WO2021223775A1 - 用于制冷系统的储液器及冰箱 - Google Patents

用于制冷系统的储液器及冰箱 Download PDF

Info

Publication number
WO2021223775A1
WO2021223775A1 PCT/CN2021/100126 CN2021100126W WO2021223775A1 WO 2021223775 A1 WO2021223775 A1 WO 2021223775A1 CN 2021100126 W CN2021100126 W CN 2021100126W WO 2021223775 A1 WO2021223775 A1 WO 2021223775A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
gas
accumulator
liquid separation
intake pipe
Prior art date
Application number
PCT/CN2021/100126
Other languages
English (en)
French (fr)
Inventor
陈建全
刘建如
曹东强
Original Assignee
青岛海尔特种电冰箱有限公司
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔特种电冰箱有限公司, 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔特种电冰箱有限公司
Priority to JP2023511901A priority Critical patent/JP2023538064A/ja
Priority to EP21800418.2A priority patent/EP4174406A4/en
Priority to AU2021266850A priority patent/AU2021266850B2/en
Priority to US18/042,067 priority patent/US20230304720A1/en
Publication of WO2021223775A1 publication Critical patent/WO2021223775A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/006Self-contained movable devices, e.g. domestic refrigerators with cold storage accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/067Evaporator fan units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/03Suction accumulators with deflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/066Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply
    • F25D2317/0661Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply from the bottom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/067Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by air ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/068Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the fans
    • F25D2317/0683Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the fans the fans not of the axial type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2500/00Problems to be solved
    • F25D2500/02Geometry problems

