axis direction.
  • the longitudinal intermediate portion 512 of the first elastic plate 51 is fixed to the outer peripheral surface 42 of the intermediate member 4 in a state where the plane orthogonal to the thickness direction of the first elastic plate 51 is in contact with the outer peripheral flat surface portion 421 without a gap. There is.
  • a fixing method using screws, bolts, welding, an adhesive or the like is used as a method of fixing the longitudinal intermediate portion 512 of the first elastic plate 51 to the outer peripheral surface 42 of the intermediate member 4.
  • a pair of step portions 211 are formed at positions on the inner peripheral surface 21 of the tire 2 where both end portions 511 in the longitudinal direction of each first elastic plate 51 are fixed as a pair of fixing ends. Therefore, a pair of stepped portions 211 are formed on the inner peripheral surface 21 of the tire 2 by the number of the first elastic plates 51. In this example, two pairs of step portions 211 are formed on the inner peripheral surface 21 of the tire 2.
  • FIG. 5 is a perspective view showing a state in which the first elastic plate 51 of FIG. 1 is fixed to the tire 2. Both ends 511 in the longitudinal direction of the first elastic plate 51 are fitted into a pair of step portions 211, respectively.
  • the pair of step portions 211 face each other in the circumferential direction of the tire 2.
  • Each of the pair of step portions 211 is formed by a step portion bottom surface 211a orthogonal to the direction along the first virtual straight line, that is, the X-axis direction, and a step portion end surface 211b extending from the step bottom surface 211a toward the inside of the tire 2. It is configured.
  • Each step end surface 211b of the pair of step portions 211 is a plane parallel to the plane including the axis of the intermediate member 4 and the first virtual straight line. Therefore, the end faces 211b of the pair of step portions 211 are orthogonal to each other in the Z-axis direction.
  • the pair of step portions 211 are formed on the inner peripheral surface 21 of the tire 2 in a state where the two step portion end surfaces 211b face each other in the Z-axis direction.
  • a surface orthogonal to the thickness direction of the first elastic plate 51 is brought into contact with the bottom surface 211a of the step portion without a gap, and the end surface in the longitudinal direction of the first elastic plate 51 is a step portion. It is fixed to the inner peripheral surface 21 of the tire 2 in a state where it is in contact with the end surface 211b without a gap.
  • a fixing method using screws, bolts, welding, an adhesive or the like is used as a method of fixing both ends 511 of the first elastic plate 51 in the longitudinal direction to the inner peripheral surface 21 of the tire 2.
  • each of the pair of second elastic plates 61 is arranged at a position where they intersect with the second virtual straight line. ..
  • the straight line orthogonal to the first virtual straight line is regarded as the second virtual straight line. That is, in this example, the second virtual straight line coincides with the straight line along the Z-axis direction.
  • the pair of second elastic plates 61 are arranged at positions opposite to each other with respect to the axis P of the tire 2 in the direction along the second virtual straight line, that is, in the Z-axis direction.
  • FIG. 6 is a perspective view showing the second elastic plate 61 of FIG.
  • Each second elastic plate 61 is a rectangular flat plate.
  • the direction along the short side of the rectangle of the second elastic plate 61 is the width direction of the second elastic plate 61.
  • the direction along the long side of the rectangle of the second elastic plate 61 is the longitudinal direction of the second elastic plate 61.
  • the direction orthogonal to both the width direction and the longitudinal direction of the second elastic plate 61 is the thickness direction of the second elastic plate 61.
  • each second elastic plate 61 is arranged orthogonal to the second virtual straight line. That is, the thickness direction of each second elastic plate 61 coincides with the direction along the second virtual straight line, that is, the Z-axis direction. Further, the width direction of each second elastic plate 61 coincides with the axial direction of the tire 2, that is, the Y-axis direction. As a result, the longitudinal direction of each second elastic plate 61 coincides with the X-axis direction orthogonal to both the Y-axis direction and the Z-axis direction. That is, the pair of second elastic plates 61 are arranged in parallel with the XY plane orthogonal to the Z-axis direction.
  • each second elastic plate 61 Both ends 611 in the longitudinal direction of each second elastic plate 61 are fixed to the inner peripheral surface 41 of the intermediate member 4 as a pair of fixing ends.
  • the longitudinal intermediate portion 612 of each second elastic plate 61 is fixed to the outer peripheral surface 31 of the rotor 3b as a single fixing plate portion.
  • the rigidity in the direction orthogonal to the thickness direction of the second elastic plate 61 is the rigidity in the thickness direction of the second elastic plate 61, that is, the out-of-plane rigidity of the second elastic plate 61. It is sufficiently higher than.
  • the intermediate member 4 and the rotor 3b are connected via the second elastic plate 61, the intermediate member 4 and the rotor 3b are rigidly coupled in the direction orthogonal to the thickness direction of the second elastic plate 61. It can be considered to be equivalent to the state being done.
  • the second elastic plate 61 is elastically deformed in the thickness direction of the second elastic plate 61. It is possible.
  • the electric motor 3 can move with respect to the intermediate member 4 in the direction along the second virtual straight line, that is, in the Z-axis direction by elastically deforming each of the second elastic plates 61 in the thickness direction of the second elastic plate 61. It has become. That is, each of the second elastic plates 61 connects the intermediate member 4 and the rotor 3b to each other so that the intermediate member 4 can move with respect to the motor 3 along the second virtual straight line.
  • the intermediate member 4 and the electric motor 3 have a degree of freedom that allows relative movement only in the direction along the second virtual straight line, that is, in the Z-axis direction, due to the elastic deformation of each of the second elastic plates 61 in the thickness direction. ing.
  • an outer peripheral flat surface portion 311 is formed at a position where the longitudinal intermediate portion 612 of each second elastic plate 61 is fixed as a single fixing plate portion.
  • two outer peripheral plane portions 311 are formed on the outer peripheral surface 31 of the rotor 3b.
  • Each outer peripheral plane portion 311 is a plane portion orthogonal to the direction along the second virtual straight line, that is, the Z-axis direction.
  • the longitudinal intermediate portion 612 of the second elastic plate 61 is fixed to the outer peripheral surface 31 of the rotor 3b in a state where the plane orthogonal to the thickness direction of the second elastic plate 61 is in contact with the outer peripheral flat surface portion 311 without a gap. ..
  • a fixing method using screws, bolts, welding, an adhesive or the like is used as a method of fixing the intermediate portion 612 in the longitudinal direction of the second elastic plate 61 to the outer peripheral surface 31 of the rotor 3b.
  • a pair of step portions 411 are formed at positions on the inner peripheral surface 41 of the intermediate member 4 where both end portions 611 in the longitudinal direction of each second elastic plate 61 are fixed as a pair of fixing ends. .. Therefore, a pair of stepped portions 411 are formed on the inner peripheral surface 41 of the intermediate member 4 as many as the number of the second elastic plates 61. In this example, two pairs of step portions 411 are formed on the inner peripheral surface 41 of the intermediate member 4.
  • FIG. 7 is a perspective view showing a state in which the second elastic plate 61 of FIG. 1 is fixed to the intermediate member 4. Both ends 611 in the longitudinal direction of the second elastic plate 61 are fitted into a pair of step portions 411, respectively.
  • the pair of step portions 411 face each other in the circumferential direction of the intermediate member 4.
  • Each of the pair of step portions 411 has a step portion bottom surface 411a orthogonal to the direction along the second virtual straight line, that is, the Z-axis direction, and a step portion end surface 411b extending from the step portion bottom surface 411a toward the inside of the intermediate member 4. It is composed of.
  • Each step end surface 411b of the pair of step portions 411 is a plane parallel to the plane including the axis of the intermediate member 4 and the second virtual straight line. Therefore, each step end surface 411b of the pair of step 411s is orthogonal to each other in the X-axis direction.
  • the pair of stepped portions 411 are formed on the inner peripheral surface 41 of the intermediate member 4 in a state where the two stepped portion end surfaces 411b face each other in the X-axis direction.
  • both ends 611 in the longitudinal direction of the second elastic plate 61 the surfaces orthogonal to the thickness direction of the second elastic plate 61 are brought into contact with the bottom surface 411a of the step without gaps, and the end faces in the longitudinal direction of the second elastic plate 61 are stepped. It is fixed to the inner peripheral surface 41 of the intermediate member 4 in a state where it is in contact with the end surface 411b without a gap.
  • a fixing method using screws, bolts, welding, an adhesive or the like is used as a method of fixing both ends 611 of the second elastic plate 61 in the longitudinal direction to the inner peripheral surface 41 of the intermediate member 4.
  • the first vibration damping mechanism 7 is arranged at each of the 1 facing positions.
  • FIG. 8 is an enlarged cross-sectional view showing the first vibration damping mechanism 7 of FIG.
  • FIG. 9 is a front view showing a state when the first vibration damping mechanism 7 of FIG. 8 is viewed from the radial outside of the tire 2.
  • a pair of first vibration damping mechanisms 7 arranged in the axial direction of the intermediate member 4 are arranged.
  • the pair of first vibration damping mechanisms 7 constitutes the first mechanism body 70.
  • four first vibration damping mechanisms 7 are included in the wheel device 1.
  • the pair of first vibration damping mechanisms 7 sandwich the central virtual plane Q. It is located at the opposite position.
  • Each first vibration damping mechanism 7 has a first weight 71 and a plurality of first links 72 as a first interlocking unit.
  • the number of first links 72 included in one first vibration damping mechanism 7 is two.
  • each first vibration damping mechanism 7 the first weight 71 is arranged outside the intermediate member 4 in the axial direction. Further, in each first vibration damping mechanism 7, the first link 72 is arranged in the space between the intermediate member 4 and the tire 2. In each first vibration damping mechanism 7, a first weight 71 is attached to the first link 72 on the outer side in the axial direction of the intermediate member 4.
  • the mounting portion 74 is fixed to the intermediate member 4 via the longitudinal intermediate portion 512 of the first elastic plate 51.
  • the first intermediate member side rotating shaft 73 is supported by the mounting portion 74.
  • the first intermediate member side rotation shaft 73 is a rotation axis orthogonal to both the axis of the intermediate member 4 and the first virtual straight line. Therefore, the first intermediate member side rotation shaft 73 is arranged along the X-axis direction. In this example, the first intermediate member side rotation shaft 73 is arranged on the central virtual plane Q.
  • a pair of mounting portions 76 are fixed to the inner peripheral surface 21 of the tire 2.
  • Each mounting portion 76 supports a tire-side rotating shaft 75 parallel to the first intermediate member-side rotating shaft 73.
  • Each tire-side rotating shaft 75 corresponds to each of the pair of first vibration damping mechanisms 7.
  • the tire-side rotating shafts 75 are arranged at positions facing each other with respect to the central virtual plane Q. That is, the tire side rotation shaft 75 is arranged at each position on the plus side and the minus side in the Y-axis direction with respect to the central virtual plane Q.
  • the tire-side rotating shaft 75 is arranged at a position closer to the first weight 71 than the first intermediate member-side rotating shaft 73.
  • a plurality of first links 72 included in each of the pair of first vibration damping mechanisms 7 are connected to a common first intermediate member side rotating shaft 73.
  • each of the first links 72 is attached to the intermediate member 4 via the first intermediate member side rotating shaft 73, the mounting portion 74, and the first elastic plate 51.
  • two first links 72 included in one of the first vibration damping mechanisms 7 are connected to one tire-side rotating shaft 75 located on the minus side in the Y-axis direction. Has been done. As a result, the two first links 72 included in the one first vibration damping mechanism 7 are attached to the tire 2 via the one tire side rotation shaft 75 and the attachment portion 76. The two first links 72 included in the one first vibration damping mechanism 7 are rotatable about each of the first intermediate member side rotating shaft 73 and the one tire side rotating shaft 75.
  • the two first links 72 included in the other first vibration damping mechanism 7 are connected to the other tire-side rotating shaft 75 located on the positive side in the Y-axis direction. As a result, the two first links 72 included in the other first vibration damping mechanism 7 are attached to the tire 2 via the other tire-side rotating shaft 75 and the attachment portion 76.
  • the two first links 72 included in the other first vibration damping mechanism 7 are rotatable about each of the first intermediate member side rotating shaft 73 and the other tire side rotating shaft 75.
  • Each first link 72 rotates with respect to each of the first intermediate member side rotation shaft 73 and the tire side rotation shaft 75 according to a change in the distance between the intermediate member 4 and the tire 2. Therefore, each first link 72 is displaced with respect to the intermediate member 4 in the direction in which the first weight 71 moves inward in the radial direction as the distance between the intermediate member 4 and the tire 2 decreases. Further, as the distance between the intermediate member 4 and the tire 2 increases, each of the first links 72 is displaced with respect to the intermediate member 4 in the direction in which the first weight 71 moves outward in the radial direction of the intermediate member 4.
  • each first link 72 intermediates the first weight 71 in the direction opposite to the moving direction of the intermediate member 4 with respect to the tire 2 in accordance with the movement of the intermediate member 4 with respect to the tire 2. It is moved with respect to the member 4.
  • the first intermediate member side rotation shaft 73 and the tire side rotation shaft 75 are provided with an elongated hole through which at least one of the above is passed. An elongated hole is provided in each first link 72 along the longitudinal direction of the first link 72.
  • FIG. 10 is an enlarged cross-sectional view showing the second vibration damping mechanism 8 of FIG.
  • FIG. 11 is a front view showing a state when the second vibration damping mechanism 8 of FIG. 10 is viewed from the radial outside of the tire 2.
  • a pair of second vibration damping mechanisms 8 arranged in the axial direction of the intermediate member 4 are arranged.
  • the pair of second vibration damping mechanisms 8 constitute the second mechanism body 80.
  • the pair of second vibration damping mechanisms 8 are arranged at the two second facing positions, four second vibration damping mechanisms 8 are included in the wheel device 1. Further, the pair of second vibration damping mechanisms 8 are arranged at positions facing each other with the central virtual plane Q in between.
  • Each second vibration damping mechanism 8 has a second weight 81 and a plurality of second links 82 as second interlocking portions.
  • the number of the second links 82 included in one second vibration damping mechanism 8 is two.
  • each second vibration damping mechanism 8 the second weight 81 is arranged outside the intermediate member 4 in the axial direction. Further, in each second vibration damping mechanism 8, the second link 82 is arranged in the space between the intermediate member 4 and the rotor 3b. In each of the second vibration damping mechanisms 8, a second weight 81 is attached to each of the second links 82 on the outer side in the axial direction of the intermediate member 4.
  • a mounting portion 84 is fixed to the inner peripheral surface 41 of the intermediate member 4.
  • the second intermediate member side rotating shaft 83 is supported by the mounting portion 84.
  • the second intermediate member side rotation axis 83 is a rotation axis orthogonal to both the axis of the intermediate member 4 and the second virtual straight line. Therefore, the second intermediate member side rotation shaft 83 is arranged along the X-axis direction. In this example, the second intermediate member side rotation shaft 83 is arranged on the central virtual plane Q.
  • a pair of mounting portions 86 are fixed to the rotor 3b via a longitudinal intermediate portion 612 of the second elastic plate 61. Each mounting portion 86 is supported by a rotating portion side rotating shaft 85 parallel to the second intermediate member side rotating shaft 83. Each rotating shaft 85 corresponds to each of the pair of second vibration damping mechanisms 8.
  • the rotating shafts 85 are arranged at positions facing each other with respect to the central virtual plane Q. That is, the rotating shaft 85 is arranged at each position on the plus side and the minus side in the Y-axis direction with respect to the central virtual plane Q.
  • the rotating shaft 85 on the rotating portion side is arranged at a position closer to the second weight 81 than the rotating shaft 83 on the second intermediate member side.
  • a plurality of second links 82 included in each of the pair of second vibration damping mechanisms 8 are connected to a common second intermediate member side rotating shaft 83.
  • each of the second links 82 is attached to the intermediate member 4 via the second intermediate member side rotating shaft 83, the mounting portion 84, and the second elastic plate 61.
  • the two second links 82 included in one of the second vibration damping mechanisms 8 are attached to the one rotating shaft 85 located on the minus side in the Y-axis direction. It is connected. As a result, the two second links 82 included in the one second vibration damping mechanism 8 are attached to the rotor 3b via the one rotating portion side rotating shaft 85 and the attaching portion 86.
  • the two second links 82 included in the one second vibration damping mechanism 8 are rotatable about each of the second intermediate member side rotating shaft 83 and the one rotating portion side rotating shaft 85.
  • the two second links 82 included in the other second vibration damping mechanism 8 are connected to the other rotating shaft 85 located on the positive side in the Y-axis direction. As a result, the two second links 82 included in the other second vibration damping mechanism 8 are attached to the rotor 3b via the other rotating shaft 85 and the mounting portion 86.
  • the two second links 82 included in the other second vibration damping mechanism 8 are rotatable about each of the second intermediate member side rotating shaft 83 and the other rotating portion side rotating shaft 85.
