WO2021224525A1 - Plataforma flotante de hormigón armado de aplicación a la industria del sector de la eólica marina - Google Patents

Plataforma flotante de hormigón armado de aplicación a la industria del sector de la eólica marina Download PDF

Info

Publication number
WO2021224525A1
WO2021224525A1 PCT/ES2021/070300 ES2021070300W WO2021224525A1 WO 2021224525 A1 WO2021224525 A1 WO 2021224525A1 ES 2021070300 W ES2021070300 W ES 2021070300W WO 2021224525 A1 WO2021224525 A1 WO 2021224525A1
Authority
WO
WIPO (PCT)
Prior art keywords
platform
reinforced concrete
wind turbine
quasi
floating
Prior art date
Application number
PCT/ES2021/070300
Other languages
English (en)
French (fr)
Inventor
Santiago DE GUZMÁN MONTÓN
Jaime MOREU GAMAZO
Mirian TERCEÑO HERNÁNDEZ
Pedro LÓPEZ VIZCAYNO
Caridad GARCÍA MEROÑO
Salvador DELGADO FRANCO
Óscar PÉREZ DÍAZ
Alberto TABOADA GOSÁLVEZ
Alberto NEGUERUELA IMAÑA
Daniel GONZÁLEZ LÓPEZ
Manuel MOREU MUNAIZ
Original Assignee
Seaplace S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seaplace S.L. filed Critical Seaplace S.L.
Priority to EP21799682.6A priority Critical patent/EP4148185A1/en
Priority to AU2021269158A priority patent/AU2021269158A1/en
Priority to CN202180046640.4A priority patent/CN115735060A/zh
Priority to US17/998,160 priority patent/US20230392582A2/en
Priority to KR1020227042829A priority patent/KR20230006911A/ko
Priority to CA3178105A priority patent/CA3178105A1/en
Priority to JP2023512485A priority patent/JP2023529023A/ja
Publication of WO2021224525A1 publication Critical patent/WO2021224525A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/50Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B5/00Hulls characterised by their construction of non-metallic material
    • B63B5/14Hulls characterised by their construction of non-metallic material made predominantly of concrete, e.g. reinforced
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D15/00Handling building or like materials for hydraulic engineering or foundations
    • E02D15/08Sinking workpieces into water or soil inasmuch as not provided for elsewhere
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/42Foundations for poles, masts or chimneys
    • E02D27/425Foundations for poles, masts or chimneys specially adapted for wind motors masts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/22Foundations specially adapted for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/442Spar-type semi-submersible structures, i.e. shaped as single slender, e.g. substantially cylindrical or trussed vertical bodies
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/50Anchored foundations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/52Submerged foundations, i.e. submerged in open water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the technical field of application of the present invention is that of floating platforms in the offshore wind industry.
  • the present invention consists of a floating reinforced concrete platform on which a wind turbine is supported for the production of wind energy at sea.
  • the invention CN102358402A refers to a floating platform for the production and storage of hydrocarbons.
  • the structure is made up of several steel bodies with a hexagonal shape in a honeycomb arrangement, each of these bodies being a hydrocarbon storage tank, and where each tank shares its six walls with six other tanks.
  • the fact that the tanks share walls means that the differences in drafts existing in adjoining tanks, and also with the draft of the platform itself when it is floating in the sea, cause a pressure difference that subjects the structure to a series of stresses. .
  • the present invention which consists of vertical tanks with a quasi-cylindrical shape in a staggered arrangement, uses reinforced concrete to prevent buckling, and has gaps in the middle of the structure that are directly connected to the sea. This favors a symmetry in the loads that makes the structure work homogeneously regardless of the water fill level of the different tanks. In addition, it achieves a state of natural pretension in the concrete that reduces fissures or cracks in it, improving the watertightness of the platform, and improving structural resistance to asymmetric loads such as wave impacts.
  • Patent JP2014184863A uses a steel structure arranged like ribs internally to the concrete body in order to provide an axial pretension on the concrete to improve its structural behavior.
  • Patent JP2014184863A uses a steel structure arranged like ribs internally to the concrete body in order to provide an axial pretension on the concrete to improve its structural behavior.
  • the use of mixed steel and concrete structures increases the cost and CO2 emissions .
  • the use of steel structures as concrete reinforcement requires systems to combat corrosion produced by seawater, such as sacrificial anodes, impressed current systems, etc.
  • patent WO2013155521 A1 in one of its embodiments it describes a concrete platform based on several cylindrical bodies arranged concentrically around a central cylinder, also made of concrete, and joined to it by means of different types of longitudinal steel structures.
  • This type of solution with several bodies joined together, requires a high degree of local reinforcement in the joining areas since they are the most sensitive to the stresses produced on the entire set. being the areas of load transmission. The need to reinforce these areas leads to a greater structural complexity of the device, concentrating the stress in specific areas.
  • the present invention is a structurally simpler solution since it is really a single body, eliminating additional joining elements, and its structural behavior being optimized by avoiding stress concentration points in the structure.
  • its own design makes the platform work in compression, reducing the content of rebar in the reinforced concrete to a minimum.
  • the invention US2019264656A1 refers to a transition piece between the reinforced concrete body of a floating platform and the steel tower that supports a wind turbine.
  • the transition piece has a hyperboloid shape that allows a more homogeneous distribution of the stresses produced at the junction between said tower and the body of the platform.
  • the present invention which consists of vertical tanks of quasi-cylindrical shape in a staggered arrangement, also presents a homogeneous distribution of the loads from the floating structure to the wind turbine tower, but in this case the union is achieved from one of the quasi-cylindrical sections of the intermediate body, which will end up supporting the tower. If the quasi cylinder and the tower of the wind turbine have different diameter, the extension of the quasi cylinder will gradually decrease in diameter until it adapts to the base of the wind turbine tower.
  • the invention US3974789A refers to a floating reinforced concrete structure composed of the union of several bodies of hexagonal section, and arranged in the shape of a honeycomb.
  • the interior of the hexagonal bodies is used as a storage for hydrocarbons or ballast water.
  • the difference in pressures that exists between the reinforced concrete walls of the hexagonal bodies, due to the difference in fluids and drafts between faces, originates a series of stresses on the structure that require a high content of steel to ensure structural integrity. of the set.
  • the present invention consists of vertical tanks of quasi-cylindrical shape in a staggered arrangement and, due to the fact that it has gaps in the middle of the structure that are directly connected to the sea, it achieves a state of natural pretension that makes the concrete work under compression, avoiding the failure of the structure by traction and bending. In this way the content of rebar in the concrete is reduced and, therefore, a structurally simpler solution is obtained. In addition, compression prevents the appearance of fissures or cracks in the reinforced concrete, reducing the permeability of the structure.
  • inventions such as that described in patent CN109941398A, employ passive methods to reduce oscillations on the platform.
  • the method consists of having a crow's foot anchoring system in which each anchoring line forks into two lines, one that works as a simple catenary and the other, that works with a pretension applied on the The same making both lines to the platform firm at points at different heights and reducing the oscillations to which the platform is subjected.
  • the disadvantage of this type of system is that the level of pretension to which part of the lines are subjected is magnified under very severe environmental conditions, and these lines may break.
  • the present invention consists of a floating reinforced concrete platform for the wind power industry whose technical characteristics make it possible to solve the problems previously described in the state of the art.
  • the geometry of the platform consists of a series of vertical tanks with a quasi-cylindrical shape in a staggered arrangement, having holes in the middle of the structure that are directly connected to the sea. This allows its reinforced concrete assembly to work under compression against the set of loads to which it is subjected, instead of bending, as current concrete structures in this industry usually do.
  • This technical advantage translates into a better structural behavior of the platform, a greater resistance to the propagation of cracks, a reduction in the content of the platform reinforcement and a greater safety in the operation of this platform.
  • the platform described in the present invention can operate at different drafts depending on the needs that are demanded, being able to achieve concepts of floating platforms in which the platform is submerged, except for the wind turbine. and the tower, or towers, if there are several towers where a tower supports the wind turbine; and floating concepts can also be achieved in which the platform is not totally submerged but has a part of it above the float.
  • This fact not only allows the platform to be designed for one option or another, the platform itself is capable of operating in these two different ways throughout its useful life: during transport it has a draft and changes it for operation.
  • this technical advantage allows the platform to be adapted to areas with physical characteristics, such as depth of the seabed, wind conditions, swell, etc. very different.
  • the platform of the present invention solves, thanks to its technical characteristics, the problem that affects certain floating platforms of the offshore wind industry such as TLPs and that requires the assembly of the tower, gondola and blades in the open sea, where the platform is going to develop your operation.
  • the geometry of the platform allows it to be able to float with a reduced draft, like a barge (that is, partially submerged), and to maintain good stability during towing with the wind turbine installed on the platform. This fact allows the wind turbine assembly operation on the platform to be carried out in port, where wave conditions are tremendously more benevolent than in the open sea, and it is possible to use a crane from land, considerably cheaper than a crane vessel.
  • the simplicity of the platform also means a great cost reduction due to its ease of construction and less use of rebar compared to other floating platforms that exist in the sector.
  • the platform described in the present invention has a system for anchoring the anchoring lines to the platform in the form of a flat lattice based on prestressed concrete structural elements arranged in a triangular shape in the upper part of the platform and that has a dual purpose. On the one hand, it receives the loads produced by the anchoring lines on the platform, distributing these loads in a homogeneous way throughout the reinforced concrete body of the platform, thus contributing to the good structural behavior that, in itself, has the platform due to its geometry.
  • said lattice solves the problem, described in the state of the art, in which the union between the wind turbine tower and the body of the platform produces a high concentration of stresses at the intersection of both zones, which causes that this area is especially sensitive to the shear forces produced on the wind turbine by the action of the wind and the movements of the platform, there being a structural problem in this area.
  • the arrangement of the lattice in the upper area of the platform ensures that there is a greater shear distribution area, so that these are distributed in a more homogeneous way to the body of the platform.
  • the geometry of the platform of the present invention in which the section of the platform assembly is significantly larger than the tower that supports the wind turbine, and where the platform fills the tanks totally or partially with water, gives the platform has a large displacement (volume), which allows it to have its own high periods, which easily move away from the typical periods of waves. This reduces the accelerations of the platform, giving better operating conditions to the equipment and components of the wind turbine in terms of movements and accelerations suffered by them, and therefore improving their useful life cycle.
  • the action of the wind on the wind turbine on floating platforms is the cause of a heeling moment on the platform that leads it to remain in an inclined position, the oscillation movements taking place as a consequence of the waves around said inclined position.
  • This fact causes a notable decrease in the performance of the wind turbine, since it works around a heeling situation of the platform.
  • the platform of the present invention by having a body with a large horizontal section in which ballast tanks are housed in the quasi-cylinders, is capable of correcting the heeling produced by the action of the wind by transferring water between the ballast tanks. corresponding to counteract the heeling moment, unlike the classic single-body SPAR platforms, in which this possibility does not exist.
  • the present invention shows the following innovative characteristics, compared to the previously described background, of application to the offshore wind industry, substantially improving the response of reinforced concrete offshore wind floating platforms against wind, waves and current:
  • Modular geometry that provides versatility to the solution, being able to configure SPAR-type solutions with reduced draft, semi-submersible, barge or buoy, and with both centered and off-centered wind turbine layout.
  • the geometry can be adapted to areas with different physical and environmental characteristics.
  • the flat prestressed concrete lattice for anchoring the anchoring system to the platform provides it with greater resistance, reducing the risk associated with its operation and substantially increasing the useful life of the structure.
  • the technical complexity in the constitution of the platform is reduced, since it is not necessary to carry out prestressing processes on the concrete that makes up the platform and a little amount of rebar is required during construction.
  • the shapes of the submerged concrete body of the platform provide a very low response to accelerations induced in the platform by the waves. This translates into an improvement in the performance of the wind turbine, which works in heeling conditions and very small oscillations.
  • Figure number 1 shows a schematic representation of the problem that the loads produced by the wind induce to the floating platform, in which a high concentration of stress is produced in the intersection area of the wind turbine tower to the concrete body of the platform, where the area of the horizontal section changes abruptly.
  • Figure number 2 shows an elevation view of one of the possible configurations of the floating platform defined in this patent, in which the three bodies, lower (1), intermediate (2) and upper (3), of concrete that make up the platform.
  • the upper body (3) is formed by a single tower (4) and the enclosures (5) consist of domes.
  • Figure 3 shows a section in which the quasi-circumferences (6) appear, arranged in adjacent staggered rows with a straight section in contact with each other, the vertical extrusion of which forms the intermediate body (2) of the platform.
  • This figure shows one of the possible configurations that these quasi-circumferences (6) can form, in which the gaps (7) existing between every three quasi-circular sections can be seen.
  • Figure 4 shows a schematic representation of the arrangement of the flat lattice (9) of prestressed concrete, in one of the possible configurations that can be obtained from the platform.
  • the way in which this flat lattice (9) distributes the stresses that come from the anchoring lines (10) over the intermediate concrete body (2) of the platform is shown.
  • Figure 5 shows another of the possible configurations that the platform can adopt by adding more quasi-circumferences (6) in the horizontal section that makes up the intermediate concrete body (2) of the platform. It also shows how the prestressed concrete flat lattice (9) can be adapted to variations in the geometry of the platform and the way in which the anchoring lines (10) can be arranged in such a way as to transmit the loads to the flat lattice (9) in any variation of the platform geometry.
  • Figure 6 shows a profile view of one of the possible configurations, in this case semi-submersible type, of the floating platform defined in this patent.
  • the figure shows how various towers (4), including the one that supports the wind turbine tower, remain above the water surface (11), thus providing the platform with the necessary inertia to be stable in the phases of installation and operation.
  • the object of the present invention to provide a solution for a floating reinforced concrete wind platform for series production and, characterized by a geometric design that provides a natural hydrostatic pretension to the concrete, making it work in its most effective mode, in compression, improving the structural response of the platform and avoiding the appearance of fissures or cracks in the concrete, which reduces permeability and allows a lower content of rebar in the structure, also increasing safety in operation.
  • the present invention has a system for anchoring the anchoring lines to the structure in the form of a reinforced concrete lattice that distributes the anchoring stresses homogeneously, minimizing the prestress in the upper area of the platform and increasing the distribution area of shear stresses due to the change in section between the platform and the turbine tower.
  • the geometric design also provides the versatility of being able to adopt SPAR-type solutions with reduced draft, semi-submersible, barges or buoys, with the installation of the wind turbine centered or off-center in the structure, thus adapting to different draft requirements or environmental and logistical conditions.
  • the present invention consists of a floating reinforced concrete platform for application to the offshore wind industry to support a wind turbine in which Three parts are differentiated (FIG 2): a lower body (1), an intermediate body (2) and an upper body (3) on which a single marine wind turbine is arranged.
  • the platform has a “spread moored” type funding system (FIG 4) made up of at least three lines (10), arranged as evenly spaced as possible.
  • the lower body (1) of the floating reinforced concrete platform for application to the offshore wind industry to support a wind turbine (FIG 2) consists of a flat concrete base whose objective is to provide structural support to the rest of the platform, that rests on said body, and also that of providing a low weight to the platform, thus improving its stability.
  • the intermediate body (2) of the floating reinforced concrete platform for application to the offshore wind industry to support a wind turbine consists of a single concrete body formed as a vertical extrusion of a horizontal section (FIG 3) consisting of a staggered arrangement of at least 5 adjacent quasi-circumferences (6) with a straight section of contact between them.
  • the interior space (8) at each quasi-circumference is a watertight space capable of housing a combination of solid and liquid ballast.
  • the upper body (3) of the floating reinforced concrete platform for application to the offshore wind industry to support a wind turbine (FIG 2) of the present invention is arranged on the intermediate body (2) previously described and consists of a series of enclosures so that each one is arranged on each quasi circumference (6) that makes up the horizontal section of the intermediate body (2) in the highest section of said body (2), with the exception of at least one of said sections (6), on which an extension of said section is arranged to form a tower (4) that rises above the rest of the platform, and in which the platform's wind turbine support will be arranged.
  • the geometry of the enclosures (5) that exist on the intermediate body (2) (FIG 2) is different depending on the concept of platform that is had in relation to the degree of submergence thereof, as discussed above.
  • the floating reinforced concrete platform applied to the offshore wind industry to support a wind turbine is capable of operating submerged, with only part of the towers remaining above the sea surface (11) (FIG 6) ( 4), where if there is more than one tower (4), one supports the wind turbine, and the wind turbine itself.
  • the stability of the platform is obtained largely thanks to the concrete base that makes up the lower body (1) of the platform, which keeps the center of gravity of the device as low as possible.
  • the enclosures (5) of the intermediate concrete body (2) consist of a series of domes arranged on each quasi-circumference that makes up the section of the intermediate body (2) of the platform, except for those quasi-circumferences (6) on which the towers (4) are arranged (FIG 6).
  • the purpose of these domes is to receive the hydrostatic pressure to which they are subjected when the platform is submerged and transmit the loads produced by said pressures to the intermediate body (2) so that it works under compression before these loads.
  • the floating concrete platform for application to the offshore wind industry to support a wind turbine is capable of operating in such a way that not all of the intermediate body (2) is submerged, but part of it is on the sea surface.
  • the enclosures (5) that are arranged on the intermediate body (FIG 2) simply consist of reinforced slabs or plates, since constructively it is the simplest solution and they are reasonable as they are not exposed to hydrostatic pressure by be above the waterline.
  • These enclosures (5) are arranged on each quasi circumference that makes up the section of the intermediate body of the platform, except for the towers (FIG 6).
  • the very geometry of the intermediate concrete body (2) (FIG 2) of the floating reinforced concrete platform for application to the offshore wind industry to support a wind turbine allows a multitude of different platform concepts to be configured as more or fewer quasi circumferences (6) in the horizontal section (FIG 3) that makes up the intermediate body (2), keeping the minimum number of these quasi circumferences (6) at 5, as described above.
  • the floating reinforced concrete platform for application to the offshore wind industry to support a wind turbine of the present invention also consists of (FIG 4) a flat lattice (9) of prestressed concrete that is arranged between the lower body (2) and the upper body (3) of the platform (FIG 2).
  • Said flat lattice (9) consists of at least three longitudinal elements of prestressed concrete arranged in a triangular way and located in such a way that the vertices of the triangular geometry are in the areas of straight sections of contact between the quasi-circular sections (6) that make up the intermediate body (2) of the platform (FIG 3).
  • the anchoring lines (10) of the floating reinforced concrete platform applied to the offshore wind industry to support a wind turbine (FIG 4) are made firm on the straight sections of contact between the quasi-circumferences (6) that make up the section of the intermediate body (2) of the platform in its highest area, so that there is structural continuity between the anchoring lines (10) and the vertices of the flat prestressed concrete lattice (9).
  • the very configuration of the prestressed concrete flat lattice (9) allows it to be adapted to the geometry of the floating reinforced concrete platform of application to the offshore wind industry for the support of a wind turbine depending on the number of quasi circumferences (6) existing in the section of the intermediate concrete body (2) (FIG 5), so that adding longitudinal elements of prestressed concrete can be compose a lattice (9) from several triangular-shaped arrangements of these longitudinal elements.
  • This characteristic provides a certain versatility to the aforementioned lattice (9) that makes it suitable for any of the possible configurations that a floating reinforced concrete platform can adopt for application to the offshore wind industry to support a wind turbine of the present invention.

Abstract

Solución de plataforma eólica flotante de hormigón armado para producción en serie caracterizada por un diseño geométrico que dota de una pretensión natural hidrostática al hormigón haciéndolo funcionar en compresión. Se mejora la respuesta estructural de la plataforma al trabajar en el modo más efectivo y se evita la aparición de fisuras o grietas en el hormigón, lo que reduce la permeabilidad y permite un menor contenido de ferralla en la estructura, aumentando también la seguridad en operación. Además, cuenta con un sistema para el anclaje de las líneas de fondeo a la estructura en forma de celosía de hormigón armado que distribuye las tensiones del fondeo homogéneamente, minimizando el pretensado en la zona alta de la plataforma y aumentando el área de reparto de esfuerzos cortantes debidos al cambio de sección entre la plataforma y la torre del aerogenerador. El diseño geométrico además otorga la versatilidad de poder adoptar soluciones tipo SPAR de calado reducido, semisumergibles, barcazas o boyas, con la instalación del aerogenerador centrado o descentrado en la estructura, adaptándose así a diferentes requisitos de calado o condiciones ambientales y logísticas.

Description

Figure imgf000003_0001
PLATAFORMA FLOTANTE DE HORMIGÓN ARMADO DE APLICACIÓN A LA INDUSTRIA DEL SECTOR DE LA EÓLICA MARINA
SECTOR DE LA TÉCNICA
El campo técnico de aplicación de la presente invención es el de las plataformas flotantes de la industria eólica marina.
La presente invención consiste en una plataforma flotante de hormigón armado en la cual se soporta un aerogenerador para la producción de energía eólica en el mar.
ANTECEDENTES DE LA INVENCIÓN
El auge de las energías renovables hace que se tienda a la búsqueda de un mayor aprovechamiento de estas. Particularizando para la energía eólica, la tendencia que se observa es la de la instalación de plataformas en la mar donde las velocidades de viento son mayores que en tierra (y menos turbulentos), asegurando así una mayor producción de energía. Estas características de viento además mejoran cuanto más nos alejamos de la costa.
Sin embargo, estos emplazamientos presentan como inconveniente el que en muchos casos las plataformas fijas (plataformas ya economizadas y bien conocidas) no son competitivas, ya sea por desniveles en el lecho marino, por el tipo de suelo o porque nos encontremos a profundidades mayores de 60 metros. Esto lleva a que las soluciones más viables pasen a ser las flotantes, con la consiguiente alteración del coste debido al aumento del tamaño de las soluciones, necesidad de un sistema de fondeo y medios de anclaje al lecho marino, diferentes operaciones marinas, nuevas incertidumbres, riesgos... Además, estas plataformas, al no estar fijas, están expuestas a los movimientos inducidos por el viento, el oleaje y la corriente, que implican una disminución del rendimiento del aerogenerador, un aumento de la fatiga en las estructuras que soportan al aerogenerador, resonancias, etc. De esta forma, las plataformas flotantes deben hacer frente a una serie de problemas que afectan a las mismas tanto en su operación, como durante su construcción, transporte e instalación.
La tendencia del sector hasta los últimos 10 años ha sido la de emplear acero como solución estructural en la construcción de plataformas flotantes. La principal ventaja que ofrece la construcción en acero es el grado de conocimiento que se tiene sobre su comportamiento debido a la experiencia obtenida de las estructuras de acero en la industria del Oil & Gas, así como de las plataformas fijas de acero en la industria de la eólica marina. Sin embargo, la utilización de acero presenta la desventaja de ser un material muy susceptible de sufrir corrosión, especialmente en ambientes marinos, volatilidad de precios y un alto coste de adquisición y manipulación por tonelada frente a otros materiales. Pero además su producción emite prácticamente 2 toneladas de CO2, gas de efecto invernadero, por cada tonelada de acero producido.
En una sociedad cada vez más concienciada por el cambio climático en la que se han llegado a acuerdos de reducción de emisiones de gases de efecto invernadero, parece lógico pensar en otros materiales de construcción que reduzcan las emisiones. Por poner un ejemplo, la Comisión Europea tiene como objetivo en 2050 anular prácticamente las emisiones de CO2. Por tanto, además de tender a la producción de energía por medios renovables tenemos que buscar la sustitución de materiales para poder alcanzar los objetivos. El hormigón es el material más empleado mundialmente en construcción. Presenta una ventaja primordial frente al acero, la menor emisión de CO2 durante el proceso de construcción, así como una reducción del coste de la plataforma. Por ello, en la última década se han desarrollado soluciones de hormigón para la eólica marina.
La invención CN102358402A hace referencia a una plataforma flotante de producción y almacenamiento de hidrocarburos. La estructura está conformada por varios cuerpos de acero con forma hexagonal en disposición de panal de abeja, siendo cada uno de estos cuerpos un tanque de almacenamiento de hidrocarburos, y donde cada tanque comparte sus seis paredes con otros seis tanques. El hecho de que los tanques compartan paredes hace que las diferencias de calados existentes en tanques contiguos, y también con el propio calado de la plataforma cuando está flotando en el mar, provoque una diferencia de presiones que somete a la estructura a una serie de esfuerzos. Estos esfuerzos, combinados con las cargas producidas por agentes externos, como puede ser el oleaje, obligan a paredes de grandes espesores si no se quiere disponer de reforzados anulares y longitudinales para asegurar la resistencia estructural del artefacto y que no colapse durante su operación. Como las estructuras de acero son un orden de magnitud más esbeltas que las equivalentes de hormigón, son mucho más susceptibles de pandear. Por ello, el necesario aumento de espesor encarece la solución al requerir una gran cantidad de acero y un elevado número de soldaduras necesarias entre paneles. Además, esta estructura está sujeta a una notable corrosión debido al aumento de la superficie de acero expuesta, encareciendo el mantenimiento del artefacto. La presente invención, que consiste en tanques verticales de forma cuasi cilindrica en disposición a tresbolillo, usa hormigón armado para evitar el pandeo, y dispone unos huecos en medio de la estructura que están directamente conectados al mar. Esto favorece una simetría en las cargas que hace que la estructura trabaje de manera homogénea independientemente del nivel de llenado de agua de los diferentes tanques. Además, logra un estado de pretensión natural en el hormigón que reduce las fisuras o grietas en el mismo, mejorando la estanqueidad de la plataforma, y mejorando la resistencia estructural ante cargas asimétricas como impactos del oleaje.
A pesar de que las estructuras de hormigón armado son cada vez más empleadas en esta industria, dado su bajo coste de material por tonelada y la amplia experiencia que se tiene del hormigón en la industria de la construcción civil, uno de los principales problemas que presenta el hormigón es su mal comportamiento estructural cuando trabaja a flexión y tracción. Para solventar este problema, la mayoría de soluciones se basan en emplear grandes cantidades de ferralla en la construcción del hormigón armado y de aplicar procesos de pretensión al mismo. En la patente JP2014184863A se utiliza una estructura de acero dispuesta a modo de costillas internamente al cuerpo de hormigón con la finalidad de dotar de una pretensión axial sobre el hormigón para mejorar su comportamiento estructural. Sin embargo, el uso de estructuras mixtas de acero y hormigón encarece el coste y las emisiones de CO2. Además, el uso de estructuras de acero como reforzado de hormigón obliga a disponer de sistemas para combatir la corrosión producida por el agua marina, tales como ánodos de sacrificio, sistemas de corrientes impresas, etc.
En la patente WO2013155521 A1 , en una de sus realizaciones describe una plataforma de hormigón basada en varios cuerpos cilindricos dispuestos concéntricamente en torno a un cilindro central, también de hormigón, y unidos al mismo mediante diferentes tipos de estructuras de acero longitudinales. Este tipo de soluciones, con varios cuerpos unidos entre sí, requiere de un alto grado de refuerzo local en las zonas de unión ya que son las más sensibles a los esfuerzos producidos sobre todo el conjunto al ser las zonas de transmisión de cargas. La necesidad de reforzar estas zonas acarrea una mayor complejidad estructural del dispositivo, concentrando la tensión en zonas puntuales. La presente invención resulta una solución más sencilla estructuralmente al tratarse realmente de un único cuerpo, eliminando elementos adicionales de unión, y quedando optimizado su comportamiento estructural al evitar puntos de concentración de tensiones en la estructura. Además, su propio diseño hace que la plataforma trabaje a compresión, reduciendo el contenido de ferralla en el hormigón armado al mínimo.
Otro problema que afecta a las plataformas flotantes con aerogeneradores, especialmente a aquellas de hormigón armado, es el brusco cambio de área en la sección de la plataforma que existe en la transición de la torre del aerogenerador al cuerpo de hormigón de la plataforma cuando este es de mayor anchura que la torre de la plataforma. En este punto se produce una enorme concentración de esfuerzos que hace esta zona especialmente sensible al fallo por fatiga. La solución que se suele plantear para este tipo de plataformas consiste en disponer de piezas de transición con una serie de refuerzos que proporcionen una mayor rigidez estructural a la sección en esta zona de forma que se compense el cambio tan repentino de área.
La invención US2019264656A1 hace referencia a una pieza de transición entre el cuerpo de hormigón armado de una plataforma flotante y la torre de acero que soporta un aerogenerador. La pieza de transición cuenta con una forma hiperboloide que permite una distribución más homogénea de los esfuerzos producidos en la unión entre dicha torre y el cuerpo de la plataforma. La presente invención, que consiste en tanques verticales de forma cuasi cilindrica en disposición a tresbolillo, también presenta una distribución homogénea de las cargas desde la estructura flotante a la torre del aerogenerador, pero en este caso la unión se consigue a partir de una de las secciones cuasi cilindricas del cuerpo intermedio, que acabará soportando la torre. Si el cuasi cilindro y la torre del aerogenerador tienen diferente diámetro, la prolongación del cuasi cilindro tendrá una disminución paulatina de diámetro hasta adaptarse a la base de la torre del aerogenerador.
En general, el mayor problema al que se enfrentan las estructuras de hormigón es que este material apenas soporta cargas de flexión, tracción o esfuerzos cortantes. La forma en la que se suele solventar este problema actualmente en la industria es añadiendo una gran cantidad de acero de refuerzo (ferralla) en la construcción del hormigón. Además, como el hormigón trabaja bien a compresión, si es necesario se incorpora acero pretensado, que al comprimir el hormigón incrementa la carga de flexión, tracción o esfuerzos cortantes que puede resistir el hormigón. Este método conlleva además una cierta dificultad técnica durante el proceso de construcción, elevando los costes asociados a la construcción de la plataforma.
La invención US3974789A hace referencia a una estructura flotante de hormigón armado compuesta por la unión de varios cuerpos de sección hexagonal, y ordenados en forma de panal de abeja. El interior de los cuerpos hexagonales se utiliza a modo de almacén de hidrocarburos o agua de lastre. La diferencia de presiones que existe entre los muros de hormigón armado de los cuerpos hexagonales, debido a la diferencia de fluidos y de calados entre caras, origina una serie de esfuerzos sobre la estructura que requieren de un alto contenido en acero para asegurar la integridad estructural del conjunto. La presente invención consiste en tanques verticales de forma cuasi cilindrica en disposición a tresbolillo y, debido a que dispone unos huecos en medio de la estructura que están directamente conectados al mar, consigue un estado de pretensión natural que hace que el hormigón trabaje a compresión, evitando el fallo de la estructura por tracción y flexión. De esta manera se reduce el contenido de ferralla en el hormigón y, por tanto, se obtiene una solución estructuralmente más sencilla. Además, la compresión evita la aparición de fisuras o grietas en el hormigón armado, reduciendo la permeabilidad de la estructura.
Existe también un importante problema debido a factores externos a las propias plataformas que atañe a la viabilidad del uso de plataformas flotantes como sistema para soportar aerogeneradores de producción eléctrica. Este problema es la gran dificultad técnica que existe para realizar la instalación de la torre, góndola y palas de la turbina sobre la plataforma cuando la plataforma debe ser instalada primero en alta mar. Estas operaciones de instalación tienen un riesgo y coste elevado. El proceso de montaje del aerogenerador sobre la plataforma en la ubicación en la que va a operar es una operación con un altísimo riesgo y complejidad técnica que involucra una gran cantidad de medios auxiliares. La manera en la que se hace frente a este problema en las soluciones que existen actualmente se basa en realizar estas operaciones de instalación de las plataformas en ventanas temporales en las que las condiciones de viento y oleaje sean excepcionalmente buenas, para que pueda desarrollarse la operación de instalación de una forma segura y con la precisión que requiere. Este hecho ocurre durante unos periodos breves de tiempo y que en ciertos emplazamientos se dan muy pocas veces a lo largo del año.
Otro de los problemas es la acción que producen las cargas del viento, oleaje y corrientes sobre la plataforma. Dicha acción se traduce en la presencia de aceleraciones y movimientos inducidos en la plataforma de carácter oscilatorio, los cuales provocan una disminución en el rendimiento del aerogenerador, así como un deterioro en los equipos y componentes del aerogenerador, que experimentan una reducción en el ciclo de su vida útil. Para la resolución de este problema existen invenciones tales como la que se propone en la patente EP2457818A1, la cual emplea medios activos tales como propulsores azimutales para contrarrestar los efectos de las cargas dinámicas que actúan sobre la plataforma y que provocan una escora en la misma. Los inconvenientes que presentan los sistemas de propulsores para compensación de oscilaciones y movimientos inducidos sobre las plataformas radican en la complejidad técnica que añaden a la plataforma y el incremento del coste asociado a la misma, tanto en costes de construcción como en costes de operación y mantenimiento, ya que aumentan la cantidad de equipos y componentes instalados en la plataforma.
Otras invenciones, como la descrita en la patente CN109941398A, emplean métodos pasivos para la reducción de oscilaciones sobre la plataforma. En este último caso, el método consiste en disponer de un sistema de fondeo en pata de gallo en el que cada línea de fondeo se bifurca en dos líneas, una que trabaja como una catenaria simple y otra, que trabaja con una pretensión aplicada sobre la misma haciéndose firmes ambas líneas a la plataforma en puntos a diferentes alturas y reduciendo las oscilaciones a las que se ve sometida la plataforma. El inconveniente presente en este tipo de sistemas es que el nivel de pretensión al que están sometidas parte de las líneas se magnifica en condiciones ambientales muy severas pudiéndose producir la rotura de estas líneas.
Otro problema que afecta a las plataformas flotantes con aerogeneradores, y que también es producido por la acción del viento y el oleaje, es que existe un momento escorante producido por el viento sobre el aerogenerador que lleva a éste a adoptar una posición de escora durante su operación. En esta condición, la acción del oleaje provoca una serie de oscilaciones del aerogenerador en torno a dicha posición de escora, disminuyendo de esta forma el rendimiento del aerogenerador y de sus componentes. Para la resolución de este problema también existen patentes, como la JP2017074947A, que incluyen métodos activos que actúan sobre las líneas de fondeo, ajustando el grado de tensión al que son sometidas las mismas, de forma que en función de las condiciones ambientales que afectan a la plataforma se reduzcan las oscilaciones sobre la misma.
EXPLICACIÓN DE LA INVENCIÓN
La presente invención consiste en una plataforma flotante de hormigón armado para la industria eólica cuyas características técnicas permiten solventar los problemas anteriormente descritos en el estado del arte. La geometría de la plataforma consiste en una serie de tanques verticales de forma cuasi cilindrica en disposición a tresbolillo, disponiendo de unos huecos en medio de la estructura que están directamente conectados al mar. Esto permite que el conjunto de hormigón armado de la misma trabaje a compresión frente al conjunto de cargas a las que está sometida, en lugar de hacerlo a flexión, como suelen hacerlo las estructuras actuales de hormigón en esta industria. Esta ventaja técnica se traduce en un mejor comportamiento estructural de la plataforma, una mayor resistencia a la propagación de fisuras, una reducción del contenido de ferralla de plataforma y una mayor seguridad en la operación de esta plataforma.
La plataforma descrita en la presente invención puede operar, gracias a la versatilidad que le brinda su propia geometría, a distintos calados en función de las necesidades que se demanden, pudiéndose conseguir conceptos de plataformas flotantes en los cuales la plataforma se encuentra sumergida exceptuando al aerogenerador y la torre, o torres, en caso de existir varias torres donde una torre soporta al aerogenerador; y se pueden conseguir también conceptos flotantes en los cuales la plataforma no se encuentra totalmente sumergida sino que cuenta con una parte de la misma por encima de la flotación. Este hecho no sólo permite que la plataforma sea diseñada para una u otra opción, la propia plataforma es capaz de operar de estas dos formas distintas a lo largo de su vida útil: durante el transporte tiene un calado y lo cambia para operación. Además, esta ventaja técnica permite adecuar la plataforma a zonas con características físicas, como profundidad del fondo marino, condiciones de viento, oleaje, etc. muy diferentes.
La plataforma de la presente invención resuelve, gracias a sus características técnicas, el problema que afecta a ciertas plataformas flotantes de la industria eólica marina como TLPs y que exige el montaje de la torre, góndola y palas en mar abierto, donde la plataforma va a desarrollar su operación. La geometría de la plataforma permite que esta sea capaz de flotar con calado reducido, a modo de barcaza (es decir, parcialmente sumergida), y de mantener una buena estabilidad durante el remolque con el aerogenerador instalado sobre la plataforma. Este hecho permite que la operación de montaje del aerogenerador sobre la plataforma pueda realizarse en puerto, donde las condiciones de oleaje son tremendamente más benevolentes que en mar abierto, y pudiendo usar para ello una grúa desde tierra, considerablemente más económica que un buque grúa. De este modo se reduce enormemente la complejidad técnica asociada a dicha operación de montaje, así como el riesgo asociado a esta operación y, como consecuencia, los costes implicados en el montaje del aerogenerador sobre la plataforma. Una vez que el aerogenerador se encuentra unido a la estructura de la plataforma, esta puede transportarse mediante remolque, sin necesitar ningún medio auxiliar de estabilidad, a la posición en la que va a desarrollar su operación y, una vez allí, ser fondeada.
La sencillez de la plataforma, además, supone una gran reducción de costes por su facilidad constructiva y menor uso de ferralla frente a las demás plataformas flotantes que existen en el sector.
La plataforma descrita en la presente invención cuenta con un sistema para el anclaje de las líneas de fondeo a la plataforma en forma de celosía plana basada en elementos estructurales de hormigón pretensado dispuestos en forma triangular en la parte alta de la plataforma y que cuenta con una doble finalidad. Por un lado, recibe las cargas que producen las líneas de fondeo sobre la plataforma, distribuyendo estas cargas de una forma homogénea por todo el cuerpo de hormigón armado de la plataforma, contribuyendo de esta manera al buen comportamiento estructural que ya, de por sí, tiene la plataforma debido a su geometría. Por otro lado, dicha celosía solventa el problema, descrito en el estado del arte, en el que la unión entre la torre del aerogenerador y el cuerpo de la plataforma produce una alta concentración de tensiones en la intersección de ambas zonas, la cual provoca que esta zona sea especialmente sensible a los esfuerzos cortantes producidos sobre el aerogenerador por acción del viento y los movimientos de la plataforma, existiendo un problema estructural en esta zona. La disposición de la celosía en la zona alta de la plataforma consigue que exista un área de reparto de esfuerzos cortantes mayor, de forma que estos se distribuyen de una manera más homogénea al cuerpo de la plataforma.
La geometría de la que consta la plataforma de la presente invención, en la que la sección del conjunto de la plataforma es significativamente mayor que la torre que sustenta el aerogenerador, y donde la plataforma llena total o parcialmente de agua los tanques, le confiere a la plataforma un gran desplazamiento (volumen), lo que le permite tener altos periodos propios, que se alejan con facilidad de los periodos típicos del oleaje. Esto reduce las aceleraciones de la plataforma, otorgando unas mejores condiciones de operación a los equipos y componentes del aerogenerador en cuanto a movimientos y aceleraciones sufridas por estos, y por tanto mejorando su ciclo de vida útil.
La acción del viento sobre el aerogenerador en las plataformas flotantes es la causa de un momento escorante en la plataforma que la lleva a permanecer en una posición inclinada, efectuándose los movimientos de oscilación como consecuencia del oleaje en torno a dicha posición inclinada. Este hecho provoca una disminución notable en el rendimiento del aerogenerador, dado que este trabaja en torno a una situación de escora de la plataforma. La plataforma de la presente invención, al contar con un cuerpo de gran sección horizontal en el que se albergan tanques de lastre en los cuasi cilindros, es capaz de corregir las escoras producidas por acción del viento mediante el traslado de agua entre los tanques de lastre correspondientes para contrarrestar el momento escorante, al contrario que las plataformas clásicas SPAR de un único cuerpo, en las cuales no existe esta posibilidad.
La presente invención muestra las siguientes características innovadoras, frente a los antecedentes anteriormente descritos, de aplicación a la industria eólica marina, mejorando sustancialmente la respuesta de plataformas flotantes eólicas marinas de hormigón armado frente al viento, oleaje y corriente:
• La geometría, que permite que las cargas producidas sobre la misma por las presiones hidrostáticas a las que se ve sometida la plataforma en operación proporcionen al conjunto del cuerpo de hormigón de la plataforma una pretensión de manera natural que mejora el comportamiento estructural de la misma, y que minimiza las cargas a flexión. Esta cualidad proporciona una mayor resistencia y reducción de fisuras de la estructura de hormigón.
• Geometría modular que dota de versatilidad a la solución, pudiendo configurar soluciones tipo SPAR de calado reducido, semisumergible, barcaza o boya, y con disposición del aerogenerador tanto centrado como descentrado. Así, se puede adaptar la geometría a zonas con diferentes características físicas y ambientales.
• Solución estable con el aerogenerador montado y con calado reducido, lo que permite la instalación del aerogenerador en puerto, evitando operaciones de instalación costosas y de alto riesgo en el emplazamiento de operación. La plataforma, torre y aerogenerador se transportan ya montados al emplazamiento de operación. Esto es posible al ser estable todo el conjunto cuando se encuentra sin agua en sus tanques, funcionando en tal caso como una barcaza de bajo calado. Al llegar al lugar de instalación, la plataforma introduce agua en los tanques, aumentando el calado hasta llegar al calado operacional, y siendo el conjunto estable durante todo el proceso de inmersión.
• Se amplían las ventanas temporales de instalación de la plataforma al prescindir de buques grúa para la instalación del aerogenerador en el emplazamiento
• La celosía plana de hormigón pretensado para el anclaje del sistema de fondeo a la plataforma dota a esta de una mayor resistencia, reduciendo el riesgo asociado a su operación y aumentando sustancialmente la vida útil de la estructura. Se disminuye la complejidad técnica en la constitución de la plataforma, ya que no es necesario realizar procesos de pretensado sobre el hormigón que compone la plataforma y se requiere poca cantidad de ferralla durante la construcción.
• Las formas de las que consta el cuerpo sumergido de hormigón de la plataforma proporcionan una muy reducida respuesta en aceleraciones inducidas en la plataforma por el oleaje. Esto se traduce en una mejora del rendimiento del aerogenerador, el cual trabaja en condiciones de escora y oscilaciones muy reducidas.
• Solución SPAR que optimiza el rendimiento del aerogenerador al ser capaz de corregir el momento escorante producido por el viento gracias al movimiento de lastre líquido entre los tanques.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, se acompaña como parte integrante de dicha descripción un juego de dibujos en donde, con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
En la figura número 1 se muestra una representación esquemática del problema que inducen las cargas producidas por el viento a la plataforma flotante, en la que se produce una alta concentración de esfuerzos en la zona de intersección de la torre del aerogenerador al cuerpo de hormigón de la plataforma, donde se produce el cambio de área de la sección horizontal de manera brusca.
En la figura número 2 se muestra una vista en alzado de una de las posibles configuraciones de plataforma flotante definida en esta patente, en la que se aprecian los tres cuerpos, inferior (1), intermedio (2) y superior (3), de hormigón que componen la plataforma. En este caso, el cuerpo superior (3) está formado por una única torre (4) y los cerramientos (5) consisten en domos.
En la figura número 3 se muestra una sección en la que aparecen las cuasi circunferencias (6), dispuestas a tresbolillo adyacentes con un tramo recto de contacto entre sí, cuya extrusión vertical conforma el cuerpo intermedio (2) de la plataforma. En esta figura se muestra una de las posibles configuraciones que estas cuasi circunferencias (6) pueden conformar, en la que se aprecian los huecos (7) existentes entre cada tres secciones cuasi circulares.
En la figura número 4 se muestra una representación esquemática de la disposición de la celosía plana (9) de hormigón pretensado, en una de las posibles configuraciones que se pueden obtener de la plataforma. Se muestra la forma en la que esta celosía plana (9) distribuye las tensiones que provienen de las líneas de fondeo (10) sobre el cuerpo intermedio (2) de hormigón de la plataforma. En la figura número 5 se muestra otra de las configuraciones posibles que puede adoptar la plataforma añadiendo más cuasi circunferencias (6) en la sección horizontal que conforma el cuerpo intermedio (2) de hormigón de la plataforma. Se muestra también la forma en que la celosía plana (9) de hormigón pretensado se puede adaptar a las variaciones en la geometría de la plataforma y la forma en la que se pueden disponer las líneas de fondeo (10) de forma que se transmitan las cargas a la celosía plana (9) en cualquier variación de la geometría de la plataforma.
En la figura número 6 se muestra una vista de perfil de una de las posibles configuraciones, en este caso tipo semisumergible, de la plataforma flotante definida en esta patente. En la figura se muestra como diversas torres (4), incluyendo la que soporta a la torre del aerogenerador, quedan por encima de la superficie del agua (11), dotando así a la plataforma de la inercia necesaria para ser estable en las fases de instalación y operación.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
Por tanto, es objeto de la presente invención proporcionar una solución de plataforma eólica flotante de hormigón armado para producción en serie y, caracterizada por un diseño geométrico que dota de una pretensión natural hidrostática al hormigón haciéndolo funcionar en su modo más efectivo, en compresión, mejorando la respuesta estructural de la plataforma y evitando la aparición de fisuras o grietas en el hormigón, lo que reduce la permeabilidad y permite un menor contenido de ferralla en la estructura, aumentando también la seguridad en operación. La presente invención cuenta con un sistema para el anclaje de las líneas de fondeo a la estructura en forma de celosía de hormigón armado que distribuye las tensiones del fondeo homogéneamente, minimizando el pretensado en la zona alta de la plataforma y aumentando el área de reparto de esfuerzos cortantes debidos al cambio de sección entre la plataforma y la torre del aerogenerador. El diseño geométrico además otorga la versatilidad de poder adoptar soluciones tipo SPAR de calado reducido, semisumergibles, barcazas o boyas, con la instalación del aerogenerador centrado o descentrado en la estructura, adaptándose así a diferentes requisitos de calado o condiciones ambientales y logísticas.
La presente invención consiste en una plataforma flotante de hormigón armado de aplicación a la industria eólica marina para el soporte de un aerogenerador en la que se diferencian tres partes ( FIG 2): un cuerpo inferior (1), un cuerpo intermedio (2) y un cuerpo superior (3) sobre el que se dispone un único aerogenerador marino. La plataforma cuenta con un sistema de fondeo tipo “spread moored” (FIG 4) compuesto por al menos tres líneas (10), dispuestas de la forma más equi-espaciada posible.
El cuerpo inferior (1) de la plataforma flotante de hormigón armado de aplicación a la industria eólica marina para el soporte de un aerogenerador ( FIG 2) consiste en una base plana de hormigón cuyo objetivo es dar un soporte estructural al resto de la plataforma, que se apoya sobre dicho cuerpo, y también la de aportar un peso bajo a la plataforma, mejorando así la estabilidad de la misma.
El cuerpo intermedio (2) de la plataforma flotante de hormigón armado de aplicación a la industria eólica marina para el soporte de un aerogenerador consta de un único cuerpo de hormigón formado como una extrusión vertical de una sección horizontal (FIG 3) que consiste en una disposición a tresbolillo de, al menos, 5 cuasi circunferencias (6) adyacentes con un tramo recto de contacto entre ellas. El espacio interior (8) a cada cuasi circunferencia es un espacio estanco capaz de albergar una combinación de lastre sólido y líquido.
En la disposición del cuerpo intermedio (2) anteriormente descrita (FIG 3) existen una serie de huecos interiores (7) formados por cada 3 cuasi circunferencias (6) que están en contacto. Dichos huecos interiores (7) se encuentran abiertos por la zona superior de la plataforma y comunicados con el exterior por su parte inferior. La finalidad de dichos huecos (7) es la de permanecer inundados, gracias a sus conexiones con el exterior, en concordancia con el calado que tiene la plataforma en cada momento. De esta forma se consigue un equilibrio de las presiones hidrostáticas a las que se encuentra sometida la plataforma cuando se encuentra parcial o totalmente sumergida. Gracias a este equilibrio de presiones se consigue que los muros de hormigón que componen el cuerpo intermedio (2) de la plataforma ( FIG 2) adopten una cierta pretensión de compresión de una forma natural, gracias a las mencionadas presiones, que favorece el buen comportamiento estructural de la misma.
El cuerpo superior (3) de la plataforma flotante de hormigón armado de aplicación a la industria eólica marina para el soporte de un aerogenerador ( FIG 2) de la presente invención se dispone sobre el cuerpo intermedio (2) anteriormente descrito y consiste en una serie de cerramientos de forma que se dispone cada uno sobre cada cuasi circunferencia (6) que compone la sección horizontal del cuerpo intermedio (2) en la sección más elevada de dicho cuerpo (2), exceptuando al menos una de dichas secciones (6), sobre la que se dispone una prolongación de dicha sección para formar una torre (4) que se eleva sobre el resto de la plataforma, y en la que se dispondrá el soporte del aerogenerador de la plataforma.
La geometría de los cerramientos (5) que existen sobre el cuerpo intermedio (2) ( FIG 2) es diferente en función del concepto de plataforma que se tenga en relación al grado de sumergimiento de la misma, tal y como se ha comentado anteriormente.
Por un lado, la plataforma flotante de hormigón armado de aplicación a la industria eólica marina para el soporte de un aerogenerador es capaz de operar sumergida, quedando por encima de la superficie del mar (11) (FIG 6) únicamente parte de las torres (4), donde en caso de existir más de una torre (4) una soporta el aerogenerador, y el propio aerogenerador. En esta situación, la estabilidad de la plataforma se obtiene en gran parte gracias a la base de hormigón que conforma el cuerpo inferior (1) de la plataforma, la cual mantiene el centro de gravedad del artefacto lo más bajo posible. En esta configuración, los cerramientos (5) del cuerpo intermedio (2) de hormigón consisten en una serie de domos dispuestos sobre cada cuasi circunferencia que compone la sección del cuerpo intermedio (2) de la plataforma, exceptuando aquellas cuasi circunferencias (6) sobre las que se disponen las torres (4) (FIG 6). La finalidad de estos domos es la de recibir la presión hidrostática a la que se encuentran sometidos al estar sumergida la plataforma y transmitir las cargas producidas por dichas presiones al cuerpo intermedio (2) de forma que este trabaje a compresión ante estas cargas.
Por otro lado, la plataforma flotante de hormigón de aplicación a la industria eólica marina para el soporte de un aerogenerador es capaz de operar de forma que no todo el cuerpo intermedio (2) se encuentre sumergido, sino que parte de este se encuentra sobre la superficie del mar. Para esta configuración de plataforma, los cerramientos (5) que se disponen sobre el cuerpo intermedio ( FIG 2) simplemente consisten en unas losas o chapas reforzadas, ya que constructivamente es la solución más sencilla y resultan razonable al no estar expuestas a presión hidrostática por estar por encima de la flotación. Estos cerramientos (5) se disponen sobre cada cuasi circunferencia que compone la sección del cuerpo intermedio de la plataforma, exceptuando las torres (FIG 6).
La propia geometría del cuerpo intermedio (2) de hormigón ( FIG 2) de la plataforma flotante de hormigón armado de aplicación a la industria eólica marina para el soporte de un aerogenerador permite que puedan configurarse multitud de conceptos de plataforma diferentes según se disponga de más o menos cuasi circunferencias (6) en la sección horizontal (FIG 3) que conforma el cuerpo intermedio (2), manteniendo el número mínimo de estas cuasi circunferencias (6) en 5, tal y como se ha descrito anteriormente. Estas variaciones, junto con variaciones en la disposición de torres (4) (FIG 6) que forman el cuerpo superior (3) (FIG 2), tanto en número, habiendo al menos una, como en posición en la plataforma, permite obtener conceptos de plataformas tan diversos como: plataformas con una sola torre, en las que el área de flotación es relativamente pequeña y apenas contribuye a la estabilidad del artefacto ya que esta se consigue manteniendo el centro de gravedad muy bajo, y plataformas en las que existe más de una torre (4) en el cuerpo superior, donde una soporta el aerogenerador, y que se encuentran espaciadas entre sí para garantizar una inercia del área de flotación tal que sea favorable a la estabilidad del conjunto del artefacto.
La plataforma flotante de hormigón armado de aplicación a la industria eólica marina para el soporte de un aerogenerador de la presente invención consta (FIG 4) además de una celosía plana (9) de hormigón pretensado que se dispone entre el cuerpo inferior (2) y el cuerpo superior (3) de la plataforma ( FIG 2). Dicha celosía plana (9) consiste en al menos tres elementos longitudinales de hormigón pretensado dispuestos de forma triangular y situada de forma que los vértices de la geometría triangular se encuentran en las zonas de tramos rectos de contacto entre las secciones cuasi circulares (6) que componen el cuerpo intermedio (2) de la plataforma (FIG 3). Las líneas de fondeo (10) de la plataforma flotante de hormigón armado de aplicación a la industria eólica marina para el soporte de un aerogenerador (FIG 4) se hacen firmes sobre los tramos rectos de contacto entre las cuasi circunferencias (6) que conforman la sección del cuerpo intermedio (2) de la plataforma en su zona más alta, de forma que existe continuidad estructural entre líneas de fondeo (10) y los vértices de la celosía plana (9) de hormigón pretensado.
La propia configuración de la celosía plana (9) de hormigón pretensado permite que se pueda adaptar a la geometría de la plataforma flotante de hormigón armado de aplicación a la industria eólica marina para el soporte de un aerogenerador en función del número de cuasi circunferencias (6) existentes en la sección del cuerpo intermedio (2) de hormigón (FIG 5), de modo que añadiendo elementos longitudinales de hormigón pretensado se pueda componer una celosía (9) a partir de varias disposiciones en forma triangular de estos elementos longitudinales. Esta característica brinda de una cierta versatilidad a la mencionada celosía (9) que la hace adecuada para cualquiera de las posibles configuraciones que puede adoptar la una plataforma flotante de hormigón armado de aplicación a la industria eólica marina para el soporte de un aerogenerador de la presente invención. Se ha descrito la invención con referencia a casos específicos sin apartarse del alcance general de la invención según lo definido en las reivindicaciones adjuntas. Por esta razón, la especificación y con ello los dibujos no son restrictivos ni limitantes y deben entenderse como un ejemplo.

Claims

REIVINDICACIONES
1) Plataforma flotante de hormigón armado de aplicación a la industria eólica marina para el soporte de un aerogenerador, caracterizada por: a) Un cuerpo inferior (1) que consiste en una base plana de hormigón armado. b) Un único cuerpo intermedio de hormigón armado (2) formado por una extrusión vertical de una sección horizontal que consiste en una disposición de, al menos, 5 cuasi circunferencias (6) adyacentes con un tramo recto de contacto entre ellas, y ordenadas a tresbolillo; siendo el interior de cada cuasi circunferencia un espacio estanco (8) y los espacios interiores de cada tres cuasi circunferencias espacios huecos (7) y directamente conectados con el mar. c) Un cuerpo superior (3) sobre el cuerpo intermedio (2) formado por al menos una torre (4) que es prolongación de una cuasi circunferencia (6) y que sirve de soporte al aerogenerador. d) Sistema de fondeo mediante líneas (10) que conectan la plataforma al fondo del mar.
2) Plataforma flotante de hormigón armado de aplicación a la industria eólica marina para el soporte de un aerogenerador, de acuerdo a la reivindicación 1), caracterizado porque los cerramientos (5) del cuerpo intermedio (2) son domos y en el que cada domo se dispone sobre cada una de las cuasi circunferencias
(6) que conforman la sección del cuerpo intermedio (2) de hormigón armado.
3) Plataforma flotante de hormigón armado de aplicación a la industria eólica marina para el soporte de un aerogenerador, de acuerdo a la reivindicación 1), caracterizado porque los cerramientos (5) del cuerpo intermedio (2) son losas planas o chapas reforzadas y en el que cada losa o chapa reforzada se dispone sobre cada una de las cuasi circunferencias (6) que conforman la sección del cuerpo intermedio (2) de hormigón de armado.
4) Plataforma flotante de hormigón armado de aplicación a la industria eólica marina para el soporte de un aerogenerador, según las reivindicaciones 1) y 2), en la cual algunos de los espacios estancos (8) interiores de cada cuasi circunferencia (6) tienen capacidad para albergar una combinación de lastre sólido y líquido y aire.
5) Plataforma flotante de hormigón armado de aplicación a la industria eólica marina para el soporte de un aerogenerador, según las reivindicaciones 1) y 3), en la cual algunos de los espacios estancos (8) interiores de cada cuasi circunferencia (6) tienen capacidad para albergar una combinación de lastre sólido y líquido y aire.
6) Plataforma flotante de hormigón armado de aplicación a la industria eólica marina para el soporte de un aerogenerador, de acuerdo a la reivindicación 4), en la que el sistema de fondeo está caracterizado por: a) Una celosía plana de hormigón pretensado (9), ubicada entre el cuerpo intermedio (2) de hormigón y los cerramientos (5) en forma de domo, y consistente en, al menos, 3 elementos longitudinales dispuestos de forma triangular y, situada de manera que los vértices de la mencionada celosía se encuentran sobre los tramos rectos de contacto entre las cuasi circunferencias (6) que conforman la sección del cuerpo intermedio (2) de la plataforma. b) En el que las líneas de fondeo (10) se hacen firmes sobre los tramos rectos de contacto entre las cuasi circunferencias (6) que conforman la sección del cuerpo intermedio (2) de la plataforma en su zona más alta, existiendo continuidad estructural entre la celosía plana (9) de hormigón pretensado y las mencionadas líneas de fondeo (10).
7) Plataforma flotante de hormigón armado de aplicación a la industria eólica marina para el soporte de un aerogenerador, de acuerdo a la reivindicación 4), en la que el sistema de fondeo está caracterizado por líneas de fondeo que se hacen firmes sobre chapas reforzadas, ubicadas entre el cuerpo intermedio (2) de hormigón y los cerramientos (5) en forma de domo.
8) Plataforma flotante de hormigón armado de aplicación a la industria eólica marina para el soporte de un aerogenerador, de acuerdo a la reivindicación 5), en la que el sistema de fondeo está caracterizado por líneas de fondeo (10) que se hacen firmes sobre los cerramientos (5) planos.
PCT/ES2021/070300 2020-05-08 2021-04-30 Plataforma flotante de hormigón armado de aplicación a la industria del sector de la eólica marina WO2021224525A1 (es)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP21799682.6A EP4148185A1 (en) 2020-05-08 2021-04-30 Floating reinforced concrete platform applicable to the marine wind power sector industry
AU2021269158A AU2021269158A1 (en) 2020-05-08 2021-04-30 Floating platform made of reinforced concrete applicable to the offshore wind sector industry
CN202180046640.4A CN115735060A (zh) 2020-05-08 2021-04-30 适用于海上风电行业的由钢筋混凝土制成的浮动平台
US17/998,160 US20230392582A2 (en) 2020-05-08 2021-04-30 Floating reinforced concrete platform applicable to the marine wind power sector industry
KR1020227042829A KR20230006911A (ko) 2020-05-08 2021-04-30 해상 풍력 분야 산업에 적용 가능한 보강 콘크리트로 만들어진 플로팅 플랫폼
CA3178105A CA3178105A1 (en) 2020-05-08 2021-04-30 Floating platform made of reinforced concerte applicable to the offshorewind sector industry
JP2023512485A JP2023529023A (ja) 2020-05-08 2021-04-30 洋上風力分野の産業に適用可能な鉄筋コンクリート製の浮体式プラットフォーム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES202030418A ES2876053B2 (es) 2020-05-08 2020-05-08 Plataforma flotante de hormigon armado de aplicacion a la industria del sector de la eolica marina
ESP202030418 2020-05-08

Publications (1)

Publication Number Publication Date
WO2021224525A1 true WO2021224525A1 (es) 2021-11-11

Family

ID=78464047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2021/070300 WO2021224525A1 (es) 2020-05-08 2021-04-30 Plataforma flotante de hormigón armado de aplicación a la industria del sector de la eólica marina

Country Status (9)

Country Link
US (1) US20230392582A2 (es)
EP (1) EP4148185A1 (es)
JP (1) JP2023529023A (es)
KR (1) KR20230006911A (es)
CN (1) CN115735060A (es)
AU (1) AU2021269158A1 (es)
CA (1) CA3178105A1 (es)
ES (1) ES2876053B2 (es)
WO (1) WO2021224525A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115088660A (zh) * 2022-06-17 2022-09-23 明阳智慧能源集团股份公司 一种半潜式浮式风机和柔性网箱一体化结构及其施工方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974789A (en) 1974-08-05 1976-08-17 Groot Sebastian J De Floating structures including honeycomb cores formed of elongate hexagonal cells
CN102358402A (zh) 2011-08-31 2012-02-22 中国海洋石油总公司 具有蜂窝型舱室的浮式生产储存外输油轮
EP2457818A1 (en) 2010-11-25 2012-05-30 Alstom Wind, S.L.U. Reducing oscillations in offshore wind turbines
US20120155967A1 (en) * 2010-12-21 2012-06-21 Lockheed Martin Corporation On-site Fabricated Fiber-Composite Floating Platforms for Offshore Applications
GB2493023A (en) * 2011-07-22 2013-01-23 Sway Turbine As Wind turbine foundation with pontoons
WO2013155521A1 (en) 2012-04-13 2013-10-17 University Of Main System Board Of Trustees Floating wind turbine platform and method of assembling
WO2014013098A1 (es) * 2012-07-18 2014-01-23 Universidad De Cantabria Plataforma semi sumergible para aplicaciones en mar abierto
JP2014184863A (ja) 2013-03-25 2014-10-02 Fuji Ps Corp プレキャストpc円筒浮体構造
JP2017074947A (ja) 2017-02-03 2017-04-20 清水建設株式会社 洋上風力発電用浮体構造物
CN106638662A (zh) * 2016-11-15 2017-05-10 天津大学 一种混凝土支撑结构的三个筒型基础组合式基础结构体系
WO2019070140A1 (pt) * 2017-10-03 2019-04-11 Instituto Superior Técnico Fundação para turbina eólica offshore de capacidade flutuante e com sistema de fixação por âncoras de sucção
CN109941398A (zh) 2019-03-26 2019-06-28 华中科技大学 适用于海上浮式风机的多点系泊结构及海上风力发电机
US20190264656A1 (en) 2014-11-27 2019-08-29 Universitat Politecnica De Catalunya Floating structure for supporting a marine wind turbine
CN110397066A (zh) * 2019-06-28 2019-11-01 天津大学 一种多筒组合基础结构及其施工方法
CN110453711A (zh) * 2019-06-28 2019-11-15 天津大学 一种弹性过渡段多筒基础结构及其施工方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974789A (en) 1974-08-05 1976-08-17 Groot Sebastian J De Floating structures including honeycomb cores formed of elongate hexagonal cells
EP2457818A1 (en) 2010-11-25 2012-05-30 Alstom Wind, S.L.U. Reducing oscillations in offshore wind turbines
US20120155967A1 (en) * 2010-12-21 2012-06-21 Lockheed Martin Corporation On-site Fabricated Fiber-Composite Floating Platforms for Offshore Applications
GB2493023A (en) * 2011-07-22 2013-01-23 Sway Turbine As Wind turbine foundation with pontoons
CN102358402A (zh) 2011-08-31 2012-02-22 中国海洋石油总公司 具有蜂窝型舱室的浮式生产储存外输油轮
WO2013155521A1 (en) 2012-04-13 2013-10-17 University Of Main System Board Of Trustees Floating wind turbine platform and method of assembling
WO2014013098A1 (es) * 2012-07-18 2014-01-23 Universidad De Cantabria Plataforma semi sumergible para aplicaciones en mar abierto
JP2014184863A (ja) 2013-03-25 2014-10-02 Fuji Ps Corp プレキャストpc円筒浮体構造
US20190264656A1 (en) 2014-11-27 2019-08-29 Universitat Politecnica De Catalunya Floating structure for supporting a marine wind turbine
CN106638662A (zh) * 2016-11-15 2017-05-10 天津大学 一种混凝土支撑结构的三个筒型基础组合式基础结构体系
JP2017074947A (ja) 2017-02-03 2017-04-20 清水建設株式会社 洋上風力発電用浮体構造物
WO2019070140A1 (pt) * 2017-10-03 2019-04-11 Instituto Superior Técnico Fundação para turbina eólica offshore de capacidade flutuante e com sistema de fixação por âncoras de sucção
CN109941398A (zh) 2019-03-26 2019-06-28 华中科技大学 适用于海上浮式风机的多点系泊结构及海上风力发电机
CN110397066A (zh) * 2019-06-28 2019-11-01 天津大学 一种多筒组合基础结构及其施工方法
CN110453711A (zh) * 2019-06-28 2019-11-15 天津大学 一种弹性过渡段多筒基础结构及其施工方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115088660A (zh) * 2022-06-17 2022-09-23 明阳智慧能源集团股份公司 一种半潜式浮式风机和柔性网箱一体化结构及其施工方法

Also Published As

Publication number Publication date
US20230392582A2 (en) 2023-12-07
ES2876053B2 (es) 2022-03-22
AU2021269158A1 (en) 2023-01-05
KR20230006911A (ko) 2023-01-11
EP4148185A1 (en) 2023-03-15
CA3178105A1 (en) 2021-11-11
ES2876053A1 (es) 2021-11-11
US20230228247A1 (en) 2023-07-20
JP2023529023A (ja) 2023-07-06
CN115735060A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
ES2718934T3 (es) Base de turbina eólica flotante con patas de tensión de tipo abocinado, turbina eólica marina y método de construcción
ES2952964T3 (es) Estructura marítima para la cimentación de edificaciones y su método de instalación
DK3225835T3 (en) Floating platform for utilization of wind energy
ES2387342B2 (es) Plataforma semisumergible triángular para aplicaciones en mar abierto
WO2014177729A1 (es) Estructura sumergible de soporte activo para torres de generadores y subestaciones o elementos similares, en instalaciones marítimas
WO2014013098A1 (es) Plataforma semi sumergible para aplicaciones en mar abierto
ES2876053B2 (es) Plataforma flotante de hormigon armado de aplicacion a la industria del sector de la eolica marina
US11920559B2 (en) Floating platform for high-power wind turbines
WO2014181007A1 (es) Plataforma flotante para aplicaciones en mar abierto
WO2024023371A1 (es) Plataforma semi-sumergible para soporte de aerogeneradores
ES2938666B2 (es) Plataforma flotante semisumergible para aerogenerador marino
JP2023036533A (ja) 浮体式洋上構造体基礎構造
BR112017011070B1 (pt) Plataforma flutuante para aproveitamento de energia eólica

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21799682

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 3178105

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2023512485

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227042829

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021799682

Country of ref document: EP

Effective date: 20221208

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021269158

Country of ref document: AU

Date of ref document: 20210430

Kind code of ref document: A