Definitions

  • the present invention relates to the technical field of home appliances, in particular to a liquid accumulator and a refrigerator used in a refrigeration system.
  • the refrigeration system of the refrigerator is composed of compressor, condenser, filter, capillary tube, evaporator, return pipe and other main components connected with some pipes.
  • the refrigerator’s accumulator is designed between the evaporator and the return pipe. One is to separate the refrigerant from gas to liquid. The liquid refrigerant is first stored in the accumulator to ensure that the gas returned to the compressor is prevented from liquid shock. , The second is to store a certain amount of liquid refrigerant, and adjust the amount of refrigerant used in the refrigeration system cycle according to the ambient temperature.
  • the existing accumulator is designed with an oil return hole at the bottom of the inlet pipe of the accumulator.
  • the oil product sinks to the bottom of the accumulator because of its specific gravity, and the gaseous refrigerant Return to the compressor through the outlet pipe to re-enter the refrigeration cycle.
  • Compressor oil will enter the upper part of the accumulator and be sucked into the compressor for lubrication under the impact of the airflow in the intake pipe.
  • the compressor oil cannot be fully returned to the compressor.
  • the oil return hole of the compressor is opened below the liquid level of the refrigerant, causing the air bubbles in the oil return hole to also rush out of the refrigerator, causing the phenomenon of air blowing and generating noise. Furthermore, the vaporization efficiency of the liquid refrigerant in the accumulator is relatively low.
  • An object of the present invention is to provide an accumulator and refrigerator for a refrigeration system that overcome the above-mentioned problems or at least partially solve the above-mentioned problems.
  • a further object of the present invention is to improve the vaporization efficiency of the liquid refrigerant in the accumulator, thereby improving the refrigeration efficiency of the refrigerator.
  • Another further object of the present invention is to improve the recovery efficiency of compressor oil.
  • Another further object of the present invention is to reduce the noise generated by the accumulator.
  • the present invention provides a liquid accumulator for a refrigeration system, including: a cylinder body defining a gas-liquid separation cavity; One end of the body extends into the gas-liquid separation chamber, and the end of the intake pipe that extends into the gas-liquid separation chamber is provided with a baffle opposite to the mouth of the intake pipe, so that the mixture discharged from the intake pipe hits the baffle and enters the baffle. The interval between the air pipes is discharged into the gas-liquid separation chamber.
  • the accumulator further includes: a plurality of supporting ribs, one end of which extends into the gas-liquid separation cavity from the air intake pipe extends along the extension direction of the air intake pipe; and the baffle is fixedly connected to the supporting ribs to utilize the multiple supporting ribs Form the gap between the baffle and the intake pipe.
  • the part of the air inlet pipe that extends into the gas-liquid separation chamber gradually decreases in diameter as the extending length increases.
  • the accumulator further includes: an exhaust pipe that extends into the gas-liquid separation cavity from the other end of the cylinder, and there is a set interval between one end of the exhaust pipe that extends into the gas-liquid separation cavity and the baffle. .
  • the length of the exhaust pipe extending into the gas-liquid separation cavity is less than the length of the intake pipe extending into the gas-liquid separation cavity.
  • the present invention also provides a refrigerator, which includes an evaporator and the accumulator described in any one of the above, and the accumulator is connected with the evaporation tube of the evaporator.
  • the refrigerator further includes: a box with a bottom liner, the bottom liner defines a cooling chamber and a storage space, and the cooling chamber is arranged below the storage space; the evaporator is in the shape of a flat rectangular parallelepiped and is arranged in the cooling chamber. Front; the accumulator is arranged at the rear of the evaporator.
  • the accumulator is set obliquely upward from the end with the intake pipe.
  • the evaporator is a fin evaporator, which includes: a set of fins arranged in parallel along the front and rear direction of the box; the evaporation tube is inserted between the fins; and the supporting end plates are arranged on both sides of the fins ; The outlet of the evaporating pipe is arranged at the rear of the supporting end plate on one side and extends to the reservoir in an arc shape.
  • the evaporator is placed obliquely in the depth direction of the refrigerator with respect to the horizontal direction, the oblique direction is from front to back upwards
  • the refrigerator further includes: an air duct cover plate arranged in front of the rear wall of the bottom liner and connected to the bottom
  • the back wall of the bladder defines an air supply air duct, and the air duct cover is provided with at least one air supply opening, which is used to communicate the air supply air duct and the storage space; the centrifugal fan is arranged obliquely on the rear side of the evaporator.
  • the baffle is arranged in the accumulator opposite to the intake pipe, the refrigerant discharged from the intake pipe is atomized after hitting the baffle, and the atomized
  • the liquid refrigerant can vaporize more quickly, thereby improving the vaporization efficiency of the liquid refrigerant in the accumulator, thereby improving the refrigeration efficiency of the refrigerator, and preventing the liquid refrigerant from entering the compressor and adversely affecting the compressor.
  • a baffle is arranged at the opposite position of the intake pipe, so that the compressor oil discharged from the intake pipe is atomized after hitting the baffle, and the atomized oil The product will also return to the outlet pipe to enter the compressor more efficiently to achieve effective lubrication of the compressor and improve the efficiency of oil recovery.
  • the accumulator and refrigerator used in the refrigeration system of the present invention reduce the design of the oil return hole at the bottom of the intake pipe, thereby avoiding refrigerant bubbles from emerging through the oil return hole, thereby reducing the generation of the accumulator The noise.
  • Fig. 1 is a schematic structural diagram of a refrigerator according to an embodiment of the present invention
  • Figure 2 is a schematic cross-sectional view of a refrigerator according to an embodiment of the present invention.
  • Figure 3 is a schematic exploded view of a refrigerator according to an embodiment of the present invention.
  • Fig. 4 is a schematic cross-sectional view taken along the section line A-A of the accumulator part in Fig. 3;
  • Fig. 5 is a working principle diagram of a refrigeration system of a refrigerator according to an embodiment of the present invention.
  • the terms “upper”, “lower”, “front”, “rear”, “left”, “horizontal”, “bottom”, “deep”, etc. indicate the orientation or The position relationship is based on the orientation of the refrigerator under normal use as a reference, and can be determined with reference to the orientation or position relationship shown in the drawings.