  • Each second link 82 rotates with respect to each of the second intermediate member side rotating shaft 83 and the rotating portion side rotating shaft 85 according to the change in the distance between the intermediate member 4 and the rotor 3b. Therefore, each second link 82 is displaced with respect to the intermediate member 4 in the direction in which the second weight 81 moves radially outward of the intermediate member 4 as the distance between the intermediate member 4 and the rotor 3b becomes smaller. Further, each second link 82 is displaced with respect to the intermediate member 4 in the direction in which the second weight 81 moves inward in the radial direction of the intermediate member 4 as the distance between the intermediate member 4 and the rotor 3b increases.
  • each second link 82 intermediates the second weight 81 in the direction opposite to the moving direction of the intermediate member 4 with respect to the rotor 3b in accordance with the movement of the intermediate member 4 with respect to the rotor 3b. It is moved with respect to the member 4.
  • the second intermediate member side rotating shaft 83 and the rotating portion side rotating shaft 85 is provided with an elongated hole through which at least one of the shafts 85 is passed.
  • An elongated hole is provided in each second link 82 along the longitudinal direction of the second link 82.
  • FIG. 12 is a schematic view showing a wheel device model that models the wheel device 1 of FIG.
  • the intermediate member 4 is movable with respect to the motor 3 in the direction along the second virtual straight line, that is, in the Z-axis direction due to the elastic deformation of the pair of second elastic plates 61.
  • the movement of the intermediate member 4 with respect to the motor 3 in a direction other than the Z-axis direction is limited by the in-plane rigidity of the pair of second elastic plates 61.
  • the intermediate member 4 is movable with respect to the tire 2 in the direction along the first virtual straight line, that is, in the X-axis direction due to the elastic deformation of the pair of first elastic plates 51.
  • the movement of the intermediate member 4 with respect to the tire 2 in a direction other than the X-axis direction is limited by the in-plane rigidity of the pair of first elastic plates 51.
  • a vibration system having two translational degrees of freedom is configured in which the intermediate member 4 can freely move in the XZ plane with respect to the motor 3 and the tire 2.
  • each of the first elastic plate 51 and each of the second elastic plate 61 becomes the in-plane rigidity in the circumferential direction of the tire 2. Therefore, in the circumferential direction of the tire 2, the elastic deformation of each of the first elastic plate 51 and each second elastic plate 61 is restricted. As a result, in the circumferential direction of the tire 2, the connected state of the intermediate member 4 to the tire 2 and the connected state of the intermediate member 4 to the motor 3 can be regarded as a rigidly coupled state.
  • FIG. 13 is a front view showing a state in which the wheel device 1 of FIG. 1 moves on the rail.
  • FIG. 14 is a schematic view showing a wheel device model that models the wheel device 1 of FIG. 13. When the wheel device 1 is mounted on the rail 10, the outer peripheral surface of the tire 2 is in contact with the rail 10. The wheel device 1 moves on the rail 10 as the tire 2 rotates.
  • the torque transmitted to the intermediate member 4 is transmitted to the tire 2 via the pair of first elastic plates 51.
  • the direction of the torque transmitted from the intermediate member 4 to each of the first elastic plates 51 coincides with the direction of the in-plane rigidity of each of the first elastic plates 51.
  • the elastic deformation of each first elastic plate 51 is limited, and the torque transmitted to the intermediate member 4 is effectively transmitted to the tire 2.
  • the tire 2 rotates.
  • the rail 10 is configured by continuously connecting a plurality of unit rails 10a.
  • a step may be formed at the seam between two unit rails 10a adjacent to each other. In this case, when the wheel device 1 passes through the seam between the two unit rails 10a, the tire 2 receives an impact force from the rail 10.
  • FIG. 15 is a front view showing a state of the wheel device 1 when the tire 2 receives an impact force from the rail 10 when the tire 2 is in a rotation position different from that of the tire 2 of FIG.
  • FIG. 16 is a schematic view showing a wheel device model that models the wheel device 1 of FIG.
  • the elastic deformation of each first elastic plate 51 causes the intermediate member 4 to move in the direction along the first virtual straight line with respect to the tire 2, and the elastic deformation of each second elastic plate 61 causes the intermediate member 4 to move with respect to the electric motor 3. It moves in the direction along the second virtual straight line.
  • the impact force received by the tire 2 is absorbed by each of the first elastic plate 51 and each of the second elastic plates 61, and is less likely to be transmitted to the motor 3.
  • FIG. 17 is a schematic explanatory view showing a change in the state of the wheel device 1 when the wheel device 1 of FIG. 12 moves while rotating on the rail 10.
  • the direction along the first virtual straight line is defined as the first direction ⁇
  • the direction along the second virtual straight line is defined as the second direction ⁇ .
  • the intermediate member 4 swings around the tire 2 and the motor 3, that is, the intermediate member 4 swings around.
  • FIG. 17 shows a change in the state of the wheel device 1 from a state in which the second direction ⁇ coincides with the Z-axis direction to a state in which the second direction ⁇ coincides with the X-axis direction.
  • FIG. 18 is a perspective view schematically showing the pair of first vibration damping mechanisms 7 of FIG.
  • the first weight 71 is intermediate in each of the first vibration damping mechanisms 7 in the direction opposite to the moving direction of the intermediate member 4 with respect to the tire 2. It moves with respect to the member 4.
  • each first elastic plate 51 is elastically deformed in a state where the second direction ⁇ of the wheel device 1 coincides with the X-axis direction.
  • the intermediate member 4 is moving to the minus side in the Z-axis direction with respect to the tire 2.
  • a centrifugal force acts on the intermediate member 4 on the negative side in the Z-axis direction of the fixed coordinate system.
  • FIG. 19 is a perspective view schematically showing the pair of second vibration damping mechanisms 8 of FIG.
  • the second weight 81 is intermediate in the direction opposite to the moving direction of the intermediate member 4 with respect to the motor 3. It moves with respect to the member 4.
  • each second elastic plate 61 is elastically deformed in a state where the second direction ⁇ of the wheel device 1 coincides with the Z-axis direction.
  • the intermediate member 4 is moving to the plus side in the Z-axis direction with respect to the motor 3.
  • a centrifugal force acts on the intermediate member 4 on the positive side in the Z-axis direction of the fixed coordinate system.
  • FIG. 20 is an enlarged view schematically showing the first vibration damping mechanism 7 of FIG.
  • the distance between the first intermediate member side rotating shaft 73 and the tire side rotating shaft 75 is L1
  • the distance between the tire side rotating shaft 75 and the first weight 71 is L2. do.
  • the distance between the second intermediate member-side rotating shaft 83 and the rotating portion-side rotating shaft 85 is L1
  • the distance between the rotating portion-side rotating shaft 85 and the second weight 81 Let L2.
  • the ratio of the distance L2 to the distance L1 is defined as the link ratio r.
  • the mass of the intermediate member 4 is M
  • the rotation speed of the wheel device 1 is ⁇
  • the mass of each of the first weight 71 and the second weight 81 is m.
  • the total number of the total numbers of the first weight 71 and the second weight 81 is defined as n.
  • the displacement in the vertical direction which is the Z-axis direction, is defined as D.
  • the centrifugal force acting on the intermediate member 4 due to the swing of the vibration system including the first weight 71, the second weight 81 and the intermediate member 4 is expressed by the following equation (1).
  • the first weight 71 performs a translational motion in the first direction ⁇ along the first virtual straight line.
  • the second weight 81 performs a translational motion in the second direction ⁇ along the second virtual straight line. Therefore, an inertial force acts on the first weight 71 due to the movement of the first weight 71 with respect to the intermediate member 4. Further, an inertial force acts on the second weight 81 due to the movement of the second weight 81 with respect to the intermediate member 4.
  • the resultant force of the inertial force of the first weight 71 and the inertial force of the second weight 81 is the acceleration obtained by the second time derivative of the displacement of the swinging of the intermediate member 4, and the inertial force of the first weight 71 and the second weight 81. It is obtained by multiplying the total mass, which is the sum of the respective masses. That is, the resultant force of the inertial forces of the first weight 71 and the second weight 81 is obtained by the following equation (2).
  • n ⁇ m ⁇ (d 2 (D ⁇ r) / dt 2 ) n ⁇ m ⁇ D ⁇ r ⁇ (2 ⁇ ) 2 ... (2)
  • each of the first weight 71 and the second weight 81 vibrates twice, so that the angular velocity is 2 ⁇ in the above equation (2).
  • Equation (1) The conditions under which the vibration due to the swing of the intermediate member 4 is most suppressed are the equation (1) and the respective directions of the first direction ⁇ along the first virtual straight line and the second direction ⁇ along the second virtual straight line. Equation (2) is a balanced condition. Therefore, the condition in which the vibration due to the swing of the intermediate member 4 is most suppressed is expressed by the following equation (3).
  • the link ratio r in each of the first vibration damping mechanism 7 and the second vibration damping mechanism 8 is 1, the total mass (nm) is the sum of the masses of the first weight 71 and the second weight 81, respectively.
  • M / 3 the vibration due to the swing of the intermediate member 4 is most suppressed.
  • the direction of the resultant force between the inertial force acting on the first weight 71 due to the movement of the first weight 71 with respect to the intermediate member 4 and the inertial force acting on the second weight 81 due to the movement of the second weight 81 with respect to the intermediate member 4. That is, the direction along the axis of the electric motor 3, that is, the direction along the straight line orthogonal to the axle.
  • the displacement D1 in the Z-axis direction of the motor 3 when the rotation speed R [Hz] of the wheel device 1 was linearly changed from 0 [Hz] to 20 [Hz] was obtained by numerical analysis.
  • Example B1 an example that does not satisfy the above formula (3)
  • Example C1 an example that satisfies the above formula (3)
  • FIG. 21 is a graph showing the relationship between the rotation speed R [Hz] and the time t [sec] of each of the wheel devices of Comparative Example A1, Example B1 and Example C1 in the numerical analysis.
  • FIG. 22 is a graph showing the relationship between the displacement D1 [mm] in the Z-axis direction of the motor 3 of Comparative Example A1 in the numerical analysis and the time t [sec].
  • FIG. 23 is a graph showing the relationship between the displacement D1 [mm] in the Z-axis direction of the motor 3 of Example B1 in the numerical analysis and the time t [sec]. Further, FIG.
  • Example 24 is a graph showing the relationship between the displacement D1 [mm] in the Z-axis direction of the motor 3 of Example C1 and the time t [sec] in the numerical analysis.
  • the vibration of the electric motor 3 increases at around 3.5 [sec]
  • Example B1 and Example C1 the electric motor is larger than that of Comparative Example A1. It can be seen that the vibration of 3 is reduced. Further, it can be seen that the vibration of the motor 3 is reduced in the embodiment C1 satisfying the above equation (3) as compared with the embodiment B1 not satisfying the above equation (3).
  • each first elastic plate 51 is arranged orthogonally to a first virtual straight line orthogonal to the axis P of the tire 2.
  • each second elastic plate 61 is arranged orthogonally to a second virtual straight line different from the first virtual straight line. Therefore, the rigidity of each of the first elastic plates 51 and the second elastic plates 61 in the circumferential direction of the tire 2 can be increased. Thereby, it is possible to limit the elastic deformation of each of the first elastic plate 51 and each second elastic plate 61 in the rotation direction of the tire 2, and the unnecessary vibration of the tire 2 with respect to the motor 3 is generated in the rotation direction of the tire 2. It can be prevented from occurring. Therefore, the torque can be more reliably transmitted from the motor 3 to the tire 2.
  • the electric motor 3 can be moved with respect to the tire 2 while at least one of the first elastic plate 51 and the second elastic plate 61 is elastically deformed. As a result, the impact force received by the tire 2 can be absorbed by at least one of the first elastic plate 51 and the second elastic plate 61. Therefore, the impact force transmitted from the tire 2 to the electric motor 3 can be suppressed.
  • each of the first elastic plates 51 and each of the second elastic plates 61 can be evenly arranged in the circumferential direction of the tire 2. As a result, it is possible to equalize the suppressing force of the impact force received by the tire 2 in the circumferential direction of the tire 2.
  • the axis of the intermediate member 4 is located between the pair of first elastic plates 51 and between the pair of second elastic plates 61. Therefore, it is possible to stabilize the state in which the intermediate member 4 is connected to the tire 2 and the state in which the motor 3 is connected to the intermediate member 4. As a result, the occurrence of failure of the wheel device 1 can be more reliably suppressed, and the reliability of the wheel device 1 can be improved.
  • both end portions 511 in the longitudinal direction of the first elastic plate 51 are fixed to the tire 2, and the intermediate portions 512 in the longitudinal direction of the first elastic plate 51 are fixed to the intermediate member 4. Therefore, it is possible to more reliably fix the first elastic plate 51 to each of the tire 2 and the intermediate member 4 while enabling elastic deformation of the first elastic plate 51 in the thickness direction.
  • both end portions 611 in the longitudinal direction of the second elastic plate 61 are fixed to the intermediate member 4, and the intermediate portions 612 in the longitudinal direction of the second elastic plate 61 are fixed to the rotor 3b of the motor 3. Therefore, it is possible to more reliably fix the second elastic plate 61 to each of the intermediate member 4 and the rotor 3b while enabling elastic deformation of the second elastic plate 61 in the thickness direction.
  • both ends 511 in the longitudinal direction of the first elastic plate 51 are fixed at a position on the inner peripheral surface 21 of the tire 2 where both ends 511 in the longitudinal direction of the first elastic plate 51 are fixed as a pair of fixing ends, both ends 511 in the longitudinal direction of the first elastic plate 51 are fixed. A pair of stepped portions 211 are formed. Therefore, the first elastic plate 51 can be more reliably fixed to the tire 2, and the misalignment of the first elastic plate 51 with respect to the tire 2 can be more reliably prevented.
  • both ends 611 in the longitudinal direction of the second elastic plate 61 are fixed as a pair of fixing ends, both ends in the longitudinal direction of the second elastic plate 61 are fixed.
  • a pair of stepped portions 411 into which each of the 611s fits is formed. Therefore, the second elastic plate 61 can be more reliably fixed to the intermediate member 4, and the misalignment of the second elastic plate 61 with respect to the intermediate member 4 can be more reliably prevented.
  • each first vibration damping mechanism 7 causes the first weight 71 to move in the direction opposite to the moving direction of the intermediate member 4 with respect to the tire 2 according to the movement of the first weight 71 and the intermediate member 4 with respect to the tire 2. It has a first link 72 to be moved with respect to 4. Further, each of the second vibration damping mechanisms 8 causes the second weight 81 to move in the direction opposite to the moving direction of the intermediate member 4 with respect to the rotor 3b in response to the movement of the second weight 81 and the intermediate member 4 with respect to the rotor 3b. It has a second link 82 to be moved relative to 4.
  • first link 72 to which the first weight 71 is attached is attached to the intermediate member 4 via the first intermediate member side rotating shaft 73, and is attached to the tire 2 via the tire side rotating shaft 75. .. Therefore, it is possible to simplify the structure in which the first weight 71 is moved with respect to the intermediate member 4 in the direction opposite to the moving direction of the intermediate member 4 with respect to the tire 2.
  • the second link 82 to which the second weight 81 is attached is attached to the intermediate member 4 via the second intermediate member side rotating shaft 83, and is attached to the rotor 3b via the rotating portion side rotating shaft 85. There is. Therefore, it is possible to simplify the structure in which the second weight 81 is moved with respect to the intermediate member 4 in the direction opposite to the moving direction of the intermediate member 4 with respect to the rotor 3b.
  • the plurality of first vibration damping mechanisms 7 are arranged at two first facing positions which are opposite to each other with respect to the axis of the intermediate member 4 in the direction along the first virtual straight line.
  • the plurality of second vibration damping mechanisms 8 are arranged at two second opposed positions which are opposite to each other with respect to the axis of the intermediate member 4 in the direction along the second virtual straight line. Therefore, the first vibration damping mechanism 7 that cancels the exciting force due to the swing of the intermediate member 4 in the direction along the first virtual straight line can be arranged at a plurality of positions.
  • the second vibration damping mechanism 8 that cancels the exciting force due to the swing of the intermediate member 4 in the direction along the second virtual straight line can also be arranged at a plurality of positions. As a result, the exciting force due to the swing of the intermediate member 4 can be effectively canceled, and the vibration of the entire wheel device 1 can be effectively suppressed.
  • a pair of first vibration damping mechanisms 7 arranged in the axial direction of the intermediate member 4 are provided as the first mechanism body 70.
  • a pair of second vibration damping mechanisms 8 arranged in the axial direction of the intermediate member 4 are provided as the second mechanism 80. Therefore, each of the first weight 71 and the second weight 81 can be arranged on both sides of the intermediate member 4 in the axial direction. As a result, it is possible to prevent the inertial force that cancels the exciting force due to the swing of the intermediate member 4 from being biased on both sides in the axial direction of the intermediate member 4.
