WO2021094630A1 - Estructura para soporte de instalaciones marinas y procedimiento de ejecución - Google Patents

Estructura para soporte de instalaciones marinas y procedimiento de ejecución Download PDF

Info

Publication number
WO2021094630A1
WO2021094630A1 PCT/ES2019/070776 ES2019070776W WO2021094630A1 WO 2021094630 A1 WO2021094630 A1 WO 2021094630A1 ES 2019070776 W ES2019070776 W ES 2019070776W WO 2021094630 A1 WO2021094630 A1 WO 2021094630A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
cells
structure according
platform
walls
Prior art date
Application number
PCT/ES2019/070776
Other languages
English (en)
French (fr)
Inventor
Ignacio COBIÁN BABÉ
Clara ACOSTA GUTIÉRREZ
José María BERENGUER PÉREZ
Original Assignee
Beridi Maritime S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beridi Maritime S.L. filed Critical Beridi Maritime S.L.
Priority to AU2019474268A priority Critical patent/AU2019474268A1/en
Priority to CN201980102942.1A priority patent/CN114746610A/zh
Priority to BR112022009106A priority patent/BR112022009106A2/pt
Priority to KR1020227018677A priority patent/KR20220095226A/ko
Priority to PCT/ES2019/070776 priority patent/WO2021094630A1/es
Priority to EP19952780.5A priority patent/EP4060123A4/en
Priority to JP2022553221A priority patent/JP2023509095A/ja
Priority to US17/755,863 priority patent/US20220380006A1/en
Publication of WO2021094630A1 publication Critical patent/WO2021094630A1/es
Priority to ZA2022/06492A priority patent/ZA202206492B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B75/00Building or assembling floating offshore structures, e.g. semi-submersible platforms, SPAR platforms or wind turbine platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B77/00Transporting or installing offshore structures on site using buoyancy forces, e.g. using semi-submersible barges, ballasting the structure or transporting of oil-and-gas platforms
    • B63B77/10Transporting or installing offshore structures on site using buoyancy forces, e.g. using semi-submersible barges, ballasting the structure or transporting of oil-and-gas platforms specially adapted for electric power plants, e.g. wind turbines or tidal turbine generators
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D15/00Handling building or like materials for hydraulic engineering or foundations
    • E02D15/08Sinking workpieces into water or soil inasmuch as not provided for elsewhere
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D23/00Caissons; Construction or placing of caissons
    • E02D23/02Caissons able to be floated on water and to be lowered into water in situ
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/01Flat foundations
    • E02D27/04Flat foundations in water or on quicksand
    • E02D27/06Floating caisson foundations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/42Foundations for poles, masts or chimneys
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/52Submerged foundations, i.e. submerged in open water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/10Assembly of wind motors; Arrangements for erecting wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • F03D13/256Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation on a floating support, i.e. floating wind motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/446Floating structures carrying electric power plants for converting wind energy into electric energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2231/00Material used for some parts or elements, or for particular purposes
    • B63B2231/60Concretes
    • B63B2231/64Reinforced or armoured concretes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0091Offshore structures for wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Definitions

  • the present invention belongs to the field of marine structures, to the construction and implementation of buildings and facilities in the marine environment. More specifically, it refers to a floating structure and its procedure for the construction, assembly, commissioning and dismantling of a maritime structure.
  • the object of the invention is a high-performance floating platform and the description of an innovative and efficient construction, assembly and commissioning system that represents considerable cost savings, a much shorter lead time compared to existing platforms and maximum safety. .
  • platform structure and base must be highlighted; as well as between the terms: wall, facing, enclosure and rib.
  • a replicable construction system is necessary that allows the construction of large platforms that occupy an area of the order of 50 m in diameter and that must finally be floated by some auxiliary means.
  • auxiliary means there are practically no means already built that allow this task to be carried out since all these facilities have been prepared for the manufacture of ships that are clearly greater in length than their beam, which almost never exceeds 40 m.
  • they are scarce and expensive means that would represent a significant bottleneck when mass manufacturing is necessary for a wind farm.
  • the construction system must provide the structure with a high degree of compactness and monolithism that can hardly be ensured with prefabricated systems whose joints are potentially sources of possible failure.
  • the maritime structure must provide a sufficient and effective response to the new major actions to which it will be subjected, but which in turn should be easily dismantled.
  • the structure must produce a large restoring moment that minimizes the static angle of inclination in the service phase, but with low accelerations in the turbine. This also requires an intrinsically heavy structure that does not require additional solid ballast and thus allows it to be moved back to port when necessary.
  • Patent US9120542 describes a floating ring-shaped work with the wind turbine eccentrically arranged on one of its sides. The solution is technically very valid, but it presents great structural difficulties when it materializes.
  • the ring shape makes the wind turbine located on one of its sides significantly flex the structure in the lateral arms which, if made in concrete, would crack on its upper face, deteriorating and reducing its useful life. To avoid this, in addition to the need for a significant amount of steel (up to 400 kg / m3), it is necessary to arrange post-tensioning cables to compress the structure in its upper part.
  • the tower is connected to the upper face of the concrete structure by means of bolts that require significant anchoring to locally transmit all the bending moment produced by the wind.
  • the internal pool of the ring has the problem that it practically does not trap the mass of water that it has inside, nor that below.
  • the great advantage of the proposed invention is that it does trap both, thus notably extending all oscillation periods and reducing accelerations.
  • Patent WO2009131826 describes a metallic floating work composed of three towers, with anti-altered brackets, joined by connecting arms through which the transfer of active ballast circulates for stabilization. It is surely the most proven solution today with good results. However, the proposed solution has great improvements:
  • the cost of the steel required for its construction is more than double the cost of the finished concrete in the proposal.
  • the fatigue of the components, especially in towers and connecting arms, is very high compared to the lack of it in the compact concrete piece of the proposal.
  • the trapped water is carried out under the anti-altered corbels, while in the proposal it is on the entire surface of the base and in the central cells.
  • the structure requires maintenance in submerged equipment and metal elements, while in the present invention, no, everything is surfaced on the deck.
  • Patents W02014031009 and WO2014177729 are configured, at least in some of their configurations, from hollow concrete bodies joined together by also hollow arms through which water passes from one to the other. These solutions, like the previous patents, due to their low initial draft, allow them to be towed with the wind turbine fully installed and have a simple installation system since they are only ballasted with water. Since the stabilizing torque is lower (more than half that of the proposal) than the tipping torque at maximum production, it is necessary to use an active system for transferring ballast from one body to another with the known loss of electricity production.
  • the proposed solution solves this problem in concrete by building a compact piece, without protruding elements, with unparalleled strength and durability.
  • the present invention proposes a structure according to any of claims 1 to 16 and methods according to any of claims 17 to 22.
  • the proposed structure belongs to the “Semi-submersible” typology, with stabilization by buoyancy, but it is also possible to use it as a Spar. This last option would require solid ballast for its installation, therefore, being perfectly feasible, it would present a more complex uninstallation and not as immediate as the semi-submersible that is weighted only with water. Use as TLP is also possible, although not as a preferred configuration.
  • the invention is constituted by a concrete structure whose construction is based on the technology, widely used in Spain, of port caissons for the construction of docks and piers.
  • These are gravity structures, manufactured in a floating dock (usually called a “cajonero”), which are transported by flotation to their place of service.
  • They are large reinforced concrete structures, usually parallelepipedic, the interior of which is made up of a series of vertical walls that form lightening cells and that give the whole floatation capacity. Its construction is very versatile, using the sliding formwork technique, which allows a very efficient continuous production, and direct floating as it is built.
  • the proposed structure has been designed so that by being built in a caisson, maximum performance and minimum cost are obtained (although, not with such advantageous properties, it is also possible to build it in dry dock or on a fixed platform on the quay).
  • One of the advantages of applying the sliding formwork method arranged in the box is the monolithism achieved in construction. It takes advantage of the advantage of being able to place it in the formwork in small layers, as well as being able to compact it and ensure its union in perfect condition with the previous layer, eliminating the concreting joints.
  • the floating structure proposed based on a vast knowledge of the operation of port caissons, is designed to take full advantage of its properties.
  • the wind tower is not joined to the platform through a plate with bolts that concentrates all the torsion in that area, but, through a simple connection, transforms it into compressions in the upper and lower part of the platform, of so that the stresses are not concentrated in one point, but are distributed along the embedment in a similar way to a pile in competent terrain.
  • the wind turbine tower is simply inserted into the central hole that leaves the structure free, entering its entire height up to its support on the lower slab and the gap between the two is filled with grout. In this way, it works like a pile in an optimal terrain, so it needs very little driving depth, with the available height of the box being more than enough to guarantee stability.
  • the metacentric height is not excessively large (less than 10 m) is important because, in addition to reducing the accelerations that occur in the turbine, it makes the separation of the forces of the weight of the structure and the thrust of the water very small (around 0.8 m to 5 or tilt) and therefore produces hardly any bending stress in the structure.
  • other solutions on the market due to their great metacentric height, have these forces much more widely separated and therefore produce significant bending stresses that have to be compensated with post-tensioned cables or with the use of a greater quantity of steel.
  • the present invention is clearly the semi-submersible platform with the lowest bending stresses.
  • the arrangement of the wind turbine in the center of the platform greatly reduces the bending stress suffered by its base.
  • the effort exerted by the mooring lines on the structure is absorbed and distributed directly by three large main radial screens (figure 28), without locally concentrating the stresses.
  • the anchoring points are located in the upper part of the walls, depending on the application configuration, they may also be located at intermediate heights, even at the level of the lower slab, with identical derived properties.
  • the exterior spans of the structure are only on the order of four meters, with wall thicknesses of 50 cm, so the bending that can occur on them is very low.
  • the cracking is very low because the concrete is mostly compressed. Therefore, maintenance is almost nil due to low stresses and concentrations in concrete that is very poorly reinforced.
  • drawer structures are a highly contrasted technology with well-proven logistics. It is possible to manufacture parts of 20,000 t in just 7 days.
  • the caisson dock is transported to the place where it is needed and can be installed in a place where it does not interfere with the daily activity of the port. It is therefore very versatile and can be used in almost all types of ports.
  • the present invention has been designed to trap as much water as possible, consisting of a large lower slab with perforations in its central area (52) (figure 7), in such a way that it traps water on both its lower and upper faces, since that the velocity of the flow that passes through the holes is considerably less than the movement of the whole.
  • this lower slab flies outwards about two meters around the base (53) (figure 7), which constitutes a very resistant anti-altered slab, similar to other solutions.
  • the most important thing is the immense volume of water that traps the whole of the lower slab equivalent to a hemisphere of radius that of the circle inscribed in it, and also the water that is inside the central cells connected to the outside. All this volume supposes an added mass of the structure of 1 to 2 times its displacement (depending on the shape of its perimeter), that is, it is as if the mass of the platform were double or triple its original mass.
  • the proposed platform together with the superstructure that it supports (wind turbine) has an initial draft (around 10 m), which significantly increases the availability of docks near the place of implantation for their construction.
  • the process of putting the structure into service is carried out simply by ballasting its cells with seawater, without the need for any additional means, or special high-capacity auxiliary vessels, or flotation elements unrelated to the structure itself.
  • the displacement of the proposed structure is at least three times higher than the rest of the existing platforms (usually between 8,000 and 10,000 t).
  • This significant increase in weight is achieved precisely thanks to its manufacture using reinforced concrete boxes, which manage to create high-mass structures at low cost. Achieving a similar displacement in steel is unfeasible due to its cost, and the others Existing solutions made of concrete present significant construction and durability difficulties due to cracking.
  • the turbine's energy production is assured at full capacity at all times since at 11 m / s of wind, which is when the greatest overturning torque is exerted in a 10 MW turbine, the platform is inclined by less than five degrees.
  • the proposed solution can make use of this variable ballast system, not only to avoid excessive inclination but to quickly reduce it to a minimum. This makes it possible to take full advantage of the energy of the wind blowing at less than 11 m / s and therefore significantly increase the MWh produced.
  • Box casting is the most modern, efficient and environmentally friendly technology that exists for the construction of wind and port infrastructures. This in itself represents an environmental improvement, but it also means savings in possible corrective measures.
  • the speed of execution not only means saving time and money; it also supposes a very notable decrease, with respect to traditional techniques, of polluting substances.
  • the low assembly of the proposed structure and its rapid execution implies a cost reduction of more than 50% compared to a similar metal one.
  • the proposed construction system which consists of two procedures, produces great savings both in the realization of few units and in large productions.
  • the present invention consists of two parts, the definition of the structure and the construction, assembly and commissioning process, aspects that are developed in the section on preferred embodiments of the invention.
  • Figure 1a Is a perspective view of the structure according to the present invention, consisting of a single drawer. The following are listed as essential elements of the piece:
  • Figure 1b It is a perspective view of the structure according to the present invention, with the same essential elements except that the base is made up of three drawers instead of one.
  • Figure 2a It is a plan view of the invention consisting of a single box where the proposed structural system and the distribution of the loads transmitted by the wind turbine can be seen. It is made up of the following elements:
  • Figure 2b It is a plan view of the invention made up of three drawers where the proposed structural system and the distribution of the loads transmitted by the wind turbine can be seen. It is made up of the same elements, except:
  • Figure 3a It is a plan view of the invention consisting of a single hexagonal box where the proposed structural system and the distribution of the loads transmitted by the wind turbine can be seen. It is made up of the same elements as figure 2a.
  • Figure 3b It is a plan view of the invention made up of three boxes that make up a hexagonal base and where the proposed structural system and the distribution of the loads transmitted by the wind turbine can be seen. It is made up of the same elements as figure 2b.
  • Figure 4a Is a sectional view of the invention where the modulation of the structure is seen, and a bevelled triangular shaped base with three sides of 7 A and another 3 of A in length is represented.
  • Figure 4b It is a plan view of the invention where the modulation of the structure is seen, and a bevelled triangular shaped base with three sides of 7 A and another 3 of A in length is represented.
  • the arrangement of the three highly rigid radial walls has been indicated which, in the case of being constituted by three drawers, are the double joining walls 54.
  • Figure 5. It is a plan and sectional view of the invention where the modulation of the structure is seen, and a base of hexagonal shape with six sides of 3A length is represented.
  • Figure 6. It is a perspective view where the exterior cells that can be increased to form towers are indicated 55.
  • FIG. 7 It is a bottom view of the platform in perspective, in both configurations where the following elements stand out:
  • Damping tabs formed by the extension of the lower slab Figure 8.- Is a plan view of an alternative of the invention with a circular shape of 6A in diameter where the modulation of the structure is seen.
  • Figure 9.- Is a plan view of an alternative of the invention with a chamfered square shape of 5A on the side where the modulation of the structure is seen.
  • Figure 10.- Is a plan view of the base configuration of the invention with three added circular cells 56 that serve to support buildings, substations or other facilities that require more supports.
  • Figure 11a Is a perspective view of a "caisson" floating dock built expressly for the construction in one piece of the platform.
  • Figure 11b.- Is a perspective view of the construction of the platform in one piece, which, having already a sufficient freeboard, is released from the floating dock already submerged.
  • Figure 11c.- Is a perspective view of the construction of the platform in a floating piece, where concreting continues in the sliding formwork.
  • Figure 12.- Is a perspective view of the construction of the platform in three pieces by means of a floating dock "cajonero" with one of the three pieces already finished that remains floating.
  • Figure 13 It is a perspective view of one of the drawers of which the structure is made up, ready for connection. It consists of the following components:
  • Figure 14. It is a perspective view of the three drawers already joined, sectioned and not sectioned, where the arrangement of hollow cylinders preferably made of steel is indicated.
  • closure 26 which can be of any type such as covers, gates, butterfly valves or similar.
  • Figure 15. It is a perspective view of the process of joining the three drawers, where three tugboats are seen approaching the drawers while pulling the cables previously inserted into the end sheaths.
  • Figure 16. It is a perspective view of the regularization grouting 27 that is carried out in the chambers located between drawers that are formed with the previously installed waterproof strips.
  • Figure 17.- It is a schematic perspective view of the introduction of the bolts 28 in the holes of the union walls.
  • Figure 18. It is a perspective view of the three joined drawers, where the area of concreting the lower circular slab 29 stands out.
  • Figure 19 It is a perspective view of the three joined drawers, where the interior pipes to be installed for filling and emptying cells 30 are located.
  • Figure 20 It is a perspective view of the complete base where the following elements are represented:
  • Figure 21 It is a perspective view showing how the superstructure (wind tower) (36) is installed in the central hole that has been formed.
  • Figure 22 It is a perspective view showing the grouting of the space that remains between the central circular cell and the shaft of the superstructure 37.
  • FIG. 23 It is a perspective view where you can see the ballast system that is made up of the following elements:
  • FIG. 24 It is a sectional view where the ballast system is seen where the gates of the lower gaps are closed.
  • FIG. 25 It is a sectional view where the ballast system is seen where the gates of the lower openings are seen, when the level of the central cells coincides with the outside.
  • Figure 26a It is a perspective view where the pneumatic damping system is seen where the configuration of the interior cells is reflected when the platform is on the crest of the wave.
  • Figure 26b It is a perspective view where the pneumatic damping system is seen where the configuration of the interior cells is reflected when the platform is in the valley of the wave.
  • Figure 27 It is a perspective view showing the decrease in the movement of the platform (dotted line) with respect to the wave profile (gray area).
  • Figure 29 It is a plan and sectional view where the location of the cells used for the variable ballast system 44 is represented.
  • the invention is a floating structure for the implementation of buildings, facilities and wind turbines in the marine environment, which is distinguished by the following two main characteristics:
  • a structural system easy to manufacture, total safety, great resistance, very low bending efforts, low fatigue and great durability.
  • a special hydrodynamic operation that captures a large mass of surrounding water, and that translates into an optimal behavior for the production of wind energy. It consists of a base 2 formed by one (figure 1a) or by three concrete structures (figure 1b) in a prismatic shape, also called “drawers” made up of vertical exterior walls and an interior frame of vertical walls that form cells 5 that are They close 4 at the bottom and 6 at the top by slabs and they are built using floating docks ("cajoneros"), a methodology widely used and proven in the execution of docks and piers.
  • the drawer construction allows a quick and easy execution of the structure and also leaves it afloat at the end of the process.
  • the drawers thus constructed are closed around their entire perimeter, are monolithic, have great strength separately and float stably with reduced draft.
  • the invention instead of proposing a connection of the tower in the upper slab by means of a series of connection bolts (as is usually done), which would concentrate stresses in the area, it proposes to completely introduce the shaft of the wind turbine 1 in the central cell 7 up to the lower slab of platform 4 (figure 1a). It therefore consists of transmitting the efforts produced by the wind exerted by the shaft of the wind turbine to the walls of the central cell, directly to some very large radial screens 11 (figure 2a), which in turn are distributed over a very resistant perimeter formed by a mesh of smaller screens that form a grid of equilateral triangles 13. In this way, no part of the structure is over-stressed, which means safety and durability.
  • the invention in its preferred configuration, consists of a base that has a plan in the shape of a 6-sided polygon, both regular and irregular, and the cells formed by the interior vertical walls have the following characteristics: -
  • the perimeter of the base is made up of a mesh of equilateral triangles 15 and those that have one side on the outside of the base are divided by another vertical perpendicular face at their midpoint 14.
  • radial walls 11 are arranged that connect the central cell with each of the interior vertices of the perimeter triangles.
  • Figures 2a and 2b show the essence of the proposed structural system, where the loads are distributed in a branched manner throughout the structure, without having any non-branching node. It is made up of the following elements:
  • FIGS 2b and 3b show the essence of the system in the invention consisting of three drawers. It is made up of the same elements, except:
  • the inner wall 8 constitutes in both cases a housing for the foot of the tower 7, which in the preferred configuration will be cylindrical because it is necessary to support wind turbines, but generically it can have any other form of prism with a polygonal base to house another type of supports for other types of facilities or buildings.
  • the inner cells 17 are those made up of at least one inner wall section, two radial ribs and an intermediate wall section.
  • Peripheral cells 18 are all other cells that are not interior and are generally configured by an outer wall section, first or second reticular ribs and an intermediate wall section.
  • the mesh of equilateral triangles on the perimeter constitutes a highly resistant closure of the platform. It also constitutes a double safety helmet, in such a way that any water path that could be produced by an accidental impact would flood only a very small cell, without any repercussions for the whole.
  • this system in turn is optimal to now transmit the forces of the waves and currents towards the interior of the structure, resisting them without concentrations.
  • the exterior spans of said mesh are of the order of 4 m with thicknesses of at least 50 cm, much less than the exterior spans of the rest of the existing concrete platforms, which are usually 8 m or more with thicknesses around 40 cm . This significant difference translates into much less bending stress, more strength, and less reinforcement.
  • the perimeter of the base formed by the mesh of equilateral triangles forms a polygon with 6 sides modulated with the parameter “A”, which is the distance between each pair of consecutive secondary nodes: If three sides have length A and the other three are nA, the result is a chamfered triangle like the one in Figure 4b.
  • nA is a regular hexagon like the one in figure 5.
  • module A can vary between 6 and 14 meters, and the sides of the base from 1 to 10 times A.
  • This platform can be made up of one or three pieces. In the latter case, the joining walls of these will be precisely the three large radial walls 54 (figure 4b). This achieves three things:
  • That the double wall which is a large wall of at least 1m thick "bracing" and that of an exceptional rigidity to the structure, minimizing its fatigue.
  • pneumatic damping system which allows to further improve the behavior of the platform, very interesting in very energetic seas:
  • the pneumatic damping system consists of offsetting the level of the interior cells with respect to sea level, by limiting the air inlet and outlet of the cells through passive or automated activation of the pressure control valves. 42 (figure 23). a) When the platform is on the crest of the wave (figure 26a), the central cells have a low level, because the limitation of the air outlet from their interior has delayed their filling. This implies a significant decrease in the elevation of the structure and therefore in the accelerations.
  • the air inlet and outlet depending on the wave conditions, can remain constant or can be regulated by a control system that optimizes its operation.
  • Figure 27 shows the decrease in the movement of the platform (dotted line) with respect to the wave profile (gray area).
  • the invention can present other configurations that, although with very similar properties, will allow it to adapt to very different scenarios and technical construction means:
  • peripheral cells are capable of rising above the base deck, forming towers that further increase stability. They will not always be necessary because with the base configuration, all the required standards are more than met, and it has the disadvantage of lacking the large cover useful for maintenance since in this case only the towers would emerge. However, the structural solution and the water entrapment work the same, even the displaced volume of water can be greater, and therefore with lower accelerations.
  • Figure 6 shows how the perimeter triangle mesh allows the construction of the towers 55.
  • the preferred construction is with sliding box formwork and its construction would not present any complexity since it is only necessary to continue concreting the walls that correspond to said towers.
  • the platform can also have a circular plan, with the same characteristics previously defined, but with perimeter triangles similar to equilateral triangles, with the outer and inner sides in the shape of an arc of a circle (figure 8).
  • the platform can also have a square plan (with chamfered corners), with the same characteristics previously defined, but in this case divided into four prismatic concrete structures (boxes) instead of three, and the division will be made by its diagonals (figure 9).
  • the structure in addition to having a central circular cell, can have three others of smaller size, regularly distributed and with the same characteristics previously defined to be able to house other supports of the superstructure (figure 10). These supports will be necessary when the structure to be supported is not a wind turbine but a building, a substation or any other type of installation.
  • Another option is for the structure, once towed by flotation to the service area, to be completely ballasted with seawater to support it on the seabed.
  • a caisson floating dock When it is not possible to have a caisson floating dock with sufficient dimensions for the construction of the platform, it can be built, using prefabricated elements or with sliding formwork, on a dock with a launching system or on a dry dock capable of housing the construction. .
  • the proposed construction system consists of two procedures:
  • PROCEDURE 1 “One-piece construction”.
  • PROCEDURE 2 "Construction from three pieces"
  • the first procedure, used for mass production, consists of four blocks:
  • Said floating dock will preferably have a shape similar to the platform, somewhat larger in plan to save material, but it can also be made rectangular by joining existing pontoons. On the faces that were necessary, there would be guides fixed to the bottom that stabilize the dam when it is ballasted with water to free the structure (figure 11a). It can also be stabilized by flotation using submersible towers arranged in the corners.
  • This system allows a very efficient construction, being able to carry out this process in a single week, leaving the structure completely finished and floating.
  • the platform is moved with one or two conventional tugboats that pull it, and a third that remains at the back to avoid possible lateral drifts that may occur when moving. Subsequently, the same three tugboats will make it possible to hook up the previously installed moorings and position the platform in its place of service.
  • ballast system will vary according to the type and shape of the maritime structure in question, but it will always be made up of elements similar to those represented in figure 23:
  • the ballasting is carried out by introducing water from the outside by means of pumps 40 from the intake 38, and by means of the distribution ring 39 and the pipes with valves 30, the central cells are filled so that when the pressure is equalized with the outside, they can be opened easily the gaps arranged in the lower slab by means of sliding gates or similar 43 (figure 23).
  • the commissioning procedure is as follows:
  • the central cells are filled until the internal water level is equal to the sea level.
  • the lower gates are opened, connecting the central cells with the sea.
  • the central cells are not connected to the outside, so the platform would not have holes in the lower slab and therefore this point and the next would be omitted.
  • the cells located at the vertices of the base 44 are slightly filled for the operation of the variable ballast system that is carried out by the pipes 41 (figure 23).
  • the second procedure which allows the realization of few units, is a process similar to the previous one, with the difference that the base is built from three independent pieces that are subsequently joined monolithically by concreting the upper slab and part of the Also, if necessary, by means of connecting bolts.
  • Syncrolift and launch ramps they would allow the platform to be manufactured on the dock and transporting it with a system of rails, spmt trailers or very large cranes to the launch area, it could be floated. It is a complex construction system, but it is the one proposed by several existing solutions. The fact is that there is none of these means built that has a beam of 50 m that would be necessary.
  • Dry docks in principle it is the simplest system to solve the problem, but at present there are very few dry docks that have the dimensions necessary. It would therefore be necessary to carry out a large excavation in a port area and have a series of gates and waterproofing that would imply a high extra cost.
  • the present invention proposes to decompose the platform into several elements, watertight, resistant in themselves and self-stable, which could be built in the numerous and portable existing floating docks for the construction of caissons.
  • the port caisson system will be used through the use of a floating dock.
  • the construction can also be carried out both in dry dock and on a platform on the dock that will later be floated, but in all cases the concreting would be carried out using the sliding formwork system (it could be built with prefabricated flat pieces and subsequently concreting the joints, but only in case of not having other means).
  • the floating dock "cajonero” has a perfectly designed infrastructure, which raises the formwork by a system of hydraulic jacks, so it has the great advantage of being able to place the concrete in the formwork in small layers, as well as being able to compact it and ensure its Union in perfect condition with the previous layer, eliminating the concreting joints.
  • the box Once the box is built, it remains in a stable float (figure 12), which is a very important operational advantage.
  • each of the modules that make up the structure must be prepared for subsequent connection between them.
  • the lateral holes 22 (figure 13) and embedded sheaths 21 necessary to introduce the cables that will join them monolithically must be left.
  • the position and quantity of the sleeves and holes will depend in each case on the stresses due to the superstructure and the environmental conditions where it is located.
  • the position of the lateral connection holes has been foreseen in the arrangement of the reinforcement, but in the facing only a recess of about 5 cm is left that serves as an indication of its position.
  • a hole will later be made when the drawers are already firmly joined by the cables located at their ends, and the gap that remains between the walls has been completely filled with grout (a process that will be explained later).
  • the bolts will be inserted, achieving a solidarity union.
  • a series of sheaths may also be arranged that would serve to introduce post-tensioning cables.
  • some hollow cylinders preferably made of steel 25 (figure 14) will be arranged, which will protrude from their upper face enough so that later some type of closure 26 can be attached to close said passage of water.
  • This closure must withstand the hydrostatic pressure existing on the lower face, and this will always be less than two bars, perfectly bearable with a not very thick sheet. This assumes that many different types of seals, covers, gates, butterfly valves, etc. can be used.
  • a simple solution is guillotine gates such as those represented in figure 14, which can be remotely operated by small hydraulic jacks to simplify their operation.
  • the objective of the assembly procedure is to carry out the operations in a reliable and safe way, ensuring the stability of the structure at all times and guaranteeing the robustness and monolithism of the resulting structure.
  • Adrizado of the drawers before joining (to keep them in a horizontal position). It consists of filling some cells of the drawer with a small determined amount of water so that it floats perfectly horizontally.
  • Regularization grouting 27 (figure 16) of the chambers located between boxes that are formed between the waterproof bands 23 (figure 13) that were installed on the lateral and lower edges of the walls to be joined.
  • the preferred configuration would be constituted by a polygonal base with 6 sides, 3 of 7 A in length and 3 of 1A, which form a truncated triangle at the vertices and a 20 m strut with the following features:
  • Thickness of the upper slab (LS) 0.80 m
  • the invention proposes a solution that can be implemented in caisson floating docks that allows a quick and easy execution of the structure as well as leaving it afloat at the end of the process.
  • this construction system allows the construction of platforms that support the largest wind turbines (10 MW, 12 MW or higher) that are currently being designed.
  • the superstructure (generally a wind tower) is not joined to the platform through a plate with bolts that supports all the torsion in that area, but rather, through a simple joint, distributes it throughout the structure avoiding the stress concentration.
  • the exterior spans of the structure are of the order of four meters, with wall thicknesses of 50 cm, so the bending that can occur on them is very low.
  • the structure is completely built and assembled in port, including the superstructure (usually a wind turbine), and it is floated by conventional tugs to its working position. Its low draft allows it to be carried out in practically any conventional port close to the implantation.
  • the anchoring process of the structure is carried out by ballasting its cells exclusively with sea water, without the need for any additional means, or auxiliary vessels.
  • the drawer construction system is the most respectful way with the environment for the construction of wind and port infrastructures, with a very notable decrease, with respect to traditional techniques, of polluting substances. It is a foundation system that does not make noises that affect marine mammals and that can be carried out on practically all types of seabeds without altering them. It requires a lower consumption of resources in raw materials that, depending on the characteristics of each work, can lead to a saving of 50%. 15. The low set-up required with the proposed procedure and its rapid execution implies a cost reduction of more than 50% compared to a similar metal one.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Architecture (AREA)
  • Transportation (AREA)
  • Wind Motors (AREA)
  • Foundations (AREA)
  • General Details Of Gearings (AREA)

Abstract

Estructura (2) para el soporte de torre (1) de aerogenerador provista de un alojamiento (7) de encaje del pie de la torre (1), definiéndose en la plataforma (2) un eje principal (Γ) que coincide con un eje principal de la torre (1), que comprende un cuerpo de sección constante unas paredes interior (8) e intermedia (10) unidas por nervaduras radiales internas (11) perpendiculares a la pared interior (8) cuyo plano pasa por el eje principal (Γ), de modo que en la pared intermedia (10) se definen unos primeros nodos de unión (12) entre pared intermedia (10) y nervaduras radiales (11), estando unidas la pared intermedia (10) y una pared exterior (9) por nervaduras reticulares (14 y 15). Esta estructura proporciona una óptima transmisión de fuerzas. La invención también se refiere a procedimientos de fabricación, montaje e instalación de la estructura.

Description

ESTRUCTURA PARA SOPORTE DE INSTALACIONES MARINAS Y PROCEDIMIENTO
DE EJECUCIÓN
OBJETO DE LA INVENCIÓN
La presente invención pertenece en el campo de las estructuras marinas, a la construcción e implantación de edificaciones e instalaciones en el medio marino. Más concretamente se refiere a una estructura flotante y a su procedimiento de construcción, ensamblaje, puesta en servicio y desmontaje de una estructura marítima.
En el presente documento se hará referencia a procedimientos sobre una estructura marítima de hormigón del tipo anteriormente citado sin que suponga una limitación en el alcance de la invención en cuanto a dimensiones de la base, dimensiones de las torres (o inexistencia de ellas) y forma (triangular, rectangular, hexagonal, poligonal, circular o lobulada). Por otra parte, es aplicable tanto a plataformas flotantes tipo Semisumergibles, Spar y TLP, incluso también sería de aplicación para plataformas que, si bien se trasladan por flotación, su ubicación final es en el fondo marino.
El objeto de la invención es una plataforma flotante de elevado rendimiento y la descripción de un innovador y eficaz sistema de construcción ensamblaje y puesta en servicio que supone un ahorro en el coste considerable, plazo de ejecución mucho menor con respecto a plataformas existentes y máxima seguridad.
En cuanto a la terminología empleada en el presente documento, se ha de destacar la equivalencia de los términos: plataforma, estructura y base; así como entre los términos: pared, paramento, cerramiento y nervadura.
ANTECEDENTES DE LA INVENCIÓN
En los últimos años las estructuras marítimas implantadas en el medio marino han experimentado un importante crecimiento, especialmente debido al gran auge de la energía eólica offshore que desde el norte de Europa empieza a extenderse por todo el mundo.
La culminación de este proceso de crecimiento se producirá cuando el coste de la energía eólica offshore sea inferior a la generada por otros medios, y este objetivo está al alcance. Prácticamente todos los grandes fabricantes de aerogeneradores están desarrollando modelos de gran potencia (10, 12 incluso 15 MW) que suponen un incremento notable en sus dimensiones y en las acciones que ejercen sobre la estructura marítima que las soporta. Pero este incremento de potencia es precisamente el punto clave para el descenso del coste energético puesto que permite que la repercusión del coste de la base e instalación sea mucho menor por MW instalado.
En la actualidad existe pues el importante reto tecnológico de desarrollar dichas plataformas siguiendo procesos industrializados que permitan su construcción intensiva en muy diversas ubicaciones, con medios preferiblemente locales y en los tiempos necesarios para abaratar la logística de su puesta en servicio.
Esto supone superar diferentes dificultades que se han presentado con el gran incremento de los nuevos aerogeneradores a soportar como:
1. Es necesario un sistema constructivo replicable que permita la construcción de grandes plataformas que ocupan un área del orden de 50 m de diámetro y que finalmente deben ponerse a flotación mediante algún medio auxiliar. Actualmente prácticamente no existen medios ya construidos que permitan realizar esta tarea puesto que todas estas instalaciones han sido preparadas para la fabricación de buques que tienen la eslora claramente mayor que su manga que casi nunca excede de 40 m. Además, son medios escasos y costosos que supondrían un importante cuello de botella cuando fuera necesario una fabricación masiva para un parque eólico.
2. Frente a las nuevas grandes solicitaciones, es necesario, que la estructura construida tenga una gran resistencia estructural, resistencia a la fatiga, y resistencia a los impactos, con bajo mantenimiento y gran durabilidad. Por tanto, el sistema constructivo debe aportar a la estructura un elevado grado de compacidad y monolitismo que difícilmente se puede asegurar con sistemas prefabricados cuyas uniones son potencialmente focos de posibles fallos.
3. La estructura marítima debe dar una respuesta suficiente y eficaz a las nuevas grandes acciones a las que será sometida, pero que a su vez sea fácilmente desmantelable.
La estructura debe producir un gran momento restaurador que minimice el ángulo estático de inclinación en la fase de servicio, pero con bajas aceleraciones en la turbina. Esto igualmente necesita una estructura intrínsecamente pesada que no requiera lastre sólido adicional y así permita poderse trasladar nuevamente a puerto cuando sea necesario.
La forma más adecuada para conseguir este gran peso a bajo coste, es mediante el empleo de hormigón armado siguiendo la técnica de construcción de cajones portuarios profusamente desarrollada y empleada en España con magníficos resultados de coste y eficacia. La gran dificultad es que, por su tamaño, no es realizable en ninguno de los diques flotantes existentes. 4. La estructura marítima debe construirse y ensamblarse íntegramente en puerto, y ser transportada mediante remolcadores a su posición de servicio. Esto supone un gran abaratamiento por no requerir los costosos y escasos medios auxiliares que serían necesarios para la instalación offshore de los grandes nuevos aerogeneradores. El procedimiento de construcción se ha de poder realizar con bajo calado para que pueda hacerse en la gran mayoría de los puertos existentes y así poder distribuir la producción y acercarla al lugar de instalación.
El diseño y fabricación de las estructuras flotantes para el soporte de aerogeneradores, se basa actualmente en la tecnología desarrollada por la industria petrolera (Oil & Gas). De este modo, como ya se explicó anteriormente, se pueden distinguir tres tipos fundamentales de plataformas: Semisumergible, Spar y TLP. Estos tres tipos, corresponden a tres sistemas de estabilización de la estructura frente a las acciones exteriores (viento, oleaje y corrientes):
Estabilización por flotabilidad
Estabilización por lastre para descender el centro de gravedad
Estabilización por líneas de amarre
La mayor parte de las plataformas con cuerpos flotantes de hormigón, son básicamente prismas circulares con paredes interiores radiales desde un núcleo que coincide con el fuste del aerogenerador. Por su gran tamaño, se suelen construir a partir de elementos prefabricados principalmente en dique seco. Además del importante sobrecoste que suponen las instalaciones para su construcción, presentan dos importantes puntos débiles que la solución propuesta no tiene:
Las juntas entre piezas prefabricadas no son monolíticas y por tanto susceptibles de fallo en condiciones excepcionales.
En caso de que penetrara una vía de agua, inundaría un porcentaje muy importante de la base pudiéndola poner en riesgo.
La estructura propuesta, por su sistema de construcción es completamente monolítica, y en caso de accidente gravísimo, tan sólo se inundaría una pequeña celda del perímetro dado el doble casco que conforman las celdas exteriores (18) (figuras 2a y 2b). La patente US9120542, describe una obra flotante de forma anular con el aerogenerador dispuesto excéntricamente en uno de sus lados. La solución es técnicamente muy válida, pero presenta grandes dificultades estructurales cuando se materializa.
La forma de anillo, hace que el aerogenerador que se encuentra en uno de sus lados, flecte de forma importante la estructura en los brazos laterales que en caso de realizarse en hormigón se fisurarían en su cara superior, deteriorando y reduciendo su vida útil. Para evitarlo, además de la necesidad de una cuantía importante de acero (hasta 400 kg/m3), es necesario la disposición de cables de postensado para comprimir la estructura en su parte superior.
Por otra parte, la torre se conecta en la cara superior de la estructura de hormigón mediante unos pernos que requieren unos importantes anclajes para transmitir localmente todo el momento flector producido por el viento.
Todo ello se traduce en una estructura de hormigón de elevado coste, con muchísima armadura, mucho tiempo de construcción y problemas de fatiga por concentración de tensiones.
Por el contrario, como ya se vio, la solución propuesta carece prácticamente de esfuerzos de flexión y reparte las cargas sin ningún tipo de concentración de tensiones. En las figuras 2a y 2b se puede ver cómo la invención, con la distribución de paramentos traslada homogéneamente los esfuerzos de la torre, primero por los paramentos radiales, y después, siempre por tres paramentos menores que llegan hasta el perímetro.
La piscina interior del anillo tiene el problema de que no atrapa prácticamente la masa de agua que tiene en su interior, ni la de debajo. Por el contrario, la gran ventaja de la invención propuesta es que sí atrapa a ambas, ampliando así notablemente todos los periodos de oscilación y reduciendo aceleraciones.
La patente WO2009131826, describe una obra flotante metálica compuesta por tres torres, con unas ménsulas anti-alteada, unidas por unos brazos de conexión por los cuales circula el trasvase del lastre activo para su estabilización. Es seguramente la solución más probada en la actualidad con buen resultado. No obstante, la solución propuesta tiene grandes mejoras:
El coste del acero necesario para su construcción es más del doble del coste del hormigón terminado en la propuesta. La fatiga de los componentes especialmente en torres y brazos de unión es muy elevada frente a la inexistencia en la pieza compacta de hormigón de la propuesta.
La producción de energía hay que reducirla mientras se produce el trasvase del lastre, y en la propuesta siempre es el máximo que se puede obtener.
El agua atrapada se realiza bajo las ménsulas anti-alteada, mientras que en la propuesta es en toda la superficie de la base y en las celdas centrales.
La estructura requiere mantenimiento en equipos y elementos metálicos sumergidos, mientras que en la presente invención, no, todo está emergido en cubierta.
Las patentes W02014031009 y WO2014177729, están configuradas, al menos en alguna de sus configuraciones, a partir de cuerpos huecos de hormigón unidos entre sí mediante brazos también huecos a través de los que pasa agua de unos a otros. Estas soluciones, al igual que las patentes anteriores, por su bajo calado inicial, permiten ser remolcadas con el aerogenerador completamente instalado y tienen un sistema de instalación sencillo pues se lastran tan sólo con agua. Puesto que el par estabilizador es más reducido (más de la mitad que el de la propuesta) que el par volcador en máxima producción, es necesario emplear un sistema activo de trasvase de lastre de unos cuerpos a otros con la pérdida consabida de producción eléctrica.
Pero la mayor dificultad de ambas soluciones es la constructiva cuando se va a realizar en hormigón. Tanto una como otra requiere ejecutar diferentes cuerpos huecos que son imposibles de ejecutar de una vez. Se han planteado soluciones de ejecución por piezas (torres y pontonas) que se unen con complejos postensados produciendo una serie de juntas precisamente donde se concentran mayor cantidad de tensiones. El resultado son estructuras que requieren mucho mantenimiento y que sufren mucha fatiga.
La solución propuesta resuelve este problema en hormigón construyendo una pieza compacta, sin elementos salientes, de una resistencia y durabilidad sin comparación.
DESCRIPCIÓN DE LA INVENCIÓN
Para superar los inconvenientes del estado de la técnica, la presente invención propone una estructura según cualquiera de las reivindicaciones 1 a 16 y procedimientos según cualquiera de las reivindicaciones 17 a 22.
La estructura propuesta, pertenece a la tipología de “Semisumergible”, con estabilización por flotabilidad, pero también es posible su uso como Spar. Esta última opción requeriría lastre sólido para su instalación, por lo que, siendo perfectamente viable, presentaría una desinstalación más compleja y no tan inmediata como la Semisumergible que va lastrada tan sólo con agua. También es posible el uso como TLP, aunque no como configuración preferente.
Para ello, la invención, está constituida por una estructura de hormigón cuya construcción está basada en la tecnología, ampliamente empleada en España, de cajones portuarios para la construcción de diques y muelles. Se trata de estructuras de gravedad, fabricadas en dique flotante (normalmente llamado “cajonero”), que son transportadas por flotación hasta su lugar de servicio. Son grandes estructuras de hormigón armado, normalmente paralelepipédicas, cuyo interior está compuesto por una serie de paramentos verticales que forman células de aligeramiento y que dotan al conjunto de capacidad de flotación. Su construcción es muy versátil, mediante la técnica de encofrado deslizante, que permite una producción continua muy eficaz, y una puesta en flotación directa según se construye.
La estructura propuesta ha sido diseñada para que siendo construida en cajonero se obtenga un máximo rendimiento y mínimo coste (aunque, no con tan ventajosas propiedades también es posible construirla en dique seco o sobre plataforma fija en muelle).
Presenta las siguientes características:
1. ÓPTIMO SISTEMA ESTRUCTURAL a. Gran robustez y resistencia a posibles contingencias
Una de las ventajas de la aplicación del método de los encofrados deslizantes dispuestos en el cajonero es el monolitismo logrado en la construcción. Se aprovecha la ventaja de poder colocarlo en el encofrado en pequeñas tongadas, así como poder compactarlo y asegurar su unión en perfectas condiciones con la capa precedente, eliminando las juntas de hormigonado.
Por otra parte, este tipo de construcción permite realizar estructuras muy rígidas con muchos paramentos que distribuyen las cargas.
Con todo esto se consigue una estructura de gran resistencia ante las condiciones atmosféricas e impactos que, aunque en el caso muy excepcional de que se produjera una vía de agua, tan sólo inundaría una pequeña celda sin apenas repercusión para la estabilidad del conjunto.
Por el contrario, en las soluciones de plataformas flotantes de hormigón que actualmente se están diseñando en el mercado, para conseguir rendimientos algo similares al del cajonero, emplean elementos prefabricados cuyas juntas son susceptibles de fallo, y el agua que podría introducirse en tal caso, comprometería seriamente la integridad de la estructura. b. Minimización de las tensiones
La estructura flotante propuesta, a partir de un vasto conocimiento del funcionamiento de los cajones portuarios, está diseñada para aprovechar al máximo sus propiedades.
A pesar de los grandes esfuerzos a los que será sometida, y del gran momento transmitido por el aerogenerador que tiene que compensar, el hormigón de toda la estructura no sufre apenas flexiones. La solicitación principal de la estructura es de compresión. Esto se consigue por su propia geometría y configuración:
La torre eólica no se une a la plataforma a través de una placa con pernos que concentra toda la torsión en esa zona, sino que, a través de una sencilla unión, la transforma en compresiones en la parte superior e inferior de la plataforma, de forma que las solicitaciones no se concentran en un punto, sino que se reparten a lo largo del empotramiento de forma similar a un pilote en un terreno competente.
Para ello la torre del aerogenerador es simplemente introducida en el hueco central que deja libre la estructura, entrando toda su altura hasta su apoyo en la losa inferior y se rellena con grout la holgura que queda entre ambas. De esta forma, trabaja como un pilote en un terreno óptimo por lo que necesita muy poca profundidad de hincado, siendo la altura disponible del cajón de sobra para garantizar la estabilidad.
No es la pared del cilindro de hormigón central la que absorberá la compresión que transmite la torre, sino que se distribuirá por las grandes paredes radiales que lo rigidizan, así como por las losas de gran espesor superior e inferior.
El gran peso que aporta todo el hormigón empleado en la plataforma y el lastre de agua que se añade (en torno las 36.000 t) unido a una altura metacéntrica entre 7 y 10 m, consigue un gran par restaurador que permite afrontar las mayores acciones del medio. Otras soluciones no tan pesadas, tienen que elevar la altura metacéntrica hasta a 15 m para conseguir pares restauradores bastante menores.
El que la altura metacéntrica no sea excesivamente grande (menor de 10 m), es importante porque además de disminuir las aceleraciones que se producen en la turbina, hace que la separación las fuerzas del peso de la estructura y del empuje del agua, sea muy pequeña (en torno a 0,8 m para 5o de inclinación) y por tanto no produce apenas ningún esfuerzo de flexión en la estructura. Por el contrario, otras soluciones del mercado, por su gran altura metacéntrica, tienen estas fuerzas mucho más separadas y por tanto producen importantes solicitaciones de flexión que han de ser compensadas con cables postensados o con el uso de mayor cantidad de acero. La presente invención es claramente la plataforma semi-sumergible con menores tensiones por flexión.
La disposición del aerogenerador en el centro de la plataforma (a diferencia de las anteriormente citadas que tienen la torre descentrada), reduce enormemente el esfuerzo de flexión que sufre su base.
El esfuerzo que ejercen las líneas de amarre sobre la estructura se absorbe y distribuye directamente por tres grandes pantallas radiales principales (figura 28), sin concentrar localmente las tensiones. Aunque en el gráfico indicado, los puntos de amarre están situados en la parte superior de los paramentos, según la configuración de aplicación, podrán situarse también en alturas intermedias, incluso a nivel de la losa inferior, con idénticas propiedades derivadas.
Los vanos exteriores de la estructura son tan sólo del orden de cuatro metros, con espesores de pared de 50 cm, por lo que las flexiones que se pueden producir sobre los mismos están muy reducidas.
Todo esto lleva como consecuencia de que se trata de una estructura con muchas paredes que distribuyen muy bien las cargas, que necesita muy poco armado y sin puntos de concentración de tensiones donde actuaría la fatiga. c. Gran durabilidad y bajo mantenimiento
Uno de los mayores peligros de las estructuras de hormigón en el medio marino es la fisuración que puede aumentar el riesgo de corrosión de las armaduras.
Cuando además se somete a las cargas cíclicas del oleaje y viento, se puede producir fatiga que aumenta el problema en los elementos que por su esbeltez están más expuestos como pueden ser voladizos, salientes y torres.
En la presente invención la fisuración es bajísima porque el hormigón está comprimido en su mayoría. El mantenimiento por tanto es casi nulo por bajas tensiones y concentraciones en un hormigón que está muy poco armado.
Además, la estructura en su posición de servicio está lastrada sólo con agua. Esto permite un fácil vaciado para su traslado de nuevo a puerto y realizar el mantenimiento onshore. Por otra parte, se ha dispuesto un sistema “plug and play” para los amarres y conexión la eléctrica, por lo que este proceso se puede realizar con gran facilidad. d. Gran velocidad de ejecución
La fabricación de estructuras en cajonero, es una tecnología altamente contrastada y con una logística muy probada. Es posible fabricar piezas de 20.000 t e tan sólo 7 días.
El dique cajonero se transporta al lugar donde se necesita y se puede instalar en un lugar donde no interfiere en la actividad cotidiana del puerto. Es por tanto muy versátil y puede emplearse en casi todo tipo de puertos.
Todo ello implica una ejecución de alta calidad en un tiempo récord en especial en grandes estructuras.
2. GRAN VOLUMEN DE AGUA ATRAPADA EN LOS MOVIMIENTOS
Es sabido por los expertos en la materia, que para minimizar las aceleraciones de la turbina, las estructuras flotantes han de atrapar la mayor cantidad de agua circundante mientras se mueven para así aumentar la inercia en la alteada ( heave ) y en el cabeceo / balance ( pitch / rol!) del conjunto. Este aumento de inercia aumenta sus periodos de oscilación por lo que disminuyen las aceleraciones en la cabeza del mástil.
Muchas plataformas existentes ya incluyen una losa anti-alteada ( heave píate), que consiste en un voladizo que bordea la estructura y aumenta el agua atrapada en sus movimientos. Es una solución bastante eficaz, pero queda limitada al ancho de un voladizo que sufre importantes acciones cíclicas que ocasionan una importante fatiga a su estructura.
La presente invención ha sido diseñada para atrapar la mayor cantidad de agua posible que consiste en una gran losa inferior con perforaciones en su zona central (52) (figura 7), de tal forma que atrapa agua tanto en su cara inferior como superior, puesto que la velocidad del flujo que pasa a través de los huecos es bastante inferior al movimiento del conjunto.
Esta losa inferior por una parte vuela hacia el exterior unos dos metros alrededor de la base (53) (figura 7), lo que constituye una muy resistente losa anti-alteada, similar a otras soluciones. Pero lo más importante es el inmenso volumen de agua que atrapa el conjunto de la losa inferior equivalente a una semiesfera de radio el del círculo inscrito en ella, y además el agua que se encuentra en el interior de las celdas centrales conectadas con el exterior. Todo este volumen supone una masa añadida de la estructura de 1 a 2 veces su desplazamiento (según la forma de su perímetro), es decir, es como si la masa de la plataforma fuera el doble o el triple de su masa original. Por el contrario, las soluciones existentes que emplean losas anti-alteada, que suelen estar compuestas por tres torres, tan sólo consiguen aumentar su masa de 0,5 a 0,8 su desplazamiento, puesto que no tienen una gran losa inferior que las una, ni celdas interiores conectadas con el exterior a través de huecos.
3. BAJO CALADO
La plataforma propuesta, junto con la superestructura que sustenta (aerogenerador) tiene un calado inicial (en torno a los 10 m), lo que aumenta notablemente la disponibilidad de muelles cercanos al lugar de implantación para su construcción.
Esto permite realizar una instalación “onshore” completa y remolcarla hasta su ubicación en posición vertical, presentando una gran estabilidad naval, elevado periodo natural con en que se balancea y baja resistencia al desplazamiento.
El proceso de puesta en servicio de la estructura se realiza simplemente mediante el lastrado de sus celdas con agua de mar, sin necesidad de ningún medio adicional, ni embarcaciones auxiliares especiales de grandes capacidades, ni de elementos de flotación ajenos a la estructura en sí.
El proceso de desenganche para mantenimientos de mayor orden en puerto, es totalmente viable ya que puesto que para su puesta en servicio se ha lastrado sólo con agua, basta revertir el proceso realizado por las bombas de llenado, recuperando el calado de 10 m.
4. GRAN MOMENTO RESTAURADOR
Debido a la gran masa de la plataforma con un desplazamiento en torno a las 30.000 t y una altura metacéntrica elevada de unos 9 m (varía un poco según las diferentes alternativas), ofrece un gran momento restaurador de 25.000 t m que supone un ángulo de inclinación estático de 5o para un aerogenerador de 10 MW sin necesidad del uso de lastre variable para mejorarlo. Este momento restaurador es clave para la producción de energía, y en la presente invención es de dos a tres veces superior al resto de soluciones flotantes que suelen tener de 7.000 a 14.0001 m.
Se ha de destacar, que el desplazamiento de la estructura propuesta es al menos, tres veces superior al resto de plataformas existentes (suelen estar entre 8.000 y 10.000 t). Este importante incremento de peso se consigue precisamente gracias a su fabricación mediante cajones de hormigón armado, que consiguen realizar estructuras de gran masa a bajo coste. Conseguir un desplazamiento similar en acero es inviable por su coste, y las otras soluciones existentes realizadas en hormigón presentan importantes dificultades constructivas y de durabilidad por fisuración.
5. MAYOR PRODUCCIÓN DE ENERGÍA
La producción de energía de la turbina está asegurada a pleno rendimiento en todo momento puesto que a los 11 m/s de viento que es cuando en una turbina de 10 MW se ejerce el mayor par volcador, la plataforma está inclinada menos de cinco grados.
Las demás soluciones que tienen un par restaurador dos o tres veces inferior, tienen que disminuir la producción de energía para disminuir el esfuerzo del viento hasta que se transfiere agua de unas torres a otras, y así compensar la sobre - inclinación que se produciría. Este proceso llevaría del orden de media hora cada vez que se produzca un cambio importante de viento, por lo que la producción quedaría afectada. En una avería o mantenimiento del sistema, habría que interrumpirla completamente.
La solución propuesta, además puede hacer uso de este sistema de lastre variable, no ya para evitar un exceso de inclinación sino para reducirla rápidamente al mínimo. Esto permite aprovechar al máximo la energía del viento que sopla a menos de los 11 m/s y por tanto aumentar notablemente los MWh producidos.
De este modo, como se ve en la figura 29, por cada 170 m3 de agua transferidos amplían 7.000 t m, suficiente para optimizar la producción. Esto supone un incremento de altura de columna de agua de unos dos metros de las celdas dispuestas en un vértice (44) (figura 29) y descenso de un metro de las que están en los otros dos vértices. Este proceso tardaría unos 10 minutos empleando dos bombas de 500 m3/h.
El trasvase de agua entre las celdas extremas se hace mediante unas conducciones (41) (figura 23) accionadas bombas, que quedan en cubierta para su inspección y mantenimiento.
6. MANTENIMIENTO ACCESIBLE DE TODOS LOS EQUIPOS
Al igual que en el caso para el trasvase de agua antes descrito, todas las instalaciones susceptibles de mantenimiento de la plataforma (conexión del sistema de amarres, sistemas eléctricos, sensores, conducciones, bombas, sistemas de control, etc), están a nivel de cubierta, siempre por encima del nivel del mar.
No hay estructuras metálicas que queden sumergidas y por tanto que requieran mantenimiento, y por otra parte se dispone en cubierta espacio de sobra para apoyar cualquier tipo de maquinaria que facilite el mantenimiento de la torre del aerogenerador o superestructura que siempre estará emergida.
7. BAJO COSTE
El hormigonado en cajonero es la tecnología más moderna, eficaz y respetuosa con el medio ambiente que existe para la construcción de infraestructuras eólicas y portuarias. Esto ya de por sí supone una mejora medio ambiental, pero también supone un ahorro en las posibles medidas correctoras.
Existe un menor consumo de recursos en materia prima que dependiendo de las características de cada obra puede llegar a suponer un ahorro del 50 %.
La rapidez de ejecución no sólo implica ahorro de tiempo y dinero; también supone una disminución muy notable, con respecto a las técnicas tradicionales, de sustancias contaminantes.
El bajo armado de la estructura propuesta y su rápida ejecución supone una reducción del coste de más del 50% respecto a otra metálica similar.
El sistema constructivo propuesto, que consta de dos procedimientos, produce grandes ahorros tanto en la realización de pocas unidades como en grandes producciones.
Las propiedades antes descritas, superan los inconvenientes que presentan las plataformas del estado de la técnica mencionadas más arriba:
La presente invención consta de dos partes, la definición de la estructura y el proceso de construcción, ensamblaje y puesta en servicio, aspectos que se desarrollan en la sección de realizaciones preferidas de la invención.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
Figura 1a.- Es una vista en perspectiva de la estructura acorde con la presente invención, constituida por un único cajón. Como elementos esenciales de la pieza se enumeran los siguientes:
1. Superestructura (habitualmente torre eólica)
2. Base
3. Estructura que compone la base (cajón)
4. Losa inferior del cajón 5. Paramentos del cajón
6. Losa superior
7. Alojamiento para encaje del pie de la torre
Figura 1b.- Es una vista en perspectiva de la estructura acorde con la presente invención, con los mismos elementos esenciales salvo que la base está constituida por tres cajones en vez de uno.
Figura 2a.- Es una vista en planta de la invención constituida por un único cajón donde se ve el sistema estructural propuesto y el reparto de las cargas transmitidas por el aerogenerador. Está compuesto por los siguientes elementos:
8. Pared interior
9. Pared exterior
10. Pared intermedia
11. Nervaduras radiales
12. Primeros nodos de unión
13. Estructura reticular
14. Primeras nervaduras reticulares
15. Segundas nervaduras reticulares
16. Segundos nodos de unión
17. Celdas interiores
18. Celdas exteriores
Figura 2b.- Es una vista en planta de la invención constituida por tres cajones donde se ve el sistema estructural propuesto y el reparto de las cargas transmitidas por el aerogenerador. Está compuesto por los mismos elementos, salvo:
19. Paredes de unión entre cajones
20. Estructura reticular de cada cajón
8bis. Tramo de pared central 9bis. Tramo de pared exterior
10bis. Tramo de pared intermedia
Figura 3a.- Es una vista en planta de la invención constituida por un único cajón de forma hexagonal donde se ve el sistema estructural propuesto y el reparto de las cargas transmitidas por el aerogenerador. Está compuesto por los mismos elementos que la figura 2a.
Figura 3b.- Es una vista en planta de la invención constituida por tres cajones que conforman una base hexagonal y donde se ve el sistema estructural propuesto y el reparto de las cargas transmitidas por el aerogenerador. Está compuesto por los mismos elementos que la figura 2b.
Figura 4a.- Es una vista en sección de la invención donde se ve la modulación de la estructura, y se representa una base de forma triangular achaflanada de tres lados de 7 A y otros 3 de A de longitud.
Figura 4b.- Es una vista en planta de la invención donde se ve la modulación de la estructura, y se representa una base de forma triangular achaflanada de tres lados de 7 A y otros 3 de A de longitud. Se ha indicado la disposición de las tres paredes radiales de gran rigidez que, en el caso de estar constituida por tres cajones, se trata de las dobles paredes de unión 54.
Figura 5.- Es una vista en planta y sección de la invención donde se ve la modulación de la estructura, y se representa una base de forma hexagonal de seis lados de 3A de longitud.
Figura 6.- Es una vista en perspectiva donde se indican las celdas exteriores que pueden ser recrecidas para formar torres 55.
Figura 7.- Es una vista inferior de la plataforma en perspectiva, en ambas configuraciones donde se destacan los siguientes elementos:
50. Abertura en la losa superior para introducir el pie de la torre
51. Aberturas en la losa superior situados en el centro de las celdas centrales
52. Aberturas en la losa inferior del cajón único o de los tres, situados en el centro de las celdas centrales
53. Pestañas amortiguadoras constituidas por la prolongación de la losa inferior Figura 8.- Es una vista en planta de una alternativa de la invención de forma circular de 6A de diámetro donde se ve la modulación de la estructura.
Figura 9.- Es una vista en planta de una alternativa de la invención de forma cuadrado achaflanado de 5A de lado donde se ve la modulación de la estructura.
Figura 10.- Es una vista en planta de la configuración base de la invención con tres celdas circulares añadidas 56 que sirven para el apoyo de edificaciones, subestaciones u otras instalaciones que requieren más apoyos.
Figura 11a.- Es una vista en perspectiva de un dique flotante “cajonero” construido expresamente para la construcción en una pieza de la plataforma.
Figura 11b.- Es una vista en perspectiva de la construcción de la plataforma en una pieza, que teniendo ya un francobordo suficiente, es liberada del dique flotante ya sumergido.
Figura 11c.- Es una vista en perspectiva de la construcción de la plataforma en una pieza en flotación, donde se sigue hormigonando en los encofrados deslizantes.
Figura 12.- Es una vista en perspectiva de la construcción de la plataforma en tres piezas mediante un dique flotante “cajonero” con una de las tres piezas ya terminada que queda flotando.
Figura 13.- Es una vista en perspectiva de uno de los cajones de los que se compone la estructura preparado para su conexión. Consta de los siguientes componentes:
21. Vainas embebidas para los cables de unión
22. Orificios laterales
23. Juntas impermeables que amortiguan y hacen estanca la unión entre cajones.
24. Esperas de armaduras
Figura 14.- Es una vista en perspectiva de los tres cajones ya unidos seccionados y sin seccionar, donde se indica la disposición de unos cilindros huecos preferentemente de acero
25. y la de su cierre correspondiente 26, que puede de cualquier tipo como, tapas, compuertas, válvulas de mariposa o similar.
Figura 15.- Es una vista en perspectiva del proceso de unión de los tres cajones, donde se ve a tres remolcadores que aproximan los cajones mientras tiran de los cables previamente introducidos en las vainas de los extremos. Figura 16.- Es una vista en perspectiva del grouting de regularización 27 que se realiza en las cámaras situadas entre cajones que se forman con las bandas impermeables anteriormente instaladas.
Figura 17.- Es una vista esquemática en perspectiva de la Introducción de los bulones 28 en los orificios de las paredes de unión.
Figura 18.- Es una vista en perspectiva de los tres cajones unidos, donde se destaca la zona de hormigonado losa inferior circular 29.
Figura 19.- Es una vista en perspectiva de los tres cajones unidos, donde se sitúan las conducciones interiores que se han de instalar para llenado y vaciado de celdas 30.
Figura 20.- Es una vista en perspectiva de la base completa donde se representan los siguientes elementos:
31. Prelosas de la parte superior del cajón para su hormigonado posterior
32. Conducciones y válvulas de salida de aire
33. Conducciones agua de lastrado
34. Anclajes para líneas de amarre
35. Hormigonado de la losa superior
Figura 21.- Es una vista en perspectiva donde se ve cómo se instala la superestructura (torre eólica) (36) en el hueco central que se ha conformado.
Figura 22.- Es una vista en perspectiva donde se ve el grouting del espacio que queda entre la celda circular central y el fuste de la superestructura 37.
Figura 23.- Es una vista en perspectiva donde se ve el sistema de lastrado que se compone de los siguientes elementos:
38. Toma de agua exterior
39. Anillo de distribución
30. Conducciones con válvulas para el lastrado de celdas
40. Bombas
41. Conducciones para el sistema de lastre activo 42. Salida regulable de aire
43. Compuertas deslizantes para conexión inferior con el agua
Figura 24.- Es una vista en sección donde se ve el sistema de lastrado donde se ven las compuertas de los huecos inferiores cerradas.
Figura 25.- Es una vista en sección donde se ve el sistema de lastrado donde se ven las compuertas de los huecos inferiores abiertas, cuando el nivel de las celdas centrales coincide con el exterior.
Figura 26a.- Es una vista en perspectiva donde se ve el sistema de amortiguación neumática donde se refleja la configuración de las celdas interiores cuando la plataforma se encuentra en la cresta de la ola.
Figura 26b.- Es una vista en perspectiva donde se ve el sistema de amortiguación neumática donde se refleja la configuración de las celdas interiores cuando la plataforma se encuentra en el valle de la ola.
Figura 27.- Es una vista en perspectiva donde se representa la disminución del movimiento de la plataforma (línea de puntos) con respecto al perfil de la ola (área gris).
Figura 28.- Es una vista en perspectiva donde se representa la plataforma en estado de servicio.
Figura 29.- Es una vista en planta y sección donde se representa la ubicación de las celdas empleadas para el sistema de lastre variable 44.
DESCRIPCIÓN DE REALIZACIONES PREFERIDAS DE LA INVENCIÓN
A. DESCRIPCIÓN DE LA ESTRUCTURA
La invención es una estructura flotante para la implantación de edificaciones, instalaciones y aerogeneradores en el medio marino, que se distingue por las dos siguientes características principales:
Un sistema estructural, de fácil fabricación, total seguridad, gran resistencia, bajísimos esfuerzos de flexión, baja fatiga y gran durabilidad.
Un funcionamiento hidrodinámico especial que captura una gran masa de agua circundante, y que se traduce en un comportamiento óptimo de cara a la producción de energía eólica. Consta de una base 2 formada por una (figura 1a) o por tres estructuras de hormigón (figura 1b) de forma prismática, también llamada “cajones” compuestos por unos paramentos verticales exteriores y una trama interior de paramentos verticales que forman celdas 5 que se cierran inferiormente 4 y superiormente 6 por losas y que son construidos mediante diques flotantes ("cajoneros"), metodología ampliamente empleada y probada en la ejecución de diques y muelles. La construcción en cajonero permite una ejecución rápida y sencilla de la estructura y además la deja puesta a flote al terminar el proceso.
Los cajones así construidos, están cerrados en todo su perímetro, son monolíticos, tienen gran resistencia separadamente y flotan establemente con calado reducido.
Cualquier experto en construcciones portuarias tiene conocimiento de cómo son y cómo se construyen este tipo de estructuras que suelen tener celdas interiores de forma rectangular o circular, regularmente dispuestas. Pero en la presente invención se incluye un diseño específico para el uso al que va a ser sometido, que mejora notablemente sus propiedades de funcionamiento, resistencia y durabilidad.
Una de las dificultades estructurales mayores a la hora de definir plataformas flotantes de hormigón que sustentan potentes aerogeneradores, es repartir los grandes esfuerzos transmitidos sin que se concentren las tensiones en ningún punto de la base, donde habría que aumentar mucho el armado, y donde se establecería un punto con mucho riesgo de fatiga y fisuración.
La invención en vez plantear una unión de la torre en la losa superior mediante una serie de pernos de conexión (como se hace habitualmente), que concentraría tensiones en la zona, plantea introducir completamente el fuste del aerogenerador 1 en la celda central 7 hasta la losa inferior de la plataforma 4 (figura 1a). Consiste pues, en transmitir los esfuerzos producidos por el viento que ejerce el fuste del aerogenerador a las paredes de la celda central, directamente a unas grandísimas pantallas radiales 11 (figura 2a)., que a su vez se distribuyen por un perímetro muy resistente formado por una malla de pantallas menores que forman una retícula de triángulos equiláteros 13. De esta forma, ninguna parte de la estructura está sobre-tensionada, lo cual supone seguridad y durabilidad.
Para ello, la invención, en su configuración preferente, consta de una base que tiene en planta forma de polígono de 6 lados, tanto regular como irregular, y las celdas formadas por los paramentos verticales interiores presentan las siguientes características: - El perímetro de la base está conformado por una malla de triángulos equiláteros 15 y aquellos que tienen un lado en el exterior de la base están divididos por otro paramento vertical perpendicular por su punto medio 14.
- En el centro de la base se sitúa una gran celda circular 8 que permitirá soportar los esfuerzos transmitidos por la superestructura (principalmente será un aerogenerador).
- Conectando las dos zonas anteriormente descritas se disponen paramentos radiales 11 que conectan la celda central con cada uno de los vértices interiores de los triángulos del perímetro.
En las figuras 2a y 2b se muestra la esencia del sistema estructural propuesto, donde las cargas se distribuyen de forma ramificada por toda la estructura, sin haber ningún nodo que no se ramifique. Está compuesto por los siguientes elementos:
- una pared interior 8 que define el alojamiento de encaje del pie de la torre
- una pared exterior 9 que define el perímetro exterior del cuerpo
- una pared intermedia 10 dispuesta entre la pared interior y la pared exterior
- nervaduras radiales internas 11 que unen la pared interior con la intermedia en los
- primeros nodos de unión 12
- nervaduras reticulares primarias 14 que unen perpendicularmente los primeros nodos de unión con la pared exterior
- nervaduras reticulares secundarias 15 que unen oblicuamente los primeros nodos de unión con la pared exterior en los
- segundos nodos de unión 16, siendo la distancia A que modula la estructura (figura 4b y figura 5) la distancia entre ellos.
En las figuras 2b y 3b se muestra la esencia del sistema en la invención constituida por tres cajones. Está compuesto por los mismos elementos, salvo:
- paredes de unión 19 destinadas a adosar los cajones
- un tramo de pared central (8bis)
- un tramo de pared exterior (9bis) y
- un tramo de pared intermedia (1 Obis) La pared interior 8 constituye en ambos casos un alojamiento para el pie de la torre 7, que en la configuración preferente será cilindrico porque es el necesario para soportar aerogeneradores, pero genéricamente puede tener cualquier otra forma de prisma de base poligonal para albergar otro tipo de soportes para otro tipo de instalaciones o edificaciones.
Las paredes y nervaduras anteriormente descritas, configuran celdas que se pueden clasificar en interiores y periféricas:
- Las celdas interiores 17 son aquellas conformadas por al menos un tramo de pared interior, dos nervaduras radiales y un tramo de pared intermedia.
- Las celdas periféricas 18 son todas las demás celdas que no son interiores y están generalmente configuradas por un tramo de pared exterior, primeras o segundas nervaduras reticulares y un tramo de pared intermedia.
La malla de triángulos equiláteros del perímetro constituye un cierre altamente resistente de la plataforma. También constituye un doble casco de seguridad, de tal forma que cualquier vía de agua que se pudiera producir por un impacto accidental, inundaría tan sólo una pequeñísima celda, sin ninguna repercusión para el conjunto.
Como también se ve, este sistema a su vez es óptimo para transmitir ahora los esfuerzos del oleaje y corrientes hacia el interior de la estructura, resistiéndolos sin concentraciones. Los vanos exteriores de dicha malla son del orden de 4 m con espesores de al menos 50 cm, muy inferiores a los vanos exteriores del resto de las plataformas de hormigón existentes, que suelen ser de 8 m o más con espesores en torno a los 40 cm. Esta diferencia significativa se traduce en muchos menos esfuerzos de flexión, más resistencia y menor armado.
Se podría argumentar que esta característica no es una ventaja porque otras plataformas podrían hacer lo mismo simplemente interponiendo más paramentos y aumentando los espesores. Pero esto siendo así, no se hace en las otras soluciones porque las aumentaría tanto el peso que las haría perder la estabilidad y todas las demás propiedades navales.
Con esto se quiere explicar que aquí si es posible por la configuración ramificada planteada y porque la concepción global de volúmenes y pesos del invento lo permite.
El perímetro de la base conformada por la malla de triángulos equiláteros forma un polígono de 6 lados modulados con el parámetro “A”, que es la distancia entre cada par de nodos secundarios consecutivos: Si tres lados tienen de longitud A y los otros tres nA, el resultado es un triángulo achaflanado como el de la figura 4b.
Si los 6 lados son iguales de longitud nA, se trata de un hexágono regular como el de la figura 5.
Cualquier otra configuración de lados es posible, siempre y cuando se mantenga la estructura antes mencionada. Como referencia se puede indicar que el módulo A puede variar entre 6 y 14 metros, y los lados de la base de 1 a 10 veces A.
Otro aspecto importante de la concepción de la estructura para conseguir una resistencia excepcional ante las grandes acciones a las que se someterá con una estructura poco tensionada es la disposición tres paredes radiales de gran rigidez 54 (figura 4b), que unen los vértices con el núcleo central.
Esta plataforma, como se ha descrito, puede estar constituida por una o por tres piezas. En este último caso, las paredes de unión de éstas, serán precisamente las tres grandes paredes radiales 54 (figura 4b). Con ello se consiguen tres cosas:
Que la doble pared, que supone una gran pared de al menos 1m de espesor “arriostre” y la de una rigidez excepcional a la estructura, minimizando su fatiga.
Que haya mucha superficie de contacto entre los cajones para conseguir en la unión, un monolitismo perfecto
Que el sistema de amarre se pueda sujetar a ella y por tanto distribuir sin afectar para nada el resto de la estructura (figura 22)
Para el funcionamiento hidrodinámico especial que captura una gran masa de agua circundante, se han dispuesto una serie de perforaciones en la losa inferior, en el medio de las celdas centrales 25 (figura 14) y unas válvulas de control de presión en la losa superior 42 (figura 23).
Como ya se indicó, casi todas las plataformas existentes tienen losas anti-alteada ( heave píate), porque es un sistema eficaz para atrapar la mayor cantidad de agua posible y así optimizar su funcionamiento, pero se emplea sólo localmente en las torres y en el perímetro de las bases. Precisamente uno de los puntos fuertes de la invención es la concepción de la plataforma como un gigantesco “heave píate ” que atrapa una gran masa inferior de agua y también una gran masa superior que es toda la que entra en las celdas centrales y en el vuelo de la losa perimetral. Por otra parte, la apertura de los huecos inferiores en las celdas centrales supone un aumento de aproximadamente un metro de altura metacéntrica de la plataforma (pasa de 8.50 a 9.47m) y al entrar agua exterior, disminuye la superficie de flotación. Todo ello se traduce en mayor estabilidad y en un comportamiento óptimo de cara a la producción de energía eólica.
Adicionalmente puede incorporar un sistema opcional, el de amortiguación neumática, que permite mejorar aún más el comportamiento de la plataforma, muy interesante en mares muy energéticos:
El sistema de amortiguación neumática, consiste en desfasar el nivel de las celdas interiores con respecto al nivel del mar, por medio de la limitación de la salida y entrada del aire de las mismas mediante la activación pasiva o automatizada de las válvulas de control de presión 42 (figura 23). a) Cuando la plataforma se encuentra en la cresta de la ola (figura 26a), las celdas centrales tienen un nivel bajo, porque la limitación de la salida del aire de su interior ha retardado el su llenado. Esto implica una importante disminución de la elevación de la estructura y por tanto de las aceleraciones.
Con el paso del tiempo, las celdas centrales continúan llenándose, pero desfasadamente con la ola. b) Cuando la plataforma se encuentra en el valle de la ola (figura 26b), las celdas centrales ya se llenaron y casi no han podido empezar a vaciarse porque se le ha dificultado la entrada del aire. Esto implica una importante disminución en el descenso de la estructura.
La salida y entrada del aire, según las condiciones del oleaje, puede permanecer constante o puede ser regulada por un sistema de control que optimice su funcionamiento.
En la figura 27 se representa la disminución del movimiento de la plataforma (línea de puntos) con respecto al perfil de la ola (área gris).
La invención puede presentar otras configuraciones que, aunque con propiedades muy similares le permitirá adaptarse a muy diferentes escenarios y medios técnicos de construcción:
Algunas celdas periféricas son susceptibles de elevarse sobre la cubierta de la base, formando torres que aumenten la estabilidad aún más. No siempre serán necesarias porque con la configuración base, se cubren sobradamente todos los estándares requeridos, y tiene el inconveniente de carecer de la gran cubierta útil para mantenimiento puesto que en este caso sólo emergerían las torres. No obstante, la solución estructural y el atrapamiento de agua funcionan igual, incluso el volumen de agua desplazado puede ser mayor, y por tanto con inferiores aceleraciones.
En la figura 6 se ve cómo la malla de triángulos perimetral permite la construcción de las torres 55. Como ya se indicó, la construcción preferente es con encofrados deslizantes en cajonero y no presentaría ninguna complejidad su construcción puesto que no hay más que seguir hormigonando los paramentos que corresponden a dichas torres.
La plataforma también puede tener planta de forma circular, con las mismas características anteriormente definidas, pero con triángulos perimetrales asimilables a triángulos equiláteros, con los lados exteriores e interiores con forma de arco de círculo (figura 8).
La plataforma también puede tener planta de forma cuadrada (con las esquinas achaflanadas), con las mismas características anteriormente definidas, pero en este caso dividida en cuatro estructuras de hormigón de forma prismática (cajones) en vez de tres, y la división se realizará por sus diagonales (figura 9).
La estructura, además de tener una celda circular central, puede tener otras tres de menor tamaño, regularmente repartidas y con las mismas características anteriormente definidas para poder albergar otros soportes de la superestructura (figura 10). Estos soportes serán necesarios cuando la estructura a soportar no sea un aerogenerador sino una edificación, una subestación o cualquier otro tipo de instalación.
Otra opción es que la estructura una vez remolcada por flotación a la zona de servicio, sea completamente lastrada con agua de mar para apoyarse en el fondo marino.
Cuando no sea posible disponer de un dique flotante cajonero con las suficientes dimensiones para la construcción de la plataforma, se puede construir, por elementos prefabricados o con encofrados deslizantes, en un muelle con sistema de botadura o en un dique seco capaz de albergar la construcción.
Algunos valores que pueden servir para evaluar su estabilidad naval e idoneidad para la producción de energía son:
Altura metacéntrica inicial = 9.47 m
Desplazamiento = 29.734 t
Par restaurador para 5o = 24.541 t m Par restaurador para 10° = 48.8961 m
Par restaurador para 20° = 63.3331 m
Cada 170 m3 de agua transferidos amplían = 7.000 t m
Teniendo en cuenta que la fuerza horizontal que hace el viento en máxima producción de energía sobre el buje de una turbina DTU de 10 MW es de 150 t, lo cual supondría un momento desestabilizador de 18.000 t m, lo cual nos puede dar una idea de las pequeñas inclinaciones que va a sufrir la plataforma y por tanto la gran producción de energía.
B. DESCRIPCIÓN DEL PROCEDIMIENTO DE CONSTRUCCIÓN, ENSAMBLAJE Y PUESTA EN SERVICIO
El sistema constructivo propuesto, consta de dos procedimientos:
PROCEDIMIENTO 1: “Construcción en una sola pieza”.
Cuando se trata de grandes producciones para parques eólicos en torno a los 700-1000 Mw, donde la inversión inicial de construir la infraestructura se reparte en muchas unidades, se hace rentable la construcción de un dique flotante cajonero especial, de estas inusuales dimensiones para la construcción conjunta de toda la plataforma.
PROCEDIMIENTO 2: “Construcción a partir de tres piezas”
Cuando se trata de construir pocas unidades como un prototipo o instalaciones nearshore de abastecimiento eléctrico a puertos o industrias, y no es justificable la inversión en un dique cajonero muy costoso, se puede construir en tres piezas empleando cajoneros de menor dimensión ya existentes.
PROCEDIMIENTO 1
El primer procedimiento, empleado para producción masiva, consta de cuatro bloques:
1. Construcción de la estructura en una pieza
2. Ensamblaje de la superestructura que soporta (habitualmente un aerogenerador).
3. Puesta en servicio adecuada a las condiciones de la implantación.
4. Desconexión y reflotado para mantenimiento o desmantelamiento.
1. Construcción de la estructura en una pieza Cuando el volumen de construcción lo justifica, se construirá previamente un dique flotante de la dimensión necesaria para la construcción de la plataforma.
Dicho dique flotante, tendrá preferentemente una forma similar a la plataforma, de un tamaño algo superior en planta para ahorrar material, pero también se puede hacer de forma rectangular uniendo pontonas existentes. En las caras que fuera necesario, se dispondrían unas guías fijadas en el fondo que estabilizan el dique cuando se lastra con agua para liberar la estructura (figura 11a). También se puede estabilizar por flotación mediante torres sumergibles dispuestas en las esquinas.
La construcción se realiza en las siguientes fases:
- Colocación de la armadura de la losa inferior y hormigonado
- Colocación de encofrados deslizantes para la construcción de los paramentos verticales
- Hormigonado de los paramentos hasta que la estructura tenga la suficiente flotabilidad para tener un francobordo seguro para seguir hormigonando fuera del cajonero
- Lastrado del cajonero hasta que el cajón se libera y se amarra al muelle para seguir hormigonando en flotación (figura 11b)
- Hormigonado en flotación mediante encofrados deslizantes del resto de la estructura (figura 11c)
- Una vez hormigonado todo el puntal de la estructura, se retiran los encofrados deslizantes, se sitúan las prelosas, y se hormigona la losa superior
Este sistema permite una construcción muy eficaz, pudiéndose realizar este proceso en una sola semana, quedando la estructura completamente terminada ya a flotación
2. Ensamblaje de la superestructura que soporta (habitualmente un aerogenerador).
Para la instalación de la torre eólica, subestación u edificación que soporta la plataforma, se siguen los siguientes pasos:
Introducción de la superestructura (torre eólica) 36 en el hueco central que se ha conformado (figura 21). Esto es una importante innovación, puesto que se trata de sustituir la unión habitual de la torre que se suele realizar mediante una gran brida que se atornilla a una jaula de pernos embutida en las paredes de la plataforma. Esta unión es de gran complejidad requiriendo una gran precisión constructiva, y por otra parte supone una importante concentración de tensiones en la zona. Por el contrario, esta solución es de máxima sencillez, requiere unas tolerancias mucho menos restrictivas, y reparte las cargas sin concentraciones.
Grouting del espacio que queda entre ambos 37 (figura 22). Este paso, que es similar al que habitualmente se realiza para la unión de monopilotes y pieza de transición, pero ahora empleado en la unión del fuste con la plataforma, permitiendo una unión solidaria entre ambos elementos.
3. Puesta en servicio
El proceso consta de las siguientes fases:
Remolcado y posicionamiento de la plataforma mediante tres remolcadores. La plataforma se traslada con uno o dos remolcadores convencionales que tiran de ella, y un tercero que queda en la parte posterior para evitar las posibles derivas laterales que se pueden producir en el desplazamiento. Posteriormente, los mismos tres remolcadores permitirán realizar el enganche a los amarres previamente instalados y posicionar la plataforma en su lugar de servicio.
Lastrado con agua mediante las bombas instaladas
El sistema de lastrado variará según el tipo y forma de la estructura marítima de la que se trate, pero siempre se compondrá de elementos parecidos a los que se representan en la figura 23:
Toma de agua exterior 38 Anillo de distribución 39
Conducciones con válvulas para el lastrado de celdas 30 Bombas 40
Conducciones para el sistema de lastre activo 41 Salida regulable de aire 42
Compuertas deslizantes para conexión inferior con el agua 43
El lastrado se realiza introduciendo agua del exterior mediante bombas 40 desde la toma 38, y mediante el anillo de distribución 39 y las conducciones con válvulas 30, se llenan las celdas centrales para que cuando se iguale la presión con el exterior, se puedan abrir fácilmente los huecos dispuestos en la losa inferior mediante compuertas deslizantes o similar 43 (figura 23).
El procedimiento de puesta en servicio es el siguiente:
Se llenan las celdas centrales hasta que se iguala el nivel de agua interior, con el nivel del mar.
Se abren las compuertas inferiores, conectando las celdas centrales con el mar. Existe otra configuración posible de la invención, donde no se conectan las celdas centrales con el exterior, por lo que la plataforma no tendría huecos en la losa inferior y por tanto este punto y el siguiente se omitirían.
Se ajusta la salida de aire superior necesaria para lograr una amortiguación neumática adaptada al oleaje.
Se llenan ligeramente las celdas situadas en los vértices de la base 44 (figura 29) para el funcionamiento del sistema de lastre variable que se realiza por las conducciones 41 (figura 23).
Conexión ( plug and play) de las líneas de amarre previamente preinstaladas. Una de las más importantes características de la invención, es su facilidad de puesta en servicio y retirada por estar lastrada solamente con agua de mar. Por otra parte las líneas de amarre se pueden conectar y desconectar fácilmente con la ayuda tan sólo de remolcadores convencionales. Esto permite poder llevar la plataforma de nuevo a puerto siempre que sea necesario.
Conexión ( plug and play) eléctrica. Del mismo modo, la línea eléctrica puede ser conectada y desconectada mediante de unos “hub" de conexión eléctrica submarinos que también son preinstalados para posibilitar su desenganche.
4. Desconexión para mantenimiento o desmantelamiento
El proceso consta de las siguientes fases:
Fijación de la plataforma mediante tres remolcadores.
Desconexión eléctrica y fijación para posterior uso.
Desconexión de líneas de amarre y fijación para posterior uso.
Cerrado de los huecos de la losa inferior. Vaciado del agua de lastrado de las celdas mediante las bombas instaladas, o mediante la inyección de aire comprimido, lo cual produce el reflotado de la estructura.
Remolque de la estructura a puerto.
PROCEDIMIENTO 2
El segundo procedimiento, que permite la realización de pocas unidades, es un proceso similar al anterior, con la diferencia de que la base se construye a partir de tres piezas independientes que posteriormente son unidas monolíticamente mediante el hormigonado de la losa superior y parte de la inferior, además, si fuera necesario, mediante bulones de unión.
Este procedimiento requiere tres procesos específicos:
1. Construcción de los elementos de los que consta la estructura
2. Preparación de la estructura para su posterior ensamblaje
3. Ensamblaje de los elementos anteriores
El montaje de la superestructura (aerogenerador), la puesta en servicio y la desconexión, serían idénticos al procedimiento 1.
1. Construcción de los elementos de los que consta la estructura
Como se ha descrito anteriormente la mayor dificultad que se encuentra a la hora de construir cualquiera de las plataformas existentes que han de soportar edificaciones, instalaciones o aerogeneradores de 12 ó 15 Mw, es que tienen enormes dimensiones (en torno a los 50 m de diámetro) y grandes acciones que soportar.
En la actualidad, los astilleros y puertos especializados disponen de algunos medios que podrían servir para estos fines como:
Syncrolift y rampas de botadura: permitirían fabricar la plataforma sobre el muelle y transportándola con un sistema de carriles, spmt trailers o grandísimas grúas hasta la zona de lanzamiento, se podrían poner en flotación. Es un complejo sistema de construcción, pero es el propuesto por varias soluciones existentes. El caso es que no existe ninguno de estos medios construido que tenga una manga de 50 m que sería la necesaria.
Diques secos: en principio es el sistema más sencillo para resolver el problema, pero en la actualidad son muy escasos los diques secos que tienen las dimensiones necesarias. Sería pues necesario la realización de una gran excavación en una zona portuaria y disponer una serie de compuertas e impermeabilizaciones que supondrían un elevado sobrecoste.
En cualquier caso, estos medios son muy escasos y costosos suponiendo un cuello de botella cuando se trata de cumplir plazos en grandes implantaciones.
Para su fabricación, por tanto, actualmente es necesario construir previamente unas instalaciones específicas que permitan realizar los trabajos y un sistema de transporte y puesta en flotación de grandísimo tonelaje. Esto supone una repercusión en el coste de cada unidad, que para grandes parques eólicos podría llegar a compensar, pero nunca cuando se trata de fabricar pocas plataformas.
Como se ha explicado, para soluciones de hormigón, una forma ideal de construcción sería bajo la técnica de construcción de cajones portuarios (mediante “cajonero”), pero existe la gran dificultad de no “caber” en ninguno de los diques flotantes existentes.
Por ello, la presente invención, propone descomponer la plataforma en varios elementos, estancos, resistentes en sí mismos y autoestables, que sí podrían construirse en los numerosos y trasladables diques flotantes existentes para la construcción de cajones.
Para la construcción de los cajones anteriormente definidos de empleará el sistema de cajones portuarios mediante el empleo de un dique flotante. La construcción también podrá ser llevada a cabo tanto en dique seco como en una plataforma sobre el muelle que posteriormente será puesta a flote, pero en todos los casos el hormigonado se realizaría mediante el sistema de encofrados deslizantes (se podría construir con piezas planas prefabricadas y hormigonando posteriormente las juntas, pero solamente en caso de no disponer de otros medios).
El dique flotante “cajonero” dispone de una infraestructura perfectamente diseñada, que va elevando los encofrados por un sistema de gatos hidráulicos por lo que tiene la gran ventaja de poder colocar el hormigón en el encofrado en pequeñas tongadas, así como poder compactarlo y asegurar su unión en perfectas condiciones con la capa precedente, eliminando las juntas de hormigonado. Además, el cajón una vez construido permanece en flotación de forma estable (figura 12), lo cual es una importantísima ventaja operativa.
Esto conlleva una gran robustez y monolitismo en la estructura construida, que la hace idónea para soportar los embates del oleaje y viento, así como de gran resistencia frente a impactos accidentales de barcos o icebergs. Por el contrario, en las soluciones de plataformas flotantes de hormigón que actualmente se están diseñando en el mercado, para conseguir rendimientos algo similares al del cajonero, emplean elementos prefabricados cuyas juntas son susceptibles de fallo, y por tanto con una resistencia muy inferior.
2. Preparación de la estructura para su posterior ensamblaje
Cada uno de los módulos de los que se compone la estructura debe estar preparado para su posterior conexión entre ellos. Para ello se deben dejar los orificios laterales 22 (figura 13) y vainas embebidas 21 necesarias para introducir los cables que los unirán monolíticamente. La posición y cantidad de las vainas y orificios dependerá en cada caso de las solicitaciones debidas a la superestructura y las condiciones ambientales donde se encuentra. La posición de los orificios laterales de unión, ha sido prevista en la disposición de la armadura, pero en el paramento tan sólo se deja un rehundido de unos 5 cm que sirve de indicación de su posición. Dentro de este retallo se realizará la posteriormente una perforación cuando los cajones ya estén firmemente unidos por los cables situados en sus extremos, y el hueco que queda entre los paramentos ha sido completamente rellenado con grout (proceso que se explicará posteriormente). Finalmente se introducirán los bulones, consiguiéndose una unión solidaria.
En algunos casos, si fuera necesario, en el interior de la losa inferior o alguna pared lateral, también se podrán disponer una serie de vainas que servirían para introducir cables de postesado.
En el canto interior de la losa inferior y en las bandas exteriores de la zona de unión, tal y como se ve en la figura 13, se disponen unas juntas impermeables 23 que permiten hacer estanca la unión entre cajones. En la parte superior del cajón y en la zona circular inferior, se dejarán las esperas de las armaduras necesarias 24 para que posteriormente, cuando se hormigonen la losa superior y el pequeño círculo de la losa inferior, se produzca una unión solidaria entre los cajones.
En la losa inferior, en la zona situada bajo las celdas centrales, se dejarán unas aberturas de forma circular de unos dos metros de diámetro, que permitirán el paso del agua al interior.
Para ello, en la losa inferior, antes de hormigonar se dispondrán unos cilindros huecos preferentemente de acero 25 (figura 14) que sobresaldrán de su cara superior lo suficiente para que posteriormente se pueda acoplar algún tipo de cierre 26 que cierren dicho paso del agua.
Este cierre ha de soportar la presión hidrostática existente en la cara inferior, y está será siempre inferior a dos bares, perfectamente soportable con una chapa no muy gruesa. Esto supone que se puede emplear muchos tipos diferentes de cierre, tapas, compuertas, válvulas de mariposa, etc.
Una solución sencilla son unas compuertas de guillotina como las representadas en la figura 14, que pueden estar accionadas remotamente por unos pequeños gatos hidráulicos para simplificar su operación.
3. Ensamblaje de los cajones
El objetivo del procedimiento de ensamblaje es que se realicen las operaciones de un modo fiable y seguro, asegurando la estabilidad de la estructura en todo momento y garantizar la robustez y monolitismo de la estructura resultante
El proceso consta de las siguientes fases:
Adrizado de los cajones antes de su unión (para mantenerlos en posición horizontal). Consiste en rellenar con una pequeña cantidad determinada de agua algunas celdas del cajón con el propósito de que flote perfectamente horizontal.
Acercamiento con remolcadores hasta su posición de unión. Cada cajón es amarrado a un remolcador que los posicionará hasta que queden a una pequeña distancia unos de otros enfrentando los paramentos por donde se unirán. En este momento se introducen unos cables por las vainas situadas en los extremos de tal forma que cuando se tira desde cada uno de los remolcadores, se produzca la aproximación de los mismos (figura 15).
Aproximación final y conexión mediante el tesado de los cables. Cuando los cajones ya están en su posición de unión, se van tesando mediante gatos sucesivamente antes de ser cortados y desconectados de los remolcadores
Grouting de regularización 27 (figura 16) de las cámaras situadas entre cajones que se forman entre las bandas impermeables 23 (figura 13) que se instalaron en los bordes laterales e inferior de los paramentos a unir.
Perforación en los retallos que se dispusieron 22 (figura 13) e introducción de bulones 28 en los orificios realizados (figura 17). Puesto que la cámara que se forma entre los cajones 27 ya está completamente rellena con el grout, no habrá ningún problema de entrada de agua a través de los huecos y el apoyo entre cajones está perfectamente regularizado. Hormigonado losa inferior circular 29 (figura 18). Este paso es muy importante puesto que supone la unión inferior de los tres cajones que va a dar un gran monolitismo a la estructura, y va a servir de apoyo a la torre del aerogenerador. En algunos casos, si fuera necesario, esta unión se puede complementar con cables de postensado que refuercen aún más la unión de la losa inferior y le den continuidad.
Instalación de conducciones interiores para llenado y vaciado de celdas 30 (figura 19). Permitirán el lastrado y deslastrado con agua de mar para su puesta en servicio, así como para la extracción de agua en casos de emergencia.
Posicionado de prelosas 31 en la parte superior del cajón y colocación de reservas para pase de conducciones de salida de aire 32 y agua de lastrado 33 (figura 20)
Colocación de anclajes para líneas de amarre 34 (figura 20)
Hormigonado de la losa superior 35 (figura 20). Para ello se dispondrá un encofrado perimetral que tape su canto, sujetándose en la parte superior de los paramentos exteriores. Otra opción es, en el propio cajonero, recrecer los paramentos exteriores la altura del canto de la losa para que sirvan a su vez de encofrado de la misma.
Ejemplo de instalación de un aerogenerador de 10 MW
Para la instalación de un aerogenerador de 10 MW, la configuración preferente estaría constituida por una base poligonal de 6 lados, 3 de 7 A de longitud y 3 de 1A, que conforman un triángulo truncado en los vértices y 20 m de puntal con las siguientes características:
- Dimensiones: 65,60 m de eslora
56,80 m de manga
- Dimensiones de cada cajón al hacerla en tres partes:
61,90 m de eslora 18,20 m de manga
- Altura de la base (H): 20,00 m
- Máximo vano exterior (A/2): 4,10 m
- Espesor de paramentos exteriores (E2): 0,50 m
Espesor de paramentos interiores (E1): 0,25 m Espesor de la losa inferior (Ll): 0,50 m
Ancho de la losa anti alteada (T): 2,20 m
Espesor de la losa superior (LS): 0,80 m
Peso de cada cajón: 8.243 t
Peso total de la estructura: 28.460 t
VENTAJAS QUE SE DERIVAN DE LA INVENCIÓN
El procedimiento de construcción, ensamblaje y puesta en servicio propuesto tiene grandes ventajas sobre otros sistemas que realizan la misma función:
1. La invención plantea una solución realizable en diques flotantes cajoneros que permite una ejecución rápida y sencilla de la estructura además de dejarla puesta a flote al terminar el proceso.
2. El poder hormigonar en el encofrado en pequeñas tongadas, así como poder compactarlo y asegurar su unión en perfectas condiciones con la capa precedente, hace que el cajón sea monolítico, sin juntas de hormigonado. Esto hace que sea una estructura altamente resistente a los embates del agua e impactos accidentales.
3. La fabricación de estructuras en cajonero, es una tecnología altamente contrastada y con una logística muy probada. Es posible fabricar piezas de 20.000 t en tan sólo 10 días. Todo ello implica una ejecución de alta calidad en un tiempo récord.
4. Debido a su fácil construcción, bajo coste y grandes dimensiones y peso generado, este sistema constructivo permite realizar plataformas que soportan los más grandes aerogeneradores (10 MW,12 MW o superiores) que actualmente se están diseñando.
5. La superestructura (una torre eólica generalmente) no se une a la plataforma a través de una placa con pernos que soporta toda la torsión en esa zona, sino que, a través de una sencilla unión, la distribuye por toda la estructura evitando la concentración de tensiones.
6. Los vanos exteriores de la estructura son del orden de cuatro metros, con espesores de pared de 50 cm, por lo que las flexiones que se pueden producir sobre los mismos están muy reducidas.
7. El esfuerzo que ejercen las líneas de amarre sobre la estructura se absorbe y distribuye directamente por tres grandes paramentos radiales que rigidizan la estructura, sin afectar por tanto a tensiones en otros paramentos. Todo ello lleva a un bajo armado y minimización de tensiones.
8. El mantenimiento es casi nulo por bajas tensiones y concentraciones en un hormigón que está muy poco armado. La fisuración es bajísima porque, por su tipo estructural, el hormigón está comprimido en su mayoría, incluso en donde en otras soluciones está traccionado. La vida útil de la estructura generada puede superar los 50 años y podría permitir la sustitución del aerogenerador a los 20-25 años por otro de mayor potencia.
9. La estructura se construye y ensambla completamente en puerto, incluida la superestructura (habitualmente aerogenerador), y se traslada por flotación mediante remolcadores convencionales a su posición de trabajo. Su bajo calado, permite la realización en prácticamente cualquier puerto convencional cercano a la implantación.
10. El proceso de fondeo de la estructura se realiza mediante el lastrado de sus celdas exclusivamente con agua de mar, sin necesidad de ningún medio adicional, ni embarcaciones auxiliares
11. Debido a su grandísimo par restaurador y por tanto mínima inclinación de operación, la producción de energía de la turbina está asegurada a pleno rendimiento en todo momento sin reducciones para hacer el trasvase de lastre cuando cambia el viento (como ocurre casi todas las demás soluciones existentes).
12. Todas las instalaciones susceptibles de mantenimientos rutinarios se encuentran en la cubierta de la plataforma (no hay equipos ni estructuras metálicas sumergidas), por lo que se simplifican las tareas notablemente.
13. Al lastrarse sólo con agua, permite un fácil vaciado para su traslado de nuevo a puerto y realizar mantenimientos de mayor complejidad ( onshore ). Además, dispone de un sistema “plug and pía y” para los amarres y conexión la eléctrica, por lo que este proceso se puede realizar con gran agilidad.
14. El sistema de construcción mediante cajonero es la forma más respetuosa con el medio ambiente para la construcción de infraestructuras eólicas y portuarias, con una disminución muy notable, con respecto a las técnicas tradicionales, de sustancias contaminantes. Es un sistema de cimentación que no hace ruidos que afecten a los mamíferos marinos y que se puede realizar en prácticamente todo tipo de fondos sin alterarlos. Requiere un menor consumo de recursos en materia prima que dependiendo de las características de cada obra puede llegar a suponer un ahorro del 50 %. 15. El bajo armado que se requiere con el procedimiento propuesto y su rápida ejecución supone una reducción del coste de más del 50% respecto a otra metálica similar.
16. El sistema constructivo empleado produce el mismo ahorro incluso en la realización de pocas unidades, a diferencia de las soluciones actuales que sólo producen ahorro en grandes producciones puesto que necesitan importantes infraestructuras cuyo coste se ha de repartir entre ellas.
En este texto, la palabra “comprende” y sus variantes (como “comprendiendo”, etc.) no deben interpretarse de forma excluyente, es decir, no excluyen la posibilidad de que lo descrito incluya otros elementos, pasos etc. Por otra parte, la invención no está limitada a las realizaciones concretas que se han descrito sino abarca también, por ejemplo, las variantes que pueden ser realizadas por el experto medio en la materia, dentro de lo que se desprende de las reivindicaciones.

Claims

REIVINDICACIONES
1.- Estructura (2) para el soporte de torre (1) de aerogenerador provista de un alojamiento (7) de encaje del pie de la torre (1), definiéndose en la plataforma (2) un eje principal (G) que coincide con un eje principal de la torre (1) cuando esta está encajada en el alojamiento (7), caracterizada por que comprende un cuerpo de sección constante según la dirección del eje principal (G) en el que se definen:
- una pared interior (8) que define el alojamiento (7) de encaje del pie de la torre (1);
- una pared exterior (9) que define el perímetro exterior del cuerpo;
- una pared intermedia (10) dispuesta entre la pared interior (8) y la pared exterior (9); estando unidas la pared interior (8) y la pared intermedia (10) por nervaduras radiales internas (11) perpendiculares a la pared interior (8) cuyo plano pasa por el eje principal (G), de modo que en la pared intermedia (10) se definen unos primeros nodos de unión (12) entre pared intermedia (10) y nervaduras radiales (11); estando unidas la pared intermedia (10) y la pared exterior (9) por nervaduras reticulares (14 y 15) cuya sección según un plano perpendicular al eje principal (G) es una estructura reticular (13), de modo que unas primeras nervaduras reticulares (14) se extienden desde los primeros nodos de unión (12) perpendicularmente hasta la pared exterior (9), y unas segundas nervaduras reticulares (15) se extienden oblicuas con respecto a las primeras nervaduras reticulares (14) desde primeros nodos de unión (12) hasta la pared exterior (9), definiéndose en la pared exterior (9) unos segundos nodos de unión (16) donde confluyen pared exterior (9) y pares de segundas nervaduras reticulares (15).
2.- Estructura según la reivindicación 1, que comprende n cuerpos idénticos (3), estando cada cuerpo delimitado por:
- al menos dos paredes de unión (19) constituidas por una nervadura radial interna y una primera nervadura reticular, estando las paredes de unión (19) destinadas a quedar adosadas a paredes de unión (19) de los cuerpos (3) contiguos, formando dichas dos paredes radiales un ángulo a = 360/n; y
- una pared central (8bis), de modo que las paredes centrales (8bis) constituyen la fracción n-ésima de la pared interior (8); y - una pared exterior (9bis).
3.- Estructura según cualquiera de las reivindicaciones anteriores, en la que la estructura reticular es tipo Warren con montantes.
4.- Estructura según cualquiera de las reivindicaciones anteriores, en la que el ángulo entre pares de segundas nervaduras reticulares (15) es de 60°, de modo que se configura una malla de triángulos equiláteros (13 y 20) divididos por las primeras nervaduras reticulares (14).
5.- Estructura según cualquiera de las reivindicaciones anteriores, en la que la distancia (A) entre cada par segundos nodos (16) está comprendida entre 6 y 14 metros, y en la que los lados de la estructura (2) miden de 1 a 10 veces dicha distancia (A).
6.- Estructura según cualquiera de las reivindicaciones anteriores, en la que se definen:
- unas celdas interiores (17) que son aquellas conformadas por al menos un tramo de pared interior, dos nervaduras radiales (11) y un tramo de pared intermedia (10); y
- unas celdas periféricas (18) son todas las demás celdas que no son interiores.
7.- Estructura según la reivindicación 6, en la que algunas celdas periféricas son susceptibles de elevarse sobre la cubierta de la base, formando torres (55).
8.- Estructura según la reivindicación 6 y cualquiera que dependa de esta, en la que el conjunto de celdas interiores (17) está provisto de un sistema de comunicación hidráulico entre ellas, incluyendo dispositivos para el vaciado y llenado que permitan la regulación del nivel, tanto para su fondeo, como para la reflotación.
9.- Estructura según cualquiera de las reivindicaciones anteriores, en la que cada cuerpo está cerrado por su parte inferior por una losa inferior (4) perpendicular al eje principal (G), comprendiendo la estructura (2) una losa superior (6) provista de una abertura (50) para el pie de la torre (1), cubriendo la losa superior al menos un cuerpo (3).
10.- Estructura según la reivindicación 6 y cualquiera que dependa de esta, en la que algunas de las celdas interiores (17) comprenden aberturas superiores (51) e inferiores (52), de modo que forman un sistema de amortiguación neumática que permite el desfase del nivel de las celdas interiores (17) con respecto al nivel del mar, por medio de la limitación de la salida y entrada del aire de las mismas.
11.- Estructura según cualquiera de las reivindicaciones anteriores, en la que el alojamiento (7) es cilindrico.
12.- Estructura según la reivindicación 9 y cualquiera que dependa de esta, en la que las losas inferiores (4) sobresalen lateralmente de las respectivas paredes exteriores (9), de modo que se configuran unas pestañas (53) amortiguadoras.
13.- Estructura según cualquiera de las reivindicaciones anteriores, en la que paredes, losas y nervaduras son de hormigón.
14.- Estructura según la reivindicación 2 y cualquiera que dependa de esta, en la que los espacios (19) entre paredes de unión (19) están rellenos de grout (mortero fluido de baja retracción).
15.- Estructura según cualquiera de las reivindicaciones anteriores, en la que la plataforma tiene en planta forma circular, con triángulos perimetrales asimilables a triángulos equiláteros, con los lados exteriores e interiores con forma de arco de círculo.
16.- Estructura según cualquiera de las reivindicaciones anteriores, donde se disponen tres celdas circulares más de menor tamaño, regularmente repartidas, para poder albergar otros soportes de la superestructura.
17.- Un procedimiento de construcción de una estructura según las reivindicaciones 6 o 7 mediante dique flotante, que consta de las siguientes fases:
- Construcción de un dique flotante con las dimensiones suficientes para construir la plataforma
- Colocación sobre la base del dique flotante de la armadura de la losa inferior y hormigonado
- Colocación de encofrados deslizantes para la construcción de los paramentos verticales
- Hormigonado de los paramentos hasta que la estructura tenga la suficiente flotabilidad para tener un francobordo seguro para seguir hormigonando fuera del cajonero
- Lastrado del cajonero hasta que el cajón se libera y se amarra al muelle para seguir hormigonando en flotación
- Una vez hormigonado todo el puntal de la estructura, se retiran los encofrados deslizantes, se sitúan las prelosas, y se hormigona la losa superior
18.- Un procedimiento de construcción de una estructura según las reivindicaciones 2, 6 y 7 mediante dique flotante, que consta de las siguientes fases:
Construcción de los cajones en el dique flotante Preparación de la estructura para su posterior ensamblaje
Realización de rehundidos de indicación del posicionamiento de las posibles perforaciones a realizar para la introducción de bulones
Introducción de cables en las vainas que servirán para el acercamiento de los cajones
Disposición de juntas impermeables (23)
Disposición de compuertas (26) en los huecos de la losa inferior Ensamblaje de una estructura constituida por tres piezas, que consta de las siguientes fases:
Adrizado de los cajones antes de su unión (para mantenerlos en posición horizontal)
Acercamiento con remolcadores hasta su posición de unión
Aproximación final y conexión mediante cables previamente introducidos en las vainas de los extremos
Grouting de regularización (27) de las cámaras situadas entre cajones
Perforación en los retallos que se dispusieron (22) e introducción de bulones (28) en los orificios realizados.
Hormigonado losa inferior circular (29)
Instalación de conducciones interiores para llenado y vaciado de celdas (30)
Posicionado de prelosas (31) en la parte superior del cajón y colocación de reservas para pase de conducciones de salida de aire (32) y agua de lastrado (33)
Colocación de anclajes para líneas de amarre (34)
Hormigonado de la losa superior (35)
19.- Un procedimiento de ensamblaje de un fuste de aerogenerador sobre una estructura que consta de las siguientes fases:
Introducción de la superestructura (torre eólica) (36) en el hueco central que se ha conformado.
Grouting del espacio que queda entre ambos (37).
20.- Un procedimiento de puesta en servicio de una estructura que consta de las siguientes fases:
Remolcado y posicionamiento de la plataforma mediante tres remolcadores Lastrado con agua mediante las bombas instaladas
Se llenan las celdas centrales hasta que se iguala el nivel de agua interior, con el nivel del mar.
Se abren las compuertas inferiores, conectando las celdas centrales con el mar. Existe otra configuración posible de la invención, donde no se conectan las celdas centrales con el exterior, por lo que la plataforma no tendría huecos en la losa inferior y por tanto este punto y el siguiente se omitirían.
Se ajusta la salida de aire superior necesaria para lograr una amortiguación neumática adaptada al oleaje.
Se llenan ligeramente las celdas situadas en los vértices de la base (44) para el funcionamiento del sistema de lastre variable que se realiza por las conducciones (41)
Conexión de las líneas de amarre previamente preinstaladas
Conexión eléctrica
21.- Un procedimiento de desinstalación de una estructura que consta de las siguientes fases:
Fijación de la plataforma mediante tres remolcadores.
Desconexión eléctrica y fijación para posterior uso.
Desconexión de líneas de amarre y fijación para posterior uso. Además, habrá que Cerrado de los huecos de la losa inferior.
Vaciado del agua de lastrado de las celdas mediante las bombas instaladas, o mediante la inyección de aire comprimido, lo cual produce el reflotado de la estructura.
Remolque de la estructura a puerto.
22.- Un procedimiento de construcción de una estructura según la reivindicación 1 ó reivindicación 2; realizada en dique seco o sobre plataforma fija; por elementos prefabricados o por encofrados deslizantes, que consiste en un procedimiento similar a la reivindicación 17 ó reivindicación 18, pero en este caso realizándolo sobre suelo firme en lugar de en dique flotante.
PCT/ES2019/070776 2019-11-12 2019-11-12 Estructura para soporte de instalaciones marinas y procedimiento de ejecución WO2021094630A1 (es)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU2019474268A AU2019474268A1 (en) 2019-11-12 2019-11-12 Structure for supporting marine installations and procedure for the execution thereof
CN201980102942.1A CN114746610A (zh) 2019-11-12 2019-11-12 用于支承海上设施的结构和实施方法
BR112022009106A BR112022009106A2 (pt) 2019-11-12 2019-11-12 Estrutura para suporte de instalações marítimas e método de execução
KR1020227018677A KR20220095226A (ko) 2019-11-12 2019-11-12 해양 설비를 지지하기 위한 구조물 및 그 실행 방법(structure for supporting marine installations and procedure for the execution thereof)
PCT/ES2019/070776 WO2021094630A1 (es) 2019-11-12 2019-11-12 Estructura para soporte de instalaciones marinas y procedimiento de ejecución
EP19952780.5A EP4060123A4 (en) 2019-11-12 2019-11-12 STRUCTURE FOR SUPPORTING VESSEL FACILITIES AND METHODS FOR THEIR EXECUTION
JP2022553221A JP2023509095A (ja) 2019-11-12 2019-11-12 海洋設備を支持するための構造体及びその実施方法
US17/755,863 US20220380006A1 (en) 2019-11-12 2019-11-12 Structure for supporting marine installations and procedure for the execution thereof
ZA2022/06492A ZA202206492B (en) 2019-11-12 2022-06-10 Structure for supporting marine installations and procedure for the execution thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2019/070776 WO2021094630A1 (es) 2019-11-12 2019-11-12 Estructura para soporte de instalaciones marinas y procedimiento de ejecución

Publications (1)

Publication Number Publication Date
WO2021094630A1 true WO2021094630A1 (es) 2021-05-20

Family

ID=75912527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2019/070776 WO2021094630A1 (es) 2019-11-12 2019-11-12 Estructura para soporte de instalaciones marinas y procedimiento de ejecución

Country Status (9)

Country Link
US (1) US20220380006A1 (es)
EP (1) EP4060123A4 (es)
JP (1) JP2023509095A (es)
KR (1) KR20220095226A (es)
CN (1) CN114746610A (es)
AU (1) AU2019474268A1 (es)
BR (1) BR112022009106A2 (es)
WO (1) WO2021094630A1 (es)
ZA (1) ZA202206492B (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113982845A (zh) * 2021-10-18 2022-01-28 袁晓世 一种具有上下环梁结构过渡段的风机塔筒结构
CN114278508A (zh) * 2021-12-31 2022-04-05 华润新能源(邳州)有限公司 一种抗强风的海上风力发电设备
WO2023041687A1 (en) * 2021-09-17 2023-03-23 Bluenewables Sl Floating platform device for a wind turbine tower and assembly method
WO2023144425A1 (es) * 2022-01-28 2023-08-03 Acciona Construccion, S.A. Plataforma semisumergible

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3140858A1 (fr) * 2022-10-13 2024-04-19 Technip Energies France Installation flottante ou semi-submersible avec éolienne
CN116254869A (zh) * 2023-01-10 2023-06-13 福建永福电力设计股份有限公司 一种附带人工鱼礁的混凝土漂浮式风机基础及其安装方法
KR102654744B1 (ko) * 2023-07-19 2024-04-04 한국해양과학기술원 인장각형 부유식 해상풍력 플랫폼 응력 분산 및 강도 향상을 위한 국부구조 배치
CN116791658B (zh) * 2023-08-23 2023-12-05 上海勘测设计研究院有限公司 一种海上风电单桩基础及施工方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4701075A (en) * 1984-04-12 1987-10-20 Novolipetsky Politekhnichersky Institut Imeni Leninskogo Komsomola Belorusii Reinforced concrete offshore platform
EP1288122A2 (de) * 2001-08-30 2003-03-05 Rund-Stahl-Bau Gesellschaft M.B.H. Schwimmfundament für ein über die Wasseroberfläche aufragendes Bauwerk
WO2009131826A2 (en) 2008-04-23 2009-10-29 Principle Power, Inc. Column-stabilized offshore platform with water-entrapment plates and asymmetric mooring system for support of offshore wind turbines
WO2014031009A1 (en) 2012-08-23 2014-02-27 Dr. Techn. Olav Olsen As Floating, semisubmersible hull for supporting preferably one or several wind turbines and method for commissioning, floating and installation of the semisubmersible hull
WO2014060650A2 (en) * 2012-10-18 2014-04-24 Stx Finland Oy Offshore structure
WO2014177729A1 (es) 2013-04-30 2014-11-06 Acs Servicios, Comunicaciones Y Energía S.L. Estructura sumergible de soporte activo para torres de generadores y subestaciones o elementos similares, en instalaciones marítimas
US9120542B2 (en) 2011-01-25 2015-09-01 Ideol Annular buoyant body
WO2016156624A1 (es) * 2015-03-27 2016-10-06 Drace Infraestructuras, S.A. Cimentación por gravedad para la instalación de aerogeneradores offshore

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9096985B1 (en) * 2006-09-21 2015-08-04 Ahmed Phuly Foundation with slab, pedestal and ribs for columns and towers
KR101258937B1 (ko) * 2010-10-13 2013-04-29 삼성중공업 주식회사 해상용 풍력발전설비를 이용한 수소생산 플랜트
US9394035B2 (en) * 2010-11-04 2016-07-19 University Of Maine System Board Of Trustees Floating wind turbine platform and method of assembling
CN102530191A (zh) * 2011-11-15 2012-07-04 江苏大学 海洋工程装备的大尺寸浮态制造方法
CN103758148A (zh) * 2014-02-13 2014-04-30 天津大学前沿技术研究院有限公司 一种可自浮拖航的重力式海上风电基础及其施工方法
JP6270527B2 (ja) * 2014-02-20 2018-01-31 戸田建設株式会社 洋上風力発電設備の施工方法
EP3176329B1 (en) * 2014-07-30 2020-09-02 Dragados, S.A. Gravity-based foundation for offshore wind turbines
ES2638011B1 (es) * 2014-09-15 2018-07-24 Drace Infraestructuras, S.A. Cimentación por gravedad para la instalación de aerogeneradores offshore y torres meteorológicas
ES2617991B1 (es) * 2017-02-14 2018-03-27 Berenguer Ingenieros S.L. Estructura marítima para la cimentación por gravedad de edificaciones, instalaciones y aerogeneradores en el medio marino
FR3074138B1 (fr) * 2017-11-29 2021-08-27 Saipem Sa Structure de support flottant pour eolienne offshore et procede d'installation d'une eolienne munie d'une telle structure de support
US11939032B2 (en) * 2019-02-21 2024-03-26 Vl Offshore, Llc Floating-type foundation for supporting a wind power generation system and including a stabilized power cable, system of floating-type foundations, and a method of stabilizing the power cable
CN110397067B (zh) * 2019-06-28 2024-03-08 天津大学 一种带支撑结构的多筒钢混组合基础结构及其施工方法
BR112022009625A2 (pt) * 2019-11-19 2022-08-09 Firovi S A Plataforma flutuante para suporte de geradores de energia eólica e/ou ondas e/ou correntes marítimas
CN113530761B (zh) * 2020-04-21 2023-02-24 中国电建集团华东勘测设计研究院有限公司 一种格栅式结构的海上风电机组漂浮式基础及施工方法
CN114084302B (zh) * 2020-08-24 2023-04-28 上海电气风电集团股份有限公司 海上风机固定式基础、海上风机装置及海上风机整机的运输安装方法
CN113279918B (zh) * 2021-06-30 2022-09-13 上海电气风电集团股份有限公司 一种模块化漂浮式基础及风机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4701075A (en) * 1984-04-12 1987-10-20 Novolipetsky Politekhnichersky Institut Imeni Leninskogo Komsomola Belorusii Reinforced concrete offshore platform
EP1288122A2 (de) * 2001-08-30 2003-03-05 Rund-Stahl-Bau Gesellschaft M.B.H. Schwimmfundament für ein über die Wasseroberfläche aufragendes Bauwerk
WO2009131826A2 (en) 2008-04-23 2009-10-29 Principle Power, Inc. Column-stabilized offshore platform with water-entrapment plates and asymmetric mooring system for support of offshore wind turbines
ES2456345T3 (es) * 2008-04-23 2014-04-22 Principle Power, Inc. Plataforma de alta mar estabilizada por columnas con planchas de atrapamiento de agua y sistema de amarre asimétrico para soporte de turbinas eólicas de alta mar
US9120542B2 (en) 2011-01-25 2015-09-01 Ideol Annular buoyant body
WO2014031009A1 (en) 2012-08-23 2014-02-27 Dr. Techn. Olav Olsen As Floating, semisubmersible hull for supporting preferably one or several wind turbines and method for commissioning, floating and installation of the semisubmersible hull
WO2014060650A2 (en) * 2012-10-18 2014-04-24 Stx Finland Oy Offshore structure
WO2014177729A1 (es) 2013-04-30 2014-11-06 Acs Servicios, Comunicaciones Y Energía S.L. Estructura sumergible de soporte activo para torres de generadores y subestaciones o elementos similares, en instalaciones marítimas
WO2016156624A1 (es) * 2015-03-27 2016-10-06 Drace Infraestructuras, S.A. Cimentación por gravedad para la instalación de aerogeneradores offshore

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4060123A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023041687A1 (en) * 2021-09-17 2023-03-23 Bluenewables Sl Floating platform device for a wind turbine tower and assembly method
CN113982845A (zh) * 2021-10-18 2022-01-28 袁晓世 一种具有上下环梁结构过渡段的风机塔筒结构
CN114278508A (zh) * 2021-12-31 2022-04-05 华润新能源(邳州)有限公司 一种抗强风的海上风力发电设备
CN114278508B (zh) * 2021-12-31 2023-08-04 华润新能源(邳州)有限公司 一种抗强风的海上风力发电设备
WO2023144425A1 (es) * 2022-01-28 2023-08-03 Acciona Construccion, S.A. Plataforma semisumergible

Also Published As

Publication number Publication date
AU2019474268A1 (en) 2022-06-09
US20220380006A1 (en) 2022-12-01
EP4060123A4 (en) 2023-10-11
JP2023509095A (ja) 2023-03-06
KR20220095226A (ko) 2022-07-06
ZA202206492B (en) 2023-04-26
EP4060123A1 (en) 2022-09-21
CN114746610A (zh) 2022-07-12
BR112022009106A2 (pt) 2022-07-26

Similar Documents

Publication Publication Date Title
WO2021094630A1 (es) Estructura para soporte de instalaciones marinas y procedimiento de ejecución
ES2776798T3 (es) Método de construcción, ensamblaje, y lanzamiento de una plataforma de turbina eólica flotante
ES2952964T3 (es) Estructura marítima para la cimentación de edificaciones y su método de instalación
JP5745688B2 (ja) エネルギー貯蔵設備を備えた浮体式風力発電施設
ES2835551T3 (es) Cimentación de gravedad para aerogeneradores offshore
ES2456345T3 (es) Plataforma de alta mar estabilizada por columnas con planchas de atrapamiento de agua y sistema de amarre asimétrico para soporte de turbinas eólicas de alta mar
US20230331358A1 (en) Floating platform for supporting offshore power generation structures and method for making said platform
US10443574B2 (en) Gravity foundation for the installation of offshore wind turbines
WO2013044976A1 (en) A set of building elements for an offshore power storage facility
NL2028088B1 (en) Concrete connector body for an offshore wind turbine.
US11920559B2 (en) Floating platform for high-power wind turbines
WO2020188127A1 (es) Método de instalación de estructura marítima offshore y estructura marítima offshore
ES2938666B2 (es) Plataforma flotante semisumergible para aerogenerador marino
ES2549367B1 (es) Procedimiento de fabricación e implantación de una plataforma flotante modular y plataforma flotante modular para llevar a cabo el procedimiento
WO2024023371A1 (es) Plataforma semi-sumergible para soporte de aerogeneradores
WO2014053672A1 (es) Base de cimentación

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952780

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553221

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022009106

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227018677

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019474268

Country of ref document: AU

Date of ref document: 20191112

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019952780

Country of ref document: EP

Effective date: 20220613

ENP Entry into the national phase

Ref document number: 112022009106

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220511