WO2021223532A1 - 空调器和新风机的协同控制系统及其协同控制方法 - Google Patents

空调器和新风机的协同控制系统及其协同控制方法 Download PDF

Info

Publication number
WO2021223532A1
WO2021223532A1 PCT/CN2021/082109 CN2021082109W WO2021223532A1 WO 2021223532 A1 WO2021223532 A1 WO 2021223532A1 CN 2021082109 W CN2021082109 W CN 2021082109W WO 2021223532 A1 WO2021223532 A1 WO 2021223532A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor
fresh air
mode
control method
user
Prior art date
Application number
PCT/CN2021/082109
Other languages
English (en)
French (fr)
Inventor
蔡艳芳
张伟
殷鹏飞
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2021223532A1 publication Critical patent/WO2021223532A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0035Indoor units, e.g. fan coil units characterised by introduction of outside air to the room
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • F24F1/0073Indoor units, e.g. fan coil units with means for purifying supplied air characterised by the mounting or arrangement of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • F24F1/0076Indoor units, e.g. fan coil units with means for purifying supplied air by electric means, e.g. ionisers or electrostatic separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/66Volatile organic compounds [VOC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/70Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention belongs to the technical field of air conditioners, and specifically provides a cooperative control system of an air conditioner and a fresh air blower and a cooperative control method thereof.
  • the air conditioner and the fresh air system work independently of each other, and each is equipped with a controller. Since some functions of the air conditioner and the fresh air system are the same, there is the possibility of the same function being activated at the same time, which causes a waste of electric energy on the one hand, and a problem of poor user experience on the other hand.
  • a Chinese invention patent with publication number CN107702286A discloses a control method for a linkage system between a fresh air blower and an air conditioner.
  • the control method includes: step S10, during the operation of the air conditioner, detecting the cleanliness of the indoor air, and judging the Whether the indoor air cleanliness is less than the preset value; S20, when the indoor air cleanliness is less than the preset value, start the operation of the fresh air blower to form a positive and negative pressure difference between the indoor environment and the outdoor environment; step S31, when the When the positive and negative pressure difference is a positive pressure difference, detect the cleanliness of the outdoor air and determine whether the cleanliness of the outdoor air is greater than the cleanliness of the indoor air, step S32, when the cleanliness of the outdoor air is greater than the cleanliness of the indoor air, introduce the outdoor air into the room ; Step S33, when the outdoor air cleanliness is less than or equal to the indoor air cleanliness, the operation mode of the fresh air blower is switched to negative operation to draw indoor air to the outdoors.
  • Step S34 when the positive and negative pressure difference is a negative pressure difference, detect outdoor air cleanliness, and determine whether the outdoor air cleanliness is greater than the indoor air cleanliness; step S35, when the outdoor air cleanliness is greater than the indoor air cleanliness , Introduce outdoor air into the room; Step S36, when the outdoor air cleanliness is less than or equal to the indoor air cleanliness, stop the operation of the fresh air blower.
  • Step S40 when the indoor air cleanliness is greater than or equal to the preset value, detect the outdoor air cleanliness, and determine whether the outdoor air cleanliness is greater than the indoor air cleanliness;
  • Step S50 when the outdoor air cleanliness is greater than or equal to the indoor air cleanliness In the case of cleanliness, the outdoor air is introduced into the room;
  • step S60 when the cleanliness of the outdoor air is less than the cleanliness of the indoor air, the operation of the fresh air blower is stopped.
  • This control method compares the relationship between indoor air cleanliness and their respective preset values and between indoor and outdoor air cleanliness, and then automatically controls the fresh air operation according to the comparison results.
  • this control method does not provide users with the opportunity to independently choose whether to start the new fan and which mode to run. Of course, simply providing the opportunity to choose independently will also cause the new fan to remain idle due to misoperation, especially In the case of serious indoor environmental pollution, the fresh air blower is still idle.
  • the present invention provides an air conditioner and a new air conditioner. Cooperative control method of wind turbines.
  • the collaborative control method of the present invention includes: when the air conditioner is turned on, judging whether a user's operation instruction for the fresh air blower is received, and if received, selectively starting the fresh air blower in parallel according to the operation instruction Execute the operation mode selected by the user or keep the fresh air blower shut down and determine whether the indoor air quality parameter is greater than or equal to the first indoor over-standard threshold, if so, start the fresh air blower and automatically determine the operation mode of the fresh air blower based on the scene, Otherwise, continue to determine whether the indoor air quality parameter is greater than or equal to the first indoor over-standard threshold; if not received, determine whether the indoor air quality parameter is greater than or equal to the second indoor over-standard threshold, and the first indoor over-standard threshold is greater than all For the second indoor over-standard threshold, if yes, start the fresh air blower and automatically determine the operation mode of the fresh air blower based on the scene; otherwise, continue to determine whether the indoor air quality parameter is greater than or equal to the second indoor over-standard threshold.
  • a preferred solution of the aforementioned collaborative control method is that the first indoor over-standard threshold is 1.5-5 times the second indoor over-standard threshold.
  • the preferred solution of the aforementioned collaborative control method is that the indoor air quality parameters include the concentration of CO 2 , VOC and formaldehyde.
  • the step of "automatically determining the operation mode of the fresh air blower based on the scene” specifically includes: judging whether the amount of smoke in the room is greater than or equal to the smoke amount threshold; if so, start the exhaust mode and return to " Determine whether the user has received an operating instruction for the new fan.
  • the preferred solution of the aforementioned collaborative control method is that the second outdoor over-standard threshold is 2-4 times the first indoor over-standard threshold.
  • the preferred solution of the aforementioned collaborative control method is that the outdoor air quality parameters include the concentrations of CO 2 , VOC and PM2.5.
  • a preferred solution of the aforementioned collaborative control method is that the operating modes selected by the user include: full heat mode, slight positive pressure mode, bypass mode, internal circulation mode, exhaust air mode, and fresh air mode.
  • the cooperative control method of the air conditioner and the fresh fan of the present invention includes: judging whether a user's operation instruction for the fresh fan is received; if received, selectively starting the fresh fan according to the operation instruction and executing the user selection Or keep the fresh air blower shut down and judge whether the indoor air quality parameter is greater than or equal to the first indoor over-standard threshold.
  • the collaborative control method of the present invention adds a step of judging whether the user's operation instruction for the fresh air blower is received, and when the user operation instruction is not to run the fresh air blower, it is based on the indoor air quality.
  • the degree of pollution determines whether the new fan is forced to start and the operating mode of the new fan is automatically determined based on the scene. This not only provides the user with the opportunity to choose independently, and automatically forces the new fan to start in the case of serious indoor environmental pollution, which solves the misoperation.
  • the problem of idling of fresh air fans has improved the intelligent level of the coordinated control of the two to a certain extent.
  • the preferred solution of the aforementioned collaborative control method is to "selectively start the fresh air blower and execute the operation mode selected by the user or keep the fresh air blower shut down and determine whether the indoor air quality parameter is greater than or equal to the first indoor over-standard threshold"
  • the collaborative control method further includes: judging whether the amount of toxic substances in the outdoor air is greater than or equal to the maximum allowable amount; if so, turning off the air conditioner, keeping the fresh air blower off, and returning to judging the outdoor air Whether the amount of toxic substances is greater than or equal to the maximum allowable amount; otherwise, selectively start the fresh air blower and execute the operation mode selected by the user or keep the fresh air blower shut down and judge whether the indoor air quality parameter is greater than or equal to the first room Exceeding the threshold.
  • the present invention also provides a cooperative control system for an air conditioner and a fresh air blower, which includes a controller configured to execute the aforementioned cooperative control method.
  • a cooperative control system for an air conditioner and a fresh air blower which includes a controller configured to execute the aforementioned cooperative control method.
  • Figure 1 is a schematic diagram of the structure of the fresh air blower
  • Figure 2 is a schematic diagram of the structure of the fresh air blower in Figure 1 after the box cover is removed;
  • Figures 3-7 are schematic diagrams of the working principles of the full heat mode, exhaust air mode, bypass mode, internal circulation mode and fresh air mode of the fresh air blower in Figure 1;
  • FIG. 8 is a flowchart of the main steps of the cooperative control method of the air conditioner and the fresh fan of the present invention.
  • Fig. 9 is a detailed step flow chart of the cooperative control method of the air conditioner and the fresh fan of the present invention.
  • FIG. 10 is a detailed flow chart of another method for cooperative control of an air conditioner and a fresh fan of the present invention.
  • controller may include hardware, software, or a combination of both.
  • a module can include hardware circuits, various suitable sensors, communication ports, and memory, and can also include software parts, such as program codes, or a combination of software and hardware.
  • software parts such as program codes, or a combination of software and hardware.
  • first, second, etc. are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance.
  • Fig. 1 is a schematic diagram of the structure of the fresh air blower
  • Fig. 3 is a schematic diagram of the working principle of the fresh air blower in Fig. 1 in full heat mode.
  • orientation words "inside, outside, left and right” used in this article to describe the structure of the fresh air blower are set based on the position of the fresh air blower in use. Inside, the side close to the outside is the outside. When readers look at the new fan with their faces inside and their backs facing outside, the one on the left hand side of the reader is the left side, and the one on the right side of the reader is the right side. In this article, for the convenience of explaining the structure of the fresh air blower, these position words are set. It is understandable that the setting of these position words does not limit the protection scope of the present invention.
  • the fresh air blower includes a box body C and a box cover P. After the box body C and the box cover P are closed, they can be detachably connected to form a cavity.
  • the indoor air inlet V it1 and the indoor air outlet V ot1 are opened on the inner vertical plate of the box C, and the outdoor air inlet V it2 and the outdoor air outlet V ot2 are opened on the outer vertical plate.
  • the middle of the box C is installed with full heat exchange.
  • the first automatic damper mechanism S v1 is installed at the interval between the total heat heat exchanger EH and the left vertical plate of the box C, so that The total heat exchanger EH and the first automatic damper mechanism S v1 divide the box into an inner area and an outer area.
  • the inner area is again divided into inner left area and inner right area.
  • the indoor air outlet V ot1 is opened on the inner vertical plate of the inner left area, and the inner fan F i is installed in the inner left area.
  • the exhaust port of the indoor fan F i, V ot1 outlet communicating with the inner inlet of the indoor fan F i, S v2 second automatic shutter mechanism installed between the air inlet V it1, the inlet fan F i may Selectively communicate with the first heat exchange passage, the first ventilation passage or the vent of the second automatic damper mechanism S v2 of the total heat heat exchanger EH.
  • the indoor air inlet V it1 is opened on the inner vertical plate located in the inner right area.
  • the indoor air inlet V it1 can be selectively connected with the second heat exchange channel, the second ventilation channel, and the first automatic channel of the total heat exchanger EH.
  • the vent of the damper mechanism S v1 or the vent of the second automatic damper mechanism S v2 communicate with each other.
  • the outer area is divided into the outer left area and the outer right area, where the outdoor air outlet V ot2 is opened on the outer vertical plate located in the outer left area, and the outer left area is installed with the outer fan F o , the air outlet of the external fan F o is connected to the outdoor air outlet V ot2 , and the air inlet of the external fan F o can be selectively connected with the second heat exchange channel, the second ventilation channel or the first ventilation channel of the total heat exchanger EH
  • the vent of the automatic damper mechanism S v1 is connected, and the outdoor air inlet V it2 is opened on the outer vertical plate located on the outer right side area.
  • the outdoor air inlet V it2 can selectively exchange heat with the first heat exchanger of the total heat exchanger EH
  • the passage or the first ventilation passage communicates.
  • the fresh air blower also includes a first filter F 1 , a second filter F 2 , a formaldehyde removal module F m , a sterilization module and an anion module; wherein the first filter F 1 and the formaldehyde removal module F m are superimposed inside and outside Installed in the internal area and located on the inner side of the total heat exchanger EH and the first automatic damper mechanism V s1 , in order to filter the indoor air entering the fresh air blower and remove formaldehyde.
  • the second filter F 2 is installed between the outdoor air inlet V it2 and the total heat exchanger EH to filter the outdoor air entering the fresh air blower.
  • the sterilization module and the negative ion module are installed at the air outlet of the inner fan F i , and are used for sterilization and negative ion treatment of the air entering the room.
  • the indoor air quality parameters and outdoor air quality parameters are detected by the air quality detection box-Air Guard, and then transmitted to the controller through wired or wireless communication.
  • the air quality automatically monitored by the Air Guard includes: temperature, Humidity value, PM2.5 concentration value, CO2 concentration value and/or formaldehyde concentration value.
  • the controller controls the first heat exchange channel, the second heat exchange channel, the first ventilation channel, the second ventilation channel, the vent and the first automatic damper mechanism S v1 of the total heat exchanger EH.
  • the opening or closing of the vent of the automatic damper mechanism S v2 is used to adjust the flow direction of the airflow to form different operating modes.
  • Figures 3-7 are schematic diagrams of the working principles of the full heat mode, exhaust air mode, bypass mode, internal circulation mode and fresh air mode of the fresh air blower in Figure 1 respectively.
  • this article lists the first heat exchange channel, second heat exchange channel, first ventilation channel, second ventilation channel,
  • first heat exchange channel For the working status of the vent of the first automatic damper mechanism S v1 and the second vent of the second automatic damper mechanism S v2 , the symbol “ ⁇ " in the table represents closed, and the symbol " ⁇ " represents open.
  • the controller opens the first heat exchange channel and the second heat exchange channel of the total heat exchanger EH, and closes the first ventilation channel, the second ventilation channel, and the first automatic damper mechanism S of the total heat exchanger EH.
  • the vent of v1 and the vent of the second automatic damper mechanism S v2 are activated, and the inner fan F i and the outer fan F o are activated to enter the full heat mode of the fresh fan.
  • indoor air flows to the outdoors in the sequence of indoor air inlet V it1 ⁇ first filter F 1 ⁇ formaldehyde removal module F m ⁇ first heat exchange channel ⁇ external fan F o ⁇ outdoor air outlet V ot2 ; and At the same time, the outdoor air flows along the outdoor air inlet V it2 ⁇ the second filter F 2 ⁇ the second heat exchange channel ⁇ the first filter F 1 ⁇ the inner fan F i ⁇ the sterilization module ⁇ the negative ion module ⁇ the indoor air outlet V ot1 Sequence flow channel indoor.
  • the controller opens the second ventilation channel of the total heat exchanger EH, and closes the first heat exchange channel, the second heat exchange channel, the first ventilation channel, and the first automatic damper mechanism S of the total heat exchanger EH.
  • the vent of v1 and the vent of the second automatic damper mechanism S v2 and start the external fan F o to enter the exhaust mode of the fresh fan.
  • indoor air flows to the outdoors in the order of indoor air inlet V it1 ⁇ first filter F 1 ⁇ formaldehyde removal module F m ⁇ second ventilation channel ⁇ external fan F o ⁇ outdoor air outlet V ot2 .
  • the controller opens the first ventilation passage of the total heat exchanger EH and the vent of the first automatic damper mechanism S v1 , and closes the first heat exchange passage, the second heat exchange passage, and the second heat exchange passage of the total heat exchanger EH.
  • the second ventilation channel, the ventilation opening of the second automatic air mechanism, and the internal fan F i and the external fan F o are activated to enter the bypass mode of the fresh fan.
  • the controller opens the vent of the second automatic damper mechanism S v2 , and closes the first heat exchange channel, the second heat exchange channel, the first ventilation channel, the second ventilation channel and the first heat exchange channel of the total heat exchanger EH.
  • the vent of the automatic damper mechanism S v1 and start the internal fan F i to enter the internal circulation mode of the fresh fan.
  • the internal circulation mode indoor air along the indoor air inlet V it1 ⁇ the first filter F 1 ⁇ the formaldehyde removal module F m ⁇ the vent of the second automatic damper mechanism S v2 ⁇ the internal fan F i ⁇ the sterilization module ⁇ anion
  • the sequence of module ⁇ indoor air outlet V ot1 returns to the room.
  • the working schematic diagram of the slightly positive pressure mode is similar to that of the full heat mode in Figure 3, except that the channel opening method of the full heat heat exchanger EH is different. You can refer to Figure 3 when understanding the slightly positive pressure mode.
  • the controller opens the first ventilation passage and the second ventilation passage of the total heat exchanger EH, and closes the first heat exchange passage, the second heat exchange passage, and the vent of the first automatic damper mechanism S v1 of the total heat exchanger EH And the vent of the second automatic damper mechanism S v2 , and turn on the inner fan F i and the outer fan F o to enter the slight positive pressure mode.
  • indoor air flows to the outdoors along the indoor air inlet V it1 ⁇ the first filter F 1 ⁇ the formaldehyde removal module F m ⁇ the first ventilation channel ⁇ the external fan F o ⁇ the outdoor air outlet V ot2 ; and At the same time, the outdoor air flows into the room along the outdoor air inlet V it2 ⁇ the second filter F 2 ⁇ the second ventilation channel ⁇ the inner fan F i ⁇ the sterilization module ⁇ the negative ion module ⁇ the indoor air outlet V ot1 .
  • the controller opens the first ventilation channel of the total heat exchanger EH, and closes the first heat exchange channel, the second heat exchange channel, the second ventilation channel, and the first automatic damper mechanism S of the total heat exchanger EH.
  • the vent of v1 and the vent of the second automatic damper mechanism S v2 are activated, and the internal fan F i is activated to enter the fresh air mode of the fresh fan.
  • outdoor air flows into the room along the outdoor air inlet V it2 ⁇ the second filter F 2 ⁇ the first ventilation channel ⁇ the inner fan F i ⁇ the sterilization module ⁇ the negative ion module ⁇ the indoor air outlet V ot1 .
  • the cooperative control method mainly includes :
  • Step S100 When the air conditioner is turned on, it is determined whether an operation instruction for the fresh air blower is received from the user.
  • step S200 or S300 If received, selectively enter step S200 or S300 according to the operation instruction;
  • Step S200 start the fresh air blower and execute the operation mode selected by the user
  • Step S300 keep the fresh air blower shut down
  • Step S400 Determine whether the indoor air quality parameter is greater than or equal to the first indoor over-standard threshold; if yes, go to step S600, if not, go back to step S400.
  • step S600 the fresh air blower is started and the operation mode of the fresh air blower is automatically determined based on the scene.
  • step S500 determines whether the indoor air quality parameter is greater than or equal to the second indoor over-standard threshold, the first indoor over-standard threshold is greater than the second indoor over-standard threshold, if yes, go to step S600, otherwise return to step S500.
  • the cooperative control method of the air conditioner and the new fan of the present invention adds a user independent selection step, and preferably controls the new fan to start and enter the selection according to the operation instruction selected by the user.
  • the specified operating mode will enter the automatic control mode without receiving user instructions.
  • the collaborative control method further automatically determines the relationship between the indoor air quality and the first indoor over-standard threshold, and the first indoor over-standard threshold is greater than the second indoor over-standard threshold, and the second indoor exceeds the standard Threshold refers to the reference value of whether the preset air quality parameter exceeds the standard when automatically entering the control mode without receiving user operation instructions.
  • Threshold refers to the reference value of whether the preset air quality parameter exceeds the standard when automatically entering the control mode without receiving user operation instructions.
  • the collaborative control method of the present invention forces the new fan to be started automatically, so that on the basis of allowing the user to independently select whether to start the new fan and which operating mode to start, it can avoid the serious indoor environment caused by the user's misoperation and other reasons.
  • the problem that the fresh air blower is still in an idle state under the pollution situation has improved the intelligent level of the air conditioner and the fresh air blower to work together to a certain extent.
  • the coordinated control method of the air conditioner and the fresh fan of the present invention includes:
  • Step S100 It is judged whether the user's operation instruction for the new fan is received.
  • control instructions of the air conditioner and the fresh air blower are integrated into the control panel.
  • the control panel can be a traditional button control panel, touch control panel or mobile phone APP application.
  • the control panel is equipped with various new air blowers. Operating mode, the user only needs to select the operating mode to start the new fan and enter the selected operating mode. For example: the user selects the full heat mode on the control board, and the controller starts the new fan to turn on and enters the full heat mode after receiving this operation instruction. If the user selects the fresh fan not running button on the control board, the controller After receiving this control command, it is adjusted according to the current working status of the fresh air blower. For example, when the current work of the fresh air blower is shut down, the fresh air blower is maintained in the shutdown state, and if the fresh air blower is currently in working state, the fresh air blower is controlled to shut down.
  • step S200 or S300 If received, selectively enter step S200 or S300 according to the operation instruction;
  • Step S200 start the fresh air blower and execute the operation mode selected by the user.
  • the operation mode of the fresh air blower includes exhaust air mode, full heat mode, bypass mode, internal circulation mode, slight positive pressure mode and fresh air mode. It can be understood that the operation mode of the fresh air blower depends on its specific structure.
  • the collaborative control method of the present invention is not only applicable to fresh air fans including all the above-mentioned operation modes, but also applicable to fresh air fans including only 2-3 of the above-mentioned operation modes.
  • Step S300 Keep the fresh air blower shut down.
  • Step S400 Determine whether the indoor air quality parameter is greater than or equal to the first indoor over-standard threshold; if yes, go to step S600, if not, go back to step S400.
  • step S500 If the user's operation instruction is not received, go to step S500
  • Step S500 Determine whether the indoor air quality parameter is greater than or equal to the second indoor over-standard threshold, the first indoor over-standard threshold is greater than the second indoor over-standard threshold, if yes, go to step S600, otherwise return to step S500.
  • Step S600 Start the fresh air blower and automatically determine the operation mode of the fresh air blower based on the scene.
  • the indoor air quality parameters in the present invention mainly refer to the concentration of CO 2 , VOC and formaldehyde.
  • the controller of the air conditioner presets the first indoor over-standard threshold and the second indoor over-standard threshold of these three indoor air quality parameters, and the first When the first indoor over-standard threshold is greater than the second indoor over-standard threshold, in steps S400 and S500, it is determined whether the indoor air quality parameter is greater than or equal to the first indoor over-standard threshold or the second indoor over-standard threshold, at least one of the three parameters is greater than or Equal to the first indoor over-standard threshold/first indoor over-standard threshold, or the two parameters are greater than or equal to the respective first indoor over-standard threshold/first indoor over-standard threshold, or the three parameters are greater than or equal to their respective first
  • the first indoor over-standard threshold/the first indoor over-standard threshold the specific judgment standard can be set according to the application scenario.
  • indoor air parameters are not limited to the concentration of CO 2 , VOC and formaldehyde, and can also include other indicators that can
  • the first indoor over-standard threshold and the second indoor over-standard threshold are introduced and the purpose of limiting the first indoor over-standard threshold to be greater than the second indoor over-standard threshold is that when the indoor air quality is seriously polluted, especially when the indoor air quality is severely polluted.
  • the controller forces the new fan to start and enters the operating mode that is automatically determined according to the application scenario. This can prevent the user from setting the new fan due to misoperation or other reasons as described in the background art. If it is not turned on, the indoor air quality pollution will cause serious harm to the human body, which can improve the intelligent level of the air conditioner and the fresh air blower to a certain extent.
  • the first indoor over-standard threshold may preferably be 1.5-5 times the second indoor over-standard threshold.
  • the specific multiple relationship between the first indoor over-standard threshold and the second indoor over-standard threshold can be determined by those skilled in the art according to the performance parameters and application scenarios of the fresh air blower.
  • step S600 the fresh air blower is started and the operation mode of the fresh air blower is automatically determined based on the scene.
  • step S600 specifically includes:
  • Step S601 Start the fresh air blower.
  • Step S602 It is determined whether the amount of indoor smoke is greater than or equal to the threshold of smoke amount. If yes, go to step S603, otherwise go to step S604.
  • the controller presets the smoke volume threshold, and the specific value can be determined according to factors such as the performance parameters of the new fan, indoor area and layout.
  • the amount of indoor smoke can be collected by a smoke detector, and transmitted to the controller by wired or wireless communication.
  • the controller compares the relationship between the amount of smoke and the preset threshold of smoke, and then executes the steps according to the comparison result S603 or S604.
  • Step S603 start the exhaust mode and return to step S100.
  • Step S604 Determine whether the absolute value of the temperature difference between the outdoor ambient temperature and the indoor ambient temperature is greater than or equal to the temperature difference threshold, if yes, go to step S605, otherwise go to step S606.
  • the outdoor ambient temperature can be collected by the infrared temperature sensor installed on the outdoor unit, and then transmitted to the controller in a wired or wireless manner.
  • the indoor ambient temperature can be collected by the infrared temperature sensor installed on the indoor unit, and then Wired or wirelessly transmitted to the controller, the controller calculates the actual temperature difference between the outdoor ambient temperature and the indoor ambient temperature and finds the absolute value, and then compares the absolute value of the temperature difference with the temperature difference threshold preset by the controller.
  • the temperature threshold can be 3°C-5°C.
  • the temperature threshold is not limited to this specific value. Its value depends on the performance parameters such as the power of the fresh air blower. Those skilled in the art can set it according to the performance parameters of the fresh air blower. Certainly.
  • the average value of is always stable within the error range of 10% above and below a certain value, before the data is sent to the controller, the unit is Celsius °C.
  • Step S605 start the full heat mode and return to step S100.
  • Step S606 It is judged whether the outdoor air quality parameter is greater than or equal to the first outdoor exceeding threshold value; if not, step S607 is entered; if not, step S608 is entered.
  • Step S607 Start the bypass mode and return to step S100.
  • Step S608 Determine whether the outdoor air quality parameter is greater than or equal to the second outdoor over-standard threshold, the second outdoor over-standard threshold is greater than the first outdoor over-standard threshold, if yes, go to step S609, otherwise, go to step S6010.
  • Step S609 Start the inner loop mode and return to step S100.
  • Step S6010 start the slightly positive pressure mode and return to step S100.
  • the outdoor air quality parameters in the present invention mainly refer to the concentrations of CO 2 , VOC and PM2.5.
  • the controller of the air conditioner presets the first outdoor over-standard threshold and the first outdoor air quality parameter of these three outdoor air quality parameters.
  • the second outdoor over-standard threshold, and the second outdoor over-standard threshold is greater than the first outdoor over-standard threshold, preferably the second outdoor over-standard threshold may be 2-4 times the first outdoor over-standard threshold.
  • At least one of the three parameters is greater than or equal to the first outdoor over-standard threshold/the first outdoor over-standard threshold Threshold, or the two parameters are greater than or equal to the respective first outdoor over-standard threshold/first outdoor over-standard threshold, or it can be that all three parameters are greater than or equal to the respective first outdoor over-standard threshold/first outdoor over-standard threshold,
  • the specific judgment criteria can be set according to the performance parameters and application scenarios of the new fan.
  • outdoor air parameters are not limited to the concentration of CO 2 , VOC and PM2.5, and may also include other indicators that can be used to characterize outdoor air quality parameters according to actual application scenarios.
  • the present invention provides another cooperative control method on the basis of the cooperative control method in FIG. 9. See FIG. 10.
  • This cooperative control method is basically the same as that in FIG.
  • another cooperative control method further includes step S101, judging whether the amount of toxic substances in the outdoor air is greater than or equal to the maximum allowable amount, and if so, proceed to step S102 to turn off the air conditioner Keep the fresh air blower shut down and return to step S101, otherwise, it can selectively go to step S200 or S300.
  • the toxic substances in the outdoor air include radioactive elements harmful to the human body, such as the graphite element that caused serious damage to human health in the Chernobyl nuclear leak in the former Soviet Union.
  • the control method presets each The maximum allowable amount of radioactive elements that can cause serious harm to the human body, the actual amount of outdoor radioactive elements is collected through the radioactive element amount detection instrument, and the actual amount is compared with the preset maximum allowable amount. If the actual amount is greater than or When it is equal to the maximum allowable amount, the air conditioner is turned off, the fresh air blower is kept in the off state, and step S101 is returned. In this way, when a serious disaster such as a nuclear leak occurs, harmful substances outside the room can be prevented from entering the room through an air conditioner or a new fan to cause harm to the human body, and the implementation safety of the collaborative control method of the present invention is improved.
  • the present invention also provides a cooperative control system for an air conditioner and a fresh air blower.
  • the cooperative control system includes a controller configured to execute the aforementioned cooperative control method.
  • This controller can be an independently set controller, or a functional module on the controller of the air conditioner or fresh air blower, or part of the function is realized by the air conditioner controller, and part of the function is controlled by the fresh air blower.
  • the specific physical form of a virtual controller implemented by a device does not constitute any limitation on the protection scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明涉及空调技术领域,具体提供了一种空调器和新风机的协同工作系统及其协同控制方法,旨在解决给用户提供自主选择是否启动新风机及启动何种运行模式的同时,如何避免因用户误操作导致室内环境严重污染情况下新风机仍处于闲置状态的问题。该协同控制方法在基于场景自动确定新风机的运行模式前,增设判断是否收到用户针对新风机的操作指令的步骤,并且当用户操作指令为不运行新风机时,再根据室内空气质量的污染程度来决定是否强制启动新风机并基于场景自动确定新风机的运行模式,这样既给用户提供了自主选择的机会,并且在室内环境严重污染情况下自动强制启动新风机,解决了误操作造成新风机闲置的问题,在一定程度上提高了两者协同控制的智能化水平。