  • the link ratio r in each of the first vibration damping mechanism 7 and the second vibration damping mechanism 8 is 1, and the total mass of the respective masses of the first weight 71 and the second weight 81 is the intermediate member 4. Consistent with one-third of the mass. Therefore, the difference between the magnitude of the centrifugal force acting on the intermediate member 4 due to the swing of the intermediate member 4 and the magnitude of the resultant force of the inertial forces of the first weight 71 and the second weight 81 can be reduced. Thereby, the vibration of the entire wheel device 1 can be suppressed more effectively.
  • the direction of the resultant force between the inertial force acting on the first weight 71 due to the movement of the first weight 71 with respect to the intermediate member 4 and the inertial force acting on the second weight 81 due to the movement of the second weight 81 with respect to the intermediate member 4. It coincides with the direction along the straight line orthogonal to the axis of the electric motor 3. Therefore, the centrifugal force acting on the intermediate member 4 can be more effectively canceled by the resultant force of the inertial forces of the first weight 71 and the second weight 81. Thereby, the vibration of the entire wheel device 1 can be suppressed more effectively.
  • the motor 3 is used as the main body surrounded by the intermediate member 4. Therefore, the drive source for rotating the wheel device 1 can be arranged inside the intermediate member 4. As a result, the wheel device 1 can be miniaturized.
  • the motor 3 that generates torque is arranged inside the tire 2 as the wheel body.
  • a hub 3c having no function of generating torque may be arranged inside the tire 2 as a rotating portion of the main body.
  • the hub 3c is connected to a motor that generates torque.
  • the hub 3c is a rotating portion that rotates about the axis of the motor according to the torque received from the motor. Even in this way, the impact force transmitted from the tire 2 to each of the hub 3c and the electric motor can be suppressed. Further, the runout of the intermediate member 4 can be suppressed, and the vibration of the entire wheel device 1 can be suppressed.
  • FIG. 26 is a cross-sectional view showing a state when the wheel device according to the second embodiment is cut by an XY plane.
  • FIG. 27 is a cross-sectional view showing a state when the wheel device of FIG. 26 is cut by a YZ plane.
  • FIG. 26 is a diagram corresponding to FIG. 2 in the first embodiment.
  • FIG. 27 is a diagram corresponding to FIG. 3 in the first embodiment.
  • one first vibration damping mechanism 7 is provided at each first facing position. Further, the first vibration damping mechanism 7 is provided only on one side of the intermediate member 4 in the axial direction. In this example, the first vibration damping mechanism 7 is provided only on the minus side in the Y-axis direction with respect to the intermediate member 4.
  • one second vibration damping mechanism 8 is provided at each second facing position. Further, the second vibration damping mechanism 8 is provided only on one side of the intermediate member 4 in the axial direction. In this example, the second vibration damping mechanism 8 is provided only on the minus side in the Y-axis direction with respect to the intermediate member 4.
  • the position of the first vibration damping mechanism 7 with respect to the intermediate member 4 and the position of the second vibration damping mechanism 8 with respect to the intermediate member 4 are on the same side in the axial direction of the intermediate member 4.
  • Other configurations in the second embodiment are the same as those in the first embodiment.
  • the impact force transmitted from the tire 2 to the motor 3 can be suppressed. Further, the runout of the intermediate member 4 can be suppressed, and the vibration of the entire wheel device 1 can be suppressed. Further, the first weight 71 and the second weight 81 can be prevented from being arranged on the other side of the intermediate member 4 in the axial direction. As a result, another device can be arranged on the other side of the intermediate member 4 in the axial direction, and the space around the wheel device 1 can be effectively utilized.
  • each of the first vibration damping mechanism 7 and the second vibration damping mechanism 8 is provided only on the minus side in the Y-axis direction with respect to the intermediate member 4.
  • each of the first vibration damping mechanism 7 and the second vibration damping mechanism 8 may be provided only on the positive side in the Y-axis direction with respect to the intermediate member 4.
  • FIG. 30 is a cross-sectional view showing a state when the wheel device according to the third embodiment is cut by an XY plane.
  • FIG. 31 is a cross-sectional view showing a state when the wheel device of FIG. 30 is cut by a YZ plane.
  • FIG. 30 is a diagram corresponding to FIG. 2 in the first embodiment.
  • FIG. 31 is a diagram corresponding to FIG. 3 in the first embodiment.
  • one first vibration damping mechanism 7 is provided at each first facing position. Further, the first vibration damping mechanism 7 is provided only on the other side of the intermediate member 4 in the axial direction. In this example, the first vibration damping mechanism 7 is provided only on the positive side in the Y-axis direction with respect to the intermediate member 4.
  • a second vibration damping mechanism 8 is provided at each second facing position. Further, the second vibration damping mechanism 8 is provided only on one side of the intermediate member 4 in the axial direction. In this example, the second vibration damping mechanism 8 is provided only on the minus side in the Y-axis direction with respect to the intermediate member 4.
  • the position of the first vibration damping mechanism 7 with respect to the intermediate member 4 and the position of the second vibration damping mechanism 8 with respect to the intermediate member 4 are opposite to each other in the axial direction of the intermediate member 4.
  • Other configurations in the third embodiment are the same as those in the first embodiment.
  • the impact force transmitted from the tire 2 to the motor 3 can be suppressed. Further, the runout of the intermediate member 4 can be suppressed, and the vibration of the entire wheel device 1 can be suppressed.
  • each first vibration damping mechanism 7 is provided only on the plus side in the Y-axis direction with respect to the intermediate member 4, and each second vibration damping mechanism 8 is provided in the Y-axis direction with respect to the intermediate member 4. It is provided only on the minus side.
  • each first vibration damping mechanism 7 is provided only on the minus side in the Y-axis direction with respect to the intermediate member 4, and each second vibration damping mechanism 8 is provided with respect to the intermediate member 4. It may be provided only on the positive side in the Y-axis direction.
  • FIG. 34 is a perspective view showing the wheel device according to the fourth embodiment.
  • FIG. 35 is a cross-sectional view showing a state when the wheel device of FIG. 34 is cut by the XY plane.
  • FIG. 36 is a cross-sectional view showing a state when the wheel device of FIG. 34 is cut by a YZ plane.
  • FIG. 35 is a diagram corresponding to FIG. 2 in the first embodiment.
  • FIG. 36 is a diagram corresponding to FIG. 3 in the first embodiment.
  • the first weights 71 of the first vibration damping mechanism 7 provided at the first facing positions are connected to each other to form the first integrated weight 711.
  • the first link 72 of the first vibration damping mechanism 7 provided at one first facing position and the first link 72 of the first vibration damping mechanism 7 provided at the other first facing position are separated from each other. They are connected to each other via the first integrated weight 711.
  • the longitudinal direction of the first integrated weight 711 coincides with the direction along the first virtual straight line.
  • the first integrated weight 711 is arranged only on one side of the intermediate member 4 in the axial direction. That is, in this example, the first integrated weight 711 is arranged only on the minus side in the Y-axis direction with respect to the intermediate member 4.
  • the second weights 81 of the second vibration damping mechanisms 8 provided at the second facing positions are connected to each other to form the second integrated weight 811.
  • the second link 82 of the second vibration damping mechanism 8 provided at one second facing position and the second link 82 of the second vibration damping mechanism 8 provided at the other second facing position are separated from each other. They are connected to each other via a second integrated weight 811.
  • the longitudinal direction of the second integrated weight 811 coincides with the direction along the second virtual straight line.
  • the second integrated weight 811 is arranged only on one side of the intermediate member 4 in the axial direction. That is, in this example, the second integrated weight 811 is arranged only on the minus side in the Y-axis direction with respect to the intermediate member 4.
  • the second integrated weight 811 is arranged at a position closer to the intermediate member 4 than the first integrated weight 711 on the outer side in the axial direction of the intermediate member 4. This prevents the first integrated weight 711 and the second integrated weight 811 from interfering with each other.
  • the first integrated weight 711 may be arranged at a position closer to the intermediate member 4 than the second integrated weight 811 on the outer side of the intermediate member 4 in the axial direction.
  • the first integrated weight 711 and the second integrated weight 811 are separated from each other.
  • the first integrated weight 711 and the second integrated weight 811 may be in contact with each other.
  • the damping effect on the vibration phenomenon caused by each of the first elastic plate 51 and each second elastic plate 61 is combined with the first integrated weight 711. It can be obtained by contact with the second integrated weight 811.
  • FIG. 37 is an enlarged cross-sectional view showing the first vibration damping mechanism 7 of FIG. 35.
  • the first integrated weight 711 is attached to each first link 72 of each first vibration damping mechanism 7 via a first connecting rotation shaft 77 parallel to the first intermediate member side rotation shaft 73. As a result, the first integrated weight 711 can rotate about the first connecting rotation shaft 77 with respect to the first link 72.
  • FIG. 38 is an enlarged cross-sectional view showing the second vibration damping mechanism 8 of FIG. 36.
  • the second integrated weight 811 is attached to each second link 82 of each second vibration damping mechanism 8 via a second connecting rotation shaft 87 parallel to the second intermediate member side rotation shaft 83. As a result, the second integrated weight 811 can rotate about the second connecting rotation shaft 87 with respect to the second link 82.
  • FIG. 39 is a schematic side view showing a state of the first integrated weight 711 when each first link 72 of FIG. 35 rotates with respect to each of the first intermediate member side rotating shaft 73 and the tire side rotating shaft 75. Is.
  • the first link 72 tilts with respect to the axis of the intermediate member 4.
  • the first integrated weight 711 rotates about the first connecting rotation shaft 77 with respect to the first link 72.
  • the state in which the first integrated weight 711 is orthogonal to the axis of the intermediate member 4 is maintained. That is, even if each of the first links 72 is tilted with respect to the axis of the intermediate member 4, the state in which the first integrated weight 711 is parallel to the side surface of the wheel device 1 is maintained.
  • the operation of the second integrated weight 811 is the same as that of the first integrated weight 711. That is, even if each of the second links 82 is tilted with respect to the axis of the intermediate member 4, the state in which the second integrated weight 811 is parallel to the side surface of the wheel device 1 is maintained.
  • Other configurations in the fourth embodiment are the same as those in the first embodiment.
  • the first weights 71 of the first vibration damping mechanisms 7 provided at the first facing positions are connected to each other to form the first integrated weight 711.
  • the second weights 81 of the second vibration damping mechanisms 8 provided at the second facing positions are connected to each other to form the second integrated weight 811. Therefore, it is possible to cancel the centrifugal force acting on each of the first weights 71 in opposite directions when the wheel device 1 is rotating. It is also possible to cancel the centrifugal force acting on each of the second weights 81 in opposite directions. As a result, the overall vibration suppression effect of the wheel device 1 can be obtained more stably.
  • first integrated weight 711 is attached to the first link 72 via the first connecting rotation shaft 77.
  • second integrated weight 811 is attached to the second link 82 via the second connecting rotation shaft 87. Therefore, even if the first link 72 is tilted with respect to the axis of the intermediate member 4, the first integrated weight 711 and the second integrated weight 811 can maintain a state orthogonal to the axis of the intermediate member 4. can. As a result, it is possible to suppress the occurrence of unintended stress between the first integrated weight 711 and the first link 72 and between the second integrated weight 811 and the second link 82. Further, the movement ranges of the first integrated weight 711 and the second integrated weight 811 in the axial direction of the intermediate member 4 can be limited. Therefore, the space around the wheel device 1 can be effectively utilized.
  • the first integrated weight 711 is arranged only on the minus side in the Y-axis direction with respect to the intermediate member 4.
  • the first integrated weight 711 may be arranged only on the positive side in the Y-axis direction with respect to the intermediate member 4.
  • the second integrated weight 811 is arranged only on the minus side in the Y-axis direction with respect to the intermediate member 4.
  • the second integrated weight 811 may be arranged only on the positive side in the Y-axis direction with respect to the intermediate member 4.
  • the first integrated weight 711 is arranged only on one side of the intermediate member 4 in the axial direction.
  • the first integrated weights 711 may be arranged on both sides of the intermediate member 4 in the axial direction.
  • the second integrated weight 811 is arranged only on one side in the axial direction of the intermediate member 4.
  • the second integrated weights 811 may be arranged on both sides of the intermediate member 4 in the axial direction.
  • FIG. 40 is a front view showing a state when the first vibration damping mechanism 7 of the wheel device according to the fifth embodiment is viewed from the radial outside of the tire 2.
  • the number of first links 72 in one first vibration damping mechanism 7 is two, and the number of first links 72 in the other first vibration damping mechanism 7 is three. Is.
  • the number of second links 82 in the pair of second vibration damping mechanisms 8 is the same as that of the pair of first vibration damping mechanisms 7. That is, of the pair of second vibration damping mechanisms 8, the number of the second links 82 in one of the second vibration damping mechanisms 8 is two, and the number of the second links 82 in the other second vibration damping mechanism 8 is two. There are three. Other configurations in the fifth embodiment are the same as those in the first embodiment.
  • the number of the first links 72 in the other first vibration damping mechanism 7 is three, but as shown in FIG. 41, the first link 72 in the other first vibration damping mechanism 7
  • the number of may be one.
  • the number of the second links 82 in the other second vibration damping mechanism 8 may be one. Even in this way, the same effect as that of the first embodiment can be obtained.
  • the number of the first links 72 in one first vibration damping mechanism 7 is 1 or more, the number of the first links 72 is not limited. Further, as long as the number of the second links 82 in one second vibration damping mechanism 8 is 1 or more, the number of the second links 82 is not limited.
  • FIG. 42 is a front view showing a state when the first vibration damping mechanism 7 of the wheel device according to the sixth embodiment is viewed from the radial outside of the tire 2.
  • Each of the pair of first vibration damping mechanisms 7 includes a plurality of first weights 71 individually attached to each first link 72. In this example, two first weights 71 are included in each of the pair of first vibration damping mechanisms 7.
  • each of the pair of second vibration damping mechanisms 8 includes a plurality of second weights 81 individually attached to each second link 82.
  • two second weights 81 are included in each of the pair of second vibration damping mechanisms 8.
  • Other configurations in the sixth embodiment are the same as those in the first embodiment.
  • first vibration damping mechanism 7 includes a plurality of first weights 71
  • second vibration damping mechanism 8 includes a plurality of second weights 81
  • the same effect as that of the first embodiment can be obtained.
  • each first vibration damping mechanism 7 includes a plurality of first weights 71. However, it is sufficient that at least one of the first vibration damping mechanisms 7 includes a plurality of first weights 71.
  • each second vibration damping mechanism 8 includes a plurality of second weights 81. However, it is sufficient that at least one of the second vibration damping mechanisms 8 includes a plurality of second weights 81.
  • the number of the first weights 71 included in one first vibration damping mechanism 7 may be three or more.
  • the number of the second weights 81 included in one second vibration damping mechanism 8 may be three or more.
  • the first integrated weight 711 and the second integrated weight 811 are applied to the first embodiment.
  • the first integrated weight 711 and the second integrated weight 811 may be applied to the second, third, fifth and sixth embodiments.
  • the first integrated weight 711 and the second integrated weight 811 may be applied to the second, third, fifth and sixth embodiments.
  • the configuration in which the plurality of first weights 71 are included in one first vibration damping mechanism 7 is applied to the first embodiment.
  • a configuration in which a plurality of first weights 71 are included in one first vibration damping mechanism 7 may be applied to the second to fifth embodiments.
  • the second virtual straight line is orthogonal to the first virtual straight line.
  • the second virtual straight line does not have to be orthogonal to the first virtual straight line as long as it is orthogonal to the axis of the intermediate member 4 and is different from the first virtual straight line.
  • the tire 2 is made of a metal such as iron.
  • the tire 2 may be made of an elastic material such as rubber.
  • the wheel device 1 is applied to a railroad vehicle.
  • the wheel device 1 can be applied to various vehicles or mobile devices such as automobiles, motorcycles, and elevators.
  • 1 wheel device 2 tires, 3 electric motor (main body), 3b rotor (rotating part), 3c hub (rotating part), 4 intermediate members, 7 1st vibration damping mechanism, 8 2nd vibration damping mechanism, 51 1st elastic plate (1st elastic body), 61 2nd elastic plate (2nd elastic body), 70 1st mechanism body, 71 1st weight, 72 1st link (1st interlocking part), 73 1st intermediate member side rotation shaft, 75 tire side rotation shaft, 77 first connection rotation shaft, 711 first integrated weight, 80 second mechanism, 81 second weight, 82 second link (second interlocking part), 83 second intermediate member side rotation shaft, 85 Rotating part side rotating shaft, 87 2nd connected rotating shaft, 811 2nd integrated weight.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Tires In General (AREA)

Abstract

車輪装置において、中間部材は、回転部を囲んでいる。タイヤは、中間部材を囲んでいる。第1制振機構は、第1おもりと、第1連動部とを有している。第1連動部は、タイヤに対する中間部材の移動に応じて、タイヤに対する中間部材の移動方向とは逆方向へ第1おもりを中間部材に対して移動させる。第2制振機構は、第2おもりと、第2連動部とを有している。第2連動部は、回転部に対する中間部材の移動に応じて、回転部に対する中間部材の移動方向とは逆方向へ第2おもりを中間部材に対して移動させる。

Description

車輪装置
 本開示は、環状のタイヤを有する車輪装置に関するものである。
 従来、鉄道車両の車体の低床化を図るために、環状のタイヤの内側に駆動機器を収めた車輪装置が知られている。このような従来の車輪装置では、鉄道車両の走行時にレールからの衝撃力がタイヤを介して駆動機器に伝わりやすい。特に、連続する2つのレールの間の継ぎ目を車輪装置が通過するとき、タイヤの外周面に異常摩耗が発生したときなどには、タイヤの内側に収められた駆動機器が受ける衝撃力が大きくなる。従って、従来の車輪装置では、駆動機器が故障しやすくなる懸念がある。
 従来、タイヤから駆動機器へ伝わる衝撃力を抑制するために、タイヤの内側に収められた駆動機器とタイヤとの間に円環状の中間部材を設け、駆動機器及びタイヤのそれぞれに中間部材を複数のばね要素によって接続するようにした車輪装置が提案されている(例えば非特許文献1参照)。
日本機械学会 Dynamics and Design Conference 2019, 講演番号 520
 非特許文献1に示されている従来の車輪装置では、タイヤに対して中間部材が大きく振れる現象、即ち中間部材の振れ回りがタイヤの回転時に生じてしまい、車輪装置が全体として振動しやすくなってしまう。
 本開示は、上記のような課題を解決するためになされたものであり、振動を抑制することができる車輪装置を得ることを目的とする。
 本開示による車輪装置は、回転可能な回転部を有する本体、回転部を囲む環状の中間部材、中間部材を囲む環状のタイヤ、中間部材の軸線に直交する第1仮想直線に沿って中間部材がタイヤに対して移動可能になるように中間部材とタイヤとを互いに連結する第1弾性体、中間部材の軸線に直交しかつ第1仮想直線に交差する第2仮想直線に沿って中間部材が回転部に対して移動可能になるように中間部材と回転部とを互いに連結する第2弾性体、第1おもりと、タイヤに対する中間部材の移動に応じて、タイヤに対する中間部材の移動方向とは逆方向へ第1おもりを中間部材に対して移動させる第1連動部とを有する第1制振機構、及び第2おもりと、回転部に対する中間部材の移動に応じて、回転部に対する中間部材の移動方向とは逆方向へ第2おもりを中間部材に対して移動させる第2連動部とを有する第2制振機構を備えている。
 本開示による車輪装置によれば、車輪装置の振動を抑制することができる。
実施の形態1による車輪装置を示す正面図である。 図1のII-II線に沿った断面図である。 図1のIII-III線に沿った断面図である。 図1の第1弾性板を示す斜視図である。 図1の第1弾性板がタイヤに固定されている状態を示す斜視図である。 図1の第2弾性板を示す斜視図である。 図1の第2弾性板が中間部材に固定されている状態を示す斜視図である。 図2の第1制振機構を示す拡大断面図である。 図8の第1制振機構をタイヤの径方向外側から見たときの状態を示す正面図である。 図2の第2制振機構を示す拡大断面図である。 図10の第2制振機構をタイヤの径方向外側から見たときの状態を示す正面図である。 図1の車輪装置をモデル化した車輪装置モデルを示す模式図である。 図1の車輪装置がレール上を移動する状態を示す正面図である。 図13の車輪装置をモデル化した車輪装置モデルを示す模式図である。 図13のタイヤとは異なる回転位置にあるときのタイヤがレールから衝撃力を受けたときの車輪装置の状態を示す正面図である。 図15の車輪装置をモデル化した車輪装置モデルを示す模式図である。 図12の車輪装置がレール上を回転しながら移動するときの車輪装置の状態の変化を示す模式的な説明図である。 図8の一対の第1制振機構を模式的に示す斜視図である。 図10の一対の第2制振機構を模式的に示す斜視図である。 図8の第1制振機構を模式的に示す拡大図である。 数値解析における比較例A1、実施例B1及び実施例C1のそれぞれの車輪装置の回転数R[Hz]と時間t[sec]との関係を示すグラフである。 数値解析における比較例A1の電動機のZ軸方向の変位D1[mm]と時間t[sec]との関係を示すグラフである。 数値解析における実施例B1の電動機3のZ軸方向の変位D1[mm]と時間t[sec]との関係を示すグラフである。 数値解析における実施例C1の電動機3のZ軸方向の変位D1[mm]と時間t[sec]との関係を示すグラフである。 実施の形態1による車輪装置の変形例を示す断面図である。 実施の形態2による車輪装置をXY平面によって切断したときの状態を示す断面図である。 図26の車輪装置をYZ平面によって切断したときの状態を示す断面図である。 実施の形態2による車輪装置の変形例をXY平面によって切断したときの状態を示す断面図である。 図28の車輪装置をYZ平面によって切断したときの状態を示す断面図である。 実施の形態3による車輪装置をXY平面によって切断したときの状態を示す断面図である。 図30の車輪装置をYZ平面によって切断したときの状態を示す断面図である。 実施の形態3による車輪装置の変形例をXY平面によって切断したときの状態を示す断面図である。 図32の車輪装置をYZ平面によって切断したときの状態を示す断面図である。 実施の形態4による車輪装置を示す斜視図である。 図34の車輪装置をXY平面によって切断したときの状態を示す断面図である。 図34の車輪装置をYZ平面によって切断したときの状態を示す断面図である。 図35の第1制振機構を示す拡大断面図である。 図36の第2制振機構を示す拡大断面図である。 図35の各第1リンクが第1中間部材側回転軸及びタイヤ側回転軸のそれぞれに対して回転したときの第1一体おもりの状態を示す模式的な側面図である。 実施の形態5による車輪装置の第1制振機構をタイヤの径方向外側から見たときの状態を示す正面図である。 実施の形態5による車輪装置の第1制振機構の変形例をタイヤの径方向外側から見たときの状態を示す正面図である。 実施の形態6による車輪装置の第1制振機構をタイヤの径方向外側から見たときの状態を示す正面図である。
 以下、実施の形態について図面を参照して説明する。
 実施の形態1.
 図1は、実施の形態1による車輪装置を示す正面図である。また、図2は、図1のII-II線に沿った断面図である。さらに、図3は、図1のIII-III線に沿った断面図である。図において、車輪装置1は、タイヤ2と、電動機3と、中間部材4と、第1連結構造部5と、第2連結構造部6と、複数の第1制振機構7と、複数の第2制振機構8とを有している。この例では、鉄道車両の車体に設けられる鉄道車両用車輪装置が車輪装置1として用いられている。
 タイヤ2の形状は、軸線Pを中心とする環状である。また、タイヤ2の内周面21は、軸線Pを中心とする円筒面である。タイヤ2は、鉄などの金属で構成されている。車輪装置1は、タイヤ2の外周面がレールに接触した状態でレールに載せられる。レールに載せられた車輪装置1は、タイヤ2の回転に応じてレールに沿って移動する。
 電動機3は、タイヤ2の内側に本体として配置されている。この例では、タイヤ2の軸線Pに沿った方向をタイヤ2の軸線方向とすると、図2及び図3に示すように、タイヤ2の軸線方向における電動機3の寸法が、タイヤ2の軸線方向におけるタイヤ2の寸法と同じになっている。
 また、電動機3は、電機子としてのステータ3aと、ステータ3aの外周を囲む環状のロータ3bと、ステータ3a及びロータ3bを支持する図示しない支持部材とを有している。電動機3の支持部材は、鉄道車両の車体に取り付けられている。
 ステータ3aは、電動機3の固定部として支持部材に固定されている。ロータ3bは、電動機3の回転部として支持部材に回転可能に支持されている。ステータ3a及びロータ3bのそれぞれの軸線は、電動機3の軸線と一致している。電動機3は、タイヤ2と同軸に配置されている。
 ロータ3bの外周面31は、電動機3の軸線を中心とする円筒面である。ロータ3bの外径は、タイヤ2の内径よりも小さくなっている。ロータ3bは、ステータ3aへの給電により電動機3の軸線を中心としてステータ3aに対して回転する。これにより、電動機3は、タイヤ2を回転させるトルクを発生する。
 中間部材4は、電動機3のロータ3bを囲む環状の部材である。中間部材4は、タイヤ2の内側に配置されている。即ち、タイヤ2は、中間部材4を囲む環状の部材である。従って、この例では、電動機3がタイヤ2の内側に配置されたインホイールモータが車輪装置1となっている。中間部材4は、タイヤ2及び電動機3のそれぞれとは別部材である。この例では、図2及び図3に示すように、タイヤ2の軸線方向において中間部材4がタイヤ2と同位置に配置されている。
 中間部材4の軸線は、タイヤ2の軸線Pと一致している。即ち、中間部材4は、タイヤ2と同軸に配置されている。中間部材4の内周面41及び外周面42のそれぞれは、中間部材4の軸線を中心とする円筒面である。中間部材4の外径は、タイヤ2の内径よりも小さくなっている。また、中間部材4の内径は、ロータ3bの外径よりも大きくなっている。従って、環状の中間部材4は、タイヤ2と電動機3との間の空間に配置されている。
 第1連結構造部5は、タイヤ2と中間部材4との間に設けられている。また、第1連結構造部5は、タイヤ2と中間部材4とを互いに連結する第1弾性体としての一対の第1弾性板51を有している。
 第2連結構造部6は、中間部材4とロータ3bとの間に設けられている。また、第2連結構造部6は、中間部材4とロータ3bとを互いに連結する第2弾性体としての一対の第2弾性板61を有している。
 ここで、Y軸がタイヤ2の軸線Pと一致するXYZ直交座標系と、XYZ直交座標系のZ軸に設定された基準位置Aに対するタイヤ2の周方向の角度θとを用いて、一対の第1弾性板51及び一対の第2弾性板61のそれぞれの構成を説明する。
 中間部材4の軸線に直交する直線のうち、特定の直線を第1仮想直線とすると、一対の第1弾性板51のそれぞれは、第1仮想直線と交わる位置に配置されている。第1仮想直線は、X軸方向に沿った直線と一致している。また、一対の第1弾性板51は、第1仮想直線に沿った方向、即ちX軸方向において、中間部材4の軸線に対して互いに反対側となる位置に配置されている。即ち、一対の第1弾性板51のうち、一方の第1弾性板51は、基準位置Aからタイヤ2の周方向へθ=90°だけ進んだ位置に配置され、他方の第1弾性板51は、基準位置Aからタイヤ2の周方向へθ=270°だけ進んだ位置に配置されている。タイヤ2が中間部材4と同軸となっていることから、タイヤ2の軸線P及び中間部材4の軸線は、一対の第1弾性板51の間に位置している。
 図4は、図1の第1弾性板51を示す斜視図である。各第1弾性板51は、長方形状の平板である。第1弾性板51の長方形の短辺に沿った方向は、第1弾性板51の幅方向とされている。また、第1弾性板51の長方形の長辺に沿った方向は、第1弾性板51の長手方向とされている。さらに、第1弾性板51の幅方向及び長手方向のいずれにも直交する方向は、第1弾性板51の厚さ方向とされている。
 図1に示すように、各第1弾性板51は、第1仮想直線に直交して配置されている。即ち、各第1弾性板51の厚さ方向は、第1仮想直線に沿った方向、即ちX軸方向と一致している。また、各第1弾性板51の幅方向は、タイヤ2の軸線方向、即ちY軸方向と一致している。これにより、各第1弾性板51の長手方向は、X軸方向及びY軸方向のいずれにも直交するZ軸方向と一致している。即ち、一対の第1弾性板51は、X軸方向に直交するYZ平面と平行に配置されている。
 各第1弾性板51の長手方向両端部511は、一対の固定用端部としてタイヤ2の内周面21にそれぞれ固定されている。各第1弾性板51の長手方向中間部512は、単一の固定用板部として中間部材4の外周面42に固定されている。
 第1弾性板51の厚さ方向に直交する方向の剛性、即ち第1弾性板51の面内剛性は、第1弾性板51の厚さ方向の剛性、即ち第1弾性板51の面外剛性よりも十分に高くなっている。これにより、タイヤ2と中間部材4とが第1弾性板51を介して連結されている状態は、第1弾性板51の厚さ方向に直交する方向でタイヤ2と中間部材4とが剛結合されている状態と等価であると考えることができる。
 これに対して、第1弾性板51の面外剛性が第1弾性板51の面内剛性よりも十分低いことから、第1弾性板51の厚さ方向では、第1弾性板51が弾性変形可能になっている。中間部材4は、第1弾性板51の厚さ方向へ各第1弾性板51が弾性変形することにより、第1仮想直線に沿った方向、即ちX軸方向へタイヤ2に対して移動可能になっている。即ち、各第1弾性板51は、第1仮想直線に沿って中間部材4がタイヤ2に対して移動可能になるように中間部材4とタイヤ2とを互いに連結している。タイヤ2及び中間部材4は、各第1弾性板51の厚さ方向への弾性変形により、第1仮想直線に沿った方向、即ちX軸方向へのみ相対移動が可能となる自由度を有している。
 中間部材4の外周面42のうち、各第1弾性板51の長手方向中間部512が単一の固定用板部として固定されている位置には、外周平面部421がそれぞれ形成されている。この例では、2つの外周平面部421が中間部材4の外周面42に形成されている。外周平面部421は、中間部材4の外周面42のうち、基準位置Aからタイヤ2の周方向へθ=90°だけ進んだ位置と、基準位置Aからタイヤ2の周方向へθ=270°だけ進んだ位置とにそれぞれ形成されている。各外周平面部421は、第1仮想直線に沿った方向、即ちX軸方向に直交する平面部である。
 第1弾性板51の長手方向中間部512は、第1弾性板51の厚さ方向に直交する面を外周平面部421に隙間なく接触させた状態で中間部材4の外周面42に固定されている。第1弾性板51の長手方向中間部512を中間部材4の外周面42に固定する方法としては、ねじ、ボルト、溶接、接着剤などによる固定方法が用いられている。
 タイヤ2の内周面21のうち、各第1弾性板51の長手方向両端部511が一対の固定用端部として固定されている位置には、一対の段部211がそれぞれ形成されている。従って、タイヤ2の内周面21には、一対の段部211が第1弾性板51の数だけ形成されている。この例では、一対の段部211がタイヤ2の内周面21に2組形成されている。
 図5は、図1の第1弾性板51がタイヤ2に固定されている状態を示す斜視図である。第1弾性板51の長手方向両端部511は、一対の段部211にそれぞれ嵌っている。一対の段部211は、タイヤ2の周方向で互いに対向している。一対の段部211のそれぞれは、第1仮想直線に沿った方向、即ちX軸方向に直交する段部底面211aと、段部底面211aからタイヤ2の内側に向けて延びる段部端面211bとによって構成されている。
 一対の段部211のそれぞれの段部端面211bは、中間部材4の軸線及び第1仮想直線を含む平面と平行な平面である。従って、一対の段部211のそれぞれの段部端面211bは、Z軸方向にそれぞれ直交している。一対の段部211は、2つの段部端面211bをZ軸方向において互いに対向させた状態でタイヤ2の内周面21に形成されている。
 第1弾性板51の長手方向両端部511は、第1弾性板51の厚さ方向に直交する面を段部底面211aに隙間なく接触させ、かつ第1弾性板51の長手方向端面を段部端面211bに隙間なく接触させた状態でタイヤ2の内周面21に固定されている。第1弾性板51の長手方向両端部511をタイヤ2の内周面21に固定する方法としては、ねじ、ボルト、溶接、接着剤などによる固定方法が用いられている。
 中間部材4の軸線に直交する直線のうち、第1仮想直線と異なる直線を第2仮想直線とすると、一対の第2弾性板61のそれぞれは、第2仮想直線と交わる位置に配置されている。この例では、第1仮想直線と直交する直線が第2仮想直線とされている。即ち、この例では、第2仮想直線がZ軸方向に沿った直線と一致している。また、一対の第2弾性板61は、第2仮想直線に沿った方向、即ちZ軸方向において、タイヤ2の軸線Pに対して互いに反対側となる位置に配置されている。従って、一対の第2弾性板61のうち、一方の第2弾性板61は、θ=0°の基準位置Aに配置され、他方の第2弾性板61は、基準位置Aからタイヤ2の周方向へθ=180°だけ進んだ位置に配置されている。タイヤ2が中間部材4と同軸となっていることから、タイヤ2の軸線P及び中間部材4の軸線は、一対の第2弾性板52の間に位置している。
 図6は、図1の第2弾性板61を示す斜視図である。各第2弾性板61は、長方形状の平板である。第2弾性板61の長方形の短辺に沿った方向は、第2弾性板61の幅方向とされている。また、第2弾性板61の長方形の長辺に沿った方向は、第2弾性板61の長手方向とされている。さらに、第2弾性板61の幅方向及び長手方向のいずれにも直交する方向は、第2弾性板61の厚さ方向とされている。
 各第2弾性板61は、図1に示すように、第2仮想直線に直交して配置されている。即ち、各第2弾性板61の厚さ方向は、第2仮想直線に沿った方向、即ちZ軸方向と一致している。また、各第2弾性板61の幅方向は、タイヤ2の軸線方向、即ちY軸方向と一致している。これにより、各第2弾性板61の長手方向は、Y軸方向及びZ軸方向のいずれにも直交するX軸方向と一致している。即ち、一対の第2弾性板61は、Z軸方向に直交するXY平面と平行に配置されている。
 各第2弾性板61の長手方向両端部611は、一対の固定用端部として中間部材4の内周面41にそれぞれ固定されている。各第2弾性板61の長手方向中間部612は、単一の固定用板部としてロータ3bの外周面31に固定されている。
 第2弾性板61の厚さ方向に直交する方向の剛性、即ち第2弾性板61の面内剛性は、第2弾性板61の厚さ方向の剛性、即ち第2弾性板61の面外剛性よりも十分に高くなっている。これにより、中間部材4とロータ3bとが第2弾性板61を介して連結されている状態は、第2弾性板61の厚さ方向に直交する方向では中間部材4とロータ3bとが剛結合されている状態と等価であると考えることができる。
 これに対して、第2弾性板61の面外剛性が第2弾性板61の面内剛性よりも十分低いことから、第2弾性板61の厚さ方向では、第2弾性板61が弾性変形可能になっている。電動機3は、第2弾性板61の厚さ方向へ各第2弾性板61が弾性変形することにより、第2仮想直線に沿った方向、即ちZ軸方向へ中間部材4に対して移動可能になっている。即ち、各第2弾性板61は、第2仮想直線に沿って中間部材4が電動機3に対して移動可能になるように中間部材4とロータ3bとを互いに連結している。中間部材4及び電動機3は、各第2弾性板61の厚さ方向への弾性変形により、第2仮想直線に沿った方向、即ちZ軸方向へのみ相対移動が可能となる自由度を有している。
 ロータ3bの外周面31のうち、各第2弾性板61の長手方向中間部612が単一の固定用板部として固定されている位置には、外周平面部311がそれぞれ形成されている。この例では、2つの外周平面部311がロータ3bの外周面31に形成されている。外周平面部311は、ロータ3bの外周面31のうち、θ=0°の基準位置Aと、基準位置Aからタイヤ2の周方向へθ=180°だけ進んだ位置とにそれぞれ形成されている。各外周平面部311は、第2仮想直線に沿った方向、即ちZ軸方向に直交する平面部である。
 第2弾性板61の長手方向中間部612は、第2弾性板61の厚さ方向に直交する面を外周平面部311に隙間なく接触させた状態でロータ3bの外周面31に固定されている。第2弾性板61の長手方向中間部612をロータ3bの外周面31に固定する方法としては、ねじ、ボルト、溶接、接着剤などによる固定方法が用いられている。
 中間部材4の内周面41のうち、各第2弾性板61の長手方向両端部611が一対の固定用端部として固定されている位置には、一対の段部411がそれぞれ形成されている。従って、中間部材4の内周面41には、一対の段部411が第2弾性板61の数だけ形成されている。この例では、一対の段部411が中間部材4の内周面41に2組形成されている。
 図7は、図1の第2弾性板61が中間部材4に固定されている状態を示す斜視図である。第2弾性板61の長手方向両端部611は、一対の段部411にそれぞれ嵌っている。一対の段部411は、中間部材4の周方向で互いに対向している。一対の段部411のそれぞれは、第2仮想直線に沿った方向、即ちZ軸方向に直交する段部底面411aと、段部底面411aから中間部材4の内側に向けて延びる段部端面411bとによって構成されている。
 一対の段部411のそれぞれの段部端面411bは、中間部材4の軸線及び第2仮想直線を含む平面と平行な平面である。従って、一対の段部411のそれぞれの段部端面411bは、X軸方向にそれぞれ直交している。一対の段部411は、2つの段部端面411bをX軸方向で互いに対向させた状態で中間部材4の内周面41に形成されている。
 第2弾性板61の長手方向両端部611は、第2弾性板61の厚さ方向に直交する面を段部底面411aに隙間なく接触させ、かつ第2弾性板61の長手方向端面を段部端面411bに隙間なく接触させた状態で中間部材4の内周面41に固定されている。第2弾性板61の長手方向両端部611を中間部材4の内周面41に固定する方法としては、ねじ、ボルト、溶接、接着剤などによる固定方法が用いられている。
 複数の第1制振機構7のそれぞれは、中間部材4とタイヤ2との間の空間に設けられている。また、第1制振機構7は、第1仮想直線に沿った方向、即ちX軸方向において、中間部材4の軸線に対して互いに反対側となる2つの第1対向位置にそれぞれ配置されている。従って、図1に示すように、基準位置Aからタイヤ2の周方向へθ=90°だけ進んだ第1対向位置と、基準位置Aからタイヤ2の周方向へθ=270°だけ進んだ第1対向位置とに第1制振機構7がそれぞれ配置されている。
 複数の第2制振機構8のそれぞれは、中間部材4とロータ3bとの間の空間に設けられている。また、第2制振機構8は、第2仮想直線に沿った方向、即ちZ軸方向において、中間部材4の軸線に対して互いに反対側となる2つの第2対向位置にそれぞれ配置されている。従って、基準位置Aからタイヤ2の周方向へθ=0°だけ進んだ第2対向位置と、基準位置Aからタイヤ2の周方向へθ=180°だけ進んだ第2対向位置とに第2制振機構8がそれぞれ配置されている。
 図8は、図2の第1制振機構7を示す拡大断面図である。また、図9は、図8の第1制振機構7をタイヤ2の径方向外側から見たときの状態を示す正面図である。1つの第1対向位置には、中間部材4の軸線方向へ並ぶ一対の第1制振機構7が配置されている。一対の第1制振機構7は、第1機構体70を構成している。この例では、一対の第1制振機構7が2つの第1対向位置にそれぞれ配置されていることから、4つの第1制振機構7が車輪装置1に含まれている。
 中間部材4の軸線に直交する仮想平面のうち、中間部材4の軸線方向中央位置を通る仮想平面を中央仮想平面Qとすると、一対の第1制振機構7は、中央仮想平面Qを挟んで対向する位置に配置されている。
 各第1制振機構7は、第1おもり71と、第1連動部としての複数の第1リンク72とを有している。この例では、1つの第1制振機構7に含まれる第1リンク72の数が2つである。
 各第1制振機構7では、中間部材4の軸線方向外側に第1おもり71が配置されている。また、各第1制振機構7では、第1リンク72が中間部材4とタイヤ2との間の空間に配置されている。各第1制振機構7では、中間部材4の軸線方向外側において第1おもり71が第1リンク72に取り付けられている。
 中間部材4には、取付部74が第1弾性板51の長手方向中間部512を介して固定されている。取付部74には、第1中間部材側回転軸73が支持されている。第1中間部材側回転軸73は、中間部材4の軸線及び第1仮想直線のいずれにも直交する回転軸である。従って、第1中間部材側回転軸73は、X軸方向に沿って配置されている。この例では、第1中間部材側回転軸73が中央仮想平面Q上に配置されている。
 タイヤ2の内周面21には、一対の取付部76が固定されている。各取付部76には、第1中間部材側回転軸73と平行なタイヤ側回転軸75がそれぞれ支持されている。各タイヤ側回転軸75は、一対の第1制振機構7のそれぞれに対応している。この例では、中央仮想平面Qに関して互いに対向する位置にタイヤ側回転軸75がそれぞれ配置されている。即ち、中央仮想平面Qに関してY軸方向のプラス側及びマイナス側のそれぞれの位置にタイヤ側回転軸75が配置されている。
 従って、各第1制振機構7では、タイヤ側回転軸75が第1中間部材側回転軸73よりも第1おもり71に近い位置に配置されている。
 一対の第1制振機構7のそれぞれに含まれている複数の第1リンク72は、共通の第1中間部材側回転軸73に接続されている。これにより、各第1リンク72は、第1中間部材側回転軸73、取付部74及び第1弾性板51を介して中間部材4に取り付けられている。
 一対の第1制振機構7のうち、一方の第1制振機構7に含まれている2つの第1リンク72は、Y軸方向のマイナス側に位置する一方のタイヤ側回転軸75に接続されている。これにより、一方の第1制振機構7に含まれている2つの第1リンク72は、一方のタイヤ側回転軸75及び取付部76を介してタイヤ2に取り付けられている。一方の第1制振機構7に含まれている2つの第1リンク72は、第1中間部材側回転軸73及び一方のタイヤ側回転軸75のそれぞれを中心に回転可能になっている。
 他方の第1制振機構7に含まれている2つの第1リンク72は、Y軸方向のプラス側に位置する他方のタイヤ側回転軸75に接続されている。これにより、他方の第1制振機構7に含まれている2つの第1リンク72は、他方のタイヤ側回転軸75及び取付部76を介してタイヤ2に取り付けられている。他方の第1制振機構7に含まれている2つの第1リンク72は、第1中間部材側回転軸73及び他方のタイヤ側回転軸75のそれぞれを中心に回転可能になっている。
 各第1リンク72は、中間部材4とタイヤ2との間の距離の変化に応じて、第1中間部材側回転軸73及びタイヤ側回転軸75のそれぞれに対して回転する。従って、各第1リンク72は、中間部材4とタイヤ2との間の距離が小さくなるほど、第1おもり71が中間部材4の径方向内側へ移動する方向へ中間部材4に対して変位する。また、各第1リンク72は、中間部材4とタイヤ2との間の距離が大きくなるほど、第1おもり71が中間部材4の径方向外側へ移動する方向へ中間部材4に対して変位する。これにより、各第1制振機構7では、タイヤ2に対する中間部材4の移動に応じて、タイヤ2に対する中間部材4の移動方向とは逆方向へ各第1リンク72が第1おもり71を中間部材4に対して移動させる。
 ここで、第1仮想直線に沿った方向へ中間部材4がタイヤ2に対して移動すると、第1中間部材側回転軸73と各タイヤ側回転軸75との間の距離が変化する。従って、第1中間部材側回転軸73と各タイヤ側回転軸75との間の距離の変化に対応するために、本実施の形態では、第1中間部材側回転軸73及びタイヤ側回転軸75の少なくともいずれかが通された長穴が各第1リンク72に設けられている。長穴は、第1リンク72の長手方向に沿って各第1リンク72に設けられている。これにより、第1中間部材側回転軸73と各タイヤ側回転軸75との間の距離が変化しても、中間部材4に対する各第1リンク72の変位が可能になっている。
 図10は、図2の第2制振機構8を示す拡大断面図である。また、図11は、図10の第2制振機構8をタイヤ2の径方向外側から見たときの状態を示す正面図である。1つの第2対向位置には、中間部材4の軸線方向へ並ぶ一対の第2制振機構8が配置されている。一対の第2制振機構8は、第2機構体80を構成している。この例では、一対の第2制振機構8が2つの第2対向位置にそれぞれ配置されていることから、4つの第2制振機構8が車輪装置1に含まれている。また、一対の第2制振機構8は、中央仮想平面Qを挟んで対向する位置に配置されている。
 各第2制振機構8は、第2おもり81と、第2連動部としての複数の第2リンク82とを有している。この例では、1つの第2制振機構8に含まれる第2リンク82の数が2つである。
 各第2制振機構8では、中間部材4の軸線方向外側に第2おもり81が配置されている。また、各第2制振機構8では、第2リンク82が中間部材4とロータ3bとの間の空間に配置されている。各第2制振機構8では、中間部材4の軸線方向外側において第2おもり81が各第2リンク82に取り付けられている。
 中間部材4の内周面41には、取付部84が固定されている。取付部84には、第2中間部材側回転軸83が支持されている。第2中間部材側回転軸83は、中間部材4の軸線及び第2仮想直線のいずれにも直交する回転軸である。従って、第2中間部材側回転軸83は、X軸方向に沿って配置されている。この例では、第2中間部材側回転軸83が中央仮想平面Q上に配置されている。
 ロータ3bには、一対の取付部86が第2弾性板61の長手方向中間部612を介して固定されている。各取付部86には、第2中間部材側回転軸83と平行な回転部側回転軸85がそれぞれ支持されている。各回転部側回転軸85は、一対の第2制振機構8のそれぞれに対応している。この例では、中央仮想平面Qに関して互いに対向する位置に回転部側回転軸85がそれぞれ配置されている。即ち、中央仮想平面Qに関してY軸方向のプラス側及びマイナス側のそれぞれの位置に回転部側回転軸85が配置されている。
 従って、各第2制振機構8では、回転部側回転軸85が第2中間部材側回転軸83よりも第2おもり81に近い位置に配置されている。
 一対の第2制振機構8のそれぞれに含まれている複数の第2リンク82は、共通の第2中間部材側回転軸83に接続されている。これにより、各第2リンク82は、第2中間部材側回転軸83、取付部84及び第2弾性板61を介して中間部材4に取り付けられている。
 一対の第2制振機構8のうち、一方の第2制振機構8に含まれている2つの第2リンク82は、Y軸方向のマイナス側に位置する一方の回転部側回転軸85に接続されている。これにより、一方の第2制振機構8に含まれている2つの第2リンク82は、一方の回転部側回転軸85及び取付部86を介してロータ3bに取り付けられている。一方の第2制振機構8に含まれている2つの第2リンク82は、第2中間部材側回転軸83及び一方の回転部側回転軸85のそれぞれを中心に回転可能になっている。
 他方の第2制振機構8に含まれている2つの第2リンク82は、Y軸方向のプラス側に位置する他方の回転部側回転軸85に接続されている。これにより、他方の第2制振機構8に含まれている2つの第2リンク82は、他方の回転部側回転軸85及び取付部86を介してロータ3bに取り付けられている。他方の第2制振機構8に含まれている2つの第2リンク82は、第2中間部材側回転軸83及び他方の回転部側回転軸85のそれぞれを中心に回転可能になっている。
 各第2リンク82は、中間部材4とロータ3bとの間の距離の変化に応じて、第2中間部材側回転軸83及び回転部側回転軸85のそれぞれに対して回転する。従って、各第2リンク82は、中間部材4とロータ3bとの間の距離が小さくなるほど、第2おもり81が中間部材4の径方向外側へ移動する方向へ中間部材4に対して変位する。また、各第2リンク82は、中間部材4とロータ3bとの間の距離が大きくなるほど、第2おもり81が中間部材4の径方向内側へ移動する方向へ中間部材4に対して変位する。これにより、各第2制振機構8では、ロータ3bに対する中間部材4の移動に応じて、ロータ3bに対する中間部材4の移動方向とは逆方向へ各第2リンク82が第2おもり81を中間部材4に対して移動させる。
 ここで、第2仮想直線に沿った方向へ中間部材4がロータ3bに対して移動すると、第2中間部材側回転軸83と各回転部側回転軸85との間の距離が変化する。従って、第2中間部材側回転軸83と各回転部側回転軸85との間の距離の変化に対応するために、本実施の形態では、第2中間部材側回転軸83及び回転部側回転軸85の少なくともいずれかが通された長穴が各第2リンク82に設けられている。長穴は、第2リンク82の長手方向に沿って各第2リンク82に設けられている。これにより、第2中間部材側回転軸83と各回転部側回転軸85との間の距離が変化しても、中間部材4に対する各第2リンク82の変位が可能になっている。
 次に、車輪装置1の動作について説明する。図12は、図1の車輪装置1をモデル化した車輪装置モデルを示す模式図である。中間部材4は、一対の第2弾性板61の弾性変形により、第2仮想直線に沿った方向、即ちZ軸方向へ電動機3に対して移動可能になっている。電動機3に対するZ軸方向以外の方向への中間部材4の移動は、一対の第2弾性板61の面内剛性により制限されている。
 中間部材4は、一対の第1弾性板51の弾性変形により、第1仮想直線に沿った方向、即ちX軸方向へタイヤ2に対して移動可能になっている。タイヤ2に対するX軸方向以外の方向への中間部材4の移動は、一対の第1弾性板51の面内剛性により制限されている。
 これにより、車輪装置1では、中間部材4が電動機3及びタイヤ2に対してXZ平面内を自由に移動可能な並進2自由度の振動系が構成されている。
 各第1弾性板51及び各第2弾性板61のそれぞれの剛性は、タイヤ2の周方向で面内剛性となる。従って、タイヤ2の周方向では、各第1弾性板51及び各第2弾性板61のそれぞれの弾性変形が制限されている。これにより、タイヤ2の周方向では、タイヤ2に対する中間部材4の連結状態と、電動機3に対する中間部材4の連結状態とが剛結合の状態とみなすことができる。
 図13は、図1の車輪装置1がレール上を移動する状態を示す正面図である。また、図14は、図13の車輪装置1をモデル化した車輪装置モデルを示す模式図である。車輪装置1がレール10に載せられている状態では、タイヤ2の外周面がレール10に接触している。車輪装置1は、タイヤ2が回転することによりレール10上を移動する。
 ステータ3aへの給電により電動機3のロータ3bが回転すると、電動機3のトルクは、ロータ3bから一対の第2弾性板61を介して中間部材4に伝わる。このとき、ロータ3bから各第2弾性板61に伝わるトルクの方向が各第2弾性板61の面内剛性の方向と一致する。これにより、各第2弾性板61の弾性変形が制限され、ロータ3bのトルクが中間部材4へ効果的に伝わる。
 中間部材4に伝わったトルクは、一対の第1弾性板51を介してタイヤ2に伝わる。このとき、中間部材4から各第1弾性板51に伝わるトルクの方向が各第1弾性板51の面内剛性の方向と一致する。これにより、各第1弾性板51の弾性変形が制限され、中間部材4に伝わったトルクがタイヤ2へ効果的に伝わる。これにより、タイヤ2が回転する。
 レール10は、複数の単位レール10aが連続して繋がって構成されている。互いに隣り合う2つの単位レール10aの間の継ぎ目には、段差が生じていることがある。この場合、2つの単位レール10aの間の継ぎ目を車輪装置1が通過するときに、タイヤ2がレール10から衝撃力を受ける。
 図13及び図14に示すように、第2仮想直線に沿った方向、即ちZ軸方向と一致する方向へタイヤ2が衝撃力を受けた場合、各第2弾性板61の弾性変形により、中間部材4が電動機3に対して第2仮想直線に沿った方向へのみ移動する。これにより、タイヤ2が受けた衝撃力は、一対の第2弾性板61に吸収されて電動機3に伝わりにくくなる。
 また、図15は、図13のタイヤ2とは異なる回転位置にあるときのタイヤ2がレール10から衝撃力を受けたときの車輪装置1の状態を示す正面図である。さらに、図16は、図15の車輪装置1をモデル化した車輪装置モデルを示す模式図である。図15及び図16に示すように、第1仮想直線に沿った方向及び第2仮想直線に沿った方向のいずれにも一致しない方向へタイヤ2がレール10から衝撃力を受けた場合には、各第1弾性板51の弾性変形により中間部材4がタイヤ2に対して第1仮想直線に沿った方向へ移動し、各第2弾性板61の弾性変形により中間部材4が電動機3に対して第2仮想直線に沿った方向へ移動する。これにより、タイヤ2が受けた衝撃力は、各第1弾性板51及び各第2弾性板61のそれぞれに吸収されて電動機3に伝わりにくくなる。
 図17は、図12の車輪装置1がレール10上を回転しながら移動するときの車輪装置1の状態の変化を示す模式的な説明図である。なお、図17では、第1仮想直線に沿った方向を第1方向ξとし、第2仮想直線に沿った方向を第2方向ηとしている。車輪装置1がレール10上を移動するときには、中間部材4がタイヤ2及び電動機3に対して振れ回る現象、即ち中間部材4の振れ回りが生じる。図17には、第2方向ηがZ軸方向と一致している状態から、第2方向ηがX軸方向と一致している状態までの車輪装置1の状態の変化が示されている。
 図17では、車輪装置1が90°回転する間に、中間部材4がタイヤ2及び電動機3に対して180°振れ回る。即ち、中間部材4は、車輪装置1の回転周波数の2倍の周波数で振れ回る。中間部材4の振れ回りが生じると、中間部材4の遠心力が生じるため、車輪装置1の全体が振動しようとする。車輪装置1では、各第1制振機構7及び各第2制振機構8のそれぞれが動作することにより、車輪装置1の全体の振動が抑制される。
 図18は、図8の一対の第1制振機構7を模式的に示す斜視図である。中間部材4がタイヤ2に対して第1仮想直線に沿って移動すると、各第1制振機構7のそれぞれにおいて、タイヤ2に対する中間部材4の移動方向とは逆方向へ第1おもり71が中間部材4に対して移動する。
 図17に示すように、車輪装置1の第2方向ηがX軸方向と一致している状態では、各第1弾性板51が弾性変形している。このとき、中間部材4は、タイヤ2に対してZ軸方向のマイナス側へ移動している。このとき、中間部材4には、固定座標系のZ軸方向のマイナス側へ遠心力が作用する。
 従って、図17の車輪装置1の第2方向ηがX軸方向と一致している状態では、中間部材4に作用するZ軸方向のマイナス側への遠心力を打ち消す方向、即ちZ軸方向のプラス側へ各第1おもり71が中間部材4に対して移動する。中間部材4に対する第1おもり71の移動によって第1おもり71に作用する慣性力の方向は、第1仮想直線に沿った方向となっている。これにより、各第1おもり71の慣性力は、中間部材4の振れ回りによる加振力を打ち消す方向へ作用する。
 図19は、図10の一対の第2制振機構8を模式的に示す斜視図である。中間部材4が電動機3に対して第2仮想直線に沿って移動すると、各第2制振機構8のそれぞれにおいて、電動機3に対する中間部材4の移動方向とは逆方向へ第2おもり81が中間部材4に対して移動する。
 図17に示すように、車輪装置1の第2方向ηがZ軸方向と一致している状態では、各第2弾性板61が弾性変形している。このとき、中間部材4は、電動機3に対してZ軸方向のプラス側へ移動している。これにより、このとき、中間部材4には、固定座標系のZ軸方向のプラス側へ遠心力が作用する。
 従って、図17の車輪装置1の第2方向ηがZ軸方向と一致している状態では、中間部材4に作用するZ軸方向のプラス側への遠心力を打ち消す方向、即ちZ軸方向のマイナス側へ各第2おもり81が中間部材4に対して移動する。中間部材4に対する第2おもり81の移動によって第2おもり81に作用する慣性力の方向は、第2仮想直線に沿った方向となっている。これにより、各第2おもり81の慣性力は、中間部材4の振れ回りによる加振力を打ち消す方向へ作用する。
 次に、第1おもり71及び第2おもり81のそれぞれの質量について説明する。図20は、図8の第1制振機構7を模式的に示す拡大図である。各第1制振機構7において、第1中間部材側回転軸73とタイヤ側回転軸75との間の距離をL1とし、タイヤ側回転軸75と第1おもり71との間の距離をL2とする。各第2制振機構8においても、第2中間部材側回転軸83と回転部側回転軸85との間の距離をL1とし、回転部側回転軸85と第2おもり81との間の距離をL2とする。また、各第1制振機構7及び各第2制振機構8のそれぞれにおいて、距離L1に対する距離L2の比をリンク比rとする。
 さらに、中間部材4の質量をM、車輪装置1の回転速度をω、第1おもり71及び第2おもり81のそれぞれの1つ当たりの質量をmとする。また、第1おもり71及び第2おもり81のそれぞれの数を合計した総数をnとする。さらに、図17に示すように、中間部材4の振れ回りによる変位のうち、Z軸方向である鉛直方向における変位をDとする。
 この場合、第1おもり71、第2おもり81及び中間部材4を含む振動系の振れ回りによって中間部材4に作用する遠心力は、以下の式(1)によって表される。
 (M+n・m)・D・ω2 …(1)
 一方、第1おもり71は、第1仮想直線に沿った第1方向ξへ並進運動を行う。また、第2おもり81は、第2仮想直線に沿った第2方向ηへ並進運動を行う。このため、第1おもり71には、中間部材4に対する第1おもり71の移動によって慣性力が作用する。また、第2おもり81には、中間部材4に対する第2おもり81の移動によって慣性力が作用する。第1おもり71の慣性力と、第2おもり81の慣性力との合力は、中間部材4の振れ回りの変位の2回時間微分によって求めた加速度に、第1おもり71及び第2おもり81のそれぞれの質量を合計した総質量を乗じることによって求められる。即ち、第1おもり71及び第2おもり81のそれぞれの慣性力の合力は、以下の式(2)によって求められる。
 n・m・(d2(D・r)/dt2)=n・m・D・r・(2ω)2 …(2)
 なお、車輪装置1が1回転すると、第1おもり71及び第2おもり81のそれぞれが2回振動するため、上記の式(2)において角速度は2ωとなる。
 中間部材4の振れ回りによる振動が最も抑制される条件は、第1仮想直線に沿った第1方向ξ及び第2仮想直線に沿った第2方向ηのそれぞれの方向において、式(1)及び式(2)が釣り合う条件となる。従って、中間部材4の振れ回りによる振動が最も抑制される条件は、以下の式(3)によって表される。
 (M+n・m)=4・r・n・m …(3)
 従って、第1制振機構7及び第2制振機構8のそれぞれにおけるリンク比rが1である場合、第1おもり71及び第2おもり81のそれぞれの質量を合計した総質量(n・m)がM/3と一致するときに、中間部材4の振れ回りによる振動が最も抑制される。
 また、中間部材4に対する第1おもり71の移動によって第1おもり71に作用する慣性力と、中間部材4に対する第2おもり81の移動によって第2おもり81に作用する慣性力との合力の方向は、電動機3の軸線、即ち車軸に直交する直線に沿った方向と一致している。
 次に、車輪装置1の回転数R[Hz]を0[Hz]から20[Hz]まで線形的に変化させたときの電動機3のZ軸方向の変位D1を数値解析によって求めた。数値解析では、第1制振機構7及び第2制振機構8を含まない比較例A1の車輪装置と、M=60[kg]、n=4[個]、r=1及びm=4[kg]とした実施例B1の車輪装置と、M=60[kg]、n=4[個]、r=1及びm=5[kg]とした実施例C1の車輪装置とを解析対象とした。従って、上記の式(3)を満たさない実施例を実施例B1とし、上記の式(3)を満たす実施例を実施例C1とした。なお、車輪装置1では、中間部材4の振れ回りによる車輪装置1の振動が小さくなるほど、電動機3のZ軸方向の変位D1が小さくなる。
 図21は、数値解析における比較例A1、実施例B1及び実施例C1のそれぞれの車輪装置の回転数R[Hz]と時間t[sec]との関係を示すグラフである。また、図22は、数値解析における比較例A1の電動機3のZ軸方向の変位D1[mm]と時間t[sec]との関係を示すグラフである。さらに、図23は、数値解析における実施例B1の電動機3のZ軸方向の変位D1[mm]と時間t[sec]との関係を示すグラフである。また、図24は、数値解析における実施例C1の電動機3のZ軸方向の変位D1[mm]と時間t[sec]との関係を示すグラフである。図21~図24に示すように、比較例A1では、3.5[sec]付近で電動機3の振動が増大するのに対して、実施例B1及び実施例C1では、比較例A1よりも電動機3の振動が低減されていることが分かる。また、上記の式(3)を満たさない実施例B1よりも、上記の式(3)を満たす実施例C1において、電動機3の振動が低減されていることが分かる。
 このような車輪装置1では、タイヤ2の軸線Pに直交する第1仮想直線に各第1弾性板51が直交して配置されている。また、第1仮想直線とは異なる第2仮想直線に各第2弾性板61が直交して配置されている。このため、タイヤ2の周方向における各第1弾性板51及び各第2弾性板61のそれぞれの剛性を高めることができる。これにより、タイヤ2の回転方向における各第1弾性板51及び各第2弾性板61のそれぞれの弾性変形を制限することができ、電動機3に対するタイヤ2の不要な振動がタイヤ2の回転方向で生じることを防止することができる。従って、電動機3からタイヤ2にトルクをより確実に伝えることができる。また、タイヤ2が外部から衝撃力を受けると、第1弾性板51及び第2弾性板61の少なくともいずれか一方が弾性変形しながら、電動機3をタイヤ2に対して移動させることができる。これにより、タイヤ2が受けた衝撃力を第1弾性板51及び第2弾性板61の少なくともいずれか一方に吸収させることができる。従って、タイヤ2から電動機3に伝わる衝撃力を抑制することができる。
 また、各第2弾性板61と直交する第2仮想直線は、各第1弾性板51と直交する第1仮想直線に直交している。このため、各第1弾性板51及び各第2弾性板61をタイヤ2の周方向で均等に配置することができる。これにより、タイヤ2が受ける衝撃力の抑制力の均等化をタイヤ2の周方向で図ることができる。
 また、中間部材4の軸線は、一対の第1弾性板51の間に位置し、かつ一対の第2弾性板61の間に位置している。このため、中間部材4がタイヤ2に連結された状態と、電動機3が中間部材4に連結された状態とを安定させることができる。これにより、車輪装置1の故障の発生をより確実に抑制することができ、車輪装置1の信頼性の向上を図ることができる。
 また、第1弾性板51の長手方向両端部511はタイヤ2に固定され、第1弾性板51の長手方向中間部512は中間部材4に固定されている。このため、第1弾性板51の厚さ方向への弾性変形を可能にしながら、タイヤ2及び中間部材4のそれぞれに対する第1弾性板51の固定状態をより確実にすることができる。
 また、第2弾性板61の長手方向両端部611は中間部材4に固定され、第2弾性板61の長手方向中間部612は電動機3のロータ3bに固定されている。このため、第2弾性板61の厚さ方向への弾性変形を可能にしながら、中間部材4及びロータ3bのそれぞれに対する第2弾性板61の固定状態をより確実にすることができる。
 また、タイヤ2の内周面21のうち、第1弾性板51の長手方向両端部511が一対の固定用端部として固定されている位置には、第1弾性板51の長手方向両端部511がそれぞれ嵌る一対の段部211が形成されている。このため、タイヤ2に対して第1弾性板51をさらに確実に固定することができ、タイヤ2に対する第1弾性板51の位置ずれをさらに確実に防止することができる。
 また、中間部材4の内周面41のうち、第2弾性板61の長手方向両端部611が一対の固定用端部として固定されている位置には、第2弾性板61の長手方向両端部611がそれぞれ嵌る一対の段部411が形成されている。このため、中間部材4に対して第2弾性板61をさらに確実に固定することができ、中間部材4に対する第2弾性板61の位置ずれをさらに確実に防止することができる。
 また、各第1制振機構7は、第1おもり71と、タイヤ2に対する中間部材4の移動に応じて、タイヤ2に対する中間部材4の移動方向とは逆方向へ第1おもり71を中間部材4に対して移動させる第1リンク72とを有している。さらに、各第2制振機構8は、第2おもり81と、ロータ3bに対する中間部材4の移動に応じて、ロータ3bに対する中間部材4の移動方向とは逆方向へ第2おもり81を中間部材4に対して移動させる第2リンク82とを有している。このため、タイヤ2及び電動機3に対する中間部材4の移動によって生じる加振力の少なくとも一部を、第1おもり71及び第2おもり81のそれぞれの慣性力によって打ち消すことができる。これにより、中間部材4の振れ回りによる車輪装置1の全体の振動を抑制することができる。
 また、第1おもり71が取り付けられた第1リンク72は、第1中間部材側回転軸73を介して中間部材4に取り付けられ、かつタイヤ側回転軸75を介してタイヤ2に取り付けられている。このため、タイヤ2に対する中間部材4の移動方向とは逆方向へ第1おもり71を中間部材4に対して移動させる構造を簡単にすることができる。さらに、第2おもり81が取り付けられた第2リンク82は、第2中間部材側回転軸83を介して中間部材4に取り付けられ、かつ回転部側回転軸85を介してロータ3bに取り付けられている。このため、ロータ3bに対する中間部材4の移動方向とは逆方向へ第2おもり81を中間部材4に対して移動させる構造を簡単にすることができる。
 また、複数の第1制振機構7は、第1仮想直線に沿った方向において、中間部材4の軸線に対して互いに反対側となる2つの第1対向位置に配置されている。さらに、複数の第2制振機構8は、第2仮想直線に沿った方向において、中間部材4の軸線に対して互いに反対側となる2つの第2対向位置に配置されている。このため、第1仮想直線に沿った方向において中間部材4の振れ回りによる加振力を打ち消す第1制振機構7を複数の位置に配置することができる。また、第2仮想直線に沿った方向において中間部材4の振れ回りによる加振力を打ち消す第2制振機構8も複数の位置に配置することができる。これにより、中間部材4の振れ回りによる加振力を効果的に打ち消すことができ、車輪装置1の全体の振動を効果的に抑制することができる。
 また、中間部材4とタイヤ2との間の空間には、中間部材4の軸線方向へ並ぶ一対の第1制振機構7が第1機構体70として設けられている。さらに、中間部材4とロータ3bとの間の空間には、中間部材4の軸線方向へ並ぶ一対の第2制振機構8が第2機構体80として設けられている。このため、第1おもり71及び第2おもり81のそれぞれを中間部材4の軸線方向両側に配置することができる。これにより、中間部材4の振れ回りによる加振力を打ち消す慣性力が中間部材4の軸線方向両側において偏ることを抑制することができる。
 また、第1制振機構7及び第2制振機構8のそれぞれにおけるリンク比rが1であるとともに、第1おもり71及び第2おもり81のそれぞれの質量を合計した総質量が中間部材4の質量の3分の1と一致している。このため、中間部材4の振れ回りによって中間部材4に作用する遠心力の大きさと、第1おもり71及び第2おもり81のそれぞれの慣性力の合力の大きさとの差を小さくすることができる。これにより、車輪装置1の全体の振動をさらに効果的に抑制することができる。
 また、中間部材4に対する第1おもり71の移動によって第1おもり71に作用する慣性力と、中間部材4に対する第2おもり81の移動によって第2おもり81に作用する慣性力との合力の方向は、電動機3の軸線に直交する直線に沿った方向と一致している。このため、中間部材4に作用する遠心力を第1おもり71及び第2おもり81のそれぞれの慣性力の合力によってさらに効果的に打ち消すことができる。これにより、車輪装置1の全体の振動をさらに効果的に抑制することができる。
 また、中間部材4が囲む本体として電動機3が用いられている。このため、車輪装置1を回転させる駆動源を中間部材4の内側に配置することができる。これにより、車輪装置1の小型化を図ることができる。
 なお、上記の例では、トルクを発生する電動機3が車輪本体としてタイヤ2の内側に配置されている。しかし、図25に示すように、トルクを発生する機能を持たないハブ3cを本体の回転部としてタイヤ2の内側に配置してもよい。この場合、ハブ3cは、トルクを発生する電動機に連結される。ハブ3cは、電動機から受けるトルクによって電動機の軸線を中心に回転する回転部となる。このようにしても、タイヤ2からハブ3c及び電動機のそれぞれに伝わる衝撃力を抑制することができる。また、中間部材4の振れ回りを抑制することができ、車輪装置1の全体の振動を抑制することができる。
 実施の形態2.
 図26は、実施の形態2による車輪装置をXY平面によって切断したときの状態を示す断面図である。また、図27は、図26の車輪装置をYZ平面によって切断したときの状態を示す断面図である。なお、図26は、実施の形態1における図2に対応する図である。また、図27は、実施の形態1における図3に対応する図である。各第1対向位置には、図26に示すように、第1制振機構7が1つずつ設けられている。また、第1制振機構7は、中間部材4の軸線方向の一方側にのみ設けられている。この例では、中間部材4に対してY軸方向のマイナス側にのみ第1制振機構7が設けられている。
 各第2対向位置には、図27に示すように、第2制振機構8が1つずつ設けられている。また、第2制振機構8は、中間部材4の軸線方向の一方側にのみ設けられている。この例では、中間部材4に対してY軸方向のマイナス側にのみ第2制振機構8が設けられている。
 即ち、中間部材4に対する第1制振機構7の位置と、中間部材4に対する第2制振機構8の位置とは、中間部材4の軸線方向において互いに同じ側となっている。実施の形態2における他の構成は、実施の形態1と同様である。
 このようにしても、タイヤ2から電動機3に伝わる衝撃力を抑制することができる。また、中間部材4の振れ回りを抑制することができ、車輪装置1の全体の振動を抑制することができる。さらに、中間部材4の軸線方向の他方側では、第1おもり71及び第2おもり81が配置されないようにすることができる。これにより、中間部材4の軸線方向の他方側に他の機器を配置することができ、車輪装置1の周囲のスペースを有効に活用することができる。
 なお、上記の例では、各第1制振機構7及び各第2制振機構8のそれぞれが中間部材4に対してY軸方向のマイナス側にのみ設けられている。しかし、図28及び図29に示すように、各第1制振機構7及び各第2制振機構8のそれぞれを中間部材4に対してY軸方向のプラス側にのみ設けてもよい。
 実施の形態3.
 図30は、実施の形態3による車輪装置をXY平面によって切断したときの状態を示す断面図である。また、図31は、図30の車輪装置をYZ平面によって切断したときの状態を示す断面図である。なお、図30は、実施の形態1における図2に対応する図である。また、図31は、実施の形態1における図3に対応する図である。各第1対向位置には、図30に示すように、第1制振機構7が1つずつ設けられている。また、第1制振機構7は、中間部材4の軸線方向の他方側にのみ設けられている。この例では、中間部材4に対してY軸方向のプラス側にのみ第1制振機構7が設けられている。
 各第2対向位置には、図31に示すように、第2制振機構8が1つずつ設けられている。また、第2制振機構8は、中間部材4の軸線方向の一方側にのみ設けられている。この例では、中間部材4に対してY軸方向のマイナス側にのみ第2制振機構8が設けられている。
 即ち、中間部材4に対する第1制振機構7の位置と、中間部材4に対する第2制振機構8の位置とは、中間部材4の軸線方向において互いに反対側となっている。実施の形態3における他の構成は、実施の形態1と同様である。
 このようにしても、タイヤ2から電動機3に伝わる衝撃力を抑制することができる。また、中間部材4の振れ回りを抑制することができ、車輪装置1の全体の振動を抑制することができる。
 なお、上記の例では、各第1制振機構7が中間部材4に対してY軸方向のプラス側にのみ設けられ、各第2制振機構8が中間部材4に対してY軸方向のマイナス側にのみ設けられている。しかし、図32及び図33に示すように、各第1制振機構7を中間部材4に対してY軸方向のマイナス側にのみ設け、各第2制振機構8を中間部材4に対してY軸方向のプラス側にのみ設けてもよい。
 実施の形態4.
 図34は、実施の形態4による車輪装置を示す斜視図である。また、図35は、図34の車輪装置をXY平面によって切断したときの状態を示す断面図である。さらに、図36は、図34の車輪装置をYZ平面によって切断したときの状態を示す断面図である。なお、図35は、実施の形態1における図2に対応する図である。また、図36は、実施の形態1における図3に対応する図である。
 各第1対向位置に設けられた第1制振機構7のそれぞれの第1おもり71は、互いに繋がって第1一体おもり711を構成している。これにより、一方の第1対向位置に設けられた第1制振機構7の第1リンク72と、他方の第1対向位置に設けられた第1制振機構7の第1リンク72とは、第1一体おもり711を介して互いに連結されている。第1一体おもり711の長手方向は、第1仮想直線に沿った方向と一致している。この例では、中間部材4の軸線方向の一方側にのみ第1一体おもり711が配置されている。即ち、この例では、中間部材4に対してY軸方向のマイナス側にのみ第1一体おもり711が配置されている。
 各第2対向位置に設けられた第2制振機構8のそれぞれの第2おもり81は、互いに繋がって第2一体おもり811を構成している。これにより、一方の第2対向位置に設けられた第2制振機構8の第2リンク82と、他方の第2対向位置に設けられた第2制振機構8の第2リンク82とは、第2一体おもり811を介して互いに連結されている。第2一体おもり811の長手方向は、第2仮想直線に沿った方向と一致している。この例では、中間部材4の軸線方向の一方側にのみ第2一体おもり811が配置されている。即ち、この例では、中間部材4に対してY軸方向のマイナス側にのみ第2一体おもり811が配置されている。
 また、この例では、中間部材4の軸線方向外側において、第2一体おもり811が第1一体おもり711よりも中間部材4に近い位置に配置されている。これにより、第1一体おもり711と第2一体おもり811とが互いに干渉することが防止される。なお、中間部材4の軸線方向外側において、第1一体おもり711が第2一体おもり811よりも中間部材4に近い位置に配置されていてもよい。
 第1一体おもり711及び第2一体おもり811は、互いに離れている。なお、第1一体おもり711と第2一体おもり811とが互いに接触していてもよい。第1一体おもり711と第2一体おもり811とを互いに接触させた場合、各第1弾性板51及び各第2弾性板61のそれぞれに起因する振動現象に対する減衰効果を、第1一体おもり711と第2一体おもり811との接触により得ることができる。
 図37は、図35の第1制振機構7を示す拡大断面図である。第1一体おもり711は、第1中間部材側回転軸73と平行な第1連結回転軸77を介して各第1制振機構7のそれぞれの第1リンク72に取り付けられている。これにより、第1一体おもり711は、第1リンク72に対して第1連結回転軸77を中心に回転可能になっている。
 図38は、図36の第2制振機構8を示す拡大断面図である。第2一体おもり811は、第2中間部材側回転軸83と平行な第2連結回転軸87を介して各第2制振機構8のそれぞれの第2リンク82に取り付けられている。これにより、第2一体おもり811は、第2リンク82に対して第2連結回転軸87を中心に回転可能になっている。
 図39は、図35の各第1リンク72が第1中間部材側回転軸73及びタイヤ側回転軸75のそれぞれに対して回転したときの第1一体おもり711の状態を示す模式的な側面図である。各第1リンク72が第1中間部材側回転軸73及びタイヤ側回転軸75のそれぞれに対して回転すると、第1リンク72は中間部材4の軸線に対して傾く。このとき、第1一体おもり711は、第1連結回転軸77を中心に第1リンク72に対して回転する。これにより、第1一体おもり711が中間部材4の軸線に直交した状態が保たれる。即ち、各第1リンク72が中間部材4の軸線に対して傾いても、第1一体おもり711が車輪装置1の側面に平行な状態が維持される。
 また、第2一体おもり811の動作も、第1一体おもり711と同様の動作となる。即ち、各第2リンク82が中間部材4の軸線に対して傾いても、第2一体おもり811が車輪装置1の側面に平行な状態が維持される。実施の形態4における他の構成は、実施の形態1と同様である。
 このような車輪装置1では、各第1対向位置に設けられた第1制振機構7のそれぞれの第1おもり71が互いに繋がって第1一体おもり711を構成している。また、各第2対向位置に設けられた第2制振機構8のそれぞれの第2おもり81が互いに繋がって第2一体おもり811を構成している。このため、車輪装置1が回転しているときに各第1おもり71に互いに逆方向へ作用する遠心力を打ち消すことができる。また、各第2おもり81に互いに逆方向へ作用する遠心力を打ち消すこともできる。これにより、車輪装置1の全体の振動抑制効果をより安定して得ることができる。
 また、第1一体おもり711は、第1連結回転軸77を介して第1リンク72に取り付けられている。さらに、第2一体おもり811は、第2連結回転軸87を介して第2リンク82に取り付けられている。このため、第1リンク72が中間部材4の軸線に対して傾いても、中間部材4の軸線に対して第1一体おもり711及び第2一体おもり811のそれぞれが直交した状態を維持することができる。これにより、第1一体おもり711と第1リンク72との間、及び第2一体おもり811と第2リンク82との間に意図しない応力が生じることを抑制することができる。また、中間部材4の軸線方向における第1一体おもり711及び第2一体おもり811のそれぞれの移動範囲を制限することができる。従って、車輪装置1の周囲のスペースを有効に活用することができる。
 なお、上記の例では、中間部材4に対してY軸方向のマイナス側にのみ第1一体おもり711が配置されている。しかし、中間部材4に対してY軸方向のプラス側にのみ第1一体おもり711を配置してもよい。
 また、上記の例では、中間部材4に対してY軸方向のマイナス側にのみ第2一体おもり811が配置されている。しかし、中間部材4に対してY軸方向のプラス側にのみ第2一体おもり811を配置してもよい。
 また、上記の例では、中間部材4の軸線方向の一方側にのみ第1一体おもり711が配置されている。しかし、中間部材4の軸線方向の両側のそれぞれに第1一体おもり711を配置してもよい。
 また、上記の例では、中間部材4の軸線方向の一方側にのみ第2一体おもり811が配置されている。しかし、中間部材4の軸線方向の両側のそれぞれに第2一体おもり811を配置してもよい。
 実施の形態5.
 図40は、実施の形態5による車輪装置の第1制振機構7をタイヤ2の径方向外側から見たときの状態を示す正面図である。一対の第1制振機構7のうち、一方の第1制振機構7における第1リンク72の数は2つであり、他方の第1制振機構7における第1リンク72の数は3つである。
 図示しないが、一対の第2制振機構8における第2リンク82の数も、一対の第1制振機構7と同様である。即ち、一対の第2制振機構8のうち、一方の第2制振機構8における第2リンク82の数は2つであり、他方の第2制振機構8における第2リンク82の数は3つである。実施の形態5における他の構成は、実施の形態1と同様である。
 このように、3つの第1リンク72を含む第1制振機構7が存在していても、実施の形態1と同様の効果を得ることができる。
 なお、上記の例では、他方の第1制振機構7における第1リンク72の数が3つとなっているが、図41に示すように、他方の第1制振機構7における第1リンク72の数を1つとしてもよい。また、他方の第2制振機構8における第2リンク82の数を1つとしてもよい。このようにしても、実施の形態1と同様の効果を得ることができる。
 従って、1つの第1制振機構7における第1リンク72の数が1以上であれば、第1リンク72の数は限定されない。また、1つの第2制振機構8における第2リンク82の数が1以上であれば、第2リンク82の数は限定されない。
 実施の形態6.
 図42は、実施の形態6による車輪装置の第1制振機構7をタイヤ2の径方向外側から見たときの状態を示す正面図である。一対の第1制振機構7のそれぞれには、各第1リンク72に個別に取り付けられた複数の第1おもり71が含まれている。この例では、一対の第1制振機構7のそれぞれに第1おもり71が2つずつ含まれている。
 図示しないが、一対の第2制振機構8のそれぞれには、各第2リンク82に個別に取り付けられた複数の第2おもり81が含まれている。この例では、一対の第2制振機構8のそれぞれに第2おもり81が2つずつ含まれている。実施の形態6における他の構成は、実施の形態1と同様である。
 このように、1つの第1制振機構7に複数の第1おもり71が含まれるようにしても、実施の形態1と同様の効果を得ることができる。また、1つの第2制振機構8に複数の第2おもり81が含まれるようにしても、実施の形態1と同様の効果を得ることができる。
 なお、上記の例では、各第1制振機構7に複数の第1おもり71が含まれている。しかし、各第1制振機構7の少なくともいずれかに複数の第1おもり71が含まれていればよい。
 また、上記の例では、各第2制振機構8に複数の第2おもり81が含まれている。しかし、各第2制振機構8の少なくともいずれかに複数の第2おもり81が含まれていればよい。
 また、1つの第1制振機構7に含まれる第1おもり71の数は、3つ以上であってもよい。さらに、1つの第2制振機構8に含まれる第2おもり81の数は、3つ以上であってもよい。
 また、実施の形態4では、第1一体おもり711及び第2一体おもり811が実施の形態1に適用されている。しかし、第1一体おもり711及び第2一体おもり811を実施の形態2、3、5及び6に適用してもよい。さらに、
 また、実施の形態6では、複数の第1おもり71が1つの第1制振機構7に含まれている構成が実施の形態1に適用されている。しかし、複数の第1おもり71が1つの第1制振機構7に含まれている構成を実施の形態2~5に適用してもよい。
 また、各上記実施の形態では、第2仮想直線が第1仮想直線に直交している。しかし、第2仮想直線は、中間部材4の軸線に直交しかつ第1仮想直線とは異なる直線であれば、第1仮想直線と直交してなくてもよい。
 また、各上記実施の形態では、タイヤ2が鉄などの金属で構成されている。しかし、ゴムなどの弾性材料でタイヤ2を構成してもよい。
 また、各上記実施の形態では、車輪装置1が鉄道車両に適用されている。しかし、自動車、自動二輪車、エレベータなど、さまざまな車両又は移動装置に車輪装置1を適用することができる。
 1 車輪装置、2 タイヤ、3 電動機(本体)、3b ロータ(回転部)、3c ハブ(回転部)、4 中間部材、7 第1制振機構、8 第2制振機構、51 第1弾性板(第1弾性体)、61 第2弾性板(第2弾性体)、70 第1機構体、71 第1おもり、72 第1リンク(第1連動部)、73 第1中間部材側回転軸、75 タイヤ側回転軸、77 第1連結回転軸、711 第1一体おもり、80 第2機構体、81 第2おもり、82 第2リンク(第2連動部)、83 第2中間部材側回転軸、85 回転部側回転軸、87 第2連結回転軸、811 第2一体おもり。

Claims (8)

  1.  回転可能な回転部を有する本体、
     前記回転部を囲む環状の中間部材、
     前記中間部材を囲む環状のタイヤ、
     前記中間部材の軸線に直交する第1仮想直線に沿って前記中間部材が前記タイヤに対して移動可能になるように前記中間部材と前記タイヤとを互いに連結する第1弾性体、
     前記中間部材の軸線に直交しかつ前記第1仮想直線に交差する第2仮想直線に沿って前記中間部材が前記回転部に対して移動可能になるように前記中間部材と前記回転部とを互いに連結する第2弾性体、
     第1おもりと、前記タイヤに対する前記中間部材の移動に応じて、前記タイヤに対する前記中間部材の移動方向とは逆方向へ前記第1おもりを前記中間部材に対して移動させる第1連動部とを有する第1制振機構、及び
     第2おもりと、前記回転部に対する前記中間部材の移動に応じて、前記回転部に対する前記中間部材の移動方向とは逆方向へ前記第2おもりを前記中間部材に対して移動させる第2連動部とを有する第2制振機構
     を備えている車輪装置。
  2.  前記第1連動部は、前記中間部材と前記タイヤとの間の空間に配置された第1リンクを有しており、
     前記第2連動部は、前記中間部材と前記回転部との間の空間に配置された第2リンクを有しており、
     前記第1リンクは、第1中間部材側回転軸を介して前記中間部材に取り付けられており、かつ前記第1中間部材側回転軸と平行なタイヤ側回転軸を介して前記タイヤに取り付けられており、
     前記第2リンクは、第2中間部材側回転軸を介して前記中間部材に取り付けられており、かつ前記第2中間部材側回転軸と平行な回転部側回転軸を介して前記回転部に取り付けられており、
     前記第1おもりは、前記中間部材の軸線方向外側において前記第1リンクに取り付けられており、
     前記第2おもりは、前記中間部材の軸線方向外側において前記第2リンクに取り付けられており、
     前記タイヤ側回転軸は、前記第1中間部材側回転軸よりも前記第1おもりに近い位置に配置されており、
     前記回転部側回転軸は、前記第2中間部材側回転軸よりも前記第2おもりに近い位置に配置されている請求項1に記載の車輪装置。
  3.  前記第1リンクにおける前記第1中間部材側回転軸と前記タイヤ側回転軸との間の距離は、前記第1リンクにおける前記タイヤ側回転軸と前記第1おもりとの間の距離と同じであり、
     前記第2リンクにおける前記第2中間部材側回転軸と前記回転部側回転軸との間の距離は、前記第2リンクにおける前記回転部側回転軸と前記第2おもりとの間の距離と同じであり、
     前記第1おもり及び前記第2おもりのそれぞれの質量を合計した総質量は、前記中間部材の質量の3分の1と一致している請求項2に記載の車輪装置。
  4.  前記第1制振機構は、前記第1仮想直線に沿った方向において前記中間部材の軸線に対して互いに反対側となる2つの第1対向位置にそれぞれ設けられており、
     前記第2制振機構は、前記第2仮想直線に沿った方向において前記中間部材の軸線に対して互いに反対側となる2つの第2対向位置にそれぞれ設けられている請求項1から請求項3のいずれか一項に記載の車輪装置。
  5.  各前記第1対向位置に設けられた前記第1制振機構のそれぞれの前記第1おもりは、互いに繋がって第1一体おもりを構成しており、
     前記第1制振機構では、第1連結回転軸を介して前記第1一体おもりが前記第1連動部に取り付けられており、
     各前記第2対向位置に設けられた前記第2制振機構のそれぞれの前記第2おもりは、互いに繋がって第2一体おもりを構成しており、
     前記第2制振機構では、第2連結回転軸を介して前記第2一体おもりが前記第2連動部に取り付けられている請求項4に記載の車輪装置。
  6.  前記中間部材と前記タイヤとの間の空間には、前記中間部材の軸線方向へ並ぶ一対の前記第1制振機構を含む第1機構体が設けられており、
     前記中間部材と前記回転部との間の空間には、前記中間部材の軸線方向へ並ぶ一対の前記第2制振機構を含む第2機構体が設けられている請求項1から請求項5のいずれか一項に記載の車輪装置。
  7.  前記中間部材に対する前記第1おもりの移動によって前記第1おもりに作用する慣性力と、前記中間部材に対する前記第2おもりの移動によって前記第2おもりに作用する慣性力との合力の方向は、前記本体の軸線に直交する直線に沿った方向と一致している請求項1から請求項6のいずれか一項に記載の車輪装置。
  8.  前記本体は、電動機である請求項1から請求項7のいずれか一項に記載の車輪装置。
PCT/JP2020/018483 2020-05-07 2020-05-07 車輪装置 WO2021224953A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/018483 WO2021224953A1 (ja) 2020-05-07 2020-05-07 車輪装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/018483 WO2021224953A1 (ja) 2020-05-07 2020-05-07 車輪装置

Publications (1)

Publication Number Publication Date
WO2021224953A1 true WO2021224953A1 (ja) 2021-11-11

Family

ID=78467983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018483 WO2021224953A1 (ja) 2020-05-07 2020-05-07 車輪装置

Country Status (1)

Country Link
WO (1) WO2021224953A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003220944A (ja) * 2002-01-30 2003-08-05 Toyo Electric Mfg Co Ltd 鉄道車輌用インホイールモータ
JP2003267215A (ja) * 2002-03-14 2003-09-25 Kawasaki Heavy Ind Ltd 鉄道車両用一軸台車
KR20180003821A (ko) * 2016-07-01 2018-01-10 한국철도기술연구원 각륜 구동 전동기를 포함한 철도차량용 대차

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003220944A (ja) * 2002-01-30 2003-08-05 Toyo Electric Mfg Co Ltd 鉄道車輌用インホイールモータ
JP2003267215A (ja) * 2002-03-14 2003-09-25 Kawasaki Heavy Ind Ltd 鉄道車両用一軸台車
KR20180003821A (ko) * 2016-07-01 2018-01-10 한국철도기술연구원 각륜 구동 전동기를 포함한 철도차량용 대차

Similar Documents

Publication Publication Date Title
US8453774B2 (en) In-wheel motor system for a steering wheel
JP3638586B2 (ja) インホイールモータの取付方法及びインホイールモータシステム
US7556112B2 (en) In-wheel motor system
EP3689656A1 (en) Mounting structure for drive device in series hybrid vehicle
JP6271196B2 (ja) インホイールモータ駆動装置
WO2006030715A1 (ja) フレキシブルカップリング、及び、インホイールモータシステム
JP2008202722A (ja) ストッパ構造及び車両用防振構造
JP2019043177A (ja) 車両用インホイールモータ駆動装置
WO2021224953A1 (ja) 車輪装置
US7389999B2 (en) Wheel assembly
JP7086508B2 (ja) 車輪装置
JP7383181B2 (ja) 車輪装置
JPH10217959A (ja) 鉄道車両用台車の車軸支持構造
JP6275971B2 (ja) 鉄道車両用弾性ブッシュ
JP2020142676A (ja) 軸はり装置用防振ブッシュ
JP7350928B1 (ja) 動力伝達継手
JPH09226384A (ja) エンジンマウント構造
JP7345421B2 (ja) 回転駆動装置
JP2012001017A (ja) 車両用駆動装置
JP7228967B2 (ja) 継手
JP7126908B2 (ja) 電動車両駆動装置及びインホイールモータ駆動装置
JP2008068813A (ja) マウントシステム
CN116513483A (zh) 一种模拟飞行工况转子系统的实验装置
JP6281660B1 (ja) 車両用駆動装置
JPWO2017168546A1 (ja) 車輪支持装置および車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP