WO2014177729A1 - Estructura sumergible de soporte activo para torres de generadores y subestaciones o elementos similares, en instalaciones marítimas - Google Patents

Estructura sumergible de soporte activo para torres de generadores y subestaciones o elementos similares, en instalaciones marítimas Download PDF

Info

Publication number
WO2014177729A1
WO2014177729A1 PCT/ES2013/070274 ES2013070274W WO2014177729A1 WO 2014177729 A1 WO2014177729 A1 WO 2014177729A1 ES 2013070274 W ES2013070274 W ES 2013070274W WO 2014177729 A1 WO2014177729 A1 WO 2014177729A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
submerged
hollow bodies
structure according
mast
Prior art date
Application number
PCT/ES2013/070274
Other languages
English (en)
French (fr)
Inventor
José Alfonso NEBRERA GARCÍA
Jaime ALTOLAGUIRRE MCCRUMLISH
Original Assignee
Acs Servicios, Comunicaciones Y Energía S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acs Servicios, Comunicaciones Y Energía S.L. filed Critical Acs Servicios, Comunicaciones Y Energía S.L.
Priority to DK13883480.9T priority Critical patent/DK2993270T3/en
Priority to KR1020157033571A priority patent/KR102160325B1/ko
Priority to JP2016511106A priority patent/JP6244013B2/ja
Priority to PT138834809T priority patent/PT2993270T/pt
Priority to CN202010812533.5A priority patent/CN112009634A/zh
Priority to LTEP13883480.9T priority patent/LT2993270T/lt
Priority to EP13883480.9A priority patent/EP2993270B1/en
Priority to ES13883480.9T priority patent/ES2637142T3/es
Priority to CN201380077927.9A priority patent/CN105408550A/zh
Priority to PCT/ES2013/070274 priority patent/WO2014177729A1/es
Priority to US14/787,602 priority patent/US9592889B2/en
Priority to ES201331368A priority patent/ES2516590B1/es
Publication of WO2014177729A1 publication Critical patent/WO2014177729A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/52Submerged foundations, i.e. submerged in open water
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/42Foundations for poles, masts or chimneys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/50Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B43/00Improving safety of vessels, e.g. damage control, not otherwise provided for
    • B63B43/02Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking
    • B63B43/04Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking by improving stability
    • B63B43/06Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking by improving stability using ballast tanks
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/42Foundations for poles, masts or chimneys
    • E02D27/425Foundations for poles, masts or chimneys specially adapted for wind motors masts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/446Floating structures carrying electric power plants for converting wind energy into electric energy

Definitions

  • the present invention submersible structure of active support for towers of generators and substations or similar elements, in maritime installations, refers to a support structure of the type intended to hold wind generators and substations or other similar elements that are installed at sea, which, being the type that can be called active, being equipped with means that allow it to adapt its resistance to the changing efforts that it has to face, presents, on the one hand, the innovative particularity of being of adjustable immersion to being partially submerged in its working position, avoiding resistance due to waves, and, on the other, that of being advantageously made of concrete, making its cost less due to the flexibility in manufacturing and its useful life much longer due to its resistance in marine environment.
  • the field of application of the present invention falls within the sector of the industry dedicated to the manufacture of marine support structures, basically focusing on the field of support for wind generators and substations or similar elements.
  • Said application describes a floating platform for an aero-generator comprising at least three stabilizing columns, each column having an internal volume to contain a ballasting fluid; a tower that is coupled to the platform; a rotor of a turbine coupled to an electric generator, mounted close to the upper end of the tower; main crossbars that interconnect the three stabilizing columns; plates located at the lower end of the stabilizer columns; and a ballast control system to move the ballast fluid between the internal volumes of the three columns to adjust the vertical alignment of the tower.
  • Said document claims a floating platform, a method for deploying a semi-submersible platform, and a method for operating a floating platform for an aero-generator.
  • the waterline cuts the entire structure, the bodies of the columns, and is totally affected by the movement of the waves.
  • the waterline is the line formed by the intersection of the plane formed by the surface of the water, or sea level, with the structure (for example a ship), separating the submerged part from the not. Said waterline may vary depending on the load or the state of the water. This type of structure works like a ship (center of gravity above the center of care).
  • the platform incorporates plates at the base of the columns to prevent tipping as well as to dampen the movement.
  • vertical of arfada that is to say, the vertical movement of ascent and descent, having to be totally mounted on land and moved floating to its location later.
  • the submersible structure of active support for towers of generators and substations or similar elements, in maritime installations that the present invention proposes is a support structure to locate in the sea towers of generators and substations or similar elements, which is configured from of a set of hollow concrete bodies, preferably cylinders (their number may vary, depending on the size and weight of the element to be supported as well as its section, which will not necessarily be circular), joined together by hollow resistant members, sections or arms, also of concrete, which transmit the efforts between them.
  • a main hollow body will be available on which the generator mast will be placed.
  • Said main hollow body may have a section in its upper part of smaller area than the section of the lower part that remains submerged in working position thus seeking to minimize the surface in the waterline.
  • a concrete structure has better behavior against corrosion under seawater; In this case, this is important since a large part of the volume of the structure, at least 60%, will be submerged. Likewise, in order to achieve a stable submerged structure, said stability is achieved by causing the center of gravity thereof to be below the center of the fairing (center of gravity of the volume of water displaced by a float, for a given condition , where the thrust force is considered applied for stability purposes). In this way, the structure is self-adhesive.
  • some of said hollow bodies are partially filled with water, to a level such that the assembly, in its working position, that is, when the platform It is located in its final location, it remains submerged at a depth sufficient to avoid the effect of the waves on them, so that only a part of the section with smaller section of the main hollow body or the mast protrudes above the sea surface located on the main hollow body and at whose upper end the generator or element to be supported is fixed, or at most a part of the main hollow body.
  • This platform is designed for depths from 20 to 35 meters, depending on the mechanoic and soil characteristics of the installation area, and in particular for depths where the use of monopila type foundations is not the best solution.
  • a pumping system is incorporated that allows to regulate the total amount of water in the cylinders, and thus ensure the regulation of the described immersion of the set, and that, preferably, at the same time, allows to move the water of the cylinders from one to another, depending on the moment of overturning of the whole of the structure originated by the wind on the wind turbine or element that sustains, and depending on the system of mooring, by the effort of the moorings on the point or points of mooring, contributing to regulate the inclination of the structure in function of the mentioned moment of tipping.
  • the structure may mount a concrete mast for the turbine or similar element to which it is intended, thus providing greater durability to the entire assembly and offering greater flexibility in manufacturing and logistics, with said mast arranged on the main hollow body.
  • Said mast will have a smaller section than the main hollow body section that remains submerged.
  • the section that cuts at sea level and determines the waterline should be as small as possible, and therefore the section that cuts the sea level is, depending on the design of the structure, or the section of the upper part of the main hollow body when it has at least two sections differentiated with the section greater submerged, or the section of the mast when it is arranged directly on the main hollow body.
  • the section on the waterline should be as small as possible, and in any case, that section on the waterline should be less than the sum of the submerged sections of the hollow bodies that make up the structure .
  • different configurations of submersible structure for example:
  • One of the hollow bodies of the structure is of constant section and part of its upper end is maintained above sea level while the rest of the hollow bodies are submerged, or
  • One of the hollow bodies of the structure is of variable section, the submerged section being larger and the upper section in the waterline being smaller, while the rest of the hollow bodies are submerged, or
  • the hollow bodies of the structure are of variable section, the submerged section being larger and the upper section in the waterline smaller,
  • the hollow bodies of the structure are submerged, being arranged on at least one a mast whose section is the waterline, or
  • the hollow bodies of the structure are submerged and a mast is arranged in each of them, which determine the section on the waterline.
  • each of the hollow bodies that have a mast is a main hollow body.
  • said section on the waterline is less than the sum of the submerged sections of the hollow bodies that make up the structure.
  • the main object of the present invention is a submersible active support structure according to claim 1.
  • the mooring system to be used may be of the "single mooring point" type, that is, coupling the structure to a buoy (surface or submerged previously moored to the seabed) by means of fastening means, which can be a rigid element, for example a stainless steel, concrete or similar arm, or a rigid element combined with a flexible element, for example a steel brace, a cable, a rope of synthetic material, a chain or the like, making the connection to the platform so that the hitching operations are streamlined.
  • this type of mooring will allow the structure to position itself in the face of the wind, therefore, the wind turbine gondola may not have the ability to rotate and, optionally, the possibility of optimizing the structure design .
  • the structure is not axisymmetric, that is, with non-circular designs on the tower, etc.
  • other traditional mooring systems could be used.
  • the buoy has mooring means for its attachment to the seabed, said means of mooring being a cable, chain, rope of synthetic material or similar.
  • the system allows the assembly of all the equipment in port, including the start-up test, and moving the assembly to its final location at sea, playing with the ability to reduce or increase the buoyancy and submerged at will, as appropriate ..
  • the structure object of the present invention substantially improves the current limitations of existing similar support structures, with the following advantages:
  • Figure number 1 shows a schematic elevation view of the submersible structure of active support for towers of generators and substations or elements similar, in maritime installations, object of the invention, in an embodiment thereof with four cylinders and axially symmetrical mast and held by a single point with rigid arm to a floating buoy, applicable for shallow water.
  • Figure number 2 shows a plan view of the embodiment example of the structure, according to the invention, shown in the preceding figure.
  • Figures 3 and 4 show, in elevation and plan views respectively, another embodiment of the submersible active support structure of the invention, in this case with fewer cylinders and also attached to a buoy.
  • Figures 5 and 6 show, in the respective elevation and plan views, another embodiment of the submersible structure object of the invention, in which the submerged components are located inside a single housing.
  • Figures 7 and 8 show, in elevation and plan views, another example in which the submerged structure presents another construction of hollow bodies.
  • Figures 9a and 9b show the elevational and plan views of an example of the invention for low depths in which the structure is anchored to the seabed by means of piles.
  • Figures 10a and 10b show the elevational and plan views of another example of the invention to lower depths in which the structure is anchored to the seabed by means of chains and anchors.
  • Figures 1 1a and 1 1 b show an example of a structure with a main hollow body with variable section.
  • Figure 12 shows an example of a substation or platform supported by a structure object of the present invention.
  • the structure (1) in question applicable as a support for a mast (2) at whose upper end an element (3) is incorporated.
  • a mast (2) at whose upper end an element (3) is incorporated.
  • to be sustained such as a wind turbine or similar, it is configured from two or more hollow bodies or cylinders (4 ' , 4), capable of containing water inside, and that are linked together by sections (5) or hollow arms, preferably binoculars, through which water passes from one to another, there is a pumping system (not shown) that regulates the displacement of water between said cylinders, depending on the moment of overturning caused by wind on the mast (2) and the element (3) that supports, with the particularity that, said pumping system or Another complementary pumping system constitutes a means of regulating the immersion of the platform, since it also regulates the total amount of water contained in said bodies or cylinders (4 ' , 4), and that penetrates through one or more intakes ( 6) in said bodies (4 ' , 4) to control the depth of the assembly, so that
  • the hollow bodies or cylinders (4 ' , 4) are made of concrete and, preferably also the mast (2), locating the said sockets (6) well somewhere in the hollow bodies or cylinders ( 4 ' , 4) well in another position of the structure.
  • the structure comprises a submerged main hollow body section (4 ' ) that decreases slightly from the top until it cuts to sea level, so that the area of the waterline section is smaller than the area of the submerged section of the main hollow body, being placed on said minor section and not submerged the mast (2).
  • An alternative to this construction would be that the mast (2) be placed directly on the submerged main hollow body, so that the section of the waterline would be determined by the area of the mast section (2) that cut at sea level .
  • Figures 11 a and 1 1 b show an example of a structure in which the main body comprises at least two sections of different area.
  • the structure (1) comprises fastening means (9), rigid or rigid and flexible, such as a rigid arm made of steel or other material, a steel brace, a cable, a chain or rope of synthetic material, to a buoy (7 ) of mooring, submerged or not, fixed to the seabed (FM), by means of mooring, preferably cables, chains or ropes of a synthetic material (8). Due to said fastening means (9), the structure (1) will rotate (R) around the buoy (7) depending on the direction in which the wind blows.
  • fastening means (9) rigid or rigid and flexible, such as a rigid arm made of steel or other material, a steel brace, a cable, a chain or rope of synthetic material
  • the structure (1) comprises three hollow concrete bodies or cylinders (4) arranged radially to the mast (2), the lower part of said mast ( 2) a fourth cylinder or main hollow body (4 ' ) that joins the rest by means of radial sections or hollow arms (5).
  • Said mast (2) is in this example circular section, although other sections could be used.
  • the structure (1) comprises a floating buoy (7) which in turn is tied to the seabed (FM) by means of the corresponding mooring means, cables, chains or ropes of a synthetic material (8) .
  • the structure is attached to said buoy (7), which in turn can incorporate a swivel "swivel" connector (10) to allow free rotation of the structure around the buoy by means of a rigid arm (9), which could be supplemented by another flexible clamping element, such as a cable.
  • the connection cable (11) responsible for transmitting the energy generated by the wind turbine (3) is also connected to said buoy (7), optionally by means of a rotating electric transmission element that prevents the cable from twisting.
  • the evacuation cable and / or inter-array cables, if applicable, are also connected to said buoy (7).
  • the structure (1) of the invention comprises only two concrete cylinders (4 ' , 4), a main cylinder (4 ' ) located under the mast (2) with the element (3) to be supported, a wind turbine (3), and the other (4) connected to the first (4 ' ) by a section or arm (5) that allows the passage of water between them.
  • the section of the waterline is determined by the smaller section of the upper part of the main hollow cylinder (4 ' ), although it could also be the mast section.
  • the structure (1) is attached to a buoy (7), in this case submerged and tied to the seabed (FM) by means of synthetic cables, chains or ropes (8), by a rigid arm or another clamping element (9) or combination of a rigid and a flexible element, and a swivel joint (10) or swivel that allows its free rotation, depending on the wind direction.
  • the rigid arm which can be supplemented by a flexible element such as a cable or rope (9) is inclined between the buoy (7) and the structure (1), specifically is anchored to the mast (2 ), so that said rigid or rigid arm together with a flexible element such as a steel, cable or rope tie, contributes to limit the possibility of turning the structure.
  • the buoy in any of the examples, can be made of steel or concrete depending on the conditions of the site and the balance between durability and initial investment.
  • the flexible fasteners prevent the structure from turning to the side that the wind blows, therefore working on traction, and acting as a brace.
  • rigid fasteners allow maintain a constant distance between the structure (1) and the buoy (7), in addition to helping to counteract the tipping moment caused by the forces of the wind.
  • masts with circular section have been included, however, they may have other sections that offer less wind resistance when faced with it.
  • An example of an alternative mast section can be seen in Figures 6 and 8, where it is not circular but slightly ovoidal. In any case, in order to provide the mast with aerodynamic characteristics, it may have a cross-section that is not circular, and adapted to the meteorological and marine conditions of the site of the structure.
  • the hollow bodies of the structure which as mentioned are preferably cylindrical, can also have a cross section that is not cylindrical.
  • FIG. 5 an alternative structure is observed, with a mast (20), with a non-circular cross-section, with a wind turbine (3) at its upper end, and a submerged structure formed by two hollow bodies ( 40) with the same characteristics as the aforementioned cylinders and said hollow bodies (40) communicated by hollow sections (50), the elements, hollow bodies (40) and sections (50) being incorporated inside a housing (45 ) also of concrete.
  • the purpose of this structure is to reduce the construction cost of the foundation by facilitating the use of sliding formwork in drawers, when the calculations so permit, depending on the sea conditions at the site of said structure.
  • the section of the waterline is determined by the smallest section of the mast (2).
  • FIG. 7 another alternative structure is observed comprising a submerged hollow cylinder (400), located below the mast with non-circular cross section on which a wind turbine (3) is located, said cylinder (400) being ) attached through a section or hollow arm (500) to a hollow body (410), also submerged, of larger dimensions than said cylinder (400).
  • This structure is of special application in places where a strong transverse swell to the wind direction is usual to improve lateral stability against transverse stresses.
  • the section of the waterline is determined by the smallest section of the mast (2).
  • the qualities of the structure which are: variable buoyancy; wave mitigation; shrinkage reduction; and automatic compensation of the tipping moment, are used to reduce and homogenize the transmitted load on the seabed (FM), which is especially useful during installation / uninstallation maneuvers, and in particular in areas where the ground is made up of inconsistent materials (loose sand, mud) or with irregular resistance.
  • the use of buoys (7) is not necessary and the structure is fixed directly to the seabed by means of anchoring means (8, 80). In this way the assembly can rest on the seabed reducing and homogenizing the loads on it.
  • the structure is not completely supported on the seabed (FM) but is half-suspended, being able to rely more heavily on it and thus complementing the active system that counteracts the tipping moment exerted by wind forces.
  • figures 9a and 9b show a structure like that of figures 1 and 2, formed by four hollow bodies (4, 4 ' ) joined by sections or preferably prismatic arms (5) that in plan form a "Y ", and placing the mast (2) with the wind turbine (3) at its upper end, in the main and central cylindrical body (4 ' ).
  • This structure is anchored to the seabed (FM) by means of anchoring means (80) constituted by piles that are located in the three peripheral hollow bodies (4).
  • Figures 10a and 10b show a structure like that of Figures 9a and 9b, in which the anchoring means (800) to the seabed (FM) are anchors with chains that rest partially on the seabed (FM).
  • the objective of the different constructions is to achieve a structure of a durable material that allows a simple series construction, such as concrete, and that reduces its tendency to turn as much as possible when it is located on the high seas and subject to a buoy .
  • Figure 12 shows an electrical substation or a platform (30) that is arranged on a structure object of the present invention.
  • the structure in this case comprises four hollow cylindrical bodies (4 ' ) with variable section, the lower section of each being larger and submerged and the upper section smaller than the submerged section, determining the sum of these minor sections the section on the waterline.
  • This section in the waterline is less than the sum of the submerged sections of the hollow bodies that make up the structure.
  • several masts or columns (2) can be arranged on the hollow bodies that make up the structure, so that it is the section of said masts or columns (2) that determine the section on the waterline.

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Architecture (AREA)
  • Wind Motors (AREA)
  • Foundations (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)

Abstract

Estructura sumergible de soporte activo para torres de generadores y subestaciones o elementos similares, en instalaciones marítimas que se configura a partir de cuerpos huecos de hormigón unidos entre sí mediante tramos o brazos a través de los que pasa agua de uno a otro, con un sistema de bombeo que regula la inclinación de la estructura en función del momento de vuelco, contando con medios de regulación de inmersión, que regulan la cantidad de agua en los cuerpos huecos de manera que, en su posición de trabajo, el centro de gravedad de la estructura está por debajo del centro de carena de la misma y el área de la sección de la estructura en la línea de flotación es menor que la suma de las secciones sumergidas de dichos cuerpos huecos. Además, el conjunto podrá operar con un sistema de amarrado tradicional o con uno del tipo "único punto de amarre" que permitirá que el conjunto se auto posicione de cara al viento. Por último, para su instalación en zonas de escasa profundidad, se podrá adoptar un diseño especial el cual permita que el conjunto pueda apoyarse sobre el lecho marino reduciendo y homogeneizando las cargas sobre el mismo.

Description

ESTRUCTURA SUMERGIBLE DE SOPORTE ACTIVO PARA TORRES DE GENERADORES Y SUBESTACIONES O ELEMENTOS SIMILARES, EN
INSTALACIONES MARÍTIMAS OBJETO DE LA INVENCIÓN
La presente invención, estructura sumergible de soporte activo para torres de generadores y subestaciones o elementos similares, en instalaciones marítimas, se refiere a una estructura de soporte del tipo destinado a la sujeción de generadores eólicos y subestaciones u otro tipo de elementos similares que se instalan en el mar, la cual, siendo del tipo que se puede denominar activo, al estar dotada de medios que permiten adaptar su resistencia a los esfuerzos cambiantes que ha de afrontar, presenta, por una parte, la innovadora particularidad de ser de inmersión regulable para quedar parcialmente sumergida en su posición de trabajo, evitando resistencias debidas al oleaje, y, por otra, la de estar ventajosamente realizada en hormigón, haciendo que su coste pueda ser menor por la flexibilidad en la fabricación y su vida útil mucho más prolongada por su resistencia en ambiente marino.
El campo de aplicación de la presente invención se enmarca dentro del sector de la industria dedicada a la fabricación de estructuras de soporte marinas, centrándose básicamente en el ámbito de las destinadas a soporte de generadores eólicos y subestaciones o elementos similares.
ANTECEDENTES DE LA INVENCIÓN
Como es sabido, existen elementos técnicos, tales como los generadores de energía eólica, que, para aprovechar al máximo sus prestaciones, se instalan en ubicaciones marítimas, en lugar de terrestres. Tales ubicaciones, sin embargo, plantean problemas de sujeción, debido, por una parte a los distintos niveles de profundidad que puede llegar a tener el fondo marino en la ubicación elegida, como, especialmente, por los esfuerzos que deben afrontar tanto a causa del viento como a causa de los embates del oleaje.
Como referencia al estado actual de la técnica, cabe señalar que, si bien se conocen múltiples soluciones a tales problemas, pocas de ellas son realmente económicamente efectivas.
En tal sentido, cabe mencionar que, como documento más cercano, se tiene conocimiento de la solicitud de patente US201 10037264A1 , relativa a una "Plataforma marina estabilizada por columnas con placas de atrapamiento de agua y sistema de amarre asimétrico para el apoyo de las turbinas eólicas en el mar" (Column-stabilized offshore platform with water-entrapment plates and asymmetric mooring system for support of offshore wind turbines). Dicha solicitud describe una plataforma flotante para un aero-generador que comprende, al menos, tres columnas estabilizadoras, teniendo cada columna un volumen interior para contener un fluido de lastrado; una torre que es acoplada a la plataforma; un rotor de una turbina acoplado a un generador eléctrico, montados próximos al extremo superior de la torre; travesaños principales que interconectan las tres columnas estabilizadores; planchas situadas en el extremo inferior de las columnas estabilizadoras; y un sistema de control de lastre para mover el fluido de lastrado entre los volúmenes internos de las tres columnas para ajusfar el alineamiento vertical de la torre. Dicho documento reivindica una plataforma flotante, un método para desplegar una plataforma semi-sumergible, y un método para operar una plataforma flotante para un aero-generador.
Aunque a la plataforma descrita en dicho documento se le llama semi- sumergible, en realidad es flotante, ya que la gran parte de su volumen queda flotando sobre la superficie, es decir gran parte de las columnas que la forma está fuera del agua y otra parte, sumergida. Por tanto, la línea de flotación corta toda la estructura, los cuerpos de las columnas, y se ve totalmente afectada por el movimiento de las olas. La línea de flotación es la línea formada por la intersección del plano formado por la superficie del agua, o nivel del mar, con la estructura (por ejemplo un buque), separando la parte sumergida de la no lo está. Dicha línea de flotación puede variar en función de la carga o del estado del agua. Este tipo de estructura funciona como un barco (centro de gravedad por encima del centro de carena). Ello hace que el sistema de bombas para estabilizarla y mantener la torre vertical, deba compensar el momento de vuelco tanto frente al embate del oleaje como del viento La plataforma incorpora planchas en las bases de las columnas para evitar el vuelco así como para amortiguar el movimiento vertical de arfada, es decir, el movimiento vertical de ascenso y descenso, debiendo ser totalmente montada en tierra y trasladada flotando a su ubicación posteriormente.
Por último, otro de los inconvenientes que presenta el objeto de dicha solicitud es que, dado que se menciona que las columnas se pueden construir por la soldadura de secciones tubulares de diámetro uniforme, se deduce que se trata de una estructura ideada para ser construida en acero, lo cual lleva a limitaciones tanto de coste económico en su fabricación y mantenimiento como de vida útil por efectos del ambiente marino.
Sería deseable, pues, contar con una plataforma que evite tales inconvenientes, permitiendo mayor flexibilidad tanto a la hora de su construcción como de su instalación, siendo, como se ha señalado anteriormente, este el objetivo de la presente invención. EXPLICACIÓN DE LA INVENCIÓN
Así, la estructura sumergible de soporte activo para torres de generadores y subestaciones o elementos similares, en instalaciones marítimas que la presente invención propone es una estructura de soporte para ubicar en el mar torres de generadores y subestaciones o elementos similares, que se configura a partir de un conjunto de cuerpos huecos de hormigón, preferiblemente cilindros (su número puede variar, dependiendo del tamaño y peso del elemento a soportar así como su sección, que no necesariamente será circular), unidos entre sí por miembros resistentes huecos, tramos o brazos, también de hormigón, que transmiten los esfuerzos entre ellos. En las aplicaciones de la estructura para torres de generadores, se dispondrá de un cuerpo hueco principal sobre el que se situará el mástil del generador. En aquellas aplicaciones en las que la estructura sumergible objeto de la invención soporte una subestación o plataforma, la misma se podrá disponer sobre diferentes mástiles o columnas. Dicho cuerpo hueco principal podrá presentar una sección en su parte superior de menor área que la sección de la parte inferior que permanece sumergida en posición de trabajo buscando así minimizar la superficie en la línea de flotación.
Una estructura de hormigón tiene mejor comportamiento frente a la corrosión bajo el agua marina; en este caso, esto es importante puesto que una gran parte del volumen de la estructura, al menos el 60%, estará sumergida. Asimismo, con el fin de conseguir una estructura sumergida estable, dicha estabilidad se consigue provocando que el centro de gravedad de la misma se encuentra por debajo del centro de carena (centro de gravedad del volumen de agua desplazado por un flotador, para una condición dada, donde se considera aplicada la fuerza de empuje con fines de estabilidad). De esta manera, la estructura es autoadrizante.
Así, algunos de dichos cuerpos huecos (o todos, según el diseño), preferiblemente cilindros, que forman la estructura, están parcialmente llenos de agua, hasta un nivel tal que el conjunto, en su posición de trabajo, es decir, cuando la plataforma está ubicada en su emplazamiento definitivo, se mantiene sumergida a una profundidad suficiente para evitar el efecto de las olas sobre ellos, de manera que solamente sobresale por encima de la superficie del mar una parte del tramo con menor sección del cuerpo hueco principal o el mástil situado sobre el cuerpo hueco principal y a cuyo extremo superior se fija el generador o elemento a sustentar, o como máximo una parte del cuerpo hueco principal. Dicha plataforma se diseña para profundidades a partir de entre 20 y 35 metros, dependiendo de las características metoceánicas y de suelo de la zona de instalación, y en particular para profundidades donde el uso de fundaciones tipo monopila no es la mejor solución.
Además, en al menos uno, aunque puede ser en varios de dichos cuerpos huecos de hormigón, preferiblemente cilindros, se incorpora un sistema de bombeo que permite regular la cantidad total de agua en los cilindros, y asegurar así la regulación de la descrita inmersión del conjunto, y que, preferentemente, a la vez, permite desplazar el agua de los cilindros de unos a otros, en función del momento de vuelco del conjunto de la estructura originado por el viento sobre el aerogenerador o elemento que sustenta, y dependiendo del sistema de amarre, por el esfuerzo de las amarras sobre el punto o puntos de amarre, contribuyendo a regular la inclinación de la estructura en función del citado momento de vuelco.
Opcionalmente se podrá contar con un sistema de bombeo para cada regulación, y/o para cada cuerpo hueco o cilindro.
El hecho de tener la mayor parte del volumen, al menos el 60%, de la estructura, bajo la superficie permite reducir el efecto del oleaje sobre la verticalidad de la estructura, y asimismo, el hecho de disponer la mayor parte de la masa sumergida, lo más abajo posible, da estabilidad a la estructura al conseguir que el centro de gravedad se encuentre debajo del centro de carena, manteniendo las aceleraciones inducidas sobre el aerogenerador por los movimientos marinos dentro de límites aceptables para el fabricante del aerogenerador.
Como se ha señalado anteriormente, la estructura podrá montar un mástil de hormigón para la turbina o elemento similar a que se destine, aportando así una mayor durabilidad a todo el conjunto y ofreciendo mayor flexibilidad en cuanto a fabricación y logística, disponiendo dicho mástil sobre el cuerpo hueco principal. Dicho mástil dispondrá de una sección menor que la sección del cuerpo hueco principal que permanece sumergida.
Con el fin de que el oleaje afecte lo menos posible a la estabilidad de la estructura, en la posición de trabajo de la misma una vez emplazada en su lugar de operación, la sección que corta al nivel del mar y que determina la línea de flotación, debe ser lo menor posible, y por ello la sección que corta el nivel del mar es, dependiendo del diseño de la estructura, o bien la sección de la parte superior del cuerpo hueco principal cuando este tiene al menos dos secciones diferenciadas con la sección mayor sumergida, o bien la sección del mástil cuando este se dispone directamente sobre el cuerpo hueco principal.
En cualquiera de las posibles aplicaciones, la sección en la línea de flotación debe ser lo menor posible, y en cualquier caso, dicha sección en la línea de flotación debe ser menor que la suma de las secciones sumergidas de los cuerpos huecos que conforman la estructura. De esta manera, se pueden dar diferentes configuraciones de estructura sumergible, por ejemplo:
Uno de los cuerpos huecos de la estructura es de sección constante y parte de su extremo superior se mantiene por encima del nivel del mar mientras el resto de los cuerpos huecos se encuentran sumergidos, o
- Uno de los cuerpos huecos de la estructura es de sección variable, siendo mayor la sección sumergida y menor que esta la sección superior en la línea de flotación, mientras el resto de los cuerpos huecos se encuentran sumergidos, o
Los cuerpos huecos de la estructura son de sección variable, siendo mayor la sección sumergida y menor la sección superior en la línea de flotación,
Los cuerpos huecos de la estructura, de sección constante o variable, se encuentran sumergidos, disponiéndose sobre al menos uno un mástil cuya sección es la línea de flotación, o
Los cuerpos huecos de la estructura, de sección constante o variable, se encuentran sumergidos y se dispone un mástil en cada uno de ellos, que determinan la sección en la línea de flotación. En estos casos, cada uno de los cuerpos huecos que disponga un mástil es un cuerpo hueco principal. En todos los casos, y tal y como se ha mencionado, dicha sección en la línea de flotación es menor que la suma de las secciones sumergidas de los cuerpos huecos que conforman la estructura.
Por lo tanto, el objeto principal de la presente invención es una estructura sumergible de soporte activo según la reivindicación 1.
Por su parte, el sistema de amarre a emplear podrá ser del tipo "único punto de amarre", esto es, acoplar la estructura a una boya (en superficie o sumergida previamente amarrada al fondo marino) mediante unos medios de sujeción, que pueden ser un elemento rígido, por ejemplo un brazo de acero inoxidable, hormigón o similar, o un elemento rígido combinado con un elemento flexible, por ejemplo un tirante de acero, un cable, una cuerda de material sintético, una cadena o similar, realizando la conexión a la plataforma de forma que se agilicen las operaciones de enganche. A su vez, este tipo de amarre permitirá que la estructura se auto posicione de cara al viento, por lo tanto, la góndola del aerogenerador podría no tener la capacidad de rotar y se contemplará, opcionalmente, la posibilidad de optimizar el diseño de la estructura. Por ejemplo, donde la estructura no sea axisimétrica, es decir, con diseños no circulares en la torre, etc. Asimismo, se podrían emplear otros sistemas de amarre tradicionales.
A su vez la boya presenta medios de amarre para su sujeción al fondo marino, pudiendo ser dichos medios de amarre un cable, cadena, cuerda de material sintético o similar.
Al adoptar el sistema de amarre tipo "único punto" señalado anteriormente, para evitar que el cable de evacuación se tuerza, convendrá añadir un sistema de transmisión eléctrica de tipo giratorio para realizar la conexión entre la turbina y la boya.
Con ello, los aspectos innovadores más significativos de la estructura de la presente invención son:
- Que se trata de una estructura sumergible en la que el centro de carena se encuentra por encima del centro de gravedad, y donde el área de la sección de la estructura en la línea de flotación es menor que la suma de las secciones sumergidas de dichos cuerpos huecos.
- Que se trata de una estructura sumergible activa, que permite compensar los momentos de vuelco variando la cantidad de agua de lastre que se ubica en cada uno de los cuerpos huecos de hormigón que la conforman, en función de la dirección e intensidad del viento. Hasta ahora todas las estructuras de este tipo han sido pasivas, y la única estructura activa existente hasta ahora, divulgada en la ya comentada solicitud de patente US20110037264A1 trabaja flotando sobre la superficie del mar, y por tanto, sus sistemas deben compensar el oleaje, además del momento de vuelco debido al viento, lo que implica mayor dimensionamiento de las bombas y mayor consumo de energía.
- La utilización de hormigón en la construcción de los cuerpos huecos, preferiblemente cilindros y del mástil o columnas de la estructura. Hasta ahora las estructuras de hormigón siempre han sido pasivas, y la estructura activa del documento americano citado es de acero. Las formas cilindricas de hormigón permiten reducir los costes de fabricación, a través de una alta industrialización del proceso además de alargar la vida útil de la estructura y reducir los costes de mantenimiento (pinturas, revestimientos), lo que es muy importante en ambientes marinos.
- Al poder regular la profundidad de la estructura, el sistema permite montar la totalidad del equipamiento en puerto, incluida la prueba de puesta en marcha, y trasladar el conjunto hasta su emplazamiento definitivo en el mar, jugando con la capacidad de reducir o aumentar la flotabilidad y sumergido a voluntad, según convenga..
La estructura objeto de la presente invención mejora sustancialmente las actuales limitaciones de las estructuras de soporte similares existentes, con las siguientes ventajas:
- Muy larga duración del hormigón en ambientes marinos, manteniendo las propiedades estructurales, frente a la limitada duración y necesidades de mantenimiento y repintado del acero.
- Menor exposición al oleaje al disponer de una sección de la línea de flotación de menor área que el resto de dispositivos conocidos.
- Bajo coste de fabricación, gracias al diseño basado en formas preferiblemente cilindricas de hormigón, que permite el uso de tecnologías constructivas muy maduras y probadas: encofrados, deslizantes, cajoneras portuarias, hormigón moldeado, postensado, etc., frente al coste elevado de estructuras de soporte de acero.
- Elimina la necesidad de usar artefactos marinos especializados de grandes dimensiones y/o grandes medios de elevación para la instalación de las estructuras en el mar.
- En profundidades menores, donde sea aconsejable depositar la plataforma en el fondo marino, permite reducir las cargas a transmitir al fondo marino, lo que permite simplificar y abaratar los anclajes (pilotes, anclas, cadenas,...)
- Reduce la necesidad de tener que realizar parte de los trabajos en el mar. - Facilita el mantenimiento, en especial en caso de averías importantes, al permitir el remolque a puerto para sustituir o reparar la góndola del generador u otros elementos, gracias a la posibilidad de modificar el calado de la estructura a voluntad.
- Permite la repotenciación al cabo de la vida útil del generador (15 a 25 años), puesto que la estructura se diseña para 50 años de vida útil.
- Reduce considerablemente el impacto ambiental durante la instalación, y facilita y abarata el desmantelamiento al final de la vida útil del proyecto, haciendo posible un reciclado total de la estructura.
- En el caso de la adopción de mástiles aerodinámicos, reduce la resistencia al viento del mástil, reduciendo así los esfuerzos y momentos de vuelco y los efectos estela que reducen el rendimiento de los aerogeneradores a sotavento.
- En el caso que se adopte el sistema de amarre denominado "único punto de amarre", la estructura se auto posicionará de cara al viento lo cual podría aportar grandes ventajas en cuanto a optimización estructural además de agilizar las maniobras de enganche.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción de la invención y con objeto de facilitar la comprensión de las características de la misma, se acompaña la presente memoria descriptiva, como parte integrante de la misma, de un juego de planos, en los que con carácter ilustrativo y no limitativo se ha representado lo siguiente:
La figura número 1 muestra una vista esquemática en alzado de la estructura sumergible de soporte activo para torres de generadores y subestaciones o elementos similares, en instalaciones marítimas, objeto de la invención, en un ejemplo de realización de la misma con cuatro cilindros y mástil axialmente simétrico y sujeta por un único punto con brazo rígido a una boya flotante, aplicable para aguas poco profundas.
La figura número 2 muestra una vista en planta del ejemplo de realización de la estructura, según la invención, mostrada en la figura precedente.
Las figuras números 3 y 4 muestran, en sendas vistas en alzado y planta respectivamente, otro ejemplo de realización de la estructura sumergible de soporte activo de la invención, en este caso con menos cilindros e igualmente sujeta a una boya.
Las figuras 5 y 6 muestran, en las respectivas vistas en alzado y planta, otro ejemplo de realización de la estructura sumergible objeto de la invención, en la que los componentes sumergidos se encuentran situados en el interior de una única carcasa.
Las figuras 7 y 8 muestran, en las vistas en alzado y planta, otro ejemplo en el que la estructura sumergida presenta otra construcción de cuerpos huecos.
Las figuras 9a y 9b, muestran las vistas en alzado y planta de un ejemplo de la invención para bajas profundidades en el que la estructura se encuentra anclada al fondo marino por medio de pilotes.
Las figuras 10a y 10b, muestran las vistas en alzado y planta de otro ejemplo de la invención para bajar profundidades en el que la estructura se encuentra anclada al fondo marino por medio de cadenas y anclas.
Las figuras 1 1a y 1 1 b, muestran un ejemplo de una estructura con un cuerpo hueco principal con sección variable.
La figura 12 muestra un ejemplo de una subestación o plataforma sustentada por una estructura objeto de la presente invención.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
A la vista de las mencionadas figuras, y de acuerdo con la numeración adoptada, se puede observar en ellas como la estructura (1) en cuestión, aplicable como soporte de un mástil (2) en cuyo extremo superior se incorpora un elemento (3) a sustentar, tal como un aerogenerador u otro similar, se configura a partir de dos o más cuerpos o cilindros (4', 4) huecos, susceptibles de contener agua en su interior, y que están unidos entre sí mediante tramos (5) o brazos huecos, preferiblemente prismáticos, a través de los que pasa agua de uno a otro, existiendo un sistema de bombeo (no representado) que regula el desplazamiento del agua entre dichos cilindros, en función del momento de vuelco originado por el viento sobre el mástil (2) y el elemento (3) que sustenta, con la particularidad de que, dicho sistema de bombeo u otro sistema de bombeo complementario, constituye un medio de regulación de inmersión de la plataforma, ya que también regula la cantidad total de agua contenida en dichos cuerpos o cilindros (4', 4), y que penetra a través de una o más tomas (6) en dichos cuerpos (4', 4) para controlar la profundidad del conjunto, de manera que en su posición de trabajo sitúa la estructura de manera que se mantiene con los cuerpos o cilindros (4', 4) sumergidos a una profundidad suficiente para evitar el efecto de las olas sobre ellos, y de forma que solamente sobresalga el mástil (2) o como máximo una parte del cuerpo hueco principal (4') que soporta dicho mástil, por encima de la superficie. En una posición de transporte es preferible también mantener los cuerpos huecos o cilindros (4', 4) sumergidos pero a menos profundidad, aunque también se podría mantener dichos cuerpos o cilindros (4', 4) semi-sumergidos, flotando sobre la superficie.
Es importante destacar, además, que los cuerpos o cilindros huecos (4', 4) están fabricados de hormigón y, preferiblemente también el mástil (2), ubicando las citadas tomas (6) bien en alguna parte de los cuerpos huecos o cilindros (4', 4) bien en otra posición de la estructura.
En este ejemplo, la estructura comprende una sección del cuerpo hueco principal (4') sumergida que decrece ligeramente por su parte superior hasta cortar al nivel del mar, de manera que el área de la sección de la línea de flotación es menor que el área de la sección sumergida del cuerpo hueco principal, situándose sobre dicha sección menor y no sumergida el mástil (2). Una alternativa a esta construcción sería que el mástil (2) se situase directamente sobre el cuerpo hueco principal sumergido, de manera que la sección de la línea de flotación la determinaría el área de la sección del mástil (2) que cortase al nivel del mar.
Las figuras 11 a y 1 1 b muestran un ejemplo de una estructura en la que el cuerpo principal comprende al menos dos secciones de diferente área.
Opcionalmente, y para amortiguar la arfada, en todos o alguno de los cuerpos o cilindros (4', 4) se prevé la incorporación de placas (no representadas), las cuales, al trabajar dichos cuerpos o cilindros totalmente sumergidos, podrán incorporarse en la parte de los mismos que mejor convenga.
La estructura (1) comprende medios de sujeción (9), rígidos o rígidos y flexibles, como un brazo rígido de acero u otro material, un tirante de acero, un cable, una cadena o cuerda de material sintético, a una boya (7) de amarre, sumergida o no, fijada al fondo marino (FM), mediante medios de amarre, preferiblemente cables, cadenas o cuerdas de un material sintético (8). Debido a dichos medios de sujeción (9), la estructura (1) rotará (R) alrededor de la boya (7) en función de la dirección en que sople el viento. Atendiendo a las figuras 1 y 2, se observa cómo, en un ejemplo de realización, la estructura (1) comprende tres cuerpos o cilindros huecos (4) de hormigón dispuestos radialmente al mástil (2), siendo la parte inferior de dicho mástil (2) un cuarto cilindro o cuerpo hueco principal (4') que se une al resto mediante tramos o brazos huecos (5) radiales. Dicho mástil (2) es en este ejemplo de sección circular, aunque podrían emplearse otras secciones. En este ejemplo, además, la estructura (1) comprende una boya (7) flotante que a su vez se encuentra amarrada al fondo marino (FM) mediante los correspondientes medios de amarre, cables, cadenas o cuerdas de un material sintético (8). La estructura se une a dicha boya (7), que a su vez puede incorporar un conector giratorio tipo "swivel" (10) para permitir el libre giro de la estructura en torno a la boya mediante un brazo rígido (9), que podría ser suplementado por otro elemento de sujeción flexible, tal como un cable. El cable de conexión (11) encargado de transmitir la energía generada por el aerogenerador (3) también está conectado a dicha boya (7), opcionalmente mediante un elemento de transmisión eléctrica giratoria que previene que el cable se retuerza. A dicha boya (7) también se conecta el cable de evacuación y/o los cables de inter-array, en su caso.
En otro ejemplo de realización, mostrado en las figuras 3 y 4, la estructura (1) de la invención comprende únicamente dos cilindros (4', 4) de hormigón, un cilindro principal (4') situado bajo el mástil (2) con el elemento (3) que ha de sustentar, un aerogenerador (3), y el otro (4) unido al primero (4') mediante un tramo o brazo (5) que permite el paso del agua entre ambos. En este ejemplo, la sección de la línea de flotación la determina la menor sección de la parte superior del cilindro hueco principal (4'), aunque también podría ser la sección del mástil. Al igual que en el caso anterior, la estructura (1) está unida a una boya (7), en este caso sumergida y amarrada al fondo marino (FM) mediante cables, cadenas o cuerdas sintéticas (8), mediante un brazo rígido u otro elemento de sujeción (9) o combinación de un elemento rígido y uno flexible, y una unión giratoria (10) o swivel que permite el giro libre de la misma, en función de la dirección del viento. En este ejemplo, el brazo rígido, que puede ser suplementado por un elemento flexible tal como un cable o cuerda (9) se encuentra inclinado entre la boya (7) y la estructura (1), en concreto se encuentra anclado al mástil (2), de manera que dicho brazo rígido o rígido junto a un elemento flexible tal como un tirante de acero, cable o cuerda, contribuye a limitar la posibilidad de volteo de la estructura. La boya, en cualquiera de los ejemplos, puede fabricarse en acero o en hormigón dependiendo de las condiciones del emplazamiento y el equilibrio entre durabilidad e inversión inicial. Los elementos de sujeción flexibles impiden que la estructura se vuelque hacia el lado que sopla el viento trabajando por tanto a tracción, y actuando como un tirante. Por otro lado, los elementos de sujeción rígidos permiten mantener una distancia constante entre la estructura (1) y la boya (7), además de ayudar a contrarrestar el momento de vuelco originado por las fuerzas del viento.
En los dos ejemplos anteriores se han incluido mástiles con sección circular, sin embargo, los mismos pueden presentar otras secciones que ofrezcan menos resistencia al viento cuando están enfrentados a él. Un ejemplo de una sección alternativa de mástil se puede observar en las figuras 6 y 8, donde el mismo no es circular sino ligeramente ovoidal. En cualquier caso, con el fin de dotar al mástil de características aerodinámicas, el mismo puede tener una sección transversal que no sea circular, y adaptada a las condiciones meteorológicas y marinas del lugar de emplazamiento de la estructura.
Asimismo, los cuerpos huecos de la estructura, que como se ha mencionado son preferiblemente cilindricos, también pueden presentar una sección transversal que no sea cilindrica.
En el ejemplo de las figuras 5 y 6, se observa una estructura alternativa, con un mástil (20), con sección transversal no circular, con un aerogenerador (3) en su extremo superior, y una estructura sumergida formada por dos cuerpos huecos (40) con las mismas características que los cilindros citados anteriormente y comunicados dichos cuerpos huecos (40) por tramos huecos (50), estando los elementos, cuerpos huecos (40) y tramos (50), incorporados en el interior de una carcasa (45) también de hormigón. El objeto de esta estructura es reducir el coste de construcción de la fundación al facilitar el uso de encofrados deslizantes en cajoneras, cuando los cálculos así lo permitan, en función de las condiciones del mar en el emplazamiento de dicha estructura. En este ejemplo, la sección de la línea de flotación la determina la menor sección del mástil (2).
En el ejemplo de las figuras 7 y 8, se observa otra estructura alternativa que comprende un cilindro hueco sumergido (400), situado debajo del mástil con sección transversal no circular sobre el que se emplaza un aerogenerador (3), estando dicho cilindro (400) unido a través de un tramo o brazo hueco (500) a un cuerpo hueco (410), también sumergido, de mayores dimensiones que el citado cilindro (400). Esta estructura es de especial aplicación en lugares donde sea habitual un fuerte oleaje transversal a la dirección del viento al mejorar la estabilidad lateral ante esfuerzos transversales. Al igual que en el ejemplo anterior, la sección de la línea de flotación la determina la menor sección del mástil (2).
En otros ejemplos de aplicación en zonas poco profundas, mostradas en las figuras 9a, 9b, 10a y 10b, las cualidades de la estructura, que son: flotabilidad variable; mitigación de las olas; reducción de la arfada; y compensación automática del momento de vuelco, son utilizadas para reducir y homogeneizar la carga transmitida sobre el fondo marino (FM), lo que resulta especialmente útil durante las maniobras de instalación/desinstalación, y en particular en áreas donde el suelo está constituido por materiales poco consistentes (arenas sueltas, fangos) o con resistencia irregular. En estos ejemplos, no es necesaria la utilización de boyas (7) y se fija directamente la estructura al fondo marino mediante medios de anclaje (8, 80). De esta manera el conjunto pueda apoyarse sobre el lecho marino reduciendo y homogeneizando las cargas sobre el mismo. La estructura no queda completamente apoyada sobre el fondo marino (FM) sino que queda medio suspendida, pudiendo llegar a apoyarse en mayor medida sobre el mismo y complementando así al sistema activo que contrarresta el momento de vuelco ejercido por las fuerzas del viento.
Con esta finalidad, las figuras 9a y 9b, muestran una estructura como la de las figuras 1 y 2, formada por cuatro cuerpos huecos (4, 4') unidos por tramos o brazos preferiblemente prismáticos (5) que en planta forman una "Y", y situando el mástil (2) con el aerogenerador (3) en su extremo superior, en el cuerpo cilindrico principal (4') y central. Esta estructura está anclada al fondo marino (FM) mediante unos medios de anclaje (80) constituidos por pilotes que se sitúan en los tres cuerpos huecos periféricos (4).
Las figuras 10a y 10b muestran una estructura como la de las figuras 9a y 9b, en el que los medios de anclaje (800) al fondo marino (FM) son anclas con cadenas que se apoyan parcialmente en el fondo marino (FM). El objetivo de las diferentes construcciones es conseguir una estructura de un material duradero y que permita una construcción en serie sencilla, como el hormigón, y que vea reducido su tendencia al volteo lo máximo posible cuando se encuentra situada en alta mar y sujeta a una boya.
En aquellos casos en los que se utilice un amarre convencional o como el de las figuras 9 y 10, será necesario que el aerogenerador (3) o nacelle sea capaz de girar sobre el mástil.
La figura 12 muestra una subestación eléctrica o una plataforma (30) que se dispone sobre una estructura objeto de la presente invención. La estructura en este caso comprende cuatro cuerpos huecos cilindricos (4') con sección variable, estando la sección inferior de cada uno de ellos y de mayor tamaño sumergida y la sección superior, de menor tamaño que la sección sumergida, determinando la suma de estas secciones menores la sección en la línea de flotación. Dicha sección en la línea de flotación es menor que la suma de las secciones sumergidas de los cuerpos huecos que conforman la estructura. Asimismo, se pueden disponer varios mástiles o columnas (2) sobre los cuerpos huecos que conforman la estructura, de manera que sea la sección de dichos mástiles o columnas (2) los que determinan la sección en la línea de flotación.

Claims

REIVINDICACIONES
1. Estructura sumergible de soporte activo para torres de generadores (3) y subestaciones (30) o elementos similares, en instalaciones marítimas que, comprende al menos dos cuerpos (4, 4', 40, 400) huecos, susceptibles de contener agua en su interior, y unidos entre sí mediante al menos un tramo o brazo hueco (5, 50, 500) a través del cual pasa agua de uno a otro, existiendo un sistema de bombeo en al menos uno de dichos cuerpos que regula el desplazamiento del agua entre los mismos, en función del momento de vuelco originado por el viento sobre el elemento (3), caracterizada porque dichos cuerpos huecos (4, 4', 40, 400) son de hormigón, estando el centro de gravedad de la estructura por debajo del centro de carena de la misma y siendo el área de la sección de la estructura en la línea de flotación menor que la suma de las secciones sumergidas de dichos cuerpos huecos.
2. Estructura, según reivindicación 1 , caracterizada porque comprende al menos un mástil o columna (2, 20) en cuyo extremo superior se incorpora un elemento (3, 30) a sustentar, se dispone sobre uno de los cuerpos huecos (4') o cuerpo hueco principal (4').
3. Estructura, según reivindicación 1 o 2, caracterizada porque el cuerpo hueco (4, 4', 40, 400) comprende al menos dos secciones, siendo la sección en la línea de flotación, sección de la parte superior, menor que la sección sumergida, sección de la parte inferior,
4. Estructura, según reivindicación 2, caracterizada porque al menos un e mástil o columna (2, 20) determina la sección de la línea de flotación, siendo la sección del mástil menor que la sección sumergida del cuerpo hueco principal, quedando los cuerpos huecos (4, 4', 40, 400) completamente sumergidos y únicamente sobresale por encima de la línea de flotación el mástil o columna (2).
5. Estructura, según reivindicación 1 , caracterizada porque la masa sumergida de la misma es de al menos el 60%.
6. Estructura, según reivindicación 5, caracterizada porque la estructura se encuentra sumergida entre el 60% y el 95%.
7. Estructura, según reivindicación 1 , caracterizada porque comprende medios de regulación de inmersión de la plataforma que regulan la cantidad total de agua contenida en dichos cuerpos (4, 4', 40, 400) y que penetra a través de tomas (6) situadas en dichos cuerpos huecos (4, 4', 40, 400) o en otra posición de la estructura, para controlar la profundidad del conjunto.
8. Estructura, según reivindicación 7, caracterizada porque los medios de regulación de inmersión de la plataforma los constituye el propio sistema de bombeo que regula el desplazamiento del agua entre los cuerpos huecos (4, 4', 40, 400) a través de los tramos o brazos (5, 50, 500), en función del momento de vuelco.
9. Estructura, según reivindicación 7, caracterizada porque los medios de regulación de inmersión de la plataforma los constituye un sistema de bombeo complementario al sistema de bombeo que regula el desplazamiento del agua entre los cuerpos huecos (4, 4', 40, 400) a través de los tramos (5, 50, 500), en función del momento de vuelco.
10. Estructura, según reivindicación 2, caracterizada porque el mástil (2, 20) es de hormigón.
11. Estructura, según reivindicación 1 o 2, caracterizada porque comprende una boya (7) de amarre, amarrada al fondo marino (FM) mediante medios de amarre
(8) y a la que se fija la estructura (1) mediante medios de sujeción (9).
12. Estructura, según reivindicación 11 , caracterizada porque los medios de sujeción
(9) son un elemento rígido para así mantener una distancia constante entre la estructura (1) y la boya (7) además de ayudar a contrarrestar el momento de vuelco originado por las fuerzas del viento.
13. Estructura, según reivindicación 12, caracterizada porque los medios de sujeción (9) comprenden además un elemento flexible para contrarrestar los esfuerzos a tracción provocados por el momento de vuelco originado por las fuerzas del viento.
14. Estructura, según reivindicación 1 1 , caracterizada porque el elemento de sujeción (9) se une a la boya (7) mediante un elemento de unión giratorio (10), permitiendo el giro libre de la estructura en función de la dirección del viento.
15. Estructura, según reivindicación 2, caracterizada porque el elemento (3) a sustentar es un aerogenerador.
16. Estructura, según reivindicación 1 1 y 15, caracterizada porque el aerogenerador está conectado a la boya (7) mediante un cable de conexión (1 1) que transmite la energía generada desde dicho aerogenerador, pudiendo presentar dicha boya
(7) un sistema de transmisión eléctrica giratorio que permite transmitir la energía sin retorcer el cable de evacuación de energía que sale de la boya (7).
17. Estructura, según reivindicación 1 , caracterizado porque dichos cuerpos huecos son cilindros.
18. Estructura, según reivindicación 1 , caracterizado porque dichos cuerpos huecos (40) y los tramos o brazos (50) se encuentran en el interior de una carcasa de hormigón (45). Estructura, según reivindicación 1 , caracterizada porque queda directamente fijada al fondo marino (FM) mediante medios de anclaje (80, 800).
PCT/ES2013/070274 2013-04-30 2013-04-30 Estructura sumergible de soporte activo para torres de generadores y subestaciones o elementos similares, en instalaciones marítimas WO2014177729A1 (es)

Priority Applications (12)

Application Number Priority Date Filing Date Title
DK13883480.9T DK2993270T3 (en) 2013-04-30 2013-04-30 UNDERWATER STRUCTURE TO ACTIVELY SUPPORT TOWER OF GENERATORS AND SUBSTATIONS OR SIMILAR ELEMENTS IN MARITIME PLANTS
KR1020157033571A KR102160325B1 (ko) 2013-04-30 2013-04-30 연안 설비에서 터빈 타워 및 서브스테이션 또는 유사한 구성요소들을 위한 수중용 능동적 지지구조물
JP2016511106A JP6244013B2 (ja) 2013-04-30 2013-04-30 オフショア設備における、タービンタワーおよびサブステーションまたは類似の要素のための潜水可能なアクティブ支持構造
PT138834809T PT2993270T (pt) 2013-04-30 2013-04-30 Estrutura submersível de suporte ativo para torres de geradores e subestações ou elementos semelhantes, em instalações marítimas
CN202010812533.5A CN112009634A (zh) 2013-04-30 2013-04-30 在近海设施中的可潜的主动式支撑结构
LTEP13883480.9T LT2993270T (lt) 2013-04-30 2013-04-30 Povandeninė konstrukcija, skirta naudoti kaip generatorių bokštų ir pastočių ar panašių įrenginių aktyvioji atrama pakrantės infrastruktūroje
EP13883480.9A EP2993270B1 (en) 2013-04-30 2013-04-30 Submersible structure for actively supporting towers of generators and sub-stations or similar elements, in maritime facilities
ES13883480.9T ES2637142T3 (es) 2013-04-30 2013-04-30 Estructura sumergible de soporte activo para torres de generadores y subestaciones o elementos similares, en instalaciones marítimas
CN201380077927.9A CN105408550A (zh) 2013-04-30 2013-04-30 在近海设施中用于支撑涡轮塔、变电站或其他类似元件的可潜的主动式支撑结构
PCT/ES2013/070274 WO2014177729A1 (es) 2013-04-30 2013-04-30 Estructura sumergible de soporte activo para torres de generadores y subestaciones o elementos similares, en instalaciones marítimas
US14/787,602 US9592889B2 (en) 2013-04-30 2013-04-30 Submersible active support structure for turbine towers and substations or similar elements, in offshore facilities
ES201331368A ES2516590B1 (es) 2013-04-30 2013-09-20 Estructura sumergible de soporte activo para torres de generadores y subestaciones o elementos similares, en instalaciones marítimas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2013/070274 WO2014177729A1 (es) 2013-04-30 2013-04-30 Estructura sumergible de soporte activo para torres de generadores y subestaciones o elementos similares, en instalaciones marítimas

Publications (1)

Publication Number Publication Date
WO2014177729A1 true WO2014177729A1 (es) 2014-11-06

Family

ID=51843196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/070274 WO2014177729A1 (es) 2013-04-30 2013-04-30 Estructura sumergible de soporte activo para torres de generadores y subestaciones o elementos similares, en instalaciones marítimas

Country Status (10)

Country Link
US (1) US9592889B2 (es)
EP (1) EP2993270B1 (es)
JP (1) JP6244013B2 (es)
KR (1) KR102160325B1 (es)
CN (2) CN105408550A (es)
DK (1) DK2993270T3 (es)
ES (2) ES2637142T3 (es)
LT (1) LT2993270T (es)
PT (1) PT2993270T (es)
WO (1) WO2014177729A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015124610A (ja) * 2013-12-25 2015-07-06 国立大学法人横浜国立大学 浮体式風力発電装置
JP2017100616A (ja) * 2015-12-03 2017-06-08 住友電気工業株式会社 浮体式電気プラント
WO2021094630A1 (es) 2019-11-12 2021-05-20 Beridi Maritime S.L. Estructura para soporte de instalaciones marinas y procedimiento de ejecución
US12030600B2 (en) * 2019-11-12 2024-07-09 Beridi Maritime S.L. Structure for supporting marine installations and procedure for the execution thereof

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9394035B2 (en) * 2010-11-04 2016-07-19 University Of Maine System Board Of Trustees Floating wind turbine platform and method of assembling
DE102013222081B4 (de) * 2013-10-30 2016-05-12 Gicon Windpower Ip Gmbh In der offenen See schwimmendes und über Abspannmittel mit Ankern verbundenes Tragwerk für Windkraftanlagen, Servicestationen oder Konverterstationen
FR3048409B1 (fr) * 2016-03-02 2018-03-23 IFP Energies Nouvelles Systeme de stabilisation, en particulier pour un support flottant, avec au moins trois reserves de liquide reliees entre elles
FR3048740B1 (fr) * 2016-03-08 2018-03-30 Centre National De La Recherche Scientifique Eolienne flottante a turbines jumelles a axe vertical a rendement ameliore
DE102016110295B4 (de) * 2016-06-03 2021-11-25 Aerodyn Consulting Singapore Pte Ltd Windenergieanlage mit einem ein aerodynamisches Profil mit einem spiegelsymmetrischen Querschnitt aufweisenden Turm
DE102016118079B3 (de) * 2016-09-26 2017-09-28 Aerodyn Engineering Gmbh Mooring-Boje für eine schwimmende Windenergieanlage
GB201617803D0 (en) * 2016-10-21 2016-12-07 Seamach Ltd A floating ducted wind turbine and semi-submersible support platform
CN106553743B (zh) * 2016-12-02 2018-03-13 大连理工大学 一种组合式水下生产支撑浮筒及其整体式安装与回收方法
ES2694449B2 (es) * 2017-06-20 2020-06-02 Exponential Renewables S L Estructura flotante para aerogenerador marino
CN107269472A (zh) * 2017-07-10 2017-10-20 佛山科学技术学院 一种浮筒及其制造方法和应用该浮筒的风电机组
EP3827134A4 (en) 2017-10-25 2022-07-06 Rute Foundation Systems, Inc. TOWER FOUNDATION WITH CONCRETE BOX BEAMS
NO343850B1 (en) * 2017-11-21 2019-06-24 Scana Offshore As Disconnectable turret mooring and method for connecting and disconnecting using a service vessel
DK3527821T3 (da) * 2018-02-16 2021-11-08 Siemens Gamesa Renewable Energy As Offshore-arrangement, en forbindelsesindretning og en fremgangsmåde til tilvejebringelse af en elektrisk offshore-forbindelse
ES2701605A1 (es) * 2018-12-03 2019-02-25 Hws Concrete Towers S L Cimentacion para torres eolicas
US10634122B1 (en) 2019-02-08 2020-04-28 Are Telecom Incorporated Portable monopole tower with adjustable foundation
CN109737014A (zh) * 2019-02-22 2019-05-10 上海勘测设计研究院有限公司 一种半潜漂浮式基座的平衡控制系统、以及风力发电机组
FR3093741B1 (fr) * 2019-03-13 2021-04-30 Cte Wind Civil Eng Procédé de terrassement d’une fondation pour éolienne terrestre
JP7152723B2 (ja) 2020-02-04 2022-10-13 株式会社Terada Oaタップ格納ボックス
NO20200232A1 (no) * 2020-02-26 2021-08-27 Bjarte Nordvik Fundament for en offshore vindturbin
NO346067B1 (en) * 2020-06-11 2022-01-31 Oddmund Vik Floating windmill
CN111550372B (zh) * 2020-06-17 2021-06-15 苏州讯如电子科技有限公司 一种自主浮沉对风的小型海上风电机组
CN113002716A (zh) * 2021-02-09 2021-06-22 中国能源建设集团广东省电力设计研究院有限公司 海上升压站基础
GB2606147B (en) * 2021-04-26 2024-01-10 Acergy France SAS Mooring renewable energy systems
CN113864123A (zh) * 2021-10-15 2021-12-31 西安热工研究院有限公司 一种海上移动风力发电站
CN113864128B (zh) * 2021-10-27 2023-06-27 上海电气风电集团股份有限公司 海上风机支撑结构以及海上风机
CN116443198A (zh) * 2023-05-26 2023-07-18 上海勘测设计研究院有限公司 一种浮式风电制氢平台系统及其工作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003004869A1 (en) * 2001-07-06 2003-01-16 Vestas Wind Systems A/S Offshore wind turbine with floating foundation
EP1666722A1 (en) * 2004-12-02 2006-06-07 Servicios de Ingenieria y Montaje, Alen, S.L. Fixing system for floating wind generators
US20110037264A1 (en) 2008-04-23 2011-02-17 Principle Power, Inc. Column-stabilized offshore platform with water-entrapment plates and asymmetric mooring system for support of offshore wind turbines
ES2367616A1 (es) * 2010-02-26 2011-11-07 Universidad Politécnica de Madrid Boya de fondeo mono-punto giratoria y sumergible, para dispositivos sumergidos, con conexiones eléctricas y ópticas.
WO2012066223A1 (fr) * 2010-11-17 2012-05-24 Ideol Installation et procédé d'exploitation d'énergie éolienne

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53128892A (en) * 1977-04-16 1978-11-10 Mitsubishi Heavy Ind Ltd Mooring gear for floating body
JPS5568914A (en) * 1978-11-15 1980-05-24 Ishikawajima Harima Heavy Ind Co Ltd Water-intake device for marine structure
JPS59199392A (ja) * 1983-04-27 1984-11-12 Mitsui Eng & Shipbuild Co Ltd 一点係留式海上構造物
JPS61155506A (ja) * 1984-12-28 1986-07-15 Mitsui Eng & Shipbuild Co Ltd 一点係留装置
WO1999051821A1 (en) * 1998-04-02 1999-10-14 Suction Pile Technology B.V. Marine structure
EP1366290B1 (en) * 2001-03-08 2007-08-15 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Offshore floating wind power generation plant
JP2004291702A (ja) * 2003-03-26 2004-10-21 Hitachi Zosen Corp 浮体構造物の姿勢制御装置
NO20033807D0 (no) * 2003-08-27 2003-08-27 Norsk Hydro As Vindmölle for anvendelse offshore
WO2006007696A1 (en) * 2004-07-16 2006-01-26 Tocher Angus J Wind energy extraction system
WO2006043932A1 (en) * 2004-10-14 2006-04-27 Lee Tommy L Wind powered generator platform
NO20052704L (no) * 2005-06-06 2006-12-07 Norsk Hydro As Flytende vindturbininstallasjon.
JP5022797B2 (ja) * 2007-07-11 2012-09-12 五洋建設株式会社 洋上風力発電のスパー型浮体構造およびその製造方法
JP5022976B2 (ja) * 2008-04-08 2012-09-12 五洋建設株式会社 洋上風力発電用のスパー型浮体構造およびその製造方法ならびにその設置方法
JP2010280301A (ja) * 2009-06-04 2010-12-16 Shimizu Corp 洋上施設用浮体構造物および洋上施設の施工方法
US8057127B2 (en) * 2009-12-14 2011-11-15 General Electric Company Systems and methods for assembling an offshore support system for use with a wind turbine
JP5727732B2 (ja) * 2010-08-24 2015-06-03 ジャパンマリンユナイテッド株式会社 浮体構造物
US9394035B2 (en) * 2010-11-04 2016-07-19 University Of Maine System Board Of Trustees Floating wind turbine platform and method of assembling
CN103010415B (zh) * 2011-09-22 2015-08-19 江门强光海洋工程股份有限公司 支撑海上风机和海洋能发电机的预应力混凝土浮式平台
CN102758446B (zh) * 2012-07-30 2015-03-18 江苏金风科技有限公司 半潜式海上浮动风机基础

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003004869A1 (en) * 2001-07-06 2003-01-16 Vestas Wind Systems A/S Offshore wind turbine with floating foundation
EP1666722A1 (en) * 2004-12-02 2006-06-07 Servicios de Ingenieria y Montaje, Alen, S.L. Fixing system for floating wind generators
US20110037264A1 (en) 2008-04-23 2011-02-17 Principle Power, Inc. Column-stabilized offshore platform with water-entrapment plates and asymmetric mooring system for support of offshore wind turbines
ES2367616A1 (es) * 2010-02-26 2011-11-07 Universidad Politécnica de Madrid Boya de fondeo mono-punto giratoria y sumergible, para dispositivos sumergidos, con conexiones eléctricas y ópticas.
WO2012066223A1 (fr) * 2010-11-17 2012-05-24 Ideol Installation et procédé d'exploitation d'énergie éolienne

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 200640, Derwent World Patents Index; AN 2006-384558, XP055279623 *
DATABASE WPI Week 201238, Derwent World Patents Index; AN 2012-F63378, XP055279574 *
See also references of EP2993270A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015124610A (ja) * 2013-12-25 2015-07-06 国立大学法人横浜国立大学 浮体式風力発電装置
JP2017100616A (ja) * 2015-12-03 2017-06-08 住友電気工業株式会社 浮体式電気プラント
WO2021094630A1 (es) 2019-11-12 2021-05-20 Beridi Maritime S.L. Estructura para soporte de instalaciones marinas y procedimiento de ejecución
US20220380006A1 (en) * 2019-11-12 2022-12-01 Beridi Maritime S.L. Structure for supporting marine installations and procedure for the execution thereof
US12030600B2 (en) * 2019-11-12 2024-07-09 Beridi Maritime S.L. Structure for supporting marine installations and procedure for the execution thereof

Also Published As

Publication number Publication date
ES2516590A2 (es) 2014-10-30
US9592889B2 (en) 2017-03-14
CN112009634A (zh) 2020-12-01
ES2516590R1 (es) 2014-12-18
JP6244013B2 (ja) 2017-12-06
DK2993270T3 (en) 2017-09-11
KR20160023660A (ko) 2016-03-03
US20160075413A1 (en) 2016-03-17
ES2637142T3 (es) 2017-10-11
PT2993270T (pt) 2017-09-05
EP2993270A1 (en) 2016-03-09
EP2993270A4 (en) 2016-08-31
CN105408550A (zh) 2016-03-16
LT2993270T (lt) 2017-09-11
ES2516590B1 (es) 2015-09-25
KR102160325B1 (ko) 2020-09-25
EP2993270B1 (en) 2017-05-31
JP2016520167A (ja) 2016-07-11

Similar Documents

Publication Publication Date Title
ES2516590B1 (es) Estructura sumergible de soporte activo para torres de generadores y subestaciones o elementos similares, en instalaciones marítimas
ES2555500B1 (es) Obra flotante y procedimiento de instalación de la misma
ES2718934T3 (es) Base de turbina eólica flotante con patas de tensión de tipo abocinado, turbina eólica marina y método de construcción
ES2456345T3 (es) Plataforma de alta mar estabilizada por columnas con planchas de atrapamiento de agua y sistema de amarre asimétrico para soporte de turbinas eólicas de alta mar
WO2018095304A1 (zh) 一种浮式风机的移动压载调平控制装置
ES2617991B1 (es) Estructura marítima para la cimentación por gravedad de edificaciones, instalaciones y aerogeneradores en el medio marino
ES2772950A2 (es) Plataforma flotante autoalineable al viento que soporta multiples turbinas eolicas y solares para la generacion de energia eolica y solar y metodo de construccion del mismo
EP2761176B1 (en) Floating wind turbine
ES2545553B1 (es) Plataforma flotante de aprovechamiento de energía eólica
WO2015181428A1 (es) Subestructura flotante para aerogenerador y procedimiento de instalación de la misma
ES2754576T3 (es) Soporte flotante de sección horizontal variable con la profundidad
WO2014181007A1 (es) Plataforma flotante para aplicaciones en mar abierto
SE545893C2 (en) Mooring system for a floating platform
US20240034436A1 (en) Wind power plant
SE546025C2 (en) Semi-submersible wind power platform

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380077927.9

Country of ref document: CN

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 14787602

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016511106

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883480

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157033571

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013883480

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013883480

Country of ref document: EP