Description

空调器和新风机的协同控制系统及其协同控制方法 技术领域
本发明属于空调技术领域,具体提供一种空调器和新风机的协同控制系统及其协同控制方法。
背景技术
随着生活水平的不断提高,人们对居室内空气质量的要求也越来越重视,在居室内除了安装空调器来调节温度湿度外,新风机也逐渐成为标配电器。
目前,空调器和新风系统彼此独立工作,各自都配备了控制器。由于空调器和新风系统某些功能相同,存在相同功能同时启动的可能性,这样一方面造成了电能的浪费,另一方面也会引起用户使用体验差的问题。
为此,公开号为CN107702286A的中国发明专利公开了一种新风机与空调联动系统的控制方法,该控制方法包括:步骤S10,在空调的运行过程中,检测室内空气洁净度,并判断所述室内空气洁净度是否小于预设值;S20,当所述室内空气洁净度小于预设值时,启动新风机运行,形成室内环境与室外环境之间的正负压力差;步骤S31,当所述正负压力差为正向压力差时,检测室外空气洁净度,并判断室外空气洁净度是否大于室内空气洁净度,步骤S32,当室外空气洁净度大于室内空气洁净度时,将室外空气引进室内;步骤S33,当室外空气洁净度小于或等于室内空气洁净度时,将新风机的运行模式切换为负向运行,以将室内空气抽向室外。步骤S34,当所述正负压力差为负向压力差时,检测室外空气洁净度,并判断室外空气洁净度是否大于室内空气洁净度;步骤S35,当室外空气洁净度大于室内空气洁净度时,将室外空气引进室内;步骤S36,当室外空气洁净度小于或等于室内空气洁净度时,停止新风机运行。步骤S40,当所述室内空气洁净度大于或等于预设值时,检测室外空气洁净度,并判断室外空气洁净度是否大于室内空气洁净度;步骤S50,当室外空气洁净度大于或等于室内空 气洁净度时,将室外空气引进室内;步骤S60,当室外空气洁净度小于室内空气洁净度时,停止新风机运行。
这种控制方法通过比较室内空气洁净度与各自预设值之间以及室内外空气洁净度之间的大小关系,再根据比较结果来自动控制新风气运行。然而,这种控制方法并未给用户提供自主选择是否启动新风机以及运行何种模式的机会,当然单纯提供自主选择机会也会存在因误操作导致新风机始终处于停机闲置状态的问题,尤其是在室内环境严重污染情况下新风机仍处于闲置状态。
因此,给用户提供自主选择是否启动新风机及启动何种运行模式的同时,避免因用户误操作导致室内环境严重污染情况下新风机仍处于闲置状态,是本领域技术人员需要解决的技术问题。
发明内容
为了在给用户提供自主选择是否启动新风机及启动何种运行模式的同时,避免因用户误操作导致室内环境严重污染情况下新风机仍处于闲置状态的问题,本发明提供一种空调器和新风机的协同控制方法。
本发明的协同控制方法包括:在所述空调器开机的情况下,判断是否收到用户针对新风机的操作指令,若收到,则根据所述操作指令,选择性地启动所述新风机并执行用户选定的运行模式或者保持所述新风机关机并判断室内空气质量参数是否大于或等于第一室内超标阈值,若是则启动所述新风机并基于场景自动确定所述新风机的运行模式,否则继续判断室内空气质量参数是否大于或等于所述第一室内超标阈值;若没收到,则判断所述室内空气质量参数是否大于或等于第二室内超标阈值,所述第一室内超标阈值大于所述第二室内超标阈值,若是则启动所述新风机并基于场景自动确定所述新风机的运行模式,否则继续判断所述室内空气质量参数是否大于或等于所述第二室内超标阈值。
上述协同控制方法的优选方案是,所述第一室内超标阈值为所述第二室内超标阈值的1.5-5倍。
上述协同控制方法的优选方案是,所述室内空气质量参数包括CO 2、VOC和甲醛的浓度。
上述协同控制方法的优选方案是,“基于场景自动确定所述新风机的运行模式”的步骤具体包括:判断室内的烟雾量是否大于或等于烟雾量阈值;若是,则启动排风模式并返回“判断是否收到用户针对新风机的操作指令”的步骤,否则判断室内温度和室外温度之间的温差绝对值是否大于温差阈值;若是,则启动全热模式并返回“判断是否收到用户针对新风机的操作指令”的步骤,否则判断室外空气质量参数是否达到第一室外超标阈值;若否则启动旁通模式并返回判断“是否收到用户的操作指令”的步骤,若是则判断所述室外空气质量参数是否达到第二室外超标阈值,所述第二室外超标阈值大于所述第一室外超标阈值;若是则启动微正压模式并返回判断“是否收到用户的操作指令”的步骤,否则启动内循环模式并返回“判断是否收到用户针对新风机的操作指令”的步骤。
上述协同控制方法的优选方案是,所述第二室外超标阈值为所述第一室内超标阈值2-4倍。
上述协同控制方法的优选方案是,所述室外空气质量参数包括CO 2、VOC和PM2.5的浓度。
上述协同控制方法的优选方案是,所述用户选定的运行模式包括:全热模式、微正压模式、旁通模式、内循环模式、排风模式和新风模式。
本发明的空调器和新风机的协同控制方法包括:判断是否收到用户针对新风机的操作指令;若收到,则根据所述操作指令,选择性地启动所述新风机并执行用户选定的运行模式或者保持所述新风机关机并判断室内空气质量参数是否大于或等于第一室内超标阈值,若是则启动所述新风机并基于场景自动确定所述新风机的运行模式,否则继续判断室内空气质量参数是否大于或等于所述第一室内超标阈值;若没收到,则判断所述室内空气质量参数是否大于或等于第二室内超标阈值,所述第一室内超标阈值大于所述第二室内超标阈值,若是则启动所述新风机并基于场景自动确定所述新风机的运行模式,否 则继续判断所述室内空气质量参数是否大于或等于所述第二室内超标阈值。
本发明的协同控制方法在基于场景自动确定新风机的运行模式前,增设判断是否收到用户针对新风机的操作指令的步骤,并且当用户操作指令为不运行新风机时,再根据室内空气质量的污染程度来决定是否强制启动新风机并基于场景自动确定新风机的运行模式,这样既给用户提供了自主选择的机会,并且在室内环境严重污染情况下自动强制启动新风机,解决了误操作造成新风机闲置的问题,在一定程度上提高了两者协同控制的智能化水平。
上述协同控制方法的优选方案是,在“选择性地启动所述新风机并执行用户选定的运行模式或者保持所述新风机关机并判断室内空气质量参数是否大于或等于第一室内超标阈值”的步骤之前,所述协同控制方法还包括:判断室外空气内有毒物质的量是否大于或等于最大允许量;若是,则关闭所述空调器,保持所述新风机关机,并返回判断室外空气内有毒物质的量是否大于或等于最大允许量;否则,选择性地启动所述新风机并执行用户选定的运行模式或者保持所述新风机关机并判断室内空气质量参数是否大于或等于第一室内超标阈值。
另一方面,本发明还提供了一种空调器和新风机的协同控制系统,其包括控制器,所述控制器配置成能够执行上述的协同控制方法。本领域技术人员能够理解的是,该空调器和新风机的协同控制系统具有上述协同控制方法的全部技术效果。
附图说明
图1为新风机的结构示意图;
图2为拆除箱盖后图1中新风机的结构示意图;
图3-7分别为图1中新风机的全热模式、排风模式、旁通模式、内循环模式和新风模式的工作原理示意图;
图8为本发明的空调器和新风机的协同控制方法的主要步骤流程图;
图9为本发明的空调器和新风机的协同控制方法的详细步骤流程图;
10为本发明的空调器和新风机的另一协同控制方法的详细步骤流程图。
其中,图1-7中各组件名称和附图标记之间的对应关系为:
C箱体、V it1室内进风口、V ot1室内进风口、V it2室外进风口、V ot2室外进风口、P箱盖、EH全热换热器、F i内风机、F o外风机、F 1第一过滤网、F m除甲醛模块、F 2第二过滤网、S v1第一自动风门机构、S v2第二自动风门机构。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
在本申请的描述中,“控制器”可以包括硬件、软件或者两者的组合。一个模块可以包括硬件电路,各种合适的感应器,通信端口,存储器,也可以包括软件部分,比如程序代码,也可以是软件和硬件的组合。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
为了便于理解本发明的空调器和新风机的协同控制方法,下面首先结合图1至3来简单的介绍新风机的具体结构其中,图1为新风机的结构示意图,图2为拆除箱盖后图1中新风机的结构示意图,图3分别为图1中新风机的全热模式的工作原理示意图。
需要说明的是,本文在描述新风机的结构时所采用的方位词“内、外、左和右”是以新风机在使用状态下的位置为基准来设定的,新风机靠近室内侧为内侧,靠近室外侧为外侧,当读者以面朝内背朝外观察新风机时,位于读者左手侧的为左侧,位于读者右侧的为右侧。本文为了便于说明新风机的结构而设定了这些方位词,可以理解,这些方位词的设定并不限定本发明的保护范围。
参见图1-3,新风机包括箱体C和箱盖P,箱体C和箱盖P盖合后可拆卸连接形成腔体。箱体C的内立板上开设了室内进风口V it1和室内出风口V ot1,其外立板上开设了室外进风口V it2和室外出风口V ot2,箱体C中部安装了全热换热器EH,全热换热器EH密封紧贴 箱体C的右立板,全热换热器EH和箱体C的左立板之间的间隔处安装了第一自动风门机构S v1,以便全热换热器EH和第一自动风门机构S v1将箱体分割为内部区域和外部区域。
内部区域被再次分割为内左侧部区域和内右侧部区域,其中,室内出风口V ot1开设于内左侧部区域的内立板上,内左侧部区域安装了内风机F i,内风机F i的排风口与室内出风口V ot1连通,在内风机F i的进风口与室内进风口V it1之间安装了第二自动风门机构S v2,内风机F i的进风口可以选择性地与全热换热器EH的第一换热通道、第一通风通道或第二自动风门机构S v2的通风口连通。室内进风口V it1开设于位于内右侧部区域的内立板上,室内进风口V it1可以选择性地与全热换热器EH的第二换热通道、第二通风通道、第一自动风门机构S v1的通风口或者第二自动风门机构S v2的通风口连通。
同样,外部区域被分割为外左侧部区域和外右侧部区域,其中,室外出风口V ot2开设于位于外左侧部区域的外立板上,外左侧部区域安装了外风机F o,外风机F o的排风口与室外出风口V ot2连通,外风机F o的进风口可以选择性地与全热换热器EH的第二换热通道、第二通风通道或第一自动风门机构S v1的通风口连通,室外进风口V it2开设于位于外右侧部区域的外立板上,室外进风口V it2可以选择性地与全热换热器EH的第一换热通道或者第一通风通道连通。
进一步,新风机还包括第一过滤网F 1、第二过滤网F 2、除甲醛模块F m、除菌模块和负离子模块;其中,第一过滤网F 1和除甲醛模块F m内外叠加后安装于内部区域并位于全热换热器EH和第一自动风门机构V s1的内侧,以便对进入新风机的室内空气进行过滤并除甲醛处理。第二过滤网F 2安装于室外进风口V it2和全热换热器EH之间,以便对进入新风机的室外空气进行过滤处理。除菌模块和负离子模块安装于内风机F i的排风口处,用于给进入室内的空气进行除菌和负离子处理。
需要说明的是,室内空气质量参数和室外空气质量参数是通过空气质量检测盒子-空气卫士来检测,然后通过有线或无线等方式通信传输至控制器,空气卫士自动监测的空气质量包括:温度、湿值,PM2.5浓度值、CO2浓度值和/或甲醛浓度值。
新风机工作时,控制器通过控制全热换热器EH的第一换热通道、第二换热通道、第一通风通道、第二通风通道、第一自动风门机构S v1的通风口和第二自动风门机构S v2的通风口的开启或关闭,来调整气流的流向,以便形成不同的运行模式,接下来结合图3-7,来详细的说明新风机的不同运行模式。图3-7分别为图1中新风机的全热模式、排风模式、旁通模式、内循环模式和新风模式的工作原理示意图。
为了提高可读性,本文在下表中列出了新风机在不同的运行模式下全热换热器EH的第一换热通道、第二换热通道、第一通风通道、第二通风通道、第一自动风门机构S v1的通风口和第二自动风门机构S v2的第二通风口的工作状态,表中符号“ ×”代表关闭,符号“ ”代表开启。
Figure PCTCN2021082109-appb-000001
1.全热模式
参见图3,控制器开启全热换热器EH的第一换热通道和第二换热通道、关闭全热换热器EH的第一通风通道、第二通风通道、第一自动风门机构S v1的通风口和第二自动风门机构S v2的通风口,并启动内风机F i和外风机F o,进入新风机的全热模式。全热模式下:室内空气沿室内进风口V it1→第一过滤网F 1→除甲醛模块F m→第一换热通道→外风机F o→室外出风口V ot2的顺序流到室外;与此同时,室外空气沿室外进风口V it2→第二过滤网F 2→第二换热通道→第一过滤网 F 1→内风机F i→除菌模块→负离子模块→室内出风口V ot1的顺序流道室内。
2.排风模式
参见图4,控制器开启全热换热器EH的第二通风通道,关闭全热换热器EH的第一换热通道、第二换热通道、第一通风通道、第一自动风门机构S v1的通风口和第二自动风门机构S v2的通风孔口,并启动外风机F o,进入新风机的排风模式。排风模式下:室内空气沿室内进风口V it1→第一过滤网F 1→除甲醛模块F m→第二通风通道→外风机F o→室外出风口V ot2的顺序流到室外。
3.旁通模式
参见图5,控制器开启全热换热器EH的第一通风通道和第一自动风门机构S v1的通风口,关闭全热换热器EH的第一换热通道、第二换热通道、第二通风通道、第二自动风机构的通风口,并启动内风机F i和外风机F o,进入新风机的旁通模式。在旁通模式下:室内空气沿室内进风口V it1→第一过滤网F 1→除甲醛模块F m→第一自动风门机构S v1的通风口→外风机F o→室外出风口V ot2的顺序流到室外;与此同时,室外空气沿室外进风口V it2→第二过滤网F 2→第一通风通道→内风机F i→除菌模块→负离子模块→室内出风口V ot1流到室内。
4.内循环模式
参见图6,控制器开启第二自动风门机构S v2的通风口,关闭全热换热器EH的第一换热通道、第二换热通道、第一通风通道、第二通风通道和第一自动风门机构S v1的通风口,并启动内风机F i进入新风机的内循环模式。在内循环模式下:室内的空气沿室内进风口V it1→第一过滤网F 1→除甲醛模块F m→第二自动风门机构S v2的通风口→内风机F i→除菌模块→负离子模块→室内出风口V ot1的顺序回流至室内。
5.微正压模式
微正压模式的工作示意图与图3中全热模式相似,区别仅在于全热换热器EH的通道开启方式不同,理解微正压模式时可参考图3。控制器开启全热换热器EH的第一通风通道和第二通风通道,关闭全热换热器EH的第一换热通道、第二换热通道、第一自动风门机构S v1的通风口和第二自动风门机构S v2的通风口,并开启内风机F i和外风机F o进入微正压模式。在微正压模式下:室内的空气沿室内进风口V it1→第一过滤网F 1→除甲醛模块F m→第一通风通道→外风机F o→室外出风口V ot2流到室外;与此同时,室外的空气沿室外进风口V it2→第二过滤网F 2→第二通风通道→内风机F i→除菌模块→负离子模块→室内出风口V ot1流到室内。
6.新风模式
参见图7,控制器开启全热换热器EH的第一通风通道,关闭全热换热器EH的第一换热通道、第二换热通道、第二通风通道、第一自动风门机构S v1的通风口和第二自动风门机构S v2的通风口,并启动内风机F i进入新风机的新风模式。新风模式下:室外的空气沿室外进风口V it2→第二过滤网F 2→第一通风通道→内风机F i→除菌模块→负离子模块→室内出风口V ot1流到室内。
根据前面的介绍对新风机的六种运行模式已经有了详细的了解,接下来,参考图8来说明本发明的空调器和新风机的协同控制方法的主要步骤流程,该协同控制方法主要包括:
步骤S100、在空调器开机的情况下,判断是否收到用户针对新风机的操作指令。
若收到,则根据操作指令,选择性地进入步骤S200或者S300;
步骤S200、启动新风机并执行用户选定的运行模式;
步骤S300、保持新风机关机;
步骤S400、判断室内空气质量参数是否大于或等于第一室内超标阈值;若是,则进入步骤S600,若否,则返回步骤S400。
步骤S600,启动新风机并基于场景自动确定新风机的运行模式。
若没有收到,则进入步骤S500判断室内空气质量参数是否大于或等于第二室内超标阈值,第一室内超标阈值大于第二室内超标阈值,若是,则进入步骤S600,否则返回步骤S500。
与现有新风机与空调联动系统的控制方法相比,本发明的空调器和新风机的协同控制方法增设了用户自主选择步骤,优选根据用户选定的操作指令来控制新风机启动并进入选定的运行模式,在没收到用户指令的情况下才进入自动控制模式。
另外,当用户指令为不启动新风机时,该协同控制方法还进一步自动判断室内空气质量与第一室内超标阈值的大小关系,且第一室内超标阈值大于第二室内超标阈值,第二室内超标阈值是指在没有收到用户操作指令情况下自动进入控制模式时的预设的空气质量参数是否超标的参考值,当室内空气参数大于第一室内超标阈值时再强制启动新风机并基于场景自动确定新风机的运行模式。
实际使用时,有些用户尤其是老人为了省电在室内空气质量严重超标的情况下也会设定不启动新风机,或者是孩子拿到遥控器后将误操作设定了不启动新风机的操作指令,针对这种情况本发明的协同控制方法强制自动启动新风机,从而在给用户自主选择是否启动新风机以及启动何种运行模式的基础上,可避免因用户误操作等原因造成室内环境严重污染情况下新风机仍处于闲置状态的问题,在一定程度上提高了空调器和新风机协同工作的智能化水平。
进一步地,为了更好地理解本发明的协同控制方法,下面参照图9来解释说明本发明的空调器和新风机的协同控制方法的详细步骤。
参见图9,本发明的空调器和新风机的协同控制方法包括:
步骤S100、判断是否收到用户针对新风机的操作指令。
需要说明的是,空调器和新风机的控制指令集成于控制板,该控制板可以为传统的按钮式控制板、触摸式控制板或者是手机APP应用程序,控制板上设置了新风机的各运行模式,用户只需选定运行模式即可启动新风机工作并进入选定的运行模式。例如:用户在控制 板上选定了全热模式,控制器收到这条操作指令后启动新风机开机并进入全热模式,如果用户在控制板上选定新风机不运行按钮时,控制器接收到这条控制指令后根据新风机目前的工作状态加以调整,例如新风机的当前工作为关机时,维持新风机的关机状态,如果新风机当前处于工作状态时则控制新风机关机。
若收到,则根据操作指令,选择性地进入步骤S200或者S300;
步骤S200、启动新风机并执行用户选定的运行模式。
如前面提到的,新风机的运行模式包括排风模式、全热模式、旁通模式、内循环模式、微正压模式和新风模式,可以理解,新风机的运行模式取决于其具体结构,本发明中协同控制方法不仅适用于包括上述所有运行模式的新风机,还可以适用于仅包括其中2-3个上述运行模式的新风机。
步骤S300、保持新风机关机。
步骤S400、判断室内空气质量参数是否大于或等于第一室内超标阈值;若是,则进入步骤S600,若否,则返回步骤S400。
若没有收到用户的操作指令,则进入步骤S500
步骤S500、判断室内空气质量参数是否大于或等于第二室内超标阈值,第一室内超标阈值大于第二室内超标阈值,若是,则进入步骤S600,否则返回步骤S500。
步骤S600、启动新风机并基于场景自动确定新风机的运行模式。
本发明中室内空气质量参数主要是指CO 2、VOC和甲醛的浓度,空调器的控制器内预设了这三项室内空气质量参数的第一室内超标阈值和第二室内超标阈值,且第一室内超标阈值大于第二室内超标阈值,在步骤S400和S500中判断室内空气质量参数是否大于或等于第一室内超标阈值或第二室内超标阈值时,这三项参数中至少一项参数大于或等于第一室内超标阈值/第一室内超标阈值,或者是两项参数大于或等于各自的第一室内超标阈值/第一室内超标阈值,也可以是是三项参数都要大于或等于各自的第一室内超标阈值/第一室内超标阈值,具体判断标准可以根据应用场景来设定。当然,室内空气参数 也并不仅限于CO 2、VOC和甲醛的浓度,可以根据实际应用场景还可以包括其他可以用于表征室内空气质量参数的指标。
本发明的协同控制方法中引入第一室内超标阈值和第二室内超标阈值并且限定第一室内超标阈值大于第二室内超标阈值的目的在于,当室内空气质量污染严重的情况下,尤其是严重至室内空气质量参数大于或等于第一室内超标阈值时,控制器强制控制新风机开机并进入根据应用场景自动确定运行模式,如此可避免背景技术中记载的因误操作或其他原因用户设定新风机不开机,造成室内空气质量污染严重对人体造成的伤害,可以在一定程度上提高空调器和新风机协同工作的智能化水平。第一室内超标阈值优选地可以为第二室内超标阈值的1.5-5倍。当然,第一室内超标阈值和第二室内阈超标阈值之间的具体倍数关系,本领域技术人员可以及新风机的性能参数、应用场景来确定。
步骤S600,启动新风机并基于场景自动确定新风机的运行模式。
继续参见图2,步骤S600具体包括:
步骤S601、启动新风机。
步骤S602、判断室内烟雾量是否大于或等于烟雾量阈值。若是,则进入步骤S603,否则进入步骤S604。
需要说明的是,控制器预设了烟雾量阈值,具体数值大小可根据新风机的性能参数、室内面积和格局等因素来确定。室内的烟雾量可以通过烟雾检测仪来采集,在以有线或无线的通信方式传输给控制器,控制器比较烟雾量和预设的烟雾量阈值之间的大小关系,再根据比较结果来执行步骤S603或S604。
步骤S603、启动排风模式并返回步骤S100。
步骤S604、判断室外环境温度和室内环境温度之间的温差绝对值是否大于或等于温差阈值,若是则进入步骤S605,否则进入步骤S606。
需要说明的是,室外环境温度可以由安装于室外机上的红外温度传感器采集,再以有线或无线的方式传输至控制器,同样室内环境温度可以由安装于室内机上的红外温度传感器采集,再以有线或 无线的方式传输至控制器,控制器计算室外环境温度和室内环境温度之间的实际温差并求绝对值,再比较温差绝对值和控制器预设的温差阈值之间的大小关系,通常情况下该温度阈值可以3℃-5℃,当然,温度阈值并不限定于这一具体数值,其取值取决于新风机的功率等性能参数,本领域技术人员可以根据新风机性能参数来设定。
进一步,需要强调的是,是室内温度和室外温度的温差的绝对值△T,即△T=|T内-T外|,△T必须是通过计算10分钟内空气卫士传过来的室内温度值的平均值一直稳定在某个数值上下10%的误差范围内,才把数据传给控制器,单位为摄氏度℃。
步骤S605、启动全热模式并返回步骤S100。
步骤S606、判断室外空气质量参数是否大于或等于第一室外超标阈值,若否则进入步骤S607,否是进入步骤S608。
步骤S607、启动旁通模式并返回步骤S100。
步骤S608、判断室外空气质量参数是否大于或等于第二室外超标阈值,第二室外超标阈值大于第一室外超标阈值,若是则进入步骤S609,否则进入步骤S6010。
步骤S609、启动内循环模式并返回步骤S100。
步骤S6010、启动微正压模式并返回步骤S100。
需要说明的是,本发明中室外空气质量参数主要是指CO 2、VOC和PM2.5的浓度,空调器的控制器内预设了这三项室外空气质量参数的第一室外超标阈值和第二室外超标阈值,并使第二室外超标阈值大于第一室外超标阈值,优选地第二室外超标阈值可以为第一室外超标阈值的2-4倍。
在步骤S606和S608中判断室外空气质量参数是否大于或等于第一室外超标阈值/第二室外超标阈值时,这三项参数中至少一项参数大于或等于第一室外超标阈值/第一室外超标阈值,或者是两项参数大于或等于各自的第一室外超标阈值/第一室外超标阈值,也可以是是三项参数都要大于或等于各自的第一室外超标阈值/第一室外超标阈值,具体判断标准可以根据新风机的性能参数和应用场景来设定。当然,室外空气参数也并不仅限于CO 2、VOC和PM2.5的浓度,可以根 据实际应用场景还可以包括其他可以用于表征室外空气质量参数的指标。
为了提高协同控制方法的实施安全性,本发明在图9中协同控制方法的基础上提供了另一种协同控制方法,参见图10,这种协同控制方法与图9基本相同,只是当收到用户操作指令后选择性地进入步骤S200或S300的步骤之前,另一种协同控制方法还包括步骤S101,判断室外空气中有毒物质的量是否大于或等于最大允许量,若是则进入步骤S102关闭空调器,保持新风机关机并返回步骤S101,否则选择性的进入步骤S200或S300。
这种协同控制方法中室外空气中的有毒物质包括对人体有害的放射性元素,例如前苏联的切尔诺贝利核泄漏事件中对人体健康造成严重损伤的石墨元素等,该控制方法预设各种对人体会造成严重危害的放射性元素的最大允许量,通过放射性元素量检测仪器来采集室外的放射性元素的实际量,将该实际量与预设的最大允许量进行比较,如果实际量大于或等于最大允许量时,则关闭空调器关机、保持新风机的关机状态并返回步骤S101。这样当发生如核泄漏等严重灾害时,可防止室外的有害物质通过空调器或新风机进入室内对人体造成伤害,提高了本发明的协同控制方法的实施安全性。
另外,本发明还提供一种空调器和新风机的协同控制系统,该协同控制系统包括控制器,该控制器配置成能够执行上述协同控制方法。这个控制器既可以是一个独立设置的控制器,也可以是空调器或新风机的控制器上的一个功能模块,也可以是部分功能由空调器的控制器实现、部分功能由新风机的控制器来实现的一个虚拟控制器,其具体物理形式不对本发明的保护范围构成任何限制。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种空调器和新风机的协同控制方法,其特征在于,所述协同控制方法包括:
    在所述空调器开机的情况下,判断是否收到用户针对新风机的操作指令;
    若收到,则根据所述操作指令,选择性地启动所述新风机并执行用户选定的运行模式或者保持所述新风机关机并判断室内空气质量参数是否大于或等于第一室内超标阈值,若是则启动所述新风机并基于场景自动确定所述新风机的运行模式,否则继续判断室内空气质量参数是否大于或等于所述第一室内超标阈值;
    若没收到,则判断所述室内空气质量参数是否大于或等于第二室内超标阈值,所述第一室内超标阈值大于所述第二室内超标阈值,若是则启动所述新风机并基于场景自动确定所述新风机的运行模式,否则继续判断所述室内空气质量参数是否大于或等于所述第二室内超标阈值。
  2. 根据权利要求1所述的协同控制方法,其特征在于,所述第一室内超标阈值为所述第二室内超标阈值的1.5-5倍。
  3. 根据权利要求1所述的协同控制方法,其特征在于,所述室内空气质量参数包括CO 2、VOC和甲醛的浓度。
  4. 根据权利要求1至3中任一项所述的协同控制方法,其特征在于,“基于场景自动确定所述新风机的运行模式”的步骤具体包括:
    判断室内烟雾量是否大于或等于烟雾量阈值;
    若是,则启动排风模式并返回“判断是否收到用户针对新风机的操作指令”的步骤,否则判断室内温度和室外温度之间的温差绝对值是否大于温差阈值;若是,则启动全热模式并返回“判断是否收到用户针对新风机的操作指令”的步骤,否则判断室外空气质量参数是否达到第一室外超标阈值;
    若否,则启动旁通模式并返回判断“判断是否收到用户针对新风机的操作指令”的步骤,若是则判断所述室外空气质量参数是否达到第二室外超标阈值,所述第二室外超标阈值大于所述第一室外超标阈值;
    若是,则启动内循环模式并返回判断“判断是否收到用户针对新风机的操作指令”的步骤,否则启动微正压模式并返回“判断是否收到用户针对新风机的操作指令”的步骤。
  5. 根据权利要求4所述的协同控制方法,其特征在于,所述第二室外超标阈值为所述第一室内超标阈值2-4倍。
  6. 根据权利要求4所述的协同控制方法,其特征在于,所述室外空气质量参数包括CO 2、VOC和PM2.5的浓度。
  7. 根据权利要求4所述的协同控制方法,其特征在于,所述温差阈值为3℃-5℃。
  8. 根据权利要求1至3中任一项所述的协同控制方法,其特征在于,所述用户选定的运行模式包括:全热模式、微正压模式、旁通模式、内循环模式、排风模式和新风模式。
  9. 根据权利要求1至8中任一项所述的协同控制方法,其特征在于,在“选择性地启动所述新风机并执行用户选定的运行模式或者保持所述新风机关机并判断室内空气质量参数是否大于或等于第一室内超标阈值”的步骤之前,所述协同控制方法还包括:
    判断室外空气内有毒物质的量是否大于或等于最大允许量;
    若是,则关闭所述空调器,保持所述新风机关机,并返回判断室外空气内有毒物质的量是否大于或等于最大允许量;
    否则,选择性地启动所述新风机并执行用户选定的运行模式或者保持所述新风机关机并判断室内空气质量参数是否大于或等于第一室内超标阈值。
  10. 一种空调器和新风机的协同控制系统,包括控制器,其特征在于,所述控制器配置成能够执行上述权利要求1至9中任一项所述的协同控制方法。
PCT/CN2021/082109 2020-05-29 2021-03-22 空调器和新风机的协同控制系统及其协同控制方法 WO2021223532A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010476683.3 2020-05-29
CN202010476683.3A CN111878894B (zh) 2020-05-29 2020-05-29 空调器和新风机的协同控制系统及其协同控制方法

Publications (1)

Publication Number Publication Date
WO2021223532A1 true WO2021223532A1 (zh) 2021-11-11

Family

ID=73154106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082109 WO2021223532A1 (zh) 2020-05-29 2021-03-22 空调器和新风机的协同控制系统及其协同控制方法

Country Status (2)

Country Link
CN (1) CN111878894B (zh)
WO (1) WO2021223532A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114110754A (zh) * 2021-11-26 2022-03-01 Tcl空调器(中山)有限公司 空调室内机
CN114543173A (zh) * 2022-02-25 2022-05-27 青岛海信日立空调系统有限公司 一种空调器室内机
CN114963389A (zh) * 2022-06-07 2022-08-30 Tcl空调器(中山)有限公司 空气处理装置及空调器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113251592A (zh) * 2020-02-12 2021-08-13 青岛海尔空调电子有限公司 全热新风机的运行控制方法
CN111878894B (zh) * 2020-05-29 2023-03-28 青岛海尔空调器有限总公司 空调器和新风机的协同控制系统及其协同控制方法
CN112944540B (zh) * 2021-03-31 2022-08-30 中山市万得福电子热控科技有限公司 室内空气调节系统及其室内空气调节方法、可读存储介质
CN113465117A (zh) * 2021-06-11 2021-10-01 青岛海尔空调电子有限公司 空调器的送风控制方法及装置、计算机可读存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976010A (en) * 1997-06-27 1999-11-02 York International Corporation Energy efficient air quality maintenance system and method
CN1808006A (zh) * 2005-01-20 2006-07-26 松下电器产业株式会社 具有换气连动功能的空调系统及其控制方法
KR20070008200A (ko) * 2005-07-13 2007-01-17 삼성전자주식회사 환기장치 및 그 운전제어방법
CN104180464A (zh) * 2014-08-11 2014-12-03 珠海格力电器股份有限公司 新风机与空调器联动控制方法
CN204678616U (zh) * 2015-05-23 2015-09-30 广州科络环保科技有限公司 一种带有自动探测探头的全热交换机
CN106500270A (zh) * 2016-11-09 2017-03-15 珠海格力电器股份有限公司 新风空调的控制方法、装置和新风空调
KR102031650B1 (ko) * 2018-02-07 2019-11-27 주식회사 티젠 전열교환기 무선 연동으로 오염표시 기능을 갖는 환기시스템
CN111878894A (zh) * 2020-05-29 2020-11-03 青岛海尔空调电子有限公司 空调器和新风机的协同控制系统及其协同控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101464027A (zh) * 2007-12-21 2009-06-24 航天科工海鹰集团有限公司 室内外空气交换系统
CN102121740A (zh) * 2010-01-12 2011-07-13 珠海格力电器股份有限公司 空调器控制系统和控制方法以及空调器
CN101839536A (zh) * 2010-01-19 2010-09-22 深圳市德泰法亚科技有限公司 一种新风空调制冷的方法、相应的制冷系统及控制器
CN102434947A (zh) * 2011-09-23 2012-05-02 北京富雷实业有限公司 一种具有热交换功能的新风换气机
CN106969469B (zh) * 2017-04-07 2019-11-29 广东美的制冷设备有限公司 空调器的控制方法、系统及空调器
CN109827298B (zh) * 2019-01-25 2020-10-09 深圳创新设计研究院有限公司 一种新风机的智能控制方法和新风机系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976010A (en) * 1997-06-27 1999-11-02 York International Corporation Energy efficient air quality maintenance system and method
CN1808006A (zh) * 2005-01-20 2006-07-26 松下电器产业株式会社 具有换气连动功能的空调系统及其控制方法
KR20070008200A (ko) * 2005-07-13 2007-01-17 삼성전자주식회사 환기장치 및 그 운전제어방법
CN104180464A (zh) * 2014-08-11 2014-12-03 珠海格力电器股份有限公司 新风机与空调器联动控制方法
CN204678616U (zh) * 2015-05-23 2015-09-30 广州科络环保科技有限公司 一种带有自动探测探头的全热交换机
CN106500270A (zh) * 2016-11-09 2017-03-15 珠海格力电器股份有限公司 新风空调的控制方法、装置和新风空调
KR102031650B1 (ko) * 2018-02-07 2019-11-27 주식회사 티젠 전열교환기 무선 연동으로 오염표시 기능을 갖는 환기시스템
CN111878894A (zh) * 2020-05-29 2020-11-03 青岛海尔空调电子有限公司 空调器和新风机的协同控制系统及其协同控制方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114110754A (zh) * 2021-11-26 2022-03-01 Tcl空调器(中山)有限公司 空调室内机
CN114543173A (zh) * 2022-02-25 2022-05-27 青岛海信日立空调系统有限公司 一种空调器室内机
CN114543173B (zh) * 2022-02-25 2023-09-12 青岛海信日立空调系统有限公司 一种空调器室内机
CN114963389A (zh) * 2022-06-07 2022-08-30 Tcl空调器(中山)有限公司 空气处理装置及空调器
CN114963389B (zh) * 2022-06-07 2023-12-05 Tcl空调器(中山)有限公司 空气处理装置及空调器

Also Published As

Publication number Publication date
CN111878894A (zh) 2020-11-03
CN111878894B (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
WO2021223532A1 (zh) 空调器和新风机的协同控制系统及其协同控制方法
US5228306A (en) Apparatus for controlling air-exchange and pressure and detecting airtight conditions in air-conditioned room
CN102434947A (zh) 一种具有热交换功能的新风换气机
CN202229344U (zh) 一种智能通风装置
KR20190106608A (ko) 실내 공기조화 통합 제어 시스템
CN112944540A (zh) 室内空气调节系统及其室内空气调节方法、可读存储介质
KR101221240B1 (ko) 외기냉방기능을 가진 폐열회수 환기시스템의 제어방법
JP2016075443A (ja) 換気システムおよび換気方法
CA3033302A1 (en) Heat exchange-type ventilation device
KR200461855Y1 (ko) 환기 시스템
JP6982727B2 (ja) 熱交換型換気扇の制御方法
CN112944541A (zh) 室内空气调节系统及其室内空气调节方法、可读存储介质
KR100623526B1 (ko) 폐열회수 환기장치 및 환기 제어 방법
KR100667230B1 (ko) 제상 댐퍼를 갖는 폐열회수 장치 및 제상 제어 방법
GB2267146A (en) Air conditioning apparatus
JP2020118420A (ja) 換気システム
KR100667228B1 (ko) 폐열회수 환기장치
KR100556066B1 (ko) 수요 대응 제어형 공조 시스템
CN107687694B (zh) 一种具有净化、除湿、室内压力调节功能的通风器
CN112503639A (zh) 空调器及其控制方法
CN116126060A (zh) 一种合成生物实验室环境的调节装置及调节方法
JP2011007354A (ja) 換気装置
KR102397618B1 (ko) 자연환기방식과 기계환기방식이 결합된 하이브리드 환기장치
KR102371835B1 (ko) 퍼지모드를 갖는 환기장치
JPH03158633A (ja) 空気浄化換気空調装置及び該装置の制御方式

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21800361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21800361

Country of ref document: EP

Kind code of ref document: A1