  • the "front” indicating the orientation refers to the side of the refrigerator facing the user. This is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be construed as a limitation of the present invention.
  • the accumulator 100 may include a cylinder 110 and an air inlet pipe 130.
  • a gas-liquid separation cavity 120 is defined in the cylinder 110.
  • the intake pipe 130 is used to connect the evaporation pipe 222 of the evaporator 220 of the refrigeration system, and extends from one end of the cylinder 110 into the gas-liquid separation chamber 120, and the end of the intake pipe 130 that extends into the gas-liquid separation chamber 120 is provided with an intake pipe
  • the nozzle of 130 is opposite to the baffle 140, so that the mixture discharged from the intake pipe 130 hits the baffle 140 and is discharged into the gas-liquid separation chamber 120 from the interval between the baffle 140 and the intake pipe 130.
  • the refrigeration system may also include a compressor 250, a condenser 260, a filter 270, and a throttling element 280, where the throttling element 280 may be a capillary tube. Since the working principle of the refrigeration system is well known to those skilled in the art, it will not be repeated here.
  • the accumulator 100 is arranged between the compressor 250 and the evaporator 220, and the refrigerant flowing from the evaporator 220 to the compressor 250 is separated into gas and liquid to prevent the liquid refrigerant from entering the compressor 250 and affecting the compression.
  • the machine 250 works normally.
  • the baffle 140 is provided so that the mixture discharged from the intake pipe 130 collides with the baffle 140, thereby promoting the atomization of the mixture.
  • the mixture discharged from the intake pipe 130 is a gas-liquid mixture of refrigerant and compressor oil.
  • the refrigerant liquid in the mixture collides with the baffle 140 and is atomized.
  • the atomized liquid refrigerant can be more The rapid vaporization improves the vaporization efficiency of the liquid refrigerant in the accumulator 100, thereby improving the refrigeration efficiency of the refrigerator 10, and at the same time avoiding the adverse effect of the liquid refrigerant entering the compressor 250 on the compressor 250.
  • the compressor oil in the mixture in this embodiment collides with the baffle 140 and atomizes, and the atomized compressor oil is more easily driven by the airflow into the compressor 250, thereby realizing the effectiveness of the compressor 250.
  • Lubricate improve oil recovery efficiency.
  • the reservoir 100 may further include a plurality of supporting ribs 150.
  • One end of the plurality of supporting ribs 150 extending from the air inlet pipe 130 into the gas-liquid separation cavity 120 extends along the extending direction of the air inlet pipe 130.
  • the blocking piece 140 is fixedly connected to the supporting ribs 150, so that a plurality of supporting ribs 150 are used to form the interval between the blocking piece 140 and the air inlet pipe 130.
  • the solution of this embodiment fixes the baffle 140 at a position opposite to the nozzle of the intake pipe 130 by arranging a plurality of supporting ribs 150 to work together, so that the structural position of the baffle 140 is more stable. Under the impact, the baffle 140 can still be maintained at a fixed position, thereby ensuring effective atomization of the mixture discharged from the intake pipe 130.
  • the part of the inlet pipe 130 that extends into the gas-liquid separation chamber 120 may gradually decrease in diameter as the extending length increases.
  • the part of the intake pipe 130 that extends into the gas-liquid separation chamber 120 is set so that its pipe diameter is gradually reduced with the increase of the extension length, that is, the intake pipe 130 is set as a tapered pipe, so that the gas discharged from the intake pipe 130 When the mixture airflow collides with the baffle, the impact force is greater, thereby improving the atomization effect of the mixture.
  • the reservoir 100 may also include an exhaust pipe 160.
  • the exhaust pipe 160 extends into the gas-liquid separation cavity 120 from the other end of the cylinder 110, and an end of the exhaust pipe 160 that extends into the gas-liquid separation cavity 120 has a set interval between the baffle 140.
  • the exhaust pipe 160 in this embodiment sends the refrigerant gas flow entering the gas-liquid separation chamber 120 to the compressor 250.
  • the interval is set so as to facilitate the gas refrigerant to enter the exhaust pipe 160.
  • there is a gap between the exhaust pipe 160 and the baffle 140 that is, there is a certain distance between the exhaust pipe 160 and the intake pipe 130, when a large amount of liquid refrigerant is stored in the accumulator 100, excessive The liquid refrigerant will flow back from the mouth of the intake pipe 130 to the evaporator 220, so as to ensure that the liquid refrigerant deposited in the accumulator 100 will not enter the exhaust pipe 160, thereby preventing the liquid refrigerant from entering the compressor 250 from being damaged.
  • the operation of the compressor 250 has an adverse effect.
  • the length of the exhaust pipe 160 extending into the gas-liquid separation cavity 120 may be less than the length of the intake pipe 130 extending into the gas-liquid separation cavity 120.
  • the highest position of the liquid level of the liquid refrigerant in the accumulator 100 is the position of the nozzle of the intake pipe 130.
  • the liquid refrigerant will flow from the nozzle of the intake pipe 130. Backflow. That is to say, the longer the exhaust pipe 160 extends into the gas-liquid separation cavity 120, the more liquid refrigerant can be stored in the accumulator 100.
  • the length of the exhaust pipe 160 extending into the gas-liquid separation cavity 120 is less than The length of the intake pipe 130 extending into the gas-liquid separation chamber 120 can ensure that there is a large storage space for liquid refrigerant in the accumulator 100.
  • the liquid is stored at the bottom of the accumulator 100 to store the excess refrigerant.
  • the refrigerant participating in the system cycle is reduced, and the accumulator 100 can reduce Excess refrigerant is stored; when the ambient temperature rises, the system needs more refrigerant circulation, and the refrigerant stored in the accumulator 100 participates in the refrigeration cycle, so that the refrigerator 10 can get better at different ambient temperatures The cooling effect.
  • This embodiment also provides a refrigerator 10, which may include an evaporator 220 and any one of the above-mentioned liquid reservoirs 100.
  • the accumulator 100 is connected to the evaporation tube 222 of the evaporator 220.
  • the accumulator 100 is connected to the evaporator tube 222 of the evaporator 220, so that the refrigerant flowing into the accumulator 100 from the evaporator 220 through the evaporator tube 222 is separated into gas and liquid, and the liquid refrigerant is first stored in the accumulator.
  • the gas returned to the compressor 250 is gas to prevent the compressor 250 from liquid hammer.
  • the refrigerator 10 of this embodiment may further include a cabinet 200.
  • the box 200 has a bottom liner 210, the bottom liner 210 defines a cooling chamber 212 and a storage space 211, and the cooling chamber 212 is disposed below the storage space 211.
  • the evaporator 220 is in the shape of a flat rectangular parallelepiped as a whole, and is arranged at the front of the cooling chamber 212.
  • the accumulator 100 is arranged at the rear of the evaporator 220.
  • a door is also provided on the front side of the box 200 to open or close the storage space 211. In order to show the internal structure of the box 200, the door is hidden in the figure.
  • the refrigerator 10 may have multiple inner containers, which can be divided into a frozen inner container, a variable temperature inner container, and a refrigerated inner container according to their functions, thereby defining a plurality of storage compartments: for example, a refrigerating compartment, a temperature changing compartment, and a refrigerator. Freezer compartment.
  • the bottom liner 210 in this embodiment refers to the liner located at the bottom of the refrigerator 10.
  • the bottom liner 210 at the bottom of the refrigerator 10 defines the storage space 211 and the cooling chamber 212 below the storage space 211 through the partition plate 213.
  • the storage space 211 defined by the bottom liner 210 may be a freezer compartment.
  • above the storage space 211 there may also be a temperature-changing compartment defined by other inner linings of the refrigerator 10, and a refrigerating compartment located above the temperature-changing compartment.
  • the accumulator 100 is installed obliquely upward from the end with the intake pipe 130.
  • the angle at which the accumulator 100 is inclined can be 10 degrees to 35 degrees.
  • the shape of 210 occupies a small space in the cooling chamber 212, which improves the space utilization efficiency of the cooling chamber 212.
  • the accumulator 100 is inclined to facilitate the return of excess liquid refrigerant stored in the accumulator 100 to the evaporator 220. Therefore, it is further ensured that the liquid refrigerant deposited in the accumulator 100 will not enter the exhaust pipe 160.
  • the evaporator 220 is a fin evaporator, and the fin evaporator may include a set of fins, an evaporation tube 222 and a supporting end plate 221.
  • a set of fins are arranged in parallel along the front and rear direction of the box 200.
  • the evaporation tube 222 passes through between the fins.
  • the supporting end plates 221 are arranged on both sides of the fin.
  • the outlet of the evaporation tube 222 is arranged at the rear of the supporting end plate 221 on one side and extends to the accumulator 100 in an arc shape.
  • the solution of this embodiment adopts a fin evaporator, which is not only compact in structure and small in occupation area, but also has a high heat transfer coefficient, thereby further improving the heat exchange efficiency of the evaporator 220 and ensuring the refrigeration storage function of the refrigerator 10.
  • the evaporator 220 is placed obliquely in the depth direction of the refrigerator 10 with respect to the horizontal direction, and the oblique direction is upward from front to back, and the refrigerator 10 may further include an air duct cover 230 and a centrifugal fan 240.
  • the air duct cover 230 is arranged in front of the rear wall of the bottom liner 210, and defines an air supply air duct with the back wall of the bottom liner 210, and the air duct cover 230 is provided with at least one air supply opening 231 and the air supply opening 231 Used to connect the air supply duct and the storage space 211.
  • the centrifugal fan 240 is installed obliquely on the rear side of the evaporator 220, and is used to promote the formation of a cooling air flow from the front of the cooling chamber 212 to the air duct through the evaporator 220, and the center of the air inlet 241 of the centrifugal fan 240
  • the distance to the side plates on both sides of the bottom liner 210 is different.
  • the distance from the center of the air inlet 241 to the side wall of the bottom liner 210 close to the outlet side of the evaporator tube 222 is greater than that to the bottom liner 210 away from the exit of the evaporator tube 222.
  • the distance between the side walls is provided obliquely on the rear side of the evaporator 220, and is used to promote the formation of a cooling air flow from the front of the cooling chamber 212 to the air duct through the evaporator 220, and the center of the air inlet 241 of the centrifugal fan 240
  • the evaporator bottom-mounted refrigerator in the prior art has the evaporator placed horizontally.
  • the inclined placement of the evaporator 220 in this embodiment makes the arrangement of the components in the cooling chamber 212 more reasonable, and the actual air flow field analysis proves that the wind circulation efficiency is higher and the drainage is more smooth.
  • an air duct cover 230 and a centrifugal fan 240 are arranged at the rear of the bottom liner 210, thereby increasing the flow rate of cooling air from the cooling chamber 212 into the storage space 211, and further ensuring the cooling storage effect of the refrigerator 10 .
  • the number of air supply openings 231 may be set to one or more. In an embodiment shown in FIG. 3, four air supply openings 231 are provided on the air duct cover 230 to make the air supply more uniform and smooth.
  • the centrifugal fan 240 is used in the solution of the embodiment, which runs smoothly, is convenient to maintain, and is strong and durable. Further, the centrifugal fan 240 in this embodiment is set such that the distance from the center of the air inlet 241 to the side wall of the bottom liner 210 close to the air return pipe 170 is greater than the distance to the side wall of the bottom liner 210 away from the air return pipe 170 The distance, that is, the center of the air inlet 241 of the air blower is biased to the left wall of the bottom liner 210, that is, the air blower is arranged at a position where the bottom liner 210 is biased to the left, so that the cooling air flows from the air outlet of the fan The flow into the air supply duct is smoother, thereby further improving the air supply efficiency of the fan.
  • the setting of the installation position of the centrifugal fan 240 described above is a structural optimization made according to space requirements and refrigeration performance requirements, and the effect of trial products has been verified.
  • a baffle 140 is provided in a position opposite to the nozzle of the intake pipe 130 in the reservoir 100, so that the mixture discharged from the intake pipe 130 collides with the baffle 140, thereby promoting the atomization of the mixture.
  • the refrigerant liquid in the mixture collides with the baffle 140 to be atomized, and the atomized liquid refrigerant can vaporize more quickly, thereby improving the vaporization efficiency of the liquid refrigerant in the accumulator 100, and then The refrigeration efficiency of the refrigerator 10 is improved, and at the same time, it is avoided that the liquid refrigerant enters the compressor 250 and adversely affects the compressor 250.
  • the compressor oil in the mixture collides with the baffle 140 and atomizes, and the atomized compressor oil is more easily driven by the airflow into the compressor 250, thereby realizing the effective lubrication of the compressor 250 and improving the compression. Oil recovery efficiency.
  • the solution of this embodiment reduces the design of the oil return hole at the bottom of the intake pipe 130, thereby avoiding refrigerant bubbles from emerging through the oil return hole, thereby reducing the noise generated by the accumulator 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Compressor (AREA)

Abstract

一种用于制冷系统的储液器(100)及冰箱(10),其中储液器(100)包括:筒体(110),其内限定有气液分离腔(120)。进气管(130),用于连接制冷系统的蒸发器(220)的蒸发管(222),并从筒体(110)的一端伸入气液分离腔(120),并且进气管(130)伸入气液分离腔(120)的一端设置有与进气管(130)的管口相对的挡片(140),从而使得进气管(130)排出的混合物撞击挡片(140)后从挡片(140)和进气管(130)之间的间隔排入气液分离腔(120)。

Description

用于制冷系统的储液器及冰箱 技术领域
本发明涉及家电技术领域,特别是涉及一种用于制冷系统的储液器及冰箱。
背景技术
冰箱的制冷系统是由压缩机、冷凝器、过滤器、毛细管、蒸发器、回气管等主要部件和一些管道连接而成。冰箱的储液器设计在蒸发器和回气管之间,一是使制冷剂气液分离,液体制冷剂先储存在储液器中,保证回到压缩机的是气体,防止压缩机发生液击,二是储存一定量的液体制冷剂,根据环境温度,调节用于制冷系统循环的制冷剂量。
现有储液器设计是在储液器进气管底部设有回油孔,当制冷剂和压缩机油混合物进入储液器后,油品因为比重大下沉到储液包底部,气态制冷剂经过出气管回到压缩机重新进入制冷循环。压缩机油会在进气管内的气流冲击作用下进入储液器上部吸入压缩机内部润滑。但是,由于压缩机油品比重大,压缩机油品不能完全充分的回到压缩机。其次,压缩机回油孔开在制冷剂液面以下,导致回油孔内也会有制冷器气泡冲出,造成气吹液现象,产生噪音。进一步地,上述储液器内的液态制冷剂气化效率也比较低。
发明内容
本发明的一个目的是要提供一种克服上述问题或者至少部分地解决上述问题的用于制冷系统的储液器及冰箱。
本发明一个进一步的目的是要提高储液器内的液态制冷剂气化效率,进而提高冰箱的制冷效率。
本发明另一个进一步的目的是要提高压缩机油品的回收效率。
本发明另一个进一步的目的是要减少储液器产生的噪音。
特别地,本发明提供了一种用于制冷系统的储液器,包括:筒体,其内限定有气液分离腔;进气管,用于连接制冷系统的蒸发器的蒸发管,并从筒体的一端伸入气液分离腔,并且进气管伸入气液分离腔的一端设置有与进气管的管口相对的挡片,从而使得进气管排出的混合物撞击挡片后从挡片和进气管之间的间隔排入气液分离腔。
进一步地,储液器还包括:多个支撑筋,从进气管伸入气液分离腔的一端沿进气管的延伸方向伸出;并且挡片固定连接于支撑筋上,以利用多个支撑筋形成挡片和进气管之间的间隔。
进一步地,进气管伸入气液分离腔的部分随伸入长度的增加其管径渐缩。
进一步地,储液器还包括:排气管,其从筒体的另一端伸入气液分离腔,并且排气管的伸入气液分离腔的一端与挡片之间具有设定的间隔。
进一步地,排气管伸入气液分离腔的长度小于进气管伸入气液分离腔的长度。
本发明还提供了一种冰箱,该冰箱包括蒸发器以及上述任一项所述的储液器,储液器与蒸发器的蒸发管相连。
进一步地,冰箱还包括:箱体,具有底部内胆,底部内胆限定有冷却室和储物空间,冷却室设置于储物空间的下方;蒸发器整体呈扁平长方体状,布置于冷却室的前部;储液器设置于蒸发器的后部。
进一步地,储液器从具有进气管的一端起始倾斜向上设置。
进一步地,蒸发器为翅片蒸发器,其包括:一组翅片,沿箱体的前后方向平行设置;蒸发管,穿设于翅片之间;支撑端板,设置于翅片的两侧;蒸发管的出口设置于一侧支撑端板的后部,并弧形延伸至储液器。
进一步地,蒸发器相对于水平方向沿冰箱的进深方向倾斜放置,倾斜方向为从前至后向上,并且冰箱还包括:风道盖板,设置于底部内胆的后壁的前方,并与底部内胆的后壁限定出送风风道,并且风道盖板开设有至少一个送风口,送风口用于连通送风风道以及储物空间;离心风机,整体倾斜地设置于蒸发器的后侧,并用于促使形成从冷却室前方的空气经由蒸发器排向送风风道的制冷气流,并且离心风机的进风口的中心至底部内胆两侧侧板的距离不同,进风口的中心至底部内胆靠近于蒸发管的出口一侧侧壁的距离大于至底部内胆远离于蒸发管的出口一侧侧壁的距离。
本发明的用于制冷系统的储液器及冰箱,由于在储液器内与进气管相对的位置设置有挡片,因此进气管排出的制冷剂在撞击挡片后雾化,雾化后的液态制冷剂可以更加快速的气化,从而提高储液器内的液态制冷剂气化效率,进而提高冰箱的制冷效率,而且避免了液态制冷剂进入压缩机,对压缩机产生不利影响。
进一步地,本发明的用于制冷系统的储液器及冰箱,通过进气管相对的位置设置有挡片,使得进气管排出的压缩机油品在撞击挡片后雾化,雾化后的油品也会更有效率的返回到出气管进入压缩机,实现压缩机有效润滑,提高油品的回收效率。
进一步地,本发明的用于制冷系统的储液器及冰箱,减少了位于进气管底部的回油孔的设计,从而避免了制冷剂气泡通过回油孔冒出,进而减少了储液器产生的噪音。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冰箱的示意性结构图;
图2是根据本发明一个实施例的冰箱的示意性剖视图;
图3是根据本发明一个实施例的冰箱的示意性分解图
图4是沿图3中储液器部分沿剖切线A-A截取的示意性剖视图;
图5是根据本发明一个实施例的冰箱的制冷系统工作原理图。
具体实施方式
在本实施例的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“水平”、“底”、“进深”等指示的方位或位置关系为基于冰箱正常使用状态下的方位作为参考,并参考附图所示的方位或位置关系可以确定,例如指示方位的“前”指的是冰箱朝向用户的一侧。这仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
本实施例首先提供了一种用于制冷系统的储液器100,该储液器100可以包括筒体110和进气管130。筒体110内限定有气液分离腔120。进气管130用于连接制冷系统的蒸发器220的蒸发管222,并从筒体110的一端伸入气液分离腔120,并且进气管130伸入气液分离腔120的一端设置有与进气管130的管口相对的挡片140,从而使得进气管130排出的混合物撞击挡 片140后从挡片140和进气管130之间的间隔排入气液分离腔120。
一般性地,制冷系统还可以包括压缩机250、冷凝器260、过滤器270、节流元件280,其中节流元件280可以是毛细管。由于制冷系统的工作原理是本领域技术人员所公知的,在此不做赘述。本实施例的方案中储液器100设置在压缩机250与蒸发器220之间,将从蒸发器220流向压缩机250的制冷剂进行气液分离,避免液态制冷剂进入压缩机250从而影响压缩机250的正常工作。
本实施例的方案通过设置挡片140,使得从进气管130排出的混合物与挡片140发送撞击,从而促使混合物雾化。本实施例中的从进气管130内排出的混合物是制冷剂和压缩机油品的气液混合物,混合物中的制冷剂液体与挡片140碰撞发生雾化,雾化后的液态制冷剂可以更加快速的气化,从而提高了储液器100内的液态制冷剂的气化效率,进而提高了冰箱10的制冷效率,同时避免了液态制冷剂进入压缩机250对压缩机250产生不利影响。
进一步地,本实施例中的混合物中的压缩机油品与挡片140撞击发生雾化,雾化后的压缩机油品更容易被气流的带动进入压缩机250,从而实现压缩机250的有效润滑,提高油品的回收效率。
储液器100还可以包括多个支撑筋150。多个支撑筋150从进气管130伸入气液分离腔120的一端沿进气管130的延伸方向伸出。并且挡片140固定连接于支撑筋150上,以利用多个支撑筋150形成挡片140和进气管130之间的间隔。
本实施例的方案通过设置多个支撑筋150共同作用,将挡片140固定在与进气管130管口相对的位置,从而使得挡片140的结构位置更加稳定,在进气管130排出的气流的冲击下,挡片140依然能够保持在固定位置,进而保证从进气管130排出的混合物的有效雾化。
进气管130伸入气液分离腔120的部分可以随伸入长度的增加其管径渐缩。本实施例的方案通过将进气管130伸入气液分离腔120的部分设置成随伸入长度的增加其管径渐缩,即将进气管130设置为锥形管,使得从进气管130排出的混合物气流与挡板发生碰撞时的撞击力度更大,从而提高混合物的雾化效果。
储液器100还可以包括排气管160。排气管160从筒体110的另一端伸入气液分离腔120,并且排气管160的伸入气液分离腔120的一端与挡片140 之间具有设定的间隔。
本实施例中的排气管160将进入气液分离腔120的制冷剂气流送入压缩机250,将排气管160设置为其伸入气液分离腔120的一端与挡片140之间具有设定的间隔,从而便于气态制冷剂进入排气管160。进一步地,由于排气管160与挡片140之间存在间隔,即排气管160与进气管130之间存在一定的距离,当储液器100内存储有大量的液态制冷剂时,过量的液态制冷剂会从进气管130管口处回流至蒸发器220,从而保证沉积在储液器100内的液态制冷剂不会进入排气管160,进而避免了液态制冷剂进入压缩机250后对压缩机250的运行产生不利影响。
排气管160伸入气液分离腔120的长度可以小于进气管130伸入气液分离腔120的长度。本实施例的方案中,储液器100内的液态制冷剂的液面的最高位置为进气管130的管口位置,当液态制冷剂过多时,液态制冷剂会从进气管130的管口处回流。也就是说,排气管160伸入气液分离腔120的长度越大,储液器100内可以存储的液态制冷剂越多,通过设置排气管160伸入气液分离腔120的长度小于进气管130伸入气液分离腔120的长度,可以保证储液器100内有较大的液态制冷剂的存储空间,当储液器100内雾化的制冷剂达到饱和时,会自然的凝聚成液态囤积在储液器100底部,将过剩的制冷剂储存。通过在储液器100内储存一定量的液体制冷剂,可以根据环境温度,调节用于制冷系统循环的制冷剂量,当环境温度降低时,参与系统循环的制冷剂减少,储液器100可以将过量的制冷剂储存起来;当环境温度升高时,系统需要较多的制冷剂循环量,储液器100储存的制冷剂又参与制冷循环,使冰箱10在不同环境温度下都能获得较好的制冷效果。
本实施例还提供了一种冰箱10,该冰箱10可以包括蒸发器220以及上述的任意一种的储液器100。该储液器100与蒸发器220的蒸发管222相连。
本实施的方案通过设置储液器100与蒸发器220的蒸发管222相连,从而使得通过蒸发管222从蒸发器220流入储液器100的制冷剂气液分离,液体制冷剂先储存在储液器100中,保证回到压缩机250的是气体,防止压缩机250发生液击。
本实施例的冰箱10还可以包括箱体200。箱体200具有底部内胆210,底部内胆210限定有冷却室212和储物空间211,冷却室212设置于储物空间211的下方。蒸发器220整体呈扁平长方体状,布置于冷却室212的前部。 储液器100设置于蒸发器220的后部。箱体200前侧还设置有门体,以打开或关闭储物空间211,为了示出箱体200内部结构,图中隐去了门体。
一般性地,冰箱10可以有多个内胆,根据其功能可以划分为冷冻内胆、变温内胆、以及冷藏内胆,从而限定出多个储藏间室:例如冷藏间室、变温间室和冷冻间室。本实施例中的底部内胆210指位于冰箱10最下方的内胆。
在本实施例中,位于冰箱10底部的底部内胆210通过分隔板213限定出储物空间211以及位于储物空间211的下方的冷却室212。其中,底部内胆210限定的储物空间211可以为冷冻间室。此外,储物空间211上方还可以有冰箱10其它内胆限定出的变温间室,以及位于变温间室上方的冷藏间室。
储液器100从具有进气管130的一端起始倾斜向上设置。本实施例的方案中储液器100倾斜设置的角度可以为10度到35度,通过将储液器100设置为从具有进气管130的一端起倾斜向上设置,一方面更贴合底部内胆210的形状,占用冷却室212的空间小,提高了冷却室212的空间利用效率,另一方面,储液器100倾斜设置,便于储液器100内存储的过量液态制冷剂回流到蒸发器220,从而进一步保证了储液器100内沉积的液态制冷剂不会进入排气管160。
蒸发器220为翅片蒸发器,该翅片蒸发器可以包括:一组翅片、蒸发管222和支撑端板221。一组翅片沿箱体200的前后方向平行设置。蒸发管222穿设于翅片之间。支撑端板221设置于翅片的两侧。蒸发管222的出口设置于一侧支撑端板221的后部,并弧形延伸至储液器100。
本实施例的方案采用了翅片蒸发器,不仅结构紧凑、占用面积小,而且其传热系数高,从而进一步提高了蒸发器220的换热效率,并保障了冰箱10的制冷存储功能。
蒸发器220相对于水平方向沿冰箱10的进深方向倾斜放置,倾斜方向为从前至后向上,并且冰箱10还可以包括风道盖板230和离心风机240。风道盖板230设置于底部内胆210的后壁的前方,并与底部内胆210的后壁限定出送风风道,并且风道盖板230开设有至少一个送风口231,送风口231用于连通送风风道以及储物空间211。离心风机240整体倾斜地设置于蒸发器220的后侧,并用于促使形成从冷却室212前方的空气经由蒸发器220排向送风风道的制冷气流,并且离心风机240的进风口241的中心至底部内胆 210两侧侧板的距离不同,进风口241的中心至底部内胆210靠近于蒸发管222的出口一侧侧壁的距离大于至底部内胆210远离于蒸发管222的出口一侧侧壁的距离。
现有技术中的蒸发器底置式冰箱,蒸发器水平放置,当气流进入冷却室容易在蒸发器的前端发生聚集现象,不能流畅的进入蒸发器换热。而本实施例的蒸发器220倾斜放置,使得冷却室212内部件的布置更加合理,而且经过实际气流流场分析证实风循环效率也更加高,排水也更加舒畅。
本实施例的方案通过在底部内胆210的后部设置风道盖板230和离心风机240,从而提高制冷空气从冷却室212流入储物空间211的流通速率,进一步保障冰箱10的制冷存储效果。本实施例的方案中送风口231可以设置为一个或多个,如图3所示的一个实施例中,风道盖板230上设置有4个送风口231,使得送风更加均匀、流畅。
实施例的方案中采用了离心风机240,其运行平稳,维护方便,且坚固耐用。进一步地,本实施例中的离心风机240设置为进风口241的中心至底部内胆210靠近于回气管170一侧侧壁的距离大于至底部内胆210远离于回气管170一侧侧壁的距离,也就是说,送风风机的进风口241的中心偏向于底部内胆210的左壁,即送风风机设置于底部内胆210偏向于左侧的位置,使得制冷空气从风机的出风口向送风风道内的流通更加顺畅,从而进一步提高风机地送风效率。上述离心风机240的安装位置的设置是根据空间要求以及制冷性能要求做出的结构优化,并且得到试制产品的效果验证。
本实施例的方案通过在储液器100内与进气管130管口向相对的位置设置挡片140,使得从进气管130排出的混合物与挡片140发送撞击,从而促使混合物雾化。一方面,混合物中的制冷剂液体与挡片140碰撞发生雾化,雾化后的液态制冷剂可以更加快速的气化,从而提高了储液器100内的液态制冷剂的气化效率,进而提高了冰箱10的制冷效率,同时避免了液态制冷剂进入压缩机250对压缩机250产生不利影响。另一方面,混合物中的压缩机油品与挡片140撞击发生雾化,雾化后的压缩机油品更容易被气流的带动进入压缩机250,从而实现压缩机250的有效润滑,提高压缩机油品的回收效率。
进一步地,本实施例的方案减少了位于进气管130底部的回油孔的设计,从而避免了制冷剂气泡通过回油孔冒出,进而减少了储液器100产生的噪音。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种用于制冷系统的储液器,包括:
    筒体,其内限定有气液分离腔;
    进气管,用于连接所述制冷系统的蒸发器的蒸发管,并从所述筒体的一端伸入所述气液分离腔,并且所述进气管伸入所述气液分离腔的一端设置有与所述进气管的管口相对的挡片,从而使得所述进气管排出的混合物撞击所述挡片后从所述挡片和所述进气管之间的间隔排入所述气液分离腔。
  2. 根据权利要求2所述的储液器,还包括:
    多个支撑筋,从所述进气管伸入所述气液分离腔的一端沿所述进气管的延伸方向伸出。并且所述挡片固定连接于所述支撑筋上,以利用多个所述支撑筋形成所述挡片和所述进气管之间的间隔。
  3. 根据权利要求1所述的储液器,其中
    所述进气管伸入所述气液分离腔的部分随伸入长度的增加其管径渐缩。
  4. 根据权利要求1所述的储液器,还包括:
    排气管,其从所述筒体的另一端伸入所述气液分离腔,并且所述排气管的伸入所述气液分离腔的一端与所述挡片之间具有设定的间隔。
  5. 根据权利要求4所述的储液器,其中
    所述排气管伸入所述气液分离腔的长度小于所述进气管伸入所述气液分离腔的长度。
  6. 一种冰箱,包括:
    蒸发器;以及
    根据权利要求1至5中任一项所述的储液器,与所述蒸发器的蒸发管相连。
  7. 根据权利要求6所述的冰箱,还包括:
    箱体,具有底部内胆,所述底部内胆限定有冷却室和储物空间,所述冷 却室设置于所述储物空间的下方;
    所述蒸发器整体呈扁平长方体状,布置于所述冷却室的前部;
    所述储液器设置于所述蒸发器的后部。
  8. 根据权利要求7所述的冰箱,其中
    所述储液器从具有所述进气管的一端起始倾斜向上设置。
  9. 根据权利要求7所述的冰箱,其中
    所述蒸发器为翅片蒸发器,其包括:
    一组翅片,沿所述箱体的前后方向平行设置;
    蒸发管,穿设于所述翅片之间;
    支撑端板,设置于所述翅片的两侧;
    所述蒸发管的出口设置于一侧所述支撑端板的后部,并弧形延伸至所述储液器。
  10. 根据权利要求9所述的冰箱,其中
    所述蒸发器相对于水平方向沿所述冰箱的进深方向倾斜放置,倾斜方向为从前至后向上,并且所述冰箱还包括:
    风道盖板,设置于所述底部内胆的后壁的前方,并与所述底部内胆的后壁限定出送风风道,并且所述风道盖板开设有至少一个送风口,所述送风口用于连通所述送风风道以及所述储物空间;
    离心风机,整体倾斜地设置于所述蒸发器的后侧,并用于促使形成从所述冷却室前方的空气经由所述蒸发器排向所述送风风道的制冷气流,并且
    所述离心风机的进风口的中心至所述底部内胆两侧侧板的距离不同,所述进风口的中心至所述底部内胆靠近于所述蒸发管的出口一侧侧壁的距离大于至所述底部内胆远离于所述蒸发管的出口一侧侧壁的距离。
PCT/CN2021/100126 2020-08-18 2021-06-15 用于制冷系统的储液器及冰箱 WO2021223775A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023511901A JP2023538064A (ja) 2020-08-18 2021-06-15 冷凍システム用のアキュムレータ及び冷蔵庫
EP21800418.2A EP4174406A4 (en) 2020-08-18 2021-06-15 LIQUID STORAGE AND REFRIGERATOR FOR COOLING SYSTEM
AU2021266850A AU2021266850B2 (en) 2020-08-18 2021-06-15 Liquid accumulator and refrigerator used for refrigeration system
US18/042,067 US20230304720A1 (en) 2020-08-18 2021-06-15 Liquid reservoir for refrigeration system, and refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202021727434.9U CN214039059U (zh) 2020-08-18 2020-08-18 用于制冷系统的储液器及冰箱
CN202021727434.9 2020-08-18

Publications (1)

Publication Number Publication Date
WO2021223775A1 true WO2021223775A1 (zh) 2021-11-11

Family

ID=77332319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100126 WO2021223775A1 (zh) 2020-08-18 2021-06-15 用于制冷系统的储液器及冰箱

Country Status (6)

Country Link
US (1) US20230304720A1 (zh)
EP (1) EP4174406A4 (zh)
JP (1) JP2023538064A (zh)
CN (1) CN214039059U (zh)
AU (1) AU2021266850B2 (zh)
WO (1) WO2021223775A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114076464B (zh) 2020-08-18 2023-04-18 青岛海尔电冰箱有限公司 风冷冰箱

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3837177A (en) * 1973-11-01 1974-09-24 Refrigeration Research Suction accumulator
JPH09250848A (ja) * 1996-03-14 1997-09-22 Mitsubishi Heavy Ind Ltd 冷凍装置用横長アキュムレータ
KR20080050156A (ko) * 2006-12-01 2008-06-05 주식회사 대우일렉트로닉스 냉장고의 소음저감형 어큐뮬레이터
KR20110119553A (ko) * 2010-04-26 2011-11-02 니찌레이 고오교오 가부시끼가이샤 기액 분리 장치 및 기액 분리 장치를 구비한 냉동 장치
CN102494465A (zh) * 2011-12-08 2012-06-13 合肥美的荣事达电冰箱有限公司 冰箱及用于冰箱的制冷装置
CN204006834U (zh) * 2014-06-30 2014-12-10 浙江盾安机械有限公司 一种气液分离器
CN105605837A (zh) * 2015-12-14 2016-05-25 广东美的暖通设备有限公司 气液分离器及具有其的冷冻循环装置、制冷系统
CN106052202A (zh) * 2016-08-15 2016-10-26 合肥太通制冷科技有限公司 一种三层双片形翅片蒸发器
CN205843155U (zh) * 2016-07-27 2016-12-28 广东美的暖通设备有限公司 气液分离器和具有其的空调
CN206247720U (zh) * 2016-10-20 2017-06-13 广东美的暖通设备有限公司 气液分离器和空调器
CN108759196A (zh) * 2018-06-13 2018-11-06 苏州逸新和电子有限公司 一种过滤性能好的储液器
CN208832796U (zh) * 2018-10-17 2019-05-07 浙江国祥股份有限公司 一种用于压缩机并联系统中的气液分离器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6564575B1 (en) * 2001-10-30 2003-05-20 Visteon Global Technologies, Inc. Accumulator with inlet port comprising a deflector
EP2596301B1 (en) * 2010-07-23 2020-10-14 Carrier Corporation Ejector cycle refrigerant separator

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3837177A (en) * 1973-11-01 1974-09-24 Refrigeration Research Suction accumulator
JPH09250848A (ja) * 1996-03-14 1997-09-22 Mitsubishi Heavy Ind Ltd 冷凍装置用横長アキュムレータ
KR20080050156A (ko) * 2006-12-01 2008-06-05 주식회사 대우일렉트로닉스 냉장고의 소음저감형 어큐뮬레이터
KR20110119553A (ko) * 2010-04-26 2011-11-02 니찌레이 고오교오 가부시끼가이샤 기액 분리 장치 및 기액 분리 장치를 구비한 냉동 장치
CN102494465A (zh) * 2011-12-08 2012-06-13 合肥美的荣事达电冰箱有限公司 冰箱及用于冰箱的制冷装置
CN204006834U (zh) * 2014-06-30 2014-12-10 浙江盾安机械有限公司 一种气液分离器
CN105605837A (zh) * 2015-12-14 2016-05-25 广东美的暖通设备有限公司 气液分离器及具有其的冷冻循环装置、制冷系统
CN205843155U (zh) * 2016-07-27 2016-12-28 广东美的暖通设备有限公司 气液分离器和具有其的空调
CN106052202A (zh) * 2016-08-15 2016-10-26 合肥太通制冷科技有限公司 一种三层双片形翅片蒸发器
CN206247720U (zh) * 2016-10-20 2017-06-13 广东美的暖通设备有限公司 气液分离器和空调器
CN108759196A (zh) * 2018-06-13 2018-11-06 苏州逸新和电子有限公司 一种过滤性能好的储液器
CN208832796U (zh) * 2018-10-17 2019-05-07 浙江国祥股份有限公司 一种用于压缩机并联系统中的气液分离器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4174406A4 *

Also Published As

Publication number Publication date
AU2021266850B2 (en) 2024-05-02
EP4174406A1 (en) 2023-05-03
CN214039059U (zh) 2021-08-24
EP4174406A4 (en) 2023-12-06
US20230304720A1 (en) 2023-09-28
JP2023538064A (ja) 2023-09-06
AU2021266850A1 (en) 2023-03-02

Similar Documents

Publication Publication Date Title
US7908883B2 (en) Refrigerator accelerated heat exchanger
KR20110071167A (ko) 냉장고
WO2021223775A1 (zh) 用于制冷系统的储液器及冰箱
WO2023065763A1 (zh) 在底部散热机仓内布置蒸发皿的冰箱
KR101869165B1 (ko) 냉장고
KR101520704B1 (ko) 냉장고
WO2022037714A1 (zh) 减小回气管热量损失的冰箱
CN107314602A (zh) 冷藏冷冻装置
CN217465044U (zh) 冰箱
JP5575532B2 (ja) 冷蔵庫
CN217900286U (zh) 酒柜
WO2022037720A1 (zh) 蒸发器底置式冰箱
CN215686300U (zh) 一种冷热双温展示柜
EP3926266B1 (en) Refrigerator having blower transversely disposed besides and downstream of evaporator
CN111609623B (zh) 具有l型冷凝器的冰箱
JP2018048798A (ja) 冷蔵庫
WO2022110929A1 (zh) 蒸发器及单系统冰箱
CN210740859U (zh) 柜式饮料售卖机集成制冷机组
CN219531316U (zh) 冰箱
CN210267842U (zh) 冰箱
CN213778298U (zh) 一种新型冷气循环风道结构的商用冰箱
CN215951884U (zh) 冷藏冷冻装置
CN214949489U (zh) 冷风机
US20220146180A1 (en) Refrigerator having air blower located upstream of transverse side of evaporator
CN217764083U (zh) 一种蒸发器顶置的制冷酒柜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21800418

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021800418

Country of ref document: EP

Effective date: 20230126

ENP Entry into the national phase

Ref document number: 2023511901

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021266850

Country of ref document: AU

Date of ref document: 20210615

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE